WO2013092078A1 - Projektionssystem mit mehreren lichtemittierenden elementen - Google Patents

Projektionssystem mit mehreren lichtemittierenden elementen Download PDF

Info

Publication number
WO2013092078A1
WO2013092078A1 PCT/EP2012/073187 EP2012073187W WO2013092078A1 WO 2013092078 A1 WO2013092078 A1 WO 2013092078A1 EP 2012073187 W EP2012073187 W EP 2012073187W WO 2013092078 A1 WO2013092078 A1 WO 2013092078A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
projection system
integrator
projection
emitting elements
Prior art date
Application number
PCT/EP2012/073187
Other languages
English (en)
French (fr)
Inventor
Clemens Wesseling
Henning Rehn
Original Assignee
Osram Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osram Gmbh filed Critical Osram Gmbh
Priority to CN201280058801.2A priority Critical patent/CN103959164B/zh
Priority to US14/366,268 priority patent/US9494850B2/en
Priority to EP12788536.6A priority patent/EP2795400B1/de
Publication of WO2013092078A1 publication Critical patent/WO2013092078A1/de

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/208Homogenising, shaping of the illumination light
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/147Optical correction of image distortions, e.g. keystone
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B33/00Colour photography, other than mere exposure or projection of a colour film
    • G03B33/06Colour photography, other than mere exposure or projection of a colour film by additive-colour projection apparatus
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2013Plural light sources
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • H04N9/3164Modulator illumination systems using multiple light sources

Definitions

  • the invention relates to a projection system according to the preamble of claim 1.
  • DE 603 09 400 T2 describes a projection system that allows uniform illumination of a projection surface with a plurality of light-emitting elements, such as LEDs, which are each followed by an optical integrator.
  • WO 2008/027692 A2 and WO 97/01727 A1 describe the coupling out of light from a light-emitting element by means of an optical integrator.
  • the projection system according to EP 2211090 A1 has light sources which each consist of a plurality of light-emitting elements.
  • the light elements each emit light of a different wavelength.
  • light of each light-emitting element is coupled in such a way that mixed and collimated light of all light-emitting elements emerges at its exit opening. By imaging optics emerging from the exit opening of each integrator light is projected onto the projection surface.
  • the object of the present invention is to provide a projection system of the aforementioned type, in which the imaging quality can be improved without having to accept the above-mentioned disadvantage.
  • virtual images of the inlet opening and the outlet opening of the integrator are generated by the optical element whose distance from each other is greater than the length of the optical integrator.
  • the efficiency of the projection system is further ensured by using an integrator to extract the light from the light-emitting elements for each light source.
  • the optical integrator performs additive color mixing. Thus, light of a certain wavelength only needs to be generated when needed becomes. A spectral filtering and the associated loss of efficiency in the production of colored images are superfluous.
  • each light source contains at least three light-emitting elements of different color (RGB), which are selectively controllable, so that the mixed and collimated light emerging from the exit opening of the integrator has a selectively selectable color.
  • RGB different color
  • the imaging optics is formed by at least one Fresnel lens.
  • an imaging optical system having a large focal length of, for example, 0.5m to Im, a large aperture ratio of, for example, 0.7 to 1.2 and low mass can be obtained.
  • the arrangement of several Fresnel lenses along the optical axis also image errors can be reduced.
  • the projection system preferably contains a multiplicity of light sources which are arranged in a matrix-like manner and can be controlled selectively, each having a convex lens, so that a corresponding pixel image can be imaged on the projection surface.
  • a multiplicity of light sources which are arranged in a matrix-like manner and can be controlled selectively, each having a convex lens, so that a corresponding pixel image can be imaged on the projection surface.
  • the diameter of the imaging optics is preferably larger than the largest extent of the area occupied by the matrix-like light sources. As a result, losses due to vignetting can be avoided.
  • Fig. La is a schematic view of an embodiment of the projection system according to the invention.
  • FIG. 1b shows a schematic top view of an RGB multichip LED according to the exemplary embodiment
  • Fig. 2a is a schematic view of a beam path of a
  • 2b is a schematic view of a beam path of
  • Fig. 3 shows a development of the projection system according to the
  • the projection system 100 has along a common optical axis 1 a light source 10, a convex lens 20 as an optical element, and an imaging optics 30 in this order.
  • the imaging optics 30 is formed by two Fresnel lenses 31 and 32.
  • the light source 10 has a RGB multichip LED 15 as a light unit and a conical light guide rod 16 as an optical integrator.
  • the RGB multi-chip LED 15, which is shown in plan view in FIG. 1b, contains as light-emitting elements four LED elements 11, 12, 13 and 14, which are arranged on a common plane.
  • the LED elements 11 and 13 provide green light
  • the LED Element 12 provides blue light
  • LED element 13 provides red light.
  • the RGB multi-chip LED 15 generates a light having different spectral proportions.
  • the RGB multi-chip LED 15 is arranged on the optical axis 1 directly in front of an inlet opening 16a of the light-conducting rod 16, so that a majority of the light emitted by the RGB multichip LED 15 falls on an inlet opening 16a of the light-conducting rod 16. This achieves the greatest possible efficiency.
  • light of different wavelengths is mixed additively and output through an outlet opening 16b.
  • an optical element 20 Downstream of the light guide rod 16 on the optical axis is an optical element 20, which is designed as a convex lens in the present embodiment.
  • the outlet opening 16b of the light-conducting rod 16 is imaged by the imaging optics 30 on a projection surface 40 at a greater distance.
  • this distance may be between two meters and twelve meters.
  • FIG. 2 a shows a schematic view of a beam path of a projection system according to a first comparative example.
  • the comparative example does not have the convex lens 20.
  • FIG. 2 a it can be seen that, in the comparative example without a convex lens 20, both the inlet opening 16 a and the outlet opening 16 b are imaged on the projection surface 40 as a virtual inlet opening 16 a 'or as a virtual outlet opening 16 b'. If the virtual inlet opening 16a 'and the virtual outlet opening 16b' are jointly sharply imaged on the projection surface 40, these images are superimposed.
  • the result is an image on the Projection surface 40 a disk with a smaller, lighter disk in its center.
  • a pixel is generated which has a higher light intensity in the middle than at the edge.
  • Fig. 2b shows a schematic view of a beam path of the present embodiment.
  • the convex lens 20 arranged directly behind the outlet opening 16b of the light-conducting rod 16
  • the virtual inlet opening 16a 'and the virtual outlet opening 16b' are shown spaced apart, so that simultaneous sharp imaging does not take place.
  • an approximately homogeneously illuminated pixel is imaged on the projection surface 40.
  • the projection system 100 has a plurality of the light sources 10 and a number of the convex lenses 20 corresponding to the number of the plurality of light sources 10.
  • the light sources 10 are arranged together with their correspondingly associated convex lenses 20 in a matrix structure.
  • the matrix structure by eight mutually arranged rows, each with twelve times the combination of the light source 10 and the convex lens 20 is formed.
  • the light sources 10 and their correspondingly associated convex lenses 20 are each arranged in a plane perpendicular to the optical axis.
  • the imaging optics 30 with the Fresnel lenses 31 and 32, not shown in FIG. 3, is placed in such a way as to combine the light sources 10 and convex lenses 20 such that their imaging lies at the desired distance in a plane.
  • image data or video data to be projected onto the projection surface 40 by the projection system 100 is stored.
  • the image data or video data may be, for example, MPEG type data.
  • a corresponding MPEG file may for example have a resolution of twelve times eight according to the arrangement of the matrix structure.
  • the storage device 110 outputs the image data or video data to the image processing device 120.
  • the image processing apparatus 120 converts the provided data into drive signals for the light sources 10 and light emitting elements 11 to 14, and outputs them to the projection system 100.
  • Each light source 10 represents a pixel. By means of suitable selective activation of the individual light sources 10, corresponding pixels are thus produced on the projection surface 40. The color of the individual pixels is determined by suitable drive signals for the corresponding light-emitting elements 11 to 14.
  • the projection surface 40 in FIG. 3 is a building wall.
  • the development of the projection system 100 illustrated in FIG. 3 projects onto the building wall 40 an image or video stored in the memory device 110 with a resolution corresponding to the number of light sources 10.
  • the arranged according to a matrix outlet openings 16b can cover a significant area.
  • an imaging optics 30 with a large focal length and a large opening is required.
  • the focal length can be for example 400mm or 500mm.
  • the imaging optics may have a greater edge length than the edge length of the matrix.
  • the light unit can be formed by any light-emitting elements that are arranged in spatial proximity, such as on a plane. Combinations of monochrome or white LED elements as a light unit 15 are conceivable.
  • the radiation emission may also include radiation in the ultraviolet and / or infrared spectral range.
  • combinations of other light-emitting elements such as laser diodes, lasers, incandescent lamps, discharge lamps are also conceivable.
  • laser-activated remote phosphor (LARP) arrangements can be used as light-emitting elements, in which a separate phosphor layer spatially separated from the radiation source is excited by the emitted radiation of a laser diode and caused to emit fluorescence radiation.
  • organic LEDs OLEDs
  • a conical light guide rod 16 is provided as the optical integrator.
  • the integrator can also be formed by suitable mirrors. It is essential that the optical integrator is designed so that the light incident in the inlet opening, which originates from differently colored light-emitting elements, is mixed and collimated.
  • the imaging optical system 30 is formed by the two Fresnel lenses 31 and 32.
  • the imaging optics 30 can also be formed by suitable other lenses or optical components. What is essential here is that they can ensure a desired high illuminance of the projection system 100 and an image at the desired long distance.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Projection Apparatus (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

Ein Projektionssystem (100) zum Beleuchten einer Projektionsoberfläche (40) wird bereitgestellt. Das Projektionssystem (100) weist mindestens eine Lichtquelle (10), die aus mehreren lichtemittierenden Elementen (11 bis 14), von denen jedes Licht einer anderen Wellenlänge emittiert, und einem optisehen Integrator (16) mit einer Eintrittsöffnung (16a) und einer Austrittsöffnung (16b) gebildet ist, in dessen Eintrittsöffnung (16a) das Licht jedes lichtemittierenden Elements (11 bis 14) so eingekoppelt wird, dass aus seiner Austrittsöffnung (16b) Licht aller lichtemittierenden Elemente (11 bis 14) gemischt austritt, auf. Ferner weist das Projektionssystem eine Abbildungsoptik (30) auf, die das aus der Austrittsöffnung jedes Integrators (16) austretende Licht auf die Projektionsoberfläche (40) überträgt. Zwischen der Austrittsöffnung (16b) jedes Integrators (16) und der Abbildungsoptik (30) ist jeweils ein optisches Element (20) angeordnet, das das virtuelle Bild der Eintrittsöffnung (16a) so entlang der optischen Achse verschiebt, dass sein durch die Abbildungsoptik (30) erzeugtes Bild auf der Projektionsoberfläche (40) nicht sichtbar ist.

Description

Beschreibung
PROJEKTIONSSYSTEM MIT MEHREREN LICHTEMITTIERENDEN ELEMENTEN
Technisches Gebiet Die Erfindung betrifft ein Projektionssystem gemäß dem Oberbegriff des Anspruchs 1.
Stand der Technik
DE 603 09 400 T2 beschreibt ein Projektionssystem, das mit mehreren lichtemittierenden Elementen wie beispielsweise LEDs, denen jeweils ein optischer Integrator nachgeordnet ist, das gleichmäßige Beleuchten einer Projektionsoberfläche erlaubt .
Ebenso beschreiben die WO 2008/027692 A2 sowie die WO 97/01727 AI das Auskoppeln von Licht aus einem lichtemittierenden Element mittels eines optischen Integrators.
Aus dem Dokument EP 2211090 AI ist ein Projektionssystem zum Beleuchten einer Proj ektionsoberfläche bekannt. Das Projekti- onssystem gemäß der EP 2211090 AI weist Lichtquellen auf, die jeweils aus mehreren lichtemittierenden Elementen bestehen. Die Lichtelemente emittieren jeweils Licht einer anderen Wel- lenlänge. In eine Eintrittsöffnung eines optischen Integrators des Projektionssystems wird Licht jedes lichtemittierenden Elements so eingekoppelt, dass an seiner Austrittsöffnung gemischtes und kollimiertes Licht aller lichtemittierenden Elemente austritt. Durch eine Abbildungsoptik wird das aus der Austrittsöffnung jedes Integrators austretende Licht auf die Projektionsoberfläche projiziert.
Aufgrund der geometrischen Verhältnisse und der allgemeinen optischen Gesetze kommt es dabei nicht nur zu einer Abbildung der Austrittsöffnung des Integrators, sondern auch zu einer Abbildung der durch den Integrator sichtbaren Eintrittsöffnung, wo das Licht der lichtemittierenden Elemente noch nicht gemischt ist. Durch die Überlagerung der beiden Abbildungen auf der Projektionsoberfläche verschlechtert sich die wahrge- nommene Abbildungsqualität.
Dies soll durch einen in der EP 2211090 AI vorgesehenen Dif- fusor verbessert werden. Jedoch hat der Diffusor den Nachteil, die Lichteffizienz zu verschlechtern.
Darstellung der Erfindung
Die Aufgabe der vorliegenden Erfindung ist es, ein Projekti- onssystem der vorgenannten Art bereit zu stellen, bei dem die Abbildungsqualität verbessert werden kann ohne den oben erwähnten Nachteil in Kauf nehmen zu müssen.
Diese Aufgabe wird gelöst durch Merkmale des Anspruchs 1. Bei der Erfindung werden durch das optische Element virtuelle Bilder der Eintrittsöffnung und der Austrittsöffnung des Integrators erzeugt, deren Abstand zueinander größer als die Länge des optischen Integrators ist. Bei der Abbildung des virtuellen Bildes der Austrittsöffnung auf die Projektionsoberfläche wird nunmehr das virtuelle Bild der Eintrittsöff- nung des Integrators in eine von der Projektionsoberfläche weit entfernte Ebene abgebildet, wodurch sein störender Ein- fluss auf die Abbildung der Austrittsfläche vernachlässigbar klein wird.
Dadurch kann auf den Einsatz von Diffusionselementen, die die Beleuchtungseffizienz verschlechtern, verzichtet werden.
Ferner wird die Effizienz des Projektionssystems weiter dadurch gewährleistet, dass zum Auskoppeln des Lichts aus den lichtemittierenden Elementen für jede Lichtquelle ein Integrator verwendet wird. Der optische Integrator führt eine additive Farbmischung durch. Somit muss Licht einer bestimmten Wellenlänge nur erzeugt werden, wenn dieses benötigt wird. Eine spektrale Filterung und der damit einhergehende Effizienzverlust bei der Erzeugung von farbigen Bildern sind überflüssig .
Bevorzugt enthält jede Lichtquelle mindestens drei lichtemit- tierende Elemente unterschiedlicher Farbe (RGB) , die selektiv ansteuerbar sind, so dass das aus der Austrittsöffnung des Integrators austretende gemischte und kollimierte Licht eine selektiv wählbare Farbe hat. So können neben weißem Licht auch sämtliche Mischfarben, die die verwendeten lichtemittie- renden Elemente zulassen, erzeugt werden.
Vorzugsweise ist die Abbildungsoptik durch mindestens eine Fresnel -Linse gebildet. Somit lässt sich eine Abbildungsoptik mit großer Brennweite von beispielsweise 0,5m bis Im, einem großen Öffnungsverhältnis von beispielsweise 0,7 bis 1,2 und geringer Masse erlangen. Durch die Anordnung mehrerer Fres- nel-Linsen entlang der optischen Achse können ferner Bildfehler reduziert werden.
Bevorzugt enthält das Projektionssystem eine Vielzahl von matrixartig angeordneten und selektiv ansteuerbaren Licht- quellen mit jeweils zugeordneter Konvexlinse, so dass auf der Projektionsoberfläche ein entsprechendes Pixelbild abbildbar ist. So können bei geeigneter Ansteuerung mit geringem Aufwand Bilder sowie Filme ausreichender Auflösung beispielsweise auf einer Gebäudewand als Projektionsoberfläche darge- stellt werden.
Der Durchmesser der Abbildungsoptik ist dabei bevorzugt größer als die größte Ausdehnung der von den matrixartig angeordneten Lichtquellen eingenommenen Fläche. Dadurch können Verluste durch Vignettierung vermieden werden.
Weitere vorteilhafte Ausgestaltungen finden sich in den abhängigen Ansprüchen. Kurze Beschreibung der Zeichnungen
Im Folgenden soll die Erfindung anhand eines Ausführungsbeispiels näher erläutert werden. Die Figuren zeigen:
Fig. la eine schematische Ansicht eines Ausführungsbeispiels des erfindungsgemäßen Projektionssystems;
Fig. lb eine schematische Draufsicht einer RGB-Multichip- LED gemäß dem Ausführungsbeispiel;
Fig. 2a eine schematische Ansicht eines Strahlengangs eines
Proj ektionssystems gemäß einem ersten Vergleichsbeispiel ;
Fig. 2b eine schematische Ansicht eines Strahlengangs des
Projektionssystems gemäß dem Ausführungsbeispiel; und
Fig. 3 eine Weiterbildung des Projektionssystems gemäß dem
Ausführungsbeispiel .
Bevorzugte Ausführung der Erfindung
In Fig. la ist ein Projektionssystem 100 gemäß der bevorzug- ten Ausführungsform der vorliegenden Erfindung dargestellt. Das Projektionssystem 100 weist entlang einer gemeinsamen optischen Achse 1 eine Lichtquelle 10, eine Konvexlinse 20 als optisches Element und eine Abbildungsoptik 30 in dieser Reihenfolge auf. Die Abbildungsoptik 30 ist durch zwei Fresnel- Linsen 31 und 32 ausgebildet.
Die Lichtquelle 10 weist als eine Lichteinheit eine RGB- Multichip-LED 15 und als einen optischen Integrator einen konischen Lichtleitstab 16 auf. Die RGB-Multichip-LED 15, die in Fig. lb in Draufsicht dargestellt ist, beinhaltet als lichtemittierende Elemente vier LED-Elemente 11, 12, 13 und 14, die auf einer gemeinsamen Ebene angeordnet sind. Die LED- Elemente 11 und 13 stellen grünes Licht bereit, das LED- Element 12 stellt blaues Licht bereit und das LED-Element 13 stellt rotes Licht bereit. Somit erzeugt die RGB-Multichip- LED 15 ein Licht mit unterschiedlichen spektralen Anteilen. Die RGB-Multichip-LED 15 ist auf der optischen Achse 1 direkt vor einer Eintrittsöffnung 16a des Lichtleitstabs 16 angeordnet, so dass ein Großteil des von der RGB-Multichip-LED 15 emittierten Lichts auf eine Eintrittsöffnung 16a des Lichtleitstabs 16 fällt. Hierdurch wird eine größtmögliche Effizienz erlangt. Im Lichtleitstab 16 wird Licht verschiedener Wellenlängen additiv gemischt und durch eine Austrittsöffnung 16b ausgegeben.
Dem Lichtleitstab 16 auf der optischen Achse nachgeordnet befindet sich ein optisches Element 20, das in der vorliegenden Ausführungsform als Konvexlinse ausgebildet ist. Die Aus- trittsöffnung 16b des Lichtleitstabs 16 wird durch die Abbildungsoptik 30 auf eine Projektionsoberfläche 40 in größerer Entfernung abgebildet. Bei dem vorliegenden Ausführungsbeispiel kann diese Entfernung beispielsweise zwischen zwei Meter und zwölf Meter betragen.
Nachfolgend wird die Wirkungsweise der Konvexlinse 20 erläutert. In Fig. 2a ist hierzu eine schematische Ansicht eines Strahlengangs eines Projektionssystems gemäß einem ersten Vergleichsbeispiel dargestellt. Das Vergleichsbeispiel weist die Konvexlinse 20 nicht auf. In Fig. 2a ist ersichtlich, dass bei dem Vergleichsbeispiel ohne Konvexlinse 20 sowohl die Eintrittsöffnung 16a als auch die Austrittsöffnung 16b auf der Projektionsoberfläche 40 als virtuelle Eintrittsöffnung 16a' beziehungsweise als virtuelle Austrittsöffnung 16b' abgebildet werden. Werden die virtuelle Eintrittsöffnung 16a' und die virtuelle Austrittsöffnung 16b' gemeinsam scharf auf der Projektionsoberfläche 40 abgebildet, überlagern sich diese Abbilder. Weist der Lichtleitstab 16 beispielsweise einen kreisförmigen Querschnitt auf, ergibt sich als Abbild auf der Projektionsoberfläche 40 eine Scheibe mit einer kleineren helleren Scheibe in seiner Mitte. Es wird somit eine Pixel erzeugt, dass in der Mitte eine höhere Lichtintensität als am Rand aufweist.
Fig. 2b zeigt eine schematische Ansicht eines Strahlengangs des vorliegenden Ausführungsbeispiels. Durch die unmittelbar hinter der Austrittsöffnung 16b des Lichtleitstabs 16 angeordnete Konvexlinse 20 werden die virtuelle Eintrittsöffnung 16a' und die virtuelle Austrittsöffnung 16b' voneinander beabstandet abgebildet, so dass eine gleichzeitige scharfe Abbildung nicht stattfindet. Somit wird ein annähernd homogen beleuchtetes Pixel auf der Projektionsoberfläche 40 abgebildet .
Eine Weiterbildung des vorstehenden Ausführungsbeispiels ist in Fig. 3 dargestellt. Das Projektionssystem 100 weist in der vorliegenden Weiterbildung mehrere der Lichtquellen 10 und eine der Anzahl der mehreren Lichtquellen 10 entsprechende Anzahl der Konvexlinsen 20 auf. Die Lichtquellen 10 sind zusammen mit ihren entsprechend zugeordneten Konvexlinsen 20 in einer Matrix-Struktur angeordnet. In Fig. 3 ist die Matrix- Struktur, durch acht untereinander angeordnete Reihen mit jeweils zwölfmal der Kombination der Lichtquelle 10 und der Konvexlinse 20 ausgebildet. Hierbei sind die Lichtquellen 10 und ihre entsprechend zugeordneten Konvexlinsen 20 jeweils in einer zur optischen Achse senkrechten Ebene angeordnet.
Die in Fig. 3 nicht dargestellte Abbildungsoptik 30 mit den Fresnel -Linsen 31 und 32 wird so zu der Kombination der Lichtquellen 10 und Konvexlinsen 20 platziert, dass deren Abbildung in der gewünschten Entfernung in einer Ebene liegt. Konkret werden die Austrittsöffnungen 16b der Integratoren 16, die gemäß einer Matrix in einer gemeinsamen Ebene angeordnet sind, durch die Abbildungsoptik 30, die gegenüber den Lichtquellen 10 und den Konvexlinsen 20 einen großen Durch- messer aufweist, im gewünschten Abstand mit dem gewünschten Abbildungsmaßstab auf die Projektionsoberfläche 40 abgebildet .
Ferner sind in Fig. 3 eine Speichervorrichtung 110 und eine Bildverarbeitungsvorrichtung 120 dargestellt. In der Speichervorrichtung sind Bilddaten oder Videodaten gespeichert, die durch das Projektionssystem 100 auf die Projektionsoberfläche 40 projiziert werden sollen. Bei den Bilddaten oder Videodaten kann es sich beispielsweise um Daten des MPEG-Typs handeln. Eine entsprechende MPEG-Datei kann beispielsweise eine Auflösung von zwölf Mal acht entsprechend der Anordnung der Matrixstruktur haben.
Die Speichervorrichtung 110 gibt die Bilddaten oder Videodaten an die Bildverarbeitungsvorrichtung 120 aus. Die Bildver- arbeitungsvorrichtung 120 wandelt die bereitgestellten Daten in Ansteuersignale für die Lichtquellen 10 und lichtemittierenden Elemente 11 bis 14 und gibt diese an das Projektionssystem 100 aus.
Jede Lichtquelle 10 stellt ein Pixel dar. Durch geeignete se- lektive Ansteuerung der einzelnen Lichtquellen 10 werden somit entsprechende Pixel auf der Projektionsoberfläche 40 erzeugt. Die Farbe der einzelnen Pixel wird durch geeignete Ansteuersignale für die entsprechenden lichtemittierenden Elemente 11 bis 14 bestimmt.
Bei der Projektionsoberfläche 40 handelt es sich in Fig. 3 um eine Gebäudewand. Die in Fig. 3 dargestellte Weiterbildung des Projektionssystems 100 projiziert auf die Gebäudewand 40 ein in der Speichervorrichtung 110 gespeichertes Bild oder Video mit einer Auflösung entsprechend der Anzahl der Licht- quellen 10.
Die gemäß einer Matrix angeordneten Austrittsöffnungen 16b können eine erhebliche Fläche abdecken. Bei quadratischen Austrittsöffnungen 16b mit einer Kantenlänge von 20mm und acht Reihen mit jeweils zwölf Lichtleitstäben 16 ergibt sich eine Fläche von 240mm mal 180mm. Um diese Fläche geeignet abbilden zu können ist eine Abbildungsoptik 30 mit großer Brennweite und großer Öffnung erforderlich. Die Brennweite kann beispielsweise bei 400mm oder 500mm liegen. Um trotz der guten Kollimation durch die Lichtleitstäbe 16 eine gewünschte hohe Beleuchtungsstärke auf der Projektionsoberfläche 40 zu erreichen, kann die Abbildungsoptik eine gegenüber der Kantenlänge der Matrix größere Kantenlänge aufweisen.
Im vorstehenden Ausführungsbeispiel ist die Lichteinheit 15 durch eine RGB-Multichip-LED (R=Rot , G=Grün, B=Blau) mit vier LEDs ausgebildet. Die Lichteinheit kann auch durch eine RGBW- Multichip-LED (W=Weiss) ausgebildet sein. Ferner kann die Lichteinheit durch jegliche lichtemittierende Elemente ausge- bildet sein, die in räumlicher Nähe wie beispielsweise auf einer Ebene angeordnet sind. Kombinationen von monochromen oder weißen LED-Elementen als Lichteinheit 15 sind denkbar. Die Strahlungsemission kann auch Strahlung im ultravioletten und/oder infraroten Spektralbereich umfassen. Ferner sind Kombinationen anderer lichtemittierenden Elemente wie Laserdioden, Laser, Glühlampen, Entladungslampen, ebenso denkbar. Weiterhin können Laser-Activated Remote Phosphor (LARP) Anordnungen als lichtemittierende Elemente verwendet werden, bei denen eine von der Strahlungsquelle räumliche getrennte Leuchtstoffschicht durch die emittierte Strahlung einer Laserdiode angeregt und zur Abgabe von Fluoreszenzstrahlung veranlasst wird. Außerdem können auch organische LED (OLED) als lichtemittierende Elemente verwendet werden. Wesentlich ist, dass die lichtemittierenden Elemente so ausgerichtet sind, dass sie in die Eintrittöffnung des optischen Integrators strahlen.
Vorstehend ist als optischer Integrator ein konischer Lichtleitstab 16 vorgesehen. Alternativ kann der Integrator auch durch geeignete Spiegel ausgebildet werden. Wesentlich ist, dass der optische Integrator so gestaltet ist, dass das in die Eintrittsöffnung einfallende Licht, das aus verschiedenfarbigen lichtemittierenden Elementen stammt, gemischt und kollimiert wird.
In den vorstehenden Erläuterungen ist die Abbildungsoptik 30 durch die zwei Fresnel -Linsen 31 und 32 ausgebildet. Die Abbildungsoptik 30 kann aber auch durch geeignete andere Linsen oder optische Bauteile ausgebildet sein. Wesentlich hierbei ist, dass diese eine gewünschte hohe Beleuchtungsstärke des Projektionssystems 100 und eine Abbildung in gewünschter großer Entfernung sicherstellen können.

Claims

Patentansprüche
Projektionssystem (100) zum Beleuchten einer Projektionsoberfläche (40) , mit mindestens einer Lichtquelle (10), die aus mehreren lichtemittierenden Elementen (11 bis 14), und einem optischen Integrator (16) mit einer Eintrittsöffnung (16a) und einer Austrittsöffnung (16b) gebildet ist, in dessen Eintrittsöffnung (16a) das Licht jedes lichtemittierenden Elements (11 bis 14) so eingekoppelt wird, dass aus seiner Austrittsöffnung (16b) das gemischte Licht aller lichtemittierenden Elemente (11 bis 14) austritt, und einer Abbildungsoptik (30) , die das aus der Austrittsöffnung jedes Integrators (16) austretende Licht auf die Projektionsoberfläche (40) projiziert, dadurch gekennzeichnet, dass zwischen der Austrittsöffnung (16b) jedes Integrators (16) und der Abbildungsoptik (30) jeweils ein optisches Element (20) angeordnet ist, das das virtuelle Bild der Eintrittsöffnung (16a) so entlang einer optischen Achse (1) des Projektionssystems (100) verschiebt, dass sein durch die Abbildungsoptik (30) erzeugtes Bild auf der Projektionsoberfläche (40) nicht sichtbar ist.
Projektionssystem (100) gemäß Anspruch 1, bei dem die lichtemittierenden Elemente für die Emission elektromagnetischer Strahlung unterschiedlicher Spektren ausgelegt sind .
3. Projektionssystem (100) nach einem der vorigen Ansprüche, bei dem das optische Element (20) in unmittelbarer Nähe zur Austrittsöffnung (16b) jedes Integrators (16) ange- ordnet ist. Projektionssystem (100) nach einem der vorigen Ansprüche, dadurch gekennzeichnet, dass das optische Element (20) eine Konvexlinse ist.
Projektionssystem (100) nach Anspruch 4, dadurch gekennzeichnet, dass die Konvexlinse (20) das virtuelle Bild (16a') der Eintrittsöffnung (16a) so verschiebt, dass es vor der Projektionsoberfläche (40) liegt.
Proj ektionssystem nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass jeder Integrator ( 16 ) aus einem konischen Lichtleitstab gebildet ist.
Projektionssystem (100) nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass jeder Integrator (16) durch Spiegel gebildet ist.
Projektionssystem (100) nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass jede Lichtquelle (10) mindestens drei lichtemittierende Elemente (11 bis 14) unterschiedlicher Farbe (RGB) enthält, die selektiv ansteuerbar sind, so dass das aus der Austrittsöffnung (16b) des Integrators (16) austretende gemischte und kol- limierte Licht eine selektiv wählbare Farbe hat.
Projektionssystem (100) nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Abbildungsoptik (30) durch mindestens eine Fresnel-Linse (31, 32) gebildet ist.
Projektionssystem (100) nach einem der Ansprüche 4 bis 9, dadurch gekennzeichnet, dass das Projektionssystem (100) eine Vielzahl von matrixartig angeordneten und selektiv ansteuerbaren Lichtquellen (10) mit jeweils zugeordneter Konvexlinse (20) enthält, so dass auf der Projektionsoberfläche (40) ein entsprechendes Pixelbild abbildbar ist .
Projektionssystem (100) nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass der Durchmesser der Abbildungsoptik größer ist als die größte Ausdehnung der durch die matrixartig angeordneten Lichtquellen eingenommene Fläche.
PCT/EP2012/073187 2011-12-20 2012-11-21 Projektionssystem mit mehreren lichtemittierenden elementen WO2013092078A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201280058801.2A CN103959164B (zh) 2011-12-20 2012-11-21 具有多个发光元件的投影系统
US14/366,268 US9494850B2 (en) 2011-12-20 2012-11-21 Projection system with a plurality of light-emitting elements
EP12788536.6A EP2795400B1 (de) 2011-12-20 2012-11-21 Projektionssystem mit mehreren lichtemittierenden elementen

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102011089209.5 2011-12-20
DE102011089209A DE102011089209A1 (de) 2011-12-20 2011-12-20 Projektionssystem

Publications (1)

Publication Number Publication Date
WO2013092078A1 true WO2013092078A1 (de) 2013-06-27

Family

ID=47216276

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2012/073187 WO2013092078A1 (de) 2011-12-20 2012-11-21 Projektionssystem mit mehreren lichtemittierenden elementen

Country Status (5)

Country Link
US (1) US9494850B2 (de)
EP (1) EP2795400B1 (de)
CN (1) CN103959164B (de)
DE (1) DE102011089209A1 (de)
WO (1) WO2013092078A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160319719A1 (en) * 2013-12-20 2016-11-03 Aaqius & Aaqius Sa Device and method for reloading an ammonia cartridge for reduction of nitrogen oxides by selective catalytic reduction in a vehicle

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015213858A1 (de) 2015-07-22 2017-01-26 Osram Gmbh Beleuchtungsvorrichtung
JP2022085665A (ja) * 2020-11-27 2022-06-08 株式会社リコー 光源装置、画像投射装置および光源光学系

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5162844A (en) * 1990-05-30 1992-11-10 Minolta Camera Co., Ltd. Image projection apparatus
WO1997001727A1 (en) 1995-06-29 1997-01-16 Siemens Microelectronics, Inc. Localised illumination device
US6227669B1 (en) * 1998-05-26 2001-05-08 Industrial Technology Research Institute Illumination device and image projection apparatus comprising the device
EP1403695A1 (de) * 2002-09-24 2004-03-31 Agfa-Gevaert AG Vorrichtung zum Aufbelichten einer Vorlage mittels einer Vielzahl homogenisierter und überlagerter Punktlichtquellen
DE60309400T2 (de) 2002-09-12 2007-02-15 Olympus Corporation Beleuchtungsvorrichtung und Bildprojektionsgerät mit dieser Vorrichtung
JP2007047707A (ja) * 2005-08-12 2007-02-22 Ricoh Co Ltd 照明装置、光変調装置及び投射型表示装置
WO2008027692A2 (en) 2006-08-02 2008-03-06 Abu-Ageel Nayef M Led-based illumination system
EP2211090A1 (de) 2009-01-26 2010-07-28 GLP German Light Products GmbH Scheinwerfer und Verfahren zur Beleuchtung eines Objektes
DE102009024894A1 (de) * 2009-06-15 2010-12-16 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Projektionsdisplay und dessen Verwendung

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2878944B2 (ja) 1993-05-19 1999-04-05 三菱電機株式会社 光源装置及び投写型表示装置
US5829858A (en) 1997-02-18 1998-11-03 Levis; Maurice E. Projector system with light pipe optics
JP2002250894A (ja) 2001-02-26 2002-09-06 Matsushita Electric Ind Co Ltd 投写型表示装置
KR100403599B1 (ko) 2001-11-06 2003-10-30 삼성전자주식회사 조명계 및 이를 채용한 프로젝션 시스템
US6857752B2 (en) 2003-04-11 2005-02-22 3M Innovative Properties Company Projection illumination system with tunnel integrator and field lens
JP2007298898A (ja) 2006-05-08 2007-11-15 Matsushita Electric Ind Co Ltd 照明光学装置
JP2010256572A (ja) 2009-04-23 2010-11-11 Olympus Corp 投射型表示装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5162844A (en) * 1990-05-30 1992-11-10 Minolta Camera Co., Ltd. Image projection apparatus
WO1997001727A1 (en) 1995-06-29 1997-01-16 Siemens Microelectronics, Inc. Localised illumination device
US6227669B1 (en) * 1998-05-26 2001-05-08 Industrial Technology Research Institute Illumination device and image projection apparatus comprising the device
DE60309400T2 (de) 2002-09-12 2007-02-15 Olympus Corporation Beleuchtungsvorrichtung und Bildprojektionsgerät mit dieser Vorrichtung
EP1403695A1 (de) * 2002-09-24 2004-03-31 Agfa-Gevaert AG Vorrichtung zum Aufbelichten einer Vorlage mittels einer Vielzahl homogenisierter und überlagerter Punktlichtquellen
JP2007047707A (ja) * 2005-08-12 2007-02-22 Ricoh Co Ltd 照明装置、光変調装置及び投射型表示装置
WO2008027692A2 (en) 2006-08-02 2008-03-06 Abu-Ageel Nayef M Led-based illumination system
EP2211090A1 (de) 2009-01-26 2010-07-28 GLP German Light Products GmbH Scheinwerfer und Verfahren zur Beleuchtung eines Objektes
DE102009024894A1 (de) * 2009-06-15 2010-12-16 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Projektionsdisplay und dessen Verwendung

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160319719A1 (en) * 2013-12-20 2016-11-03 Aaqius & Aaqius Sa Device and method for reloading an ammonia cartridge for reduction of nitrogen oxides by selective catalytic reduction in a vehicle

Also Published As

Publication number Publication date
DE102011089209A1 (de) 2013-06-20
EP2795400A1 (de) 2014-10-29
CN103959164B (zh) 2016-02-03
CN103959164A (zh) 2014-07-30
EP2795400B1 (de) 2016-10-12
US20140327887A1 (en) 2014-11-06
US9494850B2 (en) 2016-11-15

Similar Documents

Publication Publication Date Title
DE102012220570B4 (de) Projektionsanordnung
EP2288843B1 (de) Lese- oder spotleuchte
DE102011012297B4 (de) Beleuchtungsvorrichtung
DE102009011908B4 (de) Head-up-Display und Fahrzeug
DE102012219387B4 (de) Beleuchtungsvorrichtung mit Pumplichtquelle und Leuchtstoffanordnung und Verfahren zum Betreiben einer solchen Beleuchtungsvorrichtung
DE10249000A1 (de) Beleuchtungssystem und Projektionssystem, das dasselbe verwendet
WO2016034460A1 (de) Beleuchtungsvorrichtung zur variablen beleuchtung
DE102012213036A1 (de) Beleuchtungsvorrichtung mit leuchtstoffrad
DE102013215054A1 (de) Beleuchtungsvorrichtung mit Leuchtstoffrad und Anregungsstrahlungsquelle
WO2012068603A1 (de) Farbmischende sammeloptik
DE112017004923T5 (de) Lichtführungselement, Lichtführungseinheit und Beleuchtungsvorrichtung
DE102014110599A1 (de) Beleuchtungsvorrichtung für Fahrzeuge
DE102011006643A1 (de) Optisches Element und Leuchtvorrichtung
EP1403695A1 (de) Vorrichtung zum Aufbelichten einer Vorlage mittels einer Vielzahl homogenisierter und überlagerter Punktlichtquellen
EP2795400B1 (de) Projektionssystem mit mehreren lichtemittierenden elementen
WO2016062505A1 (de) Beleuchtungsvorrichtung
WO2012107097A1 (de) Optisches bauelement und zugehörige beleuchtungs-vorrichtung
DE112016006305T5 (de) Head-Up-Anzeigevorrichtung und Herstellungsverfahren der Head-Up-Anzeigevorrichtung
DE102013215976A1 (de) Scheinwerferanordnung zur Erzeugung einer variablen Lichtverteilung
WO2013143567A1 (de) Anzeigemodul für eine anzeigevorrichtung
DE102009014660A1 (de) Anzeigegerät
DE102016205590A1 (de) Beleuchtungsvorrichtung zum Erzeugen einer rechteckigen Lichtverteilung in einer Beleuchtungsebene
EP2619620A1 (de) Mikroskopbeleuchtung und mikroskop
EP3045950A1 (de) Beleuchtungsvorrichtung
AT16723U1 (de) Anordnung zum Erzeugen eines in seiner spektralen Zusammensetzung veränderbaren Lichts

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12788536

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2012788536

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012788536

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14366268

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE