WO2013091538A1 - 混凝土泵送设备状态监测与故障诊断系统 - Google Patents

混凝土泵送设备状态监测与故障诊断系统 Download PDF

Info

Publication number
WO2013091538A1
WO2013091538A1 PCT/CN2012/086919 CN2012086919W WO2013091538A1 WO 2013091538 A1 WO2013091538 A1 WO 2013091538A1 CN 2012086919 W CN2012086919 W CN 2012086919W WO 2013091538 A1 WO2013091538 A1 WO 2013091538A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
concrete pumping
fault diagnosis
chassis
monitoring
Prior art date
Application number
PCT/CN2012/086919
Other languages
English (en)
French (fr)
Inventor
黄毅
王佳茜
Original Assignee
中联重科股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中联重科股份有限公司 filed Critical 中联重科股份有限公司
Publication of WO2013091538A1 publication Critical patent/WO2013091538A1/zh

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G21/00Preparing, conveying, or working-up building materials or building elements in situ; Other devices or measures for constructional work
    • E04G21/02Conveying or working-up concrete or similar masses able to be heaped or cast
    • E04G21/04Devices for both conveying and distributing
    • E04G21/0418Devices for both conveying and distributing with distribution hose
    • E04G21/0445Devices for both conveying and distributing with distribution hose with booms
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G21/00Preparing, conveying, or working-up building materials or building elements in situ; Other devices or measures for constructional work
    • E04G21/02Conveying or working-up concrete or similar masses able to be heaped or cast
    • E04G21/04Devices for both conveying and distributing
    • E04G21/0418Devices for both conveying and distributing with distribution hose
    • E04G21/0436Devices for both conveying and distributing with distribution hose on a mobile support, e.g. truck

Definitions

  • the invention relates to a state monitoring and fault diagnosis system for concrete pumping equipment.
  • Concrete pumping equipment is a specialized machine for conveying and pouring concrete.
  • Concrete pumping equipment is equipped with special conveying pipes, which can continuously transport concrete along the conveying pipeline to the pouring site, especially in the construction process of high-rise buildings, underground buildings and large concrete buildings, with its high quality, high efficiency and low
  • the advantages of consumption, low cost, short construction period and low labor intensity have gradually become indispensable key equipment in building construction.
  • concrete pumping equipment is developing towards large displacement, high pumping pressure and ultra-long boom. The whole system is increasingly complex and the failure rate is increasing.
  • the technical problem to be solved by the present invention is to provide a state monitoring and fault diagnosis system for concrete pumping equipment that can ensure the safe operation of concrete pumping equipment.
  • the present invention is achieved by providing a state monitoring and fault diagnosis system for a concrete pumping device, comprising: a boom sensor assembly mounted on the boom for monitoring the operation of the boom and signal acquisition, mounted on the chassis and Chassis sensor assembly for monitoring and signal acquisition of the undercarriage, installation on the hydraulic system and monitoring of the operating conditions of the hydraulic system and signal acquisition of the hydraulic system sensor assembly, analysis of the signals collected by each of the above sensor components
  • a condition monitoring unit that performs on-line monitoring of the health status of the concrete pumping device, and a fault diagnosis unit that is coupled to the condition monitoring unit and that predicts and diagnoses the failure of the concrete pumping device.
  • the plurality of boom sensor assemblies are respectively mounted at a distal end of each arm section of the boom near a hinge point.
  • each boom sensor assembly includes three sensors including a first vibration sensor and a second vibration transmission for detecting vibration conditions of the arm segments and being mounted perpendicularly to each other A sensor, and a tilt sensor for detecting an angle between the boom and the horizontal plane.
  • chassis sensor assembly includes a chassis sensor first subassembly mounted to the cross member of the chassis and a chassis sensor second subassembly mounted to the engine housing.
  • the first sensor component of the chassis sensor includes three sensors, and the three sensors include a first vibration sensor and a second vibration sensor for detecting vibration conditions of the chassis and mounted perpendicularly to each other, and for detecting An angle sensor for the angle between the chassis and the horizontal plane in the longitudinal and lateral directions.
  • the second sensor sub-assembly of the chassis sensor includes a first vibration sensor and a second vibration sensor for detecting vibration conditions of the engine and mounted perpendicularly to each other.
  • the hydraulic system sensor assembly includes a first pressure sensor and a second pressure sensor respectively mounted on the rodless cavity and the rod cavity of each arm cylinder of the boom, and is installed in the main pumping hydraulic system a third pressure sensor, a fourth pressure sensor and a fifth pressure sensor mounted on the main cylinder of the concrete pumping device, a sixth pressure sensor mounted on the swing hydraulic system, and a seventh pressure sensor mounted on the swing cylinder , an eighth pressure sensor, and a ninth pressure sensor mounted on the outlet of the concrete pumping device.
  • the status monitoring unit includes a parameter setting module, a steady state monitoring module, a transient monitoring module, an alarm module, and a data storage module.
  • the fault diagnosis unit includes a classical steady state signal analysis module, an unsteady signal analysis module, and a weak feature signal extraction module.
  • the concrete pumping equipment condition monitoring and fault diagnosis system of the invention adopts advanced sensor detection technology and computer technology, and can conveniently carry out concrete pumping equipment. Condition monitoring and fault diagnosis; Moreover, the concrete pumping equipment condition monitoring and fault diagnosis system can comprehensively monitor the operation status of the boom, the underframe and the hydraulic system of the concrete pumping equipment and diagnose the fault, which can greatly improve Overall performance of concrete pumping equipment.
  • FIG. 1 is a schematic view showing a state in which a concrete pumping equipment condition monitoring and fault diagnosis system is applied to a concrete pumping apparatus according to an embodiment of the present invention.
  • Figure 2 is a block diagram showing the structure of the concrete pumping equipment status monitoring and fault diagnosis system of Figure 1.
  • Figure 3 is a schematic view of the structure of the boom sensor assembly.
  • Figure 4 is a view of the arrangement of measuring points in the hydraulic system sensor assembly.
  • Figure 5 is a block diagram showing the structure of the condition monitoring unit of Figure 2.
  • Figure 6 is a block diagram showing the structure of the fault diagnosis unit of Figure 2.
  • FIG. 1 is a schematic view showing a state in which a concrete pumping equipment condition monitoring and fault diagnosis system is applied to a concrete pumping apparatus according to an embodiment of the present invention.
  • Concrete pumping equipment can be concrete pump trucks, concrete distributors, and the like.
  • Concrete pumping equipment typically includes 3 to 6 segment boom sections. In the embodiment shown in Fig. 1, a concrete pumping apparatus having five arm sections is taken as an example for description.
  • the concrete pumping apparatus 100 includes a chassis 101, a turntable 102, a first arm section 104, a second arm section 106, a third arm section 108, a fourth arm section 110, a fifth arm section 112, and a first One arm fuel red 114, second arm oil red 116, third arm cylinder 118, fourth arm cylinder 120, fifth arm cylinder 122 and end hose 2 is a structural block diagram of the state monitoring and fault diagnosis system of the concrete pumping device of FIG.
  • the concrete pumping equipment condition monitoring and fault diagnosis system includes a hardware portion 200 and a software portion 300.
  • Hardware portion 200 can include a boom sensor assembly 210, a chassis sensor assembly 220, and a hydraulic system sensor assembly 230.
  • each boom sensor assembly 210 includes three sensors 212, a mount 214, and a boot 216, respectively.
  • the three sensors 212 are a first vibration sensor 212a, a second vibration sensor 212b, and a tilt sensor 212c, respectively.
  • the first vibration sensor 212a may be a speed sensor or an acceleration sensor.
  • the second vibration sensor 212b may be a speed sensor or an acceleration sensor.
  • the tilt sensor 212c can be a single-axis tilt sensor for measuring the angle between the boom and the horizontal plane.
  • the first vibration sensor 212a and the second vibration sensor 212b are used to detect the vibration of the arm joints and are mounted perpendicularly to each other, and the mounting seat 214 is constituted by two mutually orthogonal planes, which ensure the first vibration sensor 212a and the second vibration sensor 212b. In the orthogonal relationship, threaded holes (not shown) are drilled in the two planes, and the fixed connection of the three sensors 212 is realized through the threaded holes.
  • a protective cover 216 is disposed on the mount 214.
  • the protective cover 216 is provided with a through hole for the data signal line to be disposed (not shown).
  • the chassis sensor assembly 220 is mounted to the chassis 101 of the concrete pumping apparatus 100 for monitoring the longitudinal and lateral inclination of the chassis 101, the vibration of the chassis 101, and the vibration of the engine (not shown).
  • the chassis sensor assembly 220 includes a chassis sensor first subassembly mounted to the cross member of the chassis 101 and a chassis sensor second subassembly mounted to the engine housing.
  • the first sub-assembly of the chassis sensor includes three sensors including a first vibration sensor and a second vibration sensor for detecting vibration conditions of the chassis and mounted perpendicularly to each other, and for detecting the bottom first
  • the subassembly is identical in structure to the boom sensor assembly 210, the only difference being that the tilt sensor in the first subassembly of the chassis sensor is a two-axis tilt sensor that simultaneously measures the longitudinal and lateral angles of the chassis 101.
  • the second component of the chassis sensor includes a first mounting on the bearing housing of the engine
  • the vibration sensor and the second vibration sensor are installed perpendicularly to each other to monitor the vibration of the engine in the orthogonal direction.
  • the two vibration sensors may be acceleration sensors or speed sensors, respectively.
  • the hydraulic system sensor assembly 230 includes a first pressure sensor 231 and a second pressure sensor respectively mounted on the rodless chamber and the rod chamber of each arm cylinder 114 (116/118/120/122). 232.
  • a third pressure sensor 241 mounted on the main pumping hydraulic system, a fourth pressure sensor 242 and a fifth pressure sensor 243 mounted on the main cylinder of the concrete pumping device, and a sixth pressure mounted on the swing hydraulic system
  • the software part 300 can be programmed using the LabVIEW language using the I/O interface device provided by National Instruments.
  • the software portion 300 can be tightly coupled to the hardware portion 200 to enable condition monitoring and fault diagnosis of the concrete pumping apparatus 100.
  • the software portion 300 is composed of a condition monitoring unit 310 and a failure diagnosis unit 320.
  • the state monitoring unit 310 includes a parameter setting module 312 and a steady state monitoring module.
  • the transient monitoring module 314, the alarm module 315, and the data storage module 316 are included in the transient monitoring module 314.
  • the system parameters have an important influence on the accuracy of the online monitoring and fault diagnosis system, and cannot be modified arbitrarily. Therefore, in the parameter setting module 312 of this embodiment, different permissions are set for users of different levels.
  • the parameter setting module 312 can set the sensor sensitivity, the filtering of the modules of the signal conditioning box, the gain parameter, the trigger source of the A/D board, the sampling frequency and the sampling length, etc., and can also set different alarm thresholds for different measuring points, Alarm save parameters and database save path, data save time interval, etc. If the operator accidentally sets an error, the parameter setting module 312 also provides a system parameter default value recovery function.
  • the various monitoring modes of the steady state monitoring module 313 provide the operating state information of the pumping vehicle 100 from multiple angles, mainly including: (1) Overall monitoring mode: comprehensively display signals such as vibration, hydraulic pressure, temperature, etc. on the flat tube chart of the pump truck 100 structure (2) Bar graph monitoring mode: display vibration amount, shaft displacement, hydraulic pressure, temperature signal in the form of bar graph, intuitive and easy to understand; (3) Trend monitoring mode: display the vibration peak, hydraulic pressure, temperature change trend with dynamic curve , the channel can be combined at will; (4) waveform frequency monitoring mode: display the vibration signal waveform, spectrum, peak and spectral value list; (5) axis trajectory monitoring Measurement mode: Display the axis trajectory and axis position of the selected position; (6) Wavelet packet energy monitoring mode: Use wavelet packet decomposition to monitor the energy variation of each frequency band of the vibration signal.
  • the transient monitoring module 314 mainly includes: (1) Random monitoring: If the data is temporarily needed, the sampling channel, sampling frequency and sampling length can be set arbitrarily; (2) Start-stop monitoring: used when the pump is started or stopped. The sampling frequency and the sampling length can be set as needed, and the data storage mode is divided into two types: time interval storage and manual storage, and the collected data can be retrieved and called by the fault diagnosis unit 320.
  • the alarm module 315 includes three alarm modes: over-limit alarm, growth alarm, and wavelet packet sub-band energy alarm.
  • the over-limit alarm is a traditional judgment mode. If the vibration, hydraulic pressure and temperature peaks increase continuously, it may be that the operating condition of the pump truck 100 is deteriorating, or it may be the development stage of the fault. The data at this time can be used to predict the operating state of the pump truck 100. And forecasting, the system's growth alarm is set for this purpose, used to sharply capture and record in detail the development trend of pump 100 vibration. Wavelet packet technology decomposes signals into independent frequency bands without redundancy, without omission, and orthogonally.
  • the variance of signals in each frequency band can represent the energy of dynamic signals in the frequency band, including both the energy of sinusoidal signals and non-stationary
  • the energy of nonlinear vibration such as friction, looseness, creeping, collision, etc.
  • the pump 100 can be effectively detected by the change of the energy ratio in the corresponding frequency band.
  • the data storage module 316 records the system monitoring data and the events occurring during the operation, including the vibration, hydraulic pressure, temperature signals of each channel, the time of entering and exiting the system, the mode, channel, date and time of the pumping alarm.
  • the time when the system parameters are modified, etc., the database can be called and recalled by the status monitoring unit 310 and the fault diagnosis unit 320.
  • the relevant data before and after the alarm is very important for analyzing and diagnosing the operation failure of the pump 100, and must be recorded in detail.
  • an area is opened in the memory as a black box. When the pump 100 is in normal operation, the monitoring data of the last 5 minutes is stored first in and out. Once the alarm is issued, the newly collected data is additionally stored in the black box, and the alarm is finished. Copy to the exception database, so that the entire process before and after the alarm is recorded without any omission, providing detailed information for the diagnosis of the fault.
  • the fault diagnosis unit 320 can perform prediction and diagnosis of the failure of the pump truck 100.
  • the fault diagnosis unit 320 includes a classical steady state signal analysis module 321, an unsteady signal analysis module 322, and a weak feature signal extraction module 323.
  • the classical steady-state signal analysis module 321 applies the traditional time domain and frequency domain analysis methods, and is suitable for analyzing the stationary signal in the fault of the pump 100, mainly including waveform analysis of vibration and hydraulic signals, and spectrum. Analysis, statistical analysis, correlation analysis, regression analysis, high-precision amplitude and power spectrum, cepstrum analysis, high-precision logarithmic power spectrum, time domain refinement analysis, frequency selective refinement analysis, original axis trajectory, purification Axis trajectory and axial position, etc., can be used in combination to obtain rich operational trends and fault information.
  • the unsteady signal analysis module 322 provides three-dimensional Wigner time-frequency map analysis, wavelet analysis, wavelet packet analysis, wavelet packet autoregressive spectrum analysis, harmonic wavelet analysis, Laplace wavelet correlation filter analysis, Hermitian wavelet singularity analysis, and wavelet fractal analysis. Such methods, rational use, can effectively capture and diagnose nonlinear faults such as looseness and impact.
  • the weak feature signal extraction module 323 is a key technology for realizing the condition monitoring and early detection of the pumping system. It plays an important role in ensuring the reliable operation of the pump 100 and avoiding the occurrence of major accidents.
  • the characteristic signal is often very weak, and the system working environment is rather harsh, the noise interference is large, and the signal signal-to-noise ratio is relatively low, which makes the detection of the weak characteristic signal of the pump truck 100 difficult.
  • Stochastic resonance is a non-linear phenomenon that uses noise to make a weak signal transmit. Compared with a linear method, it can detect a signal with a lower signal-to-noise ratio.
  • the weak feature signal extraction module 323 uses the weak signal detection technology based on the variable-scale stochastic resonance theory to effectively extract the weak feature signal from the strong interference noise, and solves the bottleneck of weak signal detection.
  • the concrete pumping equipment state monitoring and fault diagnosis system in this embodiment may further include a signal conditioning unit 420, an A/D conversion unit 440, a final arm section sound and light alarm component 460, and a remote control sound.
  • Light alarm component 480 is coupled to respective sensor assemblies 210, 220, 230 via through holes in protective cover 216, i.e., hardware portion 200 is coupled to signal conditioning unit 420.
  • Signal conditioning unit 420 is further coupled to software portion 300 via A/D conversion unit 440.
  • the A/D conversion unit 440 is connected to the status monitoring unit 310.
  • the condition monitoring unit 310 is connected to the last arm section sound and light alarm component 460 and the remote control sound and light alarm component 480, respectively.
  • the final arm section sound and light alarm component 460 and the remote control sound and light alarm component 480 are composed of an alarm light and a speaker.
  • the above is a state monitoring and fault diagnosis system for concrete pumping equipment in an embodiment of the present invention
  • various sensor signals of the boom sensor assembly 210, the chassis sensor assembly 220, and the hydraulic system sensor assembly 230 mounted on the pump truck 100 realize signal online through the signal conditioning unit 420 and the A/D conversion unit 440.
  • the acquisition and digitization conversion, the state monitoring unit 310 performs on-line monitoring and alarming on the health status of the pump truck 100 by analyzing and processing the collected signals, and can issue an audible and visual alarm signal to the end in the event that a set safety threshold value is exceeded.
  • the arm section sound and light alarm component 460 and the remote controller sound and light alarm component 480; the fault diagnosis unit 320 predicts and diagnoses the failure of the pump truck 100.
  • the state monitoring and fault diagnosis system of the concrete pumping equipment in an embodiment of the present invention adopts advanced sensor detection technology and computer technology, and can conveniently perform condition monitoring and fault diagnosis on the concrete pumping device 100, and the diagnosis is accurate.
  • the rate is high;
  • the concrete pumping equipment condition monitoring and fault diagnosis system can comprehensively monitor the operation status of the boom, the underframe and the hydraulic system of the concrete pumping equipment 100 and diagnose the fault, which can greatly improve the concrete pump.
  • the overall performance of the device 100 is delivered.
  • the state monitoring and fault diagnosis system of the concrete pumping equipment in the embodiment of the invention adopts advanced sensor detection technology and computer technology, can conveniently monitor the condition and fault diagnosis of the concrete pumping equipment; Moreover, the condition monitoring of the concrete pumping equipment and The fault diagnosis system can comprehensively monitor the operation status of the boom, the underframe and the hydraulic system of the concrete pumping equipment and diagnose the fault, which can greatly improve the overall performance of the concrete pumping equipment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Mechanical Engineering (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

一种混凝土泵送设备状态监测与故障诊断系统,包括安装于臂架上对臂架的运行状况进行监测与信号采集的臂架传感器组件(210)、安装于底架(101)上并对底架(101)的运行状况进行监测与信号采集的底架传感器组件(220)、安装于液压系统上并对液压系统的运行状况进行监测与信号采集的液压系统传感器组件(230)、对上述各个传感器组件所采集的信号进行分析处理以对混凝土泵送设备的健康状态进行在线监测的状态监测单元(310)、以及与所述状态监测单元(310)连接并对混凝土泵送设备的故障进行预报和诊断的故障诊断单元(320)。该混凝土泵送设备状态监测与故障诊断系统可全面对混凝土泵送设备的臂架、底架、液压系统的运行状况进行监测并进行故障的诊断,提高混凝土泵送设备的整体性能。

Description

混凝土泵送设备状态监测与故障诊断系统 技术领域
本发明涉及一种混凝土泵送设备状态监测与故障诊断系统。
背景技术
混凝土泵送设备是一种用于输送和浇注混凝土的专用机械。 混凝土泵送 设备配有特殊的输送管道, 可以将混凝土沿输送管道连续输送到浇注现场, 尤其是在高层建筑、地下建筑和大混凝土建筑物的施工过程中,以其高质量、 高效率、 低消耗、 低成本、 施工周期短、 劳动强度低等优点, 逐步成为建筑 施工中不可缺少的关键设备。 作为一种复杂的机电液耦合动力系统, 混凝土 泵送设备正朝着大排量、 高泵送压力、 超长臂架的方向发展, 整个系统日益 复杂, 故障发生率也日渐增加。
发明内容
本发明所要解决的技术问题在于, 提供一种可保证混凝土泵送设备安全 运行的混凝土泵送设备状态监测与故障诊断系统。
本发明是这样实现的, 提供一种混凝土泵送设备状态监测与故障诊断系 统, 包括安装于臂架上对臂架的运行状况进行监测与信号采集的臂架传感器 组件、 安装于底架上并对底架的运行状况进行监测与信号采集的底架传感器 组件、 安装于液压系统上并对液压系统的运行状况进行监测与信号采集液压 系统传感器组件、 对上述各个传感器组件所采集的信号进行分析处理以对混 凝土泵送设备的健康状态进行在线监测的状态监测单元、 以及与所述状态监 测单元连接并对混凝土泵送设备的故障进行预报和诊断的故障诊断单元。
进一步地, 所述臂架传感器组件为多个, 分别安装于所述臂架的每一臂 节的远端靠近铰点处。
进一步地, 每个臂架传感器组件包括三个传感器, 所述三个传感器包括 用于检测臂节的振动情况且相互垂直安装的第一振动传感器与第二振动传 感器、 以及用于检测臂架与水平面的夹角的倾角传感器。
进一步地, 所述底架传感器组件包括安装于所述底架的横梁上的底架传 感器第一分组件和安装于发动机的轴承座上的底架传感器第二分组件。
进一步地, 所述底架传感器第一分组件包括三个传感器, 所述三个传感 器包括用于检测底架的振动情况且相互垂直安装的第一振动传感器与第二 振动传感器、 以及用于检测底架与水平面之间在纵向和横向上的夹角的倾角 传感器。
进一步地, 所述底架传感器第二分组件包括用于检测发动机的振动情况 且相互垂直安装的第一振动传感器和第二振动传感器。
进一步地, 所述液压系统传感器组件包括分别安装在所述臂架的每一臂 节油缸的无杆腔和有杆腔上的第一压力传感器与第二压力传感器、 安装在主 泵送液压系统上的第三压力传感器、 安装在混凝土泵送设备的主油缸上的第 四压力传感器和第五压力传感器、 安装在摆动液压系统上的第六压力传感 器、 安装在摆动油缸上的第七压力传感器、 第八压力传感器、 和安装在混凝 土泵送设备的出口上的第九压力传感器。
进一步地, 所述状态监测单元包括参数设置模块、 稳态监测模块、 瞬态 监测模块、 报警模块和数据存储模块。
进一步地, 所述故障诊断单元包括经典稳态信号分析模块、 非稳态信号 分析模块和微弱特征信号提取模块。
进一步地, 进一步包括信号调理单元和 A/D转换单元, 所述臂架传感器 组件、 底架传感器组件和液压系统传感器组件的信号通过所述信号调理单元 传送至所述 A/D 转换单元实现信号的在线采集和数字化转换之后再传送至 所述状态监测单元进行分析处理。
进一步地, 进一步包括末臂节声光报警组件和遥控器声光报警组件, 所 述状态监测单元分别与所述末臂节声光报警组件、 所述遥控器声光报警组件 连接。
与现有技术相比, 本发明中的混凝土泵送设备状态监测与故障诊断系统 采用先进的传感器检测技术和计算机技术, 能方便的对混凝土泵送设备进行 状态监测和故障诊断; 而且, 混凝土泵送设备状态监测与故障诊断系统可全 面对混凝土泵送设备的臂架、 底架、 液压系统的运行状况进行监测并进行故 障的诊断, 可极大的提高混凝土泵送设备的整体性能。
上述说明仅是本发明技术方案的概述, 为了能够更清楚了解本发明的技 术手段, 而可依照说明书的内容予以实施, 并且为了让本发明的上述和其他 目的、 特征和优点能够更明显易懂, 以下特举较佳实施例, 并配合附图, 详 细说明: ¾口下。 附图概述
图 1为本发明一实施例中混凝土泵送设备状态监测与故障诊断系统应用 于混凝土泵送设备时的示意图。
图 2为图 1中混凝土泵送设备状态监测与故障诊断系统的结构框图。 图 3为臂架传感器组件的结构示意图。
图 4为液压系统传感器组件中的测点布置筒图。
图 5为图 2中状态监测单元的结构框图。
图 6为图 2中故障诊断单元的结构框图。
本发明的较佳实施方式
为了使本发明所要解决的技术问题、 技术方案及有益效果更加清楚明 白, 以下结合附图及实施例, 对本发明进行进一步详细说明。 应当理解, 此 处所描述的具体实施例仅仅用以解释本发明, 并不用于限定本发明。
图 1所示为本发明一实施例中混凝土泵送设备状态监测与故障诊断系统 应用于混凝土泵送设备时的示意图。 混凝土泵送设备可以为混凝土泵车、 混 凝土布料机等。 混凝土泵送设备通常包括 3~6段臂节。 在图 1所示的实施例 中, 以具有 5段臂节的混凝土泵送设备为例进行说明。 如图中所示, 混凝土 泵送设备 100包括底架 101、 转台 102、 第一臂节 104、 第二臂节 106、 第三 臂节 108、 第四臂节 110、 第五臂节 112、 第一臂节油紅 114、 第二臂节油紅 116、 第三臂节油缸 118、 第四臂节油缸 120、 第五臂节油缸 122和末端软管 图 2为图 1中混凝土泵送设备状态监测与故障诊断系统的结构框图。 如 图 2中所示, 混凝土泵送设备状态监测与故障诊断系统包括硬件部分 200和 软件部分 300。
硬件部分 200可包括臂架传感器组件 210、 底架传感器组件 220和液压 系统传感器组件 230。
其中, 臂架传感器组件 210分别安装于混凝土泵送设备 100的臂架的每 一臂节 104、 106、 108、 110、 112的远端靠近铰点处(如图 1中所示) , 用 于监测臂架的姿态和振动情况。 如图 3所示, 每个臂架传感器组件 210分别 包括三个传感器 212、 安装座 214和保护罩 216。 三个传感器 212分别为第 一振动传感器 212a、 第二振动传感器 212b和倾角传感器 212c。 第一振动传 感器 212a可以为速度传感器或加速度传感器。 第二振动传感器 212b可以为 速度传感器或加速度传感器。 倾角传感器 212c 可以为单轴的倾角传感器, 供测量臂架与水平面的夹角。 第一振动传感器 212a和第二振动传感器 212b 用于检测臂节的振动情况且相互垂直安装, 安装座 214由两个相互正交的平 面构成, 保证第一振动传感器 212a和第二振动传感器 212b的正交关系, 两 平面上分别钻有螺纹孔(图未示) , 通过该螺纹孔实现 3个传感器 212的固 定连接。 保护罩 216罩设在安装座 214上。 保护罩 216上设有供数据信号线 进行布设的通孔(图未标) 。
底架传感器组件 220安装于混凝土泵送设备 100的底架 101上, 用于监 测底架 101纵向和横向的倾角、 底架 101的振动以及发动机(图未示) 的振 动情况。 底架传感器组件 220包括安装于底架 101的横梁上的底架传感器第 一分组件和安装于发动机的轴承座上的底架传感器第二分组件。 所述底架传 感器第一分组件包括三个传感器, 所述三个传感器包括用于检测底架的振动 情况且相互垂直安装的第一振动传感器与第二振动传感器、 以及用于检测底 第一分组件和臂架传感器组件 210的结构一致, 唯一不同的是底架传感器第 一分组件中的倾角传感器为双轴的倾角传感器, 可同时测量底架 101的纵向 和横向的角度。 底架传感器第二分组件包括安装于发动机的轴承座上的第一
4 振动传感器和第二振动传感器, 两振动传感器相互垂直安装, 分别监测正交 方向上的发动机的振动, 两振动传感器可分别为加速度传感器或速度传感 器。
如图 4所示,液压系统传感器组件 230包括分别安装在每一臂节油缸 114 ( 116/118/120/122 ) 的无杆腔和有杆腔上的第一压力传感器 231和第二压力 传感器 232、 安装在主泵送液压系统上的第三压力传感器 241、 安装在混凝 土泵送设备的主油缸上的第四压力传感器 242和第五压力传感器 243、 安装 在摆动液压系统上的第六压力传感器 244、 安装在摆动油缸的第七压力传感 器 245和第八压力传感器 246、 安装在混凝土泵送设备的出口上的第九压力 传感器 247、 和安装在液压油箱处的温度传感器 248。
软件部分 300可利用 NI公司提供的 I/O接口设备, 使用 Lab VIEW语言 编制。 软件部分 300可与硬件部分 200紧密结合, 可实现对混凝土泵送设备 100的状态监测和故障诊断。 在本实施例中, 软件部分 300由状态监测单元 310和故障诊断单元 320组成。
如图 5所示, 状态监测单元 310包括参数设置模块 312、 稳态监测模块
313、 瞬态监测模块 314、 报警模块 315和数据存储模块 316。
系统参数对在线监测与故障诊断系统的精度有着重要的影响, 不能随意 修改, 因此, 在本实施例的参数设置模块 312中给不同级别的用户设定了不 同的权限。 参数设置模块 312可以设置传感器灵敏度、 信号调理箱各模块的 滤波、 增益参数, A/D板的触发源、 采样频率和采样长度等, 还可对不同的 测点设置不同的报警门限值、 报警存盘参数及数据库的保存路径、 数据保存 时间间隔等。 若操作人员不慎设置错误, 参数设置模块 312还提供了系统参 数默认值恢复功能。
稳态监测模块 313的各种监测模式从多角度提供泵车 100的运行状态信 息, 主要包括: (1 ) 总体监测模式: 在泵车 100结构平面筒图上综合显示 振动、 液压、 温度等信号; (2 )棒图监测模式: 用棒图的形式显示振动量、 轴位移、 液压、 温度信号, 直观易懂; (3 )趋势监测模式: 以动态曲线显 示振动峰值、 液压、 温度的变化趋势, 通道可随意组合; (4 ) 波形频语监 测模式: 显示振动信号的波形、 频谱、 峰值与谱值列表; (5 )轴心轨迹监 测模式: 显示选定位置的轴心轨迹和轴心位置; (6 ) 小波包能量监测模式: 利用小波包分解, 监视振动信号各频带能量的变化。
瞬态监测模块 314主要包括: (1 ) 随机监测: 如临时需要数据, 可以 任意设置采样通道、 采样频率和采样长度; (2 ) 启停机监测: 在泵车启动 或停机时使用。 可根据需要设置采样频率、 采样长度, 数据的存盘方式分等 时间隔存盘和手动存盘等两种,采集的数据可供故障诊断单元 320检索调用。
报警模块 315包括三种报警方式: 超限报警、 增长报警、 小波包分频带 能量报警。 超限报警是传统判断模式。 若振动、 液压、 温度峰值出现连续增 长, 可能是泵车 100运行工况正处于恶化的过程, 也可能是故障的发生发展 阶段, 此时的数据可以用来对泵车 100的运行状态进行预测和预报, 系统的 增长报警即为此而设置,用来敏锐捕捉、详细记录泵车 100振动的发展趋势。 小波包技术将信号无冗余、 无疏漏、 正交地分解到独立地频带内, 每个频带 内信号的方差可以表示该频带内动态信号的能量, 既包括正弦信号的能量, 也包括非平稳、 非线性振动的能量(如摩擦、 松动、 爬行、 碰撞等等) , 通 过相应频带里能量比例的变化, 可以对泵车 100进行有效的检测。
数据存储模块 316对系统监测数据、运行中发生的事件进行详细的记录, 主要包括监测的各通道振动、 液压、 温度信号, 进入、 退出系统的时间, 泵 车报警的方式、 通道、 日期和时间, 系统参数修改的时间等等, 该数据库可 以用状态监测单元 310、 故障诊断单元 320进行调用和追忆。 另外, 报警前 后的有关数据对分析诊断泵车 100的运行故障有着非常重要的意义, 必须加 以详细记录。 本实施例在内存中开辟一个区域作为黑匣子, 泵车 100正常运 行时先入先出地保存最近 5分钟的监测数据, 一旦报警, 立即将新采集到的 数据追加存储在黑匣子内, 报警结束后再拷贝到异常数据库中, 从而无遗漏 地记录报警前后整个过程, 为故障的诊断提供了详细地信息。
如图 6所示, 故障诊断单元 320可实现对泵车 100的故障进行预报和诊 断。 故障诊断单元 320包括经典稳态信号分析模块 321、 非稳态信号分析模 块 322和微弱特征信号提取模块 323。
经典稳态信号分析模块 321应用传统的时域、 频域分析方法, 适合于分 析泵车 100故障中的平稳信号, 主要包括振动、 液压信号的波形分析、 频谱 分析、 统计特征分析、 相关分析、 回归分析、 高精度幅值谱和功率谱、 倒谱 分析、 高精度对数功率谱、 时域细化分析、 选频细化分析、 原始轴心轨迹、 提纯轴心轨迹和轴心位置等, 综合运用, 可以获得丰富地运行发展趋势和故 障信息。
泵车 100运行过程中, 故障的发生或发展、 运行工况的变化、 驱动力、 阻尼力、 弹性力的非线性都可导致动态响应信号具有很大的非平稳性。 发展 迅猛的时频分析和小波变换是分析非平稳信号的强有力的工具。 非稳态信号 分析模块 322提供了三维 Wigner时频图分析、 小波分析、 小波包分析、 小 波包自回归谱分析、 谐波小波分析、 Laplace 小波相关滤波分析、 Hermitian 小波奇异性分析、 小波分形分析等方法, 合理运用, 可以有效地捕捉和诊断 诸如松动、 沖击等非线性故障。
微弱特征信号提取模块 323是实现泵车系统状态监测与故障早期检测的 关键技术, 对于保证泵车 100的可靠运行, 避免重大事故的发生具有重要作 用。 泵车 100在故障早期时候, 特征信号往往非常微弱, 加之系统工作环境 比较恶劣, 噪声干扰大, 造成信号信噪比较低, 使得泵车 100的微弱特征信 号检测成为难点。 随机共振是一种利用噪声使得微弱信号得到增强传输的非 线性现象, 与线性方法相比能够检测更低信噪比的信号。 微弱特征信号提取 模块 323采用基于变尺度随机共振理论的微弱信号检测技术, 有效地从强干 扰噪声中提取出微弱的特征信号, 解决了弱信号检测的瓶颈。
此外, 如图 2所示, 本实施例中的混凝土泵送设备状态监测与故障诊断 系统可进一步包括信号调理单元 420、 A/D转换单元 440、 末臂节声光报警 组件 460和遥控器声光报警组件 480。 信号调理单元 420通过保护罩 216上 的通孔与各个传感器组件 210、 220、 230连接, 即硬件部分 200与信号调理 单元 420连接。信号调理单元 420进一步通过 A/D转换单元 440与软件部分 300连接。 具体地, A/D转换单元 440与状态监测单元 310连接。 状态监测 单元 310分别与末臂节声光报警组件 460、 遥控器声光报警组件 480连接。 末臂节声光报警组件 460和遥控器声光报警组件 480都由报警灯和扬声器组 成。
上述为本发明一实施例中的混凝土泵送设备状态监测与故障诊断系统 的结构, 以下筒述其使用过程。 在使用过程中, 安装于泵车 100上的臂架传 感器组件 210、 底架传感器组件 220、 液压系统传感器组件 230的各种传感 器信号通过信号调理单元 420、 A/D转换单元 440实现信号的在线采集和数 字化转换, 状态监测单元 310通过对采集的信号进行分析处理, 对泵车 100 的健康状态进行在线监测报警, 对出现超出设定安全阀值的情况, 可及时发 出声光报警信号给末臂节声光报警组件 460和遥控器声光报警组件 480; 故 障诊断单元 320对泵车 100的故障进行预报和诊断。
综上所述, 本发明一实施例中的混凝土泵送设备状态监测与故障诊断系 统采用先进的传感器检测技术和计算机技术, 能方便的对混凝土泵送设备 100进行状态监测和故障诊断, 诊断准确率高; 而且, 混凝土泵送设备状态 监测与故障诊断系统可全面对混凝土泵送设备 100的臂架、 底架、 液压系统 的运行状况进行监测并进行故障的诊断, 可极大的提高混凝土泵送设备 100 的整体性能。
以上所述仅为本发明的较佳实施例而已, 并不用以限制本发明, 凡在本 发明的精神和原则之内所作的任何修改、 等同替换和改进等, 均应包含在本 发明的保护范围之内。
工业实用性
本发明实施例中的混凝土泵送设备状态监测与故障诊断系统采用先进 的传感器检测技术和计算机技术, 能方便的对混凝土泵送设备进行状态监测 和故障诊断; 而且, 混凝土泵送设备状态监测与故障诊断系统可全面对混凝 土泵送设备的臂架、底架、液压系统的运行状况进行监测并进行故障的诊断, 可极大的提高混凝土泵送设备的整体性能。

Claims

权 利 要 求 书
1、 一种混凝土泵送设备状态监测与故障诊断系统, 其特征在于, 包括 安装于臂架上对臂架的运行状况进行监测与信号采集的臂架传感器组件、 安 装于底架上并对底架的运行状况进行监测与信号采集的底架传感器组件、 安 装于液压系统上并对液压系统的运行状况进行监测与信号采集液压系统传 感器组件、 对上述各个传感器组件所采集的信号进行分析处理以对混凝土泵 送设备的健康状态进行在线监测的状态监测单元、 以及与所述状态监测单元 连接并对混凝土泵送设备的故障进行预报和诊断的故障诊断单元。
2、 如权利要求 1 所述的混凝土泵送设备状态监测与故障诊断系统, 其 特征在于, 所述臂架传感器组件为多个, 分别安装于所述臂架的每一臂节的 远端靠近铰点处。
3、 如权利要求 2所述的混凝土泵送设备状态监测与故障诊断系统, 其 特征在于, 每个臂架传感器组件包括三个传感器, 所述三个传感器包括用于 检测臂节的振动情况且相互垂直安装的第一振动传感器与第二振动传感器、 以及用于检测臂架与水平面的夹角的倾角传感器。
4、 如权利要求 1 所述的混凝土泵送设备状态监测与故障诊断系统, 其 特征在于, 所述底架传感器组件包括安装于所述底架的横梁上的底架传感器 第一分组件和安装于发动机的轴承座上的底架传感器第二分组件。
5、 如权利要求 4所述的混凝土泵送设备状态监测与故障诊断系统, 其 特征在于, 所述底架传感器第一分组件包括三个传感器, 所述三个传感器包 括用于检测底架的振动情况且相互垂直安装的第一振动传感器与第二振动 传感器、 以及用于检测底架与水平面之间在纵向和横向上的夹角的倾角传感 哭口 。
6、 如权利要求 4所述的混凝土泵送设备状态监测与故障诊断系统, 其 特征在于, 所述底架传感器第二分组件包括用于检测发动机的振动情况且相 互垂直安装的第一振动传感器和第二振动传感器。
7、 如权利要求 1 所述的混凝土泵送设备状态监测与故障诊断系统, 其 特征在于, 所述液压系统传感器组件包括分别安装在所述臂架的每一臂节油 缸的无杆腔和有杆腔上的第一压力传感器与第二压力传感器、 安装在主泵送 液压系统上的第三压力传感器、 安装在混凝土泵送设备的主油缸上的第四压 力传感器和第五压力传感器、 安装在摆动液压系统上的第六压力传感器、 安 装在摆动油缸上的第七压力传感器、 第八压力传感器、 和安装在混凝土泵送 设备的出口上的第九压力传感器。
8、 如权利要求 1 所述的混凝土泵送设备状态监测与故障诊断系统, 其 特征在于, 所述状态监测单元包括参数设置模块、 稳态监测模块、 瞬态监测 模块、 报警模块和数据存储模块。
9、 如权利要求 1 所述的混凝土泵送设备状态监测与故障诊断系统, 其 特征在于, 所述故障诊断单元包括经典稳态信号分析模块、 非稳态信号分析 模块和微弱特征信号提取模块。
10、 如权利要求 1所述的混凝土泵送设备状态监测与故障诊断系统, 其 特征在于,进一步包括信号调理单元和 A/D转换单元,所述臂架传感器组件、 底架传感器组件和液压系统传感器组件的信号通过所述信号调理单元传送 至所述 A/D 转换单元实现信号的在线采集和数字化转换之后再传送至所述 状态监测单元进行分析处理。
11、 如权利要求 1所述的混凝土泵送设备状态监测与故障诊断系统, 其 特征在于, 进一步包括末臂节声光 警组件和遥控器声光 警组件, 所述状 态监测单元分别与所述末臂节声光报警组件、 所述遥控器声光报警组件连 接。
PCT/CN2012/086919 2011-12-23 2012-12-19 混凝土泵送设备状态监测与故障诊断系统 WO2013091538A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110437074.8A CN103175572B (zh) 2011-12-23 2011-12-23 混凝土泵送设备状态监测与故障诊断系统
CN201110437074.8 2011-12-23

Publications (1)

Publication Number Publication Date
WO2013091538A1 true WO2013091538A1 (zh) 2013-06-27

Family

ID=48635593

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/086919 WO2013091538A1 (zh) 2011-12-23 2012-12-19 混凝土泵送设备状态监测与故障诊断系统

Country Status (2)

Country Link
CN (1) CN103175572B (zh)
WO (1) WO2013091538A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103669871A (zh) * 2013-12-02 2014-03-26 重庆大学 一种预拌混凝土施工期间间接裂缝综合防治和处理的方法
EP3175060B1 (de) 2014-07-30 2018-07-04 Putzmeister Engineering GmbH Autobetonpumpe und verfahren zu deren arbeitsbetrieb

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104120885B (zh) * 2014-07-15 2017-08-04 三一集团有限公司 泵车及其泵车臂架疲劳健康监控系统、方法
CN104819145B (zh) * 2015-05-20 2017-05-31 重庆大学 一种基于声发射信号的消防水泵的故障诊断方法
CN106840489B (zh) * 2015-12-03 2019-08-23 中联重科股份有限公司 载荷谱数据采集系统、方法、装置及混凝土泵车

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101178061A (zh) * 2007-11-29 2008-05-14 浙江大学 混凝土泵智能监测和控制系统
EP2103760A2 (en) * 2008-03-17 2009-09-23 Cifa S.p.A. Method to control the vibrations in an articulated arm for pumping concrete, and relative device
CN201410909Y (zh) * 2009-05-31 2010-02-24 长沙中联重工科技发展股份有限公司 混凝土泵车监控系统

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005011943A2 (en) * 2003-07-31 2005-02-10 Oshkosh Truck Corporation Concrete placement vehicle control system and method
CN201980874U (zh) * 2010-12-31 2011-09-21 长沙中联重工科技发展股份有限公司 起重机监测系统以及起重机

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101178061A (zh) * 2007-11-29 2008-05-14 浙江大学 混凝土泵智能监测和控制系统
EP2103760A2 (en) * 2008-03-17 2009-09-23 Cifa S.p.A. Method to control the vibrations in an articulated arm for pumping concrete, and relative device
CN201410909Y (zh) * 2009-05-31 2010-02-24 长沙中联重工科技发展股份有限公司 混凝土泵车监控系统

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUANG, YI ET AL.: "Research on Portable Condition Monitoring and Fault Diagnosis System Concrete Pump Truck.", CHINESE JOURNAL OF CONSTRUCTION MACHINERY., vol. 8, no. 4, December 2010 (2010-12-01), pages 441 - 443, 454 *
WANG, JUN ET AL.: "Remote Fault Diagnosis System of Concrete Pump Truck.", CONSTRUCTION MACHINERY & MAINTENANCE., March 2009 (2009-03-01), pages 148 - 149 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103669871A (zh) * 2013-12-02 2014-03-26 重庆大学 一种预拌混凝土施工期间间接裂缝综合防治和处理的方法
EP3175060B1 (de) 2014-07-30 2018-07-04 Putzmeister Engineering GmbH Autobetonpumpe und verfahren zu deren arbeitsbetrieb

Also Published As

Publication number Publication date
CN103175572A (zh) 2013-06-26
CN103175572B (zh) 2016-03-09

Similar Documents

Publication Publication Date Title
WO2013091538A1 (zh) 混凝土泵送设备状态监测与故障诊断系统
CN101435799B (zh) 基于声发射技术的水轮机故障诊断方法及装置
TWI449883B (zh) 結構體安全性之分析方法
CN104535323A (zh) 一种基于角域-时域-频域的机车轮对轴承故障诊断方法
CN102980756B (zh) 动刚度的测试方法及系统
CN101221066A (zh) 工程非线性振动检测方法
CN105675306A (zh) 一种汽车自检测方法及检测系统
CN111089729A (zh) 用于借助固体声音传感器对组件维护预告的方法和系统
CN109708872A (zh) 一种列车齿轮箱联轴节故障诊断方法、装置及系统
CN106769053A (zh) 一种基于声发射信号的水轮机故障诊断系统及方法
CN106289500A (zh) 一种船闸人字门安全状况的远程监测系统及其监测方法
CN204255494U (zh) 桥梁振动监测装置
CN111859732A (zh) 船闸闸门及其支承运转件损伤程度自动监测系统及监测方法
Li et al. Transmissibility function-based fault diagnosis methods for beam-like engineering structures: a review of theory and properties
Shi et al. Purification and feature extraction of shaft orbits for diagnosing large rotating machinery
CN203965033U (zh) 一种悬臂式掘进机主轴振动运行状态监测装置
Li et al. A detection method of gear micro-cracks based on tuned resonance
CN112504710A (zh) 一种振动状态智能监测系统及方法
CN110411677A (zh) 一种基于水声信号的阀门泄露和空化监测装置及监测方法
CN105782726A (zh) 管道结构应力疲劳监控新系统
CN112857806B (zh) 一种基于移动窗口时域特征提取的轴承故障检测方法
CN112857798B (zh) 一种基于频谱分析的多轴系机械传动系统质量评估方法及装置
Salvino et al. EMD and instantaneous phase detection of structural damage
CN202329804U (zh) 发电机辅机振动在线监测系统
CN109974790A (zh) 可进行预测性维护的减速机标准测试床及操作方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12859472

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12859472

Country of ref document: EP

Kind code of ref document: A1