WO2013091062A2 - Aldimine-derived compounds, pharmaceutical compositions and use - Google Patents

Aldimine-derived compounds, pharmaceutical compositions and use Download PDF

Info

Publication number
WO2013091062A2
WO2013091062A2 PCT/BR2012/000562 BR2012000562W WO2013091062A2 WO 2013091062 A2 WO2013091062 A2 WO 2013091062A2 BR 2012000562 W BR2012000562 W BR 2012000562W WO 2013091062 A2 WO2013091062 A2 WO 2013091062A2
Authority
WO
WIPO (PCT)
Prior art keywords
group
aldimine
ppm
compounds
aldimines
Prior art date
Application number
PCT/BR2012/000562
Other languages
French (fr)
Portuguese (pt)
Other versions
WO2013091062A3 (en
Inventor
Angelo DE FÁTIMA
Stoianoff DE RESENDE
Daniel DE ASSIS SANTOS
Adão APARECIDO SABINO
Rosemeire BRONDI ALVEZ
Cleiton MOREIRA DA SILVA
Cleide VIVIANE BUZANELLO MARTINS
Thais FURTADO FERREIRA MAGALHÃES
Danielle LETÍCIA DA SILVA
Alan KIILL GASPAROTO
Original Assignee
Universidade Federal De Minas Gerais - Ufmg
Fundação De Amparo A Pesquisa De Minas Gerais - Fapemig
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from BRPI1106432 external-priority patent/BRPI1106432A2/en
Priority claimed from BR102012023898-5A external-priority patent/BR102012023898B1/en
Application filed by Universidade Federal De Minas Gerais - Ufmg, Fundação De Amparo A Pesquisa De Minas Gerais - Fapemig filed Critical Universidade Federal De Minas Gerais - Ufmg
Publication of WO2013091062A2 publication Critical patent/WO2013091062A2/en
Publication of WO2013091062A3 publication Critical patent/WO2013091062A3/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C251/00Compounds containing nitrogen atoms doubly-bound to a carbon skeleton
    • C07C251/02Compounds containing nitrogen atoms doubly-bound to a carbon skeleton containing imino groups
    • C07C251/04Compounds containing nitrogen atoms doubly-bound to a carbon skeleton containing imino groups having carbon atoms of imino groups bound to hydrogen atoms or to acyclic carbon atoms
    • C07C251/10Compounds containing nitrogen atoms doubly-bound to a carbon skeleton containing imino groups having carbon atoms of imino groups bound to hydrogen atoms or to acyclic carbon atoms to carbon atoms of an unsaturated carbon skeleton
    • C07C251/16Compounds containing nitrogen atoms doubly-bound to a carbon skeleton containing imino groups having carbon atoms of imino groups bound to hydrogen atoms or to acyclic carbon atoms to carbon atoms of an unsaturated carbon skeleton containing six-membered aromatic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/10Antimycotics
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C251/00Compounds containing nitrogen atoms doubly-bound to a carbon skeleton
    • C07C251/02Compounds containing nitrogen atoms doubly-bound to a carbon skeleton containing imino groups
    • C07C251/24Compounds containing nitrogen atoms doubly-bound to a carbon skeleton containing imino groups having carbon atoms of imino groups bound to carbon atoms of six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C255/00Carboxylic acid nitriles
    • C07C255/61Carboxylic acid nitriles containing cyano groups and nitrogen atoms being part of imino groups bound to the same carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C323/00Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups
    • C07C323/23Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and nitrogen atoms, not being part of nitro or nitroso groups, bound to the same carbon skeleton
    • C07C323/31Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and nitrogen atoms, not being part of nitro or nitroso groups, bound to the same carbon skeleton having the sulfur atom of at least one of the thio groups bound to a carbon atom of a six-membered aromatic ring of the carbon skeleton
    • C07C323/33Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and nitrogen atoms, not being part of nitro or nitroso groups, bound to the same carbon skeleton having the sulfur atom of at least one of the thio groups bound to a carbon atom of a six-membered aromatic ring of the carbon skeleton having at least one of the nitrogen atoms bound to a carbon atom of the same non-condensed six-membered aromatic ring
    • C07C323/35Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and nitrogen atoms, not being part of nitro or nitroso groups, bound to the same carbon skeleton having the sulfur atom of at least one of the thio groups bound to a carbon atom of a six-membered aromatic ring of the carbon skeleton having at least one of the nitrogen atoms bound to a carbon atom of the same non-condensed six-membered aromatic ring the thio group being a sulfide group
    • C07C323/36Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and nitrogen atoms, not being part of nitro or nitroso groups, bound to the same carbon skeleton having the sulfur atom of at least one of the thio groups bound to a carbon atom of a six-membered aromatic ring of the carbon skeleton having at least one of the nitrogen atoms bound to a carbon atom of the same non-condensed six-membered aromatic ring the thio group being a sulfide group the sulfur atom of the sulfide group being further bound to an acyclic carbon atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/34Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D307/56Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D307/70Nitro radicals
    • C07D307/71Nitro radicals attached in position 5
    • C07D307/72Nitro radicals attached in position 5 with hydrocarbon radicals, substituted by nitrogen-containing radicals, attached in position 2
    • C07D307/73Nitro radicals attached in position 5 with hydrocarbon radicals, substituted by nitrogen-containing radicals, attached in position 2 by amino or imino, or substituted amino or imino radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D317/00Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms
    • C07D317/08Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3
    • C07D317/44Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D317/46Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 ortho- or peri-condensed with carbocyclic rings or ring systems condensed with one six-membered ring
    • C07D317/48Methylenedioxybenzenes or hydrogenated methylenedioxybenzenes, unsubstituted on the hetero ring
    • C07D317/50Methylenedioxybenzenes or hydrogenated methylenedioxybenzenes, unsubstituted on the hetero ring with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to atoms of the carbocyclic ring
    • C07D317/58Radicals substituted by nitrogen atoms

Definitions

  • the present invention comprises aldimine-derived compounds as well as pharmaceutical compositions containing such compounds and pharmaceutically acceptable excipients and their use in the treatment of fungal infections of medical and / or veterinary importance.
  • Aldimines and their derivatives have been shown to have the same or better antifungal action than commercially available drugs such as fluconazole. Because they are new drugs, the resistance of pathogens to them is greatly reduced.
  • the synthesis of aldimines is performed through a one-step process in which the reaction develops within two minutes and yields between 70-98%, which enables its large-scale production, as it is a fast and efficient process. compared to other available drugs.
  • Dermatophytosis is among the most prevalent diseases in the world, being the most common superficial fungal infection in Brazil.
  • the main species involved are Trichophyton rubrum, Trichophyton interdigitale, Microsporum canis and Microsporum gypseum.
  • SANTOS, DA et al Trichophyton rubrum and Trichophyton interdigitale Genetic Diversity Among Species and Strains by Random Amplified Polymorphic DNA Method. Mycopathology, v. 169, p. 247-255, 2010; HARRISON, TS; BROUWER, AE Systemic fungal infections. Medicine, v. 37, no. 12, p.
  • Cryptococcosis Another type of fungal infection is cryptococcosis, mainly caused by Cryptococcus neoformans and Cryptococcus gattii yeasts.
  • the etiological agent is C. neoformans
  • the disease mainly affects the central nervous system.
  • C. neoformans C. neoformans
  • the disease mainly affects the central nervous system.
  • AIDS Acquired Immunodeficiency Syndrome
  • cryptococcosis is the major cause of death from systemic mycoses in these patients.
  • Conventional treatment of cryptococcosis is prolonged antifungal therapy, which has been shown to be highly toxic and is generally complicated by the emergence of drug resistant strains available, for example fluconazole.
  • Cryptococcosis clinical-epidemiological, laboratory and fungal varieties study in 96 patients. Journal of the Brazilian Society of Tropical Medicine, v. 39, no. 3, p. 255-258, 2006; PRADO, M. et al. Mortality due to systemic mycoses as a primary cause of death or association with AIDS in Brazil: a review from 996 to 2006. Memories of the Oswaldo Cruz Institute, v. 104, no. 3, p. 513-521, 2009; SOARES, BMS et al. Cerebral infection caused by Cryptococcus gattii: a case report and antifungal susceptibility testing. Iberoamerican Journal of Mycology, v. 25, p. 242-245, 2008; SOARES, BM et al. Cryptococcus gattii: In vitro susceptibility to photodynamic inactivation. Photochemistry and Photobiology, v. 87, p. 357-364,201 1).
  • Candidiasis is among the most frequent nosocomial blood infections, with Candida albicans being the most prevalent species.
  • Candida albicans being the most prevalent species.
  • This has a direct impact on the treatment of candidiasis, given that some species, such as Candida krusei and Candida glabrata, exhibit intrinsic resistance to some triazole agents, such as fluconazole and voriconazole (G ⁇ MEZ, J. ef al. Nosocomial candidemias: new clouds).
  • Triazole agents such as fluconazole and voriconazole (G ⁇ MEZ, J. ef al. Nosocomial candidemias: new clouds).
  • chromoblastomycosis can also be mentioned, a subcutaneous infection caused by dematiaceous fungi, being Fonsecaea pedrosoi its main agent. This disease is relatively frequent in some states of Brazil, especially in the northern region. Treating chromoblastomycosis is a therapeutic challenge, as treatment may depend on several factors, such as etiological agent, lesion size and extent, individual tolerance, and immune system status. often associated with low cure rates and high relapse rates. Because of this, alternatives in the treatment of chromoblastomycosis are constantly being researched (ANTONELLO, V. et al.
  • Examples of dermatophytosis include tinea pedis, popularly known as athlete's foot, and tinea unguium, a type of onychomycosis, a fungal infection that affects the toenails and / or hands. Most often both are caused by the same pathogens, namely Trichophyton rubrum, Trichophyton mentagrophytes or Epidermophyton fioccosum. These dermatophytosis tends to chronicity, so the available therapy is ineffective. The potential for therapeutic failure of tinea unguium is up to 25%. In cases of tinea pedis caused by Trichophyton rubrum, the infection may persist for years and relapses are common in about 70% of patients.
  • drugs available on the market for the treatment of fungal diseases. They are classified into: 1) classic chemical agents, for example iodine, fatty acids and derivatives, salicylic acid, tolnaftate and tolciclate, which act mainly as fungistatic indirectly by modifying local conditions; 2) current chemical agents, represented by imidazoles and triazoles (ketoconazole, itraconazole, fluconazole, voriconazole, clotrimazole, econazole, miconazole, terconazole, butoconazole, thioconazole, oxiconazole, sulconazole and setaconazole), flucytosine and allylamines (naphthyphine, terbinephine; and 3) antibiotics, represented by polyenic agents (amphotericin B, nystatin and natamycin) and griseofulvin (BENNETT, JE Antimicrobial agents: antifungal agents.
  • classic chemical agents for
  • the azoles, imidazoles covering classes and 'triazoles are chemical broad spectrum antimycotic action.
  • the main mechanism of action of these compounds is the inhibition of the activity of the enzyme sterol 14- ⁇ -demethylase (also called lanosterol 14-a-demethylase), a condition that leads to disruption of ergosterol biosynthesis, an important steroid molecule for maintaining integrity. and the function of the fungal cell membrane. As a consequence, fungal growth is inhibited.
  • Azole metabolism is mainly hepatic, the most common side effects being nausea and vomiting when used systemically, as well as erythema, burning, peeling, edema, pruritus, urticaria and vesicle formation in topical use.
  • Imidazole-derived compounds of systemic or topical use for the treatment of various mycotic infections, currently have a wide variety on the market.
  • the fungistatic or fungicidal action of this drug is dependent on its concentration.
  • Fluconazole practically does not alter mammalian ergosterol synthesis and is less toxic and better absorbed than other azoles.
  • Itraconazole is concentrated mainly in keratinized tissues, especially in the skin, and can reach a concentration five times higher in this location in relation to the plasma level.
  • ARENAS R. Antimicoticos.
  • ARENAS R. Antimicoticos.
  • FAVEL A. et al. Fluconazole susceptibility testing of Candida species: a compartmental study of RPMI, high resolution and casitone media; J. Mycol Med, v. 5, pp. 7-12, 1995; Van Den Bossche, H. Mechanisms of antifungi resistance, Iberoamerican Journal of Mycology, v. 14, no. 2, pp. 44-49, 1997.
  • their fungicidal activity comes from a secondary mechanism of action that inhibits the activity of the enzyme squalene-epoxidase, which acts on the squalene epoxidation step.
  • squalene builds up in the fungal cell, in addition to the blockade of ergosterol synthesis.
  • the absence of this steroid molecule causes changes in the membrane structure of the fungal cells, leading to their death.
  • allylamine drugs examples include naphthyphine and terbinafine.
  • Naphthyphine was the first molecule to be identified and proved to be an effective agent against a wide variety of pathogenic fungi. Particularly noteworthy is its topical use as a 1% cream against the dermatophytosis tinea cruris and tinea corporis.
  • Terbinafine is a naphthyphine-derived molecule and is currently considered to be the most effective drug against dermatophytes. It can be administered orally and topically in the treatment of onychomycosis and tinea, respectively.
  • BENNETT JE Antimicrobial Agents: Antifungal Agents.
  • BRUNTON L.L
  • LAZO LAZO
  • JS PARKER
  • K.L Goodman & Gilman The Pharmacological Basis of Therapy Rio de Janeiro: McGraw-Hill Inter-American of Brazil, 11th ed., Pp.
  • imines also known as Schiff bases or azometines.
  • patent application PI0515564-9 was found, which describes an antimicrobial composition in which the imine group not only binds functional groups with antibiotic and antimicrobial function, but also assists in intensifying or amplifying antimicrobial activity.
  • Other works described in the prior art use Schiff bases as binders in the synthesis of metal complexes.
  • the present invention describes the use of aldimine derivatives as antifungals in pharmaceutical compositions.
  • the present invention demonstrates that the antifungal action of aldimine derivatives against fungi of medical and / or veterinary importance is equal to or better than that of other commercially available drugs such as fluconazole.
  • the advantage of using these compounds would be a decreased likelihood that pathogens will be resistant, increasing the likelihood that the treatment will be more effective compared to currently available drug treatments.
  • the synthesis of these molecules is accomplished through a one-step process in which the reaction develops within two minutes and yields between 70-98%, which makes their large scale production a fast and low process. cost compared to other drugs.
  • the obtaining processes described for terbinafine involve metal catalysts that are generally expensive or lead to the formation of mixtures of E and Z isomers.
  • LT3956 describes the method of producing new compounds whose structure contains an aldimine as one of its substituent groups, as well as its fungicidal action.
  • the synthesized compounds have action against fungi that infect plant species and thus differ from the technology presented in this application, since aldimines have action against fungi that infect animals and / or humans.
  • GB1449540 describes substituted hydroxy compounds derived from nitro styrene as well as the process for obtaining them. These compounds, obtained from the reaction of an aldimine with a nitroalkane, have antifungal, anthelmintic and antibacterial properties and may be comprised in compositions that are administered orally. Therefore, the compounds claimed in GB1449540 are structurally different and belong to a group of molecules other than the aldimines herein.
  • WO2004071417 describes methods for the identification of phenotypic yeast transition modulators, in particular Candida albicans bud-hyphal transition inhibitors, and their use for treating fungal infections.
  • phenotypic yeast transition modulators in particular Candida albicans bud-hyphal transition inhibitors
  • aldimines some aldimines are mentioned, but such molecules are only used in the treatment of Candida, that is, they have a narrower spectrum of action and are structurally distinct from the molecules presented in this patent application.
  • Figure 1A presents the chemical equation representing the reaction between an aromatic aldehyde and an aromatic amine for the synthesis of aromatic aldimine 18.
  • Figure 1B presents the chemical equation that represents the reaction between a specific aldehyde and aromatic amine for the synthesis of heteroaromatic aldimine 38.
  • Figure 1C presents the chemical equation that represents the reaction between a specific aldehyde and aromatic amine for the synthesis of aromatic aldimine 59.
  • Figure 1 D presents the chemical equation that represents the reaction between a specific aldehyde and aromatic amine for the synthesis of aromatic aldimine 60.
  • Figure 1 E presents the chemical equation that represents the reaction between a specific aldehyde and aromatic amine for the synthesis of aromatic aldimine 61.
  • Figure 1 F presents the chemical equation that represents the reaction between a specific aldehyde and aromatic amine for the synthesis of aromatic aldimine 67.
  • Figure 1G presents the chemical equation representing the reaction between a specific aldehyde and aromatic amine for the synthesis of aromatic aldimine 68.
  • Figure 1H presents the chemical equation that represents the reaction between a specific aldehyde and aromatic amine for the synthesis of aromatic aldimine 69.
  • Figure 11 presents the chemical equation that represents the reaction between a specific aldehyde and aromatic amine for the synthesis of aromatic aldimine 17.
  • Figure 2A represents the infrared (IR) spectrum obtained for compound 18.
  • Figure 2B shows the hydrogen nuclear magnetic resonance spectrum ( 1 H NMR) obtained for compound 18.
  • Figure 2C represents the carbon nuclear magnetic resonance spectrum ( 13 C NMR) obtained for compound 18.
  • Figure 3A represents the infrared (IR) spectrum obtained for compound 38.
  • Figure 3B shows the hydrogen nuclear magnetic resonance spectrum ( 1 H NMR) obtained for compound 38.
  • Figure 3C represents the carbon nuclear magnetic resonance spectrum ( 13 C NMR) obtained for compound 38.
  • Figure 4A represents the infrared (IR) spectrum obtained for compound 59.
  • Figure 4B shows the hydrogen nuclear magnetic resonance spectrum ( 1 H NMR) obtained for compound 59.
  • Figure 4C represents the carbon nuclear magnetic resonance spectrum ( 13 C NMR) obtained for compound 59.
  • Figure 5A represents the infrared (IR) spectrum obtained for compound 60.
  • Figure 5B shows the hydrogen nuclear magnetic resonance spectrum ( 1 H NMR) obtained for compound 60.
  • Figure 5C represents the carbon nuclear magnetic resonance spectrum ( 3 C NMR) obtained for compound 60.
  • Figure 6A represents the infrared (IR) spectrum obtained for compound 61.
  • Figure 6B shows the hydrogen nuclear magnetic resonance spectrum ( 1 H NMR) obtained for compound 61.
  • Figure 6C represents the carbon nuclear magnetic resonance spectrum ( 13 C NMR) obtained for compound 61.
  • Figure 7A represents the infrared (IR) spectrum obtained for compound 67.
  • Figure 7B shows the hydrogen nuclear magnetic resonance spectrum ( 1 H NMR) obtained for compound 67.
  • Figure 7C represents the carbon nuclear magnetic resonance spectrum ( 13 C NMR) obtained for compound 67.
  • Figure 8A represents the infrared (IR) spectrum obtained for compound 68.
  • Figure 8B shows the hydrogen nuclear magnetic resonance spectrum ( 1 H NMR) obtained for compound 68.
  • Figure 8C represents the carbon nuclear magnetic resonance spectrum ( 13 C NMR) obtained for compound 68.
  • Figure 9A represents the infrared (IR) spectrum obtained for compound 69.
  • Figure 9B shows the hydrogen nuclear magnetic resonance spectrum ( 1 H NMR) obtained for compound 69.
  • Figure 9C represents the carbon nuclear magnetic resonance spectrum ( 13 C NMR) obtained for compound 69.
  • Figure 10A represents the infrared (IR) spectrum obtained for compound 17.
  • Figure 10B shows the hydrogen nuclear magnetic resonance (H NMR) spectrum obtained for compound 17.
  • Figure 10C represents the carbon nuclear magnetic resonance spectrum ( 13 C NMR) obtained for compound 17.
  • Figure 11 represents the structural formulas of compounds 2, 7, 8,
  • Figure 12 presents the results obtained from the experiment with wild Balb / c mice infected with Trichophyton rubrum. These animals were treated topically with aldimine 2 (10% gel and 10% cream) and itraconazole as 2% cream seven days after infection. Results are expressed in colony forming units per gram of infected tissue (CFU / g tissue).
  • CFU / g tissue colony forming units per gram of infected tissue.
  • the present invention comprises aldimine-derived compounds as well as pharmaceutical compositions containing such pharmaceutically acceptable compounds and excipients as well as their use in the treatment of fungal infections caused by Candida, Cryptococcus, Paracoccidiodes, Aspergillus, Fonsecaea, Trichophyton and Microsporum, such as Candida albicans, Candida tropicalis, Candida krusei, Candida glabrata, Candida dubliniensis, Candida parapsilosis, Aspergillus fumigatus, Aspergillus niger, Aspergillus cryptoccus, Aspergillus cryptoccus Paracoccidiodes brasiliensis, Paracoccidiodes lutzii, Fonsecaea pedrosoi, Trichophyton rubrum, Trichophyton interdigitale, Microsporum canis and Microsporum gypseum, not limiting to these species.
  • aldimines were obtained by condensation between aldehydes and aromatic amines, using ethanol as a solvent. Ethanolic solutions containing equimolar amounts of the respective aldehydes and aromatic amines were microwave-irradiated under the following conditions: temperature 80 ° C; 200 watt power; ramp time 2 minutes; reaction time 2 minutes; agitation; and under cooling. Then, the reaction products were purified by recrystallization using specific solvents for each product obtained. Once purified, aldimines were suitably characterized by infrared (IR) and hydrogen and carbon nuclear magnetic resonance ( 1 H and 13 C NMR, respectively) spectroscopy. The spectra in the IR region were obtained by the Spectro One Perkin ATR technique.
  • IR infrared
  • 1 H and 13 C NMR hydrogen and carbon nuclear magnetic resonance
  • aldimines of the present invention are represented by the following structural formulas: where: Ri is ;
  • R 3 is selected from the group comprising -H, -OH, -CN or -OCH 3 ;
  • R 4 is -H or -OH
  • R 5 is selected from the group comprising -H, -F, -Cl, -OH, -CN,
  • R 6 is -H, -OH or -NO 2 ;
  • R 7 is -H or -OH
  • R 8 is selected from the group comprising -H, -F, -OH, -NO 2 OR-OCH 3 ;
  • n 0 or 1.
  • compositions of the invention are characterized in that they contain aldimine combined with pharmaceutically acceptable excipients.
  • the compositions may be liquid, solid or semi-solid.
  • Liquid forms may be presented as a solution, syrup, elixir, suspension, emulsion, tincture or enema.
  • solubilizers and surfactants such as glycerin, propylene glycol and sucrose may be used.
  • Semisolid forms can be presented as gels, ointments, creams, emulsions or pastes.
  • excipients for semi-solid pharmaceutical compositions include methylcellulose, hydroxypropylcellulose, hydroxyethylcellulose, carboxymethylcellulose, polymers derived from acrylic and methacrylic acid, polyethylene glycols, solid petroleum jelly, solid paraffin, lanolin, vegetable oils, mineral oil, cetyl alcohol, sterile alcohol, cetostearyl alcohol, glyceryl monostearate, cetyl esters wax, non-self-emulsifying wax and anionic, sodium lauryl sulfate, disodium EDTA, paraben preservative solution, distilled water, sodium cetylstearyl sulfate, glycerin, decyl oleate and benzalkonium chloride
  • solid forms may be presented as capsules, tablets, pills or tablets.
  • Binders, disintegrants, diluents, lubricants, surfactants such as cellulose, lactose, starch, mannitol, magnesium stearate, talc, colloidal silicon dioxide, magnesium oxide and kaolin are examples of excipients for solid preparations.
  • Excipients may also contain minor amounts of additives, for example, substances that increase the isotonicity and chemical stability of preservatives, chelators and stabilizers, as well as sweeteners, colorants and flavorings.
  • additives for example, substances that increase the isotonicity and chemical stability of preservatives, chelators and stabilizers, as well as sweeteners, colorants and flavorings.
  • examples of such substances include phosphate buffer, bicarbonate buffer and Tris buffer
  • preservatives include thimerosal, m- or o-cresol, formalin, benzyl alcohol, parabens, EDTA, BHA and BHT.
  • compositions may be administered by the intramuscular, intravenous, subcutaneous, topical, oral, inhalation routes or devices that may be implanted or injected.
  • Compound 18 was obtained by condensation between aromatic aldehyde and aromatic amine as depicted in Figure 1A.
  • the reaction product was purified by recrystallization using ethanol as a solvent.
  • the signals related to aromatic carbons are found at £ 108.1; 1 12.2; 1 16.6; 1 18.6; 120.1; 124.1; 127.4; 133.0; 133.3; 149.8; 150.3 and 157.3 ppm.
  • Example 2 Collection and characterization of aldimine 38 Compound 38 was obtained by condensation between aromatic aldehyde and aromatic amine as shown in Figure 1B. The reaction product was purified by recrystallization using ethanol as solvent.
  • Compound 59 was obtained by condensation between aromatic aldehyde and aromatic amine as shown in Figure 1C.
  • the reaction product was purified by recrystallization using ethanol as a solvent.
  • the spectrum obtained in the IR region shows a set of low intensity bands characteristic of the Cs P 2 -H and Cs P 3 -H stretch stretches at 3030, 2964, 2919 and 2838 cm -1 . also the presence of two bands from the CO and CS link stretches at 1259 and 810 cm- 1 , respectively.
  • Compound 60 was obtained by condensation between aromatic aldehyde and aromatic amine as shown in Figure 1D.
  • the reaction product was purified by recrystallization using ethanol as solvent.
  • Compound 61 was obtained by condensation between aromatic aldehyde and aromatic amine as shown in Figure 1E.
  • the reaction product was purified by recrystallization using ethanol as a solvent.
  • Compound 67 was obtained by condensation between the aromatic aldehyde and the aromatic amine as shown in Figure 1 F.
  • the reaction product was purified by recrystallization using ethanol as the solvent.
  • the 13 C NMR spectrum for said compound shows a total of 16 signals as expected.
  • Another signal that is also found in a more unblocked region of the spectrum is carbon directly attached to the -NO 2 group, which is observed at £ 148.2 ppm.
  • the carbon ring signals directly linked to the nitrile group and the carbon of the nitrile group itself (-C próprioN), which are observed at £ 107.0 and 11.3 ppm, respectively.
  • Compound 68 was obtained by condensation between aromatic aldehyde and aromatic amine as depicted in Figure 1G.
  • the reaction product was purified by recrystallization using ethanol as a solvent.
  • Example 8 Obtaining and characterizing aldimine 69
  • Compound 69 was obtained by condensation between aromatic aldehyde and aromatic amine as shown in Figure 1H.
  • the reaction product was purified by recrystallization using ethanol as solvent.
  • Compound 17 was obtained by condensation between aromatic aldehyde and aromatic amine as shown in Figure 11.
  • the reaction product was purified by recrystallization using ethanol as solvent.
  • Antifungal Minimum Inhibitory Concentration tests are the first experimental evidence of the potential of a given substance.
  • the method used to determine antifungal activity against dermatophytes is based on observing growth inhibition or death induction of fungal conidia subjected to different drug concentrations compared to untreated controls (SANTOS, DA; BARROS, MES; H AM DAN, JS Establishing a Method of Inoculum Preparation for Susceptibility Testing of Trichophyton rubrum and Trichophyton mentagrophytes Journal of Clinical Microbiology, v. 44, pp. 98-101, 2006).
  • the optical density of the suspension was read on a spectrophotometer and adjusted to an optical density of 0.09 to 0.11, equivalent to 70-72% transmittance at 520 nm wavelength, which gave a concentration of 10 6 cells. / ml. These suspensions were diluted 1: 50 in RPMI-1640 medium for testing to give a final concentration of 10 4 CFU / mL.
  • Table 1 shows the MIC values of for the four aldimines tested against all dermatophyte samples. The structural formulas of the aldimines tested are shown in Figure 11.
  • Table 1 Data regarding the in vitro activity evaluation of four aldimines against Trichophyton species.
  • MIC Minimum inhibitory concentration (in pg / mL); Cl: clinical isolate; Itraconazole: An antifungal used commercially in the treatment of fungal infections, used as a positive test control.
  • ND not determined It is observed that aldimines promoted inhibition of fungal growth at concentrations ⁇ 256 pg / mL. Particular attention should be given to aldimines 41 and 50 with MICs ⁇ 32 pg / mL for all samples tested. The results are interesting because they demonstrate good antifungal activity against the tested dermatophytes.
  • Example 11 Minimum Inhibitory Concentration (MIC) determination tests for aldimines for systemic fungi
  • Candida albicans C. tropicalis, C. krusei, C. glabrata, C. dubliniensis, C. parapsilosis, Aspergillus fumigatus, A. niger, A. clavatus, A. Tamarii, A. flavus, Cryptococcus neoformans, Cryptococcus gattii, Paracoccidiodes brasiliensis, P. lutzii and Fonsecaea pedrosoi.
  • MIC minimum inhibitory concentration
  • CLSI Document M38-A2 Reference method for broth dilution susceptibility testing of filamentous fungi; Approved Standard - Second Edition. Wayne, USA, v. 28, No. 16, 2008; Clinical and Laboratory Standards Institution
  • CLSI Document M27-A3 Reference method for broth dilution antifungal susceptibility testing of yeasts; Approved Standard - Third Edition. , No. 14, 2008.
  • yeast inoculum Candidadida ssp. And Cryptococcus ssp.
  • Fungal samples were grown in tilted Sabouraud dextrose agar (ASD) medium and incubated at 35 ° C for 48h.
  • Inocula were prepared from fungal samples grown on slanted potato agar medium and incubated at 28 ° C for 7 days. Standard fungal suspensions were prepared.
  • Yeast cultures were removed separately with a sterile loop and added to test tubes containing 5 mL of sterile saline.
  • the suspensions obtained were vortex homogenized and read in a spectrophotometer at a wavelength of 530 nm, adjusting the transmittance from 75 to 77%, corresponding to the concentration of 1 x 10 6 to 5 x 10 6 CFU / mL.
  • These yeast suspensions were homogenized for 15 seconds in vortex and diluted twice with RPMI 1640 medium, the former at 1:50 and the latter at 1:20, so that the inoculum had a final concentration of 1 x 10 3 to 5 x 10 3. CFU / mL.
  • the filamentous fungal colonies were initially washed with saline and Tween 20 (1%) and transferred to another sterile empty test tube.
  • the spore-containing supernatant was transferred to a test tube containing 5 mL of sterile saline.
  • This suspension was vortex homogenized and read in a spectrophotometer at a wavelength of 530 nm, adjusting the transmittance from 80 to 82%, which corresponds to a concentration of 0.4x10 4 to 5x10 4 CFU / mL.
  • Filamentous fungus suspensions were vortexed for 15 seconds and diluted with RPMI medium at a ratio of 1: 50.
  • Table 3 shows the MIC results of aldimines tested against Candida, Aspergillus, Fonsecaea pedrosoi and Paracoccidiodes brasiliensis species. The structural formulas of these aldimines are shown in Figure 10. It is observed that all compounds promoted inhibition of fungal growth of the different fungal species tested, but Aspergillus clavatus and Fonsecaea pedrosoi were the most sensitive to all tested compounds. Compound 15 stands out for its broader spectrum of activity.
  • Table 4 shows the MIC results of the same compounds against Cryptococcus spp isolates. All of these were sensitive to the compounds tested, and their MIC values were sometimes lower than those for fluconazole.
  • Table 2 Incubation time and temperature used in MIC determination tests for fungi of Candida genus, Cryptococcus,
  • Fonsecaea pedrosoi, agent of chromoblastomycosis presented MIC for fluconazole of 16 pg / mL, the same value presented by aldimines 8, 16, 31, 34 and 38 ( Figure 11).
  • MIC for compound 15, 18 and 41 was twice as low as for fluconazole, while aldimines 20 and 29 ( Figure 11) were four times more potent than fluconazole in inhibiting F. pedrosoi growth. . Since the etiological agents of chromoblastomycosis may be resistant to several antifungals, including fluconazole, it is ideal to find more effective compounds for the treatment of this disease.
  • VIVAS JRC; TORRES-RODRI ⁇ UEZ, JM Sensitivity of dematiaceous mycelial fungi to antifungal dyes employing a diffusion method in agar.
  • the paracoccidiodomycosis agent was sensitive to treatment with several aldimines, being as sensitive to fluconazole as aldimines 20, 29, 34, 36 and 38 (4 ⁇ g / mL MIC) (Figure 11).
  • other aldimines showed good results against Paracoccidioides brasiliensis.
  • the MIC for aldimine 33 ( Figure 11) was 16 pg / mL, while for aldimines 21, 35 and 37 ( Figure 11) the value was 32 Mg / mL.
  • TABORDA CP. Et al. Melanin as a virulence factor of Paracoccidioides brasiliensis and other dimorphic pathogenic fungi: a minireview. Mycopathologia, v. 165, p 331-339, 2008; PRADO, M. et al. Mortality due to systemic mycoses as a primary cause of death or association with AIDS in Brazil: a review from 1996 to 2006. Memories of the Oswaldo Cruz Institute, v. 104, no. 3, pp. 513-521, 2009).
  • C. neoformans and C. gattii were also sensitive to several aldimines.
  • compounds 2, 7, 8, 15 and 16 ( Figure 11) had MIC values between 9.0 Mg / mL and 5.2 pg / mL, which are almost twice as low as fluconazole. (9.54 ⁇ g / mL).
  • Aldimines 41 and 50 had MIC values of 2.3 ⁇ g / mL ⁇ and 3.8 Mg / mL, respectively, being more potent than the antifungal used as a control.
  • Other aldimines (eg 18, 20, 29, 31 and 34, shown in Figure 11) had MIC values close to those of fluconazole.
  • C. gattii compounds 2, 7, 8, 15 and 16 ( Figure 11) had MIC values between 9.0 Mg / mL and 5.2 pg / mL, which are almost twice as low as fluconazole. (9.54 ⁇ g / mL).
  • aldimines 15, 20, 29, 34, 36, 38, 41 and 50 showed the highest spectrum of action against the fungal strains tested.
  • Table 3 In vitro activity evaluation of twelve 2-aminophenol-derived aldimines against Candida, Aspergillus, Fonsecaea pedrosoi and Paracoccidiodes brasiliensis species.
  • MIC Minimum inhibitory concentration (in ⁇ / ⁇ -);
  • Cl clinical isolate: Fluconazoi: antifungal used commercially in the treatment of fungal infections, used as a positive test control.
  • Table 4 Data regarding the in vitro activity evaluation of nine 2-aminophenol-derived aldimines against 12 Cryptococcus neoformans strains and 12 Cryptococcus gattii strains.
  • MIC Minimum inhibitory concentration
  • MIC 50 minimum inhibitory concentration for 50% of the isolates tested
  • MIC 90 minimum inhibitory concentration for 90% of isolates tested
  • Fluconazole Antifungal used commercially in the treatment of fungal infections, used as a positive control of the test.
  • Example 12 Determination Tests of Minimum Fungicidal Concentration (CFM) of aldimines for Cryptococcus fungi
  • CFM minimum fungicidal concentration
  • Table 5 shows the minimum fungicidal concentration (CFM) values of the tested compounds and the antifungal Fluconazole, used as a positive control.
  • CFM fungicidal concentration
  • CFM 50 minimum fungicidal concentration
  • CFM 50 minimum fungicidal concentration for 50% of the isolates tested
  • CFM 90 minimum fungicidal concentration for 90% of the isolates tested.
  • Example 13 Anionic Base Cream (Lanette) Aldimin 2 (Figure 11) was prepared in the form of anionic base cream (Lannette) with oil and water emulsion type. The concentration of compound 2 in the formulation was 10%. The components and amounts of the creamy emulsion are listed in Table 6. Table 6: Composition of aldimine 2-containing creamy emulsion.
  • Example 14 1% Carboxymethylcellulose Gel
  • Aldimin 2 was engineered as 1% carboxymethylcellulose gel. The concentration of compound 2 in the formulation was 10%. The components and amounts of the gel are listed in Table 7. Table 7: Aldimine 2-containing gel composition.
  • Wild Balb / c mice were anesthetized intraperitoneally with a solution of ketamine hydrochloride (80mg / kg) and xylazine hydrochloride (10mg / kg) in PBS. Approximately 10 minutes after administration of this solution, the animals underwent infection. The hair was shaved on two different parts of the back, with subsequent antisepsis with 70% ethanol. Next, T. rubrum conidia were inoculated subcutaneously in the scraped region. 10 5 conidia were inoculated per animal. A control group was inoculated with PBS solution. (GHANNOUM, MA et al.
  • Treatment was started five days after infection and lasted seven days.
  • Aldimin 2 was used in the cream and gel formulation (examples 13 and 14, respectively), and 2% itraconazole in the cream formulation. Due to the low solubility of itraconazole, it could not be manipulated as a gel, and the maximum concentration obtained in the creamy emulsion due to this factor was 2%.
  • the drugs were administered daily topically (100 ⁇ g). The animals were monitored for the reduction of signs of dermatophytosis. Infected and untreated animals were used as Positive control and negative control were represented by animals submitted to PBS inoculation.
  • CFU / g colony forming units per gram of tissue
  • Tissue samples were collected and homogenized in PBS.
  • the final suspension in PBS was plated (50 ⁇ ) in Dextrated Potato Agar (ABD) medium. Plates were incubated at 28 ° C and colony counting was performed after four days. The number of colony forming units was calculated. The result was expressed in CFU / g tissue. Confirmation of the fungus identity was made by observing the macro and micromorphological (microcultural) characteristics of the developed colonies.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Communicable Diseases (AREA)
  • Oncology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)

Abstract

The present invention comprises aldimine-derived compounds, pharmaceutical compositions containing such compounds and pharmaceutically acceptable excipients, beside the use thereof for treating fungal infections of medicinal and/or veterinary importance. Aldimines and derivatives thereof have been shown to exhibit antifungal activity equivalent to or better than that of commercially available medicinal drugs, such as fluconazole. Since these drugs are new, pathogen resistance to these drugs is quite low. Aldimine synthesis is carried out in a single-step process in which the reaction is completed in two minutes, with yields of 70-98%, making large-scale production possible, since it is a fast and low-cost process, when compared to the production process of other pharmaceuticals available.

Description

"COMPOSTOS DERIVADOS DE ALDIMINAS, COMPOSIÇÕES  "ALDIMINE DERIVATIVE COMPOUNDS, COMPOSITIONS
FARMACÊUTICAS E USO"  PHARMACEUTICALS AND USE "
A presente invenção compreende compostos derivados de aldiminas, bem como composições farmacêuticas contendo tais compostos e excipientes farmaceuticamente aceitáveis, além de sua utilização no tratamento de infecções fúngicas de importância médica e/ou veterinária. As aldiminas e seus derivados demonstraram apresentar uma ação antifúngica igual ou melhor que a dos medicamentos disponíveis no mercado, como o fluconazol. Por serem drogas novas, a resistência dos patógenos a elas é bastante reduzida. A síntese das aldiminas é realizada através de um processo com etapa única em que a reação se desenvolve no tempo de dois minutos e com rendimentos entre 70-98%, o que viabiliza a sua produção em larga escala, já que é um processo rápido e de baixo custo, quando comparado ao dos outros fármacos disponíveis. The present invention comprises aldimine-derived compounds as well as pharmaceutical compositions containing such compounds and pharmaceutically acceptable excipients and their use in the treatment of fungal infections of medical and / or veterinary importance. Aldimines and their derivatives have been shown to have the same or better antifungal action than commercially available drugs such as fluconazole. Because they are new drugs, the resistance of pathogens to them is greatly reduced. The synthesis of aldimines is performed through a one-step process in which the reaction develops within two minutes and yields between 70-98%, which enables its large-scale production, as it is a fast and efficient process. compared to other available drugs.
A incidência de infecções fúngicas sistémicas tem aumentado significativamente nas últimas décadas. Em parte, isso é uma consequência de situações clínicas que levam a uma maior debilidade do sistema imune, como nos casos de tratamentos como a quimioterapia antitumoral, de transplantes e de infecção pelo vírus da imunodeficiência humana (HIV). As infecções fúngicas diagnosticadas mais frequentemente em humanos são causadas por patógenos dos géneros Cândida, Cryptococcus e Aspergillus e são uma importante causa de morbidade e mortalidade, principalmente nos pacientes imunocomprometidos. Por sua vez, as infecções micóticas são as causas mais comuns de doenças de pele em países de regiões tropicais. Os dermatófitos, fungos filamentosos que atacam tecidos constituídos por células mortas e queratinizadas, são considerados os agentes mais frequentes desse tipo de micose. As dermatofitoses estão entre as doenças mais prevalentes no mundo, sendo a infecção fúngica superficial mais frequente no Brasil. As principais espécies envolvidas são Trichophyton rubrum, Trichophyton interdigitale, Microsporum canis e Microsporum gypseum. (SANTOS, D. A. et ai Trichophyton rubrum and Trichophyton interdigitale: Genetic Diversity Among Species and Strains by Random Amplified Polymorphic DNA Method. Mycopathologia, v. 169, p. 247-255, 2010; HARRISON, T. S.; BROUWER, A. E. Systemic fungai infections. Medicine, v. 37, n. 12, p. 660-664, 2009; RICHARDSON, M. D. Changing patterns and trends in systemic fungai infections. Journal of Antimicrobial Chemotherapy, v. 56, n. 1 , p. i5-i1 1 , 2005; SILVA, C. M. et ai Schiff bases: a short review of their antimicrobial activities. Journal Of Advanced Research, v. 2, p. 1 -8, 201 1 ). The incidence of systemic fungal infections has increased significantly in recent decades. In part, this is a consequence of clinical conditions that lead to further weakness of the immune system, such as treatments such as antitumor chemotherapy, transplantation, and human immunodeficiency virus (HIV) infection. The most frequently diagnosed fungal infections in humans are caused by pathogens of the genera Candida, Cryptococcus and Aspergillus and are a major cause of morbidity and mortality, especially in immunocompromised patients. In turn, mycotic infections are the most common causes of skin disease in countries in tropical regions. Dermatophytes, filamentous fungi that attack tissues composed of dead and keratinized cells, are considered the most frequent agents of this type of mycosis. Dermatophytosis is among the most prevalent diseases in the world, being the most common superficial fungal infection in Brazil. The main species involved are Trichophyton rubrum, Trichophyton interdigitale, Microsporum canis and Microsporum gypseum. (SANTOS, DA et al Trichophyton rubrum and Trichophyton interdigitale: Genetic Diversity Among Species and Strains by Random Amplified Polymorphic DNA Method. Mycopathology, v. 169, p. 247-255, 2010; HARRISON, TS; BROUWER, AE Systemic fungal infections. Medicine, v. 37, no. 12, p. 660-664, 2009; RICHARDSON, MD Changing patterns and trends in systemic fungal infections. Journal of Antimicrobial Chemotherapy, v. 56, no. 1, p. 15-111, 2005; SILVA, CM et al. Schiff bases: a short review of their antimicrobial activities. Journal Of Advanced Research, v. 2, p. 1-8, 201 1).
Vários exemplos de doenças fúngicas podem ser citados. Uma delas é a aspergilose, a qual vem se tornando uma importante causa de mortalidade entre pacientes imunossuprimidos. Nestes casos, tem sido observada a resistência das espécies de Aspergillus, em especial A. fumigatus, aos agentes triazólicos, importantes fármacos atualmente utilizados no tratamento de infecções fúngicas (SINGH, N.; PATERSON, D. L. Aspergillus Infections in Transplant Recipients. Clinicai Microbiology Reviews, v. 18, n. 1 , p. 44-69, 2005; QIAO, J.; LIU, W.; LI, R. Antifungal resistance mechanisms of Aspegillus. Japanese Journal of Medicai Mycology, v. 49, p. 157-163, 2008; PRADO, M. et ai Mortality due to systemic mycoses as a primary cause of death or in association with AIDS in Brazil: a review from 1996 to 2006. Memórias do Instituto Oswaldo Cruz, v. 104, n. 3, p. 513-521 , 2009).  Several examples of fungal diseases can be cited. One is aspergillosis, which is becoming a major cause of mortality among immunosuppressed patients. In these cases, the resistance of Aspergillus species, especially A. fumigatus, to triazole agents has been observed, important drugs currently used in the treatment of fungal infections (SINGH, N.; PATERSON, DL. Aspergillus Infections in Transplant Recipients. Clinical Microbiology Reviews , v. 18, no. 1, pp. 44-69, 2005; QIAO, J .; LIU, W .; LI, R. Antifungal resistance mechanisms of Aspegillus. Japanese Journal of Medical Mycology, v. 49, p. 157 -163, 2008; PRADO, M. et al Mortality due to systemic mycoses as a primary cause of death or association with AIDS in Brazil: a review from 1996 to 2006. Memories of the Oswaldo Cruz Institute, v. 104, no. , pp. 513-521, 2009).
Outro tipo de infecção fúngica é a criptococose, causada principalmente pelas leveduras Cryptococcus neoformans e Cryptococcus gattii. Quando o agente etiológico é C. neoformans, a doença atinge principalmente o sistema nervoso central. Atualmente, ela assumiu um papel relevante por ser considerada uma das micoses mais comuns em pacientes imunodeprimidos, particularmente nos portadores da Síndrome da Imunodeficiência Adquirida (SIDA/AIDS). No Brasil, a criptococose é a maior causa de morte por micoses sistémicas nestes pacientes. O tratamento convencional da criptococose é a terapia antifúngica prolongada, que tem se mostrado altamente tóxica e é geralmente complicada pela emergência de linhagens resistentes aos fármacos disponíveis, por exemplo, o fluconazol. Esse tratamento, portanto, tem um baixo prognóstico e pode levar a sequelas neurológicas até mesmo em hospedeiros imunocompetentes (BOVERS, M.; HAGEN, F.; BOEKHOUT, T. Diversity of the Cryptococcus neoformans - Cryptococcus gattii species complex. Revista Iberoamericana de Micologia, v. 25, n. 1 , p. S4-12, 2008; DATTA, K., BARTLETT, K. H., MARR, K. A. Cryptococcus gattii: emergence in western North America: exploitation of a novel ecological niche. Interdisciplinary Perspectives on infectious Diseases. v. 2009, p. 1 -8, 2008; MOREIRA, T. A. et ai. Criptococose: estudo clínico-epidemiológico, laboratorial e das variedades do fungo em 96 pacientes. Revista da Sociedade Brasileira de Medicina Tropical, v. 39, n. 3, p. 255-258, 2006; PRADO, M. ef al. Mortality due to systemic mycoses as a primary cause of death or in association with AIDS in Brazil: a review from 996 to 2006. Memórias do Instituto Oswaldo Cruz, v. 104, n. 3, p. 513-521 , 2009; SOARES, B. M. S. et al. Cerebral infection caused by Cryptococcus gattii: a case report and antifungal susceptibility testing. Revista Iberoamericana de Micologia, v. 25, p. 242-245, 2008; SOARES, B. M. et al. Cryptococcus gattii: In vitro susceptibility to photodynamic inactivation. Photochemistry and Photobiology, v. 87, p. 357-364, 201 1 ). Another type of fungal infection is cryptococcosis, mainly caused by Cryptococcus neoformans and Cryptococcus gattii yeasts. When the etiological agent is C. neoformans, the disease mainly affects the central nervous system. Currently, it has assumed a relevant role as it is considered one of the most common mycoses in immunocompromised patients, particularly those with Acquired Immunodeficiency Syndrome (AIDS). In Brazil, cryptococcosis is the major cause of death from systemic mycoses in these patients. Conventional treatment of cryptococcosis is prolonged antifungal therapy, which has been shown to be highly toxic and is generally complicated by the emergence of drug resistant strains available, for example fluconazole. This treatment, therefore, has a poor prognosis and can lead to neurological sequelae even in immunocompetent hosts (BOVERS, M .; HAGEN, F .; BOEKHOUT, T.. Diversity of Cryptococcus neoformans - Cryptococcus gattii species. complex. Iberoamerican Journal of Mycology, v. 25, no. 1, p. S4-12, 2008; DATTA, K., BARTLETT, KH, MARR, KA Cryptococcus gattii: emergence in western North America: exploitation of a novel ecological niche. Interdisciplinary Perspectives on infectious Diseases. v. 2009, p. 1-8, 2008; MOREIRA, TA et al. Cryptococcosis: clinical-epidemiological, laboratory and fungal varieties study in 96 patients. Journal of the Brazilian Society of Tropical Medicine, v. 39, no. 3, p. 255-258, 2006; PRADO, M. et al. Mortality due to systemic mycoses as a primary cause of death or association with AIDS in Brazil: a review from 996 to 2006. Memories of the Oswaldo Cruz Institute, v. 104, no. 3, p. 513-521, 2009; SOARES, BMS et al. Cerebral infection caused by Cryptococcus gattii: a case report and antifungal susceptibility testing. Iberoamerican Journal of Mycology, v. 25, p. 242-245, 2008; SOARES, BM et al. Cryptococcus gattii: In vitro susceptibility to photodynamic inactivation. Photochemistry and Photobiology, v. 87, p. 357-364,201 1).
As candidíases estão entre as mais frequentes infecções sanguíneas nosocomiais, sendo Cândida albicans a espécie mais prevalente. Contudo, nota-se a emergência de outras espécies de Cândida como patógenos oportunistas e o aumento na frequência de infecções associadas a elas. Isso tem impacto direto no tratamento das candidíases, tendo em vista que algumas espécies, como Cândida krusei e Cândida glabrata, exibem resistência intrínseca a alguns agentes triazólicos, como o fluconazol e o voriconazol (GÓMEZ, J. ef al. Candidemias nosocomiales: nuevos retos de um problema emergente. Revista Espanola de Quimioterapia, v. 23, n. 4, p. 158-168, 20 0; MORACE, G., BORGHI, E. Fungai infections in ICU patients: epidemiology and the role of diagnostics. Minerva Anestesiologica, v. 76, n. 1 1 , p. 950-956, 2010).  Candidiasis is among the most frequent nosocomial blood infections, with Candida albicans being the most prevalent species. However, note the emergence of other Candida species as opportunistic pathogens and the increased frequency of infections associated with them. This has a direct impact on the treatment of candidiasis, given that some species, such as Candida krusei and Candida glabrata, exhibit intrinsic resistance to some triazole agents, such as fluconazole and voriconazole (GÓMEZ, J. ef al. Nosocomial candidemias: new clouds). Journal of Chemotherapy, v. 23, 4, pp 158-168, 20; Morace, G., Borghi, E. Fungai infections in ICU patients: epidemiology and the role of diagnostics. Anesthesiology, v. 76, no. 11, pp. 950-956, 2010).
Além destas doenças, também pode ser citada a cromoblastomicose, uma infecção subcutânea causada por fungos dematiáceos, sendo Fonsecaea pedrosoi seu principal agente. Esta doença apresenta relativa frequência em alguns estados do Brasil, principalmente naqueles da região Norte. Tratar a cromoblastomicose é um desafio terapêutico, uma vez que o tratamento pode depender de diversos fatores, como o agente etiológico, o tamanho e a extensão das lesões, a tolerância individual e o estado do sistema imune do paciente, além de estar frequentemente associado com baixas taxas de cura e altas taxas de recaída. Em virtude disso, alternativas no tratamento da cromoblastomicose são constantemente pesquisadas (ANTONELLO, V. et al. Treatment of severe chromoblastomycosis with itraconazole and 5-flucytosine association. Revista do Instituto de Medicina Tropical de São Paulo, v. 52, n. 6, p. 329-331 , 2010; POIRRIEZ, J. et al. A case of chromomycosis treated by a combination of cryotherapy, shaving, oral 5-fluorocytosine, and oral amphotericin B. The American Journal of Tropical Medicine and Hygiene, v. 63, p. 61 -63, 2000; SILVA, C. M. P. et al. Caracterização fenotípica e genotípica de cepas de Fonsecaea pedrosoi isoladas de pacientes com cromoblastomicose. Anais Brasileiros de Dermatologia, v. 1 , n. 74, p. 41 -44, 1999). In addition to these diseases, chromoblastomycosis can also be mentioned, a subcutaneous infection caused by dematiaceous fungi, being Fonsecaea pedrosoi its main agent. This disease is relatively frequent in some states of Brazil, especially in the northern region. Treating chromoblastomycosis is a therapeutic challenge, as treatment may depend on several factors, such as etiological agent, lesion size and extent, individual tolerance, and immune system status. often associated with low cure rates and high relapse rates. Because of this, alternatives in the treatment of chromoblastomycosis are constantly being researched (ANTONELLO, V. et al. Treatment of severe chromoblastomycosis with itraconazole and 5-flucytosine association. Journal of the Tropical Medicine Institute of São Paulo, v. 52, n. 6, P. 329-331, 2010; POIRRIEZ, J. A case of chromomycosis treated by a combination of cryotherapy, shaving, oral 5-fluorocytosine, and oral amphotericin B. The American Journal of Tropical Medicine and Hygiene, v. 63 , 61-63, 2000 SILVA, CMP Phenotypic and genotypic characterization of strains of Fonsecaea pedrosoi isolated from chromoblastomycosis patients Anais Brasileiros de Dermatologia, v. 1, no 74, pp 41-44, 1999 ).
Como exemplos de dermatofitoses, citam-se tinea pedis, popularmente conhecida como pé de atleta, e tinea unguium, um tipo de onicomicose, ou seja, uma infecção fúngica que afeta as unhas dos pés e/ou das mãos. Na maioria das vezes, ambas são causadas pelos mesmos patógenos, a saber, Trichophyton rubrum, Trichophyton mentagrophytes ou Epidermophyton fioccosum. Essas dermatofitoses tendem à cronicidade, de modo que a terapia disponível é pouco eficaz. O potencial do fracasso terapêutico de tinea unguium chega a ser de 25%. Nos casos de tinea pedis causadas por Trichophyton rubrum, a infecção pode persistir durante anos e as recidivas são comuns em cerca de 70% dos pacientes. Além disso, existem relatos sobre a resistência de agentes etiológicos das dermatofitoses à terbinafina. Por exemplo, nos Estados Unidos, Mukkerjee e colaboradores registraram seis isolados de Trichophyton rubrum resistentes a esse fármaco, tanto in vivo quanto in vitro, e no Brasil, Soares e Cury registraram a mesma ocorrência para dois isolados clínicos de Trichophyton rubrum e seis de Trichophyton mentagrophytes . (LEYDEN; J. L. Tinea pedis pathophysiology and treatment. Journal of the American Academy of Dermatology, v. 31 , p. S3-S33, 1994; MUKKERJEE, P. K. et al. Clinicai Trichophyton rubrum strain exhibiting primary resistance to terbinafine. Antimicrobial Agents and Chemotherapy, v. 47, p. 82- 86, 2003; ODOM, R. Pathophysiology of dermatophyte infections. Journal of the American Academy of Dermatology, v. 28, p. S2-S7, 1993; SOARES, M. M. S. R.; CURY, A. E. In vitro activity of antifungal and antisseptic agents agaisnt deramtophyte isolates from patients with tinea pedis. Brazilian Journal of Microbiology, v. 32, p. 130-134, 2001 ). Examples of dermatophytosis include tinea pedis, popularly known as athlete's foot, and tinea unguium, a type of onychomycosis, a fungal infection that affects the toenails and / or hands. Most often both are caused by the same pathogens, namely Trichophyton rubrum, Trichophyton mentagrophytes or Epidermophyton fioccosum. These dermatophytosis tends to chronicity, so the available therapy is ineffective. The potential for therapeutic failure of tinea unguium is up to 25%. In cases of tinea pedis caused by Trichophyton rubrum, the infection may persist for years and relapses are common in about 70% of patients. In addition, there are reports on the resistance of etiologic agents of dermatophytosis to terbinafine. For example, in the United States, Mukkerjee and colleagues reported six isolates of Trichophyton rubrum resistant to this drug, both in vivo and in vitro, and in Brazil, Soares and Cury reported the same occurrence for two Trichophyton rubrum and six Trichophyton isolates. mentagrophytes. (LEYDEN; JL Tinea pedis pathophysiology and treatment. Journal of the American Academy of Dermatology, v. 31, p. S3-S33, 1994; MUKKERJEE, PK et al. Clinical Trichophyton rubrum strain exhibiting primary resistance to terbinafine. Antimicrobial Agents and Chemotherapy , v. 47, pp. 82-863, 2003; ODOM, R. Pathophysiology of dermatophyte infections Journal of the American Academy of Dermatology, v. 28, pp. S2-S7, 1993; SOARES, MMS R .; CURY, AE In vitro activity of antifungal and antiseptic agents have recently been isolated from patients with tinea pedis. Brazilian Journal of Microbiology, v. 32, p. 130-134, 2001).
Existem vários fármacos disponíveis no mercado para o tratamento de doenças causadas por fungos. Eles são classificados em: 1 ) agentes químicos clássicos, por exemplo, o iodo, os ácidos graxos e derivados, ácido salicílico, tolnaftato e tolciclato, que atuam principalmente como fungistáticos de modo indireto pelo fato de modificarem as condições locais; 2) agentes químicos atuais, representados pelos imidazóis e triazóis (cetoconazol, itraconazol, fluconazol, voriconazol, clotrimazol, econazol, miconazol, terconazol, butoconazol, tioconazol, oxiconazol, sulconazol e setaconazol), flucitosina e alilaminas (naftifina, terbinafina e butanafina); e 3) antibióticos, representados pelos agentes poliênicos (anfotericina B, nistatina e natamicina) e pela griseofulvina (BENNETT, J. E. Agentes antimicrobianos: agentes antifúngicos. In: BRUNTON, L. L; LAZO, J. S.; PARKER, K. L. Goodman & Gilman: As bases farmacológicas da terapêutica. Rio de Janeiro: McGraw-Hill Interamericana do Brasil, 1 1 ed., p. 1 103-1 1 18, 2006; NOBRE, M. O. et al. Drogas antifúngicas para pequenos e grandes animais. Ciência Rural, v. 32, p. 175-184, 2002).  There are several drugs available on the market for the treatment of fungal diseases. They are classified into: 1) classic chemical agents, for example iodine, fatty acids and derivatives, salicylic acid, tolnaftate and tolciclate, which act mainly as fungistatic indirectly by modifying local conditions; 2) current chemical agents, represented by imidazoles and triazoles (ketoconazole, itraconazole, fluconazole, voriconazole, clotrimazole, econazole, miconazole, terconazole, butoconazole, thioconazole, oxiconazole, sulconazole and setaconazole), flucytosine and allylamines (naphthyphine, terbinephine; and 3) antibiotics, represented by polyenic agents (amphotericin B, nystatin and natamycin) and griseofulvin (BENNETT, JE Antimicrobial agents: antifungal agents. In: BRUNTON, L.L; LAZO, JS; PARKER, KL Goodman & Gilman: As Pharmacological Bases of Therapy Rio de Janeiro: Inter-American McGraw-Hill of Brazil, 11th ed., pp. 1 103-1 1 18, 2006; NOBRE, MO et al., Antifungal drugs for small and large animals. 32, pp 175-184, 2002).
Os azóis, que abrangem as classes imidazóis e ' triazóis, são antimicóticos químicos de largo espectro de ação. O principal mecanismo de ação desses compostos consiste na inibição da atividade da enzima esterol 14- α-desmetilase (também denominada lanosterol 14-a-desmetilase), condição que leva à interrupção da biossíntese do ergosterol, uma molécula esteroidal importante para a manutenção da integridade e da função da membrana celular dos fungos. Como consequência, o crescimento fúngico é inibido. A metabolização dos azóis é principalmente por via hepática, sendo os efeitos colaterais mais comuns náuseas e vómitos quando utilizados por via sistémica, além de eritema, ardência, descamação, edema, prurido, urticária e formação de vesículas no uso tópico. (BENNETT, J. E. Agentes antimicrobianos: agentes antifúngicos. In: BRUNTON, L. L; LAZO, J. S.; PARKER, K. L. Goodman & Gilman: As bases farmacológicas da terapêutica. 1 1 ed. Rio de Janeiro: McGraw-Hill Interamericana do Brasil, 2006, p. 1 103-1 1 18; RICHARDSON, M. D.; WARNOCK, D. W. Antifungal drugs. In: Fungai infection - Diagnosis and management. London: Blackwell, p. 17-43, 1993.; SANDE, M. A.; MANDELL, G. L. Drogas antimicrobianas - Drogas antimicóticas e antivirais. In: GOODMAN, L; GILMAN, A. G. As bases farmacológicas da terapêutica. Rio de Janeiro: Guanabara, p. 799-807, 1987. apud NOBRE, M. O. et al. Drogas antifúgicas para pequenos e grandes animais. Ciência Rural, v. 32, n. 1 , p. 175- 184, 2002). The azoles, imidazoles covering classes and 'triazoles are chemical broad spectrum antimycotic action. The main mechanism of action of these compounds is the inhibition of the activity of the enzyme sterol 14-α-demethylase (also called lanosterol 14-a-demethylase), a condition that leads to disruption of ergosterol biosynthesis, an important steroid molecule for maintaining integrity. and the function of the fungal cell membrane. As a consequence, fungal growth is inhibited. Azole metabolism is mainly hepatic, the most common side effects being nausea and vomiting when used systemically, as well as erythema, burning, peeling, edema, pruritus, urticaria and vesicle formation in topical use. (BENNETT, JE Antimicrobial Agents: Antifungal Agents. In: BRUNTON, L. LAZO, JS; PARKER, KL Goodman & Gilman: The Pharmacological Basis of Therapy. 1 ed. Rio de Janeiro: McGraw-Hill Inter-American of Brazil, 2006, p. 1,133,118; RICHARDSON, MD; WARNOCK, DW Antifungal drugs. In: Fungai infection - Diagnosis and management. London: Blackwell, p. 17-43, 1993 .; SANDE, MA; MANDELL, GL Antimicrobial drugs - Antimicotic and antiviral drugs. In: GOODMAN, L; GILMAN, AG The pharmacological basis of therapy. Rio de Janeiro: Guanabara, p. 799-807, 1987. apud NOBRE, MO et al. Antifungal drugs for small and large animals. Rural Science, v. 32, no. 1, p. 175-184, 2002).
Os compostos derivados do imidazol, de uso sistémico ou tópico para o tratamento de diversas infecções micóticas, apresentam atualmente uma grande variedade no mercado. A ação fungistática ou fungicida deste fármaco é dependente da sua concentração. Contudo, são os agentes triazólicos que têm recebido maior destaque no tratamento de infecções fúngicas, sobretudo o fluconazol e o itraconazol. Ambos apresentam largo espectro de ação e efeitos tóxicos bastante reduzidos. O fluconazol praticamente não altera a síntese do ergosterol dos mamíferos, sendo menos tóxico e melhor absorvido que os outros azóis. Já o itraconazol concentra-se principalmente em tecidos queratinizados, especialmente na pele, podendo alcançar uma concentração cinco vezes superior neste local em relação ao nível plasmático. Mas, devido à frequente utilização em pacientes com micoses superficiais e sistémicas, tem- se observado resistência de diversas cepas fúngicas, principalmente em espécies de Cândida. Por exemplo, foi verificada a resistência das espécies Cândida krusei, Cândida glabrata e Cândida tropicalis principalmente em casos de indivíduos imunossuprimidos portadores de candidose. Múltiplos fatores parecem contribuir para a resistência ao itraconazol, entre eles a superexpressão de bombas de efluxo da droga e a seleção de mutações no alvo do antifúngico. Além da resistência, a terapia com itraconazol apresenta outros problemas, tais como a biodisponibilidade relativamente baixa da cápsula de formulação oral, a pouca penetração no sistema nervoso central e o fato de a via de administração intravenosa não ser recomendada para pacientes com disfunção renal moderada a grave, uma vez que pode haver acúmulo de um dos excipientes utilizados na solubilização, por exemplo, a ciclodextrina (ARENAS, R. Antimicoticos. In: Micologia medica ilustrada. México: Nueva editorial interamericana, p. 359-376, 1993; FAVEL, A. et al. Fluconazole susceptibility testing of Cândida species: a compartive study of RPMI, high resolution and casitone media; J Mycol Med, v. 5, p. 7-12, 1995; VAN DEN BOSSCHE, H. Mechanisms of antifungi resistance. Revista Iberoamericana de Micologia, v. 14, n. 2, p. 44-49, 1997. apud NOBRE, M. O. et al. Drogas antifúgicas para pequenos e grandes animais. Ciência Rural, v. 32, n. 1 , p. 175-184, 2002; AZANZA, J. R.; GARCÍA-QUETGLAS, E.; SADABA, B. Farmacologia de los azoles. Revista Iberoamericana de Micologia, v. 24, p. 223-22, 2007; ESPINEL-INGROFF, A. et al. Wild-Type MIC distributions and epidemiological cutoff values for the triazoles and six Aspergillus spp. for the CLSI broth microdilution method (M38-A2 Document). Journal of Clinicai Microbiology, v. 48, n. 9, p. 3251-3257, 2010; FAVALESSA, O. C. et al. Primeira descrição da caracterização fenotípica e susceptibilidade in vitro a drogas de leveduras do género Cryptococcus spp. isoladas de pacientes HIV positivos e negativos, Estado de Mato Grosso. Revista da Sociedade Brasileira da Medicina Tropical, v. 42, n. 6, p. 661 -665, 2009; FERREIRA, M. E. S. et al. In vitro evolution of itraconazole resistance in Aspergillus fumigatus involves multiple mechanisms of resistance. Antimicrobial Agents and Chemitherapy, v. 48, n. 1 1 , p. 4405-4413, 2004; PFALLER, M. A. Bloodstream infections due to Cândida species: SENTRY antimicrobial surveillance program in North America and Latin America, 1997-1998. Antimicrobial Agents and Chemitherapy, v. 44, n. 3, p. 747-751 , 2000; PFALLER, M. A. et al. Use of epidemiological cutoff values to examine 9-year trends in susceptibility of Aspergillus species to the triazoles. Journal of Clinicai Microbiology, v. 49, n. 2, p. 586-590, 201 1 ). Imidazole-derived compounds, of systemic or topical use for the treatment of various mycotic infections, currently have a wide variety on the market. The fungistatic or fungicidal action of this drug is dependent on its concentration. However, it is the triazole agents that have received the most prominence in the treatment of fungal infections, especially fluconazole and itraconazole. Both have broad spectrum of action and very low toxic effects. Fluconazole practically does not alter mammalian ergosterol synthesis and is less toxic and better absorbed than other azoles. Itraconazole is concentrated mainly in keratinized tissues, especially in the skin, and can reach a concentration five times higher in this location in relation to the plasma level. However, due to the frequent use in patients with superficial and systemic mycoses, resistance of several fungal strains has been observed, mainly in Candida species. For example, the resistance of Candida krusei, Candida glabrata and Candida tropicalis species was verified mainly in cases of immunosuppressed individuals with candidosis. Multiple factors appear to contribute to itraconazole resistance, including overexpression of drug efflux pumps and selection of antifungal target mutations. In addition to resistance, itraconazole therapy presents other problems, such as the relatively low bioavailability of the oral formulation capsule, poor central nervous system penetration, and the fact that intravenous route of administration is not recommended for patients with moderate to severe renal impairment. as there may be accumulation of one of the excipients used for solubilization, for example the cyclodextrin (ARENAS, R. Antimicoticos. In: Illustrated Medical Mycology. Mexico: Nueva Inter-American Editorial, pp. 359-376, 1993; FAVEL, A. et al. Fluconazole susceptibility testing of Candida species: a compartmental study of RPMI, high resolution and casitone media; J. Mycol Med, v. 5, pp. 7-12, 1995; Van Den Bossche, H. Mechanisms of antifungi resistance, Iberoamerican Journal of Mycology, v. 14, no. 2, pp. 44-49, 1997. apud NOBRE, MO Antifungal drugs for small and large animals Rural Science, v. 32, n.1, pp 175-184, 2002; AZANZA, JR; GARCIA-QUETGLAS, E; SADABA, B Pharmacology of azoles Ibero-American Journal of Mycology, v. 24, pp. 223-22, 2007; Espinel-Ingroff, A. Wild-Type MIC distributions and epidemiological cutoff values for the triazoles and six Aspergillus spp. the CLSI broth microdilution method (M38-A2 Document) Journal of Clinical Microbiology, v. 48, no. 9, pp 3251-3257, 2010; FAVALESSA, OC et al. the phenotypic and in vitro susceptibility to yeast drugs of the genus Cryptococcus spp. isolated from HIV positive and negative patients, State of Mato Grosso. Journal of the Brazilian Society of Tropical Medicine, v. 42, no. 6, p. 661-665, 2009; FERREIRA, MES et al. In vitro evolution of itraconazole resistance in Aspergillus fumigatus involves multiple mechanisms of resistance. Antimicrobial Agents and Chemitherapy, v. 48, no. 11, p. 4405-4413, 2004; PFALLER, MA Bloodstream infections due to Candida species: SENTRY antimicrobial surveillance program in North America and Latin America, 1997-1998. Antimicrobial Agents and Chemitherapy, v. 44, no. 3, p. 747-751, 2000; PFALLER, MA et al. Use of epidemiological cutoff values to examine 9-year trends in susceptibility of Aspergillus species to the triazoles. Journal of Clinical Microbiology, v. 49, no. 2, p. 586-590, 201 1).
Por sua vez, os compostos derivados de alilamina (CH2=CH-CH2-NH2) são os mais recentes fármacos inseridos ao arsenal terapêutico antifúngico. Química e estruturalmente diferente dos demais compostos antifúngicos inibidores da biossíntese do ergosterol, sua atividade fungicida é proveniente de um mecanismo de ação secundário que inibe a atividade da enzima esqualeno-epoxidase, a qual atua no passo de epoxidação do esqualeno. Como resultado, ocorre um acúmulo de esqualeno na célula fúngica, além do bloqueio da síntese de ergosterol. A ausência desta molécula esteroidal causa modificações na estrutura da membrana das células fúngicas, acarretando na morte das mesmas. (KOKJOHN, K. et al. Evaluation of in vitro activity of ciclopirox olamine, butenafine HCI and econazole against dermatophytes and bactéria. International Journal of Dermatology, v. 42, p. 1 1 -17, 2003; RYDER, N. S.; DUPONT, M.-C. Inhibition of squalene epoxidase by allylamine antimycotic compounds. Biochemical Journal, v. 230, p. 765-770, 1985; STUTZ, A. et al. Synthesis and structure-activity relationships of naftifine-related allylamine antimycotics. Journal of Medicai Chemistry, v. 29, p. 1 2-125, 1986). In turn, allylamine-derived compounds (CH 2 = CH-CH 2 -NH 2 ) are the latest drugs inserted into the antifungal therapeutic arsenal. Chemically and structurally different from other ergosterol biosynthesis inhibiting antifungal compounds, their fungicidal activity comes from a secondary mechanism of action that inhibits the activity of the enzyme squalene-epoxidase, which acts on the squalene epoxidation step. As a result, squalene builds up in the fungal cell, in addition to the blockade of ergosterol synthesis. The absence of this steroid molecule causes changes in the membrane structure of the fungal cells, leading to their death. (KOKJOHN, K. et al. Evaluation of in vitro activity of cyclopiroxolamine, butenafine HCI and econazole against dermatophytes and bacteria. International Journal of Dermatology, v. 42, pp. 11-17, 2003; RYDER, NS; DUPONT, M.- C. Inhibition of squalene epoxidase by allylamine antimycotic compounds Biochemical Journal, v. 230, pp. 765-770, 1985; STUTZ, A. et al Synthesis and structure-activity relationships of naphtifine-related allylamine antimycotics. of Medical Chemistry, v. 29, pp. 2-125, 1986).
Como exemplos de fármacos da classe das alilaminas, citam-se a naftifina e a terbinafina. A naftifina foi a primeira molécula a ser identificada, mostrando-se como um eficaz agente contra uma ampla variedade de fungos patogênicos. Em especial, destaca-se seu uso tópico sob a forma de creme a 1 % contra as dermatofitoses tinea cruris e tinea corporis. A terbinafina, por sua vez, é uma molécula derivada da naftifina, sendo considerada atualmente como o fármaco mais efetivo contra dermatofitos. Ela pode ser administrada nas vias oral e tópica no tratamento de onicomicoses e das tineas, respectivamente. A terbinafina se concentra na pele e em seus anexos e por isso os dermatofitos são o maior alvo para essa droga (BENNETT, J. E. Agentes antimicrobianos: agentes antifúngicos. In: BRUNTON, L. L; LAZO, J. S.; PARKER, K. L Goodman & Gilman: As bases farmacológicas da terapêutica. Rio de Janeiro: McGraw-Hill Interamericana do Brasil, 1 1 ed., p. 1 103-1 1 18, 2006; FAVRE, B.; RYDER, N. S. Characterization of esqualene epoxidase activity from the dermatophyte Trichophyton rubrum and its inhibition by terbinafine and other antimycotic agents. Antimicrobial Agents and Chemotherapy, v. 40, p. 443-447, 1996; McCLELLAN, K. J.; WISEMAN, L R.; MARKHAM, A. Terbinafine: an update of its use in superficial mycoses. Drugs, v. 58, p. 179-202, 1999; STUTZ, A. et al. Synthesis and structure-activity relationships of naftifine- related allylamine antimycotics. Journal of Medicai Chemistry, v. 29, p. 1 12-125, 1986).  Examples of allylamine drugs include naphthyphine and terbinafine. Naphthyphine was the first molecule to be identified and proved to be an effective agent against a wide variety of pathogenic fungi. Particularly noteworthy is its topical use as a 1% cream against the dermatophytosis tinea cruris and tinea corporis. Terbinafine, in turn, is a naphthyphine-derived molecule and is currently considered to be the most effective drug against dermatophytes. It can be administered orally and topically in the treatment of onychomycosis and tinea, respectively. Terbinafine concentrates on the skin and its appendages and therefore dermatophytes are the major target for this drug (BENNETT, JE Antimicrobial Agents: Antifungal Agents. In: BRUNTON, L.L; LAZO, JS; PARKER, K.L Goodman & Gilman: The Pharmacological Basis of Therapy Rio de Janeiro: McGraw-Hill Inter-American of Brazil, 11th ed., Pp. 1 103-11118, 2006; FAVRE, B.; RYDER, NS Characterization of squalene epoxidase activity from the dermatophyte Trichophyton rubrum and its inhibition by terbinafine and other antimycotic agents Antimicrobial Agents and Chemotherapy, v. 40, pp. 443-447, 1996; McCLELLAN, KJ; WISEMAN, L R.; MARKHAM, A. Terbinafine: an update its use in superficial mycoses Drugs, 58, pp. 179-202, 1999; Stutz, A. et al., Synthesis and structure-activity relationships of naphthifine-related allylamine antimycotics.Journal of Medical Chemistry, v. 29, p. 12-125, 1986).
Outro grupo de moléculas que apresentam um amplo espectro de atividades biológicas, incluindo a atividade antifúngica, são as iminas, também conhecidas como bases de Schiff ou azometinas. A presença do grupo imina (- CH=N-) em sua estrutura pode ser responsável por gerar ou intensificar a atividade biológica dessa classe de substâncias. Em uma busca no estado da técnica, foi encontrado o pedido de patente PI0515564-9, que descreve uma composição antimicrobiana em que o grupo imina não só liga grupamentos funcionais com função antibiótica e antimicrobiana, como também auxilia na intensificação ou ampliação da atividade antimicrobiana. Outros trabalhos descritos no estado da técnica utilizam bases de Schiff como ligantes na síntese de complexos metálicos. Por exemplo, os resultados dos estudos de Creaven e colaboradores demonstraram que a complexação de zinco à base de Schiff derivada do quinolin-2(1 H)-ona-triazol promoveu uma melhor atividade antimicrobiana e antitumoral dessas iminas (BALUJA, S.; SOLANKI, A.; KACHHADIA, N. Evaluation of Biological Activities of Some Schiff Bases and Metal Complexes. Journal of the Iranian Chemical Society, v. 3, n. 4, p. 312-317, 2006; CREAVEN, B. S. et al. Quinolin-2(1 H)-one-triazole derived Schiff bases and their Cu(ll) and Zn(ll) complexes: possible new therapeutic agents. Polyhedron, v. 29, p. 813-822, 2010; SILVA, C. M. et al. Schiff bases: a short review of their antimicrobial activities. Journal Of Advanced Research, v. 2, p. 1 -8, 201 1 ). Another group of molecules that exhibit a broad spectrum of biological activities, including antifungal activity, are imines, also known as Schiff bases or azometines. The presence of the imine group (- CH = N-) in its structure may be responsible for generating or enhancing the biological activity of this class of substances. In a prior art search, patent application PI0515564-9 was found, which describes an antimicrobial composition in which the imine group not only binds functional groups with antibiotic and antimicrobial function, but also assists in intensifying or amplifying antimicrobial activity. Other works described in the prior art use Schiff bases as binders in the synthesis of metal complexes. For example, the results of the studies by Creaven and colleagues showed that Schiff-based zinc complexation derived from quinolin-2 (1 H) -one-triazole promoted better antimicrobial and antitumor activity of these imines (BALUJA, S .; SOLANKI KACHHADIA, N. Evaluation of Biological Activities of Some Schiff Bases and Metal Complexes Journal of the Iranian Chemical Society, v. 3, 4, pp. 312-317, 2006; CREAVEN, BS et al. -2 (1H) -one-triazole derived Schiff bases and their Cu (ll) and Zn (ll) complexes: possible new therapeutic agents Polyhedron, v. 29, pp. 813-822, 2010; SILVA, CM et al Schiff Bases: A Short Review of Their Antimicrobial Activities (Journal of Advanced Research, v. 2, pp. 1-8, 2011).
Diante do exposto, apesar da variedade de fármacos disponíveis no mercado para o tratamento de infecções fúngicas, os mesmos apresentam diversas limitações. Uma delas é a resistência microbiana, haja vista o aumento na ocorrência de fungos resistentes a muitas dessas drogas, principalmente em indivíduos imunocomprometidos de alto risco, devido ao uso frequente e prolongado. As recidivas são outra limitação desses fármacos. Elas podem ser causadas pela própria resistência do patógeno ao medicamento, por reinfecção ou pelo fato da infecção original não ter sido erradicada em sua totalidade. O alto custo do medicamento associado ao longo período de uso pode levar o paciente a interromper antecipadamente o tratamento, sem garantia de erradicação da infecção. Por fim, esses fármacos são associados a vários efeitos adversos ao paciente. (MUKKERJEE, P. K. et al. Clinicai Trichophyton rubrum strain exhibiting primary resistance to terbinafine. Antimicrobial Agents and Chemotherapy, v. 47, p. 82-86, 2003; SOARES, M. M. S. R.; CURY, A. E. In vitro activity of antifungal and antisseptic agents agaisnt deramtophyte isolates from patients with tinea pedis. Brazilian Journal of Microbiology, v. 32, p. 130-134, 2001 ). Given the above, despite the variety of drugs available on the market for the treatment of fungal infections, they have several limitations. One of them is microbial resistance, given the increased occurrence of fungi resistant to many of these drugs, especially in high-risk immunocompromised individuals, due to frequent and prolonged use. Relapses are another limitation of these drugs. They may be caused by the pathogen's own resistance to the drug, reinfection or the fact that the original infection was not completely eradicated. The high cost of medication associated with the long period of use may lead the patient to discontinue treatment in advance, without guaranteeing eradication of the infection. Finally, these drugs are associated with various adverse effects to the patient. (MUKKERJEE, PK et al. Clinical Trichophyton rubrum strain exhibiting primary resistance to terbinafine. Antimicrobial Agents and Chemotherapy, v. 47, p. 82-86, 2003; SOARES, MMSR; CURY, AE In vitro activity of antifungal and antiseptic agents have recently been isolated from patients with tinea pedis. Brazilian Journal of Microbiology, v. 32, p. 130-134, 2001).
Desta forma, a busca por novos agentes antifúngicos se torna um importante alicerce no incremento do arsenal terapêutico. A presente invenção descreve o uso de derivados de aldiminas como antifúngicos em composições farmacêuticas.  Thus, the search for new antifungal agents becomes an important foundation for increasing the therapeutic arsenal. The present invention describes the use of aldimine derivatives as antifungals in pharmaceutical compositions.
As aldiminas compreendem uma das mais versáteis classes de substâncias orgânicas. Obtidas usualmente por meio da condensação entre aldeídos e aminas primárias, essas substâncias são caracterizadas pela presença do grupo funcional -C=N-. As aldiminas apresentam uma ampla gama de atividades biológicas descritas no estado da técnica, a saber: antimalárica, antibacteriana, antiproliferativa e antiviral. Entretanto, não há relatos de aldiminas com atividade antifúngica contra fungos de importância médica e/ou veterinária. O potencial antifúngico dessas moléculas já é conhecido no estado da técnica contra fungos de interesse agrícola. Isso pode ser exemplificado com o trabalho de Singh e colaboradores, os quais sintetizaram aldiminas a partir da condensação de 2-furfurilamina com benzaldeídos e avaliaram o potencial antifúngico das mesmas contra as espécies Alternaria alternata, Fusarium oxysporum, Colletotrichum capsici e Myrothedum roridum. Os resultados obtidos demonstraram que grande parte das moléculas obtidas apresenta toxicidade contra os fungos testados. Já o estudo desenvolvido por Ibrahim e Al-Deeb demonstrou que as aldiminas por eles sintetizadas apresentaram considerável atividade antibacteriana contra as espécies Staphylococcus aureus e Escherichia coli (IBRAHIM, M. N.; AL- DEEB, H. K. Synthesis, Characterization and Study of the Biological activity of Some Aldimines Derivatives. E-Journal of Chemistry, v. 3, n. 13, p. 257-261 , 2006. Disponível em: <http://www.e-journals.net>. Acesso em: 01 ago. 201 1 , 08:52:59. SILVA, C. M. et aí. Schiff bases: a short review of their antimicrobial activities. Journal Of Advanced Research, v. 2, p. 1 -8, 201 1 ; SINGH, V. P.; SHARMA, J. R.; MANRAO, M. R. Synthesis of Aldimines and Effect of Nature of Ring Attached to Azomethine Nitrogen on Biological Activity. Journal of Indian Council of Chemists, v. 25, n. 1 , p. 7-9, 2008). Aldimines comprise one of the most versatile classes of organic substances. Usually obtained by condensation between aldehydes and primary amines, these substances are characterized by the presence of the functional group -C = N-. Aldimines have a wide range of biological activities described in the state of the art, namely: antimalarial, antibacterial, antiproliferative and antiviral. However, there are no reports of aldimines with antifungal activity against fungi of medical and / or veterinary importance. The antifungal potential of these molecules is already known in the state of the art against fungi of agricultural interest. This can be exemplified by the work of Singh and colleagues, who synthesized aldimines from 2-furfurilamine condensation with benzaldehydes and evaluated their antifungal potential against Alternaria alternata, Fusarium oxysporum, Colletotrichum capsici and Myrothedum roridum species. The results showed that most of the molecules obtained have toxicity against the tested fungi. The study developed by Ibrahim and Al-Deeb showed that their synthesized aldimines showed considerable antibacterial activity against Staphylococcus aureus and Escherichia coli species (IBRAHIM, MN; ALDEEB, HK Synthesis, Characterization and Study of the Biological Activity of Some Aldimines Derivatives E-Journal of Chemistry, v. 3, no. 13, pp. 257-261, 2006. Available at: <http://www.e-journals.net> Accessed: Aug. 1, 201 1 , 08:52:59 SILVA, CM, et al., Schiff bases: a short review of their antimicrobial activities Journal of Advanced Research, v. 2, pp. 1-8, 2011; SINGH, VP; SHARMA, JR; MANRAO, MR Synthesis of Aldimines and Effect of Nature of Ring Attached to Azomethine Nitrogen on Biological Activity. Journal of Indian Council of Chemists, v. 25, no. 1, p. 7-9, 2008).
Por outro lado, a presente invenção demonstra que a ação antifúngica de derivados de aldimina contra fungos de importância médica e/ou veterinária é igual ou melhor que a de outros medicamentos disponíveis no mercado, como o fluconazol. A vantagem do uso desses compostos seria a diminuição da probabilidade dos patógenos apresentarem resistência, aumentando a chance do tratamento ter maior eficácia, comparado aos tratamentos com as drogas atualmente disponíveis. Além disso, a síntese dessas moléculas é realizada através de um processo com etapa única em que a reação se desenvolve no tempo de dois minutos e com rendimentos entre 70-98%, o que torna sua produção em larga escala um processo rápido e de baixo custo comparado ao de outros fármacos. Por exemplo, os processos de obtenção descritos para a terbinafina envolvem catalisadores metálicos que geralmente são caros ou conduzem à formação de misturas de isômeros E e Z. Assim, esses processos não são atrativos sob o ponto de vista económico ou laboratorial, uma vez que se exige a separação desses isômeros. Uma alternativa já descrita no estado da técnica para solucionar este problema seria o uso de métodos de síntese que não exigem a presença de catalisadores metálicos. Entretanto, esses processos demandam longos períodos de reação para obtenção da terbinafina, com rendimentos de 56-92%. A síntese do fluconazol é outro exemplo que pode ser mencionado. Esta ocorre em quatro etapas e envolvendo o uso do cloreto de alumínio, um reagente altamente tóxico e de difícil manipulação. Além disso, o processo envolve reagentes relativamente caros ou de difícil manipulação. Nesse sentido, a invenção ora proposta se apresenta como vantajosa em relação ao que foi descrito no estado da técnica. (ALAMI, M.; FERRI, F.; GASLAIN, Y. A two-step synthesis of terbinafine. Tetrahedron Letters, v. 37, p. 57-58, 1996; DIPHARMA S.p.A. Briona Graziano Castaldi, Montevecchia Giusepe Barreca, Pisa Renzo Rossi. Process for the preparation of terbinafine. US n. 6515181 , 28 fev. 2002, 04 fev. 2003; KAZOKOV, P. V.; GOLOSOV, S. N. A simple method for obtaining terbinafine hydrochloride. Pharmaceutical Chemistry Journal, v. 38, p. 206-208, 2003; KIM, G.; SEO, M. J. A concise process of terbinafine synthesis. Bulletin of the Korean Chemistry Society, v. 16, p. 1002-1003, 1996). On the other hand, the present invention demonstrates that the antifungal action of aldimine derivatives against fungi of medical and / or veterinary importance is equal to or better than that of other commercially available drugs such as fluconazole. The advantage of using these compounds would be a decreased likelihood that pathogens will be resistant, increasing the likelihood that the treatment will be more effective compared to currently available drug treatments. In addition, the synthesis of these molecules is accomplished through a one-step process in which the reaction develops within two minutes and yields between 70-98%, which makes their large scale production a fast and low process. cost compared to other drugs. For example, the obtaining processes described for terbinafine involve metal catalysts that are generally expensive or lead to the formation of mixtures of E and Z isomers. Thus, these processes are not economically or laboratory attractive since they are requires the separation of these isomers. An alternative already described in the prior art to solve this problem would be the use of synthesis methods that do not require the presence of metal catalysts. However, these processes require long reaction times to obtain terbinafine, with yields of 56-92%. The synthesis of fluconazole is another example that can be mentioned. This occurs in four steps and involves the use of aluminum chloride, a highly toxic and difficult to handle reagent. In addition, the process involves relatively expensive or difficult to handle reagents. Accordingly, the present invention is advantageous over what has been described in the prior art. (ALAMI, M .; FERRI, F .; GASLAIN, Y. A two-step synthesis of terbinafine. Tetrahedron Letters, v. 37, p. 57-58, 1996; DIPHARMA SpA Briona Graziano Castaldi, Montevecchia Giusepe Barreca, Pisa Renzo Rossi, Process for the Preparation of Terbinafine, US No. 6515181, Feb. 28, 2002, Feb. 04, 2003; KAZOKOV, PV; GOLOSOV, SN A Simple Method for Obtaining Terbinafine Hydrochloride Pharmaceutical Chemistry Journal, v. 38, p 206 -208, 2003; KIM, G .; SEO, MJ A concise process of terbinafine synthesis. Bulletin of the Korean Chemistry Society, v. 16, p. 1002-1003, 1996).
Também foram encontrados no estado da técnica alguns documentos de patente relacionados com a presente invenção. Os mais relevantes estão listados abaixo, porém nenhum destes documentos descreve os derivados de aldiminas abordados neste pedido, bem como o seu uso como antifúngico contra espécies de importância médica e/ou veterinária.  Some patent documents related to the present invention have also been found in the prior art. The most relevant are listed below, but none of these documents describe the aldimine derivatives addressed in this application, as well as their use as antifungal against species of medical and / or veterinary importance.
A patente LT3956 descreve o método de produção de novos compostos cuja estrutura contém uma aldimina como um dos seus grupos substituintes, bem como sua ação fungicida. Os compostos sintetizados apresentam ação contra fungos que infectam espécies vegetais e assim, diferem da tecnologia apresentada neste pedido, uma vez que as aldiminas apresentam ação contra fungos que infectam animais e/ou humanos.  LT3956 describes the method of producing new compounds whose structure contains an aldimine as one of its substituent groups, as well as its fungicidal action. The synthesized compounds have action against fungi that infect plant species and thus differ from the technology presented in this application, since aldimines have action against fungi that infect animals and / or humans.
O documento GB1449540 descreve compostos hidróxi substituídos derivados de nitroestireno, assim como o processo para a obtenção dos mesmos. Esses compostos, obtidos a partir da reação de uma aldimina com um nitroalcano, apresentam propriedades antifúngicas, anti-helmínticas e antibacterianas, podendo estar compreendidos em composições que são administradas oralmente. Portanto, os compostos reivindicados no documento GB1449540 são estruturalmente diferentes e pertencem a um grupo de moléculas diverso das aldiminas ora apresentadas.  GB1449540 describes substituted hydroxy compounds derived from nitro styrene as well as the process for obtaining them. These compounds, obtained from the reaction of an aldimine with a nitroalkane, have antifungal, anthelmintic and antibacterial properties and may be comprised in compositions that are administered orally. Therefore, the compounds claimed in GB1449540 are structurally different and belong to a group of molecules other than the aldimines herein.
Por fim, o documento WO2004071417 descreve métodos para a identificação de moduladores de transições fenotípicas de leveduras, em especial os inibidores de transição broto-hifa de Cândida albicans, e uso dos mesmos para tratamento de infecções fúngicas. Dentre os inibidores propostos, citam-se algumas aldiminas, porém tais moléculas são utilizadas apenas no tratamento de Cândida, ou seja, têm um espectro de ação mais restrito e são distintas estruturalmente das moléculas apresentadas neste pedido de patente.  Finally, WO2004071417 describes methods for the identification of phenotypic yeast transition modulators, in particular Candida albicans bud-hyphal transition inhibitors, and their use for treating fungal infections. Among the proposed inhibitors, some aldimines are mentioned, but such molecules are only used in the treatment of Candida, that is, they have a narrower spectrum of action and are structurally distinct from the molecules presented in this patent application.
BREVE DESCRIÇÃO DAS FIGURAS A Figura 1A apresenta a equação química que representa a reação entre um aldeído aromático e uma amina aromática específicos para a síntese da aldimina aromática 18. A Figura 1 B apresenta a equação química que representa a reação entre um aldeído e uma amina aromática específicos para a síntese da aldimina heteroaromática 38. BRIEF DESCRIPTION OF THE DRAWINGS Figure 1A presents the chemical equation representing the reaction between an aromatic aldehyde and an aromatic amine for the synthesis of aromatic aldimine 18. Figure 1B presents the chemical equation that represents the reaction between a specific aldehyde and aromatic amine for the synthesis of heteroaromatic aldimine 38.
A Figura 1C apresenta a equação química que representa a reação entre um aldeído e uma amina aromática específicos para a síntese da aldimina aromática 59.  Figure 1C presents the chemical equation that represents the reaction between a specific aldehyde and aromatic amine for the synthesis of aromatic aldimine 59.
A Figura 1 D apresenta a equação química que representa a reação entre um aldeído e uma amina aromática específicos para a síntese da aldimina aromática 60.  Figure 1 D presents the chemical equation that represents the reaction between a specific aldehyde and aromatic amine for the synthesis of aromatic aldimine 60.
A Figura 1 E apresenta a equação química que representa a reação entre um aldeído e uma amina aromática específicos para a síntese da aldimina aromática 61.  Figure 1 E presents the chemical equation that represents the reaction between a specific aldehyde and aromatic amine for the synthesis of aromatic aldimine 61.
A Figura 1 F apresenta a equação química que representa a reação entre um aldeído e uma amina aromática específicos para a síntese da aldimina aromática 67.  Figure 1 F presents the chemical equation that represents the reaction between a specific aldehyde and aromatic amine for the synthesis of aromatic aldimine 67.
A Figura 1G apresenta a equação química que representa a reação entre um aldeído e uma amina aromática específicos para a síntese da aldimina aromática 68.  Figure 1G presents the chemical equation representing the reaction between a specific aldehyde and aromatic amine for the synthesis of aromatic aldimine 68.
A Figura 1 H apresenta a equação química que representa a reação entre um aldeído e uma amina aromática específicos para a síntese da aldimina aromática 69.  Figure 1H presents the chemical equation that represents the reaction between a specific aldehyde and aromatic amine for the synthesis of aromatic aldimine 69.
A Figura 11 apresenta a equação química que representa a reação entre um aldeído e uma amina aromática específicos para a síntese da aldimina aromática 17.  Figure 11 presents the chemical equation that represents the reaction between a specific aldehyde and aromatic amine for the synthesis of aromatic aldimine 17.
A Figura 2A representa o espectro no infravermelho (IV) obtido para o composto 18.  Figure 2A represents the infrared (IR) spectrum obtained for compound 18.
A Figura 2B mostra o espectro de ressonância magnética nuclear de hidrogénio (RMN de 1H) obtido para o composto 18. Figure 2B shows the hydrogen nuclear magnetic resonance spectrum ( 1 H NMR) obtained for compound 18.
A Figura 2C representa o espectro de ressonância magnética nuclear de carbono (RMN de 13C) obtido para o composto 18. Figure 2C represents the carbon nuclear magnetic resonance spectrum ( 13 C NMR) obtained for compound 18.
A Figura 3A representa o espectro no infravermelho (IV) obtido para o composto 38. A Figura 3B mostra o espectro de ressonância magnética nuclear de hidrogénio (RMN de 1H) obtido para o composto 38. Figure 3A represents the infrared (IR) spectrum obtained for compound 38. Figure 3B shows the hydrogen nuclear magnetic resonance spectrum ( 1 H NMR) obtained for compound 38.
A Figura 3C representa o espectro de ressonância magnética nuclear de carbono (RMN de 13C) obtido para o composto 38. Figure 3C represents the carbon nuclear magnetic resonance spectrum ( 13 C NMR) obtained for compound 38.
A Figura 4A representa o espectro no infravermelho (IV) obtido para o composto 59.  Figure 4A represents the infrared (IR) spectrum obtained for compound 59.
A Figura 4B mostra o espectro de ressonância magnética nuclear de hidrogénio (RMN de 1H) obtido para o composto 59. Figure 4B shows the hydrogen nuclear magnetic resonance spectrum ( 1 H NMR) obtained for compound 59.
A Figura 4C representa o espectro de ressonância magnética nuclear de carbono (RMN de 13C) obtido para o composto 59. Figure 4C represents the carbon nuclear magnetic resonance spectrum ( 13 C NMR) obtained for compound 59.
A Figura 5A representa o espectro no infravermelho (IV) obtido para o composto 60.  Figure 5A represents the infrared (IR) spectrum obtained for compound 60.
A Figura 5B mostra o espectro de ressonância magnética nuclear de hidrogénio (RMN de 1H) obtido para o composto 60. Figure 5B shows the hydrogen nuclear magnetic resonance spectrum ( 1 H NMR) obtained for compound 60.
A Figura 5C representa o espectro de ressonância magnética nuclear de carbono (RMN de 3C) obtido para o composto 60. Figure 5C represents the carbon nuclear magnetic resonance spectrum ( 3 C NMR) obtained for compound 60.
A Figura 6A representa o espectro no infravermelho (IV) obtido para o composto 61.  Figure 6A represents the infrared (IR) spectrum obtained for compound 61.
A Figura 6B mostra o espectro de ressonância magnética nuclear de hidrogénio (RMN de 1H) obtido para o composto 61. Figure 6B shows the hydrogen nuclear magnetic resonance spectrum ( 1 H NMR) obtained for compound 61.
A Figura 6C representa o espectro de ressonância magnética nuclear de carbono (RMN de 13C) obtido para o composto 61. Figure 6C represents the carbon nuclear magnetic resonance spectrum ( 13 C NMR) obtained for compound 61.
A Figura 7A representa o espectro no infravermelho (IV) obtido para o composto 67.  Figure 7A represents the infrared (IR) spectrum obtained for compound 67.
A Figura 7B mostra o espectro de ressonância magnética nuclear de hidrogénio (RMN de 1H) obtido para o composto 67. Figure 7B shows the hydrogen nuclear magnetic resonance spectrum ( 1 H NMR) obtained for compound 67.
A Figura 7C representa o espectro de ressonância magnética nuclear de carbono (RMN de 13C) obtido para o composto 67. Figure 7C represents the carbon nuclear magnetic resonance spectrum ( 13 C NMR) obtained for compound 67.
A Figura 8A representa o espectro no infravermelho (IV) obtido para o composto 68.  Figure 8A represents the infrared (IR) spectrum obtained for compound 68.
A Figura 8B mostra o espectro de ressonância magnética nuclear de hidrogénio (RMN de 1H) obtido para o composto 68. A Figura 8C representa o espectro de ressonância magnética nuclear de carbono (RMN de 13C) obtido para o composto 68. Figure 8B shows the hydrogen nuclear magnetic resonance spectrum ( 1 H NMR) obtained for compound 68. Figure 8C represents the carbon nuclear magnetic resonance spectrum ( 13 C NMR) obtained for compound 68.
A Figura 9A representa o espectro no infravermelho (IV) obtido para o composto 69.  Figure 9A represents the infrared (IR) spectrum obtained for compound 69.
A Figura 9B mostra o espectro de ressonância magnética nuclear de hidrogénio (RMN de 1H) obtido para o composto 69. Figure 9B shows the hydrogen nuclear magnetic resonance spectrum ( 1 H NMR) obtained for compound 69.
A Figura 9C representa o espectro de ressonância magnética nuclear de carbono (RMN de 13C) obtido para o composto 69. Figure 9C represents the carbon nuclear magnetic resonance spectrum ( 13 C NMR) obtained for compound 69.
A Figura 10A representa o espectro no infravermelho (IV) obtido para o composto 17.  Figure 10A represents the infrared (IR) spectrum obtained for compound 17.
A Figura 10B mostra o espectro de ressonância magnética nuclear de hidrogénio (RMN de H) obtido para o composto 17.  Figure 10B shows the hydrogen nuclear magnetic resonance (H NMR) spectrum obtained for compound 17.
A Figura 10C representa o espectro de ressonância magnética nuclear de carbono (RMN de 13C) obtido para o composto 17. Figure 10C represents the carbon nuclear magnetic resonance spectrum ( 13 C NMR) obtained for compound 17.
A Figura 11 representa as fórmulas estruturais dos compostos 2, 7, 8, Figure 11 represents the structural formulas of compounds 2, 7, 8,
15, 16, 17, 18, 20, 21 , 27, 29, 31 , 33, 34, 35, 36, 37, 38, 41 , 43, 45, 50, 52, 54, 55, 59, 60, 61 , 67, 68 e 69. 15, 16, 17, 18, 20, 21, 27, 29, 31, 33, 34, 35, 36, 37, 38, 41, 43, 45, 50, 52, 54, 55, 59, 60, 61, 67, 68 and 69.
A Figura 12 apresenta os resultados obtidos no experimento realizado com camundongos Balb/c selvagens infectados com Trichophyton rubrum. Estes animais foram tratados topicamente com a aldimina 2 (gel a 10% e creme a 10%) e com itraconazol na forma de creme a 2% sete dias após a infecção. Os resultados estão expressos em unidades formadoras de colónia por grama de tecido infectado (UFC/g de tecido). O símbolo (*) significa que o resultado é estatisticamente significativo em relação à aldimina 2 gel, aldimina 2 creme e itraconazol (p= 0,0004). O símbolo (**) é estatisticamente significativo em relação a aldimina 2 creme (p = 0,0043) e ao itraconazol (p = 0,0023).  Figure 12 presents the results obtained from the experiment with wild Balb / c mice infected with Trichophyton rubrum. These animals were treated topically with aldimine 2 (10% gel and 10% cream) and itraconazole as 2% cream seven days after infection. Results are expressed in colony forming units per gram of infected tissue (CFU / g tissue). The symbol (*) means that the result is statistically significant for aldimine 2 gel, aldimine 2 cream and itraconazole (p = 0.0004). The symbol (**) is statistically significant for aldimine 2 cream (p = 0.0043) and itraconazole (p = 0.0023).
DESCRIÇÃO DETALHADA DA TECNOLOGIA DETAILED DESCRIPTION OF TECHNOLOGY
A presente invenção compreende compostos derivados de aldiminas, bem como composições farmacêuticas contendo tais compostos e excipientes farmaceuticamente aceitáveis, bem como a sua utilização no tratamento de infecções fúngicas causadas por fungos dos géneros Cândida, Cryptococcus, Paracoccidiodes, Aspergillus, Fonsecaea, Trichophyton e Microsporum, como Cândida albicans, Cândida tropicalis, Cândida krusei, Cândida glabrata, Cândida dubliniensis, Cândida parapsilosis, Aspergillus fumigatus, Aspergillus niger, Aspergillus clavatus, Aspergillus tamarii, Aspergillus flavus, Cryptococcus neoformans, Cryptococcus gattii, Paracoccidiodes brasiliensis, Paracoccidiodes lutzii, Fonsecaea pedrosoi, Trichophyton rubrum, Trichophyton interdigitale, Microsporum canis e Microsporum gypseum, não limitante a essas espécies. The present invention comprises aldimine-derived compounds as well as pharmaceutical compositions containing such pharmaceutically acceptable compounds and excipients as well as their use in the treatment of fungal infections caused by Candida, Cryptococcus, Paracoccidiodes, Aspergillus, Fonsecaea, Trichophyton and Microsporum, such as Candida albicans, Candida tropicalis, Candida krusei, Candida glabrata, Candida dubliniensis, Candida parapsilosis, Aspergillus fumigatus, Aspergillus niger, Aspergillus cryptoccus, Aspergillus cryptoccus Paracoccidiodes brasiliensis, Paracoccidiodes lutzii, Fonsecaea pedrosoi, Trichophyton rubrum, Trichophyton interdigitale, Microsporum canis and Microsporum gypseum, not limiting to these species.
De modo geral, as aldiminas foram obtidas por meio da condensação entre aldeídos e aminas aromáticas, utilizando-se etanol como solvente. Soluções etanólicas contendo quantidades equimolares dos respectivos aldeídos e aminas aromáticas foram irradiadas com micro-ondas sob as seguintes condições: temperatura de 80 °C; potência de 200 watts; tempo de rampa de 2 minutos; tempo de reação de 2 minutos; agitação; e sob resfriamento. Em seguida, os produtos da reação foram purificados por recristalização, utilizando-se solventes específicos para cada produto obtido. Uma vez purificadas, as aldiminas foram devidamente caracterizadas por espectroscopias no infravermelho (IV) e de ressonância magnética nuclear de hidrogénio e carbono (RMN de 1 H e 13C, respectivamente). Os espectros na região do IV foram obtidos pela técnica de ATR em espectrofotômetro Spectro One Perkin. Os espectros de RMN de 1H (200 MHz) e de RMN de 13C (50 MHz) foram obtidos em espectrômetro Bruker DPX 200 AVANCE, utilizando clorofórmio (CDCI3) e dimetílsulfóxido [(CD3)2SO] como solventes deuterados. Os deslocamentos químicos (S) foram expressos em partes por milhão (ppm) e referenciados pelos sinais dos respectivos solventes. As temperaturas de fusão não corrigidas foram determinadas em aparelho MQAPF-302. In general, aldimines were obtained by condensation between aldehydes and aromatic amines, using ethanol as a solvent. Ethanolic solutions containing equimolar amounts of the respective aldehydes and aromatic amines were microwave-irradiated under the following conditions: temperature 80 ° C; 200 watt power; ramp time 2 minutes; reaction time 2 minutes; agitation; and under cooling. Then, the reaction products were purified by recrystallization using specific solvents for each product obtained. Once purified, aldimines were suitably characterized by infrared (IR) and hydrogen and carbon nuclear magnetic resonance ( 1 H and 13 C NMR, respectively) spectroscopy. The spectra in the IR region were obtained by the Spectro One Perkin ATR technique. 1 H NMR (200 MHz) and 13 C NMR (50 MHz) spectra were obtained on Bruker DPX 200 AVANCE spectrometer using chloroform (CDCl 3 ) and dimethyl sulfoxide [(CD 3 ) 2 SO] as deuterated solvents. The chemical displacements (S) were expressed in parts per million (ppm) and referenced by the signals of the respective solvents. Uncorrected melting temperatures were determined on a MQAPF-302 apparatus.
As aldiminas da presente invenção são representadas pelas seguintes fórmulas estruturais:
Figure imgf000018_0001
onde: Ri é
Figure imgf000019_0001
;
The aldimines of the present invention are represented by the following structural formulas:
Figure imgf000018_0001
where: Ri is
Figure imgf000019_0001
;
R3 é selecionado do grupo compreendendo -H, -OH, -CN ou -OCH3; R 3 is selected from the group comprising -H, -OH, -CN or -OCH 3 ;
R4 é -H ou -OH; R 4 is -H or -OH;
R5 é selecionado do grupo compreendendo -H, -F, -Cl, -OH, -CN, R 5 is selected from the group comprising -H, -F, -Cl, -OH, -CN,
NO2, -SCH3 ou -OCH3; NO 2 , -SCH 3 or -OCH 3 ;
Figure imgf000019_0002
Figure imgf000019_0002
R6 é -H, -OH ou -NO2; R 6 is -H, -OH or -NO 2 ;
R7 é -H ou -OH; R 7 is -H or -OH;
R8 é selecionado do grupo compreendendo -H, -F, -OH, -NO2 OU-OCH3;R 8 is selected from the group comprising -H, -F, -OH, -NO 2 OR-OCH 3 ;
Figure imgf000019_0003
Figure imgf000019_0003
n é 0 ou 1.  n is 0 or 1.
As composições farmacêuticas da invenção caracterizam-se por apresentarem a aldimina combinada com excipientes farmaceuticamente aceitáveis. As composições podem ser líquidas, sólidas ou semissólidas.  The pharmaceutical compositions of the invention are characterized in that they contain aldimine combined with pharmaceutically acceptable excipients. The compositions may be liquid, solid or semi-solid.
As formas líquidas podem se apresentar como solução, xarope, elixir, suspensão, emulsão, tintura ou enema. Como excipientes, podem ser utilizados solubilizantes e tensoativos, tais como glicerina, propilenoglicol e sacarose.  Liquid forms may be presented as a solution, syrup, elixir, suspension, emulsion, tincture or enema. As excipients, solubilizers and surfactants such as glycerin, propylene glycol and sucrose may be used.
Já as formas semissólidas podem se apresentar como géis, pomadas, cremes, emulsões ou pastas. Exemplos de excipientes para composições farmacêuticas semissólidas incluem metilcelulose, hidroxipropilcelulose, hidroxoetilcelulose, carboximetilcelulose, polímeros derivados do ácido acrílico e metacrílico, polietilenoglicóis, vaselina sólida, parafina sólida, lanolina, óleos vegetais, óleo mineral, álcool cetílico, álcool esterílico, álcool cetoestearilico, monoestearato de glicerila, cera de ésteres cetílicos, cera autoemulsificante não iônica e aniônica, laurilsulfato de sódio, EDTA dissódico, solução conservante de parabenos, água destilada, cetilestearilsulfato de sódio, glicerina, oleato de decila e cloreto de benzalcônio Semisolid forms can be presented as gels, ointments, creams, emulsions or pastes. Examples of excipients for semi-solid pharmaceutical compositions include methylcellulose, hydroxypropylcellulose, hydroxyethylcellulose, carboxymethylcellulose, polymers derived from acrylic and methacrylic acid, polyethylene glycols, solid petroleum jelly, solid paraffin, lanolin, vegetable oils, mineral oil, cetyl alcohol, sterile alcohol, cetostearyl alcohol, glyceryl monostearate, cetyl esters wax, non-self-emulsifying wax and anionic, sodium lauryl sulfate, disodium EDTA, paraben preservative solution, distilled water, sodium cetylstearyl sulfate, glycerin, decyl oleate and benzalkonium chloride
Por fim, as formas sólidas podem se apresentar como cápsulas, comprimidos, drágeas ou pastilhas. Aglutinantes, desintegrantes, diluentes, lubrificantes, tensoativos, como celulose, lactose, amido, manitol, estearato de magnésio, talco, dióxido de silício coloidal, óxido de magnésio e caulim são exemplos de excipientes para as preparações sólidas.  Finally, solid forms may be presented as capsules, tablets, pills or tablets. Binders, disintegrants, diluents, lubricants, surfactants such as cellulose, lactose, starch, mannitol, magnesium stearate, talc, colloidal silicon dioxide, magnesium oxide and kaolin are examples of excipients for solid preparations.
Os excipientes também podem conter quantidades menores de aditivos, por exemplo, substâncias que aumentam a isotonicidade e estabilidade química de conservantes, quelantes e estabilizantes, além de edulcorantes, corantes e aromatizantes. Exemplos dessas substâncias incluem tampão fosfato, tampão bicarbonato e tampão Tris, enquanto exemplos de conservantes incluem timerosal, m- ou o-cresol, formalina, álcool benzílico, parabenos, EDTA, BHA e BHT.  Excipients may also contain minor amounts of additives, for example, substances that increase the isotonicity and chemical stability of preservatives, chelators and stabilizers, as well as sweeteners, colorants and flavorings. Examples of such substances include phosphate buffer, bicarbonate buffer and Tris buffer, while examples of preservatives include thimerosal, m- or o-cresol, formalin, benzyl alcohol, parabens, EDTA, BHA and BHT.
Essas composições podem ser administradas pelas vias intramuscular, intravenosa, subcutânea, tópica, oral, inalatória ou por dispositivos que possam ser implantados ou injetados.  Such compositions may be administered by the intramuscular, intravenous, subcutaneous, topical, oral, inhalation routes or devices that may be implanted or injected.
Para uma melhor compreensão da tecnologia, seguem exemplos os quais não são limitantes da mesma. Exemplo 1 : Obtenção e caracterização da aldimina 18  For a better understanding of technology, follow examples which are not limiting of it. Example 1: Collection and characterization of aldimine 18
O composto 18 foi obtido por meio da condensação entre o aldeído aromático e a amina aromática, conforme representado na Figura 1A. O produto da reação foi purificado por recristalização, utilizando-se etanol como solvente.  Compound 18 was obtained by condensation between aromatic aldehyde and aromatic amine as depicted in Figure 1A. The reaction product was purified by recrystallization using ethanol as a solvent.
No espectro obtido na região do IV (Figura 2A), verifica-se a presença da banda de absorção em 1609 cm"1 , característica do estiramento da ligação C=N. Bandas provenientes dos estiramentos das ligações C=C dos anéis aromáticos também são verificadas em 1592, 1548, 151 1 e 1460 cm"1. Adicionalmente, as bandas de absorção características dos estiramentos das ligações O-H são verificadas em 3050 cm"1. In the spectrum obtained in the IR region (Figure 2A), there is the presence of the absorption band at 1609 cm- 1 , characteristic of the C = N bond stretch. Aromatic compounds are also found at 1592, 1548, 151 1 and 1460 cm -1 . In addition, the characteristic absorption bands of the OH bond stretches are found at 3050 cm -1 .
No espectro de RMN de 1H (Figura 2B), verifica-se a presença de um sinal bastante característico, que se apresenta como um simpleto agudo em £ 8,78, referente ao hidrogénio do grupamento CH=N. Embora a presença de substituintes doadores e/ou retiradores de elétrons nos anéis aromáticos possa exercer certa influência no deslocamento químico desse sinal, esse efeito não é tão pronunciado para os compostos sintetizados. Em geral, os sinais referentes aos hidrogênios fenólicos apresentaram uma maior variação de deslocamento químico. Para o composto 18, esses sinais são observados em δ 8,35, 9,55, 9,79 e 14,66 ppm. Com relação aos sinais referentes aos hidrogênios aromáticos, verifica-se uma grande variação de multiplicidade e deslocamento químico, de acordo com os substituintes presentes nas moléculas e suas posições relativas. Em geral, compostos para-substituídos apresentam espectros relativamente mais simples devido à grande simetria. Para estes, observa-se a presença de um par de dupletos com integrais correspondentes a dois hidrogênios cada. No espectro da aldimina 18, os sinais referentes aos hidrogênios aromáticos se apresentam como um dupleto em 6,32 ppm, um multipleto em £ 6,79-7,15 ppm e outro dupleto em £ 7,41 ppm. In the 1 H NMR spectrum (Figure 2B), there is a very characteristic signal, which is an acute single at £ 8.78, for the hydrogen in the CH = N group. Although the presence of electron donating and / or electron withdrawing substituents on aromatic rings may have some influence on the chemical shift of this signal, this effect is not as pronounced for synthesized compounds. In general, the signals referring to phenolic hydrogens showed a greater variation of chemical displacement. For compound 18, these signals are observed at δ 8.35, 9.55, 9.79 and 14.66 ppm. Regarding the signals related to aromatic hydrogens, there is a great variation of multiplicity and chemical displacement, according to the substituents present in the molecules and their relative positions. In general, para-substituted compounds have relatively simpler spectra due to the large symmetry. For these, it is observed the presence of a pair of doublets with integrals corresponding to two hydrogens each. In the spectrum of aldimin 18, the signals for aromatic hydrogens are presented as a doublet at 6.32 ppm, a multiplet at £ 6.79-7.15 ppm and another doublet at 7.41 ppm.
No espectro de RMN de 3C (Figura 2C), o sinal correspondente ao carbono do grupamento CH=N se apresenta como um dos mais desprotegidos, em £ 159,3 ppm. Esse valor pode variar entre £ 154,6 e 164,1 ppm, de acordo com os substituintes presentes na molécula. Embora esse sinal seja observado na mesma região que os sinais referentes aos carbonos diretamente ligados a grupamentos hidroxila, sua atribuição pode ser feita de forma precisa com auxílio do subespectro DEPT 135. Os sinais referentes aos carbonos aromáticos são verificados em £ 108,1 ; 1 12,2; 1 16,6; 1 18,6; 120,1 ; 124,1 ; 127,4; 133,0; 133,3; 149,8; 150,3 e 157,3 ppm. In the 3 C NMR spectrum (Figure 2C), the carbon signal from the CH = N group is one of the most unprotected at ≤ 159.3 ppm. This can range from £ 154.6 to 164.1 ppm, depending on the substituents present on the molecule. Although this signal is observed in the same region as the signals related to carbons directly linked to hydroxyl groups, it can be attributed precisely with the aid of the DEPT 135 subspectrum. The signals related to aromatic carbons are found at £ 108.1; 1 12.2; 1 16.6; 1 18.6; 120.1; 124.1; 127.4; 133.0; 133.3; 149.8; 150.3 and 157.3 ppm.
Exemplo 2: Obtenção e caracterização da aldimina 38 O composto 38 foi obtido por meio da condensação entre o aldeído aromático e a amina aromática, conforme representado na Figura 1 B. O produto da reação foi purificado por recristalização, utilizando-se etanol como solvente. Example 2: Collection and characterization of aldimine 38 Compound 38 was obtained by condensation between aromatic aldehyde and aromatic amine as shown in Figure 1B. The reaction product was purified by recrystallization using ethanol as solvent.
No espectro obtido na região do IV (Figura 3A), verifica-se a presença da banda de absorção característica do estiramento da ligação C=N, em 1620 cm"1. Bandas provenientes dos estiramentos das ligações C=C dos anéis aromáticos também são verificadas em 1586, 1567, 1519, 1468, 1442 e 1399 cm"1. Adicionalmente, duas bandas de absorção características dos estiramentos assimétrico e simétrico do grupo -NO2 são observadas em 1494 e 1341 cm"1 , respectivamente. Verifica-se, também, uma banda de absorção aguda e intensa em 2228 cm"1 , proveniente do estiramento da ligação C≡N. In the spectrum obtained in the IR region (Figure 3A), there is the presence of the characteristic absorption band of the C = N bond stretch, at 1620 cm -1 . Bands from the C = C bond stretches of the aromatic rings are also present. found at 1586, 1567, 1519, 1468, 1442 and 1399 cm -1 . Additionally, two absorption bands characteristic of the asymmetric and symmetrical stretches of the -NO 2 group are observed at 1494 and 1341 cm- 1 , respectively. There is also an acute and intense absorption band at 2228 cm- 1 from the C≡N binding stretch.
No espectro de RMN de 1 H (Figura 3B), verifica-se a presença de um sinal bastante característico, que se apresenta como um simpleto agudo em δ 8,66 ppm, referente ao hidrogénio do grupamento CH=N. Embora a presença de substituintes doadores e/ou retiradores de elétrons nos anéis aromáticos possa exercer certa influência no deslocamento químico desse sinal, esse efeito não é tão pronunciado para os compostos sintetizados. Com relação aos sinais referentes aos hidrogênios aromáticos, verifica-se uma grande variação de multiplicidade e deslocamento químico, de acordo com os substituintes presentes nas moléculas e suas posições relativas. No espectro do referido composto observam-se dois conjuntos de sinais em δ 7,37-7,52 e δ 7,67-7,89 ppm, correspondendo aos seis hidrogênios aromáticos. Apesar dessa região se apresentar bastante congestionada, é possível observar a presença de um dupleto centrado em δ 7,79 ppm, com constante de acoplamento escalar igual a 3,9 Hz, oriundo do átomo de hidrogénio vizinho ao grupamento -NO2, pertencente ao anel furânico. Embora esse sinal se apresente numa mesma região que aqueles observados para os hidrogênios do anel aromático derivado do benzeno, a diferença observada entre as constantes de acoplamento escalar possibilita uma atribuição inequívoca do mesmo. In the 1 H NMR spectrum (Figure 3B), there is a very characteristic signal present as an acute doublet at δ 8.66 ppm for the hydrogen in the CH = N group. Although the presence of electron donating and / or electron withdrawing substituents on aromatic rings may have some influence on the chemical shift of this signal, this effect is not as pronounced for synthesized compounds. Regarding the signals related to aromatic hydrogens, there is a great variation of multiplicity and chemical displacement, according to the substituents present in the molecules and their relative positions. In the spectrum of this compound, two sets of signals are observed at δ 7.37-7.52 and δ 7.67-7.89 ppm, corresponding to the six aromatic hydrogens. Although this region is very congested, it is possible to observe the presence of a doublet centered at δ 7.79 ppm, with a scalar coupling constant equal to 3.9 Hz, coming from the hydrogen atom next to the group -NO 2 , belonging to the Furanic ring. Although this signal is present in the same region as those observed for benzene-derived aromatic ring hydrogens, the observed difference between the scalar coupling constants makes it possible to unambiguously assign it.
No espectro de RMN de 13C (Figura 3C), o sinal correspondente ao carbono do grupamento CH=N é visualizado numa região mais blindada quando comparada ao composto 18, em £ 151 ,5 ppm. O sinal referente ao carbono do grupamento C≡N é verificado em £ 1 17,0 ppm. Os sinais referentes aos carbonos aromáticos são observados em £ 107,4; 1 13,9; 1 19,1 ; 1 19,9; 127,6; 133,5; 134,5; 151 ,7; 152,4 e 152,8 ppm. Exemplo 3: Obtenção e caracterização da aldimina 59 In the 13 C NMR spectrum (Figure 3C), the carbon signal of the CH = N group is visualized in a more shielded region. as compared to compound 18 at £ 151.5 ppm. The carbon signal of the C≡N group is found at £ 1 17.0 ppm. Signs for aromatic carbons are observed at £ 107.4; 1 13.9; 1 19.1; 1 19.9; 127.6; 133.5; 134.5; 151.7; 152.4 and 152.8 ppm. Example 3: Obtaining and characterizing aldimine 59
O composto 59 foi obtido por meio da condensação entre o aldeído aromático e a amina aromática, conforme representado na Figura 1C. O produto da reação foi purificado por recristalização, utilizando-se etanol como solvente.  Compound 59 was obtained by condensation between aromatic aldehyde and aromatic amine as shown in Figure 1C. The reaction product was purified by recrystallization using ethanol as a solvent.
O espectro obtido na região do IV (Figura 4A) apresenta um conjunto de bandas de baixa intensidade características dos estiramentos das ligações CsP 2-H e CsP 3-H em 3030, 2964, 2919 e 2838 cm"1. É possível verificar também a presença de duas bandas provenientes dos estiramentos das ligações C-O e C-S em 1259 e 810 cm"1 , respectivamente. As bandas características das ligações C=N e C=C são observadas em 1621 , 1606, 1592, 1568, 1508, 1487, 1465 e 1440 cm"1. The spectrum obtained in the IR region (Figure 4A) shows a set of low intensity bands characteristic of the Cs P 2 -H and Cs P 3 -H stretch stretches at 3030, 2964, 2919 and 2838 cm -1 . also the presence of two bands from the CO and CS link stretches at 1259 and 810 cm- 1 , respectively. The characteristic bands of the C = N and C = C bonds are observed at 1621, 1606, 1592, 1568, 1508, 1487, 1465 and 1440 cm- 1 .
No espectro de RMN de 1H (Figura 4B), são observados dois simpletos com integrais correspondendo a três hidrogênios cada em 2,49 e 3,80 ppm, atribuídos aos hidrogênios dos grupamentos -SCH3 e -OCH3, respectivamente. Um multipleto integrado para oito hidrogênios aparece em £ 6,93-7,37 ppm, que corresponde aos quatro hidrogênios do anel aromático da amina de partida, os dois hidrogênios vinílicos e outros dois hidrogênios aromáticos das posições orío em relação à metoxila. Um dupleto integrado para dois hidrogênios, com constante de acoplamento escalar igual a 8,6 Hz, é verificado em £ 7,62 ppm, sendo atribuído ao par de hidrogênios aromáticos das posições meta em relação à metoxila. O sinal referente ao hidrogénio do grupamento - CH=N- se apresenta como um dupleto em £8,34 ppm (J = 8,7 Hz). In the 1 H NMR spectrum (Figure 4B), two singletons with integrals corresponding to three hydrogens each at 2.49 and 3.80 ppm are attributed to the hydrogens of the -SCH 3 and -OCH 3 groups , respectively. An integrated multiplet for eight hydrogens appears at £ 6.93-7.37 ppm, which corresponds to the four hydrogens of the starting amine aromatic ring, the two vinyl hydrogens, and the other two aromatic hydrogens of the oro positions relative to the methoxyl. An integrated doublet for two hydrogens with a scalar coupling constant of 8.6 Hz is found to be £ 7.62 ppm and is assigned to the aromatic hydrogens pair of meta positions relative to methoxyl. The group hydrogen signal - CH = N- is doubled at £ 8.34 ppm (J = 8.7 Hz).
No espectro de RMN de 3C (Figura 4C), são observados um total de 1 sinais, conforme esperado para a estrutura proposta. Dois sinais aparecem numa região mais blindada do espectro, £ 15,1 e 55,3 ppm, correspondendo aos carbonos dos grupamentos -SCH3 e -OCH3, respectivamente. Quatro sinais de carbonos hidrogenados, atribuídos aos carbonos dos anéis aromáticos, são verificados em £ 1 14,4, 21 ,6, 127,0 e 129,2 ppm. Outros dois sinais de carbonos hidrogenados em S 126,2 e 143,8 ppm correspondem aos carbonos vinílicos. O sinal característico do grupamento -CH=N- é observado em δ 161 ,4 ppm. Os carbonos não hidrogenados pertencentes aos anéis aromáticos apresentam sinais em δ 128,2, 135,3, 143,8 e 160,5 ppm. In the 3 C NMR spectrum (Figure 4C), a total of 1 signals are observed as expected for the proposed structure. Two signals appear in a more shielded region of the spectrum, 15.1 and 55.3 ppm, corresponding to the carbons of the -SCH 3 and -OCH 3 groups , respectively. Four hydrogenated carbon signals attributed to aromatic ring carbons are found at 14.4, 21.6, 127.0 and 129.2 ppm. Two other signals of hydrogenated carbons at S 126.2 and 143.8 ppm correspond to vinyl carbons. The characteristic signal of the group -CH = N- is observed at δ 161.4 ppm. The unhydrogenated carbons belonging to the aromatic rings present signals at δ 128.2, 135.3, 143.8 and 160.5 ppm.
Exemplo 4: Obtenção e caracterização da aldimina 60 Example 4: Collection and characterization of aldimine 60
O composto 60 foi obtido por meio da condensação entre o aldeído aromático e a amina aromática, conforme representado na Figura 1 D. O produto da reação foi purificado por recristalização, utilizando-se etanol como solvente.  Compound 60 was obtained by condensation between aromatic aldehyde and aromatic amine as shown in Figure 1D. The reaction product was purified by recrystallization using ethanol as solvent.
No espectro obtido na região do IV (Figura 5A), bandas características dos estiramentos das ligações Cv-H e Csp3-H são verficadas em 3018, 2974 e 2844 cm"1. A banda proveniente do estiramento da ligação C=N é observada em 1622 cm"1 , juntamente com o conjunto de bandas características das ligações C=C, que aparecem na região compreendida entre 1596 e 1420 cm"1. In the spectrum obtained in the IR region (Figure 5A), characteristic bands of the Cv-H and Csp 3 -H bond stretches are found at 3018, 2974 and 2844 cm -1 . The band from the C = N bond stretch is observed. 1622 cm- 1 together with the set of characteristic C = C bond bands appearing in the region from 1596 to 1420 cm- 1 .
O espectro de RMN de 1H obtido (Figura 5B) apresenta um simpleto integrado para três hidrogênios em £ 3,79 ppm, característico dos hidrogênios metílicos do grupamento -OCH3. Dois simpletos em δ 6,98 e 7,61 ppm, com constantes de acoplamento escalar igual a 8,6 Hz são atribuídos aos quatro hidrogênios do anel aromático oriundo do aldeído de partida. Um multipleto integrado para seis hidrogênios é observado em δ 7,01 -7,37 ppm, correspondendo aos outros quatro hidrogênios do anel aromático que apresenta como substituinte o átomo de flúor, juntamente com os dois hidrogênios vinílicos. Por fim, o sinal característico do grupamento -CH=N- se apresenta como um dupleto, centrado em δ 8,33 ppm, com constante de acoplamento escalar igual a 8,7 Hz. The 1 H NMR spectrum obtained (Figure 5B) shows an integrated simplet for three hydrogens at 3.79 ppm, characteristic of the -OCH 3 group methyl hydrogens. Two symplets at δ 6.98 and 7.61 ppm with scalar coupling constants equal to 8.6 Hz are assigned to the four hydrogens of the aromatic ring from the starting aldehyde. An integrated multiplet for six hydrogens is observed at δ 7.01 -7.37 ppm, corresponding to the other four hydrogens of the aromatic ring which is substituted by the fluorine atom, together with the two vinyl hydrogens. Finally, the characteristic signal of the group -CH = N- is presented as a doublet, centered at δ 8.33 ppm, with a scalar coupling constant of 8.7 Hz.
No espectro de RMN de 13C (Figura 5C), observa-se o sinal referente ao carbono do grupamento -OCH3 em δ 55,2 ppm. Dois sinais de maior intensidade aparecem em £ 1 14,4 e 129,2 ppm, correspondendo aos carbonos hidrogenados do anel aromático que sustenta a metoxila. Os sinais referentes aos carbonos das posições orto e meta em relação ao carbono que sustenta o átomo de flúor se apresentam como dupletos em £ 1 15,8 ppm (J = 22,6 Hz) e £ 122,5 ppm (J = 8,4 Hz), respectivamente. No sinal referente ao carbono da posição para (δ 148,0 ppm), não se observa desdobramento. Dois sinais de carbonos hidrogenados, correspondendo aos carbonos vinílicos, são observados em δ 126,0 e 144,1 ppm. Em δ 128,1 ppm é verificado o sinal referente ao carbono que se encontra na posição para em relação aquele que sustenta o grupamento -OCH3. Na região mais desblindada do espectro são observados os sinais de carbonos aromáticos referentes ao carbono que sustenta o átomo de flúor (£ 160,4 ppm, J = 241 ,9 Hz), e o grupamento metoxila (δ 160,5 ppm), juntamente como o carbono do grupamento -CH=N- (£ 162,1 ppm). In the 13 C NMR spectrum (Figure 5C), the carbon signal of the -OCH 3 group at δ 55.2 ppm is observed. Two higher intensity signals appear at £ 14.4 and 129.2 ppm, corresponding to the hydrogenated carbons of the methoxyl-bearing aromatic ring. The referring signs the ortho and meta carbons in relation to the fluorine-supporting carbon are doubled by £ 1 15.8 ppm (J = 22.6 Hz) and £ 122.5 ppm (J = 8.4 Hz) respectively. In the carbon signal from the position to (δ 148.0 ppm), no unfolding is observed. Two signs of hydrogenated carbons, corresponding to vinyl carbons, are observed at δ 126.0 and 144.1 ppm. At δ 128.1 ppm the carbon signal that is in the para position relative to the one supporting the group -OCH 3 is verified. In the most unblocked region of the spectrum are observed the aromatic carbon signals referring to the carbon supporting the fluorine atom (£ 160.4 ppm, J = 241, 9 Hz), and the methoxyl group (δ 160.5 ppm) together. as the carbon of the group -CH = N- (£ 162.1 ppm).
Exemplo 5: Obtenção e caracterização da aldimina 61 Example 5: Collection and characterization of aldimine 61
O composto 61 foi obtido por meio da condensação entre o aldeído aromático e a amina aromática, conforme representado na Figura 1E. O produto da reação foi purificado por recristalização, utilizando-se etanol como solvente.  Compound 61 was obtained by condensation between aromatic aldehyde and aromatic amine as shown in Figure 1E. The reaction product was purified by recrystallization using ethanol as a solvent.
No espectro obtido na região do IV (Figura 6A), verifica-se novamente a banda característica do estiramento da ligação C≡N em 2223 cm"1. As bandas provenientes dos estiramentos das ligações C=N e C=C são observadas em 1601 , 1571 , 1509, 1494, 1467 e 1453 cm'1. Adicionalmente, uma banda de baixa intensidade é verificada em 2840 cm"1 , atribuída aos estiramentos das ligações CsP 3-H do grupamento -OCH3. In the spectrum obtained in the IR region (Figure 6A), the characteristic band of the C≡N bond stretch is again verified at 2223 cm -1 . The bands from the C = N and C = C bond stretches are observed in 1601. , 1571, 1509, 1494, 1467, and 1453 cm -1 . In addition, a low intensity band is found at 2840 cm -1 , assigned to the Cs P 3 -H group stretches of the -OCH 3 group.
No espectro de RMN de 1H (Figura 6B) é observado um simpleto com integral correspondendo a três hidrogênios em δ 3,80 ppm, atribuído aos hidrogênios do grupamento metoxila. O sinal referente ao hidrogénio do grupamento (-CH=N-) se apresenta como um dupleto centrado em £8,34 ppm, com constante de acoplamento escalar igual a 8,8 Hz. Dois multipletos, com integração correspondendo a três hidrogênios cada (£6,90-7,50 ppm), juntamente com um par de dupletos em £7,66 ppm e £7,84 ppm também são observados no espectro. A análise do espectro de RMN de 13C (Figura 6C) permite verificar a presença do sinal referente ao carbono do grupamento metoxila em δ 55,3 ppm. Quatro sinais de maior intensidade são observados em δ 1 14,5, 121 ,9,In the 1 H NMR spectrum (Figure 6B) an integral simplet is observed corresponding to three hydrogens at δ 3.80 ppm, attributed to the hydrogens of the methoxyl group. The group hydrogen signal (-CH = N-) is a doublet centered at £ 8.34 ppm, with a scalar coupling constant of 8.8 Hz. Two multiplets with integration corresponding to three hydrogens each ( £ 6.90-7.50 ppm), along with a pair of doublets at £ 7.66 ppm and £ 7.84 ppm are also observed in the spectrum. The 13 C NMR spectrum analysis (Figure 6C) allows us to verify the presence of the methoxy group carbon signal at δ 55.3 ppm. Four signals of higher intensity are observed in δ 1 14.5, 121, 9,
129.6 e 133,5 ppm, correspondendo aos carbonos hidrogenados dos anéis aromáticos. Outros dois sinais de carbonos hidrogenados aparecem em δ129.6 and 133.5 ppm, corresponding to the hydrogenated carbons of the aromatic rings. Two other signs of hydrogenated carbons appear in δ
125.7 e 146,3 ppm, correspondendo aos carbonos vinílicos. O sinal referente ao carbono do grupamento -CH=N- é observado em δ 164,9 ppm. 125.7 and 146.3 ppm, corresponding to vinyl carbons. The carbon signal of the group -CH = N- is observed at δ 164.9 ppm.
Exemplo 6: Obtenção e caracterização da aldimina 67 Example 6: Collection and characterization of aldimine 67
O composto 67 foi obtido por meio da condensação entre o aldeído aromático e a amina aromática, conforme representado na Figura 1 F. O produto da reação foi purificado por recristalização, utilizando-se etanol como solvente.  Compound 67 was obtained by condensation between the aromatic aldehyde and the aromatic amine as shown in Figure 1 F. The reaction product was purified by recrystallization using ethanol as the solvent.
No espectro obtido na região do IV (Figura 7A), verifica-se a presença de bandas de absorção de intensidade fraca em torno de 3100 cm"1 , devido aos estiramentos das ligações CsP 2-H. Observa-se também uma banda aguda, de média intensidade, em 2225 cm'1 , proveniente do estiramento da ligação C≡N. A banda de absorção característica do estiramento da ligação C=N é observada em 1633 cm"1. Bandas provenientes dos estiramentos das ligações C=C dos anéis aromáticos são verificadas em 161 1 , 1588, 1568, 1475 e 1440 cm"1. Adicionalmente, duas bandas de absorção características dos estiramentos assimétrico e simétrico do grupamento -NO2 são observadas em 1518 e 1347 cm"1 , respectivamente. In the spectrum obtained in the IR region (Figure 7A), low intensity absorption bands around 3100 cm- 1 are present due to the Cs P 2 -H link stretches. An acute band is also observed. medium intensity at 2225 cm -1 from the C 1N bond stretch. The characteristic absorption band of the C = N bond stretch is observed at 1633 cm -1 . Bands from the C = C bond stretches of the aromatic rings are found at 161 1, 1588, 1568, 1475 and 1440 cm "1. In addition, two absorption bands characteristic of the asymmetric and symmetrical -NO 2 group stretches are observed in 1518. and 1347 cm -1 , respectively.
No espectro de RMN de 1H (Figura 7B), verifica-se a presença de um dupleto em £ 8,57 ppm, com constante de acoplamento escalar igual a 8,4 Hz, atribuído ao hidrogénio do grupamento -CH=N-. Esse sinal é característico para todos os compostos derivados do frans-cinamaldeído e seu deslocamento químico não é muito influenciado pela presença de substituintes nos anéis aromáticos. In the 1 H NMR spectrum (Figure 7B), a doublet is present at 8.57 ppm, with 8.4 Hz scalar coupling constant, assigned to the hydrogen in the -CH = N- group. This signal is characteristic for all frans-cinnamaldehyde-derived compounds and its chemical shift is not greatly influenced by the presence of substituents on the aromatic rings.
O espectro de RMN de 13C para o referido composto (Figura 7C) apresenta um total de 16 sinais, como esperado. O sinal correspondente ao carbono do grupamento -CH=N- se apresenta como o mais desblindado, em δ 165,3 ppm. Outro sinal que também é verificado numa região mais desblindada do espectro corresponde ao carbono diretamente ligado ao grupamento -NO2, que é observado em £ 148,2 ppm. Na região mais blindada do espectro são observados os sinais referentes ao carbono do anel aromático diretamente ligado ao grupamento nitrila e ao carbono do próprio grupamento nitrila (-C≡N), que são observados em £ 107,0 e 1 17,3 ppm, respectivamente. The 13 C NMR spectrum for said compound (Figure 7C) shows a total of 16 signals as expected. The sign corresponding to the group carbon -CH = N- is the most unblocked, in δ 165.3 ppm. Another signal that is also found in a more unblocked region of the spectrum is carbon directly attached to the -NO 2 group, which is observed at £ 148.2 ppm. In the most shielded region of the spectrum are observed the carbon ring signals directly linked to the nitrile group and the carbon of the nitrile group itself (-C próprioN), which are observed at £ 107.0 and 11.3 ppm, respectively.
Exemplo 7: Obtenção e caracterização da aldimina 68 Example 7: Obtaining and characterizing aldimine 68
O composto 68 foi obtido por meio da condensação entre o aldeído aromático e a amina aromática, conforme representado na Figura 1G. O produto da reação foi purificado por recristalização, utilizando-se etanol como solvente.  Compound 68 was obtained by condensation between aromatic aldehyde and aromatic amine as depicted in Figure 1G. The reaction product was purified by recrystallization using ethanol as a solvent.
O espectro obtido na região do IV (Figura 8A) apresenta a banda de absorção característica do estiramento da ligação C=N em 1606 cm'1. As bandas provenientes dos estiramentos assimétrico e simétrico do grupamento - NO2 são verificadas em 1508 e 1333 cm"1 , respectivamente. The spectrum obtained in the IR region (Figure 8A) shows the characteristic absorption band of the C = N bond stretch at 1606 cm -1 . The bands derived from the asymmetrical and symmetrical stretches of the grouping - NO 2 are 1508 and 1333 cm "1 respectively.
No espectro de RMN de H (Figura 8B), verifica-se, novamente, o sinal característico do hidrogénio do grupamento -CH=N-, que se apresenta como um dupleto centrado em £ 8,41 ppm, com constante de acoplamento escalar igual a a 8,0 Hz. Dois dupletos, com integrais correspondendo a dois hidrogênios cada, são verificados em £8,20 e 7,90 ppm, correspondendo aos quatro hidrogênios do anel aromático que sustenta o grupamento -NO2. Por fim, um multipleto com integral correspondendo a seis hidrogênios é observado na região compreendida entre £7,14-7,50 ppm. In the 1 H-NMR spectrum (Figure 8B), the characteristic hydrogen signal of the -CH = N- group, which is presented as a doublet centered at £ 8.41 ppm, with equal scalar coupling constant, is again verified. aa 8.0 Hz. Two doublets, with integrals corresponding to two hydrogens each, are found at 8.20 and 7.90 ppm, corresponding to the four hydrogens of the aromatic ring supporting the -NO 2 group. Finally, an integral multiplet corresponding to six hydrogens is observed in the region between £ 7.14-7.50 ppm.
Embora o referido composto apresente grande simetria devido à presença de substituintes nas posições para de ambos os anéis aromáticos, seu espectro de RMN de 13C (Figura 8C) se mostra um tanto complexo devido aos acoplamentos C-F. Numa região mais desblindada do espectro são observados os sinais referentes ao carbono do grupamento -C=N- em £ 161 ,3 ppm e ao carbono diretamente ligado ao átomo de flúor, que se apresenta como um dupleto, centrado em £ 160,8, com constante de acoplamento escalar igual a 243,5 Hz. Outros três dupletos centrados em £ 1 15,9 ppm (J = 22,6 Hz), δ 122,8 ppm (J = 8,4 Hz) e δ 147,4 ppm (J = 2,3 Hz) são observados no espectro, sendo atribuídos aos carbonos das posições orto, meta e para em relação ao carbono diretamente ligado ao átomo de flúor, respectivamente. O sinal referente ao carbono que apresenta como substituinte o grupamento -NO2 é verificado em δ 147,3 ppm. Although said compound has great symmetry due to the presence of substituents at the para positions of both aromatic rings, its 13 C NMR spectrum (Figure 8C) is somewhat complex due to CF couplings. In a more unblocked region of the spectrum are observed the carbon signals of the -C = N- group at £ 161.3 ppm and the carbon directly attached to the fluorine atom, which appears as a doublet, centered at £ 160.8, with a scalar coupling constant equal to 243.5 Hz. Three other doublets centered at £ 1 15.9 ppm (J = 22.6 Hz), δ 122.8 ppm (J = 8.4 Hz) and δ 147.4 ppm (J = 2.3 Hz) are observed in the spectrum, being attributed to the carbons of the ortho, meta and para positions in relation to the carbon directly bound to the fluorine atom, respectively. The signal referring to the carbon that has as substitute the group -NO 2 is verified at δ 147.3 ppm.
Exemplo 8: Obtenção e caracterização da aldimina 69 Example 8: Obtaining and characterizing aldimine 69
O composto 69 foi obtido por meio da condensação entre o aldeído aromático e a amina aromática, conforme representado na Figura 1 H. O produto da reação foi purificado por recristalização, utilizando-se etanol como solvente.  Compound 69 was obtained by condensation between aromatic aldehyde and aromatic amine as shown in Figure 1H. The reaction product was purified by recrystallization using ethanol as solvent.
No espectro obtido na região do IV (Figura 9A), verifica-se a presença de um conjunto de bandas na região compreendida entre 1596 e 1447 cm"1 , características dos estiramentos das ligações C=C e C=N. Bandas de menor intensidade aparecem em, aproximadamente, 2815 cm"1 , sendo atribuídas aos estiramentos das ligações C≤p3-H do grupamento -N(CH3)2. In the spectrum obtained in the IR region (Figure 9A), there is the presence of a set of bands in the region between 1596 and 1447 cm- 1 , characteristics of the C = C and C = N bonds stretches. appear in approximately 2815 cm- 1 , being attributed to the stretches of the C≤p 3 -H bonds of the group N (CH 3 ) 2 .
O espectro de RMN de 1 H obtido (Figura 9B) apresenta um simpleto em 3,02 ppm, integrado para seis hidrogênios, condizente com os hidrogênios metílicos do grupamento -N(CH3)2. Dois dupletos em δ 6,69 e 7,43 ppm, com constantes de acoplamento escalar igual a 8,8 Hz, são atribuídos aos hidrogênios do anel aromático derivado do aldeído de partida. Um mutipleto complexo em δ 6,53-7,22 ppm, integrado para seis hidrogênios, corresponde aos dois hidrogênios vinílicos, juntamente com os hidrogênios aromáticos da amina de partida. Por fim, o sinal referente ao hidrogénio do grupamento - CH=N- é observado em δ 8,19 ppm, se apresentando como um dupleto com constante de acoplamento escalar igual a 8,6 Hz. The 1 H NMR spectrum obtained (Figure 9B) has a 3.02 ppm simplet, integrated for six hydrogens, consistent with the -N (CH 3 ) 2 group methyl hydrogens. Two doublets at δ 6.69 and 7.43 ppm with scalar coupling constants equal to 8.8 Hz are assigned to the hydrogens of the aromatic ring derived from the starting aldehyde. A complex δ 6.53-7.22 ppm complex, integrated for six hydrogens, corresponds to the two vinyl hydrogens, together with the aromatic hydrogens of the starting amine. Finally, the group hydrogen signal - CH = N- is observed at δ 8.19 ppm, presenting as a doublet with a scalar coupling constant of 8.6 Hz.
No espectro de RMN de 13C (Figura 9C), verifica-se o sinal correspondente aos carbonos metílicos em £40,2 ppm. Dois sinais de maior intensidade em £ 1 12,0 e 129,2 ppm são atribuídos aos carbonos hidrogenados do anel aromático derivado do aldeído de partida. Três dupletos em £ 1 15,8, 122,2 e 148,0 ppm, com constantes de acoplamento escalar iguais a 22,2, 8,1 e 2,7 Hz, são atribuídos aos carbonos aromáticos das posições orto, meta e para, respectivamente, em relação ao carbono que sustenta o átomo de flúor. In the 13 C NMR spectrum (Figure 9C), the signal corresponding to the methyl carbons is found at 40.2 ppm. Two signals of greater intensity at 12.0 and 129.2 ppm are attributed to the hydrogenated carbons of the aromatic ring derived from the starting aldehyde. Three doublets at £ 1 15.8, 122.2 and 148.0 ppm, with scalar coupling constants equal to 22.2, 8.1 and 2.7 Hz, are assigned to the aromatic carbons of the ortho, meta and para positions, respectively, with respect to the carbon that supports the fluorine atom.
Exemplo 9: Obtenção e caracterização da aldimina 17 Example 9: Collection and characterization of aldimine 17
O composto 17 foi obtido por meio da condensação entre o aldeído aromático e a amina aromática, conforme representado na Figura 11. O produto da reação foi purificado por recristalização, utilizando-se etanol como solvente.  Compound 17 was obtained by condensation between aromatic aldehyde and aromatic amine as shown in Figure 11. The reaction product was purified by recrystallization using ethanol as solvent.
O espectro no infravermelho obtido (Figura 10A) apresenta duas bandas características de estiramentos de ligações O-H em 3482 e 3278 cm"1. Bandas provenientes dos estiramentos das ligações C=N e C=C também são observadas em 1624, 1590, 1504, 1452 cm"1. The infrared spectrum obtained (Figure 10A) shows two characteristic bands of OH bond stretches at 3482 and 3278 cm -1 . Bands from the C = N and C = C bond stretches are also observed at 1624, 1590, 1504, 1452 cm "1 .
No espectro de RMN de 1H do referido composto (Figura 10B), observa- se um tripleto centrado em £ 6,35 ppm, com constante de acoplamento escalar igual a 2,0 Hz, atribuído ao hidrogénio que se encontra entre as duas hidroxilas fenólicas do anel aromático proveniente do aldeído de partida. Um dupleto integrado para dois hidrogênios é verificado em <5 7,16 ppm, correspondendo aos dois hidrogênios das posições meta em relação à hidroxila do anel aromático da amina de partida. Observa-se também multipleto integrado para quatro hidrogênios em δ 6,76-6,83 ppm, atribuído aos demais hidrogênios aromáticos. O sinal característico do hidrogénio do grupamento -CH=N- aparece como um simpleto, em δ 8,40 ppm. Por fim, um sinal alargado integrado para três hidrogênios é observado em δ 9,48 ppm, atribuído aos hidrogênios das hidroxilas fenólicas. In the 1 H NMR spectrum of said compound (Figure 10B), a triplet centered at 6.35 ppm, with a scalar coupling constant of 2.0 Hz, is attributed to the hydrogen between the two hydroxyls. aromatic ring phenolics from the starting aldehyde. An integrated doublet for two hydrogens is found to be <5 7.16 ppm, corresponding to the two hydrogens of the meta positions relative to the starting amine aromatic ring hydroxyl. An integrated multiplet for four hydrogens is also observed at δ 6.76-6.83 ppm, attributed to the other aromatic hydrogens. The characteristic hydrogen signal of the group -CH = N- appears as a simplet at δ 8.40 ppm. Finally, an extended integrated signal for three hydrogens is observed at δ 9.48 ppm, attributed to the phenolic hydroxyl hydrogens.
O espectro de RMN de 13C (Figura 10C) apresenta um total de 9 sinais, visto a grande simetria apresentada pelo composto. Na região mais blindada do espectro verifica-se um conjunto de quatro sinais referentes aos carbonos hidrogenados dos anéis aromáticos, que são observados em δ 105,3, 106,5, 1 15,8 e 122,5 ppm. Outros quatros sinais de carbonos não hidrogenados são observados numa região mais blindada do espectro, em £ 138,4, 142,7, 156,2, 158,7 ppm, juntamente com o carbono do grupamento -CH=N-, que é observado em δ 157,5 ppm. Exemplo 10: Testes de determinação de Concentração Inibitória Mínima (CIM) de aldiminas para fungos dermatófitos The 13 C NMR spectrum (Figure 10C) shows a total of 9 signals, given the great symmetry presented by the compound. In the most shielded region of the spectrum there is a set of four signals referring to the hydrogenated carbons of the aromatic rings, which are observed at δ 105.3, 106.5, 1 15.8 and 122.5 ppm. Other four signals of unhydrogenated carbons are observed in a more shielded region of the spectrum at £ 138.4, 142.7, 156.2, 158.7 ppm, together with the -CH = N- grouping carbon, which is observed. at δ 157.5 ppm. Example 10: Determination Tests of Minimum Inhibitory Concentration (MIC) of aldimines for dermatophyte fungi
Os testes de determinação de Concentração Inibitória Mínima (CIM) de antifúngicos constituem a primeira evidência experimental do potencial de uma determinada substância. O método utilizado para a determinação da atividade antifúngica contra dermatófitos baseia-se na observação da inibição do crescimento ou indução da morte de conídios fúngicos submetidos a diferentes concentrações da droga em comparação com controles não tratados (SANTOS, D. A.; BARROS, M. E. S.; H AM DAN, J. S. Establishing a Method of Inoculum Preparation for Susceptibility Testing of Trichophyton rubrum and Trichophyton mentagrophytes. Journal of Clinicai Microbiology, v. 44, p. 98-101 , 2006).  Antifungal Minimum Inhibitory Concentration (MIC) tests are the first experimental evidence of the potential of a given substance. The method used to determine antifungal activity against dermatophytes is based on observing growth inhibition or death induction of fungal conidia subjected to different drug concentrations compared to untreated controls (SANTOS, DA; BARROS, MES; H AM DAN, JS Establishing a Method of Inoculum Preparation for Susceptibility Testing of Trichophyton rubrum and Trichophyton mentagrophytes Journal of Clinical Microbiology, v. 44, pp. 98-101, 2006).
Foram selecionados seis isolados clínicos de dermatófitos das espécies Trichophyton rubrum, Trichophyton interdigitale, Microsporum canis e Microsporum gypseum pertencentes à coleção de cultura do Laboratório de Micologia do ICB/UFMG. Todas as amostras foram mantidas em Ágar Sabouraud Dextrose 2% e em solução salina esterilizada a 4°C.  Six clinical isolates of dermatophytes of the species Trichophyton rubrum, Trichophyton interdigitale, Microsporum canis and Microsporum gypseum from the culture collection of the ICB / UFMG Mycology Laboratory were selected. All samples were kept on Sabouraud Dextrose 2% Agar and sterile saline solution at 4 ° C.
Para o inoculo fúngico, pequenos fragmentos das colónias estocadas em solução salina foram cultivados em tubos contendo ágar batata dextrose inclinado e incubados a 28°C durante 7 dias. A massa de micélio obtida foi coberta com 4,0 ml_ de salina estéril 0,90%, e assepticamente submetida à uma raspagem da superfície do ágar com alça de platina. A mistura resultante de conídios e fragmentos de hifas foi filtrada em filtros Whatman número 40 (poros de 8 μιτι), de forma que o filtrado continha apenas microconidiosporos dos fungos. A densidade óptica da suspensão foi lida em espectrofotômetro e ajustada para uma densidade óptica de 0,09 a 0,1 1 , equivalente a 70-72% de transmitância no comprimento de onda de 520 nm, o que proporcionou uma concentração de 106 células/mL. Estas suspensões foram diluídas na proporção de 1 :50 em meio RPMI-1640 para os testes, obtendo-se uma concentração final de 104 UFC/mL For the fungal inoculum, small fragments of colonies stored in saline solution were cultured in tubes containing slanted dextrose potato agar and incubated at 28 ° C for 7 days. The obtained mycelium mass was covered with 4.0 ml of 0.90% sterile saline, and aseptically subjected to platinum loop scraping of the agar surface. The resulting mixture of conidia and hyphae fragments was filtered through Whatman filter number 40 (8 µi pores) so that the filtrate contained only fungal microconidiospores. The optical density of the suspension was read on a spectrophotometer and adjusted to an optical density of 0.09 to 0.11, equivalent to 70-72% transmittance at 520 nm wavelength, which gave a concentration of 10 6 cells. / ml. These suspensions were diluted 1: 50 in RPMI-1640 medium for testing to give a final concentration of 10 4 CFU / mL.
Todos os fungos foram testados frente a cinco diferentes aldiminas (41 , 43, 50 e 52), as quais foram solubilizadas em DMSO em concentração inicial de 1000 pg/mL. A partir desta solução, preparou-se uma solução em meio RPMI-1640 tamponado com MOPS, a qual foi diluída em série para a realização dos testes. A faixa testada foi de 0,5 a 256 pg/mL All fungi were tested against five different aldimines (41, 43, 50 and 52), which were solubilized in DMSO at initial concentration. 1000 pg / ml. From this solution, a solution was prepared in MOPS-buffered RPMI-1640 medium, which was serially diluted for testing. The range tested was 0.5 to 256 pg / mL
Uma vez realizada a diluição seriada das drogas, foram transferidos volumes de 0,1 mL de cada diluição para poços em uma placa de microdiluição de 96 poços, de fundo chato e a estes foi acrescentado 0,1 mL da suspensão de cada uma das amostras de dermatofitos. As placas foram incubadas a 28°C durante sete dias. Foram utilizados poços sem as drogas e com o microrganismo como controle não tratado, bem como aqueles contendo apenas o meio de cultura e a droga (controle de esterilidade). Todas as concentrações foram testadas em duplicata. A leitura dos resultados foi baseada em escala de crescimento e aferida de modo visual, de modo que a Concentração Inibitória Mínima (CIM) foi considerada como a menor concentração que inibiu 100% do crescimento fúngico em comparação com o controle não tratado.  Once serial drug dilution was performed, 0.1 mL volumes of each dilution were transferred to wells in a flat-bottom 96-well microdilution plate and 0.1 mL of each sample suspension was added to the wells. of dermatophytes. The plates were incubated at 28 ° C for seven days. Wells without drugs and with the microorganism as untreated control were used, as well as those containing only the culture medium and the drug (sterility control). All concentrations were tested in duplicate. The reading of the results was based on growth scale and visually measured, so that the Minimum Inhibitory Concentration (MIC) was considered as the lowest concentration that inhibited 100% fungal growth compared to the untreated control.
A Tabela 1 apresenta os valores de CIM de para as quatro aldiminas testadas frente a todas as amostras de dermatofitos. As fórmulas estruturais das aldiminas testadas estão representadas na Figura 11.  Table 1 shows the MIC values of for the four aldimines tested against all dermatophyte samples. The structural formulas of the aldimines tested are shown in Figure 11.
Tabela 1 : Dados referentes à avaliação da atividade in vitro de quatro aldiminas contra espécies de Trichophyton. CIM: Concentração inibitória mínima (em pg/mL); Cl: isolado clínico; Itraconazol: antifúngico utilizado comercialmente no tratamento de infecções fúngicas, usado como controle positivo do teste. Table 1: Data regarding the in vitro activity evaluation of four aldimines against Trichophyton species. MIC: Minimum inhibitory concentration (in pg / mL); Cl: clinical isolate; Itraconazole: An antifungal used commercially in the treatment of fungal infections, used as a positive test control.
Aldiminas  Aldimines
41 43 50 52 Itraconazol* 41 43 50 52 Itraconazole *
EEspécies CIM (Mg/mL) MIC Species (Mg / mL)
Trichophyton interdigítale 16 256 16 64 0,25  Trichophyton interdigitale 16 256 16 64 0.25
Trichophyton gypseum 8 256 16 128 0,25  Trichophyton gypseum 8 256 16 128 0.25
Trichophyton canis ·' 8 256 8 64 ND Trichophyton canis · ' 8 256 8 64 ND
Trichophyton rubrum 16 128 16 64 0,25  Trichophyton rubrum 16 128 16 64 0.25
TM 865 32 128 8 · 64 N D  TM 865 32 128 8 · 64 N D
TM 312 16 256 16 128 N D TM 312 16 256 16 128 N D
* Itraconazol foi utilizado como controle positivo; * Itraconazole was used as a positive control;
**CIM: Concentração Inibitória Mínima para 100% do crescimento visual do fungo.  ** MIC: Minimum Inhibitory Concentration for 100% of fungal visual growth.
ND = Não determinado Observa-se que as aldiminas promoveram inibição do crescimento fúngico em concentrações < 256 pg/mL. Particular atenção deve ser destinada as aldiminas 41 e 50 que apresentaram CIM < 32 pg/mL para todas as amostras testadas. Os resultados são interessantes, pois demonstram boa atividade antifúngica contra os dermatófitos testados. ND = not determined It is observed that aldimines promoted inhibition of fungal growth at concentrations <256 pg / mL. Particular attention should be given to aldimines 41 and 50 with MICs <32 pg / mL for all samples tested. The results are interesting because they demonstrate good antifungal activity against the tested dermatophytes.
Exemplo 11 : Testes de determinação de Concentração Inibitória Mínima (CIM) de aldiminas para fungos sistémicos Example 11: Minimum Inhibitory Concentration (MIC) determination tests for aldimines for systemic fungi
A atividade de diversas aldiminas foi testada frente aos seguintes fungos de importância médica: Cândida albicans, C. tropicalis, C. krusei, C. glabrata, C. dubliniensis, C. parapsilosis, Aspergillus fumigatus, A. niger, A. clavatus, A. tamarii, A. flavus, Cryptococcus neoformans, Cryptococcus gattii, Paracoccidiodes brasiliensis, P. lutzii e Fonsecaea pedrosoi.  The activity of several aldimines was tested against the following fungi of medical importance: Candida albicans, C. tropicalis, C. krusei, C. glabrata, C. dubliniensis, C. parapsilosis, Aspergillus fumigatus, A. niger, A. clavatus, A. Tamarii, A. flavus, Cryptococcus neoformans, Cryptococcus gattii, Paracoccidiodes brasiliensis, P. lutzii and Fonsecaea pedrosoi.
Para a avaliação da sensibilidade das amostras fúngicas às aldiminas, o teste de concentração inibitória mínima (CIM) foi realizado segundo o método de microdiluição em caldo proposto pelo Clinicai and Laboratory Standards Institute (CLSI). Foram preparadas soluções estoque desses compostos, os quais foram dissolvidos em DMSO e diluídos em RPMI 1640 até a concentração de 1000 μg/ml. A partir dessa solução, foram feitas dez diluições seriadas usando como diluente o próprio RPMI 1640. As diluições foram preparadas de modo que concentrações de teste das aldiminas variaram de 128 Mg/ml a 0,25 g/ml. Alíquotas de 100 μΙ de cada diluição foram distribuídas nos poços de uma placa de microdiluição de 96 poços (Clinicai and Laboratory Standards Institution. CLSI Document M38-A2: Reference method for broth dilution antifungal susceptibility testing of filamentous fungi; Approved Standard - Second Edition. Wayne, USA, v. 28, n. 16, 2008; Clinicai and Laboratory Standards Institution. CLSI Document M27-A3: Reference method for broth dilution antifungal susceptibility testing of yeasts; Approved Standard - Third Edition. Wayne, USA, v. 28, n. 14, 2008.)  To evaluate the sensitivity of fungal samples to aldimines, the minimum inhibitory concentration (MIC) test was performed according to the broth microdilution method proposed by the Clinical and Laboratory Standards Institute (CLSI). Stock solutions of these compounds were prepared, which were dissolved in DMSO and diluted in RPMI 1640 to a concentration of 1000 μg / ml. From this solution, ten serial dilutions were made using RPMI 1640 itself as diluent. Dilutions were prepared so that aldimine test concentrations ranged from 128 Mg / ml to 0.25 g / ml. 100 μΙ aliquots of each dilution were distributed into the wells of a 96-well microdilution plate (Clinical and Laboratory Standards Institution. CLSI Document M38-A2: Reference method for broth dilution susceptibility testing of filamentous fungi; Approved Standard - Second Edition. Wayne, USA, v. 28, No. 16, 2008; Clinical and Laboratory Standards Institution CLSI Document M27-A3: Reference method for broth dilution antifungal susceptibility testing of yeasts; Approved Standard - Third Edition. , No. 14, 2008.)
Para o preparo do inoculo das leveduras (Cândida ssp. e Cryptococcus ssp.), as amostras fúngicas foram cultivadas em meio Agar Sabouraud dextrose (ASD) inclinado e incubadas a 35°C por 48h. No caso dos fungos filamentosos (Aspergillus ssp.), os inóculos foram preparados a partir de amostras fúngicas cultivadas em meio Agar batata inclinado e incubadas a 28°C por 7 dias. Foram preparadas suspensões padronizadas dos fungos. As culturas de leveduras foram removidas separadamente com uma alça estéril e foram adicionadas a tubos de ensaio contendo 5 mL de solução salina esterilizada. As suspensões obtidas foram homogeneizadas em vórtex e lidas em espectrofotômetro no comprimento de onda de 530 nm, ajustando-se a transmitância de 75 a 77%, correspondente à concentração de 1 x1 06 a 5x1 06 UFC/mL Estas suspensões de levedura foram homogeneizadas durante 15 segundos em vórtex e diluídas duas vezes com o meio RPMI 1640, a primeira na proporção de 1 :50 e a segunda na proporção de 1 :20, de modo que o inoculo apresentava concentração final de 1 x1 03 a 5x103 UFC/mL. Já as colónias de fungos filamentosos foram inicialmente lavadas com solução salina e Tween 20 (1 %) e transferidas para outro tubo de ensaio vazio esterilizado. Após a decantação por 3 a 5 minutos dos fragmentos de hifas, o sobrenadante contendo os esporos foi transferido para um tubo de ensaio contendo 5 mL de solução salina esterilizada. Essa suspensão foi homogeneizada em vórtex e lida em espectrofotômetro no comprimento de onda de 530 nm, ajustando-se a transmitância de 80 a 82%, a qual corresponde à concentração de 0,4x1 04 a 5x104 UFC/mL. As suspensões de fungos filamentosos foram homogeneizadas durante 15 segundos em vórtex e diluída com meio RPMI na proporção de 1 :50. For the preparation of yeast inoculum (Candida ssp. And Cryptococcus ssp.), Fungal samples were grown in tilted Sabouraud dextrose agar (ASD) medium and incubated at 35 ° C for 48h. In the case of filamentous fungi (Aspergillus ssp.), Inocula were prepared from fungal samples grown on slanted potato agar medium and incubated at 28 ° C for 7 days. Standard fungal suspensions were prepared. Yeast cultures were removed separately with a sterile loop and added to test tubes containing 5 mL of sterile saline. The suspensions obtained were vortex homogenized and read in a spectrophotometer at a wavelength of 530 nm, adjusting the transmittance from 75 to 77%, corresponding to the concentration of 1 x 10 6 to 5 x 10 6 CFU / mL. These yeast suspensions were homogenized for 15 seconds in vortex and diluted twice with RPMI 1640 medium, the former at 1:50 and the latter at 1:20, so that the inoculum had a final concentration of 1 x 10 3 to 5 x 10 3. CFU / mL. Already the filamentous fungal colonies were initially washed with saline and Tween 20 (1%) and transferred to another sterile empty test tube. After decantation of the hyphal fragments for 3 to 5 minutes, the spore-containing supernatant was transferred to a test tube containing 5 mL of sterile saline. This suspension was vortex homogenized and read in a spectrophotometer at a wavelength of 530 nm, adjusting the transmittance from 80 to 82%, which corresponds to a concentration of 0.4x10 4 to 5x10 4 CFU / mL. Filamentous fungus suspensions were vortexed for 15 seconds and diluted with RPMI medium at a ratio of 1: 50.
Em cada placa foram realizados os seguintes controles: (1 ) não tratado, contendo apenas RPMI 1640 e inoculo, (2) esterilidade, contendo apenas o meio RPMI 1640, e (3) toxicidade, contendo inoculo, RPMI 1640 e DMSO na maior concentração utilizada no teste. Além disso, a concentração inibitória mínima do fluconazol também foi determinada e utilizada para comparação com os resultados obtidos para as aldiminas. Aos poços contendo 1 00pL das soluções de aldiminas (1000 pg/mL em DMSO), foram acrescentados ~\ 00μ1. dos inóculos fúngicos, de modo que a concentração final destes variasse de 0,5 a 2,5 x 103 UFC/mL para leveduras e de 0,4 a 5 x 104 UFC/mL para fungos filamentosos. As placas foram incubadas em tempo e temperatura específicos para cada fungo, de acordo com a Tabela 2. A leitura do teste foi realizada visualmente, sendo a CIM definida como a menor concentração da aldimina capaz de inibir o crescimento microbiano após a incubação. The following controls were performed on each plate: (1) untreated, containing only RPMI 1640 and inoculum, (2) sterility, containing only RPMI 1640 medium, and (3) toxicity, containing inoculum, RPMI 1640 and DMSO at the highest concentration. used in the test. In addition, the minimum inhibitory concentration of fluconazole was also determined and used for comparison with the results obtained for aldimines. To wells containing 100 µl aldimine solutions (1000 pg / mL in DMSO), ~ 100 µl was added. fungal inoculum, so that their final concentration ranged from 0.5 to 2.5 x 10 3 CFU / mL for yeast and 0.4 to 5 x 10 4 CFU / mL for filamentous fungi. The plates were incubated at time and temperature specific for each fungus according to Table 2. Test reading was performed. visually, with MIC defined as the lowest aldimine concentration capable of inhibiting microbial growth after incubation.
A Tabela 3 mostra os resultados de CIM das aldiminas testadas contra espécies de Cândida, Aspergillus, Fonsecaea pedrosoi e Paracoccidiodes brasiliensis. As fórmulas estruturais dessas aldiminas estão representados na Figura 10. Observa-se que todos os compostos promoveram inibição do crescimento fúngico das diferentes espécies fúngicas testadas, mas Aspergillus clavatus e Fonsecaea pedrosoi foram as mais sensíveis a todos os compostos testados. O composto 15 destaca-se por seu maior espectro de atividade. Já a Tabela 4 mostra os resultados de CIM dos mesmos compostos contra os isolados de Cryptococcus spp. Todos estes foram sensíveis aos compostos testados, sendo seus valores de CIM algumas vezes menores aqueles referentes ao fluconazol.  Table 3 shows the MIC results of aldimines tested against Candida, Aspergillus, Fonsecaea pedrosoi and Paracoccidiodes brasiliensis species. The structural formulas of these aldimines are shown in Figure 10. It is observed that all compounds promoted inhibition of fungal growth of the different fungal species tested, but Aspergillus clavatus and Fonsecaea pedrosoi were the most sensitive to all tested compounds. Compound 15 stands out for its broader spectrum of activity. Table 4 shows the MIC results of the same compounds against Cryptococcus spp isolates. All of these were sensitive to the compounds tested, and their MIC values were sometimes lower than those for fluconazole.
Tabela 2: Tempo e temperatura de incubação utilizados nos testes para determinação de CIM para os fungos dos géneros Cândida., Cryptococcus,Table 2: Incubation time and temperature used in MIC determination tests for fungi of Candida genus, Cryptococcus,
Aspergillus, Fonsecaea e Paracoccidioides. Aspergillus, Fonsecaea and Paracoccidioides.
Género fúngico Tempo de incubação Temperatura de incubação Fungal genus Incubation time Incubation temperature
Cândida 48 horas 37°C Candida 48 hours 37 ° C
Cryptococcus 72 horas 35°C  Cryptococcus 72 hours 35 ° C
Aspergillus 48 horas 28°C  Aspergillus 48 hours 28 ° C
Fonsecaea 7 dias 28°C  Fonsecaea 7 days 28 ° C
Paracoccidioides 10 dias 37°C  Paracoccidioides 10 days 37 ° C
As CIMs variaram tanto em função da aldimina quanto da espécie fúngica testada. O composto 15 (Figura 11) apresentou CIM de 32 pg/mL para C. krusei, o mesmo resultado obtido para o fluconazol. Esse resultado merece destaque, uma vez que esta espécie é intrinsecamente resistente ao fluconazol e tem emergido como importante causa de infecção em pacientes que receberam transplantes de medula óssea e neutropênicos (WINGARD, J.R. et al. Increase in Cândida krusei infection among patients with bone marrow transplantation and neutropenia treated prophylacticaly with fluconazole. The New England Journal of Medicine, v. 325, n. 18, p. 1274-1277, 1991 ; SAMARANAYAKE, L.P. Cândida krusei infections and fluconazole therapy. Hong Kong Medicai Journal, v. 3, n 3, p.312-314, 1997). MICs varied as a function of aldimine and fungal species tested. Compound 15 (Figure 11) had a MIC of 32 pg / mL for C. krusei, the same result as for fluconazole. This result is noteworthy, as this species is intrinsically resistant to fluconazole and has emerged as a major cause of infection in patients who received bone marrow and neutropenic transplants (WINGARD, JR et al. Increase in Candida krusei infection among patients with bone marrow transplantation and neutropenia treated prophylactically with fluconazole The New England Journal of Medicine, v. 325, no. 18, pp. 1274-1277, 1991; SAMARANAYAKE, LP Candida krusei infections and fluconazole therapy. Hong Kong Medical Journal, v. 3, no. 3, p.312-314, 1997).
Com relação às espécies de Aspergillus, a espécie mais sensível às aldiminas testadas foi A. clavatus. Os compostos 18, 29, 34 e 36 (Figura 11) apresentaram o mesmo valor de CIM que o fluconazol (64 pg/mL) para essa espécie. As aldiminas 15, 16, 20, 38 e 50 (Figura 11) foram duas vezes mais potentes que o fluconazol em inibir o crescimento de A. clavatus. Os compostos 2, 7 e 8 (Figura 11) apresentaram CIM de 16 pg/mL, enquanto a aldimina 31 (Figura 11) foi oito vezes mais potente que o fluconazol na inibição de A. clavatus. Contudo, o composto 41 inibiu o crescimento de A. clavatus em uma concentração 16 vezes mais potente que o fluconazol. O mesmo valor de CIM do fluconazol foi obtido ao se testar as aldiminas 2 e 15 (Figura 11) contra A. tamarii e as aldiminas 15, 36 e 38 (Figura 11) contra A. flavus. Contra A. niger, as aldiminas 7, 16, 31 e 36 (Figura 11) foram tão potentes quanto o fluconazol, enquanto a aldimina 15 (Figura 11) foi duas vezes mais potente que esse antifúngico, com uma CIM de 32 pg/mL. Já para a espécie A. fumigatus (ATCC16913), as aldiminas 7, 31 e 34 (Figura 11) apresentaram a mesma CIM do fluconazol. As aldiminas 2, 36 e 50 (Figura 11) apresentaram CIM de 32 pg/mL. As aldiminas 15 e 38 (Figura 11) inibiram o crescimento de A. fumigatus (ATCC16913) em concentrações quatro vezes menores que as do fluconazol.  Regarding Aspergillus species, the species most sensitive to aldimines tested was A. clavatus. Compounds 18, 29, 34 and 36 (Figure 11) had the same MIC value as fluconazole (64 pg / mL) for this species. Aldimin 15, 16, 20, 38 and 50 (Figure 11) were twice as potent as fluconazole in inhibiting A. clavatus growth. Compounds 2, 7 and 8 (Figure 11) had MICs of 16 pg / mL, while aldimine 31 (Figure 11) was eight times more potent than fluconazole in inhibiting A. clavatus. However, compound 41 inhibited A. clavatus growth at a concentration 16 times more potent than fluconazole. The same MIC value of fluconazole was obtained by testing aldimines 2 and 15 (Figure 11) against A. tamarii and aldimines 15, 36 and 38 (Figure 11) against A. flavus. Against A. niger, aldimines 7, 16, 31 and 36 (Figure 11) were as potent as fluconazole, while aldimine 15 (Figure 11) was twice as potent as this antifungal, with a MIC of 32 pg / mL. . For A. fumigatus (ATCC16913), aldimines 7, 31 and 34 (Figure 11) presented the same MIC as fluconazole. Aldimines 2, 36 and 50 (Figure 11) had a MIC of 32 pg / mL. Aldimin 15 and 38 (Figure 11) inhibited A. fumigatus (ATCC16913) growth at concentrations four times lower than fluconazole.
Fonsecaea pedrosoi, agente da cromoblastomicose, apresentou CIM para o fluconazol de 16 pg/mL, mesmo valor apresentado pelas aldiminas 8, 16, 31 , 34 e 38 (Figura 11). A CIM para os composots 15, 18 e 41 (Figura 11) foi duas vezes menor que para o fluconazol, enquanto que as aldiminas 20 e 29 (Figura 11) foram quatro vezes mais potentes que o fluconazol em inibir o crescimento de F. pedrosoi. Uma vez que os agentes etiológicos da cromoblastomicose podem apresentar resistência a diversos antifúngicos, incluindo o fluconazol, é ideal que se encontrem compostos mais eficazes para o tratamento dessa doença. (VIVAS, J.R.C.; TORRES-RODRIÍUEZ, J.M. Sensibilidad de hongos miceliares dematiáceos a diez antifúngicos empleando un método de difusión en agar. Revista Iberoamericana de Micología, v. 18, p. 1 13-1 17, 2001 ; ESTERRE, E.; QUEIROZ-TELLES, F. Management of chromoblastomycosis: novel perspectives. Current Opinion in Infections Diseases, v. 19, p. 148-152, 2006). Fonsecaea pedrosoi, agent of chromoblastomycosis, presented MIC for fluconazole of 16 pg / mL, the same value presented by aldimines 8, 16, 31, 34 and 38 (Figure 11). MIC for compound 15, 18 and 41 (Figure 11) was twice as low as for fluconazole, while aldimines 20 and 29 (Figure 11) were four times more potent than fluconazole in inhibiting F. pedrosoi growth. . Since the etiological agents of chromoblastomycosis may be resistant to several antifungals, including fluconazole, it is ideal to find more effective compounds for the treatment of this disease. (VIVAS, JRC; TORRES-RODRIÍUEZ, JM Sensitivity of dematiaceous mycelial fungi to antifungal dyes employing a diffusion method in agar. Revista Iberoamericana de Mycología, v. 18, p. 11-13-17, 2001; ESTERRE, E .; QUEIROZ-TELLES, F. Management of chromoblastomycosis: novel perspectives. Current Opinion in Infections Diseases, v. 19, p. 148-152, 2006).
O agente da paracoccidiodomicose se mostrou sensível ao tratamento com diversas aldiminas, sendo tão sensível ao fluconazol quanto às aldiminas 20, 29, 34, 36 e 38 (CIM de 4 μg/mL) (Figura 11). Além dessas, outras aldiminas apresentaram bons resultados contra Paracoccidioides brasiliensis. A CIM para a aldimina 33 (Figura 11) foi de 16 pg/mL, enquanto que para as aldiminas 21 , 35 e 37 (Figura 11) o valor foi de 32 Mg/mL. A descoberta de compostos com atividade contra Paracoccidioides spp. é de particular importância, uma vez que essa é a micose profunda mais prevalente na América Latina e aproximadamente 80% dos pacientes diagnosticados com a paracoccidioidomicose são do Brasil. (TABORDA, CP. et al. Melanin as a virulence factor of Paracoccidioides brasiliensis and other dimorphic pathogenic fungi: a minireview. Mycopathologia, v. 165, p. 331-339, 2008; PRADO, M. et al. Mortality due to systemic mycoses as a primary cause of death or in association with AIDS in Brazil: a review from 1996 to 2006. Memórias do Instituto Oswaldo Cruz, v. 104, n. 3, p. 513-521 , 2009).  The paracoccidiodomycosis agent was sensitive to treatment with several aldimines, being as sensitive to fluconazole as aldimines 20, 29, 34, 36 and 38 (4 μg / mL MIC) (Figure 11). In addition, other aldimines showed good results against Paracoccidioides brasiliensis. The MIC for aldimine 33 (Figure 11) was 16 pg / mL, while for aldimines 21, 35 and 37 (Figure 11) the value was 32 Mg / mL. The discovery of compounds with activity against Paracoccidioides spp. It is of particular importance as this is the most prevalent deep ringworm in Latin America and approximately 80% of the patients diagnosed with paracoccidioidomycosis are from Brazil. (TABORDA, CP. Et al. Melanin as a virulence factor of Paracoccidioides brasiliensis and other dimorphic pathogenic fungi: a minireview. Mycopathologia, v. 165, p 331-339, 2008; PRADO, M. et al. Mortality due to systemic mycoses as a primary cause of death or association with AIDS in Brazil: a review from 1996 to 2006. Memories of the Oswaldo Cruz Institute, v. 104, no. 3, pp. 513-521, 2009).
C. neoformans e C. gattii também se mostraram sensíveis a diversas aldiminas. Para C. gattii, os compostos 2, 7, 8, 15 e 16 (Figura 11) apresentaram valores de CIM entre 9,0 Mg/mL e 5,2 pg/mL, os quais são quase duas vezes menores que o do fluconazol (9,54 μg/mL). As aldiminas 41 e 50 apresentaram valores de CIM de 2,3 μg/mL· e 3,8 Mg/mL, respectivamente, sendo mais potentes que o antifúngico utilizado como controle. Outras aldiminas (por exemplo, 18, 20, 29, 31 e 34, representadas na Figura 11) apresentaram valores de CIM próximos aos do fluconazol. Já para C. neoformans, os compostos 2, 7, 8, 15, 29, 41 e 50 (Figura 11) apresentaram valores de CIM menores que os do fluconazol, cuja CIM foi de 5,8 g/mL. Valores próximos a este foram obtidos para as aldiminas 7, 16, 18, 20, 29, 31 , 34, 36 e 38 (Figura 11). Esses resultados merecem destaque, uma vez que a criptococose é a maior causa de morte por micoses sistémicas em pacientes com AIDS no Brasil. Além disso, C. gattii vem sendo considerado um patógeno primário humano emergente, podendo apresentar resistência ao fluconazol (DATTA, K., BARTLETT, K.H., MARR, K.A. Cryptococcus gatfii: emergence in western North America: exploitation of a novel ecological niche. Interdisciplinary Perspectives on Infectious Diseases, v. 2009, 2009 ; PRADO, M. et ai. Mortality due to systemic mycoses as a primary cause of death or in association with AIDS in Brazil: a review from 1996 to 2006. Memórias do Instituto Oswaldo Cruz, v. 104, n. 3, p. 513-521 , 2009; SOARES, B.M.S. et ai. Cerebral infection caused by Cryptococcus gattii: a case report and antifungal susceptibility testing. Revista Iberoamericana de Micología, v. 25, p. 242-245, 2008). C. neoformans and C. gattii were also sensitive to several aldimines. For C. gattii, compounds 2, 7, 8, 15 and 16 (Figure 11) had MIC values between 9.0 Mg / mL and 5.2 pg / mL, which are almost twice as low as fluconazole. (9.54 µg / mL). Aldimines 41 and 50 had MIC values of 2.3 μg / mL · and 3.8 Mg / mL, respectively, being more potent than the antifungal used as a control. Other aldimines (eg 18, 20, 29, 31 and 34, shown in Figure 11) had MIC values close to those of fluconazole. For C. neoformans, compounds 2, 7, 8, 15, 29, 41 and 50 (Figure 11) had lower MIC values than those of fluconazole, whose MIC was 5.8 g / mL. Values close to this were obtained for aldimines 7, 16, 18, 20, 29, 31, 34, 36 and 38 (Figure 11). These results deserve highlighting, since cryptococcosis is the major cause of death from systemic mycoses in AIDS patients in Brazil. In addition, C. gattii has been considered a pathogen. emergent human primary and may show resistance to fluconazole (DATTA, K., BARTLETT, KH, MAR, KA Cryptococcus gatfii: emergence in western North America: exploitation of a novel ecological niche. Interdisciplinary Perspectives on Infectious Diseases, v. 2009, 2009; PRADO, M. Mortality due to systemic mycoses as a primary cause of death or association with AIDS in Brazil: a review from 1996 to 2006. Memories of the Oswaldo Cruz Institute, v. 104, paragraph 3, p 513 -521, 2009; SOARES, BMS et al., Cerebral infection caused by Cryptococcus gattii: a case report and antifungal susceptibility testing (Iberoamerican Journal of Mycology, v. 25, pp. 242-245, 2008).
De uma maneira geral, as aldiminas 15, 20, 29, 34, 36, 38, 41 e 50 foram as que apresentaram maior espectro de ação contra as linhagens fúngicas testadas. In general, aldimines 15, 20, 29, 34, 36, 38, 41 and 50 showed the highest spectrum of action against the fungal strains tested.
Tabela 3: Avaliação da atividade in vitro de doze aldiminas derivadas do 2-aminofenol contra espécies de Cândida, Aspergillus, Fonsecaea pedrosoi e Paracoccidiodes brasiliensis. CIM: Concentração inibitória mínima (em μρ/ιηΙ-); Cl: isolado clínico: Fluconazoi: antifúngico utilizado comercialmente no tratamento de infecções fúngicas, usado como controle positivo do teste. Table 3: In vitro activity evaluation of twelve 2-aminophenol-derived aldimines against Candida, Aspergillus, Fonsecaea pedrosoi and Paracoccidiodes brasiliensis species. MIC: Minimum inhibitory concentration (in μρ / ιηΙ-); Cl: clinical isolate: Fluconazoi: antifungal used commercially in the treatment of fungal infections, used as a positive test control.
Aldiminas  Aldimines
2 20 21 7 8 15 16 18 38 33 34 35 36 37 29 31 41 50 Fluconazoi* 2 20 21 7 8 15 16 18 38 33 34 35 36 37 29 31 41 50 Fluconazoi *
Espécies CIM" ^g/mL) MIC species "(g / mL)
Cândida albicans ATCC 18804 128 >128 > 128 64 >128 32 128 128 32 > 128 > 128 > 128 > 128 > 128 >128 128 128 32 2 Candida albicans ATCC 18804 128> 128> 128 64> 128 32 128 128 32> 128> 128> 128> 128> 128> 128 128 128 32 2
C. tropicalis ATCC 750 256 >128 > 128 64 128 64 128 >128 64 > 128 > 128 > 128 > 128 > 128 128 128 >128 >128 2C. tropicalis ATCC 750 256> 128> 128 64 128 64 128> 128 64> 128> 128> 128> 128> 128 128 128> 128> 128 2
C. krusei ATCC20298 128 >128 > 128 64 >128 32 128 128 64 64 > 128 > 128 64 128 128 128 128 >128 32C. krusei ATCC20298 128> 128> 128 64> 128 32 128 128 64 64> 128> 128 64 128 128 128 128> 128 32
C. parapsloas ATCC 20019 256 >128 > 128 128 >128 16 128 128 64 128 128 > 128 > 128 > 128 >128 64 128 64 1C. parapsloas ATCC 20019 256> 128> 128 128> 128 16 128 128 64 128 128> 128> 128> 128> 128 64 128 64 1
C. giabrala ATCC 90030 128 64 > 128 64 128 16 64 128 16 32 ' > 128 > 128 32 > 128 128 64 128 64 1C. giabrala ATCC 90030 128 64> 128 64 128 16 64 128 16 32 ' >128> 128 32> 128 128 64 128 64 1
C. dubliniensis Cd 28 Cl"* 128 128 > 128 64 128 32 64 64 64 > 128 > 128 > 128 > 128 > 128 128 64 128 128 0.125C. dubliniensis Cd 28 Cl "* 128 128> 128 64 128 32 64 64 64> 128> 128> 128> 128> 128 128 64 128 128 0.125
Aspergillus fumigatus ATCC16913 32 > 128 > 128 64 128 16 128 128 16 64 64 128 32 128 >128 64 128 32 64Aspergillus fumigatus ATCC16913 32> 128> 128 64 128 16 128 128 16 64 64 128 32 128> 128 64 128 32 64
A. flavus IM1 90443 >128 > 128 > 128 128 >128 64 >128 128 64 128 > 128 > 128 64 > 128 >128 128 >128 >128 >64A. flavus IM1 90443> 128> 128> 128 128> 128 64> 128 128 64 128> 128> 128 64> 128> 128 128> 128> 128> 64
A. clavatus CI"" 16 32 > 128 16 16 32 32 64 32 64 64 128 64 128 64 8 4 32 64A. clavatus CI "" 16 32> 128 16 16 32 32 64 32 64 64 128 64 128 64 8 4 32 64
A. (amar/i Cf*" 64 >128 ND 128 >128 64 >128 >128 ND ND ND ND ND ND >128 128 128 >128 >64A. (loving) 64> 128 ND 128> 128 64> 128> 128 NA NA NA NA NA NA NA> 128 128 128> 128> 64
Λ. fumigatus Cf** 64 > 128 ND >128 128 16 128 >128 ND ND ND ND ND ND >128 64 128 128 >64Λ fumigatus Cf ** 64> 128 NA> 128 128 16 128> 128 ND NA NA NA NA NA> 128 64 128 128> 64
Λ. niger C " 64 128 > 128 64 128 32 64 128 32 64 128 128 64 128 128 64 128 128 >64Λ niger C "64 128> 128 64 128 32 64 128 32 64 128 128 64 128 128 64 128 128> 64
Fonsecaea pedrosoi ATCC 46428 8 4 64 32 16 8 16 8 16 64 16 >128 ND >128 4 16 8 32 16Fonsecaea pedrosoi ATCC 46428 8 4 64 32 16 8 16 8 16 64 16> 128 ND> 128 4 16 8 32 16
Paracoccidiodes brasiliensis B339 ND 4 32 ND ND ND ND ND 4 16 4 32 4 32 4 ND ND ND 2 Paracoccidiodes brasiliensis B339 NA 4 32 NA NA NA NA NA 4 16 4 32 4 32 4 NA NA NA 2
* Fluconazoi foi utilizado como controle positivo;  * Fluconazoi was used as a positive control;
**CIM: Concentração Inibitória Mínima para inibir 100% do crescimento visual do fungo;  ** MIC: Minimum Inhibitory Concentration to inhibit 100% of fungal visual growth;
***CI: Isolado Clínico.  *** CI: Clinical Isolate.
ND - não determinado NA - not determined
Tabela 4: Dados referentes à avaliação da atividade in vitro de nove aldiminas derivadas do 2-aminofenol contra 12 linhagens de Cryptococcus neoformans e 12 linhagens de Cryptococcus gattii. CIM: Concentração inibitória mínima; CIM 50: concentração inibitória mínima para 50% dos isolados testados; CIM 90: concentração inibitória mínima para 90% dos isolados testados; Fluconazol: antifúngico utilizado comercialmente no tratamento de infecções fúngicas, usado como controle positivo do teste. Table 4: Data regarding the in vitro activity evaluation of nine 2-aminophenol-derived aldimines against 12 Cryptococcus neoformans strains and 12 Cryptococcus gattii strains. MIC: Minimum inhibitory concentration; MIC 50: minimum inhibitory concentration for 50% of the isolates tested; MIC 90: minimum inhibitory concentration for 90% of isolates tested; Fluconazole: Antifungal used commercially in the treatment of fungal infections, used as a positive control of the test.
Figure imgf000039_0001
Figure imgf000039_0001
Exemplo 12: Testes de determinação de Concentração Fungicida Mínima (CFM) de aldiminas para fungos do género Cryptococcus Example 12: Determination Tests of Minimum Fungicidal Concentration (CFM) of aldimines for Cryptococcus fungi
Depois de determinada a concentração mínima inbitória (CIM) para cada aldimina testada, foi realizado também o teste da concentração fungicida mínima (CFM) para avaliá-las quanto a ação fungicida ou fungistática frente aos 12 isolados de Cryptococcus neoformans e 12 isolados de Cryptococcus gattii. Para tanto, alíquotas de 100 μΙ_ foram removidas dos poços nos quais não foi detectado crescimento visível na CIM, subcultivados em Agar Sabouraud dextrose (ASD) e incubadas a 35°C. A CFM foi definida como a menor concentração do composto em que nenhuma colónia foi observada após 72 horas de incubação. After determining the minimum inhibitory concentration (MIC) for each aldimine tested, the minimum fungicidal concentration (CFM) test was also performed to evaluate them for fungicidal or fungistatic action against 12 Cryptococcus neoformans isolates and 12 Cryptococcus gattii isolates. . For this purpose, 100 μΙ_ aliquots were removed from wells where no visible growth was detected in MIC, subcultured in Agar. Sabouraud dextrose (ASD) and incubated at 35 ° C. CFM was defined as the lowest concentration of compound where no colony was observed after 72 hours of incubation.
A Tabela 5 apresenta os valores da concentração fungicida mínima (CFM) dos compostos testados e do antifúngico Fluconazol, usado como controle positivo. As fórmulas estruturais desses compostos estão representadas na Figura 11.  Table 5 shows the minimum fungicidal concentration (CFM) values of the tested compounds and the antifungal Fluconazole, used as a positive control. The structural formulas of these compounds are shown in Figure 11.
Tabela 5: Dados referentes à avaliação da concentração fungicida mínima (CFM) de nove aldiminas derivadas do 2-aminofenol contra 12 linhagens de Cryptococcus neoformans e 12 linhagens de C. gattii. CFM 50: concentração fungicida mínima; CFM 50: concentração fungicida mínima para 50% dos isolados testados; CFM 90: concentração fungicida mínima para 90% dos isolados testados. Table 5: Data regarding the evaluation of the minimum fungicidal concentration (CFM) of nine 2-aminophenol-derived aldimines against 12 Cryptococcus neoformans strains and 12 C. gattii strains. CFM 50: minimum fungicidal concentration; CFM 50: minimum fungicidal concentration for 50% of the isolates tested; CFM 90: minimum fungicidal concentration for 90% of the isolates tested.
Figure imgf000040_0001
Figure imgf000040_0001
Exemplo 13: Creme Base Aniônico (Lanette) A aldimina 2 (Figura 11) foi preparada na forma de creme base aniônico (Lannette), com tipo de emulsão de óleo e água. A concentração do composto 2 na formulação foi de 10%. Os componentes e quantidades da emulsão cremosa estão relacionados na Tabela 6. Tabela 6: Composição de emulsão cremosa contendo aldimina 2. Example 13: Anionic Base Cream (Lanette) Aldimin 2 (Figure 11) was prepared in the form of anionic base cream (Lannette) with oil and water emulsion type. The concentration of compound 2 in the formulation was 10%. The components and amounts of the creamy emulsion are listed in Table 6. Table 6: Composition of aldimine 2-containing creamy emulsion.
COMPONENTES QUANTIDADE (g) QUANTITY COMPONENTS (g)
EDTA dissódico 0,15Disodium EDTA 0.15
FASE PHASE
Solução conservante de parabenos 3,30 Paraben preservative solution 3.30
AQUOSA AQUOSA
Agua q.s.p. 100,00 Water q.s.p. 100.00
Álcool cetílico 2,50Cetyl Alcohol 2.50
Álcool cetoestearílico e Cetostearyl alcohol and
24,00 24.00
FASE OLEOSA cetilestearilsulfato de sódio (9:1) OIL PHASE Sodium Cetylstearyl Sulphate (9: 1)
Glicerina 5,00 Glycerin 5.00
Oleato de decila 12,00 Decylate Oleate 12.00
Exemplo 14: Gel de Carboximetilcelulose a 1% Example 14: 1% Carboxymethylcellulose Gel
A aldimina 2 foi manipulada na forma de gel de carboximetilcelulose a 1%. A concentração do composto 2 na formulação foi de 10%. Os componentes e quantidades do gel estão relacionados na Tabela 7. Tabela 7: Composição de gel contendo aldimina 2.  Aldimin 2 was engineered as 1% carboxymethylcellulose gel. The concentration of compound 2 in the formulation was 10%. The components and amounts of the gel are listed in Table 7. Table 7: Aldimine 2-containing gel composition.
COMPONENTES QUANTIDADES  QUANTITY COMPONENTS
Carboximetilcelulose (CMC) 1 ,00 g Carboxymethylcellulose (CMC) 1.00 g
Glicerina 8 mLGlycerin 8 mL
Cloreto de benzalcônio 1 :1000Benzalkonium Chloride 1: 1000
Agua destilada q.s.p. 100 mL Distilled water q.s.p. 100ml
A solubilização da aldimina 2 até a concentração de 10% demonstra a maior versatilidade dessa classe de moléculas para elaboração de formulações tanto na forma de creme quanto de gel, uma vez que com o itraconazol só é possível obter a forma de emulsão cremosa na concentração máxima de 2%. Exemplo 15: Ensaio in vivo de composições farmacêuticas contendo aldimina como princípio ativo Solubilization of aldimine 2 to a concentration of 10% demonstrates the greater versatility of this class of molecules for the formulation of both cream and gel formulations, since itraconazole can only be obtained as a creamy emulsion at maximum concentration. 2%. Example 15: In vivo testing of aldimine-containing pharmaceutical compositions as active ingredient
Cerca de 10 mL de solução salina tamponada (PBS) foram adicionados à colónia do isolado ATCC28189 (NCQS40051 ) de Trichophyton rubrum com crescimento de 7-10 dias em Agar Batata-Dextrose (ABD). As colónias foram raspadas com o auxílio de uma alça de platina esterilizada e a suspensão de estruturas fúngicas (conídios e hifas) foi filtrada em filtros Whatman-40 para que o inoculo fosse constituído apenas de conídios fúngicos. (SANTOS, D. A.; BARROS, M. E. S.; HAMDAN, J. S. Establishing a Method of Inoculum Preparation for Susceptibility Testing of Trichophyton rubrum and Trichophyton mentagrophytes. Journal of Clinicai Microbiology, v. 44, p. 98-101 , 2006).  About 10 ml buffered saline (PBS) was added to the colony of Trichophyton rubrum isolate ATCC28189 (NCQS40051) with 7-10 day growth on Potato Dextrose Agar (ABD). The colonies were scraped with the aid of a sterile platinum loop and the suspension of fungal structures (conidia and hyphae) were filtered on Whatman-40 filters so that the inoculum consisted only of fungal conidia. (SANTOS, D.A.; BARROS, M.E.S .; HAMDAN, J.S. Establishing a Method of Inoculum Preparation for Susceptibility Testing of Trichophyton rubrum and Trichophyton mentagrophytes. Journal of Clinical Microbiology, v. 44, p. 98-101, 2006).
Camundongos Balb/c selvagens foram anestesiados intraperitonealmente com uma solução de cloridrato de cetamina (80mg/kg) e cloridrato de xilazina (10mg/kg) em PBS. Aproximadamente 10 minutos após a administração desta solução, os animais foram submetidos à infecção. O pelo foi rasrjado em duas diferentes partes do dorso, com posterior antissepsia com etanol 70%. Em seguida foram inoculados conídios de T. rubrum subcutaneamente na região raspada. Foram inoculados 105 conídios por animal. Um grupo controle foi inoculado com solução PBS. (GHANNOUM, M. A. et ai. Determination of the efficacy of terbinafine hydrochloride nail solution in the topical treatment of dermatophytosis in a guinea pig model. Mycoses. v. 52, p. 35-43, 2008; SAUNTE, D. M. et al. Experimental guinea pig model of dermatophytosis: a simple and useful tool for the evaluation of new diagnostics and antifungals. Medicai Mycology. v. 46, p. 303-313, 2008). Wild Balb / c mice were anesthetized intraperitoneally with a solution of ketamine hydrochloride (80mg / kg) and xylazine hydrochloride (10mg / kg) in PBS. Approximately 10 minutes after administration of this solution, the animals underwent infection. The hair was shaved on two different parts of the back, with subsequent antisepsis with 70% ethanol. Next, T. rubrum conidia were inoculated subcutaneously in the scraped region. 10 5 conidia were inoculated per animal. A control group was inoculated with PBS solution. (GHANNOUM, MA et al. Determination of the efficacy of terbinafine hydrochloride nail solution in the topical treatment of dermatophytosis in a guinea pig model. Mycoses v. 52, p. 35-43, 2008; SAUNTE, DM et al. Experimental guinea pig model of dermatophytosis: a simple and useful tool for the evaluation of new diagnoses and antifungals, Medical Mycology, v. 46, pp. 303-313, 2008).
O tratamento foi iniciado cinco dias após a infecção e teve duração de sete dias. Foi utilizada a aldimina 2 na formulação de creme e gel (exemplos 13 e 14, respectivamente), e o itraconazol a 2% na formulação de creme. Pelo fato da pouca solubilidade do itraconazol, não foi possível manipulá-lo na forma de gel, e a concentração máxima obtida na emulsão cremosa, devido a esse fator, foi de 2%. Os fármacos foram administrados diariamente de forma tópica (100 μg). Os animais foram monitorados quanto à redução dos sinais de dermatofitose. Animais infectados e não tratados foram utilizados como controle positivo e o controle negativo foi representado por animais submetidos à inoculação de PBS. Treatment was started five days after infection and lasted seven days. Aldimin 2 was used in the cream and gel formulation (examples 13 and 14, respectively), and 2% itraconazole in the cream formulation. Due to the low solubility of itraconazole, it could not be manipulated as a gel, and the maximum concentration obtained in the creamy emulsion due to this factor was 2%. The drugs were administered daily topically (100 μg). The animals were monitored for the reduction of signs of dermatophytosis. Infected and untreated animals were used as Positive control and negative control were represented by animals submitted to PBS inoculation.
A terapia antifúngica foi interrompida por 24 horas, quando foi realizada a anestesia, o raspado e biópsia do local infectado para a determinação do número de unidades formadoras de colónia por grama de tecido (UFC/g). Foram coletadas amostras de tecido, as quais foram homogeneizadas em PBS. A suspensão final em PBS foi plaqueada (50 μΙ_) em meio Ágar Batata Dextrosado (ABD) As placas foram incubadas a 28°C e a contagem do número de colónias foi realizada após quatro dias. O número de unidades formadoras de colónias foi calculado. O resultado foi expresso em UFC/g de tecido. A confirmação da identidade do fungo foi feita por meio da observação das características macro e micromorfológicas (microcultivo) das colónias desenvolvidas.  Antifungal therapy was discontinued for 24 hours when anesthesia, scraping and biopsy of the infected site were performed to determine the number of colony forming units per gram of tissue (CFU / g). Tissue samples were collected and homogenized in PBS. The final suspension in PBS was plated (50 μΙ) in Dextrated Potato Agar (ABD) medium. Plates were incubated at 28 ° C and colony counting was performed after four days. The number of colony forming units was calculated. The result was expressed in CFU / g tissue. Confirmation of the fungus identity was made by observing the macro and micromorphological (microcultural) characteristics of the developed colonies.
Após a realização dos experimentos, os animais foram anestesiados e sacrificados para descarte conforme procedimentos padronizados e recomendados por comités internacionais de ética em pesquisa animal. Estes procedimentos foram aprovados pelo comité de ética em experimentação animal da Universidade Federal de Minas Gerais, protocolo n° 251/2010  After the experiments were performed, the animals were anesthetized and sacrificed for disposal according to standard procedures and recommended by international animal research ethics committees. These procedures were approved by the Animal Experimentation Ethics Committee of the Federal University of Minas Gerais, protocol No. 251/2010.
Os dados foram analisados usando o programa GraphPad Prism 4 (GraphPad Inc., San Diego, CA, USA). O teste de Kruskal-Wallis seguido do teste de comparação múltipla de Dunns foi empregado para comparação entre os grupos experimentais. Valores de p < 0.05 foram considerados estatisticamente significativos. Os resultados foram expressos em média ± erro padrão da média.  Data were analyzed using the GraphPad Prism 4 program (GraphPad Inc., San Diego, CA, USA). Kruskal-Wallis test followed by Dunns multiple comparison test was used for comparison between experimental groups. P values <0.05 were considered statistically significant. Results were expressed as mean ± standard error of the mean.
A Figura 12 apresenta os resultados obtidos no experimento. Foi verificada redução de crescimento significativa em todos os tratamentos utilizados em comparação ao grupo controle (p = 0,004), apontando para a eficácia do tratamento da aldimina 2 tanto em creme quanto em gel para o tratamento de dermatofitoses. A aldimina 2 em gel foi estatisticamente mais eficaz em reduzir o número de UFC/g de tecido em comparação com a aldimina 2 creme (p = 0,0043), e em relação ao itraconazol (p = 0,0023). Esta diferença pode ter ocorrido pelo fato da maior afinidade da molécula de aldimina 2 pela formulação em emulsão cremosa, o que promoveria menor disponibilização da droga para o tecido animal, o mesmo provavelmente não ocorre com o gel, facilitando assim a penetração nos tecidos dos camundongos infectados. Estes resultados reforçam que as aldiminas e seus derivados são uma fonte potencial de novos agentes para o tratamento de dermatofitoses. Figure 12 presents the results obtained in the experiment. Significant growth reduction was observed in all treatments compared to the control group (p = 0.004), pointing to the efficacy of aldimine 2 treatment in both cream and gel for the treatment of dermatophytosis. Gel aldimine 2 was statistically more effective in reducing the number of CFU / g of tissue compared to aldimine 2 cream (p = 0.0043), and compared to itraconazole (p = 0.0023). This difference may have been due to the fact that the higher affinity of the aldimine 2 by the creamy emulsion formulation, which would promote less availability of the drug to animal tissue, the same probably does not occur with the gel, thus facilitating the penetration into tissues of infected mice. These results reinforce that aldimines and their derivatives are a potential source of new agents for the treatment of dermatophytosis.

Claims

REIVINDICAÇÕES
1. Compostos derivados de aldimina, caracterizados por apresentarem as fórmulas estruturais: onde: 1. Compounds derived from aldimine, characterized in that they have the structural formulas: where:
Figure imgf000045_0001
Figure imgf000045_0001
b) R3 é selecionado do grupo compreendendo -H, -OH, ou -CN; c) R4 é selecionado do grupo compreendendo -H, -F, -CN, -OH oub) R 3 is selected from the group comprising -H, -OH, or -CN; c) R 4 is selected from the group comprising -H, -F, -CN, -OH or
-SCH3; -SCH 3 ;
Figure imgf000045_0002
Figure imgf000045_0002
e) R5 é -H, -OH ou -NO2; e) R 5 is -H, -OH or -NO 2 ;
f) R6 é -H ou -OH; f) R 6 is -H or -OH;
g) R7 é selecionado do grupo compreendendo -H, -OH, -NO2, - OCH3 ou -N(CH3)2; g) R 7 is selected from the group comprising -H, -OH, -NO 2 , -OCH 3 or -N (CH 3 ) 2 ;
h) R8 é -H ou -OH; h) R 8 is -H or -OH;
i) n é 1 ou 0; e,  i) n is 1 or 0; and,
j) excetuando as estruturas 2, 7, 8, 15, 16, 20, 21 , 29, 31 , 33, 34, 35, 36, 37, 41 , 43, 50 e 52, apresentadas na Figura 11.  j) except structures 2, 7, 8, 15, 16, 20, 21, 29, 31, 33, 34, 35, 36, 37, 41, 43, 50 and 52, shown in Figure 11.
2. Composição farmacêutica, caracterizada por compreender pelo menos um dos compostos representados pelo grupo cuja fórmula estrutural :
Figure imgf000045_0003
, onde:
Figure imgf000046_0001
Pharmaceutical composition, characterized in that it comprises at least one of the compounds represented by the group whose structural formula:
Figure imgf000045_0003
, Where:
Figure imgf000046_0001
b) R3 é selecionado do grupo compreendendo -H, -OH, -CN ou - OCH3; b) R 3 is selected from the group comprising -H, -OH, -CN or -OCH 3 ;
c) R4 é -H ou -OH; c) R 4 is -H or -OH;
d) R5 é selecionado do grupo compreendendo -H, -F, -Cl, -OH, - -CF3, -NO2, -SCH3 ou -OCH3; d) R 5 is selected from the group comprising -H, -F, -Cl, -OH, -CF 3 , -NO 2, -SCH 3 or -OCH 3 ;
Figure imgf000046_0002
Figure imgf000046_0002
f) R6 é -H, -OH ou -NO2; f) R 6 is -H, -OH or -NO 2 ;
g) R7 é -H ou -OH; g) R 7 is -H or -OH;
h) R8 é selecionado do grupo compreendendo -H, -F, -OH, -NO2 ou-OCHa; h) R 8 is selected from the group comprising -H, -F, -OH, -NO 2 or -OCHa;
i) R9 é -H ou -OH;i) R 9 is -H or -OH;
Figure imgf000046_0003
Figure imgf000046_0003
k) n é 0 ou 1 ,  k) n is 0 or 1,
associado a um ou mais excipientes farmaceuticamente aceitáveis.  associated with one or more pharmaceutically acceptable excipients.
3. Composição farmacêutica, de acordo com a reivindicação 4, caracterizada por ser apresentada nas formas líquida, semissolida ou sólida.  Pharmaceutical composition according to Claim 4, characterized in that it is presented in liquid, semi-solid or solid forms.
4. Composição farmacêutica, de acordo com a reivindicação 4, caracterizada por ser administrada pelas vias intramuscular, intravenosa, subcutânea, tópica, oral, inalatoria ou por dispositivos que possam ser implantados ou injetados.  Pharmaceutical composition according to Claim 4, characterized in that it is administered by the intramuscular, intravenous, subcutaneous, topical, oral, inhalation routes or by devices which may be implanted or injected.
5. Composição farmacêutica, de acordo com a reivindicação 4, caracterizada por ser na forma de emulsão compreendendo EDTA dissódico, solução conservante de parabenos, água, álcool cetílico, álcool cetoestearílico e cetilestearilsulfato de sódio combinados na proporção de 9:1 , glicerina e oleato de decila. Pharmaceutical composition according to Claim 4, characterized in that it is in emulsion form comprising EDTA. disodium, paraben preservative solution, water, cetyl alcohol, cetostearyl alcohol and sodium cetylstearyl sulfate in a 9: 1 ratio, glycerine and decyl oleate.
6. Composição farmacêutica, de acordo com a reivindicação 4, caracterizada por ser na forma de gel compreendendo carboximetilcelulose, glicerina, cloreto de benzalconio e água.  Pharmaceutical composition according to Claim 4, characterized in that it is in gel form comprising carboxymethylcellulose, glycerine, benzalkonium chloride and water.
7. Uso dos compostos de fórmulas estruturais
Figure imgf000047_0001
, onde:
7. Use of structural formula compounds
Figure imgf000047_0001
, Where:
Figure imgf000047_0002
Figure imgf000047_0002
b) R3 é selecionado do grupo compreendendo -H, -OH, -CN ou - OCH3; b) R 3 is selected from the group comprising -H, -OH, -CN or -OCH 3 ;
c) R4 é -H ou -OH; c) R 4 is -H or -OH;
d) R5 é selecionado do grupo compreendendo -H, -F, -Cl, -OH, - -CF3, -NO2, -SCH3 ou -OCH3; d) R 5 is selected from the group comprising -H, -F, -Cl, -OH, -CF 3 , -NO 2, -SCH 3 or -OCH 3 ;
Figure imgf000047_0003
Figure imgf000047_0003
f) R6 é -H, -OH ou -NO2; f) R 6 is -H, -OH or -NO 2 ;
g) R7 é -H ou -OH; g) R 7 is -H or -OH;
h) R8 é selecionado do grupo compreendendo -H, -F, -OH, -NO2
Figure imgf000047_0004
h) R 8 is selected from the group comprising -H, -F, -OH, -NO 2
Figure imgf000047_0004
i) R9 é -H ou -OH; i) R 9 is -H or -OH;
j) R10 é -H ou -NO2; e, k) n é 0 ou 1 j) R 10 is -H or -NO 2 ; and, k) n is 0 or 1
caracterizado por ser na preparação de composições farmacêuticas para tratar infecções fúngicas de importância médica e/ou veterinária.  characterized in that it is in the preparation of pharmaceutical compositions for treating fungal infections of medical and / or veterinary importance.
8. Uso dos compostos, de acordo com reivindicação 2, caracterizado pelas infecções fúngicas serem causadas preferencialmente por fungos dos géneros Cândida, Cryptococcus, Paracoccidiodes, Aspergillus, Fonsecaea, Trichophyton e Microsporum. Use of the compounds according to claim 2, characterized in that the fungal infections are preferably caused by fungi of the genera Candida, Cryptococcus, Paracoccidiodes, Aspergillus, Fonsecaea, Trichophyton and Microsporum.
PCT/BR2012/000562 2011-09-23 2012-09-24 Aldimine-derived compounds, pharmaceutical compositions and use WO2013091062A2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
BRPI1106432 BRPI1106432A2 (en) 2011-09-23 2011-09-23 aldimine-derived compounds, pharmaceutical compositions and use
BRPI1106432-3 2011-09-23
BR102012023898-5A BR102012023898B1 (en) 2012-09-21 2012-09-21 Compounds derived from aldimines, pharmaceutical compositions and use
BRBR1020120238985 2012-09-21

Publications (2)

Publication Number Publication Date
WO2013091062A2 true WO2013091062A2 (en) 2013-06-27
WO2013091062A3 WO2013091062A3 (en) 2013-10-10

Family

ID=48669624

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/BR2012/000562 WO2013091062A2 (en) 2011-09-23 2012-09-24 Aldimine-derived compounds, pharmaceutical compositions and use

Country Status (1)

Country Link
WO (1) WO2013091062A2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106397233A (en) * 2016-08-26 2017-02-15 南通奥凯生物技术开发有限公司 Preparation method of pharmaceutical grade disodium ethylene diamine tetraacetate

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4198349A (en) * 1977-10-06 1980-04-15 William H. Rorer, Inc. Benzylideneaniline derivatives
US20090298905A1 (en) * 2005-04-15 2009-12-03 Fernando Pedro Cossio Nitrogenatd trans-stilbene analogs, method for the obtention and medical applications thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4198349A (en) * 1977-10-06 1980-04-15 William H. Rorer, Inc. Benzylideneaniline derivatives
US20090298905A1 (en) * 2005-04-15 2009-12-03 Fernando Pedro Cossio Nitrogenatd trans-stilbene analogs, method for the obtention and medical applications thereof

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CLEITON M. DA SILVA ET AL.: 'Schiff bases: A short review of their antimicrobial activities' JOURNAL OF ADVANCED RESEARCH vol. 2, 2011, pages 1 - 8 *
K. MOUNIKA ET AL.: 'Synthesis, Characterization and Biological Activity of a Schiff Base Derived from 3-Ethoxy Salicylaldehyde and 2-Amino Benzoic acid and its Transition Metal Complexes' J. SCI. RES. vol. 2, no. 3, 2010, pages 513 - 524 *
MOHAMED N IBRAHIM ET AL.: 'Synthesis, Characterization and Study of the Biological activity of Some Aldimines Derivatives' E-JOURNAL OF CHEMISTRY vol. 3, no. 4, October 2006, pages 257 - 261 *
S.ARULMURUGAN ET AL.: 'Biological Activities of Schiff Base and Its Complexes: a Review' RASAYAN J. CHEM. vol. 3, no. 3, 2010, pages 385 - 410 *

Also Published As

Publication number Publication date
WO2013091062A3 (en) 2013-10-10

Similar Documents

Publication Publication Date Title
Hata et al. In vitro and in vivo antifungal activities of ER-30346, a novel oral triazole with a broad antifungal spectrum
Kathiravan et al. The biology and chemistry of antifungal agents: a review
Svetaz et al. Antifungal activity of Zuccagnia punctata Cav.: evidence for the mechanism of action
Magalhães et al. Cinnamyl Schiff bases: Synthesis, cytotoxic effects and antifungal activity of clinical interest
Zhao et al. The efflux pump inhibitor tetrandrine exhibits synergism with fluconazole or voriconazole against Candida parapsilosis
Shreaz et al. Impaired ergosterol biosynthesis mediated fungicidal activity of Co (II) complex with ligand derived from cinnamaldehyde
WO2013091062A2 (en) Aldimine-derived compounds, pharmaceutical compositions and use
WO2001007034A1 (en) Multidrug resistance pump inhibitors and uses thereof
CA2664915A1 (en) Pharmaceutical composition comprising phenylamidine derivative and method of using the pharmaceutical composition in combination with antifungal agent
Martins et al. In vitro antifungal activity of hexahydropyrimidine derivatives against the causative agents of dermatomycosis
JP2009507915A (en) Use of amine-borane compounds as antibacterial agents
BR102012023898A2 (en) aldimine-derived compounds, pharmaceutical compositions and use
CN103275024B (en) Azole antifungal compound and its preparation method and application
Romero Bohórquez et al. Synthesis and in vitro evaluation of antifungal properties of some 4-aryl-3-methyl-1, 2, 3, 4-tetrahydroquinolines derivatives
Liang et al. Discovery of evodiamine derivatives as potential lead antifungal agents for the treatment of superficial fungal infections
Li et al. Tetrandrine, a potent antifungal agent, inhibits mycelial growth and virulence of botrytis cinerea
WO2015030197A1 (en) Novel microbial product having antifungal activity
CN111892573B (en) Substituted sulfur aromatic heterocyclic compound and preparation method and application thereof
CN116041330B (en) Triazole alcohol antifungal compound containing benzoazacyclo side chain, and preparation method and application thereof
US4965272A (en) Antimicrobial compound and compositions particularly effective against candida albicans
Ralph Synthesis and anti-leishmanial activity of novel 2, 3-disubstituted-4 (3H)-quinazolinone derivatives
US11780868B1 (en) Homoleptic metal coordination complexes as antifungal agents
BR102021026047A2 (en) TIAZOLIHYDRAZONES, PHARMACEUTICAL COMPOSITIONS AND USES
US8119696B2 (en) Treatment of superficial and cutaneous mycoses with a pure form of 1,7-bis(4-hydroxy-3-methoxyphenyl)-3,5-heptanedione
Dalla Lana Desenvolvimento de novas entidades químicas e formulações para o tratamento de dermatomicoses

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12859726

Country of ref document: EP

Kind code of ref document: A2

122 Ep: pct application non-entry in european phase

Ref document number: 12859726

Country of ref document: EP

Kind code of ref document: A2