WO2013089167A1 - Hot press formed product, manufacturing method for same, and press forming equipment - Google Patents

Hot press formed product, manufacturing method for same, and press forming equipment Download PDF

Info

Publication number
WO2013089167A1
WO2013089167A1 PCT/JP2012/082291 JP2012082291W WO2013089167A1 WO 2013089167 A1 WO2013089167 A1 WO 2013089167A1 JP 2012082291 W JP2012082291 W JP 2012082291W WO 2013089167 A1 WO2013089167 A1 WO 2013089167A1
Authority
WO
WIPO (PCT)
Prior art keywords
press
temperature
strength region
formed product
hot press
Prior art date
Application number
PCT/JP2012/082291
Other languages
French (fr)
Japanese (ja)
Inventor
圭介 沖田
純也 内藤
池田 周之
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Publication of WO2013089167A1 publication Critical patent/WO2013089167A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/20Deep-drawing
    • B21D22/208Deep-drawing by heating the blank or deep-drawing associated with heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/673Quenching devices for die quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2221/00Treating localised areas of an article

Definitions

  • the present invention relates to a hot press-formed product that requires strength as used for a structural member of an automobile part, a method for manufacturing the same, and a press-forming facility for manufacturing the press-formed product, and is particularly preheated.
  • the present invention relates to a hot press-formed product that obtains a predetermined strength by quenching at the same time as forming a steel sheet when it is formed into a predetermined shape, a manufacturing method of such a hot press-formed product, and a press forming facility therefor. is there.
  • the steel plate (work material) is heated to a predetermined temperature (for example, the temperature at which it becomes an austenite phase) to reduce the strength (that is, to facilitate forming), and then to the steel plate.
  • a predetermined temperature for example, the temperature at which it becomes an austenite phase
  • Hot press molding method that secures strength after molding by molding with a low temperature mold (for example, room temperature) compared to providing shape and quenching heat treatment (quenching) using the temperature difference between the two. Is used in parts manufacturing.
  • Such a hot press molding method since the molding is performed in a low strength state, the spring back is reduced (good shape freezing property), and a strength of 1500 MPa class is obtained as a tensile strength by rapid cooling.
  • a hot press forming method is called by various names such as a hot forming method, a hot stamping method, a hot stamp method, a die quench method, etc. in addition to a hot press method (for example, Patent Document 1).
  • FIG. 1 is a schematic explanatory view showing a mold configuration for carrying out the above hot press molding (hereinafter may be represented by “hot stamp”).
  • 3 is a blank holder
  • 4 is a steel plate (blank)
  • BHF is a crease pressing force
  • rp is a punch shoulder radius
  • rd is a die shoulder radius
  • CL is a punch / die clearance.
  • the punch 1 and the die 2 have passages 1a and 2a through which a cooling medium (for example, water) can pass, and the cooling medium is allowed to pass through the passages.
  • a cooling medium for example, water
  • a hot press forming facility provided with a press forming machine having a mold configuration as described above is disclosed in Non-Patent Document 1, for example.
  • a heating furnace for heating and softening a thin steel plate an apparatus for conveying the heated thin steel plate, a press forming machine for press-forming the thin steel plate, and trimming the formed product (laser) Etc., and a device for performing correction processing to obtain a final shape.
  • laser formed product
  • a method (direct method) is shown in which a hot press-formed product having a simple shape as shown in FIG. 1 is simultaneously formed and quenched in a mold from the stage of a steel plate.
  • the hot pressing method applied in (1) is not limited to the case of applying to such a construction method, but can also be applied to the case of manufacturing a molded product having a relatively complicated shape.
  • a method of performing cold press forming in a pre-process of hot press forming can be adopted (this method is called “indirect method”).
  • the indirect method is a method in which a portion that is difficult to be molded is preliminarily molded to an approximate shape by cold working, and the other portions are hot press molded. If this method is adopted, for example, when a part having three uneven portions (mountains) of a molded product is formed, the two parts are formed by cold press molding, and then the third part is formed. Will be hot-formed.
  • the conventional hot stamping method has a problem that the hardness is increased by quenching, so that drilling and trimming become difficult as the shear resistance increases (particularly when the direct method is adopted). Moreover, even if it can process, in addition to the influence of a tool breakage and tool wear, since a high residual stress arises in the cutting surface vicinity of a blank material, there exists a possibility of causing a delayed fracture. Therefore, for example, laser cutting is used when trimming, but application of laser cutting is expensive and causes high costs. For these reasons, there is a demand for a method that enables trimming by a mold (sometimes referred to as “die trimming”). Moreover, since rapid cooling (die quench) is performed in the mold, it is necessary to hold the mold at the bottom dead center for a certain period of time, and the low productivity also causes high costs.
  • a collision-resistant safety part in an automobile body structure needs to have both functions of an impact resistant part and an energy absorbing part.
  • the mainstream method has so far been laser-welded (Tailored Weld Blanks: TWB) of high strength high tensile strength and high strength high strength tensile strength steel and then cold-pressed. It was.
  • TWB Laser-welded
  • the material ductility decreases as the strength increases, so that it becomes difficult to exhibit the function as an energy absorbing portion where ductility is required.
  • material softening tends to occur in a heat affected zone (HAZ) formed during spot welding. When such a portion is subjected to an impact load, the breakage starting from the HAZ is also a cause of reducing the ductility of the component.
  • a technique in which the strength of a part of the hot stamped product is intentionally reduced that is, a technique in which different strength regions (high strength region and low strength region) are separately created in one part is also proposed.
  • Such technology is called tailored tempering or soft flange.
  • a technique for example, in Patent Document 3, a mold contacting with a low-strength region is recessed to reduce the contact area, or a heating means is provided to partially increase the mold temperature, or the mold material
  • a technique has been proposed in which a low-strength region is created by using a material having a low thermal conductivity and slowing the cooling rate.
  • a surface-treated steel sheet (Zn—Fe-based plated steel sheet) in which a Zn—Fe-based plated layer containing a predetermined amount of Fe is formed on the substrate surface is used.
  • Liquid liquid metal embrittlement
  • molten zinc enters the grain boundaries of the steel sheet subjected to tensile stress.
  • LME Metal Emblence
  • JP 2002-102980 A JP 2007-275937 A JP 2003-328031 A JP 2007-75834 A
  • the present invention has been made in view of the above circumstances, and its purpose is to perform hot press molding, which is excellent in productivity at the time of production, part ductility, and if necessary, hot press molded article having excellent corrosion resistance, It is another object of the present invention to provide a useful method for producing such a hot press-formed product and an equipment for producing such a hot press-formed product.
  • the present invention method which was able to achieve the above object, a hot press molded product having a high strength region and low intensity regions within a single component, when prepared using a press molding die, the steel sheet Ac 3 After heating to a temperature equal to or higher than the transformation point, prior to starting press molding, the high strength region is rapidly cooled.
  • the temperature of the steel sheet before press forming is 600 ° C. or lower in the high strength region, the martensite transformation start temperature Ms or higher, and 650 ° C. or higher in the low strength region.
  • the time from the start of rapid cooling to the start of press molding is preferably within 30 seconds.
  • the temperature of the molded product at the time of mold release after press molding is not more than the martensite transformation start temperature Ms + 100 ° C. in the high strength region, is not less than the martensite transformation end temperature Mf, and is in the low strength region (martensite transformation start temperature Ms + 100 ° C.) or higher.
  • the molded product may be allowed to cool after release, but (b) after molding, the high-strength region has an average cooling rate of 5 ° C./second or more and the martensite transformation end temperature. You may make it cool to the temperature below Mf.
  • the forming start temperature is equal to or lower than the freezing point of the plating layer according to the Fe content in the plating layer.
  • the temperature is The steel plate used in the present invention is not limited to a Zn—Fe-based plated steel plate, and a non-plated steel plate or an Al—Si-based plated steel plate may be used.
  • the present invention also includes a hot press-molded product obtained by the manufacturing method as described above. Moreover, as a press molding facility for producing such a hot press-formed product, a heating furnace and a press molding machine are provided, and a high strength region of a heated steel plate is provided between the heating furnace and the press molding machine. It is useful to provide a cooling part for partially quenching the water.
  • the steel plate is heated to a temperature equal to or higher than the Ac 3 transformation point. Later, prior to the start of press molding, the high-strength region was rapidly cooled, so a hot press-formed product with excellent ductility in the low-strength region and excellent part ductility can be produced with high productivity. .
  • the present inventors have studied from various angles in order to manufacture hot press-formed products having a high strength region and a low strength region in a single part with good productivity while ensuring the ductility of the part.
  • the steel plate is heated to a temperature equal to or higher than the Ac 3 transformation point, and then, before starting press forming, high strength It has been found that if the region is rapidly cooled, a hot press molded product having excellent ductility in a low strength region and excellent component ductility can be produced with high productivity, and the present invention has been completed.
  • the steel plate it is necessary to heat the steel plate to a temperature equal to or higher than the Ac 3 transformation point in order to exert the effect of the hot pressing method.
  • the heating temperature is less than the Ac 3 transformation point, an appropriate amount of austenite cannot be obtained during heating, and good moldability cannot be ensured.
  • the preferable lower limit of the heating temperature is not less than (Ac 3 transformation point + 50 ° C.) of the steel sheet.
  • the upper limit of the heating temperature of the steel sheet is preferably up to about 1000 ° C.
  • this heating temperature is higher than 1000 ° C.
  • the generation of oxide scale becomes significant (for example, 100 ⁇ m or more) during conveyance from the heating furnace to a press molding machine (see FIG. 5 below), and the thickness of the molded product (de There is a possibility that the thickness after scaling will be smaller than a predetermined value.
  • the upper limit with preferable heating temperature is 950 degrees C or less.
  • FIG. 2 The image of the heat pattern of the method of the present invention is schematically shown in FIG. 2 (CCT curve: Continuous Cooling Transformation diagram).
  • a high-strength region region desired to be a high-strength region: indicated by “region A” in the figure
  • a low-strength region region desired to be a low-strength region: “ In the region B "
  • press molding is simultaneously performed at a high temperature.
  • the die quench time at the bottom dead center of molding is shortened as much as possible.
  • the average cooling rate at the time of rapid cooling in the high strength region is preferably at least 27 ° C./second or more, more preferably 40 ° C./second or more.
  • the time from the rapid cooling start (region A) before press forming to the start of press forming is within 30 seconds (more preferably within 20 seconds), and the temperature of the steel plate before press forming is In the high-strength region (region A), the temperature is preferably 600 ° C. or lower and the martensitic transformation start temperature Ms or higher. This temperature corresponds to the rapid cooling end temperature in the high strength region.
  • the temperature in the low-strength region (region B) although the rapid cooling is not basically performed, the temperature of the steel sheet may decrease after heating and before press forming. In such a case, the low-strength region before press forming is assumed.
  • the temperature is preferably 650 ° C. or higher.
  • the die quench time (holding time at the molding bottom dead center) is preferably within 5 seconds (more preferably within 3 seconds).
  • the steel plate temperature (molded product temperature) at the time of mold release after press forming is (martensitic transformation start temperature Ms + 100 ° C.) or lower in the high strength region, martensitic transformation end temperature Mf or higher, and in the low strength region (martensitic transformation). It is preferable that the starting temperature is Ms + 100 ° C. or higher. By controlling in this way, higher strength can be achieved in the high strength region, and lower strength can be realized in the low strength region.
  • the steel plate temperature (molded product temperature) at the time of mold release after press forming is more preferably not higher than the martensite transformation start temperature Ms in the high strength region and not lower than (martensite transformation start temperature Ms + 180 ° C.) in the low strength region. .
  • the molded product may be allowed to cool after mold release.
  • the high-strength region has an average cooling rate of 5 ° C./second or more and a temperature equal to or lower than the martensite transformation end temperature Mf. You may make it cool (secondary cooling).
  • the average cooling rate of the secondary cooling is more preferably 10 ° C./second or more, and further preferably 20 ° C./second or more.
  • the high strength region is partially cooled before press molding, and the low strength region is basically formed without cooling before molding.
  • die trimming can be performed, and it is not necessary to use a laser cutting machine, so that low cost can be realized.
  • die trimming in a low-strength region is possible, there is an advantage that the risk of wear and damage of the mold can be reduced, and this also leads to low cost.
  • the low-strength region is die-trimmed, high residual stress is not generated in the vicinity of the cut surface, and the fear of delayed fracture is eliminated.
  • partial rapid cooling before press molding can shorten the die quench time, thereby improving productivity and reducing costs in this respect.
  • the material ductility of the low strength region is improved, so that the moldability of the entire molded product is improved.
  • material softening in the HAZ accompanying welding can be reduced, so the HAZ starting point is destroyed when subjected to an impact load.
  • the ductility of the molded product is improved.
  • LME in hot stamping is thought to occur when molten zinc penetrates into a place where tensile stress is applied in a Zn-based plated steel sheet being formed. That is, if press molding is performed below the freezing point of the Zn-based plating layer, LME does not occur. Therefore, as shown in FIG. 2, only the region A including the bending portion where tensile stress is generated during press forming is rapidly cooled before press forming, and the solidification temperature of the Zn-based plating layer (the freezing point corresponding to the Fe content). : Indicated by “Fp” in FIG.
  • low strength region is preferably formed at a temperature lower than the freezing point of the plating layer.
  • it is not significantly affected by press forming it is not always necessary to form at a temperature lower than the freezing point. What is necessary is just to start shaping
  • FIG. 3 is a Zn—Fe binary system state diagram.
  • the broken line portion in the figure indicates the boundary between the region including the liquid layer and the solid phase region (that is, corresponding to the freezing point: indicated by “Fp” in the drawing), and below this boundary is the solid phase region. Since the Zn-Fe-based plating layer has a different Fp temperature depending on the Fe content in the plating layer, the temperature of the galvanized layer before forming is equal to or less than Fp (corresponding to the freezing point) according to the Fe content. Cool down.
  • the press-forming is performed at a temperature below the freezing point of the plated layer according to the Fe content in the Zn—Fe-based plated layer. Since this is done, there is basically no LME problem. Therefore, even in a press-molded product manufactured by hot stamping, the sacrificial anticorrosive property of the Zn—Fe-based plated steel sheet can be exhibited, and application to the underbody becomes possible.
  • the steel type of the steel plate used in the method of the present invention may be a normal chemical component composition as a high-strength steel plate.
  • a steel plate having the chemical composition shown in Table 1 below can be cited.
  • the steel sheet has an Ac 3 transformation point of 832 ° C., a martensite transformation start temperature Ms: 411 ° C., and a martensite transformation end temperature Mf: 261 ° C.
  • the Ac 3 transformation point, Ms, and Mf of the steel sheet are values obtained using the following formulas (1) to (3) ( For example, “Heat Treatment” 41 (3), 164 to 169, 2001 Tetsuro Kunitake “Predicting Ac 1 , Ac 3 and Ms transformation points of steel by empirical formula”).
  • the Fe content in the Zn—Fe-based plating layer formed on the surface of the steel sheet is not particularly limited, and may be plated if it is 5% by mass or more (more preferably 13% by mass or more). Although it functions as a layer, if the Fe content is excessive, corrosion resistance, coating film adhesion, weldability, etc. are likely to deteriorate, so it is preferably 80% by mass or less (more preferably 20% by mass). Less than).
  • the Zn—Fe-based plating layer may contain alloy elements other than Fe (eg, Al, Mn, Ni, Cr, Co, Mg, Sn, Pb, etc.) up to about 3.3 mass%. These elements have little influence on the freezing point at the content level.
  • the Zn—Fe plating layer has some inevitable factors such as Be, B, Si, P, Ti, V, W, Mo, Sb, Cd, Nb, Cu, and Sr. Impurities can also be included.
  • the conventional hot press line generally has a configuration (equipment configuration) as shown in FIG. 4 (schematic explanatory diagram). That is, as shown in FIG. 4, after the coiled steel sheet 10 is cut out by a cutting machine 11 (Blanking), it is heated in a heating furnace 12, and then conveyed to the press molding machine 13 to perform press forming. A press-formed product 14 is obtained.
  • a cooling unit 15 is provided inside the heating furnace 12 in association with the heating furnace 12, and a part of the steel sheet is rapidly moved until the steel sheet 10 is moved from the heating furnace 12 to the press forming machine 13. Cooling.
  • the cooling unit 15 may be provided between the heating furnace 12 and the press molding machine 13 (see, for example, “cooling unit” or “cooling zone” in FIGS. 6 to 8). In the cooling performed by the cooling unit 15, for example, cooling can be performed by the following methods (1) to (4) (or in combination).
  • a means for bringing into contact with a metal as a refrigerant for example, a cooling means using a water-cooled roll
  • a gas cooling means is provided to cool the gas jet.
  • Provide mist cooling means for cooling for example, FIG. 8).
  • a dry ice shot means (cooled by causing the granule dry ice to collide with the blank material) is cooled.
  • the atmosphere can be controlled (for example, nitrogen or argon atmosphere) to prevent surface oxidation of the steel sheet. It is also possible to suppress surface oxidation by setting a relatively low temperature.
  • the cooling conditions differ depending on different regions (high strength region and low strength region) of the steel sheet, but the cooling means (1) to (4) described above are used only for the high strength region.
  • the cooling control corresponding to the steel plate region may be performed in the mold.
  • FIG. 6 is a schematic view showing a configuration example of the cooling unit, and shows a facility for cooling a heated thin steel plate by sandwiching it with a metal.
  • the heated thin steel sheet is transported from the heating furnace to a flat mold for cooling (dedicated cooling mold), and the thin steel sheet is rapidly cooled to a predetermined temperature by pressing with this mold (cooling by holding metal). .
  • the steel sheet may be conveyed to a mold having a predetermined shape (depress-only mold) and press-molded.
  • the shape of the cooling-only mold is preferably a flat surface on the steel plate contact surface side in order to cool the steel plate uniformly, but it is not necessarily flat for a temperature distribution or for some pre-forming. It is not necessary to have a step or curvature.
  • the steel plate is cooled to a predetermined temperature with a flat die (cooling-only die), and then sequentially pressed with a die having a predetermined shape.
  • a flat die cooling-only die
  • a die having a predetermined shape By molding, it is also possible to mold into a complicated shape (press die 1 and press die 2). Further, a step of imparting shape freezing property and a step of performing die trim piercing may be added.
  • partial cooling before press forming is not limited to sandwiching metal, but may be a method of rapid cooling by spraying mist (or air) as shown in FIG.
  • mist and air since the transition region between the cooling region and the non-cooling region becomes wide, in order to cool the target region (high-strength region) with high accuracy, it is preferable to perform cooling by sandwiching metal.
  • FIGS. 6 and 7 a transfer press molding machine that continuously performs cooling means and mold molding is assumed, but the press molding machine used in the present invention is not limited to such a configuration, As long as a sufficient conveyance speed can be ensured, a configuration in which the press molding machine provided with each mold is separated may be used. From the viewpoint of shortening the press time, it is preferable to use a mechanical press (called a mechanical press) with a mechanical driving force for the pressure generating mechanism, but hydraulic pressure is used for the pressure generating mechanism. It may be a hydraulic press (for example, a hydraulic press).
  • the present invention In producing a hot press-formed product having a high-strength region and a low-strength region in a single part using a press-molding die, the present invention, after heating the steel plate to a temperature equal to or higher than the Ac 3 transformation point, Prior to the start of press molding, the high-strength region is rapidly cooled to obtain a hot press-molded product having excellent productivity and part ductility at the time of manufacture, and excellent corrosion resistance if necessary.

Abstract

 When using a press forming mold to manufacture a hot press formed product having a high-strength region and a low-strength in a single component, a hot press formed product exhibiting superior productivity and component ductility during manufacture and exhibiting superior corrosion resistance when necessary is manufactured by heating a steel sheet to a temperature equal to or above the Ac3 transformation point, and then fast cooling the high-strength region before initiating press forming.

Description

熱間プレス成形品およびその製造方法、並びにプレス成形設備Hot press-formed product, method for manufacturing the same, and press-forming equipment
 本発明は、自動車部品の構造部材に使用されるような強度が必要とされる熱間プレス成形品およびその製造方法、並びにプレス成形品を製造するためのプレス成形設備に関し、特に予め加熱された鋼板を所定の形状に成形加工する際に、形状付与と同時に焼入れて所定強度を得る熱間プレス成形品、およびそのような熱間プレス成形品の製造方法、並びにそのためのプレス成形設備に関するものである。 TECHNICAL FIELD The present invention relates to a hot press-formed product that requires strength as used for a structural member of an automobile part, a method for manufacturing the same, and a press-forming facility for manufacturing the press-formed product, and is particularly preheated. The present invention relates to a hot press-formed product that obtains a predetermined strength by quenching at the same time as forming a steel sheet when it is formed into a predetermined shape, a manufacturing method of such a hot press-formed product, and a press forming facility therefor. is there.
 地球環境問題に端を発する自動車の燃費向上対策の一つとして、車体の軽量化が進められており、自動車に使用される鋼板をできるだけ高強度化することが必要となる。しかしながら、自動車の軽量化のために鋼板を高強度化していくと、伸びELやr値(ランクフォード値)が低下し、プレス成形性や形状凍結性が劣化することになる。 As one of the measures to improve the fuel efficiency of automobiles that originated from global environmental problems, the weight of the car body has been reduced, and it is necessary to increase the strength of steel sheets used in automobiles as much as possible. However, when the strength of steel sheets is increased to reduce the weight of automobiles, the elongation EL and r value (Rankford value) decrease, and the press formability and shape freezeability deteriorate.
 この様な課題を解決するために、鋼板(被加工材)を所定の温度(例えば、オーステナイト相となる温度)に加熱して強度を下げた(即ち、成形を容易にした)後、鋼板に比べて低温(例えば室温)の金型で成形することによって、形状の付与と同時に、両者の温度差を利用した急冷熱処理(焼入れ)を行って、成形後の強度を確保する熱間プレス成形法が部品製造に採用されている。 In order to solve such a problem, the steel plate (work material) is heated to a predetermined temperature (for example, the temperature at which it becomes an austenite phase) to reduce the strength (that is, to facilitate forming), and then to the steel plate. Hot press molding method that secures strength after molding by molding with a low temperature mold (for example, room temperature) compared to providing shape and quenching heat treatment (quenching) using the temperature difference between the two. Is used in parts manufacturing.
 こうした熱間プレス成形法によれば、低強度状態で成形されるので、スプリングバックも小さくなると共に(形状凍結性が良好)、急冷によって引張強度で1500MPa級の強度が得られることになる。尚、この様な熱間プレス成形法は、ホットプレス法の他、ホットフォーミング法、ホットスタンピング法、ホットスタンプ法、ダイクエンチ法等、様々な名称で呼ばれている(例えば、特許文献1)。 According to such a hot press molding method, since the molding is performed in a low strength state, the spring back is reduced (good shape freezing property), and a strength of 1500 MPa class is obtained as a tensile strength by rapid cooling. Such a hot press forming method is called by various names such as a hot forming method, a hot stamping method, a hot stamp method, a die quench method, etc. in addition to a hot press method (for example, Patent Document 1).
 図1は、上記のような熱間プレス成形(以下、「ホットスタンプ」で代表することがある)を実施するための金型構成を示す概略説明図であり、図中1はパンチ、2はダイ、3はブランクホルダー、4は鋼板(ブランク)、BHFはしわ押え力、rpはパンチ肩半径、rdはダイ肩半径、CLはパンチ/ダイ間クリアランスを夫々示している。また、これらの部品のうち、パンチ1とダイ2には冷却媒体(例えば水)を通過させることができる通路1a,2aが夫々の内部に形成されており、この通路に冷却媒体を通過させることによってこれらの部材が冷却されるように構成されている。 FIG. 1 is a schematic explanatory view showing a mold configuration for carrying out the above hot press molding (hereinafter may be represented by “hot stamp”). In FIG. Die, 3 is a blank holder, 4 is a steel plate (blank), BHF is a crease pressing force, rp is a punch shoulder radius, rd is a die shoulder radius, and CL is a punch / die clearance. Of these components, the punch 1 and the die 2 have passages 1a and 2a through which a cooling medium (for example, water) can pass, and the cooling medium is allowed to pass through the passages. These members are configured to be cooled.
 上記のような金型構成を有するプレス成形機を備えた熱間プレス成形設備は、例えば非特許文献1に開示されている。この設備では、薄鋼板を加熱して軟化させるための加熱炉、加熱した薄鋼板を搬送するための装置、薄鋼板をプレス成形するためのプレス成形機、および成形した成形品をトリミング加工(レーザ等によって最終形状にするための補正加工)するための装置等を備えたものである。 A hot press forming facility provided with a press forming machine having a mold configuration as described above is disclosed in Non-Patent Document 1, for example. In this facility, a heating furnace for heating and softening a thin steel plate, an apparatus for conveying the heated thin steel plate, a press forming machine for press-forming the thin steel plate, and trimming the formed product (laser) Etc., and a device for performing correction processing to obtain a final shape.
 こうした金型を用いてホットスタンプ(例えば熱間深絞り加工)するに際しては、鋼板(ブランク)4を加熱して軟化させた状態で成形を開始する(ダイレクト工法)。即ち、高温状態にある鋼板4をダイ2とブランクホルダー3間に挟んだ状態で、パンチ1によってダイ2の穴内(図1の2,2間)に鋼板4を押し込み、鋼板4の外径を縮めつつパンチ1の外形に対応した形状に成形する。また、成形と並行してパンチ1およびダイ2を冷却することによって、鋼板4から金型(パンチ1およびダイ2)への抜熱を行うと共に、成形下死点(パンチ先端が最深部に位置した時点:図1に示した状態)で更に保持冷却することによって素材の焼入れを実施する(ダイクエンチ)。こうした成形法を実施することによって、寸法精度の良い1500MPa級の成形品を得ることができ、しかも冷間で同じ強度クラスの部品を成形する場合に比較して、成形荷重が低減できることからプレス機の容量が小さくて済むことになる。このような成形方法は例えば特許文献2にも開示されている。 When hot stamping (for example, hot deep drawing) using such a mold, forming is started in a state where the steel plate (blank) 4 is heated and softened (direct method). That is, in a state where the steel plate 4 in a high temperature state is sandwiched between the die 2 and the blank holder 3, the steel plate 4 is pushed into the hole of the die 2 (between 2 and 2 in FIG. 1) by the punch 1, and the outer diameter of the steel plate 4 is reduced. While shrinking, it is formed into a shape corresponding to the outer shape of the punch 1. Further, by cooling the punch 1 and the die 2 in parallel with the forming, heat is removed from the steel plate 4 to the mold (punch 1 and die 2), and the bottom dead center of the forming (the punch tip is located at the deepest part). In the state shown in FIG. 1), the material is further quenched by holding and cooling (die quench). By carrying out such a molding method, it is possible to obtain a 1500 MPa class molded product with good dimensional accuracy and to reduce the molding load compared to the case of molding parts of the same strength class in the cold. The capacity of the can be small. Such a molding method is also disclosed in Patent Document 2, for example.
 上記した手順では、前記図1に示したような単純な形状の熱間プレス成形品を、鋼板の段階から金型内で成形と焼入れを同時に行う方法(ダイレクト工法)を示したが、本発明で適用する熱間プレス方法は、こうした工法に適用する場合に限らず、比較的複雑な形状の成型品を製造する場合にも適用できるものである。 In the above-described procedure, a method (direct method) is shown in which a hot press-formed product having a simple shape as shown in FIG. 1 is simultaneously formed and quenched in a mold from the stage of a steel plate. The hot pressing method applied in (1) is not limited to the case of applying to such a construction method, but can also be applied to the case of manufacturing a molded product having a relatively complicated shape.
 即ち、比較的複雑な形状の成型品を製造する場合には、1回のプレス成形では製品の最終形状までを作り込むことが難しいことがある。この様な場合には、熱間プレス成形の前工程で冷間プレス成形を行う方法を採用することができる(この方法は、「インダイレクト工法」と呼ばれている)。インダイレクト工法では、成形が難しい部分を冷間加工によって近似形状まで予め成形しておき、その他の部分を熱間プレス成形する方法である。この方法を採用すれば、例えば成型品の凹凸部(山部)が3箇所あるような部品を成形する際に、冷間プレス成形によって、その2箇所まで成形しておき、その後に3箇所目を熱間成形することになる。 That is, when manufacturing a molded product having a relatively complicated shape, it may be difficult to make the final shape of the product by one press molding. In such a case, a method of performing cold press forming in a pre-process of hot press forming can be adopted (this method is called “indirect method”). The indirect method is a method in which a portion that is difficult to be molded is preliminarily molded to an approximate shape by cold working, and the other portions are hot press molded. If this method is adopted, for example, when a part having three uneven portions (mountains) of a molded product is formed, the two parts are formed by cold press molding, and then the third part is formed. Will be hot-formed.
 従来のホットスタンプ法による成形品では、焼入れによって硬度が上昇するため、剪断抵抗の増大に伴い穴加工やトリム加工が困難になるという問題がある(特に、ダイレクト工法を採用した場合)。また、加工できたとしても、工具破損や工具摩耗の影響がある他、ブランク材の切断面近傍に高い残留応力が生じるため、遅れ破壊の原因となる虞がある。従って、例えばトリム加工するに際してはレーザ切断を利用することになるが、レーザ切断を適用すると高価となり、高コストの原因となる。こうしたことから、金型よるトリム加工(これを「ダイトリミング」と呼ぶことがある)が可能であるような方法が望まれている。また、金型内急冷(ダイクエンチ)を行うため、成形下死点で一定時間保持する必要があり、生産性が低いことも高コストの原因となっている。 The conventional hot stamping method has a problem that the hardness is increased by quenching, so that drilling and trimming become difficult as the shear resistance increases (particularly when the direct method is adopted). Moreover, even if it can process, in addition to the influence of a tool breakage and tool wear, since a high residual stress arises in the cutting surface vicinity of a blank material, there exists a possibility of causing a delayed fracture. Therefore, for example, laser cutting is used when trimming, but application of laser cutting is expensive and causes high costs. For these reasons, there is a demand for a method that enables trimming by a mold (sometimes referred to as “die trimming”). Moreover, since rapid cooling (die quench) is performed in the mold, it is necessary to hold the mold at the bottom dead center for a certain period of time, and the low productivity also causes high costs.
 自動車車体構造における耐衝突安全部品では、耐衝撃性部位とエネルギー吸収部位の両機能を持たせる必要がある。この様な部品を作製するには、これまでは高強度のハイテンと、低強度で伸びのあるハイテンをレーザ溶接(テーラードウエルドブランク:TWB)して、冷間でプレス成形する方法が主流であった。一方、従来のホットスタンプ法によって得られた成形品では、強度上昇に伴って、材料延性が低下するので、延性が要求されるようなエネルギー吸収部位としての機能を発揮させることが困難となる。また、金型焼入れ(ダイクエンチ)によって高強度となっているので、スポット溶接時に形成される熱影響部(Heat Affected Zone:HAZ)で材料的な軟化が生じやすい。こうした部分に、衝撃荷重を受けた場合には、HAZを起点として破壊が生じることも部品延性を低下させる原因となっている。 A collision-resistant safety part in an automobile body structure needs to have both functions of an impact resistant part and an energy absorbing part. In order to produce such parts, the mainstream method has so far been laser-welded (Tailored Weld Blanks: TWB) of high strength high tensile strength and high strength high strength tensile strength steel and then cold-pressed. It was. On the other hand, in a molded product obtained by the conventional hot stamping method, the material ductility decreases as the strength increases, so that it becomes difficult to exhibit the function as an energy absorbing portion where ductility is required. Further, since the strength is increased by die quenching (die quench), material softening tends to occur in a heat affected zone (HAZ) formed during spot welding. When such a portion is subjected to an impact load, the breakage starting from the HAZ is also a cause of reducing the ductility of the component.
 上記の問題を回避する方法として、ホットスタンプ成形品の一部の強度をあえて低下させた技術、即ち一つの部品内に異なる強度領域(高強度領域および低強度領域)を作り分ける技術も提案されており、この様な技術はテーラード・テンパリングやソフトフランジと呼ばれている。こうした技術として、例えば特許文献3では、低強度領域と接する金型について、凹みをつけて接触面積を減らしたり、加熱手段を設けて部分的に金型温度を上げたり、或は金型の材質を熱伝導率の低いものを使用して冷却速度を遅くすることによって、低強度領域を作り分ける技術が提案されている。 As a method for avoiding the above problems, a technique in which the strength of a part of the hot stamped product is intentionally reduced, that is, a technique in which different strength regions (high strength region and low strength region) are separately created in one part is also proposed. Such technology is called tailored tempering or soft flange. As such a technique, for example, in Patent Document 3, a mold contacting with a low-strength region is recessed to reduce the contact area, or a heating means is provided to partially increase the mold temperature, or the mold material A technique has been proposed in which a low-strength region is created by using a material having a low thermal conductivity and slowing the cooling rate.
 しかしながら、この様な技術では、金型内の冷却速度を遅くすることによって、低強度領域を作り分けているため、成形品を金型内に留めておく時間(ダイクエンチ時間)が長くなり、従来のホットスタンプよりもタクトタイムが必然的に長くなり、生産性が極めて低下し、高コストとなる。また金型内にヒータを埋め込んだり、凹みを設けたりするため、金型構造が複雑になり、このことも高コストの原因となる。 However, in such a technique, since the low strength region is created by slowing down the cooling rate in the mold, the time for keeping the molded product in the mold (die quench time) becomes longer, As a result, the tact time is inevitably longer than that of hot stamping, and productivity is greatly reduced, resulting in higher costs. Moreover, since a heater is embedded in the mold or a recess is provided, the mold structure becomes complicated, which also causes high costs.
 特許文献4の技術では、特許文献3の技術と同じように冷却過程での冷却速度を異ならせることに加え、加熱過程で温度分布を付ける方法が提案されている。ホットスタンプの技術によって高強度とするためには、加熱過程でオーステナイト単相の温度域(Ac3変態点以上の温度域)となるように加熱する必要がある。これを利用して、加熱過程で高強度領域の温度はAc3変態点以上に加熱し、低強度領域の温度はAc3変態点よりも低い温度に加熱した状態で、プレス成形およびダイクエンチする技術である。 In the technique of Patent Document 4, in addition to changing the cooling rate in the cooling process as in the technique of Patent Document 3, a method of providing a temperature distribution in the heating process has been proposed. In order to obtain high strength by the hot stamping technique, it is necessary to heat so as to be in the temperature range of the austenite single phase (temperature range above the Ac 3 transformation point) in the heating process. Utilizing this technique, the temperature of the high strength region is heated to the Ac 3 transformation point or higher in the heating process, and the temperature of the low strength region is heated to a temperature lower than the Ac 3 transformation point, and press molding and die quenching are performed. It is.
 しかしながら、この方法では、加熱過程で温度分布を受けるために、加熱装置内に遮蔽板を設ける必要があり、装置改造に多大な時間とコストを要することになる。また、部品の設計変更が実施されると、それに伴って遮蔽板を変更する必要があり、煩雑となる。 However, in this method, in order to receive a temperature distribution in the heating process, it is necessary to provide a shielding plate in the heating device, and much time and cost are required for remodeling the device. Moreover, when the design change of a part is implemented, it will be necessary to change a shielding board in connection with it, and will become complicated.
 一方、成形品への要求特性として、特に車体下部(アンダーボディ)では良好な耐食性が求められる。こうしたことから、プレス成形品の素材となる鋼板としては、表面にめっき処理を施した表面処理鋼板(めっき鋼板)を用い、プレス成形品の耐食性を向上させることも行われている。現在、ダイレクト法で用いるホットスタンプ用めっき鋼板としては、Al-Si系めっき鋼板が広く用いられている。 On the other hand, as a required characteristic for a molded product, good corrosion resistance is required particularly in the lower part of the vehicle body (underbody). For this reason, as a steel plate used as a material of the press-formed product, a surface-treated steel plate (plated steel plate) whose surface is plated is used to improve the corrosion resistance of the press-formed product. Currently, Al—Si-based plated steel sheets are widely used as hot stamped plated steel sheets used in the direct method.
 犠牲防食性を発揮するものとして、所定量のFeを含有するZn-Fe系めっき層を素地表面に形成した表面処理鋼板(Zn-Fe系めっき鋼板)が用いられるようになっている。しかしながら、この様な表面処理鋼板を用いた場合に、インダイレクト法においては、プレス成形中に、溶融亜鉛が引張り応力を受ける鋼板の粒界に侵入し、遅れ破壊を引き起こす液体金属脆化(Liquid-Metal Embrittlement:LME)が発生するという別の問題があり、成形品をアンダーボディに適用することが困難になる。 As a material that exhibits sacrificial corrosion resistance, a surface-treated steel sheet (Zn—Fe-based plated steel sheet) in which a Zn—Fe-based plated layer containing a predetermined amount of Fe is formed on the substrate surface is used. However, when such a surface-treated steel sheet is used, in the indirect method, liquid metal embrittlement (Liquid) that causes delayed fracture occurs during press forming, in which molten zinc enters the grain boundaries of the steel sheet subjected to tensile stress. -There is another problem of occurrence of Metal Emblemment (LME), making it difficult to apply the molded product to the underbody.
特開2002-102980号公報JP 2002-102980 A 特開2007-275937号公報JP 2007-275937 A 特開2003-328031号公報JP 2003-328031 A 特開2007-75834号公報JP 2007-75834 A
 本発明は上記事情に鑑みてなされたものであって、その目的は、熱間プレス成形するに際し、製造時における生産性、部品延性に優れ、必要によって耐食性にも優れた熱間プレス成形品、およびこのような熱間プレス成形品を製造するための有用な方法、並びにこうした熱間プレス成形品を製造するための設備を提供することにある。 The present invention has been made in view of the above circumstances, and its purpose is to perform hot press molding, which is excellent in productivity at the time of production, part ductility, and if necessary, hot press molded article having excellent corrosion resistance, It is another object of the present invention to provide a useful method for producing such a hot press-formed product and an equipment for producing such a hot press-formed product.
 上記目的を達成することのできた本発明方法とは、単一部品内に高強度領域および低強度領域を有する熱間プレス成形品を、プレス成形金型を用いて製造するに当たり、鋼板をAc3変態点以上の温度に加熱した後、プレス成形を開始するに先立ち、前記高強度領域を急速冷却する点に要旨を有するものである。 The present invention method which was able to achieve the above object, a hot press molded product having a high strength region and low intensity regions within a single component, when prepared using a press molding die, the steel sheet Ac 3 After heating to a temperature equal to or higher than the transformation point, prior to starting press molding, the high strength region is rapidly cooled.
 本発明方法における具体的な条件として、プレス成形前の鋼板の温度が、高強度領域で600℃以下、マルテンサイト変態開始温度Ms以上であり、低強度領域で650℃以上であり、プレス成形前急速冷却開始からプレス成形開始までの時間が30秒以内であることが好ましい。 As specific conditions in the method of the present invention, the temperature of the steel sheet before press forming is 600 ° C. or lower in the high strength region, the martensite transformation start temperature Ms or higher, and 650 ° C. or higher in the low strength region. The time from the start of rapid cooling to the start of press molding is preferably within 30 seconds.
 また、プレス成形後の離型時の成型品温度が、高強度領域で(マルテンサイト変態開始温度Ms+100℃)以下、マルテンサイト変態終了温度Mf以上であり、低強度領域で(マルテンサイト変態開始温度Ms+100℃)以上であることが好ましい。 In addition, the temperature of the molded product at the time of mold release after press molding is not more than the martensite transformation start temperature Ms + 100 ° C. in the high strength region, is not less than the martensite transformation end temperature Mf, and is in the low strength region (martensite transformation start temperature Ms + 100 ° C.) or higher.
 本発明方法においては、(a)離型後に成形品を放冷するようにしてもよいが、(b)成形後に、高強度領域を平均冷却速度5℃/秒以上で、マルテンサイト変態終了温度Mf以下の温度まで冷却するようにしても良い。 In the method of the present invention, (a) the molded product may be allowed to cool after release, but (b) after molding, the high-strength region has an average cooling rate of 5 ° C./second or more and the martensite transformation end temperature. You may make it cool to the temperature below Mf.
 本発明で用いる鋼板として、素地鋼板表面にZn-Fe系めっき層の形成された表面処理鋼板を用いる場合には、成形開始温度が、めっき層中のFe含有量に応じためっき層の凝固点以下の温度とすることが好ましい。また、本発明で用いる鋼板は、Zn-Fe系めっき鋼板に限定するものではなく、非めっき鋼板、Al-Si系めっき鋼板を用いても構わない。 When a surface-treated steel sheet having a Zn—Fe plating layer formed on the surface of the base steel sheet is used as the steel sheet used in the present invention, the forming start temperature is equal to or lower than the freezing point of the plating layer according to the Fe content in the plating layer. Preferably, the temperature is The steel plate used in the present invention is not limited to a Zn—Fe-based plated steel plate, and a non-plated steel plate or an Al—Si-based plated steel plate may be used.
 本発明は、上記のような製造方法によって得られた熱間プレス成形品も包含する。また、このような熱間プレス成形品を製造するためのプレス成形設備としては、加熱炉とプレス成形機を備え、前記加熱炉とプレス成形機の間には、加熱された鋼板の高強度領域を部分急冷するための冷却部が設けられたものが有用である。 The present invention also includes a hot press-molded product obtained by the manufacturing method as described above. Moreover, as a press molding facility for producing such a hot press-formed product, a heating furnace and a press molding machine are provided, and a high strength region of a heated steel plate is provided between the heating furnace and the press molding machine. It is useful to provide a cooling part for partially quenching the water.
 本発明によれば、単一部品内に高強度領域および低強度領域を有する熱間プレス成形品を、プレス成形金型を用いて製造するに際して、鋼板をAc3変態点以上の温度に加熱した後、プレス成形を開始するに先立ち、高強度領域を急速冷却するようにしたので、低強度領域における延性に優れ、部品延性にも優れた熱間プレス成形品を生産性良く製造することができる。 According to the present invention, when a hot press molded product having a high strength region and a low strength region in a single part is produced using a press molding die, the steel plate is heated to a temperature equal to or higher than the Ac 3 transformation point. Later, prior to the start of press molding, the high-strength region was rapidly cooled, so a hot press-formed product with excellent ductility in the low-strength region and excellent part ductility can be produced with high productivity. .
熱間プレス成形を実施するための金型構成を示す概略説明図である。It is a schematic explanatory drawing which shows the metal mold | die structure for implementing hot press molding. ヒートパターンのイメージを示す模式図である。It is a schematic diagram which shows the image of a heat pattern. Fe-Zn二元系状態線図である。It is a Fe-Zn binary system state diagram. 従来の熱間プレス成形設備の構成例を示す概略説明図である。It is a schematic explanatory drawing which shows the structural example of the conventional hot press molding equipment. 本発明のプレス成形設備の一例を示す概略説明図である。It is a schematic explanatory drawing which shows an example of the press molding equipment of this invention. 本発明のプレス成形設備の冷却部の構成例を示す概略説明図である。It is a schematic explanatory drawing which shows the structural example of the cooling part of the press molding equipment of this invention. 本発明のプレス成形設備の冷却部の他の構成例を示す概略説明図である。It is a schematic explanatory drawing which shows the other structural example of the cooling part of the press molding equipment of this invention. 本発明のプレス成形設備の冷却部の更に他の構成例を示す概略説明図である。It is a schematic explanatory drawing which shows the further another structural example of the cooling part of the press molding equipment of this invention.
 本発明者らは、単一部品内に高強度領域および低強度領域を有する熱間プレス成形品を、部品延性を確保しつつ生産性良く製造すべく、様々な角度から検討した。その結果、プレス成形金型を用いて鋼板をプレス成形して熱間プレス成形品を製造するに際して、鋼板をAc3変態点以上の温度に加熱した後、プレス成形を開始するに先立ち、高強度領域を急速冷却するようにすれば、低強度領域における延性に優れ、部品延性にも優れた熱間プレス成形品を生産性良く製造できることを見出し、本発明を完成した。 The present inventors have studied from various angles in order to manufacture hot press-formed products having a high strength region and a low strength region in a single part with good productivity while ensuring the ductility of the part. As a result, when producing a hot press-formed product by press-forming a steel plate using a press-molding die, the steel plate is heated to a temperature equal to or higher than the Ac 3 transformation point, and then, before starting press forming, high strength It has been found that if the region is rapidly cooled, a hot press molded product having excellent ductility in a low strength region and excellent component ductility can be produced with high productivity, and the present invention has been completed.
 本発明方法においては、熱間プレス方法による効果を発揮させるためには、鋼板をAc3変態点以上の温度に加熱する必要がある。加熱温度がAc3変態点未満であると、加熱時に適切な量のオーステナイトが得られず、良好な成形性が確保できない。加熱温度の好ましい下限は鋼板の(Ac3変態点+50℃)以上である。 In the method of the present invention, it is necessary to heat the steel plate to a temperature equal to or higher than the Ac 3 transformation point in order to exert the effect of the hot pressing method. When the heating temperature is less than the Ac 3 transformation point, an appropriate amount of austenite cannot be obtained during heating, and good moldability cannot be ensured. The preferable lower limit of the heating temperature is not less than (Ac 3 transformation point + 50 ° C.) of the steel sheet.
 鋼板の加熱温度の上限は、1000℃程度までとすることが好ましい。この加熱温度が1000℃よりも高くなると、加熱炉からプレス成形機(後記図5参照)に搬送する間に酸化スケールの生成が著しくなって(例えば、100μm以上)、成形品の板厚(デスケーリング後の厚さ)が所定のものより小さくなる可能性がある。また、めっき鋼板を用いる場合には、めっき層の酸化が進み、めっき品質が劣化する可能性がある。加熱温度の好ましい上限は950℃以下である。 The upper limit of the heating temperature of the steel sheet is preferably up to about 1000 ° C. When this heating temperature is higher than 1000 ° C., the generation of oxide scale becomes significant (for example, 100 μm or more) during conveyance from the heating furnace to a press molding machine (see FIG. 5 below), and the thickness of the molded product (de There is a possibility that the thickness after scaling will be smaller than a predetermined value. Moreover, when using a plated steel plate, oxidation of a plating layer advances and plating quality may deteriorate. The upper limit with preferable heating temperature is 950 degrees C or less.
 本発明方法のヒートパターンのイメージを、模式的に図2(CCT曲線:Continuous Cooling Transformation diagram)に示す。本発明方法では、高強度領域(高強度部位としたい領域:図中「領域A」で示す)を、プレス成形前に急速冷却すると共に、低強度領域(低強度部位としたい領域:図中「領域B」で示す)を、そのまま高温の状態で同時にプレス成形を行う。そして、成形下死点でのダイクエンチ時間は極力短くする。こうした条件でプレス成形を行うことによって、プレス成形前に急速冷却された領域Aでは、拡散変態を生じるノーズ(拡散型変態の境界)に掛かることなく、マルテンサイト変態(無拡散変態)を生じ、高強度となる。一方、領域Bでは、短時間のダイクエンチによって、離型後の冷却速度が緩やかなものとなるため、拡散変態を生じ、低強度となる。こうした効果を発揮させるためには、高強度領域における急速冷却時の平均冷却速度は、少なくとも27℃/秒以上とすることが好ましく、より好ましくは40℃/秒以上である。 The image of the heat pattern of the method of the present invention is schematically shown in FIG. 2 (CCT curve: Continuous Cooling Transformation diagram). In the method of the present invention, a high-strength region (region desired to be a high-strength region: indicated by “region A” in the figure) is rapidly cooled before press molding, and a low-strength region (region desired to be a low-strength region: “ In the region B "), press molding is simultaneously performed at a high temperature. Then, the die quench time at the bottom dead center of molding is shortened as much as possible. By performing press molding under such conditions, in the region A rapidly cooled before press molding, a martensitic transformation (non-diffusion transformation) occurs without being affected by a nose that causes a diffusion transformation (boundary of diffusion type transformation). High strength. On the other hand, in the region B, the cooling rate after the mold release becomes slow due to the short time die quenching, so that the diffusion transformation occurs and the strength becomes low. In order to exert such an effect, the average cooling rate at the time of rapid cooling in the high strength region is preferably at least 27 ° C./second or more, more preferably 40 ° C./second or more.
 このとき、具体的な条件として、プレス成形前の急速冷却開始(領域A)からプレス成形開始までの時間は30秒以内(より好ましくは20秒以内)とし、プレス成形前の鋼板の温度が、高強度領域(領域A)で600℃以下、マルテンサイト変態開始温度Ms以上とすることが好ましい。この温度は、高強度領域での急速冷却終了温度に相当する。一方、低強度領域(領域B)では、基本的に急速冷却はしないが、加熱後プレス成形前に鋼板の温度が低下することもあり、こうした場合を想定してプレス成形前の低強度領域の温度は650℃以上とすることが好ましい。また、ダイクエンチ時間(成形下死点での保持時間)は、5秒以内(より好ましくは3秒以内)とすることが好ましい。 At this time, as specific conditions, the time from the rapid cooling start (region A) before press forming to the start of press forming is within 30 seconds (more preferably within 20 seconds), and the temperature of the steel plate before press forming is In the high-strength region (region A), the temperature is preferably 600 ° C. or lower and the martensitic transformation start temperature Ms or higher. This temperature corresponds to the rapid cooling end temperature in the high strength region. On the other hand, in the low-strength region (region B), although the rapid cooling is not basically performed, the temperature of the steel sheet may decrease after heating and before press forming. In such a case, the low-strength region before press forming is assumed. The temperature is preferably 650 ° C. or higher. The die quench time (holding time at the molding bottom dead center) is preferably within 5 seconds (more preferably within 3 seconds).
 プレス成形後の離型時の鋼板温度(成型品温度)は、高強度領域で(マルテンサイト変態開始温度Ms+100℃)以下、マルテンサイト変態終了温度Mf以上であり、低強度領域で(マルテンサイト変態開始温度Ms+100℃)以上であることが好ましい。この様に制御することによって、高強度領域ではより高強度が達成されると共に、低強度領域ではより低強度が実現できる。プレス成形後の離型時の鋼板温度(成型品温度)は、より好ましくは高強度領域でマルテンサイト変態開始温度Ms以下であり、低強度領域で(マルテンサイト変態開始温度Ms+180℃)以上である。 The steel plate temperature (molded product temperature) at the time of mold release after press forming is (martensitic transformation start temperature Ms + 100 ° C.) or lower in the high strength region, martensitic transformation end temperature Mf or higher, and in the low strength region (martensitic transformation). It is preferable that the starting temperature is Ms + 100 ° C. or higher. By controlling in this way, higher strength can be achieved in the high strength region, and lower strength can be realized in the low strength region. The steel plate temperature (molded product temperature) at the time of mold release after press forming is more preferably not higher than the martensite transformation start temperature Ms in the high strength region and not lower than (martensite transformation start temperature Ms + 180 ° C.) in the low strength region. .
 本発明方法においては、離型後に成形品を放冷するようにしてもよいが、成形後に、高強度領域のみを平均冷却速度5℃/秒以上で、マルテンサイト変態終了温度Mf以下の温度まで冷却(二次冷却)するようにしても良い。これによって、高強度領域が確実に焼入れされ、その領域のより高強度化が達成される。尚、二次冷却の平均冷却速度は、より好ましくは10℃/秒以上であり、更に好ましくは20℃/秒以上である。 In the method of the present invention, the molded product may be allowed to cool after mold release. However, after molding, only the high-strength region has an average cooling rate of 5 ° C./second or more and a temperature equal to or lower than the martensite transformation end temperature Mf. You may make it cool (secondary cooling). As a result, the high-strength region is securely quenched, and higher strength of the region is achieved. In addition, the average cooling rate of the secondary cooling is more preferably 10 ° C./second or more, and further preferably 20 ° C./second or more.
 本発明によれば、プレス成形前に高強度領域を部分冷却しつつ、低強度領域は基本的には成形前に冷却しないで作り込むようにしたので、例えばしわ押え部(フランジ)を低強度領域とすることによって、ダイトリミングが可能となり、レーザ切断機を使用しなくても済むことになり、低コストが実現できることになる。また、低強度領域のダイトリミングが可能となることによって、金型の摩耗や破損の懸念も低減できるという利点もあり、こうしたことも低コストに繋がることになる。更に、低強度領域をダイトリミングするために、切断面近傍に高い残留応力が発生しないことになり、遅れ破壊の懸念も解消されることになる。しかも、プレス成形前に部分的に急速冷却することは、それだけダイクエンチ時間が短縮できることになり、生産性向上となり、この点での低コスト化に繋がることになる。 According to the present invention, the high strength region is partially cooled before press molding, and the low strength region is basically formed without cooling before molding. By setting the area, die trimming can be performed, and it is not necessary to use a laser cutting machine, so that low cost can be realized. In addition, since die trimming in a low-strength region is possible, there is an advantage that the risk of wear and damage of the mold can be reduced, and this also leads to low cost. Furthermore, since the low-strength region is die-trimmed, high residual stress is not generated in the vicinity of the cut surface, and the fear of delayed fracture is eliminated. In addition, partial rapid cooling before press molding can shorten the die quench time, thereby improving productivity and reducing costs in this respect.
 本発明方法によって得られる成形品では、低強度領域の材料延性が向上するため、成形品全体の成形性が向上することになる。また、溶接を行っていたようなフランジ部に低強度領域を想定して成形品を製造すれば、溶接に伴うHAZでの材料軟化が低減できるため、衝撃荷重を受けた際のHAZ起点の破壊を抑制でき、成形品の延性も向上することになる。 In the molded product obtained by the method of the present invention, the material ductility of the low strength region is improved, so that the moldability of the entire molded product is improved. In addition, if a molded product is manufactured assuming a low strength region in the flange portion where welding has been performed, material softening in the HAZ accompanying welding can be reduced, so the HAZ starting point is destroyed when subjected to an impact load. And the ductility of the molded product is improved.
 ところで、プレス成形の素材(ブランク)としてZn系めっき鋼板を用いる場合には、上記のようなLMEの問題がある。ホットスタンプにおけるLMEは、成形中のZn系めっき鋼板において、引張応力が掛かる箇所に溶融亜鉛が侵入することによって発生すると考えられる。即ち、Zn系めっき層の凝固点以下でプレス成形を行えば、LMEは発生しないことになる。従って、前記図2に示したように、プレス成形中に引張応力が生じる曲げ部位を含む領域Aのみをプレス成形前に急速冷却し、Zn系めっき層の凝固温度(Fe含有量に応じた凝固点:図2中「Fp」で示す)よりも低い温度となるようにプレス成形を行うことで、LMEを回避しつつ高強度化を図ることができる。一方、その他の部分(低強度領域:図2に示した領域B)では、引張応力はあまり生じないために、LMEは生じにくい。この低強度領域については、めっき層の凝固点よりも低い温度で成形することが好ましいが、プレス成形による影響をあまり受けないことから、必ずしも凝固点よりも低い温度で成形する必要はなく、所望の低強度が得られる温度域で成形を開始すれば良い。 Incidentally, when a Zn-based plated steel sheet is used as a press-molding material (blank), there is a problem of LME as described above. LME in hot stamping is thought to occur when molten zinc penetrates into a place where tensile stress is applied in a Zn-based plated steel sheet being formed. That is, if press molding is performed below the freezing point of the Zn-based plating layer, LME does not occur. Therefore, as shown in FIG. 2, only the region A including the bending portion where tensile stress is generated during press forming is rapidly cooled before press forming, and the solidification temperature of the Zn-based plating layer (the freezing point corresponding to the Fe content). : Indicated by “Fp” in FIG. 2), press forming so that the temperature is lower than that can increase the strength while avoiding LME. On the other hand, in other portions (low-strength region: region B shown in FIG. 2), tensile stress is not so much generated, so that LME is hardly generated. The low strength region is preferably formed at a temperature lower than the freezing point of the plating layer. However, since it is not significantly affected by press forming, it is not always necessary to form at a temperature lower than the freezing point. What is necessary is just to start shaping | molding in the temperature range from which intensity | strength is acquired.
 図3は、Zn-Fe二元系状態線図である。図中の破線部分は液層を含む領域と固相の領域の境界(即ち、凝固点に相当:図中「Fp」で示す)を示しており、この境界より下が固相領域となる。Zn-Fe系めっき層は、めっき層中のFe含有量によってFpの温度が異なるため、Fe含有量に応じて、成形前の亜鉛めっき層の温度がFp(凝固点に相当)以下となるように冷却を行う。尚、表面処理鋼板を凝固点以下の温度まで冷却した段階で、直ちにZn-Fe系めっき層の全てが凝固する訳ではないが、少なくとも凝固点以下の温度まで冷却することによって、固相が一部でも析出した段階で成形を開始することによって、上記のような効果が発揮されることになる。 FIG. 3 is a Zn—Fe binary system state diagram. The broken line portion in the figure indicates the boundary between the region including the liquid layer and the solid phase region (that is, corresponding to the freezing point: indicated by “Fp” in the drawing), and below this boundary is the solid phase region. Since the Zn-Fe-based plating layer has a different Fp temperature depending on the Fe content in the plating layer, the temperature of the galvanized layer before forming is equal to or less than Fp (corresponding to the freezing point) according to the Fe content. Cool down. It should be noted that not all of the Zn-Fe plating layer is immediately solidified when the surface-treated steel sheet is cooled to a temperature below the freezing point, but at least a part of the solid phase can be cooled by cooling to a temperature below the freezing point. By starting molding at the stage of precipitation, the above effects are exhibited.
 本発明方法において、プレス成形の素材(ブランク)としてZn-Fe系めっき鋼板を用いる場合には、Zn-Fe系めっき層中のFe含有量に応じためっき層の凝固点以下の温度でプレス成形を行なうようにしたので、LMEの問題は基本的に生じない。従って、ホットスタンプによって製造したプレス成形品においても、Zn-Fe系めっき鋼板が有する犠牲防食性を発揮させることができ、アンダーボディへの適用が可能となる。 In the method of the present invention, when a Zn—Fe-based plated steel sheet is used as a press-molding material (blank), the press-forming is performed at a temperature below the freezing point of the plated layer according to the Fe content in the Zn—Fe-based plated layer. Since this is done, there is basically no LME problem. Therefore, even in a press-molded product manufactured by hot stamping, the sacrificial anticorrosive property of the Zn—Fe-based plated steel sheet can be exhibited, and application to the underbody becomes possible.
 本発明方法で用いる鋼板の鋼種については高強度鋼板としての通常の化学成分組成のものであれば良い。こうした鋼板としては、例えば下記表1に示した化学成分組成を有する鋼板が挙げられる。この鋼板のAc3変態点:832℃、マルテンサイト変態開始温度Ms:411℃、マルテンサイト変態終了温度Mf:261℃である。尚、上記鋼板のAc3変態点、MsおよびMfは、下記の(1)式~(3)式を用いて求められる値である(
例えば、『熱処理』41(3),164~169,2001 邦武立朗「鋼のAc1,Ac3およびMs変態点の経験式による予測」)。
 Ac3変態点(℃)=-230.5×[C]+31.6×[Si]-20.4×[Mn]-39.8×[Cu]-18.1×[Ni]-14.8×[Cr]+16.8×[Mo]+912 …(1)
 Ms(℃)=560.5-{407.3×[C]+7.3×[Si]+37.8×[Mn]+20.5×[Cu]+19.5×[Ni]+19.8[Cr]+4.5×[Mo]}…(2)
 Mf(℃)=Ms-150.0 …(3)
 但し、[C],[Si],[Mn],[Cu],[Ni],[Cr]および[Mo]は、夫々C,Si,Mn,Cu,Ni,CrおよびMoの含有量(質量%)を示す。また、上記(1)式、(2)式の各項に示された元素が含まれない場合は、その項がないものとして計算する。
The steel type of the steel plate used in the method of the present invention may be a normal chemical component composition as a high-strength steel plate. As such a steel plate, for example, a steel plate having the chemical composition shown in Table 1 below can be cited. The steel sheet has an Ac 3 transformation point of 832 ° C., a martensite transformation start temperature Ms: 411 ° C., and a martensite transformation end temperature Mf: 261 ° C. The Ac 3 transformation point, Ms, and Mf of the steel sheet are values obtained using the following formulas (1) to (3) (
For example, “Heat Treatment” 41 (3), 164 to 169, 2001 Tetsuro Kunitake “Predicting Ac 1 , Ac 3 and Ms transformation points of steel by empirical formula”).
Ac 3 transformation point (° C.) = − 230.5 × [C] + 31.6 × [Si] −20.4 × [Mn] −39.8 × [Cu] −18.1 × [Ni] -14. 8 × [Cr] + 16.8 × [Mo] +912 (1)
Ms (° C.) = 560.5− {407.3 × [C] + 7.3 × [Si] + 37.8 × [Mn] + 20.5 × [Cu] + 19.5 × [Ni] +19.8 [Cr ] + 4.5 × [Mo]} (2)
Mf (° C.) = Ms−150.0 (3)
However, [C], [Si], [Mn], [Cu], [Ni], [Cr] and [Mo] are the contents (mass of C, Si, Mn, Cu, Ni, Cr and Mo, respectively). %). Moreover, when the element shown by each term of the said (1) Formula and (2) Formula is not contained, it calculates as the thing without the term.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 本発明では、必要によって鋼板表面に形成されるZn-Fe系めっき層中のFe含有量については、特に限定するものではなく、5質量%以上(より好ましくは13質量%以上)であればめっき層としての機能を発揮するが、Fe含有量があまり過剰になると耐食性、塗膜密着性、溶接性等が劣化しやすくなるので、80質量%以下であることが好ましい(より好ましくは20質量%以下)。 In the present invention, the Fe content in the Zn—Fe-based plating layer formed on the surface of the steel sheet, if necessary, is not particularly limited, and may be plated if it is 5% by mass or more (more preferably 13% by mass or more). Although it functions as a layer, if the Fe content is excessive, corrosion resistance, coating film adhesion, weldability, etc. are likely to deteriorate, so it is preferably 80% by mass or less (more preferably 20% by mass). Less than).
 尚、上記Zn-Fe系めっき層には、Fe以外の合金元素(例えば、Al,Mn,Ni,Cr,Co,Mg,Sn,Pb等)を3.3質量%程度まで含むことも許容できるものであり、これらの元素は前記含有量程度では凝固点に与える影響が少ないものである。また、Zn-Fe系めっき層には、これらの成分以外にも、Be,B,Si,P,Ti,V,W,Mo,Sb,Cd,Nb,Cu,Sr等のいくつかの不可避的不純物も含み得る。 The Zn—Fe-based plating layer may contain alloy elements other than Fe (eg, Al, Mn, Ni, Cr, Co, Mg, Sn, Pb, etc.) up to about 3.3 mass%. These elements have little influence on the freezing point at the content level. In addition to these components, the Zn—Fe plating layer has some inevitable factors such as Be, B, Si, P, Ti, V, W, Mo, Sb, Cd, Nb, Cu, and Sr. Impurities can also be included.
 ところで、従来の熱間プレスラインは、図4(概略説明図)に示すような構成(設備構成)となっているのが一般的である。即ち、図4に示すように、コイル状態の鋼板10を切り出し機11によって切り出した後(Blanking)、加熱炉12内で加熱し、その後、プレス成形機13に搬送してプレス成形を行うことによって、プレス成形品14が得られる。 Incidentally, the conventional hot press line generally has a configuration (equipment configuration) as shown in FIG. 4 (schematic explanatory diagram). That is, as shown in FIG. 4, after the coiled steel sheet 10 is cut out by a cutting machine 11 (Blanking), it is heated in a heating furnace 12, and then conveyed to the press molding machine 13 to perform press forming. A press-formed product 14 is obtained.
 本発明では、鋼板を加熱炉で所定の温度に加熱した後、そのままプレス成形機に搬送して成形を開始するのではなく、一部(高強度領域)を急速冷却してから成形を開始するものである。こうした方法を実施するに際しては、例えば図5~8(概略説明図)に示すような設備構成を採用すれば良い。 In the present invention, after heating a steel plate to a predetermined temperature in a heating furnace, it is not directly conveyed to a press molding machine and molding is started, but molding is started after rapid cooling of a part (high strength region). Is. In carrying out such a method, for example, an equipment configuration as shown in FIGS. 5 to 8 (schematic explanatory diagrams) may be employed.
 このプレス成形設備においては、加熱炉12の内部に、加熱炉12に付随して冷却部15が備えられ、鋼板10を加熱炉12からプレス成形機13に移動するまでに鋼板の一部を急速冷却する。この冷却部15は、加熱炉12とプレス成形機13の間の備えるようにしても良い(例えば図6~8の「冷却部」または「冷却帯」参照。)。冷却部15で行う冷却では、例えば下記(1)~(4)等の方法で(或は併用して)冷却を実施することができる。 In this press forming equipment, a cooling unit 15 is provided inside the heating furnace 12 in association with the heating furnace 12, and a part of the steel sheet is rapidly moved until the steel sheet 10 is moved from the heating furnace 12 to the press forming machine 13. Cooling. The cooling unit 15 may be provided between the heating furnace 12 and the press molding machine 13 (see, for example, “cooling unit” or “cooling zone” in FIGS. 6 to 8). In the cooling performed by the cooling unit 15, for example, cooling can be performed by the following methods (1) to (4) (or in combination).
 (1)冷媒としての金属と接触させる手段(例えば、水冷ロールなどによる冷却手段)を設けて冷却する。
 (2)ガス冷却手段を設けてガスジェット冷却する。
 (3)ミスト冷却手段を設けて冷却する(例えば図8)。
 (4)ドライアイスショット手段(顆粒ドライアイスをブランク材に衝突させて冷却する)を設けて冷却する。
(1) A means for bringing into contact with a metal as a refrigerant (for example, a cooling means using a water-cooled roll) is provided for cooling.
(2) A gas cooling means is provided to cool the gas jet.
(3) Provide mist cooling means for cooling (for example, FIG. 8).
(4) A dry ice shot means (cooled by causing the granule dry ice to collide with the blank material) is cooled.
 本発明の冷却設備(冷却部)を用いた冷却では、冷却と同時に雰囲気を制御することも好ましい。特に非めっき鋼板を用いる場合には、雰囲気を制御(例えば、窒素やアルゴン雰囲気)して、鋼板の表面酸化を防止することができる。また比較的低い温度に設定することによって表面酸化を抑制することも可能である。 In the cooling using the cooling facility (cooling unit) of the present invention, it is also preferable to control the atmosphere simultaneously with the cooling. In particular, when using a non-plated steel sheet, the atmosphere can be controlled (for example, nitrogen or argon atmosphere) to prevent surface oxidation of the steel sheet. It is also possible to suppress surface oxidation by setting a relatively low temperature.
 尚、本発明方法では、鋼板の異なる領域(高強度領域および低強度領域)に応じて、冷却条件が異なるものとなるが、上記(1)~(4)の冷却手段を、高強度領域だけに設け、鋼板領域に応じた冷却制御を金型内で行うようにすれば良い。 In the method of the present invention, the cooling conditions differ depending on different regions (high strength region and low strength region) of the steel sheet, but the cooling means (1) to (4) described above are used only for the high strength region. The cooling control corresponding to the steel plate region may be performed in the mold.
 図6は、冷却部の構成例を示す概略図であり、加熱された薄鋼板を金属で挟持して冷却する設備を示す。加熱された薄鋼板は、加熱炉から急冷用の平面金型(冷却専用金型)に搬送され、この金型でプレスすることによって薄鋼板は所定の温度に急冷される(金属挟持による冷却)。冷却後は鋼板を所定の形状を有する金型(プレス専用金型)に搬送してプレス成形すればよい。冷却専用金型の形状は、鋼板を均一に冷却させるために金型の鋼板接触面側が平面であることが好ましいが、あえて温度分布をつける場合や、若干の予備成形を行うためには必ずしも平面である必要はなく段差や曲率を持っていてもよい。 FIG. 6 is a schematic view showing a configuration example of the cooling unit, and shows a facility for cooling a heated thin steel plate by sandwiching it with a metal. The heated thin steel sheet is transported from the heating furnace to a flat mold for cooling (dedicated cooling mold), and the thin steel sheet is rapidly cooled to a predetermined temperature by pressing with this mold (cooling by holding metal). . After cooling, the steel sheet may be conveyed to a mold having a predetermined shape (depress-only mold) and press-molded. The shape of the cooling-only mold is preferably a flat surface on the steel plate contact surface side in order to cool the steel plate uniformly, but it is not necessarily flat for a temperature distribution or for some pre-forming. It is not necessary to have a step or curvature.
 プレス成形は複数回に分けて行ってもよく、例えば図7に示すように平面金型(冷却専用金型)で鋼板を所定の温度まで冷却した後、順次所定の形状を有する金型でプレス成形することで、複雑な形状に成形することも可能である(プレス専用金型1、プレス専用金型2)。更に形状凍結性を付与する工程やダイトリム・ピアスを行う工程を付加してもよい。 For example, as shown in FIG. 7, the steel plate is cooled to a predetermined temperature with a flat die (cooling-only die), and then sequentially pressed with a die having a predetermined shape. By molding, it is also possible to mold into a complicated shape (press die 1 and press die 2). Further, a step of imparting shape freezing property and a step of performing die trim piercing may be added.
 またプレス成形前の部分冷却は、金属挟持するものに限られるものではなく、図8に示すように、ミスト(或はエアー)を吹き付けて急速冷却する方法であっても良い。但し、ミストやエアーでは、冷却領域と冷却しない領域の遷移領域が広くなるために、狙いとする領域(高強度領域)を精度良く冷却するためには、金属挟持による冷却であることが好ましい。 Further, partial cooling before press forming is not limited to sandwiching metal, but may be a method of rapid cooling by spraying mist (or air) as shown in FIG. However, in mist and air, since the transition region between the cooling region and the non-cooling region becomes wide, in order to cool the target region (high-strength region) with high accuracy, it is preferable to perform cooling by sandwiching metal.
 前記図6、7では、冷却手段と金型成形を連続的に行うトランスファープレス成形機を想定したものであるが、本発明で用いるプレス成形機はこうした構成のものに限定されるものではなく、十分な搬送速度が確保できれば、各金型を設置しているプレス成形機を分離した構成のものであっても良い。また、プレス成形機は、圧力の発生機構に機械的な駆動力による機械プレス(メカニカルプレスという)を使用することがプレス時間を短縮する観点からは好ましいが、圧力の発生機構に液圧を使用する液圧プレス(例えば油圧プレス)であっても良い。 In FIGS. 6 and 7, a transfer press molding machine that continuously performs cooling means and mold molding is assumed, but the press molding machine used in the present invention is not limited to such a configuration, As long as a sufficient conveyance speed can be ensured, a configuration in which the press molding machine provided with each mold is separated may be used. From the viewpoint of shortening the press time, it is preferable to use a mechanical press (called a mechanical press) with a mechanical driving force for the pressure generating mechanism, but hydraulic pressure is used for the pressure generating mechanism. It may be a hydraulic press (for example, a hydraulic press).
 本願は、2011年12月13日に出願された日本特許出願第2011-272649号に基づく優先権の利益を主張するものである。2011年12月13日に出願された日本特許出願第2011-272649号の明細書の全内容が、本願の参考のため援用される。 This application claims the benefit of priority based on Japanese Patent Application No. 2011-272649 filed on December 13, 2011. The entire contents of Japanese Patent Application No. 2011-272649 filed on December 13, 2011 are incorporated herein by reference.
 本発明は、単一部品内に高強度領域および低強度領域を有する熱間プレス成形品を、プレス成形金型を用いて製造するに当たり、鋼板をAc3変態点以上の温度に加熱した後、プレス成形を開始するに先立ち、前記高強度領域を急速冷却することによって、製造時における生産性、部品延性に優れ、必要によって耐食性にも優れた熱間プレス成形品が得られる。 In producing a hot press-formed product having a high-strength region and a low-strength region in a single part using a press-molding die, the present invention, after heating the steel plate to a temperature equal to or higher than the Ac 3 transformation point, Prior to the start of press molding, the high-strength region is rapidly cooled to obtain a hot press-molded product having excellent productivity and part ductility at the time of manufacture, and excellent corrosion resistance if necessary.
1 パンチ
2 ダイ
3 ブランクホルダー
4,10 鋼板(ブランク)
12 加熱炉
13 プレス成形機
14 プレス成形品
15 冷却部
1 Punch 2 Die 3 Blank holder 4, 10 Steel plate (blank)
12 Heating furnace 13 Press molding machine 14 Press molded product 15 Cooling section

Claims (8)

  1.  単一部品内に高強度領域および低強度領域を有する熱間プレス成形品を、プレス成形金型を用いて製造するに当たり、鋼板をAc3変態点以上の温度に加熱した後、プレス成形を開始するに先立ち、前記高強度領域を急速冷却することを特徴とする熱間プレス成形品の製造方法。 In manufacturing a hot press-formed product having a high-strength region and a low-strength region in a single part using a press-molding die, the steel plate is heated to a temperature equal to or higher than the Ac 3 transformation point, and then press forming is started. Prior to this, a method for producing a hot press-formed product, characterized in that the high-strength region is rapidly cooled.
  2.  プレス成形前の鋼板の温度が、高強度領域で600℃以下、マルテンサイト変態開始温度Ms以上であり、低強度領域で650℃以上であり、プレス成形前の急速冷却開始からプレス成形開始までの時間が30秒以内である請求項1に記載の熱間プレス成形品の製造方法。 The temperature of the steel plate before press forming is 600 ° C. or lower in the high strength region, the martensite transformation start temperature Ms or higher, and is 650 ° C. or higher in the low strength region, from the start of rapid cooling before press forming to the start of press forming. The method for producing a hot press-formed product according to claim 1, wherein the time is within 30 seconds.
  3.  プレス成形後の離型時のプレス成型品温度が、高強度領域で(マルテンサイト変態開始温度Ms+100℃)以下、マルテンサイト変態終了温度Mf以上であり、低強度領域で(マルテンサイト変態開始温度Ms+100℃)以上である請求項1または2に記載の熱間プレス成形品の製造方法。 The temperature of the press-molded product at the time of mold release after press molding is not more than (martensite transformation start temperature Ms + 100 ° C.) in the high strength region, is not less than the martensite transformation end temperature Mf, and is in the low strength region (martensite transformation start temperature Ms + 100). The method for producing a hot press-formed product according to claim 1 or 2.
  4.  離型後に成形品を放冷する請求項3に記載の熱間プレス成形品の製造方法。 The method for producing a hot press-formed product according to claim 3, wherein the molded product is allowed to cool after releasing.
  5.  成形後に、高強度領域を平均冷却速度5℃/秒以上で、マルテンサイト変態終了温度Mf以下の温度まで冷却する請求項3に記載の熱間プレス成形品の製造方法。 4. The method for producing a hot press-formed product according to claim 3, wherein after the molding, the high-strength region is cooled at an average cooling rate of 5 ° C./second or more to a temperature not higher than the martensite transformation end temperature Mf.
  6.  前記鋼板として、素地鋼板表面にZn-Fe系めっき層の形成された表面処理鋼板を用い、プレス成形開始温度が、めっき層中のFe含有量に応じためっき層の凝固点以下の温度である請求項1または2に記載の熱間プレス成形品の製造方法。 A surface-treated steel sheet having a Zn—Fe-based plating layer formed on the surface of the base steel sheet as the steel sheet, and the press forming start temperature is a temperature below the freezing point of the plating layer according to the Fe content in the plating layer. Item 3. A method for producing a hot press-formed product according to Item 1 or 2.
  7.  請求項1または2に記載の製造方法によって得られたものである熱間プレス成形品。 A hot press-formed product obtained by the production method according to claim 1 or 2.
  8.  請求項7に記載の熱間プレス成形品を製造するための設備であって、加熱炉とプレス成形機を備え、前記加熱炉とプレス成形機の間には、加熱された鋼板の高強度領域を部分急冷するための冷却部が設けられたものであることを特徴とするプレス成形設備。
     
    An apparatus for producing a hot press-formed product according to claim 7, comprising a heating furnace and a press-forming machine, and a high-strength region of a heated steel plate between the heating furnace and the press-forming machine. A press forming facility characterized in that a cooling unit for partially quenching is provided.
PCT/JP2012/082291 2011-12-13 2012-12-13 Hot press formed product, manufacturing method for same, and press forming equipment WO2013089167A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-272649 2011-12-13
JP2011272649A JP5902939B2 (en) 2011-12-13 2011-12-13 Manufacturing method of hot press-formed product

Publications (1)

Publication Number Publication Date
WO2013089167A1 true WO2013089167A1 (en) 2013-06-20

Family

ID=48612609

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/082291 WO2013089167A1 (en) 2011-12-13 2012-12-13 Hot press formed product, manufacturing method for same, and press forming equipment

Country Status (2)

Country Link
JP (1) JP5902939B2 (en)
WO (1) WO2013089167A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014503360A (en) * 2010-12-27 2014-02-13 ポスコ Manufacturing method of foreign parts
CN109821951A (en) * 2018-12-06 2019-05-31 苏州普热斯勒先进成型技术有限公司 A kind of preparation method and device of corrosion-resistant drop stamping part
CN111344079A (en) * 2017-08-02 2020-06-26 自动工程有限公司 Pressing method for coated steel and use of steel
WO2021074185A1 (en) * 2019-10-14 2021-04-22 Autotech Engineering S.L. Press systems and methods
RU2787134C1 (en) * 2019-10-14 2022-12-28 Аутотек Инжиниринг С.Л. Pressing systems and methods

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5843830B2 (en) 2013-09-18 2016-01-13 アイシン高丘株式会社 Exhaust manifold with integrated catalyst case
JP6381967B2 (en) 2014-05-22 2018-08-29 住友重機械工業株式会社 Molding apparatus and molding method
DE102014114394B3 (en) * 2014-10-02 2015-11-05 Voestalpine Stahl Gmbh Method for producing a hardened steel sheet
KR101575557B1 (en) * 2015-02-13 2015-12-08 임용희 Hot stamping Hot triming method using Hybrid mold system
MX2017015330A (en) * 2015-05-29 2018-08-28 Voestalpine Stahl Gmbh Method for contactlessly cooling steel sheets and device therefor.
US10308996B2 (en) 2015-07-30 2019-06-04 Hyundai Motor Company Hot stamping steel and producing method thereof
EP3932579A4 (en) 2019-02-27 2022-05-11 JFE Steel Corporation Method for manufacturing steel sheet for cold press and method for manufacturing press component

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003328031A (en) * 2002-05-13 2003-11-19 Nissan Motor Co Ltd Method for quenching pressed parts, quenching device, and pressed parts
JP2006037141A (en) * 2004-07-23 2006-02-09 Sumitomo Metal Ind Ltd Steel sheet for heat treatment having excellent liquid metal brittleness resistance
JP2007275937A (en) * 2006-04-07 2007-10-25 Nippon Steel Corp Hot-pressing method for steel sheet and press-formed article

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4072117B2 (en) * 2003-12-03 2008-04-09 新日本製鐵株式会社 Steel plate press forming method
JP2006326620A (en) * 2005-05-25 2006-12-07 Toa Kogyo Kk Press forming device, and press forming method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003328031A (en) * 2002-05-13 2003-11-19 Nissan Motor Co Ltd Method for quenching pressed parts, quenching device, and pressed parts
JP2006037141A (en) * 2004-07-23 2006-02-09 Sumitomo Metal Ind Ltd Steel sheet for heat treatment having excellent liquid metal brittleness resistance
JP2007275937A (en) * 2006-04-07 2007-10-25 Nippon Steel Corp Hot-pressing method for steel sheet and press-formed article

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014503360A (en) * 2010-12-27 2014-02-13 ポスコ Manufacturing method of foreign parts
CN111344079A (en) * 2017-08-02 2020-06-26 自动工程有限公司 Pressing method for coated steel and use of steel
US20210362212A1 (en) * 2017-08-02 2021-11-25 Autotech Engineering S.L. Press methods for coated steels and uses of steels
US11633771B2 (en) * 2017-08-02 2023-04-25 Autotech Engineering S.L. Press methods for coated steels and uses of steels
CN109821951A (en) * 2018-12-06 2019-05-31 苏州普热斯勒先进成型技术有限公司 A kind of preparation method and device of corrosion-resistant drop stamping part
WO2021074185A1 (en) * 2019-10-14 2021-04-22 Autotech Engineering S.L. Press systems and methods
RU2787134C1 (en) * 2019-10-14 2022-12-28 Аутотек Инжиниринг С.Л. Pressing systems and methods
EP4219036A1 (en) * 2019-10-14 2023-08-02 Autotech Engineering, S.L. Press systems and methods
US11850648B2 (en) 2019-10-14 2023-12-26 Autotech Engineering S.L. Press systems and methods

Also Published As

Publication number Publication date
JP2013123722A (en) 2013-06-24
JP5902939B2 (en) 2016-04-13

Similar Documents

Publication Publication Date Title
JP5902939B2 (en) Manufacturing method of hot press-formed product
CN104936716B (en) The manufacture method of hot forming steel beam column
CN103826771B (en) The manufacture method of stamping product and stamping equipment
US8440323B2 (en) Coated steel stamped product
JP4630188B2 (en) Steel sheet for hot forming and hot-formed product excellent in joint strength and hot formability of spot welds
JP6006587B2 (en) Hot press-formed product and method for producing the same
JP5695381B2 (en) Manufacturing method of press-molded products
WO2004106573A1 (en) Method for hot forming and hot formed member
KR101494113B1 (en) Press-molded article and method for producing same
CN109365606A (en) A kind of zinc system clad steel sheet of excellent corrosion resistance or the manufacturing process of steel band
WO2017029773A1 (en) Method for manufacturing hot press part and hot press part
US9744744B2 (en) Press-formed article and method for manufacturing same
JP2019500215A (en) Manufacturing method of steel components for vehicles
WO2012043833A1 (en) Press forming equipment
US20210301364A1 (en) Producing a hardened steel product
WO2013118862A1 (en) Press-formed article, and manufacturing method for same
JP2015116575A (en) Press molding product and production method thereof
JP2005138112A (en) Press working method
JP5612993B2 (en) Press-formed product and manufacturing method thereof
JP5952881B2 (en) Press molded product manufacturing equipment
KR20130059034A (en) Method for manufacturing steel product using warm press forming
CA2968943A1 (en) Hot stamping system for production of a parts assembly

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12857816

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12857816

Country of ref document: EP

Kind code of ref document: A1