WO2013089075A1 - Laminate, and method for producing light-emitting diode provided with wavelength conversion layer - Google Patents

Laminate, and method for producing light-emitting diode provided with wavelength conversion layer Download PDF

Info

Publication number
WO2013089075A1
WO2013089075A1 PCT/JP2012/081986 JP2012081986W WO2013089075A1 WO 2013089075 A1 WO2013089075 A1 WO 2013089075A1 JP 2012081986 W JP2012081986 W JP 2012081986W WO 2013089075 A1 WO2013089075 A1 WO 2013089075A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphor
phosphor sheet
sheet
laminate
silicone
Prior art date
Application number
PCT/JP2012/081986
Other languages
French (fr)
Japanese (ja)
Inventor
松村 宣夫
武治郎 井上
広宣 定国
石田 豊
一成 川本
広樹 関口
吉岡 正裕
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to JP2013502944A priority Critical patent/JP5488761B2/en
Priority to CN201280061382.8A priority patent/CN104010813B/en
Publication of WO2013089075A1 publication Critical patent/WO2013089075A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/80Siloxanes having aromatic substituents, e.g. phenyl side groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/0427Coating with only one layer of a composition containing a polymer binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/043Improving the adhesiveness of the coatings per se, e.g. forming primers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/20Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes for coatings strippable as coherent films, e.g. temporary coatings strippable as coherent films
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2381/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen, or carbon only; Polysulfones; Derivatives of such polymers
    • C08J2381/04Polysulfides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2483/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2483/04Polysiloxanes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0041Processes relating to semiconductor body packages relating to wavelength conversion elements

Definitions

  • the present invention relates to a laminate which is a sheet-like material for converting the emission wavelength of an LED chip and a method for producing a light emitting diode with a wavelength conversion layer.
  • LEDs Light-emitting diodes
  • LCDs liquid crystal displays
  • car headlights etc. due to their remarkable improvement in luminous efficiency and low power consumption, long life, and design.
  • the market is rapidly expanding not only in the automotive field but also for general lighting.
  • the emission spectrum of an LED depends on the semiconductor material forming the LED chip, its emission color is limited. Therefore, in order to obtain white light for LCD backlight or general illumination using LEDs, it is necessary to arrange phosphors suitable for the respective chips on the LED chips and convert the emission wavelength.
  • a method of installing a yellow phosphor on an LED chip that emits blue light a method of installing red and green phosphors on an LED chip that emits blue light, and red, green, and blue on an LED chip that emits ultraviolet light
  • a method of installing a phosphor is proposed.
  • the method of installing a yellow phosphor on a blue LED and the method of installing red and green phosphors on a blue LED are currently most widely adopted in terms of the luminous efficiency and cost of the LED chip. .
  • a method of bonding a silicone resin sheet containing phosphor particles (hereinafter referred to as a phosphor sheet) on the LED chip has been proposed (for example, see Patent Documents 1 to 4).
  • This method is easier to dispose a certain amount of phosphor on the LED chip than the conventional method of dispensing and curing a liquid resin in which the phosphor is dispersed on the LED chip.
  • the resulting white LED is excellent in that the color and brightness can be made uniform.
  • the method of attaching the phosphor sheet to the LED chip is a better method for stabilizing the color and brightness than using the liquid phosphor resin as described above, but a resin in which phosphor particles are dispersed is used. It is difficult to make a uniform sheet. Moreover, such a sheet
  • a treatment called mold release treatment is generally applied to the substrate.
  • a thin film of a material having a very low surface energy such as a silicone-based organic compound or a fluorine-based organic compound is applied to the substrate surface, and the phosphor sheet formed thereon is easily peeled off.
  • the silicone resin used for the phosphor sheet has poor coatability, and when applied to a surface treated with such a low surface energy chemical, repelling and unevenness occur, so it is very difficult to apply uniformly. there were.
  • the laminated body in which the phosphor sheet is formed is cut to the size of the LED chip before being attached to the LED chip, or the portion of the laminated body that contacts the electrode connection pad of the LED chip is punched, etc. May be subjected to mechanical processing.
  • mechanical processing is performed on a laminate in which a phosphor sheet containing a silicone resin and a phosphor is formed on a base material that has been subjected to a release treatment, the phosphor sheet may be peeled off from the base material and damaged. It was a challenge.
  • the present invention has been made in view of the above, and in the case where a phosphor sheet is formed by applying a silicone resin sheet-forming resin solution having poor applicability to a base material, the application step is for sheet preparation.
  • the present invention provides a laminate and a method for producing a light emitting diode with a wavelength conversion layer, in which no repellency or unevenness of the resin liquid occurs and the substrate and the phosphor sheet can be easily separated in the peeling step.
  • the laminate of the present invention comprises a base material containing polyphenylene sulfide and a phosphor sheet containing at least a silicone resin and a phosphor laminated on the base material.
  • the laminate of the present invention can obtain a phosphor sheet having a uniform film thickness because a good coating property can be obtained when a sheet-forming resin solution containing a phosphor is applied to a substrate.
  • the material and the phosphor sheet can be easily peeled off, and the phosphor sheet can be prevented from being damaged.
  • the phosphor sheet in the present invention is not particularly limited as long as it mainly contains a silicone resin and a phosphor, and various sheets can be used. Other components may be included as necessary.
  • the silicone resin used in the present invention is a binder resin that contains a phosphor inside, and is a component that forms the form of the phosphor sheet. Therefore, there is no particular limitation as long as the phosphor can be uniformly dispersed inside and can be formed into a sheet shape. Moreover, the thing excellent in mechanical strength, transparency, heat resistance, and light resistance is requested
  • the curable silicone rubber examples include a dealcohol-free type, a deoxime type, a deacetic acid type, and a dehydroxylamine type that cause a condensation reaction with moisture in the air or a catalyst.
  • an addition reaction type as a type that causes a hydrosilylation reaction with a catalyst. Any of these types of curable silicone rubber may be used.
  • addition-reactive silicone rubber has no by-products associated with the curing reaction, is not easily affected by moisture, has low curing shrinkage, and is easy to accelerate curing by heating. More preferred.
  • the addition reaction type silicone rubber is formed by a hydrosilylation reaction between a compound containing an alkenyl group bonded to a silicon atom and a compound having a hydrogen atom bonded to a silicon atom.
  • Such materials contain alkenyl groups bonded to silicon atoms such as vinyltrimethoxysilane, vinyltriethoxysilane, allyltrimethoxysilane, propenyltrimethoxysilane, norbornenyltrimethoxysilane, octenyltrimethoxysilane, etc.
  • hydrogen atoms bonded to silicon atoms such as methylhydrogenpolysiloxane, dimethylpolysiloxane-CO-methylhydrogenpolysiloxane, ethylhydrogenpolysiloxane, methylhydrogenpolysiloxane-CO-methylphenylpolysiloxane, etc.
  • silicon atoms such as methylhydrogenpolysiloxane, dimethylpolysiloxane-CO-methylhydrogenpolysiloxane, ethylhydrogenpolysiloxane, methylhydrogenpolysiloxane-CO-methylphenylpolysiloxane, etc.
  • examples thereof include those formed by hydrosilylation reaction of the compounds having them.
  • the silicone resin used in the present invention for example, those described in JP 2010-159411 A can be used.
  • the silicone resin described in Japanese Patent Application Laid-Open No. 2010-159411 is a silicone resin that cures by a condensation reaction and an addition reaction, and has a silicon compound having a substituent capable of condensation reaction and a substituent capable of addition reaction. It can be obtained by subjecting a silicone resin composition containing a silicon compound to a condensation reaction.
  • Examples of the silicon compound having a substituent capable of a condensation reaction include silicon compounds having a substituent such as a hydroxyl group, an amino group, an alkoxy group, a carboxyl group, an ester group, and a halogen atom.
  • a silicon compound having a hydroxyl group or an alkoxy group is used.
  • a both-end silanol type silicon compound represented by the following formula (1) is preferable.
  • R 1 is a monovalent hydrocarbon group, for example, a monovalent hydrocarbon group having 1 to 20 carbon atoms, preferably 1 to 10 carbon atoms. Examples include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a phenyl group, a naphthyl group, a cyclohexyl group, and a cyclopentyl group. Of these, a methyl group is preferred from the viewpoints of transparency and light resistance.
  • all R 1 groups may be the same or different, but all R 1 groups are preferably methyl groups.
  • n is an integer of 1 or more, and from the viewpoint of stability and handleability, n is an integer of 1 to 10000, more preferably 1 to 1000.
  • Examples of the compound represented by the formula (1) include both-end silanol-type polydimethylsiloxane, both-end silanol-type polymethylphenylsiloxane, and both-end silanol-type polydiphenylsiloxane. These may be used alone or in combination of two or more. Can be used. Among these, compounds in which R 1 is all a methyl group and n is an integer of 1 to 1000 are preferable.
  • the content of the compound represented by the formula (1) in the condensation reaction monomer is preferably 50% by mass or more, more preferably 80% by mass or more, and still more preferably 100% by mass.
  • the proportion of the condensation reaction monomer in the silicone resin is preferably 1 to 99% by mass, more preferably 50 to 99% by mass, and still more preferably 80 to 99% by mass.
  • Examples of the silicon compound having a substituent capable of addition reaction include, for example, alkenyl group, hydrogen atom, alkynyl group, carbonyl group, thiol group, epoxy group, amino group, hydroxyl group, sulfide.
  • the silicon compound which has substituents, such as group is illustrated, Preferably it is a silicon compound which has a hydrogen atom and an alkenyl group. There is no restriction
  • Examples of the silicon compound having a hydrogen atom or an alkenyl group include compounds having an alkenyl group bonded to a silicon atom or compounds having a hydrogen atom bonded to a silicon atom, exemplified as the above addition reaction type silicone rubber. It is done.
  • the content of the addition reaction monomer in the silicone resin is preferably 0.1 to 99% by mass, more preferably 0.1 to 90% by mass, and further preferably 0.1 to 80% by mass.
  • the blending ratio of the condensation reaction system monomer and the addition reaction system monomer is 99.9 / 0.1 to 1/99 from the viewpoint of viscoelasticity when formed into a sheet. It is preferably 99.9 / 0.1 to 50/50, more preferably 99.9 / 0.1 to 90/10.
  • the silicone resin described in Japanese Patent Application Laid-Open No. 2010-159411 further includes a compound that can react with both the condensation reaction system monomer and the addition reaction system monomer (hereinafter referred to as “reaction monomer”). , Also referred to as a condensation / addition monomer).
  • the condensation / addition monomer has a functional group capable of reacting with the condensation reaction system monomer and a functional group capable of reacting with the addition reaction system monomer in one molecule.
  • the functional group capable of reacting with the condensation reaction monomer include the same substituents as those described above that can undergo the condensation reaction, and the number of functional groups in one molecule is not particularly limited.
  • the functional group capable of reacting with the addition reaction monomer include the same substituents as those described above that can undergo the addition reaction, and the number of functional groups in one molecule is not particularly limited.
  • an alkenyl group-containing trialkoxysilane is preferable.
  • an alkenyl group undergoes an addition reaction with an addition reaction monomer
  • an alkoxy group undergoes a condensation reaction with a condensation reaction monomer.
  • the alkenyl group of the alkenyl group-containing trialkoxysilane has 1 to 20 carbon atoms, preferably 1 to 10 carbon atoms, and specifically includes a vinyl group, allyl group, propenyl group, butenyl group, pentenyl group, hexenyl group, heptenyl group.
  • Group, octenyl group, norbornenyl group, cyclohexenyl group and the like are exemplified.
  • a vinyl group is preferable from the viewpoint of reactivity with respect to the hydrosilylation reaction.
  • the alkoxy group of the alkenyl group-containing trialkoxysilane is an alkoxy group having 1 to 10, preferably 1 to 6 carbon atoms, and specifically includes a methoxy group, an ethoxy group, a propoxy group, a butoxy group, a pentyloxy group, and a hexyl group.
  • An oxy group etc. are illustrated. Of these, a methoxy group is preferred from the viewpoint of reactivity to the condensation reaction. All alkoxy groups may be the same or different, but all are preferably methoxy groups.
  • alkenyl group-containing trialkoxysilane examples include vinyltrimethoxysilane, vinyltriethoxysilane, allyltrimethoxysilane, propenyltrimethoxysilane, norbornenyltrimethoxysilane, octenyltrimethoxysilane, and the like. Alternatively, two or more kinds can be used in combination. Of these, vinyltrimethoxysilane is preferred.
  • the content of the alkenyl group-containing trialkoxysilane in the condensation / addition monomer is preferably 50% by mass or more, more preferably 80% by mass or more, and still more preferably 100% by mass.
  • the content of the condensation / addition monomer in the silicone resin is preferably 0.01 to 90% by mass, more preferably 0.01 to 50% by mass, and still more preferably 0.01 to 10% by mass.
  • the blending ratio of both is the silanol type at both ends.
  • the molar ratio of the functional groups is preferably 20/1 to 0.2 / 1. 10/1 to 0.5 / 1 is more preferable, and it is more preferable that it is substantially equivalent (1/1).
  • the silicone resin is cured in two steps, so that it is not necessary to form an adhesive layer on the phosphor sheet.
  • the phosphor absorbs light emitted from the LED chip, converts the wavelength, and emits light having a wavelength different from that of the LED chip. Thereby, a part of the light emitted from the LED chip and a part of the light emitted from the phosphor are mixed to obtain a multicolor LED including white. Specifically, a white LED is caused to emit light using a single LED chip by optically combining a blue LED and a phosphor that emits a yellow emission color by light from the blue LED. Can do.
  • the phosphors as described above include various phosphors such as a phosphor emitting green, a phosphor emitting blue, a phosphor emitting yellow, and a phosphor emitting red.
  • Specific phosphors used in the present invention include known phosphors such as inorganic phosphors, organic phosphors, fluorescent pigments, and fluorescent dyes.
  • organic phosphors include allylsulfoamide / melamine formaldehyde co-condensed dyes and perylene phosphors.
  • Perylene phosphors are preferably used because they can be used for a long period of time.
  • Examples of the fluorescent material that is particularly preferably used in the present invention include inorganic phosphors. The inorganic phosphor used in the present invention is described below.
  • Examples of phosphors that emit green light include SrAl 2 O 4 : Eu, Y 2 SiO 5 : Ce, Tb, MgAl 11 O 19 : Ce, Tb, Sr 7 Al 12 O 25 : Eu, (Mg, Ca, Sr , At least one of Ba) and Ga 2 S 4 : Eu.
  • Examples of phosphors that emit blue light include Sr 5 (PO 4 ) 3 Cl: Eu, (SrCaBa) 5 (PO 4 ) 3 Cl: Eu, (BaCa) 5 (PO 4 ) 3 Cl: Eu, (Mg, 2 B 5 O 9 Cl: Eu, Mn, (Mg, Ca, Sr, Ba, at least one) (PO 4 ) 6 Cl 2 : Eu, Mn, etc. .
  • yttrium / aluminum oxide phosphors As phosphors emitting green to yellow, at least cerium-activated yttrium / aluminum oxide phosphors, at least cerium-enriched yttrium / gadolinium / aluminum oxide phosphors, at least cerium-activated yttrium / aluminum There are garnet oxide phosphors and at least cerium activated yttrium gallium aluminum oxide phosphors (so-called YAG phosphors). Specifically, Ln 3 M 5 O 12 : R (Ln is at least one selected from Y, Gd, and La. M includes at least one of Al and Ca. R is a lanthanoid series.
  • R is at least one selected from Ce, Tb, Pr, Sm, Eu, Dy, Ho) 0 ⁇ x ⁇ 0.5, 0 ⁇ y ⁇ 0.5
  • Examples of phosphors that emit red light include Y 2 O 2 S: Eu, La 2 O 2 S: Eu, Y 2 O 3 : Eu, and Gd 2 O 2 S: Eu.
  • YAG-based phosphors YAG-based phosphors, TAG-based phosphors, and silicate-based phosphors are preferably used in terms of light emission efficiency and luminance.
  • known phosphors can be used according to the intended use and the intended emission color.
  • the average particle diameter of the phosphor used in the present invention is not particularly limited, but is preferably 1 ⁇ m or more. Moreover, an average particle diameter of 20 micrometers or less is preferable.
  • the average particle diameter means a median diameter, that is, D50.
  • the D50 of the phosphor contained in the phosphor sheet is obtained by subjecting a measurement image of a cross section of the sheet with a scanning electron microscope (SEM) to image processing to obtain a particle size distribution, and in the volume-based particle size distribution obtained therefrom, Is measured by a method in which the particle diameter of 50% of the accumulated amount from is set to the median diameter D50.
  • SEM scanning electron microscope
  • the value of D50 obtained by this method is smaller than that obtained by directly observing the phosphor powder, but the average particle diameter of the phosphor in the present invention is defined as the value obtained by the above measurement method.
  • the average particle diameter is in the above range, the phosphor in the phosphor sheet has good dispersibility and stable light emission can be obtained.
  • D50 the value of D50 is smaller than that obtained when the phosphor powder is directly observed is that the diameter is correctly measured when the powder is directly observed, but the fluorescence existing in the cross section of the phosphor sheet. This is because when the particle diameter of the body is measured, the phosphor particles are not always cut at the equator plane. Assuming that the phosphor particles are spherical and are cut at any location, the apparent diameter is theoretically 78.5% of the true diameter (the area of a circle with a diameter of 1 and one side of 1 Equivalent to the square area ratio). Actually, since the phosphor particles are not true spheres, it is empirically about 70% to 85%.
  • the phosphor content is preferably 53% by mass or more of the entire phosphor sheet, more preferably 57% by mass or more, and further preferably 60% by mass or more.
  • the phosphor content in the phosphor sheet is preferably 95% by mass or less, more preferably 90% by mass or less, and 85% by mass or less of the entire phosphor sheet. More preferably, it is particularly preferably 80% by mass or less.
  • the phosphor sheet in the present invention is formed by applying a sheet preparation resin solution for forming a phosphor sheet on a substrate containing polyphenylene sulfide, and then thermally drying and curing the applied sheet preparation resin solution. Is done.
  • Polyphenylene sulfide is a polymer containing a structure represented by the following general formula (2) as an essential repeating unit.
  • the polyphenylene sulfide used in the present invention is a polymer containing the repeating unit represented by the general formula (2), preferably 70 mol% or more, more preferably 90 mol% or more.
  • polyphenylene sulfide contains 70 mol% or more of the repeating unit represented by the general formula (2), heat resistance is excellent, which is preferable.
  • the polyphenylene sulfide used in the present invention can be composed of a repeating unit represented by the following structural formula at 30 mol% or less of the repeating unit.
  • the polyphenylene sulfide used in the present invention comprises a random copolymer composed of a repeating unit represented by the general formula (2) and at least one repeating unit represented by the following structural formula, a block copolymer Or a mixture of a polymer having a repeating unit represented by the general formula (2) and a polymer having at least one repeating unit represented by the following structural formula. Good.
  • polyphenylene sulfide of the present invention in addition to the linear polyphenylene sulfide composed of the above repeating units, a crosslinked polyphenylene sulfide can be used, but the base material used in the present invention has flexibility. Since it is desirable to have a film shape, a film shape made of linear polyphenylene sulfide is preferably used.
  • the substrate may contain components other than polyphenylene sulfide.
  • a resin component other than polyphenylene sulfide or an inorganic component may be included.
  • Resin components other than polyphenylene sulfide include polyolefins such as polyethylene, polypropylene and ethylene copolymer resins, styrene resins such as polystyrene and ABS resin, polyvinyl chloride, vinylidene chloride, polyethylene terephthalate, polyethylene naphthalate, polybutylene terephthalate, poly Examples thereof include thermoplastic resins such as tetrafluoroethylene, and high heat resistant resins such as polyacrylate resin, polyoxybenzoyl, polycarbonate, polyacetal, polyphenylene ether, and polyimide.
  • the inorganic component examples include glass fiber and inorganic fine particles. By including these, it is possible to improve mechanical properties such as reduction of thermal expansion coefficient, improvement of toughness, and improvement of elastic modulus.
  • Any glass fiber can be used, but those made of alkali-free glass such as quartz glass and E glass and low alkali glass are preferred from the viewpoint of hardly causing deterioration of mechanical properties.
  • inorganic oxide fine particles such as silica, alumina, calcium oxide, boron oxide, zinc oxide, titanium oxide, zirconia, glass powder, quartz powder, barium titanate, calcium carbonate, barium carbonate, calcium sulfate, barium sulfate, etc.
  • Examples include inorganic compound powders other than these oxides, and inorganic fine particles derived from natural products such as talc, montmorillonite, and mica. These inorganic fine particles may be subjected to a surface treatment if necessary.
  • Specific examples of the surface treatment include water repellency treatment using silicone oil and the like, hydrophobization treatment using a surface treatment agent such as a silane coupling agent, hydrophilization treatment, or hydroxyl group, amino group on the surface of fine particles, Examples include the introduction of organic functional groups such as carboxyl, epoxy, acrylic, vinyl, alkyl, and aryl groups, which improve affinity with the resin used, adhesion at the interface, and dispersibility. Is selected as appropriate.
  • the base material according to the present invention contains any of the above-described components, it contains polyphenylene sulfide as a main component, so that a coating film free from repellency or unevenness when applying a resin liquid for preparing a phosphor sheet described below. Further, after the phosphor sheet is attached to the LED chip, it can be easily peeled off when the substrate is peeled off.
  • the base material according to the present invention may be a laminate having a polyphenylene sulfide layer.
  • a laminate in which a layer mainly composed of polyphenylene sulfide is laminated on one side or both sides of a polyolefin-based resin layer having a heat distortion temperature of 70 to 150 ° C. disclosed in Japanese Patent Application Laid-Open No. 2006-21372 is also disclosed. It can be used as a substrate of the invention.
  • the phosphor sheet in the present invention may contain silicone fine particles in order to improve the fluidity of a resin liquid for producing a phosphor sheet, which will be described later, and to improve the coating property.
  • the silicone fine particles to be contained are preferably fine particles comprising a silicone resin and / or silicone rubber.
  • silicone fine particles obtained by a method in which organosilane such as organotrialkoxysilane, organodialkoxysilane, organotriacetoxysilane, organodiacetoxysilane, organotrioxime silane, and organodioxime silane are hydrolyzed and then condensed are obtained. preferable.
  • organotrialkoxysilane examples include methyltrimethoxysilane, methyltriethoxysilane, methyltri-n-propoxysilane, methyltri-i-propoxysilane, methyltri-n-butoxysilane, methyltri-i-butoxysilane, methyltri-s-butoxy Silane, methyltri-t-butoxysilane, ethyltrimethoxysilane, n-propyltrimethoxysilane, i-propyltrimethoxysilane, n-butyltributoxysilane, i-butyltributoxysilane, s-butyltrimethoxysilane, t -Butyltributoxysilane, N- (2-aminoethyl) -3-aminopropyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, vinyltrimethoxysilane, phen
  • Organodialkoxysilanes include dimethyldimethoxysilane, dimethyldiethoxysilane, methylethyldimethoxysilane, methylethyldiethoxysilane, diethyldiethoxysilane, diethyldimethoxysilane, 3-aminopropylmethyldiethoxysilane, N- (2- Aminoethyl) -3-aminopropylmethyldimethoxysilane, N- (2-aminoethyl) -3-aminoisobutylmethyldimethoxysilane, N-ethylaminoisobutylmethyldiethoxysilane, (phenylaminomethyl) methyldimethoxysilane, vinylmethyl Examples include diethoxysilane.
  • organotriacetoxysilane examples include methyltriacetoxysilane, ethyltriacetoxysilane, vinyltriacetoxysilane, and the like.
  • organodiacetoxysilane examples include dimethyldiacetoxysilane, methylethyldiacetoxysilane, vinylmethyldiacetoxysilane, and vinylethyldiacetoxysilane.
  • organotrioxime silane examples include methyl trismethyl ethyl ketoxime silane, vinyl trismethyl ethyl ketoxime silane, and examples of the organodioxime silane include methyl ethyl bismethyl ethyl ketoxime silane.
  • organosilane such as organotrialkoxysilane, organodialkoxysilane, organotriacetoxysilane, organodiacetoxysilane, organotrioxime silane, organodioxime silane and / or a partial hydrolyzate thereof are added to an alkaline aqueous solution, Hydrolysis / condensation to obtain particles, or addition of organosilane and / or partial hydrolyzate thereof to water or acidic solution to obtain hydrolyzed partial condensate of organosilane and / or partial hydrolyzate thereof Thereafter, a method in which an alkali is added to proceed with a condensation reaction to obtain particles, an organosilane and / or a hydrolyzate thereof is used as
  • the reaction as reported in Japanese Patent Application Laid-Open No. 2003-342370 is carried out in the production of spherical organopolysilsesquioxane fine particles by hydrolyzing and condensing organosilane and / or a partial hydrolyzate thereof. It is preferable to use silicone fine particles obtained by a method of adding a polymer dispersant in the solution.
  • organosilane and / or a partial hydrolyzate thereof are hydrolyzed / condensed in the presence of a polymer dispersant and a salt that act as a protective colloid in a solvent in an acidic aqueous solution.
  • Silicone fine particles produced by adding a silane and / or a hydrolyzate thereof to obtain a hydrolyzate and then adding an alkali to advance the condensation reaction can also be used.
  • the polymer dispersant is a water-soluble polymer, and any synthetic polymer or natural polymer can be used as long as it acts as a protective colloid in a solvent. Specifically, polyvinyl alcohol, polyvinyl pyrrolidone and the like can be used. It can be illustrated.
  • a method for adding the polymer dispersant a method of adding in advance to the reaction initial solution, a method of adding organotrialkoxysilane and / or a partial hydrolyzate thereof simultaneously, an organotrialkoxysilane and / or a partial hydrolyzate thereof, The method of adding after hydrolyzing partial condensation can be illustrated, and any of these methods can be selected.
  • the addition amount of the polymer dispersant is preferably in the range of 5 ⁇ 10 ⁇ 7 to 10 ⁇ 2 parts by mass with respect to 1 part by mass of the reaction solution, and in this range, aggregation of particles hardly occurs.
  • the organic substituent contained in the silicone fine particles is preferably a methyl group or a phenyl group, and the refractive index of the silicone fine particles can be adjusted by the content of these substituents.
  • the refractive index d1 of the silicone fine particles and the refractive index due to components other than the silicone fine particles and the phosphor A smaller refractive index difference of d2 is preferable.
  • the difference in refractive index between the refractive index d1 of the silicone fine particles and the refractive index d2 due to components other than the silicone fine particles and the phosphor is preferably less than 0.10, and more preferably 0.03 or less.
  • Abbe refractometer For the measurement of the refractive index, Abbe refractometer, Pulfrich refractometer, immersion type refractometer, immersion method, minimum declination method, etc. are used as the total reflection method, but for the refractive index measurement of the silicone composition,
  • the immersion method is useful for measuring the refractive index of Abbe refractometer and silicone fine particles.
  • the refractive index difference can be adjusted by changing the blending ratio of raw materials constituting the silicone fine particles. That is, for example, when a mixture of methyltrialkoxysilane and phenyltrialkoxysilane is used as a raw material, it is close to 1.4 by increasing the composition ratio of methyl groups, that is, by increasing the amount of methyltrialkoxysilane. It is possible to reduce the refractive index. Conversely, a relatively high refractive index can be achieved by increasing the proportion of phenyl groups, that is, by increasing the amount of phenyltrialkoxysilane.
  • the average particle diameter of the silicone fine particles is represented by a median diameter (D50), and the average particle diameter is preferably 0.01 ⁇ m or more and more preferably 0.05 ⁇ m or more as a lower limit.
  • the upper limit is preferably 2.0 ⁇ m or less, and more preferably 1.0 ⁇ m or less.
  • the average particle diameter of the silicone fine particles contained in the phosphor sheet that is, the median diameter (D50) and the particle size distribution can be measured by SEM observation of the sheet cross section.
  • a particle size distribution is obtained by performing image processing on a measurement image obtained by SEM, and in the particle size distribution obtained therefrom, the particle diameter of 50% of the accumulated portion from the small particle diameter side is obtained as the median diameter D50.
  • the average particle size of the silicone fine particles obtained from the cross-sectional SEM image of the phosphor sheet is theoretically 78.5% compared to the true average particle size, and is actually approximately Although the value is 70% to 85%, the average particle size of the silicone fine particles in the present invention is defined as a value obtained by the above-described measuring method.
  • the content of the silicone fine particles is preferably 0.5% by mass or more as a lower limit with respect to the total amount of the silicone resin and the silicone fine particles, and is 1% by mass or more. More preferred is 2% by mass or more. Moreover, as an upper limit, it is preferable that it is 20 mass parts or less, and it is more preferable that it is 10 mass parts or less. By containing 1% by mass or more of silicone fine particles, a particularly good phosphor dispersion stabilizing effect can be obtained. On the other hand, the content of 20% by mass or less does not excessively increase the viscosity of the resin liquid for sheet preparation. .
  • a hydrosilylation reaction retarder such as acetylene alcohol is blended to suppress the curing of the resin liquid for producing a sheet at room temperature and lengthen the pot life. It is preferable to do.
  • the resin liquid for sheet preparation may contain fine particles such as fumed silica, glass powder, and quartz powder as necessary, titanium oxide, zirconia oxide, barium titanate, zinc oxide, etc.
  • Inorganic fillers, pigments, flame retardants, heat-resistant agents, antioxidants, dispersants, solvents, adhesiveness-imparting agents such as silane coupling agents and titanium coupling agents may be blended.
  • a low molecular weight polydimethylsiloxane component silicone oil or the like to the resin liquid for producing the phosphor sheet.
  • a component is preferably added in an amount of 100 to 2,000 ppm, more preferably 500 to 1,000 ppm in the resin liquid for sheet preparation (excluding the amount of the solvent when a solvent is included).
  • the film thickness of the phosphor sheet in the present invention is determined from the phosphor content and desired optical characteristics.
  • the phosphor sheet needs to contain a predetermined amount of phosphor.
  • the thickness of the phosphor sheet is preferably 10 ⁇ m or more.
  • the phosphor sheet in the present invention has a large phosphor content, it is excellent in light resistance even when the film thickness is large.
  • the thickness of the phosphor sheet is preferably 200 ⁇ m or less, and more preferably 100 ⁇ m or less.
  • the phosphor sheet has a thickness of 200 ⁇ m or less, light absorption and light scattering by the binder resin can be proposed, so that the phosphor sheet is optically excellent.
  • the film thickness of the phosphor sheet in the present invention is a film thickness (average film thickness) measured based on the method A of measuring thickness by mechanical scanning in JIS K7130 (1999) plastic-film and sheet-thickness measurement method. ).
  • the LED is in an environment where a large amount of heat is generated in a small space, and particularly in the case of a high power LED, heat generation is significant. Due to such heat generation, the temperature of the phosphor increases, and the luminance of the LED decreases. Therefore, it is important how efficiently the generated heat is radiated.
  • the fluorescent substance sheet excellent in heat resistance can be obtained by making the film thickness of a fluorescent substance sheet into the said range. In addition, if there is a variation in the thickness of the phosphor sheet, a difference occurs in the amount of phosphor for each LED chip, and as a result, a variation occurs in the emission spectrum (color temperature, luminance, chromaticity).
  • the variation in sheet thickness is preferably within ⁇ 5%, more preferably within ⁇ 3%.
  • the film thickness variation referred to here is a film thickness measured by the method A of measuring thickness by mechanical scanning in JIS K7130 (1999) plastic-film and sheet-thickness measuring method, and is shown below. Calculated by the formula.
  • Film thickness variation B (%) ⁇ (maximum film thickness deviation value * ⁇ average film thickness) / average film thickness ⁇ ⁇ 100 * For the maximum film thickness deviation value, the one with the larger difference from the average film thickness is selected from the maximum value or the minimum value.
  • a resin liquid (hereinafter referred to as “sheet producing resin liquid”) in which phosphor particles and silicone fine particles used as necessary are dispersed in a silicone resin material is produced.
  • the resin liquid for sheet preparation can be obtained by mixing phosphor particles, silicone resin material and, if necessary, silicone fine particles in a solvent-free or suitable solvent.
  • an addition reaction type silicone resin is used, a curing reaction starts even at room temperature when a compound containing an alkenyl group bonded to a silicon atom, which is a silicone resin material, and a compound having a hydrogen atom bonded to a silicon atom are mixed.
  • a hydrosilylation reaction retarder such as an acetylene compound
  • the compound having an alkenyl group bonded to a silicon atom, the compound having a hydrogen atom bonded to a silicon atom, and the addition reaction catalyst are not mixed and separated into two liquids. Is effective in terms of storage stability.
  • a siloxane compound having an alkenyl group bonded to a silicon atom and a platinum-based catalyst are set as liquid A
  • a compound having a hydrogen group bonded to a silicon atom is set as liquid B
  • phosphor particles and silicone fine particles are dispersed in liquid A.
  • B liquid is mixed just before making into a sheet.
  • the type of the solvent is not particularly limited as long as the viscosity of the resin in a fluid state can be adjusted.
  • toluene, methyl ethyl ketone, methyl isobutyl ketone, hexane, heptane, cyclohexane, acetone, terpineol, butyl carbitol, butyl carbitol acetate, glyme, diglyme and the like can be mentioned.
  • a sheet is obtained by uniformly mixing and dispersing in a stirrer / kneader such as a homogenizer, a self-revolving stirrer, a three-roller, a ball mill, a planetary ball mill, a bead mill, or a kneader.
  • a resin solution for preparation is obtained.
  • Defoaming is preferably carried out under vacuum or reduced pressure conditions after mixing or dispersing.
  • the resin liquid for sheet preparation is applied on the polyphenylene sulfide resin film substrate and dried.
  • Application is reverse roll coater, blade coater, slit die coater, direct gravure coater, offset gravure coater, reverse roll coater, blade coater, kiss coater, screen printing, natural roll coater, air knife coater, roll blade coater, varibar roll blade.
  • a coater, a two stream coater, a rod coater, a wire bar coater, an applicator, a dip coater, a curtain coater, a spin coater, a knife coater or the like can be used.
  • the phosphor sheet according to the present invention can also be produced by using a printing method such as screen printing, gravure printing, and lithographic printing. In particular, screen printing is preferably used.
  • the film thickness of the substrate used in the present invention is not particularly limited, but the lower limit is preferably 40 ⁇ m or more, more preferably 60 ⁇ m or more. Moreover, as an upper limit, 5000 micrometers or less are preferable and 3000 micrometers or less are more preferable.
  • Heat-curing of the sheet-forming resin liquid applied to the substrate can be performed using a general heating device such as a hot air dryer or an infrared dryer.
  • the heating and curing conditions for the resin liquid for sheet preparation are generally 40 ° C. to 250 ° C. for 1 minute to 5 hours, preferably 100 ° C. to 200 ° C. for 2 hours. Min to 3 hours.
  • a pressure-sensitive adhesive layer may be provided on the phosphor sheet side in order to improve the adhesiveness with the LED chip.
  • the material for the adhesive layer is not particularly limited, and examples thereof include general rubber-based, acrylic-based, urethane-based, and silicone-based adhesives. Any adhesive may be used, but a silicone-based adhesive is useful as an adhesive suitable for heat resistance, insulation, and transparency.
  • a protective film may be provided on the phosphor sheet side.
  • the material for the protective film is not particularly limited, and examples thereof include polyethylene terephthalate (PET), polyethylene, polypropylene, polyvinyl chloride, cellophane, and polyphenylene sulfide.
  • PET polyethylene terephthalate
  • the protective film may be subjected to a release treatment with a known release agent such as a silicone type or a fluorine type.
  • Examples of the LED chip to which the phosphor sheet according to the present invention can be applied include a face-up type LED chip and a flip chip type LED chip, and a flip chip type LED chip is particularly preferable.
  • the flip chip type LED chip has high luminous efficiency and high heat dissipation. Therefore, the use of the phosphor sheet according to the present invention facilitates the production of a high-power LED for illumination use having excellent light resistance.
  • the phosphor sheet in the present invention can be used by being mounted on a LED element as a wavelength conversion sheet.
  • the current mainstream white LED for illumination uses a phosphor material to convert a part of the blue light of the blue light into yellow, green, or red, and mixes it with the blue light of the blue LED element. It has gained.
  • a method of attaching the phosphor material to the blue LED element a method of incorporating the phosphor into a liquid transparent sealing material used when the blue LED element is resin-sealed is mainly used. Although this method is simple, it is difficult to precisely apply a certain amount of phosphor-containing liquid sealing resin onto individual blue LED elements, which causes color unevenness.
  • a phosphor sheet having a uniform film thickness is obtained, it is possible to easily attach a phosphor sheet having a constant thickness on the blue LED element, and thus on the blue LED element.
  • the amount of phosphor can be made constant.
  • the laminate of the present invention When applying the laminate of the present invention to a flip chip type LED chip, first, the laminate is made into small pieces according to the size of the LED chip to be sealed. The fragmentation can be performed by dicing. When a laminated body has a protective film, after peeling, it may be fragmented, and the whole protective film may be fragmented. In addition, when the LED chip has an electrode pad on the light emitting surface (light extraction surface) side, it is desirable to process the laminated body and make a hole in a portion corresponding to the electrode pad before bonding.
  • the phosphor sheet of the laminate may be in a semi-cured state or may be cured in advance. It is preferable to use an adhesive for pasting, and known die bond agents and adhesives, such as acrylic resin, epoxy resin, urethane resin, silicone resin, modified silicone resin, phenol resin, polyimide, Polyvinyl alcohol, polymethacrylate resin, melamine resin, and urea resin adhesives can be used.
  • an adhesive for pasting such as acrylic resin, epoxy resin, urethane resin, silicone resin, modified silicone resin, phenol resin, polyimide, Polyvinyl alcohol, polymethacrylate resin, melamine resin, and urea resin adhesives can be used.
  • the phosphor sheet itself has adhesiveness or has an adhesive layer, it may be used. In the case of a semi-cured phosphor sheet, curing by heating may be used. In addition, when the phosphor sheet has heat softening properties after curing, it can be bonded by heat fusion.
  • the polyphenylene sulfide resin film substrate is peeled from the laminate.
  • the base material is polyphenylene sulfide
  • the base material can be easily removed without causing damage to the phosphor sheet or peeling from the LED chip. It is possible to stick the phosphor sheet to the LED chip after peeling off the base material in advance with the timing to peel off the protective film, but if the strength of the phosphor sheet is weak, the base material will be peeled off first Since there is a possibility that the phosphor sheet may be damaged, it is preferable that the substrate is peeled off after being attached to the LED chip.
  • the light emitting device can be obtained by electrically connecting the electrode of the LED chip and the wiring of the circuit board by a known method.
  • the LED chip has an electrode on the light emitting surface side
  • the LED chip is fixed to the circuit board with a die bonding material or the like with the light emitting surface facing up, and then the wire on the upper surface of the LED chip and the circuit board are connected by wire bonding To do.
  • the LED chip is a flip chip type having an electrode pad on the opposite surface of the light emitting surface, the electrode surface of the LED chip is opposed to the wiring of the circuit board and connected by batch bonding.
  • the phosphor sheet is bonded to the LED chip in a semi-cured state, it can be cured at a suitable timing before or after this electrical connection.
  • the phosphor sheet may be simultaneously cured by the heating. Further, in the case where a package in which an LED chip and a circuit board are connected is surface-mounted on a larger circuit board, the phosphor sheet may be cured simultaneously with soldering by solder reflow.
  • the phosphor sheet may serve as a sealing agent for the LED chip, but the LED chip to which the phosphor sheet is attached can be further sealed using a known silicone resin or the like as a light-transmitting sealing material. Moreover, after sealing an LED chip with a translucent sealing material, it is also possible to use a phosphor sheet on the sealing material.
  • the light emitting device to which the LED chip obtained by using the phosphor sheet in the present invention can be applied is not particularly limited, and the backlight of a display used in a television, a personal computer, a mobile phone, a game machine, etc. Widely applicable to general lighting of fields and buildings.
  • ⁇ Film thickness measurement> The film thickness of a predetermined position of the base material on which the phosphor sheet was formed was measured in advance with a micrometer and marked. After laminating the phosphor sheet, the marking portion was measured again with a micrometer, and the film thickness of the phosphor sheet was obtained by subtracting the film thickness of the base material previously measured from the film thickness obtained. The film thickness was measured at 100 points in a grid pattern with a 110 mm square sheet as a measurement sample, the maximum value, the minimum value, and the average value of each sample were determined, and the film thickness variation B was determined by the following formula. .
  • Film thickness variation B (%) ⁇ (maximum film thickness deviation value * ⁇ average film thickness) / average film thickness ⁇ ⁇ 100 *
  • the maximum film thickness deviation value the one with the larger difference from the average film thickness is selected from the maximum value or the minimum value.
  • Correlated color temperature variation Correlation color immediately after the start of the test using an instantaneous multi-photometry system (MCPD-3000, manufactured by Otsuka Electronics Co., Ltd.) by turning on the LED chip by applying a current of 400 mA to a light emitting device in which each phosphor sheet is mounted on a blue LED element. The temperature was measured. 100 LED light-emitting devices were produced separately for each type of phosphor sheet, and an average value, maximum value, and minimum value in 100 pieces were obtained, and variations were evaluated from the following formulas.
  • Correlated color temperature variation (K) correlated color temperature maximum deviation value ⁇ average correlated color temperature * correlated color temperature maximum deviation value is selected from the maximum value or the minimum value of the correlated color temperature that has a larger difference from the average.
  • Silicone Fine Particle 1> Attach a stirrer, thermometer, reflux tube, and dropping funnel to a 2 L four-necked round bottom flask, and put 2 L of 2.5% aqueous ammonia containing 1 ppm of polyether-modified siloxane “BYK333” as a surfactant into the flask. The temperature was raised in an oil bath while stirring at. When the internal temperature reached 50 ° C., 200 g of a mixture of methyltrimethoxysilane and phenyltrimethoxysilane (23/77 mol%) was dropped from the dropping funnel over 30 minutes.
  • Example 1 Using a polyethylene container with a volume of 300 ml, “OE-6630A / B” (made by Toray Dow Corning Co., Ltd., refractive index 1.53) as a silicone resin is 40.0% by mass, and “NYAG-02” as a phosphor ( Manufactured by Intematix: Ce-doped YAG phosphor, specific gravity: 4.8 g / cm 3 , D50: 7 ⁇ m) was mixed at a ratio of 60.0% by mass.
  • the cover film was peeled off and the surface on which the adhesive layer was exposed was brought into contact with the glass substrate, and the surface was brought into close contact with a rubber hand roller so that air bubbles would not enter.
  • the “Torelina (registered trademark)” film of the base material was peeled off, only the base material film could be peeled easily without peeling off or damaging the phosphor sheet in close contact with the glass substrate.
  • a phosphor sheet was pasted on the LED element, and the luminescent color was measured by lighting, a good white LED with small variation in correlated color temperature was obtained.
  • Examples 2 to 4 The same procedure as in Example 1 was conducted, except that silicone fine particles 1 were added so as to have the amounts shown in Table 1, and the amount of each component was adjusted so that the phosphor particle content in the phosphor sheet was maintained at 60.0% by mass. Thus, a phosphor sheet was prepared. On the phosphor sheet, “SD4580” (a silicone adhesive manufactured by Toray Dow Corning) was applied and dried by heating at 100 ° C. for 15 minutes to obtain an adhesive layer. On the adhesive layer, “Celapeel (registered trademark)” BLK (manufactured by Toray Film Processing Co., Ltd.) was laminated at room temperature as a cover film.
  • Example 1 A laminate was prepared in the same manner as in Example 1 except that the base film was changed to a polyethylene terephthalate film “Lumirror (registered trademark)” (manufactured by Toray Industries, Inc.). The sex was confirmed. A phosphor sheet having good coating properties, no pinholes, and good film thickness uniformity was obtained. However, after transferring the laminate to a glass substrate, the substrate film was peeled off to remove the phosphor sheet. The part was attached to the base film side and was not peeled off, and was damaged and peeled off from the glass substrate. Similarly, when the laminate was attached on the LED element and the substrate was peeled off, most of the phosphor sheets were peeled off from the LED element, and it was not possible to turn on and measure the emission color.
  • Limirror registered trademark
  • Example 2 A phosphor sheet was produced in the same manner as in Example 1 except that the base film was changed to a polyethylene terephthalate film with a release treatment “Therapy (registered trademark)” HP2 (manufactured by Toray Film Processing Co., Ltd.). The coating property and the substrate peelability were confirmed. At the time of application, repelling of the resin liquid for producing the phosphor sheet occurred, and the film thickness of the phosphor sheet obtained by heating and curing became non-uniform. When the base material film was peeled off after transferring the laminate to the glass substrate, the phosphor sheet could be easily peeled off without being peeled or damaged while being in close contact with the glass substrate. Similarly, when a phosphor sheet is pasted on the LED element, and the emission color is measured by lighting, the variation in the correlated color temperature is larger than that in Examples 1 to 4 due to the large variation in film thickness. Sufficient uniformity was not obtained.
  • Comparative Examples 3 and 4 In the same manner as in Comparative Example 2, except that the silicone fine particles 1 were added so as to have the amounts shown in Table 1, and the amount of each component was adjusted so that the content of the phosphor particles in the phosphor sheet was maintained at 60.0% by mass. Thus, a phosphor sheet was prepared, and the applicability of the resin liquid for sheet preparation and the substrate peelability were confirmed. At the time of application, repelling of the resin liquid for producing the phosphor sheet occurred, and the film thickness of the phosphor sheet obtained by heating and curing became non-uniform.
  • the phosphor sheet When the base material film was peeled off after transferring the laminate to the glass substrate, the phosphor sheet could be easily peeled off without being peeled or damaged while being in close contact with the glass substrate. Similarly, when a phosphor sheet is pasted on the LED element, and the emission color is measured by lighting, the variation in the correlated color temperature is larger than that in Examples 1 to 4 due to the large variation in film thickness. Sufficient uniformity was not obtained.
  • Example 5 A phosphor sheet was prepared in the same manner as in Example 1 except that the base film was changed to a polyethylene terephthalate film with a release treatment “Therapy (registered trademark)” BLK (manufactured by Toray Film Processing Co., Ltd.). The coating property and the substrate peelability were confirmed. The repelling of the resin liquid for producing the phosphor sheet was generated at the time of coating, pinholes were frequently generated, and the thickness of the phosphor sheet obtained by heating and curing became non-uniform. When the base material film was peeled off after transferring the laminate to the glass substrate, the phosphor sheet could be easily peeled off without being peeled or damaged while being in close contact with the glass substrate.
  • Therapy (registered trademark)” BLK manufactured by Toray Film Processing Co., Ltd.
  • Comparative Example 6 In the same manner as in Comparative Example 5, except that the silicone fine particles 1 were added so as to have the amounts shown in Table 1, and the amount of each component was adjusted so that the content of the phosphor particles in the phosphor sheet was maintained at 60.0% by mass. Thus, a phosphor sheet was prepared, and the applicability of the resin liquid for sheet preparation and the substrate peelability were confirmed. At the time of application, repelling of the resin liquid for producing the phosphor sheet occurred, and the film thickness of the phosphor sheet obtained by heating and curing became non-uniform.
  • the phosphor sheet When the base material film was peeled off after transferring the laminate to the glass substrate, the phosphor sheet could be easily peeled off without being peeled or damaged while being in close contact with the glass substrate. Similarly, when a phosphor sheet is pasted on the LED element, and the emission color is measured by lighting, the variation in the correlated color temperature is larger than that in Examples 1 to 4 due to the large variation in film thickness. Sufficient uniformity was not obtained.

Abstract

Provided are: a laminate which does not undergo the formation of fisheyes or the unevenness in coating in a step of coating a resin solution for sheet production purposes onto a base of the laminate, and in which the base and a phosphor sheet can be delaminated easily in a delamination step; and a method for producing a light-emitting diode provided with a wavelength conversion layer. The laminate according to the present invention is characterized by comprising: a base which comprises polyphenylenesulfide; and a phosphor sheet which is laminated on the base and contains at least a silicone resin and a phosphor.

Description

積層体および波長変換層付き発光ダイオードの製造方法Laminated body and method for manufacturing light emitting diode with wavelength conversion layer
 本発明は、LEDチップの発光波長を変換するためのシート状材料である積層体および波長変換層付き発光ダイオードの製造方法に関する。 The present invention relates to a laminate which is a sheet-like material for converting the emission wavelength of an LED chip and a method for producing a light emitting diode with a wavelength conversion layer.
 発光ダイオード(LED、Light Emitting Diode)は、その発光効率の目覚ましい向上を背景とし、低い消費電力、高寿命、意匠性などを特長として液晶ディスプレイ(LCD)のバックライト向けや、車のヘッドライト等の車載分野ばかりではなく一般照明向けでも急激に市場を拡大しつつある。 Light-emitting diodes (LEDs, light emitting diodes) are used for backlights of liquid crystal displays (LCDs), car headlights, etc. due to their remarkable improvement in luminous efficiency and low power consumption, long life, and design. The market is rapidly expanding not only in the automotive field but also for general lighting.
 LEDの発光スペクトルは、LEDチップを形成する半導体材料に依存するためその発光色は限られている。そのため、LEDを用いてLCDバックライトや一般照明向けの白色光を得るためには、LEDチップ上にそれぞれのチップに適合した蛍光体を配置し、発光波長を変換する必要がある。具体的には、青色発光するLEDチップ上に黄色蛍光体を設置する方法、青色発光するLEDチップ上に赤および緑の蛍光体を設置する方法、紫外線を発するLEDチップ上に赤、緑、青の蛍光体を設置する方法などが提案されている。これらの中で、LEDチップの発光効率やコストの面から青色LED上に黄色蛍光体を設置する方法、および青色LED上に赤および緑の蛍光体を設置する方法が現在最も広く採用されている。 Since the emission spectrum of an LED depends on the semiconductor material forming the LED chip, its emission color is limited. Therefore, in order to obtain white light for LCD backlight or general illumination using LEDs, it is necessary to arrange phosphors suitable for the respective chips on the LED chips and convert the emission wavelength. Specifically, a method of installing a yellow phosphor on an LED chip that emits blue light, a method of installing red and green phosphors on an LED chip that emits blue light, and red, green, and blue on an LED chip that emits ultraviolet light A method of installing a phosphor is proposed. Among these, the method of installing a yellow phosphor on a blue LED and the method of installing red and green phosphors on a blue LED are currently most widely adopted in terms of the luminous efficiency and cost of the LED chip. .
 LEDチップ上に蛍光体を設置する具体的な方法の1つとして、LEDチップ上に、蛍光体粒子を含有したシリコーン樹脂シート(以下、蛍光体シートという)を貼り合わせる方法が提案されている(例えば、特許文献1~4参照)。この方法は、従来実用化されている蛍光体を分散した液状樹脂をLEDチップ上にディスペンスして硬化する方法と比較して、一定量の蛍光体をLEDチップ上に配置することが容易であり、結果として得られる白色LEDの色や輝度を均一にできる点で優れている。 As a specific method of installing a phosphor on an LED chip, a method of bonding a silicone resin sheet containing phosphor particles (hereinafter referred to as a phosphor sheet) on the LED chip has been proposed ( For example, see Patent Documents 1 to 4). This method is easier to dispose a certain amount of phosphor on the LED chip than the conventional method of dispensing and curing a liquid resin in which the phosphor is dispersed on the LED chip. The resulting white LED is excellent in that the color and brightness can be made uniform.
特開2009-235368号公報JP 2009-235368 A 特開2010-123802号公報JP 2010-123802 A 特許2011-102004号公報Japanese Patent No. 2011-102004 特開2010-159411号公報JP 2010-159411 A
 蛍光体シートをLEDチップに貼り合わせる方法は、前述のように液状蛍光体樹脂を用いるよりも色や輝度の安定化のためには優れた方法であるが、蛍光体粒子を分散させた樹脂を均一にシート化するのが難しい。また、このようなシートは通常は、ポリエチレンテレフタレート等からなるフィルム状の基材上に塗布することで形成される。シリコーン樹脂を主成分とする蛍光体シート自体の弾性率はそれほど高くないため、取り扱い中に変形、破損することがある。したがって、蛍光体シートは、基材上に塗布された後、LEDチップに貼り付けられるまでは基材と一体になった積層体の状態で取り扱われることになる。基材に積層された蛍光体シートは、LEDチップに貼りあわせられた後基材を剥離するが、基材と蛍光体シートとの密着強度が高いと、剥離の際蛍光体シートを破損するおそれがあった。 The method of attaching the phosphor sheet to the LED chip is a better method for stabilizing the color and brightness than using the liquid phosphor resin as described above, but a resin in which phosphor particles are dispersed is used. It is difficult to make a uniform sheet. Moreover, such a sheet | seat is normally formed by apply | coating on the film-form base material which consists of polyethylene terephthalate etc. Since the elastic modulus of the phosphor sheet itself containing silicone resin as a main component is not so high, it may be deformed or damaged during handling. Therefore, the phosphor sheet is handled in a state of a laminated body integrated with the base material until it is applied to the LED chip after being applied onto the base material. The phosphor sheet laminated on the substrate peels off the substrate after being bonded to the LED chip. However, if the adhesion strength between the substrate and the phosphor sheet is high, the phosphor sheet may be damaged at the time of peeling. was there.
 基材剥離の際の蛍光体シートの破損を防止するために、一般的には基材に離型処理と呼ばれる処理を施す。離型処理はシリコーン系有機化合物やフッ素系有機化合物などの表面エネルギーが非常に低い物質の薄膜を基材表面に施し、その上に形成した蛍光体シートの剥離を容易にする。しかしながら、蛍光体シートに用いるシリコーン樹脂は塗工性が悪く、このような表面エネルギーの低い薬剤で処理した表面に塗工する場合、ハジキやムラが出るため均一に塗布することは非常に困難であった。 In order to prevent the phosphor sheet from being damaged when the substrate is peeled off, a treatment called mold release treatment is generally applied to the substrate. In the mold release treatment, a thin film of a material having a very low surface energy such as a silicone-based organic compound or a fluorine-based organic compound is applied to the substrate surface, and the phosphor sheet formed thereon is easily peeled off. However, the silicone resin used for the phosphor sheet has poor coatability, and when applied to a surface treated with such a low surface energy chemical, repelling and unevenness occur, so it is very difficult to apply uniformly. there were.
 さらに、蛍光体シートを形成した積層体は、LEDチップに貼り付ける前にLEDチップの大きさにカットしたり、積層体のLEDチップの電極接続パッドに当たる部分に孔あけ加工をしておくなど、機械的加工を施す場合がある。離型処理を施した基材にシリコーン樹脂と蛍光体とを含む蛍光体シートを形成した積層体に機械的加工を施す場合、蛍光体シートが基材から剥がれてしまい、破損してしまうことも課題であった。 Furthermore, the laminated body in which the phosphor sheet is formed is cut to the size of the LED chip before being attached to the LED chip, or the portion of the laminated body that contacts the electrode connection pad of the LED chip is punched, etc. May be subjected to mechanical processing. When mechanical processing is performed on a laminate in which a phosphor sheet containing a silicone resin and a phosphor is formed on a base material that has been subjected to a release treatment, the phosphor sheet may be peeled off from the base material and damaged. It was a challenge.
 本発明は、上記に鑑みてなされたものであって、塗布性が悪いシリコーン樹脂系のシート作製用樹脂液を基材に塗布して蛍光体シートを形成する場合に、塗布工程ではシート作製用樹脂液のハジキやムラが発生せず、かつ剥離工程では基材と蛍光体シートとを容易に剥離することができる積層体、および波長変換層付き発光ダイオードの製造方法を提供するものである。 The present invention has been made in view of the above, and in the case where a phosphor sheet is formed by applying a silicone resin sheet-forming resin solution having poor applicability to a base material, the application step is for sheet preparation. The present invention provides a laminate and a method for producing a light emitting diode with a wavelength conversion layer, in which no repellency or unevenness of the resin liquid occurs and the substrate and the phosphor sheet can be easily separated in the peeling step.
 本発明の積層体は、ポリフェニレンサルファイドを含有する基材と、前記基材上に積層された、少なくともシリコーン樹脂および蛍光体を含有する蛍光体シートと、を備えることを特徴とする。 The laminate of the present invention comprises a base material containing polyphenylene sulfide and a phosphor sheet containing at least a silicone resin and a phosphor laminated on the base material.
 本発明の積層体は、基材に蛍光体を含むシート作製用樹脂液を塗布する際には良好な塗布性が得られるため、膜厚が均一な蛍光体シートを得ることができるとともに、基材と蛍光体シートとの剥離が容易であり、蛍光体シートの破損を防止することができる。 The laminate of the present invention can obtain a phosphor sheet having a uniform film thickness because a good coating property can be obtained when a sheet-forming resin solution containing a phosphor is applied to a substrate. The material and the phosphor sheet can be easily peeled off, and the phosphor sheet can be prevented from being damaged.
 本発明における蛍光体シートは、主としてシリコーン樹脂と、蛍光体とを含有するものであれば、特に限定されることなく様々なものを使用することが可能である。必要に応じその他の成分を含んでいてもよい。 The phosphor sheet in the present invention is not particularly limited as long as it mainly contains a silicone resin and a phosphor, and various sheets can be used. Other components may be included as necessary.
 本発明に使用されるシリコーン樹脂は、蛍光体を内部に含有するバインダー樹脂であり、蛍光体シートの形態を形成する成分である。よって、内部に蛍光体を均質に分散させられるものであり、シート状に形成できるものであれば特に制限はない。また、LED発光装置に用いた場合の耐久性や信頼性から、機械的な強度、透明性、耐熱性、耐光性に優れたものが要求される。さらに本発明で用いられるシリコーン樹脂としては、硬化型シリコーンゴムが好ましい。一液型、二液型(三液型)のいずれの液構成を使用してもよい。硬化型シリコーンゴムには、空気中の水分あるいは触媒によって縮合反応を起こすタイプとして脱アルコール型、脱オキシム型、脱酢酸型、脱ヒドロキシルアミン型などがある。また、触媒によってヒドロシリル化反応を起こすタイプとして付加反応型がある。これらのいずれのタイプの硬化型シリコーンゴムを使用してもよい。特に、付加反応型のシリコーンゴムは硬化反応に伴う副成物がなく、水分の影響を受けにくいとともに、硬化収縮が小さく、加熱により硬化を早めることが容易な点で、シート化するためにはより好ましい。 The silicone resin used in the present invention is a binder resin that contains a phosphor inside, and is a component that forms the form of the phosphor sheet. Therefore, there is no particular limitation as long as the phosphor can be uniformly dispersed inside and can be formed into a sheet shape. Moreover, the thing excellent in mechanical strength, transparency, heat resistance, and light resistance is requested | required from durability and reliability at the time of using for an LED light-emitting device. Further, the silicone resin used in the present invention is preferably a curable silicone rubber. Either one liquid type or two liquid type (three liquid type) liquid structure may be used. Examples of the curable silicone rubber include a dealcohol-free type, a deoxime type, a deacetic acid type, and a dehydroxylamine type that cause a condensation reaction with moisture in the air or a catalyst. Moreover, there is an addition reaction type as a type that causes a hydrosilylation reaction with a catalyst. Any of these types of curable silicone rubber may be used. In particular, addition-reactive silicone rubber has no by-products associated with the curing reaction, is not easily affected by moisture, has low curing shrinkage, and is easy to accelerate curing by heating. More preferred.
 付加反応型のシリコーンゴムは、一例として、ケイ素原子に結合したアルケニル基を含有する化合物と、ケイ素原子に結合した水素原子を有する化合物のヒドロシリル化反応により形成される。このような材料としては、ビニルトリメトキシシラン、ビニルトリエトキシシラン、アリルトリメトキシシラン、プロペニルトリメトキシシラン、ノルボルネニルトリメトキシシラン、オクテニルトリメトキシシラン等のケイ素原子に結合したアルケニル基を含有する化合物と、メチルハイドロジェンポリシロキサン、ジメチルポリシロキサン-CO-メチルハイドロジェンポリシロキサン、エチルハイドロジェンポリシロキサン、メチルハイドロジェンポリシロキサン-CO-メチルフェニルポリシロキサン等のケイ素原子に結合した水素原子を有する化合物のヒドロシリル化反応により形成されるものが挙げられる。 For example, the addition reaction type silicone rubber is formed by a hydrosilylation reaction between a compound containing an alkenyl group bonded to a silicon atom and a compound having a hydrogen atom bonded to a silicon atom. Such materials contain alkenyl groups bonded to silicon atoms such as vinyltrimethoxysilane, vinyltriethoxysilane, allyltrimethoxysilane, propenyltrimethoxysilane, norbornenyltrimethoxysilane, octenyltrimethoxysilane, etc. And hydrogen atoms bonded to silicon atoms such as methylhydrogenpolysiloxane, dimethylpolysiloxane-CO-methylhydrogenpolysiloxane, ethylhydrogenpolysiloxane, methylhydrogenpolysiloxane-CO-methylphenylpolysiloxane, etc. Examples thereof include those formed by hydrosilylation reaction of the compounds having them.
 また、本発明に使用されるシリコーン樹脂として、例えば特開2010-159411号公報に記載のものも使用することができる。特開2010-159411号公報に記載のシリコーン樹脂は、縮合反応と付加反応とにより硬化するシリコーン樹脂であり、縮合反応が可能な置換基を有するケイ素化合物、及び付加反応が可能な置換基を有するケイ素化合物を含有するシリコーン樹脂用組成物を縮合反応することにより得られる。 Further, as the silicone resin used in the present invention, for example, those described in JP 2010-159411 A can be used. The silicone resin described in Japanese Patent Application Laid-Open No. 2010-159411 is a silicone resin that cures by a condensation reaction and an addition reaction, and has a silicon compound having a substituent capable of condensation reaction and a substituent capable of addition reaction. It can be obtained by subjecting a silicone resin composition containing a silicon compound to a condensation reaction.
 縮合反応が可能な置換基を有するケイ素化合物としては、例えば、水酸基、アミノ基、アルコキシ基、カルボキシル基、エステル基、ハロゲン原子等の置換基を有するケイ素化合物が例示される。好ましくは水酸基、アルコキシ基を有するケイ素化合物が挙げられる。1分子中に含有される置換基の数に特に限定はない。 Examples of the silicon compound having a substituent capable of a condensation reaction include silicon compounds having a substituent such as a hydroxyl group, an amino group, an alkoxy group, a carboxyl group, an ester group, and a halogen atom. Preferably, a silicon compound having a hydroxyl group or an alkoxy group is used. There is no particular limitation on the number of substituents contained in one molecule.
 縮合反応が可能な置換基を有するケイ素化合物としては、例えば、下記式(1)で表される両末端シラノール型ケイ素化合物が好ましい。 As the silicon compound having a substituent capable of condensation reaction, for example, a both-end silanol type silicon compound represented by the following formula (1) is preferable.
Figure JPOXMLDOC01-appb-C000001

 式中、Rは1価の炭化水素基、例えば、炭素数が1~20、好ましくは1~10の1価の炭化水素基である。メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、フェニル基、ナフチル基、シクロヘキシル基、シクロペンチル基等が例示される。なかでも、透明性及び耐光性の観点から、メチル基が好ましい。なお、式(1)において、全てのRは同一でも、異なっていても良いが、全てのRがメチル基であることが好ましい。
Figure JPOXMLDOC01-appb-C000001

In the formula, R 1 is a monovalent hydrocarbon group, for example, a monovalent hydrocarbon group having 1 to 20 carbon atoms, preferably 1 to 10 carbon atoms. Examples include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a phenyl group, a naphthyl group, a cyclohexyl group, and a cyclopentyl group. Of these, a methyl group is preferred from the viewpoints of transparency and light resistance. In formula (1), all R 1 groups may be the same or different, but all R 1 groups are preferably methyl groups.
 上記式(1)において、nは、1以上の整数であり、安定性や取り扱い性の観点から、nは1~10000、より好ましくは1~1000の整数である。 In the above formula (1), n is an integer of 1 or more, and from the viewpoint of stability and handleability, n is an integer of 1 to 10000, more preferably 1 to 1000.
 式(1)で表される化合物としては、両末端シラノール型ポリジメチルシロキサン、両末端シラノール型ポリメチルフェニルシロキサン、両末端シラノール型ポリジフェニルシロキサン等が挙げられ、これらは単独又は2種以上を組み合わせて用いることができる。これらのなかでも、Rが全てメチル基、nが1~1000の整数である化合物が好ましい。 Examples of the compound represented by the formula (1) include both-end silanol-type polydimethylsiloxane, both-end silanol-type polymethylphenylsiloxane, and both-end silanol-type polydiphenylsiloxane. These may be used alone or in combination of two or more. Can be used. Among these, compounds in which R 1 is all a methyl group and n is an integer of 1 to 1000 are preferable.
 縮合反応系モノマーにおける式(1)で表される化合物の含有量は、50質量%以上が好ましく、80質量%以上がより好ましく、実質的に100質量%であることがさらに好ましい。 The content of the compound represented by the formula (1) in the condensation reaction monomer is preferably 50% by mass or more, more preferably 80% by mass or more, and still more preferably 100% by mass.
 シリコーン樹脂中の縮合反応系モノマーの割合は1~99質量%が好ましく、50~99質量%がより好ましく、80~99質量%がさらに好ましい。 The proportion of the condensation reaction monomer in the silicone resin is preferably 1 to 99% by mass, more preferably 50 to 99% by mass, and still more preferably 80 to 99% by mass.
 付加反応が可能な置換基を有するケイ素化合物(以下、付加反応系モノマーともいう)としては、例えば、アルケニル基、水素原子、アルキニル基、カルボニル基、チオール基、エポキシ基、アミノ基、水酸基、スルフィド基等の置換基を有するケイ素化合物が例示され、好ましくは水素原子、アルケニル基を有するケイ素化合物である。1分子中に含有される置換基の数に特に制限はない。 Examples of the silicon compound having a substituent capable of addition reaction (hereinafter also referred to as addition reaction monomer) include, for example, alkenyl group, hydrogen atom, alkynyl group, carbonyl group, thiol group, epoxy group, amino group, hydroxyl group, sulfide. The silicon compound which has substituents, such as group, is illustrated, Preferably it is a silicon compound which has a hydrogen atom and an alkenyl group. There is no restriction | limiting in particular in the number of the substituents contained in 1 molecule.
 水素原子、またはアルケニル基を有するケイ素化合物としては、上記の付加反応型のシリコーンゴムとして例示した、ケイ素原子に結合したアルケニル基を含有する化合物、またはケイ素原子に結合した水素原子を有する化合物が上げられる。 Examples of the silicon compound having a hydrogen atom or an alkenyl group include compounds having an alkenyl group bonded to a silicon atom or compounds having a hydrogen atom bonded to a silicon atom, exemplified as the above addition reaction type silicone rubber. It is done.
 シリコーン樹脂中の付加反応系モノマーの含有量は、0.1~99質量%が好ましく、0.1~90質量%がより好ましく、0.1~80質量%がさらに好ましい。 The content of the addition reaction monomer in the silicone resin is preferably 0.1 to 99% by mass, more preferably 0.1 to 90% by mass, and further preferably 0.1 to 80% by mass.
 また、縮合反応系モノマーと付加反応系モノマーの配合比(縮合反応系モノマー/付加反応系モノマー)は、シート化した際の粘弾性の観点から、99.9/0.1~1/99が好ましく、99.9/0.1~50/50がより好ましく、99.9/0.1~90/10がさらに好ましい。 Further, the blending ratio of the condensation reaction system monomer and the addition reaction system monomer (condensation reaction system monomer / addition reaction system monomer) is 99.9 / 0.1 to 1/99 from the viewpoint of viscoelasticity when formed into a sheet. It is preferably 99.9 / 0.1 to 50/50, more preferably 99.9 / 0.1 to 90/10.
 また、特開2010-159411号公報に記載のシリコーン樹脂は、上記縮合反応系モノマーと付加反応系モノマーに加えて、さらに、縮合反応系モノマーと付加反応系モノマーのいずれとも反応し得る化合物(以下、縮合/付加モノマーともいう)を含有することが好ましい。 In addition to the condensation reaction system monomer and the addition reaction system monomer, the silicone resin described in Japanese Patent Application Laid-Open No. 2010-159411 further includes a compound that can react with both the condensation reaction system monomer and the addition reaction system monomer (hereinafter referred to as “reaction monomer”). , Also referred to as a condensation / addition monomer).
 縮合/付加モノマーは、1分子中に、縮合反応系モノマーと反応し得る官能基と付加反応系モノマーと反応し得る官能基とを有するものである。縮合反応系モノマーと反応し得る官能基としては、前述の縮合反応が可能な置換基と同様の置換基が挙げられ、1分子における該官能基の数に特に限定はない。付加反応系モノマーと反応し得る官能基としては、前述の付加反応が可能な置換基と同様の置換基が挙げられ、1分子における該官能基の数に特に限定はない。 The condensation / addition monomer has a functional group capable of reacting with the condensation reaction system monomer and a functional group capable of reacting with the addition reaction system monomer in one molecule. Examples of the functional group capable of reacting with the condensation reaction monomer include the same substituents as those described above that can undergo the condensation reaction, and the number of functional groups in one molecule is not particularly limited. Examples of the functional group capable of reacting with the addition reaction monomer include the same substituents as those described above that can undergo the addition reaction, and the number of functional groups in one molecule is not particularly limited.
 かかる化合物としては、例えば、アルケニル基含有トリアルコキシシランが好ましい。上記化合物では、アルケニル基が付加反応系モノマーと付加反応を、アルコキシ基が縮合反応系モノマーと縮合反応する。 As such a compound, for example, an alkenyl group-containing trialkoxysilane is preferable. In the above compound, an alkenyl group undergoes an addition reaction with an addition reaction monomer, and an alkoxy group undergoes a condensation reaction with a condensation reaction monomer.
 アルケニル基含有トリアルコキシシランのアルケニル基は、炭素数が1~20、好ましくは1~10であり、具体的には、ビニル基、アリル基、プロペニル基、ブテニル基、ペンテニル基、ヘキセニル基、ヘプテニル基、オクテニル基、ノルボルネニル基、シクロヘキセニル基等が例示される。なかでも、ヒドロシリル化反応に対する反応性の観点から、ビニル基が好ましい。 The alkenyl group of the alkenyl group-containing trialkoxysilane has 1 to 20 carbon atoms, preferably 1 to 10 carbon atoms, and specifically includes a vinyl group, allyl group, propenyl group, butenyl group, pentenyl group, hexenyl group, heptenyl group. Group, octenyl group, norbornenyl group, cyclohexenyl group and the like are exemplified. Among these, a vinyl group is preferable from the viewpoint of reactivity with respect to the hydrosilylation reaction.
 アルケニル基含有トリアルコキシシランのアルコキシ基は、炭素数が1~10、好ましくは1~6のアルコキシ基であり、具体的にはメトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基等が例示される。なかでも、縮合反応に対する反応性の観点から、メトキシ基が好ましい。なお、全てのアルコキシ基は同一でも異なっていてもよいが、全てメトキシ基であることが好ましい。 The alkoxy group of the alkenyl group-containing trialkoxysilane is an alkoxy group having 1 to 10, preferably 1 to 6 carbon atoms, and specifically includes a methoxy group, an ethoxy group, a propoxy group, a butoxy group, a pentyloxy group, and a hexyl group. An oxy group etc. are illustrated. Of these, a methoxy group is preferred from the viewpoint of reactivity to the condensation reaction. All alkoxy groups may be the same or different, but all are preferably methoxy groups.
 アルケニル基含有トリアルコキシシランとしては、ビニルトリメトキシシラン、ビニルトリエトキシシラン、アリルトリメトキシシラン、プロペニルトリメトキシシラン、ノルボルネニルトリメトキシシラン、オクテニルトリメトキシシラン等が挙げられ、これらは単独で又は2種以上を組み合わせて用いることができる。これらのなかでも、ビニルトリメトキシシランが好ましい。 Examples of the alkenyl group-containing trialkoxysilane include vinyltrimethoxysilane, vinyltriethoxysilane, allyltrimethoxysilane, propenyltrimethoxysilane, norbornenyltrimethoxysilane, octenyltrimethoxysilane, and the like. Alternatively, two or more kinds can be used in combination. Of these, vinyltrimethoxysilane is preferred.
 縮合/付加モノマーにおけるアルケニル基含有トリアルコキシシランの含有量は、50質量%以上が好ましく、80質量%以上がより好ましく、実質的に100質量%であることが更に好ましい。 The content of the alkenyl group-containing trialkoxysilane in the condensation / addition monomer is preferably 50% by mass or more, more preferably 80% by mass or more, and still more preferably 100% by mass.
 シリコーン樹脂中の縮合/付加モノマーの含有量は、0.01~90質量%が好ましく、0.01~50質量がより好ましく、0.01~10質量%がさらに好ましい。 The content of the condensation / addition monomer in the silicone resin is preferably 0.01 to 90% by mass, more preferably 0.01 to 50% by mass, and still more preferably 0.01 to 10% by mass.
 また、縮合反応系モノマーとして式(1)で表わされる両末端シラノール型シリコーンオイルを、縮合/付加モノマーとしてアルケニル基含有トリアルコキシシランを用いた場合には、両者の配合比は、両末端シラノール型シリコーンオイルのシラノール基とアルケニル基含有トリアルコキシシランのアルコキシ基を過不足なく反応させる観点から、前記官能基のモル比(シラノール基/アルコシキ基)が、20/1~0.2/1が好ましく、10/1~0.5/1がより好ましく、実質的に当量(1/1)であることがさらに好ましい。 In addition, when the both-end silanol type silicone oil represented by the formula (1) is used as the condensation reaction monomer and the alkenyl group-containing trialkoxysilane is used as the condensation / addition monomer, the blending ratio of both is the silanol type at both ends. From the viewpoint of reacting the silanol group of the silicone oil and the alkoxy group of the alkenyl group-containing trialkoxysilane without excess or deficiency, the molar ratio of the functional groups (silanol group / alkoxy group) is preferably 20/1 to 0.2 / 1. 10/1 to 0.5 / 1 is more preferable, and it is more preferable that it is substantially equivalent (1/1).
 特開2010-159411号公報に記載のシリコーン樹脂を使用する場合、2段階にわけてシリコーン樹脂を硬化するため、蛍光体シートへの粘着層の形成が不要となる。 In the case of using the silicone resin described in JP 2010-159411 A, the silicone resin is cured in two steps, so that it is not necessary to form an adhesive layer on the phosphor sheet.
 蛍光体は、LEDチップから放出される光を吸収して波長を変換し、LEDチップの光と異なる波長の光を放出するものである。これにより、LEDチップから放出される光の一部と、蛍光体から放出される光の一部とが混合されて、白色を含む多色系のLEDが得られる。具体的には、青色系LEDと、青色系LEDからの光によって黄色系の発光色を発光する蛍光体とを光学的に組み合わせることによって、単一のLEDチップを用いて白色系を発光させることができる。 The phosphor absorbs light emitted from the LED chip, converts the wavelength, and emits light having a wavelength different from that of the LED chip. Thereby, a part of the light emitted from the LED chip and a part of the light emitted from the phosphor are mixed to obtain a multicolor LED including white. Specifically, a white LED is caused to emit light using a single LED chip by optically combining a blue LED and a phosphor that emits a yellow emission color by light from the blue LED. Can do.
 上述のような蛍光体には、緑色に発光する蛍光体、青色に発光する蛍光体、黄色に発光する蛍光体、赤色に発光する蛍光体等の種々の蛍光体がある。本発明に用いられる具体的な蛍光体としては、無機蛍光体、有機蛍光体、蛍光顔料、蛍光染料等公知の蛍光体が挙げられる。有機蛍光体としては、アリルスルホアミド・メラミンホルムアルデヒド共縮合染色物やペリレン系蛍光体等を挙げることができ、長期間使用可能な点からペリレン系蛍光体が好ましく用いられる。本発明に特に好ましく用いられる蛍光物質としては、無機蛍光体が挙げられる。以下に本発明に用いられる無機蛍光体について記載する。 The phosphors as described above include various phosphors such as a phosphor emitting green, a phosphor emitting blue, a phosphor emitting yellow, and a phosphor emitting red. Specific phosphors used in the present invention include known phosphors such as inorganic phosphors, organic phosphors, fluorescent pigments, and fluorescent dyes. Examples of organic phosphors include allylsulfoamide / melamine formaldehyde co-condensed dyes and perylene phosphors. Perylene phosphors are preferably used because they can be used for a long period of time. Examples of the fluorescent material that is particularly preferably used in the present invention include inorganic phosphors. The inorganic phosphor used in the present invention is described below.
 緑色に発光する蛍光体として、例えば、SrAl:Eu、YSiO:Ce,Tb、MgAl1119:Ce,Tb、SrAl1225:Eu、(Mg、Ca、Sr、Baのうち少なくとも1以上)Ga:Euなどがある。 Examples of phosphors that emit green light include SrAl 2 O 4 : Eu, Y 2 SiO 5 : Ce, Tb, MgAl 11 O 19 : Ce, Tb, Sr 7 Al 12 O 25 : Eu, (Mg, Ca, Sr , At least one of Ba) and Ga 2 S 4 : Eu.
 青色に発光する蛍光体として、例えば、Sr(POCl:Eu、(SrCaBa)(POCl:Eu、(BaCa)(POCl:Eu、(Mg、Ca、Sr、Baのうち少なくとも1以上)Cl:Eu,Mn、(Mg、Ca、Sr、Baのうち少なくとも1以上)(POCl:Eu,Mnなどがある。 Examples of phosphors that emit blue light include Sr 5 (PO 4 ) 3 Cl: Eu, (SrCaBa) 5 (PO 4 ) 3 Cl: Eu, (BaCa) 5 (PO 4 ) 3 Cl: Eu, (Mg, 2 B 5 O 9 Cl: Eu, Mn, (Mg, Ca, Sr, Ba, at least one) (PO 4 ) 6 Cl 2 : Eu, Mn, etc. .
 緑色から黄色に発光する蛍光体として、少なくともセリウムで賦活されたイットリウム・アルミニウム酸化物蛍光体、少なくともセリウムで賦括されたイットリウム・ガドリニウム・アルミニウム酸化物蛍光体、少なくともセリウムで賦活されたイットリウム・アルミニウム・ガーネット酸化物蛍光体、及び、少なくともセリウムで賦活されたイットリウム・ガリウム・アルミニウム酸化物蛍光体などがある(いわゆるYAG系蛍光体)。具体的には、Ln12:R(Lnは、Y、Gd、Laから選ばれる少なくとも1以上である。Mは、Al、Caの少なくともいずれか一方を含む。Rは、ランタノイド系である。)、(Y1-xGa(Al1-yGa12:R(Rは、Ce、Tb、Pr、Sm、Eu、Dy、Hoから選ばれる少なくとも1以上である。0<x<0.5、0<y<0.5である。)を使用することができる。 As phosphors emitting green to yellow, at least cerium-activated yttrium / aluminum oxide phosphors, at least cerium-enriched yttrium / gadolinium / aluminum oxide phosphors, at least cerium-activated yttrium / aluminum There are garnet oxide phosphors and at least cerium activated yttrium gallium aluminum oxide phosphors (so-called YAG phosphors). Specifically, Ln 3 M 5 O 12 : R (Ln is at least one selected from Y, Gd, and La. M includes at least one of Al and Ca. R is a lanthanoid series. ), (Y 1-x Ga x ) 3 (Al 1-y Ga y ) 5 O 12 : R (R is at least one selected from Ce, Tb, Pr, Sm, Eu, Dy, Ho) 0 <x <0.5, 0 <y <0.5) can be used.
 赤色に発光する蛍光体として、例えば、YS:Eu、LaS:Eu、Y:Eu、GdS:Euなどがある。 Examples of phosphors that emit red light include Y 2 O 2 S: Eu, La 2 O 2 S: Eu, Y 2 O 3 : Eu, and Gd 2 O 2 S: Eu.
 また、現在主流の青色LEDに対応し発光する蛍光体としては、Y(Al,Ga)12:Ce、(Y,Gd)Al12:Ce、LuAl12:Ce、YAl12:CeなどのYAG系蛍光体、TbAl12:CeなどのTAG系蛍光体、(Ba,Sr)SiO:Eu系蛍光体やCaScSi12:Ce系蛍光体、(Sr,Ba,Mg)SiO:Euなどのシリケート系蛍光体、(Ca,Sr)Si:Eu、(Ca,Sr)AlSiN:Eu、CaSiAlN:Eu等のナイトライド系蛍光体、Cax(Si,Al)12(O,N)16:Euなどのオキシナイトライド系蛍光体、さらには(Ba,Sr,Ca)Si:Eu系蛍光体、CaMgSi16Cl:Eu系蛍光体、SrAl:Eu、SrAl1425:Eu等の蛍光体が挙げられる。 As the phosphor corresponding to the current mainstream of the blue LED emission, Y 3 (Al, Ga) 5 O 12: Ce, (Y, Gd) 3 Al 5 O 12: Ce, Lu 3 Al 5 O 12: Ce, Y 3 Al 5 O 12 : YAG phosphor such as Ce, TAG phosphor such as Tb 3 Al 5 O 12 : Ce, (Ba, Sr) 2 SiO 4 : Eu phosphor and Ca 3 Sc 2 Si 3 O 12 : Ce phosphor, silicate phosphor such as (Sr, Ba, Mg) 2 SiO 4 : Eu, (Ca, Sr) 2 Si 5 N 8 : Eu, (Ca, Sr) AlSiN 3 : Eu, CaSiAlN 3 : Nitride phosphor such as Eu, Cax (Si, Al) 12 (O, N) 16 : Oxynitride phosphor such as Eu, and (Ba, Sr, Ca) Si 2 O 2 N 2 : E Examples include phosphors such as u-based phosphors, Ca 8 MgSi 4 O 16 Cl 2 : Eu-based phosphors, SrAl 2 O 4 : Eu, and Sr 4 Al 14 O 25 : Eu.
 これらの中では、YAG系蛍光体、TAG系蛍光体、シリケート系蛍光体が、発光効率や輝度などの点で好ましく用いられる。
 上記以外にも、用途や目的とする発光色に応じて公知の蛍光体を用いることができる。
Among these, YAG-based phosphors, TAG-based phosphors, and silicate-based phosphors are preferably used in terms of light emission efficiency and luminance.
In addition to the above, known phosphors can be used according to the intended use and the intended emission color.
 本発明で使用する蛍光体の平均粒子径は、特に制限はないが、1μm以上のものが好ましい。また、平均粒子径が20μm以下のものが好ましい。ここで本発明において平均粒子径とはメジアン径、すなわちD50のことをいう。蛍光体シートに含まれる蛍光体のD50は、シート断面の走査型電子顕微鏡(SEM)による測定画像を画像処理して粒径分布を求め、そこから得られる体積基準粒度分布において、小粒径側からの通過分積算50%の粒子径をメジアン径D50とする方法で測定する。この方法で求められるD50の値は、蛍光体粉末を直接観察した場合よりも小さい値となるが、本発明における蛍光体の平均粒子径は上記の測定方法で求められる値と定義される。平均粒子径が前記範囲であると、蛍光体シート中の蛍光体の分散性が良好で、安定な発光が得られる。 The average particle diameter of the phosphor used in the present invention is not particularly limited, but is preferably 1 μm or more. Moreover, an average particle diameter of 20 micrometers or less is preferable. Here, in the present invention, the average particle diameter means a median diameter, that is, D50. The D50 of the phosphor contained in the phosphor sheet is obtained by subjecting a measurement image of a cross section of the sheet with a scanning electron microscope (SEM) to image processing to obtain a particle size distribution, and in the volume-based particle size distribution obtained therefrom, Is measured by a method in which the particle diameter of 50% of the accumulated amount from is set to the median diameter D50. The value of D50 obtained by this method is smaller than that obtained by directly observing the phosphor powder, but the average particle diameter of the phosphor in the present invention is defined as the value obtained by the above measurement method. When the average particle diameter is in the above range, the phosphor in the phosphor sheet has good dispersibility and stable light emission can be obtained.
 なお、上記のD50の値が蛍光体粉末を直接観察した場合よりも小さい値となる理由は、粉末を直接観察した場合には正しく直径が測定されるが、蛍光体シートの断面に存在する蛍光体の粒子径を測定した場合には、蛍光体粒子が必ず赤道面で切断されているとは限らないからである。蛍光体粒子が球状であり、その任意の場所で切断されると仮定すると、その見かけの直径は、理論上は真の直径の78.5%となる(直径1の円の面積と一辺1の正方形の面積の比に相当)。実際には蛍光体粒子は真球ではないので、経験的にはおおよそ70%~85%となる。 The reason why the value of D50 is smaller than that obtained when the phosphor powder is directly observed is that the diameter is correctly measured when the powder is directly observed, but the fluorescence existing in the cross section of the phosphor sheet. This is because when the particle diameter of the body is measured, the phosphor particles are not always cut at the equator plane. Assuming that the phosphor particles are spherical and are cut at any location, the apparent diameter is theoretically 78.5% of the true diameter (the area of a circle with a diameter of 1 and one side of 1 Equivalent to the square area ratio). Actually, since the phosphor particles are not true spheres, it is empirically about 70% to 85%.
 本発明では、蛍光体の含有量が蛍光体シート全体の53質量%以上であることが好ましく、57質量%以上であることがより好ましく、60質量%以上であることがさらに好ましい。蛍光体シート中の蛍光体含有量を前記範囲とすることで、蛍光体シートの耐光性を高めることができる。なお、蛍光体シートが作成しやすいという作業性の観点から、蛍光体シート全体の95質量%以下であることが好ましく、90質量%以下であることがより好ましく、85質量%以下であることがさらに好ましく、80質量%以下であることが特に好ましい。 In the present invention, the phosphor content is preferably 53% by mass or more of the entire phosphor sheet, more preferably 57% by mass or more, and further preferably 60% by mass or more. By setting the phosphor content in the phosphor sheet within the above range, the light resistance of the phosphor sheet can be improved. In addition, from the viewpoint of workability that the phosphor sheet is easy to create, it is preferably 95% by mass or less, more preferably 90% by mass or less, and 85% by mass or less of the entire phosphor sheet. More preferably, it is particularly preferably 80% by mass or less.
 本発明における蛍光体シートは、ポリフェニレンサルファイドを含有する基材上に蛍光体シートを形成するためのシート作製用樹脂液を塗布し、塗布したシート作製用樹脂液を熱乾燥・硬化させることで形成される。ポリフェニレンサルファイドは、下記一般式(2)に示す構造を必須の繰り返し単位として含有する高分子である。 The phosphor sheet in the present invention is formed by applying a sheet preparation resin solution for forming a phosphor sheet on a substrate containing polyphenylene sulfide, and then thermally drying and curing the applied sheet preparation resin solution. Is done. Polyphenylene sulfide is a polymer containing a structure represented by the following general formula (2) as an essential repeating unit.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 本発明で使用するポリフェニレンサルファイドは、一般式(2)で示される繰り返し単位を、好ましくは70モル%以上、より好ましくは90モル%以上含む重合体である。ポリフェニレンサルファイドが、一般式(2)で示される繰り返し単位を70モル%以上含む場合、耐熱性が優れるため好ましい。 The polyphenylene sulfide used in the present invention is a polymer containing the repeating unit represented by the general formula (2), preferably 70 mol% or more, more preferably 90 mol% or more. When polyphenylene sulfide contains 70 mol% or more of the repeating unit represented by the general formula (2), heat resistance is excellent, which is preferable.
 また、本発明で使用するポリフェニレンサルファイドは、その繰り返し単位の30モル%以下を、下記の構造式で表される繰り返し単位などで構成することが可能である。本発明で使用するポリフェニレンサイファイドは、上記一般式(2)で示される繰り返し単位と、下記の構造式で表される繰り返し単位の少なくとも1種とから構成されるランダム共重合体、ブロック共重合体であってもよく、あるいは、上記一般式(2)で示される繰り返し単位を有する重合体と、下記の構造式で表される繰り返し単位の少なくとも1種を有する重合体の混合物であってもよい。 In addition, the polyphenylene sulfide used in the present invention can be composed of a repeating unit represented by the following structural formula at 30 mol% or less of the repeating unit. The polyphenylene sulfide used in the present invention comprises a random copolymer composed of a repeating unit represented by the general formula (2) and at least one repeating unit represented by the following structural formula, a block copolymer Or a mixture of a polymer having a repeating unit represented by the general formula (2) and a polymer having at least one repeating unit represented by the following structural formula. Good.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 また、本発明のポリフェニレンサルファイドとしては、上記の繰り返し単位からなる直鎖型ポリフェニレンサルファイドに加え、架橋型ポリフェニレンサルファイドも使用することが可能であるが、本発明で使用する基材は柔軟性を備えたフィルム形状であることが望ましいため、直鎖型ポリフェニレンサルファイドからなるフィルム状のものが好ましく用いられる。 Moreover, as the polyphenylene sulfide of the present invention, in addition to the linear polyphenylene sulfide composed of the above repeating units, a crosslinked polyphenylene sulfide can be used, but the base material used in the present invention has flexibility. Since it is desirable to have a film shape, a film shape made of linear polyphenylene sulfide is preferably used.
 本発明の効果を損なわない限りにおいて、基材はポリフェニレンサルファイド以外の成分を含んでいても良い。例えば、ポリフェニレンサルファイド以外の樹脂成分や、無機成分を含んでいても良い。ポリフェニレンサルファイド以外の樹脂成分としては、ポリエチレン、ポリプロピレン、エチレン共重合樹脂等のポリオレフィン、ポリスチレン、ABS樹脂等のスチレン系樹脂、ポリ塩化ビニル、塩化ビニリデン、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンテレフタレート、ポリテトラフルオロエチレン等の熱可塑性樹脂や、ポリアクリレート樹脂、ポリオキシベンゾイル、ポリカーボネート、ポリアセタール、ポリフェニレンエーテル、ポリイミドなどの高耐熱性樹脂などが挙げられる。ポリフェニレンサルファイドと他の樹脂を混合する方法としては、成膜時に混合してアロイ化する方法、ポリフェニレンサルファイドマトリクス中に他の樹脂の微粒子を分散する方法がある。成形体の用途では、褶動性改善のためにポリテトラフルオロエチレンとアロイ化したポリフェニレンサルファイドが知られている。 As long as the effects of the present invention are not impaired, the substrate may contain components other than polyphenylene sulfide. For example, a resin component other than polyphenylene sulfide or an inorganic component may be included. Resin components other than polyphenylene sulfide include polyolefins such as polyethylene, polypropylene and ethylene copolymer resins, styrene resins such as polystyrene and ABS resin, polyvinyl chloride, vinylidene chloride, polyethylene terephthalate, polyethylene naphthalate, polybutylene terephthalate, poly Examples thereof include thermoplastic resins such as tetrafluoroethylene, and high heat resistant resins such as polyacrylate resin, polyoxybenzoyl, polycarbonate, polyacetal, polyphenylene ether, and polyimide. As a method of mixing polyphenylene sulfide and another resin, there are a method of mixing and alloying at the time of film formation, and a method of dispersing fine particles of other resin in the polyphenylene sulfide matrix. In the use of a molded article, polytetrafluoroethylene and alloyed polyphenylene sulfide are known for improving the sliding performance.
 無機成分としては、ガラス繊維や無機微粒子が挙げられる。これらを含むことにより、熱膨張係数の低減・靭性の向上・弾性率の向上などの機械的特性を改良することができる。ガラス繊維としては、いずれのものも使用可能であるが、機械的特性の劣化を起こしにくい点から、石英ガラス、Eガラスなどの無アルカリガラス、低アルカリガラスからなるものが好ましい。例えばシリカ、アルミナ、酸化カルシウム、酸化ホウ素、酸化亜鉛、酸化チタン、酸化ジルコニアなどの無機酸化物微粒子や、ガラス粉末、石英粉末、またはチタン酸バリウム、炭酸カルシウム、炭酸バリウム、硫酸カルシウム、硫酸バリウムなどの酸化物以外の無機化合物粉末、タルク、モンモリロナイト、雲母等の天然物由来無機微粒子が挙げられ、これらの無機微粒子には、必要に応じて表面処理を施しても良い。表面処理の具体的な例としては、シリコーンオイル等を用いた撥水処理、シランカップリング剤などの表面処理剤を用いた疎水化処理、親水化処理、あるいは微粒子表面への水酸基、アミノ基、カルボキシル基、エポキシ基、アクリル基、ビニル基、アルキル基、アリール基などの有機官能基の導入などが挙げられ、これらは使用する樹脂との親和性や、界面の密着性あるいは分散性などを向上させるために適宜選択される。 Examples of the inorganic component include glass fiber and inorganic fine particles. By including these, it is possible to improve mechanical properties such as reduction of thermal expansion coefficient, improvement of toughness, and improvement of elastic modulus. Any glass fiber can be used, but those made of alkali-free glass such as quartz glass and E glass and low alkali glass are preferred from the viewpoint of hardly causing deterioration of mechanical properties. For example, inorganic oxide fine particles such as silica, alumina, calcium oxide, boron oxide, zinc oxide, titanium oxide, zirconia, glass powder, quartz powder, barium titanate, calcium carbonate, barium carbonate, calcium sulfate, barium sulfate, etc. Examples include inorganic compound powders other than these oxides, and inorganic fine particles derived from natural products such as talc, montmorillonite, and mica. These inorganic fine particles may be subjected to a surface treatment if necessary. Specific examples of the surface treatment include water repellency treatment using silicone oil and the like, hydrophobization treatment using a surface treatment agent such as a silane coupling agent, hydrophilization treatment, or hydroxyl group, amino group on the surface of fine particles, Examples include the introduction of organic functional groups such as carboxyl, epoxy, acrylic, vinyl, alkyl, and aryl groups, which improve affinity with the resin used, adhesion at the interface, and dispersibility. Is selected as appropriate.
 本発明に係る基材は、上記のいずれの成分を含んでいても、主成分としてポリフェニレンサルファイドを含むことにより、後述の蛍光体シート作製用樹脂液を塗布する際にハジキやムラのない塗布膜が得られ、さらに、LEDチップに蛍光体シートを貼り付けた後、基材を剥離する際に容易に剥離できる。 Even if the base material according to the present invention contains any of the above-described components, it contains polyphenylene sulfide as a main component, so that a coating film free from repellency or unevenness when applying a resin liquid for preparing a phosphor sheet described below. Further, after the phosphor sheet is attached to the LED chip, it can be easily peeled off when the substrate is peeled off.
 また、本発明にかかる基材は、ポリフェニレンサルファイド層を有する積層体であってもよい。たとえば、特開2006-21372号公報で開示される、熱変形温度が70~150℃のポリオレフィン系樹脂層の片面または両面に、ポリフェニレンサルファイドを主成分とする層が積層された積層体も、本発明の基材として使用可能である。 The base material according to the present invention may be a laminate having a polyphenylene sulfide layer. For example, a laminate in which a layer mainly composed of polyphenylene sulfide is laminated on one side or both sides of a polyolefin-based resin layer having a heat distortion temperature of 70 to 150 ° C. disclosed in Japanese Patent Application Laid-Open No. 2006-21372 is also disclosed. It can be used as a substrate of the invention.
 本発明における蛍光体シートは、後述の蛍光体シート作製用樹脂液の流動性を向上して塗布性を良好にするために、シリコーン微粒子を含有していても良い。含有するシリコーン微粒子は、シリコーン樹脂およびまたはシリコーンゴムからなる微粒子が好ましい。特に、オルガノトリアルコキシシランやオルガノジアルコキシシラン、オルガノトリアセトキシシラン、オルガノジアセトキシシラン、オルガノトリオキシムシラン、オルガノジオキシムシランなどのオルガノシランを加水分解し、次いで縮合させる方法により得られるシリコーン微粒子が好ましい。 The phosphor sheet in the present invention may contain silicone fine particles in order to improve the fluidity of a resin liquid for producing a phosphor sheet, which will be described later, and to improve the coating property. The silicone fine particles to be contained are preferably fine particles comprising a silicone resin and / or silicone rubber. In particular, silicone fine particles obtained by a method in which organosilane such as organotrialkoxysilane, organodialkoxysilane, organotriacetoxysilane, organodiacetoxysilane, organotrioxime silane, and organodioxime silane are hydrolyzed and then condensed are obtained. preferable.
 オルガノトリアルコキシシランとしては、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリ-n-プロポキシシラン、メチルトリ-i-プロポキシシラン、メチルトリ-n-ブトキシシラン、メチルトリ-i-ブトキシシラン、メチルトリ-s-ブトキシシラン、メチルトリ-t-ブトキシシラン、エチルトリメトキシシラン、n-プロピルトリメトキシシラン、i-プロピルトリメトキシシラン、n-ブチルトリブトキシシラン、i-ブチルトリブトキシシラン、s-ブチルトリメトキシシラン、t-ブチルトリブトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、ビニルトリメトキシシラン、フェニルトリメトキシシランなどが例示される。 Examples of the organotrialkoxysilane include methyltrimethoxysilane, methyltriethoxysilane, methyltri-n-propoxysilane, methyltri-i-propoxysilane, methyltri-n-butoxysilane, methyltri-i-butoxysilane, methyltri-s-butoxy Silane, methyltri-t-butoxysilane, ethyltrimethoxysilane, n-propyltrimethoxysilane, i-propyltrimethoxysilane, n-butyltributoxysilane, i-butyltributoxysilane, s-butyltrimethoxysilane, t -Butyltributoxysilane, N- (2-aminoethyl) -3-aminopropyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, vinyltrimethoxysilane, phenyltrimethoxysilane, etc. It is.
 オルガノジアルコキシシランとしては、ジメチルジメトキシシラン、ジメチルジエトキシシラン、メチルエチルジメトキシシラン、メチルエチルジエトキシシラン、ジエチルジエトキシシラン、ジエチルジメトキシシラン、3-アミノプロピルメチルジエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-(2-アミノエチル)-3-アミノイソブチルメチルジメトキシシラン、N-エチルアミノイソブチルメチルジエトキシシラン、(フェニルアミノメチル)メチルジメトキシシラン、ビニルメチルジエトキシシランなどが例示される。 Organodialkoxysilanes include dimethyldimethoxysilane, dimethyldiethoxysilane, methylethyldimethoxysilane, methylethyldiethoxysilane, diethyldiethoxysilane, diethyldimethoxysilane, 3-aminopropylmethyldiethoxysilane, N- (2- Aminoethyl) -3-aminopropylmethyldimethoxysilane, N- (2-aminoethyl) -3-aminoisobutylmethyldimethoxysilane, N-ethylaminoisobutylmethyldiethoxysilane, (phenylaminomethyl) methyldimethoxysilane, vinylmethyl Examples include diethoxysilane.
 オルガノトリアセトキシシランとしては、メチルトリアセトキシシラン、エチルトリアセトキシシラン、ビニルトリアセトキシシランなどが例示される。 Examples of organotriacetoxysilane include methyltriacetoxysilane, ethyltriacetoxysilane, vinyltriacetoxysilane, and the like.
 オルガノジアセトキシシランとしては、ジメチルジアセトキシシラン、メチルエチルジアセトキシシラン、ビニルメチルジアセトキシシラン、ビニルエチルジアセトキシシランなどが例示される。 Examples of organodiacetoxysilane include dimethyldiacetoxysilane, methylethyldiacetoxysilane, vinylmethyldiacetoxysilane, and vinylethyldiacetoxysilane.
 オルガノトリオキシムシランとしては、メチルトリスメチルエチルケトオキシムシラン、ビニルトリスメチルエチルケトオキシムシラン、オルガノジオキシムシランとしては、メチルエチルビスメチルエチルケトオキシムシランなどが例示される。 Examples of the organotrioxime silane include methyl trismethyl ethyl ketoxime silane, vinyl trismethyl ethyl ketoxime silane, and examples of the organodioxime silane include methyl ethyl bismethyl ethyl ketoxime silane.
 このような粒子は、具体的には、特開昭63-77940号公報で報告されている方法、特開平6-248081号公報で報告されている方法、特開2003-342370号公報で報告されている方法、特開平4-88022号公報で報告されている方法などにより得ることができる。また、オルガノトリアルコキシシランやオルガノジアルコキシシラン、オルガノトリアセトキシシラン、オルガノジアセトキシシラン、オルガノトリオキシムシラン、オルガノジオキシムシランなどのオルガノシランおよび/またはその部分加水分解物をアルカリ水溶液に添加し、加水分解・縮合させ粒子を得る方法や、水あるいは酸性溶液にオルガノシランおよび/またはその部分加水分解物を添加し、該オルガノシランおよび/またはその部分加水分解物の加水分解部分縮合物を得た後、アルカリを添加し縮合反応を進行させ粒子を得る方法、オルガノシランおよび/またはその加水分解物を上層にし、アルカリまたはアルカリと有機溶媒の混合液を下層にして、これらの界面で該オルガノシランおよび/またはその加水分解物を加水分解・重縮合させて粒子を得る方法なども知られており、これらいずれの方法においても、本発明で用いられる粒子を得ることができる。 Specifically, such particles are reported in the method reported in JP-A-63-77940, the method reported in JP-A-6-248081, and in JP-A-2003-342370. Or a method reported in JP-A-4-88022. In addition, organosilane such as organotrialkoxysilane, organodialkoxysilane, organotriacetoxysilane, organodiacetoxysilane, organotrioxime silane, organodioxime silane and / or a partial hydrolyzate thereof are added to an alkaline aqueous solution, Hydrolysis / condensation to obtain particles, or addition of organosilane and / or partial hydrolyzate thereof to water or acidic solution to obtain hydrolyzed partial condensate of organosilane and / or partial hydrolyzate thereof Thereafter, a method in which an alkali is added to proceed with a condensation reaction to obtain particles, an organosilane and / or a hydrolyzate thereof is used as an upper layer, an alkali or a mixed solution of an alkali and an organic solvent is used as a lower layer, and the organosilane at these interfaces. And / or hydrolyzate thereof · Polycondensation engaged with is also known a method of obtaining a particle, In any of these methods, it is possible to obtain the particles used in the present invention.
 これらの中で、オルガノシランおよび/またはその部分加水分解物を加水分解・縮合させ、球状オルガノポリシルセスキオキサン微粒子を製造するにあたり、特開2003-342370号公報で報告されているような反応溶液内に高分子分散剤を添加する方法により得られたシリコーン微粒子を用いることが好ましい。 Among these, the reaction as reported in Japanese Patent Application Laid-Open No. 2003-342370 is carried out in the production of spherical organopolysilsesquioxane fine particles by hydrolyzing and condensing organosilane and / or a partial hydrolyzate thereof. It is preferable to use silicone fine particles obtained by a method of adding a polymer dispersant in the solution.
 また、粒子を製造するに当たり、オルガノシランおよび/またはその部分加水分解物を加水分解・縮合させ、酸性水溶液に溶媒中で保護コロイドとして作用する高分子分散剤及び塩を存在させた状態で、オルガノシランおよび/またはその加水分解物を添加し加水分解物を得た後、アルカリを添加し縮合反応を進行させることにより製造したシリコーン微粒子を用いることもできる。 In the production of particles, organosilane and / or a partial hydrolyzate thereof are hydrolyzed / condensed in the presence of a polymer dispersant and a salt that act as a protective colloid in a solvent in an acidic aqueous solution. Silicone fine particles produced by adding a silane and / or a hydrolyzate thereof to obtain a hydrolyzate and then adding an alkali to advance the condensation reaction can also be used.
 高分子分散剤は、水溶性高分子であり、溶媒中で保護コロイドとして作用するものであれば合成高分子、天然高分子のいずれでも使用できるが、具体的にはポリビニルアルコール、ポリビニルピロリドンなどを例示することができる。高分子分散剤の添加方法としては、反応初液に予め添加する方法、オルガノトリアルコキシシランおよび/またはその部分加水分解物と同時に添加する方法、オルガノトリアルコキシシランおよび/またはその部分加水分解物を加水分解部分縮合させた後に添加する方法が例示でき、これらの何れの方法を選ぶこともできる。ここで、高分子分散剤の添加量は、反応液容量1質量部に対して5×10-7~10-2質量部の範囲が好ましく、この範囲であると粒子同士の凝集が起きにくい。 The polymer dispersant is a water-soluble polymer, and any synthetic polymer or natural polymer can be used as long as it acts as a protective colloid in a solvent. Specifically, polyvinyl alcohol, polyvinyl pyrrolidone and the like can be used. It can be illustrated. As a method for adding the polymer dispersant, a method of adding in advance to the reaction initial solution, a method of adding organotrialkoxysilane and / or a partial hydrolyzate thereof simultaneously, an organotrialkoxysilane and / or a partial hydrolyzate thereof, The method of adding after hydrolyzing partial condensation can be illustrated, and any of these methods can be selected. Here, the addition amount of the polymer dispersant is preferably in the range of 5 × 10 −7 to 10 −2 parts by mass with respect to 1 part by mass of the reaction solution, and in this range, aggregation of particles hardly occurs.
 シリコーン微粒子に含まれる有機置換基としては、好ましくはメチル基、フェニル基であり、これら置換基の含有量によりシリコーン微粒子の屈折率を調整することができる。LED発光装置の輝度を低下させないためにバインダー樹脂であるシリコーン樹脂を通る光を散乱させずに使用したい場合には、シリコーン微粒子の屈折率d1と、当該シリコーン微粒子および蛍光体以外の成分による屈折率d2の屈折率差が小さい方が好ましい。シリコーン微粒子の屈折率d1と、シリコーン微粒子および蛍光体以外の成分による屈折率d2の屈折率の差は、0.10未満であることが好ましく、0.03以下であることがさらに好ましい。このような範囲となるように、シリコーン樹脂とシリコーン微粒子の屈折率を制御することにより、シリコーン微粒子とシリコーン樹脂との界面での反射・散乱が低減され、高い透明性、光透過率が得られ、LED発光装置の輝度を低下させることがない。 The organic substituent contained in the silicone fine particles is preferably a methyl group or a phenyl group, and the refractive index of the silicone fine particles can be adjusted by the content of these substituents. In order not to reduce the luminance of the LED light-emitting device, when it is desired to use the light passing through the silicone resin as the binder resin without scattering, the refractive index d1 of the silicone fine particles and the refractive index due to components other than the silicone fine particles and the phosphor A smaller refractive index difference of d2 is preferable. The difference in refractive index between the refractive index d1 of the silicone fine particles and the refractive index d2 due to components other than the silicone fine particles and the phosphor is preferably less than 0.10, and more preferably 0.03 or less. By controlling the refractive index of the silicone resin and the silicone fine particles so as to be in such a range, reflection / scattering at the interface between the silicone fine particles and the silicone resin is reduced, and high transparency and light transmittance are obtained. The brightness of the LED light emitting device is not lowered.
 屈折率の測定は、全反射法としては、Abbe屈折計、Pulfrich屈折計、液浸型屈折計、液浸法、最小偏角法などが用いられるが、シリコーン組成物の屈折率測定には、Abbe屈折計、シリコーン微粒子の屈折率測定には、液浸法が有用である。 For the measurement of the refractive index, Abbe refractometer, Pulfrich refractometer, immersion type refractometer, immersion method, minimum declination method, etc. are used as the total reflection method, but for the refractive index measurement of the silicone composition, The immersion method is useful for measuring the refractive index of Abbe refractometer and silicone fine particles.
 また、上記屈折率差を制御するための手段としては、シリコーン微粒子を構成する原料の配合比を変えることにより調整可能である。すわなち、例えば、原料としてメチルトリアルコキシシランとフェニルトリアルコキシシランの混合物を使用する場合メチル基の構成比を多く、すなわちメチルトリアルコキシシランの配合量を多くすることで、1.4に近い低屈折率化することが可能である。逆に、フェニル基の構成比を多く、すなわちフェニルトリアルコキシシランの配合量を多くすることで、比較的高屈折率化することが可能である。 Further, as a means for controlling the refractive index difference, it can be adjusted by changing the blending ratio of raw materials constituting the silicone fine particles. That is, for example, when a mixture of methyltrialkoxysilane and phenyltrialkoxysilane is used as a raw material, it is close to 1.4 by increasing the composition ratio of methyl groups, that is, by increasing the amount of methyltrialkoxysilane. It is possible to reduce the refractive index. Conversely, a relatively high refractive index can be achieved by increasing the proportion of phenyl groups, that is, by increasing the amount of phenyltrialkoxysilane.
 本発明において、シリコーン微粒子の平均粒子径は、メジアン径(D50)で表し、この平均粒子径は下限としては0.01μm以上であることが好ましく、0.05μm以上であることがさらに好ましい。また、上限としては2.0μm以下であることが好ましく、1.0μm以下であることがさらに好ましい。平均粒子径が0.01μm以上であれば粒子径を制御した粒子を製造することが容易であり、また2.0μm以下であることで蛍光体シートの光学特性が良好となる。また、平均粒子径が0.01μm以上2.0μm以下であることで、蛍光体シート製造用樹脂液の流動性向上効果が十分に得られる。また、単分散で真球状の粒子を用いることが好ましい。本発明において、蛍光体シートに含まれるシリコーン微粒子の平均粒子径、すなわちメジアン径(D50)および粒度分布は、シート断面のSEM観察によって測定することができる。SEMによる測定画像を画像処理して粒径分布を求め、そこから得られる粒度分布において、小粒径側からの通過分積算50%の粒子径をメジアン径D50として求める。この場合も蛍光体粒子の場合と同様に、蛍光体シートの断面SEM画像から求めたシリコーン微粒子の平均粒径は真の平均粒子径に比較して理論上は78.5%、実際にはおおよそ70%~85%の値となるが、本発明におけるシリコーン微粒子の平均粒子径は上記の測定方法で求められる値と定義される。 In the present invention, the average particle diameter of the silicone fine particles is represented by a median diameter (D50), and the average particle diameter is preferably 0.01 μm or more and more preferably 0.05 μm or more as a lower limit. The upper limit is preferably 2.0 μm or less, and more preferably 1.0 μm or less. When the average particle size is 0.01 μm or more, it is easy to produce particles with a controlled particle size, and when the average particle size is 2.0 μm or less, the optical properties of the phosphor sheet are improved. Moreover, the fluidity improvement effect of the resin liquid for fluorescent substance sheet manufacture is fully acquired because an average particle diameter is 0.01 micrometer or more and 2.0 micrometers or less. Moreover, it is preferable to use monodispersed true spherical particles. In the present invention, the average particle diameter of the silicone fine particles contained in the phosphor sheet, that is, the median diameter (D50) and the particle size distribution can be measured by SEM observation of the sheet cross section. A particle size distribution is obtained by performing image processing on a measurement image obtained by SEM, and in the particle size distribution obtained therefrom, the particle diameter of 50% of the accumulated portion from the small particle diameter side is obtained as the median diameter D50. In this case as well, as in the case of the phosphor particles, the average particle size of the silicone fine particles obtained from the cross-sectional SEM image of the phosphor sheet is theoretically 78.5% compared to the true average particle size, and is actually approximately Although the value is 70% to 85%, the average particle size of the silicone fine particles in the present invention is defined as a value obtained by the above-described measuring method.
 本発明にかかる蛍光体シートにおいて、シリコーン微粒子の含有量は、シリコーン樹脂とシリコーン微粒子の合計量に対して、下限としては0.5質量%以上であることが好ましく、1質量%部以上であることがより好ましく、2質量%以上であることがさらに好ましい。また、上限としては20質量部以下であることが好ましく、10質量部以下であることがさらに好ましい。シリコーン微粒子を1質量%以上含有することで、特に良好な蛍光体分散安定化効果が得られ、一方、20質量%以下の含有により、シート作製用樹脂液の粘度を過度に上昇させることがない。 In the phosphor sheet according to the present invention, the content of the silicone fine particles is preferably 0.5% by mass or more as a lower limit with respect to the total amount of the silicone resin and the silicone fine particles, and is 1% by mass or more. More preferred is 2% by mass or more. Moreover, as an upper limit, it is preferable that it is 20 mass parts or less, and it is more preferable that it is 10 mass parts or less. By containing 1% by mass or more of silicone fine particles, a particularly good phosphor dispersion stabilizing effect can be obtained. On the other hand, the content of 20% by mass or less does not excessively increase the viscosity of the resin liquid for sheet preparation. .
 本発明における蛍光体シート作製用の樹脂液において、その他の成分として、常温でのシート作製用樹脂液の硬化を抑制してポットライフを長くするためにアセチレンアルコールなどのヒドロシリル化反応遅延剤を配合することが好ましい。 In the resin liquid for producing a phosphor sheet in the present invention, as other components, a hydrosilylation reaction retarder such as acetylene alcohol is blended to suppress the curing of the resin liquid for producing a sheet at room temperature and lengthen the pot life. It is preferable to do.
 また、本発明の効果が損なわれない範囲で、シート作製用樹脂液に、必要に応じてフュームドシリカ、ガラス粉末、石英粉末等の微粒子、酸化チタン、酸化ジルコニア、チタン酸バリウム、酸化亜鉛等の無機充填剤や顔料、難燃剤、耐熱剤、酸化防止剤、分散剤、溶剤、シランカップリング剤やチタンカップリング剤などの接着性付与剤等を配合してもよい。 Further, within the range in which the effect of the present invention is not impaired, the resin liquid for sheet preparation may contain fine particles such as fumed silica, glass powder, and quartz powder as necessary, titanium oxide, zirconia oxide, barium titanate, zinc oxide, etc. Inorganic fillers, pigments, flame retardants, heat-resistant agents, antioxidants, dispersants, solvents, adhesiveness-imparting agents such as silane coupling agents and titanium coupling agents may be blended.
 特に、蛍光体シートの表面平滑性の点から、蛍光体シート作製用の樹脂液には低分子量のポリジメチルシロキサン成分、シリコーンオイルなどを添加することが好ましい。このような成分は、シート作製用樹脂液中(溶媒を含む場合は溶媒量を除く)、100~2,000ppm添加することが好ましく、500~1,000ppm添加することがさらに好ましい。 In particular, from the viewpoint of the surface smoothness of the phosphor sheet, it is preferable to add a low molecular weight polydimethylsiloxane component, silicone oil or the like to the resin liquid for producing the phosphor sheet. Such a component is preferably added in an amount of 100 to 2,000 ppm, more preferably 500 to 1,000 ppm in the resin liquid for sheet preparation (excluding the amount of the solvent when a solvent is included).
 本発明における蛍光体シートの膜厚は、蛍光体含有量と、所望の光学特性から決められる。所望の光学特性を得るためには、蛍光体シートが所定量の蛍光体を含有する必要があるが、蛍光体シート中の蛍光体量が過度に高濃度であると作業性の観点から限界があるため、蛍光体シートの膜厚は10μm以上あることが好ましい。また、本発明における蛍光体シートは蛍光体含有量が多いことから、膜厚が厚い場合でも耐光性に優れる。一方、蛍光体シートの光学特性・耐熱性を高める観点からは、蛍光体シートの膜厚は200μm以下であることが好ましく、100μm以下であることがより好ましい。蛍光体シートを200μm以下の膜厚にすることによって、バインダー樹脂による光吸収や光散乱を提言することができるので、光学的に優れた蛍光体シートとなる。 The film thickness of the phosphor sheet in the present invention is determined from the phosphor content and desired optical characteristics. In order to obtain desired optical characteristics, the phosphor sheet needs to contain a predetermined amount of phosphor. However, if the amount of the phosphor in the phosphor sheet is excessively high, there is a limit from the viewpoint of workability. Therefore, the thickness of the phosphor sheet is preferably 10 μm or more. Moreover, since the phosphor sheet in the present invention has a large phosphor content, it is excellent in light resistance even when the film thickness is large. On the other hand, from the viewpoint of improving the optical properties and heat resistance of the phosphor sheet, the thickness of the phosphor sheet is preferably 200 μm or less, and more preferably 100 μm or less. By making the phosphor sheet have a thickness of 200 μm or less, light absorption and light scattering by the binder resin can be proposed, so that the phosphor sheet is optically excellent.
 本発明における蛍光体シートの膜厚は、JIS K7130(1999)プラスチック-フィルム及びシート-厚さ測定方法における機械的走査による厚さの測定方法A法に基づいて測定される膜厚(平均膜厚)のことをいう。 The film thickness of the phosphor sheet in the present invention is a film thickness (average film thickness) measured based on the method A of measuring thickness by mechanical scanning in JIS K7130 (1999) plastic-film and sheet-thickness measurement method. ).
 LEDは小さな空間で大量の熱が発生する環境にあり、特に、ハイパワーLEDの場合、発熱が顕著である。このような発熱によって蛍光体の温度が上昇することでLEDの輝度が低下する。したがって、発生した熱をいかに効率良く放熱するかが重要である。本発明においては、蛍光体シートの膜厚を前記範囲とすることで耐熱性に優れた蛍光体シートを得ることができる。また、蛍光体シートの膜厚にばらつきがあると、LEDチップごとに蛍光体量に違いが生じ、結果として、発光スペクトル(色温度、輝度、色度)にばらつきが生じる。従って、シート膜厚のばらつきは、好ましくは±5%以内、さらに好ましくは±3%以内である。なお、ここでいう膜厚ばらつきとは、JIS K7130(1999)プラスチック-フィルム及びシート-厚さ測定方法における機械的走査による厚さの測定方法A法に基づいて膜厚を測定し、下記に示す式にて算出される。 The LED is in an environment where a large amount of heat is generated in a small space, and particularly in the case of a high power LED, heat generation is significant. Due to such heat generation, the temperature of the phosphor increases, and the luminance of the LED decreases. Therefore, it is important how efficiently the generated heat is radiated. In this invention, the fluorescent substance sheet excellent in heat resistance can be obtained by making the film thickness of a fluorescent substance sheet into the said range. In addition, if there is a variation in the thickness of the phosphor sheet, a difference occurs in the amount of phosphor for each LED chip, and as a result, a variation occurs in the emission spectrum (color temperature, luminance, chromaticity). Therefore, the variation in sheet thickness is preferably within ± 5%, more preferably within ± 3%. The film thickness variation referred to here is a film thickness measured by the method A of measuring thickness by mechanical scanning in JIS K7130 (1999) plastic-film and sheet-thickness measuring method, and is shown below. Calculated by the formula.
 より具体的には、機械的走査による厚さの測定方法A法の測定条件を用いて、市販されている接触式の厚み計などのマイクロメーターを使用して膜厚を測定して、得られた膜厚の最大値あるいは最小値と平均膜厚との差を計算し、この値を平均膜厚で除して百分率であらわした値が膜厚ばらつきB(%)となる。
 膜厚ばらつきB(%)={(最大膜厚ズレ値*-平均膜厚)/平均膜厚}×100
*最大膜厚ズレ値は膜厚の最大値または最小値のうち平均膜厚との差が大きい方を選択する。
More specifically, it is obtained by measuring the film thickness using a micrometer such as a commercially available contact-type thickness meter using the measurement conditions of the method A of measuring the thickness by mechanical scanning. The difference between the maximum value or the minimum value of the film thickness and the average film thickness is calculated, and this value is divided by the average film thickness to express the percentage as the film thickness variation B (%).
Film thickness variation B (%) = {(maximum film thickness deviation value * −average film thickness) / average film thickness} × 100
* For the maximum film thickness deviation value, the one with the larger difference from the average film thickness is selected from the maximum value or the minimum value.
 以下に、本発明にかかる積層体の作製方法について具体例を挙げて説明する。なお、以下は一例であり本発明にかかる積層体の作製方法はこれに限定されない。 Hereinafter, a method for producing the laminate according to the present invention will be described with specific examples. In addition, the following is an example and the manufacturing method of the laminated body concerning this invention is not limited to this.
 まず、蛍光体シート作製用の塗布液として、蛍光体粒子と、必要に応じて用いられるシリコーン微粒子をシリコーン樹脂材料に分散した樹脂液(以下「シート作製用樹脂液」という)を作製する。シート作製用樹脂液は、蛍光体粒子、シリコーン樹脂材料および必要に応じシリコーン微粒子を無溶媒もしくは適当な溶媒中で混合することによって得られる。付加反応型シリコーン樹脂を用いる場合は、シリコーン樹脂材料であるケイ素原子に結合したアルケニル基を含有する化合物と、ケイ素原子に結合した水素原子を有する化合物とを混合すると、室温でも硬化反応が始まることがあるので、さらにアセチレン化合物などのヒドロシリル化反応遅延剤をシート作製用樹脂液に配合して、保存安定性を向上させることも可能である。また、ケイ素原子に結合したアルケニル基を有する化合物と、ケイ素原子に結合した水素原子を有する化合物と、付加反応触媒(白金系触媒)とをすべて混合せずに、2液に分離しておくことは保存安定性の点からは有効である。例えばケイ素原子に結合したアルケニル基を有するシロキサン化合物と白金系触媒をA液とし、ケイ素原子に結合した水素基を有する化合物をB液とし、A液に蛍光体粒子とシリコーン微粒子を分散した後に、シート化する直前にB液を混合する。 First, as a coating liquid for producing a phosphor sheet, a resin liquid (hereinafter referred to as “sheet producing resin liquid”) in which phosphor particles and silicone fine particles used as necessary are dispersed in a silicone resin material is produced. The resin liquid for sheet preparation can be obtained by mixing phosphor particles, silicone resin material and, if necessary, silicone fine particles in a solvent-free or suitable solvent. When an addition reaction type silicone resin is used, a curing reaction starts even at room temperature when a compound containing an alkenyl group bonded to a silicon atom, which is a silicone resin material, and a compound having a hydrogen atom bonded to a silicon atom are mixed. Therefore, it is also possible to improve the storage stability by further adding a hydrosilylation reaction retarder such as an acetylene compound to the resin liquid for sheet preparation. In addition, the compound having an alkenyl group bonded to a silicon atom, the compound having a hydrogen atom bonded to a silicon atom, and the addition reaction catalyst (platinum catalyst) are not mixed and separated into two liquids. Is effective in terms of storage stability. For example, a siloxane compound having an alkenyl group bonded to a silicon atom and a platinum-based catalyst are set as liquid A, a compound having a hydrogen group bonded to a silicon atom is set as liquid B, and phosphor particles and silicone fine particles are dispersed in liquid A. B liquid is mixed just before making into a sheet.
 添加剤として、塗布膜安定化のための分散剤やレベリング剤、シート表面の改質剤としてシランカップリング剤等の接着補助剤等をシート作製用樹脂液に混合することも可能である。 It is also possible to mix a dispersing agent or leveling agent for stabilizing the coating film as an additive, an adhesion aid such as a silane coupling agent as a sheet surface modifier, and the like into the resin liquid for sheet preparation.
 シート作製用樹脂液の粘度を調整するために溶媒を添加する場合には、流動状態の樹脂の粘度を調整できるものであれば、溶媒の種類は特に限定されない。例えば、トルエン、メチルエチルケトン、メチルイソブチルケトン、ヘキサン、ヘプタン、シクロヘキサン、アセトン、テルピネオール、ブチルカルビトール、ブチルカルビトールアセテート、グライム、ジグライム等が挙げられる。 When the solvent is added to adjust the viscosity of the resin liquid for sheet preparation, the type of the solvent is not particularly limited as long as the viscosity of the resin in a fluid state can be adjusted. For example, toluene, methyl ethyl ketone, methyl isobutyl ketone, hexane, heptane, cyclohexane, acetone, terpineol, butyl carbitol, butyl carbitol acetate, glyme, diglyme and the like can be mentioned.
 これらの成分を所定の組成になるよう調合した後、ホモジナイザー、自公転型攪拌機、3本ローラー、ボールミル、遊星式ボールミル、ビーズミル、ニーダー等の撹拌・混練機で均質に混合分散することで、シート作製用樹脂液が得られる。混合分散後、もしくは混合分散の過程で、真空もしくは減圧条件下で脱泡することも好ましく行われる。 After these components are prepared to have a predetermined composition, a sheet is obtained by uniformly mixing and dispersing in a stirrer / kneader such as a homogenizer, a self-revolving stirrer, a three-roller, a ball mill, a planetary ball mill, a bead mill, or a kneader. A resin solution for preparation is obtained. Defoaming is preferably carried out under vacuum or reduced pressure conditions after mixing or dispersing.
 次に、シート作製用樹脂液をポリフェニレンサルファイド樹脂フィルム基材上に塗布し、乾燥させる。塗布は、リバースロールコーター、ブレードコーター、スリットダイコーター、ダイレクトグラビアコーター、オフセットグラビアコーター、リバースロールコーター、ブレードコーター、キスコーター、スクリーン印刷、ナチュラルロールコーター、エアーナイフコーター、ロールブレードコーター、バリバーロールブレードコーター、トゥーストリームコーター、ロッドコーター、ワイヤーバーコーター、アプリケーター、ディップコーター、カーテンコーター、スピンコーター、ナイフコーター等により行うことができる。シート膜厚の均一性を得るためにはスリットダイコーターで塗布することが好ましい。また、本発明にかかる蛍光体シートはスクリーン印刷やグラビア印刷、平版印刷などの印刷法を用いても作製することもできる。特にスクリーン印刷が好ましく用いられる。 Next, the resin liquid for sheet preparation is applied on the polyphenylene sulfide resin film substrate and dried. Application is reverse roll coater, blade coater, slit die coater, direct gravure coater, offset gravure coater, reverse roll coater, blade coater, kiss coater, screen printing, natural roll coater, air knife coater, roll blade coater, varibar roll blade. A coater, a two stream coater, a rod coater, a wire bar coater, an applicator, a dip coater, a curtain coater, a spin coater, a knife coater or the like can be used. In order to obtain the uniformity of the sheet thickness, it is preferable to apply with a slit die coater. The phosphor sheet according to the present invention can also be produced by using a printing method such as screen printing, gravure printing, and lithographic printing. In particular, screen printing is preferably used.
 本発明で使用する基材の膜厚は特に制限はないが、下限としては40μm以上が好ましく、60μm以上がより好ましい。また、上限としては5000μm以下が好ましく、3000μm以下がより好ましい。 The film thickness of the substrate used in the present invention is not particularly limited, but the lower limit is preferably 40 μm or more, more preferably 60 μm or more. Moreover, as an upper limit, 5000 micrometers or less are preferable and 3000 micrometers or less are more preferable.
 基材に塗布されたシート作製用樹脂液の加熱硬化は、熱風乾燥機や赤外線乾燥機等の一般的な加熱装置を用いて行うことができる。シート作製用樹脂液の加熱硬化条件は、熱風乾燥機や赤外線乾燥機等の一般的な加熱装置を用い、通常、40~250℃で1分~5時間、好ましくは100℃~200℃で2分~3時間である。 Heat-curing of the sheet-forming resin liquid applied to the substrate can be performed using a general heating device such as a hot air dryer or an infrared dryer. The heating and curing conditions for the resin liquid for sheet preparation are generally 40 ° C. to 250 ° C. for 1 minute to 5 hours, preferably 100 ° C. to 200 ° C. for 2 hours. Min to 3 hours.
 本発明にかかる積層体において、蛍光体シート側にLEDチップとの接着性を高めるための粘着層が設けられていてもよい。粘着層の材料としては特に制限はないが、一般的なゴム系、アクリル系、ウレタン系、シリコーン系粘着剤などが挙げられる。どのようなものを用いても良いが、耐熱性、絶縁性、透明性に適した粘着剤としてはシリコーン系粘着剤が有用である。 In the laminate according to the present invention, a pressure-sensitive adhesive layer may be provided on the phosphor sheet side in order to improve the adhesiveness with the LED chip. The material for the adhesive layer is not particularly limited, and examples thereof include general rubber-based, acrylic-based, urethane-based, and silicone-based adhesives. Any adhesive may be used, but a silicone-based adhesive is useful as an adhesive suitable for heat resistance, insulation, and transparency.
 また、本発明にかかる積層体において、蛍光体シート側に保護フィルムが設けられていてもよい。保護フィルムの材料としては特に制限はないが、ポリエチレンテレフタレート(PET)、ポリエチレン、ポリプロピレン、ポリ塩化ビニル、セロファン、ポリフェニレンサルファイドなどが挙げられる。また、保護フィルムはシリコーン系やフッ素系など公知の離型剤により離型処理されていてもよい。 Also, in the laminate according to the present invention, a protective film may be provided on the phosphor sheet side. The material for the protective film is not particularly limited, and examples thereof include polyethylene terephthalate (PET), polyethylene, polypropylene, polyvinyl chloride, cellophane, and polyphenylene sulfide. Further, the protective film may be subjected to a release treatment with a known release agent such as a silicone type or a fluorine type.
 本発明における蛍光体シートが適用できるLEDチップとしては、フェイスアップタイプのLEDチップやフリップチップタイプのLEDチップなどが挙げられるが、特に好ましくはフリップチップタイプのLEDチップである。フリップチップタイプのLEDチップは発光効率が高く、放熱性も高い。したがって、本発明における蛍光体シートを用いることで、耐光性に優れた照明用途のハイパワーLED作製が容易になる。 Examples of the LED chip to which the phosphor sheet according to the present invention can be applied include a face-up type LED chip and a flip chip type LED chip, and a flip chip type LED chip is particularly preferable. The flip chip type LED chip has high luminous efficiency and high heat dissipation. Therefore, the use of the phosphor sheet according to the present invention facilitates the production of a high-power LED for illumination use having excellent light resistance.
 本発明における蛍光体シートは、LED素子に波長変換シートとして装着され用いることができる。現在主流の照明用白色LEDは、青色LED素子の青色光の一部を蛍光体材料を用いて黄色、緑色、または赤色に波長変換し、青色LED素子の青色光と混合することで白色光を得ている。蛍光体材料を青色LED素子に装着する方法としては主に、青色LED素子を樹脂封止する際に用いる液状透明封止材に蛍光体を含有させておく方法が主に取られている。この方法は簡便ではあるが、個別の青色LED素子上に精密に一定量の蛍光体含有液状封止樹脂を塗布することが難しく、色むらの原因となっている。これに対し本発明によれば膜厚の均一な蛍光体シートが得られるので、青色LED素子上に容易に一定厚さの蛍光体シートを装着させることが可能であり、したがって青色LED素子上の蛍光体量を一定にすることができる。本発明にかかる蛍光体シートを装着し青色LED素子の波長変換を行うことで、色むらや輝度むらのない優れた白色LED発光装置を得ることができる。 The phosphor sheet in the present invention can be used by being mounted on a LED element as a wavelength conversion sheet. The current mainstream white LED for illumination uses a phosphor material to convert a part of the blue light of the blue light into yellow, green, or red, and mixes it with the blue light of the blue LED element. It has gained. As a method of attaching the phosphor material to the blue LED element, a method of incorporating the phosphor into a liquid transparent sealing material used when the blue LED element is resin-sealed is mainly used. Although this method is simple, it is difficult to precisely apply a certain amount of phosphor-containing liquid sealing resin onto individual blue LED elements, which causes color unevenness. In contrast, according to the present invention, since a phosphor sheet having a uniform film thickness is obtained, it is possible to easily attach a phosphor sheet having a constant thickness on the blue LED element, and thus on the blue LED element. The amount of phosphor can be made constant. By mounting the phosphor sheet according to the present invention and converting the wavelength of the blue LED element, an excellent white LED light-emitting device free from color unevenness and luminance unevenness can be obtained.
 次に、本発明にかかる積層体を用いてLED発光装置を製造する方法について説明する。なお、以下の説明は一例であり封止製造方法はこれらに限られない。 Next, a method for manufacturing an LED light emitting device using the laminate according to the present invention will be described. In addition, the following description is an example and the sealing manufacturing method is not restricted to these.
 フリップチップタイプのLEDチップに本発明の積層体を適用する場合は、まず、封止するLEDチップの大きさに合わせて積層体を小片化する。小片化はダイシングにより行うことができる。積層体が保護フィルムを有する場合は、剥離してから小片化してもよいし、保護フィルムごと小片化してもよい。またLEDチップが発光面(光取り出し面)側に電極パッドを有する場合には、貼り付け前に積層体に加工を施して電極パッドに相当する部分に穴をあけておくことが望ましい。 When applying the laminate of the present invention to a flip chip type LED chip, first, the laminate is made into small pieces according to the size of the LED chip to be sealed. The fragmentation can be performed by dicing. When a laminated body has a protective film, after peeling, it may be fragmented, and the whole protective film may be fragmented. In addition, when the LED chip has an electrode pad on the light emitting surface (light extraction surface) side, it is desirable to process the laminated body and make a hole in a portion corresponding to the electrode pad before bonding.
 次に、保護フィルムを有する場合はこれを剥離してから、LEDチップの発光面に小片化した積層体を貼り合わせる。このとき、積層体の蛍光体シートは半硬化状態でもよいし、あらかじめ硬化されていてもよい。貼り合わせには接着剤を使用することが好ましく、公知のダイボンド剤や接着剤、例えばアクリル樹脂系、エポキシ樹脂系、ウレタン樹脂系、シリコーン樹脂系、変性シリコーン樹脂系、フェノール樹脂系、ポリイミド系、ポリビニルアルコール系、ポリメタクリレート樹脂系、メラミン樹脂系、ユリア樹脂系の接着剤を使用することができる。蛍光体シート自体が粘着性を有する場合や、粘着剤層を有する場合はそれを利用してもよい。また、半硬化された蛍光体シートの場合は、加熱による硬化を利用してもよい。また、蛍光体シートが硬化後に熱軟化性を有する場合には、熱融着により接着させることも可能である。 Next, when the protective film is provided, the protective film is peeled off, and then the laminated body that has been cut into pieces is bonded to the light emitting surface of the LED chip. At this time, the phosphor sheet of the laminate may be in a semi-cured state or may be cured in advance. It is preferable to use an adhesive for pasting, and known die bond agents and adhesives, such as acrylic resin, epoxy resin, urethane resin, silicone resin, modified silicone resin, phenol resin, polyimide, Polyvinyl alcohol, polymethacrylate resin, melamine resin, and urea resin adhesives can be used. When the phosphor sheet itself has adhesiveness or has an adhesive layer, it may be used. In the case of a semi-cured phosphor sheet, curing by heating may be used. In addition, when the phosphor sheet has heat softening properties after curing, it can be bonded by heat fusion.
 次にポリフェニレンサルファイド樹脂フィルム基材を積層体から剥離する。基材がポリフェニレンサルファイドであれば、蛍光体シートの損傷やLEDチップからのハガレを起こすことなく、容易に基材を取り外すことができる。保護フィルムを剥がすタイミングと合わせて予め基材を剥がしてから、蛍光体シートをLEDチップに貼り合わせることも可能であるが、蛍光体シートの強度が弱い場合は基材を先に剥がしてしまうと蛍光体シートが破損する可能性があるので、LEDチップに貼りつけてから基材を剥がすことが好ましい。 Next, the polyphenylene sulfide resin film substrate is peeled from the laminate. If the base material is polyphenylene sulfide, the base material can be easily removed without causing damage to the phosphor sheet or peeling from the LED chip. It is possible to stick the phosphor sheet to the LED chip after peeling off the base material in advance with the timing to peel off the protective film, but if the strength of the phosphor sheet is weak, the base material will be peeled off first Since there is a possibility that the phosphor sheet may be damaged, it is preferable that the substrate is peeled off after being attached to the LED chip.
 その後、LEDチップの電極と回路基板の配線を公知の方法で電気的に接続することにより、発光装置を得ることができる。LEDチップが発光面側に電極を有する場合には、LEDチップを、発光面を上にしてダイボンド材などで回路基板に固定した後、LEDチップ上面の電極と回路基板の配線をワイヤーボンディングで接続する。また、LEDチップが発光面の反対面に電極パッドを有するフリップチップタイプである場合には、LEDチップの電極面を回路基板の配線と対抗させ、一括接合で接続する。蛍光体シートが半硬化状態でLEDチップと貼り合わせられていた場合は、この電気的接続の前もしくは後の好適なタイミングで硬化させることができる。例えば、フリップチップタイプを一括接合させる場合に熱圧着の接合を行う場合にはその加熱により同時に蛍光体シートを硬化させてもよい。また、LEDチップと回路基板を接続したパッケージをより大きな回路基板上に表面実装する場合には、半田リフローでハンダ付けを行うと同時に蛍光体シートを硬化させても良い。 Then, the light emitting device can be obtained by electrically connecting the electrode of the LED chip and the wiring of the circuit board by a known method. When the LED chip has an electrode on the light emitting surface side, the LED chip is fixed to the circuit board with a die bonding material or the like with the light emitting surface facing up, and then the wire on the upper surface of the LED chip and the circuit board are connected by wire bonding To do. Further, when the LED chip is a flip chip type having an electrode pad on the opposite surface of the light emitting surface, the electrode surface of the LED chip is opposed to the wiring of the circuit board and connected by batch bonding. When the phosphor sheet is bonded to the LED chip in a semi-cured state, it can be cured at a suitable timing before or after this electrical connection. For example, in the case where the flip chip type is collectively bonded, when the thermocompression bonding is performed, the phosphor sheet may be simultaneously cured by the heating. Further, in the case where a package in which an LED chip and a circuit board are connected is surface-mounted on a larger circuit board, the phosphor sheet may be cured simultaneously with soldering by solder reflow.
 蛍光体シートはLEDチップの封止剤を兼ねてもよいが、蛍光体シートを貼りつけたLEDチップをさらに公知のシリコーン樹脂等を透光性封止材として用いて封止することもできる。また、透光性封止材でLEDチップを封止したあとに、該封止材上に蛍光体シートを貼り付けて使用することも可能である。 The phosphor sheet may serve as a sealing agent for the LED chip, but the LED chip to which the phosphor sheet is attached can be further sealed using a known silicone resin or the like as a light-transmitting sealing material. Moreover, after sealing an LED chip with a translucent sealing material, it is also possible to use a phosphor sheet on the sealing material.
 また、LEDチップを表面に作りこんだ半導体ウェハーに、小片化していない積層体を貼り付け、その後、半導体ウェハーと積層体とを一括して個辺化(ダイシング)することも可能である。 It is also possible to attach a non-separated laminate to a semiconductor wafer with LED chips formed on the surface, and then singulate the semiconductor wafer and the laminate together (dicing).
 本発明における蛍光体シートを用いて得られるLEDチップが適用できる発光装置は特に制限はなく、テレビ、パソコン、携帯電話、ゲーム機などに用いられるディスプレイのバックライトや、車のヘッドライト等の車載分野、建物の一般照明等に幅広く適用できる。 The light emitting device to which the LED chip obtained by using the phosphor sheet in the present invention can be applied is not particularly limited, and the backlight of a display used in a television, a personal computer, a mobile phone, a game machine, etc. Widely applicable to general lighting of fields and buildings.
 以下に、本発明を実施例により具体的に説明する。ただし、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be described in detail by way of examples. However, the present invention is not limited to these.
 <膜厚測定>
 蛍光体シートを形成する基材の所定位置を予めマイクロメーターで膜厚測定し、マーキングしておいた。蛍光体シートを積層後、マーキング部分を再びマイクロメーターで測定し、得られた膜厚から、先に測定しておいた基材の膜厚を差し引くことで蛍光体シートの膜厚を得た。膜厚は、110mm角のシートを測定サンプルとして、10mm間隔で碁盤目状に100点測定し、それぞれのサンプルの最大値、最小値、平均値を求め、下記式により膜厚ばらつきBを求めた。
 膜厚ばらつきB(%)={(最大膜厚ズレ値*-平均膜厚)/平均膜厚}×100
*最大膜厚ズレ値は膜厚の最大値または最小値のうち平均膜厚との差が大きい方を選択する。
<Film thickness measurement>
The film thickness of a predetermined position of the base material on which the phosphor sheet was formed was measured in advance with a micrometer and marked. After laminating the phosphor sheet, the marking portion was measured again with a micrometer, and the film thickness of the phosphor sheet was obtained by subtracting the film thickness of the base material previously measured from the film thickness obtained. The film thickness was measured at 100 points in a grid pattern with a 110 mm square sheet as a measurement sample, the maximum value, the minimum value, and the average value of each sample were determined, and the film thickness variation B was determined by the following formula. .
Film thickness variation B (%) = {(maximum film thickness deviation value * −average film thickness) / average film thickness} × 100
* For the maximum film thickness deviation value, the one with the larger difference from the average film thickness is selected from the maximum value or the minimum value.
 <相関色温度ばらつき>
 各蛍光体シートを青色LED素子に搭載した発光装置に400mAの電流を流してLEDチップを点灯させ、瞬間マルチ測光システム(MCPD-3000、大塚電子社製)を用いて、試験開始直後の相関色温度を測定した。各蛍光体シートの1種類につきそれぞれ別個に100個のLED発光装置を作製し、100個中の平均値、最大値、最小値を求め、下記の式からばらつきを評価した。
 相関色温度ばらつき(K)=相関色温度最大ズレ値-平均相関色温度
*相関色温度最大ズレ値は相関色温度の最大値または最小値のうち平均との差が大きい方を選択する。
<Correlated color temperature variation>
Correlation color immediately after the start of the test using an instantaneous multi-photometry system (MCPD-3000, manufactured by Otsuka Electronics Co., Ltd.) by turning on the LED chip by applying a current of 400 mA to a light emitting device in which each phosphor sheet is mounted on a blue LED element. The temperature was measured. 100 LED light-emitting devices were produced separately for each type of phosphor sheet, and an average value, maximum value, and minimum value in 100 pieces were obtained, and variations were evaluated from the following formulas.
Correlated color temperature variation (K) = correlated color temperature maximum deviation value−average correlated color temperature * correlated color temperature maximum deviation value is selected from the maximum value or the minimum value of the correlated color temperature that has a larger difference from the average.
 <シリコーン微粒子の合成例:シリコーン微粒子1>
 2L四つ口丸底フラスコに攪拌機、温度計、環流管、滴下ロートを取り付け、フラスコに、界面活性剤としてポリエーテル変性シロキサン“BYK333”を1ppm含む2.5%のアンモニア水2Lを入れ、300rpmで攪拌しつつ、オイルバスにて昇温した。内温50℃に到達したところで滴下ロートからメチルトリメトキシシランとフェニルトリメトキシシランの混合物(23/77mol%)200gを30分かけ滴下した。そのままの温度で、さらに60分間撹拌を続けた後、酢酸(試薬特級)約5gを添加、撹拌混合した後、濾過を行った。濾過器上の生成粒子に水600mLを2回、メタノール200mLを1回添加し、濾過、洗浄を行った。濾過器上のケークを取り出し、解砕後、10時間かけ凍結乾燥することにより、白色粉末60gを得た。得られた粒子は、メジアン径(D50)0.5μmの単分散球状微粒子であった。この微粒子を液浸法により屈折率測定した結果、1.54であった。この粒子を断面TEMで観察した結果、粒子内が単一構造の粒子であることが確認できた。
<Synthesis Example of Silicone Fine Particle: Silicone Fine Particle 1>
Attach a stirrer, thermometer, reflux tube, and dropping funnel to a 2 L four-necked round bottom flask, and put 2 L of 2.5% aqueous ammonia containing 1 ppm of polyether-modified siloxane “BYK333” as a surfactant into the flask. The temperature was raised in an oil bath while stirring at. When the internal temperature reached 50 ° C., 200 g of a mixture of methyltrimethoxysilane and phenyltrimethoxysilane (23/77 mol%) was dropped from the dropping funnel over 30 minutes. Stirring was continued for 60 minutes at the same temperature, then about 5 g of acetic acid (special grade reagent) was added, mixed with stirring, and then filtered. 600 mL of water was added twice to the produced particles on the filter and 200 mL of methanol was added once, followed by filtration and washing. The cake on the filter was taken out, crushed, and freeze-dried over 10 hours to obtain 60 g of white powder. The obtained particles were monodispersed spherical fine particles having a median diameter (D50) of 0.5 μm. As a result of measuring the refractive index of this fine particle by the immersion method, it was 1.54. As a result of observing the particles with a cross-sectional TEM, it was confirmed that the particles had a single structure.
 (実施例1)
 容積300mlのポリエチレン製容器を用いて、シリコーン樹脂として“OE-6630A/B” (東レ・ダウコーニング社製、屈折率1.53)を40.0質量%、蛍光体として“NYAG-02”(Intematix社製:CeドープのYAG系蛍光体、比重:4.8g/cm、D50:7μm)を60.0質量%の比率で混合した。
 その後、遊星式撹拌・脱泡装置“マゼルスター(登録商標)”KK-400(クラボウ製)を用い、1000rpmで20分間撹拌・脱泡して蛍光体シート作製液を得た。スリットダイコーターを用いてシート作製用樹脂液をポリフェニレンサルファイドフィルム“トレリナ(登録商標)”(東レ株式会社製)上に塗布し、130℃で2時間加熱、乾燥して平均膜厚約100μmの蛍光体シートが形成された積層体を得た。得られた積層体は、蛍光体シートが基材のフィルム上に均一に塗布され、ピンホールは見られず、膜厚均一性も良好であった。
Example 1
Using a polyethylene container with a volume of 300 ml, “OE-6630A / B” (made by Toray Dow Corning Co., Ltd., refractive index 1.53) as a silicone resin is 40.0% by mass, and “NYAG-02” as a phosphor ( Manufactured by Intematix: Ce-doped YAG phosphor, specific gravity: 4.8 g / cm 3 , D50: 7 μm) was mixed at a ratio of 60.0% by mass.
Thereafter, using a planetary stirring and defoaming apparatus “Mazerustar (registered trademark)” KK-400 (manufactured by Kurabo Industries), stirring and defoaming were carried out at 1000 rpm for 20 minutes to obtain a phosphor sheet preparation liquid. Using a slit die coater, a sheet-forming resin solution is applied onto a polyphenylene sulfide film “Torelina (registered trademark)” (manufactured by Toray Industries, Inc.), heated at 130 ° C. for 2 hours, and dried to give an average film thickness of about 100 μm The laminated body in which the body sheet was formed was obtained. In the obtained laminate, the phosphor sheet was uniformly applied on the base film, pinholes were not observed, and the film thickness uniformity was also good.
 蛍光体シートの上に、“SD4580”(東レダウ・コーニング社製シリコーン粘着剤)を塗布し、100℃で15分加熱乾燥して、粘着層を得た。
 粘着層の上には、カバーフィルムとして“セラピール(登録商標)”BLK(東レフィルム加工株式会社製)”を常温ラミネートした。
 次に、得られた積層体の基材剥離性を試験するために、ガラス基板上への転写ラミネートを行った。
 積層体を100mm×50mmにカットし、カバーフィルムを剥離した。次に、カバーフィルムを剥離して粘着層が露出している面をガラス基板に接触させ、ゴム製のハンドローラーで気泡が入らないように密着させた。その後、基材の“トレリナ(登録商標)”フィルムを剥離すると、蛍光体シートはガラス基板に密着したまま剥離や損傷することなく、基材フィルムだけを容易に剥離することができた。
 また、同様にしてLED素子上に蛍光体シートを貼り付け、点灯し発光色を測定したところ、相関色温度のばらつきは小さく良好な白色LEDが得られた。
On the phosphor sheet, “SD4580” (a silicone adhesive manufactured by Toray Dow Corning) was applied and dried by heating at 100 ° C. for 15 minutes to obtain an adhesive layer.
On the adhesive layer, “Celapeel (registered trademark)” BLK (manufactured by Toray Film Processing Co., Ltd.) was laminated at room temperature as a cover film.
Next, in order to test the substrate peelability of the obtained laminate, transfer lamination onto a glass substrate was performed.
The laminate was cut into 100 mm × 50 mm, and the cover film was peeled off. Next, the cover film was peeled off and the surface on which the adhesive layer was exposed was brought into contact with the glass substrate, and the surface was brought into close contact with a rubber hand roller so that air bubbles would not enter. Thereafter, when the “Torelina (registered trademark)” film of the base material was peeled off, only the base material film could be peeled easily without peeling off or damaging the phosphor sheet in close contact with the glass substrate.
Similarly, when a phosphor sheet was pasted on the LED element, and the luminescent color was measured by lighting, a good white LED with small variation in correlated color temperature was obtained.
 (実施例2~4)
 シリコーン微粒子1を表1に記載の量となるよう加え、蛍光体シートにおける蛍光体粒子の含有量が60.0質量%を保つよう各成分の量を調整した他は、実施例1と同様にして蛍光体シートを作成した。蛍光体シートの上に、“SD4580”(東レダウ・コーニング社製シリコーン粘着剤)を塗布し、100℃で15分加熱乾燥して、粘着層を得た。
 粘着層の上には、カバーフィルムとして“セラピール(登録商標)”BLK(東レフィルム加工株式会社製)”を常温ラミネートした。
 次に、得られた積層体の基材剥離性を試験するために、ガラス基板上への転写ラミネートを行った。
 積層体を100mm×50mmにカットし、カバーフィルムを剥離した。次に、カバーフィルムを剥離して粘着層が露出している面をガラス基板に接触させ、ゴム製のハンドローラーで気泡が入らないように密着させた。その後、基材の“トレリナ(登録商標)”フィルムを剥離すると、蛍光体シートはガラス基板に密着したまま剥離や損傷することなく、基材フィルムだけを容易に剥離することができた。
 また、同様にしてLED素子上に蛍光体シートを貼り付け、点灯し発光色を測定したところ、相関色温度のばらつきは非常に小さく良好な白色LEDが得られた。
(Examples 2 to 4)
The same procedure as in Example 1 was conducted, except that silicone fine particles 1 were added so as to have the amounts shown in Table 1, and the amount of each component was adjusted so that the phosphor particle content in the phosphor sheet was maintained at 60.0% by mass. Thus, a phosphor sheet was prepared. On the phosphor sheet, “SD4580” (a silicone adhesive manufactured by Toray Dow Corning) was applied and dried by heating at 100 ° C. for 15 minutes to obtain an adhesive layer.
On the adhesive layer, “Celapeel (registered trademark)” BLK (manufactured by Toray Film Processing Co., Ltd.) was laminated at room temperature as a cover film.
Next, in order to test the substrate peelability of the obtained laminate, transfer lamination onto a glass substrate was performed.
The laminate was cut into 100 mm × 50 mm, and the cover film was peeled off. Next, the cover film was peeled off and the surface on which the adhesive layer was exposed was brought into contact with the glass substrate, and the surface was brought into close contact with a rubber hand roller so that air bubbles would not enter. Thereafter, when the “Torelina (registered trademark)” film of the base material was peeled off, only the base material film could be peeled easily without peeling off or damaging the phosphor sheet in close contact with the glass substrate.
Similarly, when a phosphor sheet was pasted on the LED element, and the emission color was measured by lighting, a good white LED with very little variation in correlated color temperature was obtained.
 (比較例1)
 基材フィルムをポリエチレンテレフタレートフィルム“ルミラー(登録商標)”(東レ株式会社製)に変更した以外は実施例1と同様に積層体を作製し、シート作製用樹脂液の塗布性、および基材剥離性を確認した。塗布性は良好であり、ピンホールがなく、膜厚均一性の良好な蛍光体シートが得られたが、積層体をガラス基板に転写した後、基材フィルムを剥がすと、蛍光体シートの一部が基材フィルム側に付いたまま剥がれず、損傷してガラス基板から剥がれてしまった。
 また、同様にしてLED素子上に積層体を貼り付け、基材を剥離するとほとんどの蛍光体シートがLED素子から剥がれてしまい、点灯して発光色を測定することはできなかった。
(Comparative Example 1)
A laminate was prepared in the same manner as in Example 1 except that the base film was changed to a polyethylene terephthalate film “Lumirror (registered trademark)” (manufactured by Toray Industries, Inc.). The sex was confirmed. A phosphor sheet having good coating properties, no pinholes, and good film thickness uniformity was obtained. However, after transferring the laminate to a glass substrate, the substrate film was peeled off to remove the phosphor sheet. The part was attached to the base film side and was not peeled off, and was damaged and peeled off from the glass substrate.
Similarly, when the laminate was attached on the LED element and the substrate was peeled off, most of the phosphor sheets were peeled off from the LED element, and it was not possible to turn on and measure the emission color.
 (比較例2)
 基材フィルムを離型処理付きポリエチレンテレフタレートフィルム“セラピール(登録商標)”HP2(東レフィルム加工株式会社製)に変更した以外は実施例1と同様に蛍光体シートを作製し、シート作製用樹脂液の塗布性、および基材剥離性を確認した。塗布時に蛍光体シート作製用の樹脂液のハジキが発生し、加熱、硬化により得られた蛍光体シートの膜厚が不均一なものとなった。積層体をガラス基板に転写した後、基材フィルムを剥がすと、蛍光体シートはガラス基板に密着したまま剥離や損傷することなく、基材フィルムだけを容易に剥離することができた。
 同様に、LED素子上に蛍光体シートを貼り付け、点灯し発光色を測定したところ、膜厚ばらつきが大きいために相関色温度のばらつきも実施例1~4に比べて大きく、白色LEDとしては十分な均一性が得られなかった。
(Comparative Example 2)
A phosphor sheet was produced in the same manner as in Example 1 except that the base film was changed to a polyethylene terephthalate film with a release treatment “Therapy (registered trademark)” HP2 (manufactured by Toray Film Processing Co., Ltd.). The coating property and the substrate peelability were confirmed. At the time of application, repelling of the resin liquid for producing the phosphor sheet occurred, and the film thickness of the phosphor sheet obtained by heating and curing became non-uniform. When the base material film was peeled off after transferring the laminate to the glass substrate, the phosphor sheet could be easily peeled off without being peeled or damaged while being in close contact with the glass substrate.
Similarly, when a phosphor sheet is pasted on the LED element, and the emission color is measured by lighting, the variation in the correlated color temperature is larger than that in Examples 1 to 4 due to the large variation in film thickness. Sufficient uniformity was not obtained.
 (比較例3,4)
 シリコーン微粒子1を表1に記載の量となるよう加え、蛍光体シートにおける蛍光体粒子の含有量が60.0質量%を保つよう各成分の量を調整した他は、比較例2と同様にして蛍光体シートを作製し、シート作製用樹脂液の塗布性、および基材剥離性を確認した。塗布時に蛍光体シート作製用の樹脂液のハジキが発生し、加熱、硬化により得られた蛍光体シートの膜厚が不均一なものとなった。積層体をガラス基板に転写した後、基材フィルムを剥がすと、蛍光体シートはガラス基板に密着したまま剥離や損傷することなく、基材フィルムだけを容易に剥離することができた。
 同様に、LED素子上に蛍光体シートを貼り付け、点灯し発光色を測定したところ、膜厚ばらつきが大きいために相関色温度のばらつきも実施例1~4に比べて大きく、白色LEDとしては十分な均一性が得られなかった。
(Comparative Examples 3 and 4)
In the same manner as in Comparative Example 2, except that the silicone fine particles 1 were added so as to have the amounts shown in Table 1, and the amount of each component was adjusted so that the content of the phosphor particles in the phosphor sheet was maintained at 60.0% by mass. Thus, a phosphor sheet was prepared, and the applicability of the resin liquid for sheet preparation and the substrate peelability were confirmed. At the time of application, repelling of the resin liquid for producing the phosphor sheet occurred, and the film thickness of the phosphor sheet obtained by heating and curing became non-uniform. When the base material film was peeled off after transferring the laminate to the glass substrate, the phosphor sheet could be easily peeled off without being peeled or damaged while being in close contact with the glass substrate.
Similarly, when a phosphor sheet is pasted on the LED element, and the emission color is measured by lighting, the variation in the correlated color temperature is larger than that in Examples 1 to 4 due to the large variation in film thickness. Sufficient uniformity was not obtained.
 (比較例5)
 基材フィルムを離型処理付きポリエチレンテレフタレートフィルム“セラピール(登録商標)”BLK(東レフィルム加工株式会社製)に変更した以外は実施例1と同様に蛍光体シートを作製し、シート作製用樹脂液の塗布性、および基材剥離性を確認した。塗布時に蛍光体シート作製用の樹脂液のハジキが発生し、ピンホールが多発し、加熱、硬化により得られた蛍光体シートの膜厚が不均一なものとなった。積層体をガラス基板に転写した後、基材フィルムを剥がすと、蛍光体シートはガラス基板に密着したまま剥離や損傷することなく、基材フィルムだけを容易に剥離することができた。
 同様に、LED素子上に蛍光体シートを貼り付け、点灯し発光色を測定したところ、膜厚ばらつきが大きいために相関色温度のばらつきも実施例1~4に比べて非常に大きく、白色LEDとしては十分な均一性が得られなかった。
(Comparative Example 5)
A phosphor sheet was prepared in the same manner as in Example 1 except that the base film was changed to a polyethylene terephthalate film with a release treatment “Therapy (registered trademark)” BLK (manufactured by Toray Film Processing Co., Ltd.). The coating property and the substrate peelability were confirmed. The repelling of the resin liquid for producing the phosphor sheet was generated at the time of coating, pinholes were frequently generated, and the thickness of the phosphor sheet obtained by heating and curing became non-uniform. When the base material film was peeled off after transferring the laminate to the glass substrate, the phosphor sheet could be easily peeled off without being peeled or damaged while being in close contact with the glass substrate.
Similarly, when a phosphor sheet is pasted on the LED element, and the emission color is measured by lighting, the variation in the correlated color temperature is very large compared to Examples 1 to 4 due to the large variation in film thickness. As a result, sufficient uniformity could not be obtained.
 (比較例6)
 シリコーン微粒子1を表1に記載の量となるよう加え、蛍光体シートにおける蛍光体粒子の含有量が60.0質量%を保つよう各成分の量を調整した他は、比較例5と同様にして蛍光体シートを作製し、シート作製用樹脂液の塗布性、および基材剥離性を確認した。塗布時に蛍光体シート作製用の樹脂液のハジキが発生し、加熱、硬化により得られた蛍光体シートの膜厚が不均一なものとなった。積層体をガラス基板に転写した後、基材フィルムを剥がすと、蛍光体シートはガラス基板に密着したまま剥離や損傷することなく、基材フィルムだけを容易に剥離することができた。
 同様に、LED素子上に蛍光体シートを貼り付け、点灯し発光色を測定したところ、膜厚ばらつきが大きいために相関色温度のばらつきも実施例1~4に比べて大きく、白色LEDとしては十分な均一性が得られなかった。
(Comparative Example 6)
In the same manner as in Comparative Example 5, except that the silicone fine particles 1 were added so as to have the amounts shown in Table 1, and the amount of each component was adjusted so that the content of the phosphor particles in the phosphor sheet was maintained at 60.0% by mass. Thus, a phosphor sheet was prepared, and the applicability of the resin liquid for sheet preparation and the substrate peelability were confirmed. At the time of application, repelling of the resin liquid for producing the phosphor sheet occurred, and the film thickness of the phosphor sheet obtained by heating and curing became non-uniform. When the base material film was peeled off after transferring the laminate to the glass substrate, the phosphor sheet could be easily peeled off without being peeled or damaged while being in close contact with the glass substrate.
Similarly, when a phosphor sheet is pasted on the LED element, and the emission color is measured by lighting, the variation in the correlated color temperature is larger than that in Examples 1 to 4 due to the large variation in film thickness. Sufficient uniformity was not obtained.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004

Claims (10)

  1.  ポリフェニレンサルファイドを含有する基材と、
     前記基材上に積層された、少なくともシリコーン樹脂および蛍光体を含有する蛍光体シートと、
     を備えることを特徴とする積層体。
    A substrate containing polyphenylene sulfide;
    A phosphor sheet containing at least a silicone resin and a phosphor laminated on the substrate;
    A laminate comprising:
  2.  前記シリコーン樹脂が、少なくともケイ素原子に結合したアルケニル基を含有する化合物と、ケイ素原子に結合した水素原子を有する化合物とのヒドロシリル化反応により形成される付加硬化型シリコーン樹脂であることを特徴とする請求項1に記載の積層体。 The silicone resin is an addition-curable silicone resin formed by a hydrosilylation reaction between a compound containing an alkenyl group bonded to at least a silicon atom and a compound having a hydrogen atom bonded to a silicon atom. The laminate according to claim 1.
  3.  前記蛍光体シートが、さらにシリコーン微粒子を含有することを特徴とする請求項1または2に記載の積層体。 The laminate according to claim 1 or 2, wherein the phosphor sheet further contains silicone fine particles.
  4.  前記シリコーン微粒子がオルガノシランを縮合することにより得られるシリコーン樹脂であることを特徴とする請求項3に記載の積層体。 The laminate according to claim 3, wherein the silicone fine particles are a silicone resin obtained by condensing organosilane.
  5.  前記シリコーン微粒子の配合量が、前記シリコーン樹脂と前記シリコーン微粒子の合計量に対して1質量%以上20質量%以下であることを特徴とする請求項3または4に記載の積層体。 The laminate according to claim 3 or 4, wherein the amount of the silicone fine particles is 1% by mass or more and 20% by mass or less based on the total amount of the silicone resin and the silicone fine particles.
  6.  前記蛍光体粒子の含有量が、前記蛍光体シートに対して53質量%以上であることを特徴とする請求項1~5のいずれか一つに記載の積層体。 The laminate according to any one of claims 1 to 5, wherein the content of the phosphor particles is 53% by mass or more based on the phosphor sheet.
  7.  前記蛍光体シートの膜厚が、10μm以上200μm以下であることを特徴とする請求項1~6のいずれか一つに記載の積層体。 The laminate according to any one of claims 1 to 6, wherein the phosphor sheet has a thickness of 10 to 200 µm.
  8.  前記蛍光体シートの膜厚のばらつきが±5%以内であることを特徴とする請求項1~7のいずれか一つに記載の積層体。 The laminate according to any one of claims 1 to 7, wherein a variation in film thickness of the phosphor sheet is within ± 5%.
  9.  前記蛍光体シートが、発光ダイオード素子の波長変換シートとして用いられることを特徴とする請求項1~8のいずれか一つに記載の積層体。 The laminate according to any one of claims 1 to 8, wherein the phosphor sheet is used as a wavelength conversion sheet of a light emitting diode element.
  10.  請求項1~9のいずれか一つに記載の積層体をLED素子と貼り合わせる工程、および前記積層体から基材を剥離する工程を含むことを特徴とする波長変換層付き発光ダイオードの製造方法。 A method for producing a light-emitting diode with a wavelength conversion layer, comprising: a step of bonding the laminate according to any one of claims 1 to 9 to an LED element; and a step of peeling a substrate from the laminate. .
PCT/JP2012/081986 2011-12-13 2012-12-10 Laminate, and method for producing light-emitting diode provided with wavelength conversion layer WO2013089075A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013502944A JP5488761B2 (en) 2011-12-13 2012-12-10 Laminated body and method for manufacturing light emitting diode with wavelength conversion layer
CN201280061382.8A CN104010813B (en) 2011-12-13 2012-12-10 The manufacture method of the light emitting diode of duplexer and bandgap wavelength conversion layer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-271879 2011-12-13
JP2011271879 2011-12-13

Publications (1)

Publication Number Publication Date
WO2013089075A1 true WO2013089075A1 (en) 2013-06-20

Family

ID=48612522

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/081986 WO2013089075A1 (en) 2011-12-13 2012-12-10 Laminate, and method for producing light-emitting diode provided with wavelength conversion layer

Country Status (5)

Country Link
JP (1) JP5488761B2 (en)
CN (1) CN104010813B (en)
MY (1) MY167573A (en)
TW (1) TWI541128B (en)
WO (1) WO2013089075A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015119172A (en) * 2013-11-13 2015-06-25 株式会社日本セラテック Light-emitting element, light-emitting device and manufacturing methods thereof
WO2019021926A1 (en) * 2017-07-28 2019-01-31 東レ・ダウコーニング株式会社 Optical member resin sheet, optical member, layered body, or light-emitting device comprising optical member resin sheet, and method for manufacturing optical member resin sheet
JPWO2018235447A1 (en) * 2017-06-21 2019-06-27 積水ポリマテック株式会社 Composite molded body
JP2020029525A (en) * 2018-08-23 2020-02-27 株式会社オリジン Coating composition, coated article, and method for producing coated article
CN112639570A (en) * 2018-07-31 2021-04-09 东丽先端素材株式会社 Color conversion sheet and backlight unit including the same
JP2021523395A (en) * 2018-05-16 2021-09-02 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram Opto Semiconductors GmbH Conversion element manufacturing method, conversion element, and light emitting element

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6481154B2 (en) * 2014-10-18 2019-03-13 エムテックスマート株式会社 How to apply powder
US20190198720A1 (en) * 2017-12-22 2019-06-27 Lumileds Llc Particle systems and patterning for monolithic led arrays
US20230104278A1 (en) * 2020-03-24 2023-04-06 Denka Company Limited Phosphor particle, composite, light- emitting device, and self-light-emitting display
CN116075562A (en) * 2020-08-07 2023-05-05 电化株式会社 Phosphor coating, coating film, phosphor substrate, and lighting device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05286084A (en) * 1992-04-10 1993-11-02 Toray Ind Inc Release film
JP2003001777A (en) * 2001-06-27 2003-01-08 Toray Ind Inc Laminated film for release
JP2007152761A (en) * 2005-12-06 2007-06-21 Toray Ind Inc Polyphenylene sulfide composite film
WO2009145083A1 (en) * 2008-05-28 2009-12-03 株式会社クレハ Release film comprising polyphenylene sulfide resin and laminate

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5287935B2 (en) * 2011-06-16 2013-09-11 東レ株式会社 Phosphor-containing sheet, LED light-emitting device using the same, and manufacturing method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05286084A (en) * 1992-04-10 1993-11-02 Toray Ind Inc Release film
JP2003001777A (en) * 2001-06-27 2003-01-08 Toray Ind Inc Laminated film for release
JP2007152761A (en) * 2005-12-06 2007-06-21 Toray Ind Inc Polyphenylene sulfide composite film
WO2009145083A1 (en) * 2008-05-28 2009-12-03 株式会社クレハ Release film comprising polyphenylene sulfide resin and laminate

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015119172A (en) * 2013-11-13 2015-06-25 株式会社日本セラテック Light-emitting element, light-emitting device and manufacturing methods thereof
JPWO2018235447A1 (en) * 2017-06-21 2019-06-27 積水ポリマテック株式会社 Composite molded body
JPWO2019021926A1 (en) * 2017-07-28 2020-07-30 デュポン・東レ・スペシャルティ・マテリアル株式会社 Resin sheet for optical member, optical member including the same, laminate or light emitting device, and method for producing resin sheet for optical member
KR20200019698A (en) * 2017-07-28 2020-02-24 다우 코닝 도레이 캄파니 리미티드 The manufacturing method of the optical member, laminated body, or light-emitting device containing the resin sheet for optical members, the resin sheet for optical members, and the resin sheet for optical members
CN110869824A (en) * 2017-07-28 2020-03-06 道康宁东丽株式会社 Optical member resin sheet, optical member including optical member resin sheet, layered body, or light-emitting device, and method for manufacturing optical member resin sheet
WO2019021926A1 (en) * 2017-07-28 2019-01-31 東レ・ダウコーニング株式会社 Optical member resin sheet, optical member, layered body, or light-emitting device comprising optical member resin sheet, and method for manufacturing optical member resin sheet
JP7004721B2 (en) 2017-07-28 2022-01-21 デュポン・東レ・スペシャルティ・マテリアル株式会社 A method for manufacturing a resin sheet for an optical member, an optical member including the resin sheet, a laminate or a light emitting device, and a resin sheet for the optical member.
KR102457319B1 (en) * 2017-07-28 2022-10-21 듀폰 도레이 스페셜티 머티리얼즈 가부시키가이샤 The resin sheet for optical members, the optical member containing the resin sheet for optical members, a laminated body, or a light emitting device, and the manufacturing method of the resin sheet for optical members
JP2021523395A (en) * 2018-05-16 2021-09-02 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram Opto Semiconductors GmbH Conversion element manufacturing method, conversion element, and light emitting element
JP7145232B2 (en) 2018-05-16 2022-09-30 エイエムエス-オスラム インターナショナル ゲーエムベーハー Conversion element manufacturing method, conversion element, and light-emitting element
CN112639570A (en) * 2018-07-31 2021-04-09 东丽先端素材株式会社 Color conversion sheet and backlight unit including the same
JP2021533404A (en) * 2018-07-31 2021-12-02 東レ先端素材株式会社Toray Advanced Materials Korea, Inc. Color conversion sheet and backlight unit including it
JP7055956B2 (en) 2018-07-31 2022-04-19 東レ先端素材株式会社 Color conversion sheet and backlight unit including it
JP2020029525A (en) * 2018-08-23 2020-02-27 株式会社オリジン Coating composition, coated article, and method for producing coated article

Also Published As

Publication number Publication date
JP5488761B2 (en) 2014-05-14
TW201323211A (en) 2013-06-16
CN104010813B (en) 2016-08-24
MY167573A (en) 2018-09-20
TWI541128B (en) 2016-07-11
JPWO2013089075A1 (en) 2015-04-27
CN104010813A (en) 2014-08-27

Similar Documents

Publication Publication Date Title
JP5953750B2 (en) Phosphor sheet, LED and light emitting device using the same, and LED manufacturing method
JP5488761B2 (en) Laminated body and method for manufacturing light emitting diode with wavelength conversion layer
KR101713087B1 (en) Phosphor-containing cured silicone, process for production of same, phosphor-containing silicone composition, precursor of the composition, sheet-shaped moldings, led package, light-emitting device, and process for production of led-mounted substrate
KR102419336B1 (en) A phosphor sheet, a luminous body using the same, a light source unit, a display, and a manufacturing method of the luminous body
TWI693730B (en) Manufacturing method of light-emitting device
JP5287935B2 (en) Phosphor-containing sheet, LED light-emitting device using the same, and manufacturing method thereof
JP6287212B2 (en) Phosphor-containing resin sheet and light emitting device
JP6641997B2 (en) Laminated body and method for manufacturing light emitting device using the same
JP2014114446A (en) Polyorganosiloxane composition, hardened product of the composition, phosphor sheet, method of producing the phosphor sheet, light-emitting device and method of producing the light-emitting device
JP5953797B2 (en) Manufacturing method of semiconductor light emitting device
JP2013252637A (en) Fluorescent substance sheet laminate
JP2016146375A (en) Phosphor containing resin sheet, and light-emitting device including the same, and manufacturing method thereof
WO2017094618A1 (en) Resin composition, sheet-shaped molded article of same, light-emitting device using same, and method for manufacturing same
JP2013144770A (en) Thermosetting silicone resin composition, molded product formed from the composition, optical semiconductor device, and method of producing the thermosetting silicone resin composition

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013502944

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12856936

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12856936

Country of ref document: EP

Kind code of ref document: A1