WO2013088960A1 - Ozone water generator and sanitary device cleaning apparatus provided with same - Google Patents

Ozone water generator and sanitary device cleaning apparatus provided with same Download PDF

Info

Publication number
WO2013088960A1
WO2013088960A1 PCT/JP2012/080850 JP2012080850W WO2013088960A1 WO 2013088960 A1 WO2013088960 A1 WO 2013088960A1 JP 2012080850 W JP2012080850 W JP 2012080850W WO 2013088960 A1 WO2013088960 A1 WO 2013088960A1
Authority
WO
WIPO (PCT)
Prior art keywords
ozone
gas
water
liquid
unit
Prior art date
Application number
PCT/JP2012/080850
Other languages
French (fr)
Japanese (ja)
Inventor
藤田 昇
渡邊 圭一郎
尾崎 正昭
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2013088960A1 publication Critical patent/WO2013088960A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D19/00Degasification of liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/232Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using flow-mixing means for introducing the gases, e.g. baffles
    • B01F23/2323Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using flow-mixing means for introducing the gases, e.g. baffles by circulating the flow in guiding constructions or conduits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/237Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media
    • B01F23/2376Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media characterised by the gas being introduced
    • B01F23/23761Aerating, i.e. introducing oxygen containing gas in liquids
    • B01F23/237613Ozone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/29Mixing systems, i.e. flow charts or diagrams
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/10Preparation of ozone
    • C01B13/11Preparation of ozone by electric discharge
    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03DWATER-CLOSETS OR URINALS WITH FLUSHING DEVICES; FLUSHING VALVES THEREFOR
    • E03D9/00Sanitary or other accessories for lavatories ; Devices for cleaning or disinfecting the toilet room or the toilet bowl; Devices for eliminating smells
    • E03D9/02Devices adding a disinfecting, deodorising, or cleaning agent to the water while flushing
    • E03D9/03Devices adding a disinfecting, deodorising, or cleaning agent to the water while flushing consisting of a separate container with an outlet through which the agent is introduced into the flushing water, e.g. by suction ; Devices for agents in direct contact with flushing water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/312Injector mixers in conduits or tubes through which the main component flows with Venturi elements; Details thereof
    • B01F25/3124Injector mixers in conduits or tubes through which the main component flows with Venturi elements; Details thereof characterised by the place of introduction of the main flow
    • B01F25/31243Eductor or eductor-type venturi, i.e. the main flow being injected through the venturi with high speed in the form of a jet
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2201/00Preparation of ozone by electrical discharge
    • C01B2201/60Feed streams for electrical dischargers
    • C01B2201/62Air
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2201/00Preparation of ozone by electrical discharge
    • C01B2201/60Feed streams for electrical dischargers
    • C01B2201/64Oxygen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2201/00Preparation of ozone by electrical discharge
    • C01B2201/90Control of the process
    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03DWATER-CLOSETS OR URINALS WITH FLUSHING DEVICES; FLUSHING VALVES THEREFOR
    • E03D13/00Urinals ; Means for connecting the urinal to the flushing pipe and the wastepipe; Splashing shields for urinals
    • E03D13/005Accessories specially adapted for urinals

Definitions

  • the present invention relates to an ozone water generating device and a cleaning device for sanitary instruments provided with the same.
  • ozone water generating device for generating ozone water in which ozone is dissolved in water by mixing water and ozone
  • ozone water described in Japanese Patent Laid-Open No. 2-207892 (hereinafter referred to as Patent Document 1).
  • Generation devices are conventionally known.
  • the ozone water generator described in Patent Document 1 includes an oxygen supply means, an ozone generator, a gas-liquid mixing means, a sealed tank, and a gas return path.
  • the oxygen supply means supplies oxygen to the ozone water generator.
  • the ozone generator receives oxygen from the oxygen supply means and generates ozone.
  • the gas-liquid mixing means mixes the ozone-containing gas from the ozone generating means with water.
  • the sealed tank stores ozone-containing water from the gas-liquid mixing means and separates the gas and liquid.
  • the gas return path returns the ozone-containing gas separated by the sealed tank to the inflow side of the ozone generator.
  • An object of the present invention is to provide an ozone water generator, which can prevent an adverse effect on the environment due to leakage of ozone gas, and a sanitary equipment cleaning device equipped with the ozone water generator. It is to be.
  • An ozone water generating device includes a gas flow channel, a liquid flow channel, an ozone generation unit, a gas-liquid mixing unit, a gas-liquid separation unit, a housing, an ozone detection unit, and a control unit. It has.
  • the gas flow channel circulates gaseous ozone.
  • the liquid channel circulates water in which ozone is dissolved.
  • the ozone generation unit generates gaseous ozone and supplies the generated ozone to the gas flow path.
  • the gas-liquid mixing unit forms part of the liquid flow path.
  • One end of a gas flow path is connected to the gas-liquid mixing unit.
  • the gas-liquid mixing unit dissolves ozone supplied from the ozone generation unit to the gas channel in water flowing through the liquid channel from one end of the gas channel.
  • the gas-liquid separation unit forms a part of the liquid flow path downstream of the gas-liquid mixing unit in the water flow direction.
  • the other end of the gas flow path is connected to the gas-liquid separator.
  • the gas-liquid separation unit separates the bubbles of ozone from the water flowing through the liquid channel and exhausts a part of the ozone from the other end of the gas channel to the gas channel.
  • the housing accommodates a gas channel, a liquid channel, an ozone generation unit, a gas-liquid mixing unit, and a gas-liquid separation unit.
  • the ozone detector is provided in the housing and detects ozone.
  • the control unit controls the ozone generation unit to stop the generation of ozone when ozone is detected by the ozone detection unit.
  • the gas flow path, the liquid flow path, the ozone generation part, the gas-liquid mixing part, and the gas-liquid separation part are accommodated in the casing. Therefore, even when gaseous ozone leaks inside the housing, it is possible to prevent the release of ozone to the outside of the housing.
  • ozone can be detected by an ozone detector provided in the casing.
  • the control unit controls the ozone generation unit so that the ozone generation unit stops generating ozone. Thereby, it is possible to prevent further ozone from leaking into the housing.
  • an ozone water generating apparatus capable of preventing adverse effects on the environment due to leakage of ozone gas.
  • the ozone detector is disposed inside the housing.
  • the ozone detector preferably detects the concentration of ozone inside the housing.
  • the control unit preferably controls the ozone generation unit to stop the generation of ozone when the concentration of ozone inside the housing is equal to or higher than a predetermined concentration.
  • the ozone concentration can be detected by the ozone detector disposed inside the casing.
  • the ozone generating unit stops generating ozone by the control unit controlling the ozone generating unit. Thereby, it is possible to prevent further ozone from leaking into the housing.
  • the ozone detector is disposed in the gas-liquid separator.
  • the ozone detection unit preferably detects the water level inside the gas-liquid separation unit.
  • the control unit controls the ozone generation unit to stop the generation of ozone when the water level inside the gas-liquid separation unit is equal to or higher than a predetermined water level.
  • the ozone detection unit detects the water level inside the gas-liquid separation unit.
  • a control part controls an ozone generation part so that the production
  • an outlet for exhausting a part of ozone from the other end of the gas channel to the gas channel is formed in the gas-liquid separation unit.
  • the gas-liquid separation unit preferably has a water level adjustment unit.
  • the water level adjusting unit preferably closes the outlet when the water level inside the gas-liquid separation unit is equal to or higher than a predetermined water level.
  • the water level adjustment unit blocks the outflow port, so that the gas-liquid separation is performed.
  • the outflow of ozone from the section to the gas flow path can be stopped. Thereby, it is possible to prevent further ozone from leaking into the housing.
  • the water level adjusting unit closes the outlet, it is possible to prevent the solution from being ejected from the outlet even when the solution flows into the gas-liquid separation unit vigorously.
  • the sanitary appliance cleaning device according to the present invention includes any one of the ozone water generating devices described above.
  • the cleaning device for sanitary ware provided with the ozone water generating device can prevent the environment from being adversely affected by the leakage of gaseous ozone.
  • an ozone water generating device that can prevent an adverse effect on the environment due to leakage of ozone gas, and a sanitary ware cleaning device including the ozone water generating device.
  • An apparatus can be provided.
  • FIG. 1 It is a figure which shows typically an example of the ozone water production
  • FIG. 1 shows an ozone water generator 100 according to the present invention.
  • the ozone water generation apparatus 100 is an apparatus that supplies water in which ozone is dissolved.
  • the ozone water generating apparatus 100 includes a gas channel 114, a liquid channel 121, an ozone generator 120, an ejector 130 as an example of a gas-liquid mixing unit, and a gas-liquid separation unit 140 as an example of a gas-liquid separator. And a housing 101.
  • the ozone water generation apparatus 100 includes a gas introduction unit 110 that introduces a gas from the outside of the apparatus.
  • the gas introduction part 110 has a pipe line 111 and a check valve 112.
  • One end of the pipe line 111 is connected to a gas cylinder (not shown) that stores oxygen or air.
  • a gas cylinder not shown
  • one end of the pipe line 111 may be opened to atmospheric pressure.
  • the pipe line 111, the gas flow path 114, and the liquid flow path 121 are formed with general piping, and are formed with the tubular member which is not shown in figure.
  • the other end of the pipe line 111 is connected to the gas flow path 114 via the connection part 113.
  • the gas flow path 114 is for circulating ozone in a gaseous state.
  • a check valve 115 is disposed in the gas flow path 114.
  • an ozone filter (not shown) having a function of reducing ozone gas may be disposed in the pipe line 111.
  • the ozone filter is a general ozone filter, for example, a catalyst for decomposing ozone attached to paper or aluminum configured in a lattice shape.
  • the ozone generator 120 generates gaseous ozone and supplies the generated ozone to the gas flow path 114.
  • a gas such as air or oxygen introduced by the gas introduction unit 110 is introduced into the ozone generator 120 through the pipe 111 and the gas flow path 114.
  • the ozone generator 120 has an ozone generating element (not shown) formed by a metal electrode.
  • the ozone generating element generates ozone gas using the introduced air or oxygen as a material.
  • the structure of the ozone generator 120 is not specifically limited, What is necessary is just to be comprised so that ozone gas may be produced
  • a general ozone generator can be used as the ozone generator 120.
  • the ozone water generating apparatus 100 In the ozone water generating apparatus 100, water as a liquid flows through the liquid channel 121.
  • the liquid channel 121 circulates water in which ozone is dissolved.
  • the ozone water generating apparatus 100 includes a water supply unit 150.
  • tap water as raw water is supplied from the water supply unit 150 to the ozone water generating apparatus 100.
  • the raw water is not limited to tap water, and may be purified or purified water.
  • the liquid channel 121 is connected to the water supply unit 150.
  • the water supply unit 150 has a solenoid valve (not shown).
  • the water supply part 150 may be arrange
  • the valve of the water supply unit 150 opens and closes a portion of the liquid channel 121 upstream of the ejector 130 in the water flow direction.
  • an ejector type is used as the gas-liquid mixing unit.
  • An ejector 130 as an example of a gas-liquid mixing unit forms part of the liquid channel 121.
  • the ejector 130 is formed with a gas inlet 133, a liquid inlet 131, and an ozone water outlet 132.
  • One end of the gas flow path 114 is connected to the ejector 130 via the inflow port 133.
  • Ozone supplied from the ozone generator 120 to the gas flow path 114 is introduced into the ejector 130 from one end of the gas flow path 114.
  • the ozone introduced into the ejector 130 is mixed with water flowing through the liquid channel 121 and is dissolved in water based on the pressure of the flow in the liquid channel 121. In this way, the ejector 130 dissolves ozone as a gas supplied from the ozone generator 120 to the gas channel 114 in the water flowing through the liquid channel 121.
  • the gas-liquid separator 140 is disposed downstream of the ejector 130 in the flow direction of the water flowing through the liquid channel 121.
  • the gas-liquid separator 140 forms a part of the liquid flow path 121 downstream of the ejector 130 in the water flow direction.
  • a gas outlet 143, an ozone water inlet 141, and an ozone water outlet 142 are formed in the gas-liquid separator 140.
  • the other end of the gas flow path 114 is connected to the outflow port 143.
  • the gas-liquid separator 140 In the ozone water that has flowed into the gas-liquid separator 140 from the inlet 141, ozone bubbles remain without being completely dissolved in the water.
  • the bubbles of ozone and the gas such as air contained in the water are separated from the water flowing through the liquid channel 121 and then discharged from the outlet 143 to the gas channel 114.
  • the gas-liquid separator 140 separates the gas containing ozone bubbles from the water flowing through the liquid channel 121.
  • the gas-liquid separation unit 140 discharges a part of the ozone separated from the water from the other end of the gas channel 114 to the gas channel 114.
  • the housing 101 accommodates a gas flow path 114, a liquid flow path 121, an ozone generator 120, an ejector 130, and a gas-liquid separation unit 140.
  • An opening 12, an opening 13, and an opening 14 are formed in the housing 101.
  • the tubular member that forms the pipe 111 of the gas introduction part 110 passes through the opening 14 and penetrates the housing 101.
  • a tubular member that forms a part of the liquid flow path 121 that connects the water supply unit 150 and the ejector 130 passes through the opening 12 and penetrates the housing 101.
  • a tubular member that forms part of the liquid flow path 121 that connects the gas-liquid separator 140 and the water discharger 160 passes through the opening 13 and penetrates the housing 101.
  • the clearance gap between the outer peripheral surface (not shown) of the tubular member which forms the pipe line 111, and the edge (not shown) of the opening part 14 is filled up.
  • the gap between the outer peripheral surface (not shown) of the tubular member that forms a part of the liquid flow path 121 that connects the water supply unit 150 and the ejector 130 and the edge (not shown) of the opening 12 is as follows. Buried.
  • the gap between the outer peripheral surface (not shown) of the tubular member that forms a part of the liquid flow path 121 that connects the gas-liquid separator 140 and the water discharger 160 and the edge (not shown) of the opening 13 is Buried. In this way, a sealed space is formed inside the housing 101.
  • the ozone water generating apparatus 100 includes a control unit 180.
  • the control unit 180 may be disposed inside the housing 101 or may be disposed outside the housing 101.
  • an ozone detector 108 that detects ozone is disposed inside the housing 101.
  • the ozone detection unit 108 detects the concentration of ozone inside the housing 101.
  • the ozone detection unit 108 as a concentration sensor is electrically or electronically connected to the control unit 180.
  • the control unit 180 includes a data reading unit 181, a determination unit 182, and an ozone generation control unit 183.
  • the data reading unit 181 receives a signal transmitted from the ozone detection unit 108.
  • the signal transmitted from the ozone detector 108 includes information on the concentration of ozone inside the housing 101.
  • the determination unit 182 determines whether the ozone concentration inside the housing 101 is equal to or higher than a predetermined concentration.
  • the ozone generation control unit 183 controls the ozone generator 120.
  • the ozone generation control unit 183 adjusts the voltage applied to the electrode of the ozone generator 120, for example, by controlling a power supply circuit (not shown).
  • the ozone generation control unit 183 stops the generation of ozone.
  • the ozone generator 120 is controlled by adjusting the voltage applied to the electrode of the ozone generator 120.
  • the two-dot chain arrows indicate the signal flow.
  • control unit 180 controls the ozone generator 120 so as to stop the generation of ozone when ozone is detected by the ozone detection unit 108. Specifically, the control unit 180 controls the ozone generator 120 to stop the generation of ozone when the concentration of ozone inside the housing 101 is equal to or higher than a predetermined concentration.
  • the gas-liquid separation unit 140 includes a container 104 and a valve 60.
  • the container 104 has a ceiling surface 146, a bottom surface 145, and a peripheral wall 149.
  • the container 104 is made of, for example, a resin material.
  • the peripheral wall 149 extends vertically between the ceiling surface 146 and the bottom surface 145.
  • the horizontal direction in FIG. 3 is referred to as the width direction of the container 104.
  • the vertical direction in FIG. 3 substantially coincides with the vertical vertical direction.
  • the ozone water inlet 141 and the ozone water outlet 142 are formed in the peripheral wall 149.
  • the inflow port 141 communicates the inside and the outside of the container 104.
  • the position of the lower end of the inflow port 141 along the vertical direction is substantially coincident with the position of the bottom surface 145.
  • the outflow port 142 communicates the inside and the outside of the container 104.
  • the inflow port 141 and the outflow port 142 are formed in the peripheral wall 149 so as to face each other along the width direction of the container 104.
  • the position of the lower end of the outflow port 142 along the vertical direction substantially matches the position of the bottom surface 145.
  • the gas outlet 143 is formed on the ceiling surface 146. The outlet 143 communicates the inside and the outside of the container 104.
  • a cylindrical portion 144 is formed on a part of the upper wall of the container 104.
  • An opening at the lower end of the cylindrical portion 144 is an outlet 143.
  • a part of the gas flow path 114 (see FIG. 1) is formed from the upper end to the lower end of the cylindrical portion 144.
  • the gas flow path 114 and the inside of the container 104 are communicated with each other by an outlet 143 (see FIG. 1).
  • the nozzle 21 p is attached to the left peripheral wall 149 of the container 104 so as to cover the inlet 141 from the outside of the container 104.
  • a nozzle 22 p is attached to the right peripheral wall 149 of the container 104 so as to cover the outlet 142 from the outside of the container 104.
  • the inside of the nozzle 21p and the inside of the nozzle 22p form a part of the liquid channel 121.
  • the inner surface 149s of the peripheral wall 149 is a surface facing the inside of the container 104 and is a surface that comes into contact with a solution containing ozone.
  • the valve 60 is an example of a water level adjustment unit, and closes the gas outlet 143 when the water level inside the gas-liquid separation unit 140 is equal to or higher than a predetermined water level.
  • the valve 60 includes a plug part 61, a float 62, a float guide 63, and a support part 64.
  • the support portion 64 is a portion that supports the float 62 and the plug portion 61 via the float guide 63, and is disposed on the ceiling surface 146.
  • the float guide 63 is fixed to the support portion 64 so as to be rotatable around the support portion 64.
  • the float guide 63 is a rod-shaped or plate-shaped member, and connects the support portion 64 and the float 62.
  • the plug part 61 has a function as a plug that closes the outlet 143.
  • the plug part 61 has a substantially conical shape.
  • the plug part 61 is fixed to the upper surface of the float guide 63.
  • the shape of the plug portion 61 is not particularly limited.
  • the float 62 is formed of an object made of a substance having a specific gravity smaller than the specific gravity of the solution stored in the container 104, a hollow object having a predetermined specific gravity, or the like.
  • the float 62 moves up and down according to the liquid level of the solution inside the container 104.
  • the outlet 143 is blocked by the valve 60.
  • the outflow port 143 is opened.
  • the valve 60 opens and closes the outlet 143 according to the amount of liquid stored in the container 104.
  • the distance from the rotation center of the float guide 63 to the plug portion 61 is smaller than the distance from the rotation center of the float guide 63 to the connecting portion between the float guide 63 and the float 62. Therefore, the outlet 143 can be closed more firmly by the lever principle. Further, even when the float 62 moves up and down by a relatively small buoyancy, the plug portion 61 can firmly block the outflow port 143, so that the valve 60 can be downsized. Therefore, the valve 60 can be arranged while keeping the volume inside the container 104 large.
  • the flow of water in the ozone water generator 100 and the flow of gas containing ozone will be described with reference to FIGS. 1 and 3.
  • water as a liquid is supplied from the water supply unit 150 to the liquid channel 121.
  • Water flowing through the liquid flow path 121 flows into the ejector 130 from the inlet 131.
  • the water that has circulated through the ejector 130 flows out of the ejector 130 from the outlet 132.
  • the gaseous ozone generated by the ozone generator 120 flows into the ejector 130 from the inlet 133.
  • the gaseous ozone flowing in from the inflow port 133 is mixed with water flowing through the ejector 130 as the liquid flow path 121. Part of the ozone mixed with water is dissolved in water based on the pressure of the water stream. Water containing ozone flows out of the ejector 130 from the outlet 132.
  • Water containing ozone that has flowed out of the ejector 130 from the outlet 132 flows into the gas-liquid separator 140 from the inlet 141.
  • the water containing ozone that has flowed into the container 104 from the inside of the nozzle 21p circulates in the container 104 upward from the bottom surface 145, and from the inlet 141 toward the outlet 142. Then, the container 104 moves in the width direction.
  • the solution stored in the space surrounded by the bottom surface 145, the ceiling surface 146, and the inner surface 149 s of the peripheral wall 149 flows out of the container 104 from the outlet 142 while being gradually accelerated in the vicinity of the outlet 142.
  • ozone water in which ozone is dissolved in water is generated as water in which a gas such as ozone or air contained in the bubbles of the solution is separated from the solution.
  • the ozone water in which ozone is dissolved in water flows out of the gas-liquid separation unit 140 by flowing out of the outlet port 142 into the nozzle 22p.
  • a gas such as ozone or air separated from the solution is collected above the surface of the ozone water while circulating inside the container 104.
  • the valve 60 opens the outlet 143, the gas collected above the water surface is discharged outside the gas-liquid separator 140 by flowing through the inside of the tubular portion 144 from the outlet 143.
  • the air and a part of ozone separated from water in the gas-liquid separator 140 flow out from the outlet 143 to the gas flow path 114 (see FIG. 1).
  • the ozone and air that are not dissolved in water flow into the ejector 130 (see FIG. 1) again from the inlet 133 after being discharged to the gas flow path 114.
  • the ozone not dissolved in the water in the ejector 130 circulates in the liquid flow path 121 while circulating through the gas flow path 114 and a part of the liquid flow path 121 extending between the ejector 130 and the gas-liquid separation unit 140. It is gradually dissolved in the circulating water.
  • the ozone water in which ozone is dissolved is discharged from the outlet 142 to the outside of the gas-liquid separator 140 and then supplied from the water discharger 160 to the outside of the ozone water generator 100.
  • the amount of the solution stored in the container 104 increases and the water level rises.
  • the outlet 143 is closed by the valve 60.
  • the control unit 180 controls the ozone generator 120 so that the ozone generator 120 takes in gas from the gas introduction unit 110.
  • the ozone generator 120 can generate ozone by introducing gas from the gas introduction unit 110.
  • the ozone water generating apparatus 100 includes the gas channel 114, the liquid channel 121, the ozone generator 120, the ejector 130, the gas-liquid separator 140, the housing 101, and the ozone detector 108. And a control unit 180.
  • the gas flow path 114 circulates gaseous ozone.
  • the liquid channel 121 circulates water in which ozone is dissolved.
  • the ozone generator 120 generates gaseous ozone and supplies the generated ozone to the gas flow path 114.
  • the ejector 130 forms part of the liquid channel 121.
  • One end of a gas flow path 114 is connected to the ejector 130.
  • the ejector 130 dissolves ozone supplied from the ozone generator 120 to the gas channel 114 in water flowing through the liquid channel 121 from one end of the gas channel 114.
  • the gas-liquid separator 140 forms a part of the liquid flow path 121 downstream of the ejector 130 in the water flow direction.
  • the other end of the gas flow path 114 is connected to the gas-liquid separation unit 140.
  • the gas-liquid separation unit 140 separates ozone bubbles from the water flowing through the liquid channel 121 and exhausts part of the ozone from the other end of the gas channel 114 to the gas channel 114.
  • the housing 101 accommodates a gas flow path 114, a liquid flow path 121, an ozone generator 120, an ejector 130, and a gas-liquid separation unit 140.
  • the ozone detection unit 108 is provided in the housing 101 and detects ozone.
  • the control unit 180 controls the ozone generator 120 so as to stop the generation of ozone when ozone is detected by the ozone detection unit 108.
  • the gas flow path 114, the liquid flow path 121, the ozone generator 120, the ejector 130, and the gas-liquid separation unit 140 are accommodated in the housing 101. Therefore, even when gaseous ozone leaks inside the housing 101, the release of ozone to the outside of the housing 101 can be prevented.
  • the ozone can be detected by the ozone detector 108 provided in the casing 101.
  • the controller 180 controls the ozone generator 120, so that the ozone generator 120 stops generating ozone. Thereby, it is possible to prevent further ozone from leaking into the housing 101.
  • the ozone detector 108 is disposed inside the housing 101.
  • the ozone detection unit 108 detects the concentration of ozone inside the housing 101.
  • the control unit 180 controls the ozone generator 120 to stop the generation of ozone when the concentration of ozone inside the housing 101 is equal to or higher than a predetermined concentration.
  • the controller 180 controls the ozone generator 120 so that the ozone generator 120 stops generating ozone. Thereby, it is possible to prevent further ozone from leaking into the housing 101.
  • an outlet 143 is formed in the container 104 of the gas-liquid separator 140.
  • the outflow port 143 exhausts a part of ozone from the other end of the gas channel 114 to the gas channel 114.
  • the gas-liquid separator 140 has a valve 60. The valve 60 closes the outflow port 143 when the water level inside the gas-liquid separator 140 is equal to or higher than a predetermined water level.
  • the valve 60 blocks the outlet 143, so that the gas-liquid separation is performed.
  • the outflow of ozone from the portion 140 to the gas flow path 114 can be stopped. Thereby, it is possible to prevent further ozone from leaking into the housing 101.
  • the valve 60 closes the outflow port 143, it is possible to prevent the solution from being ejected from the outflow port 143 even when the solution vigorously flows into the container 104.
  • the ozone detector 108 that detects the concentration of ozone inside the housing 101 may be disposed outside the housing 101.
  • the check valve 115 may not be disposed in the gas flow path 114. That is, the ozone water generating apparatus 100 may not include the check valve 115.
  • the direction in which the nozzle 21p extends may be different from the direction in which the nozzle 22p extends.
  • the direction in which the nozzle 21p extends and the direction in which the nozzle 22p extends are not limited to being substantially horizontal.
  • the nozzle 22p is preferably attached to the container 104 so that the solution flows out from the inside of the container 104 into the nozzle 22p in a substantially horizontal direction.
  • the outlet 143 may be formed not on the ceiling surface 146 but on the peripheral wall 149 opposite to the peripheral wall 149 where the inlet 141 is formed (the peripheral wall 149 on the right side in FIG. 3).
  • valve 60 is not limited to having the configuration shown in FIG.
  • the valve 60 may be configured such that the plug portion 61 faces the peripheral wall 149 according to the position of the outlet 143 in the container 104.
  • the gas introduction part 110 should just be comprised so that gas can be introduce
  • the configuration of the gas introduction unit 110 may include an on-off valve or an electromagnetic valve that can control the amount of gas supplied to the ozone generator 120 instead of the check valve 112.
  • the gas introduction unit 110 may not include the check valve 112 and may have a configuration in which a three-way valve is arranged at the connection unit 113. This three-way valve is electronically controlled, for example, and is controlled by the control unit 180.
  • the position of the connecting portion 113 may be between the ozone generator 120 and the ejector 130 in the gas flow path 114. That is, the pipe line 111 may be connected to a portion of the gas flow path 114 that extends between the ozone generator 120 and the ejector 130.
  • the configuration of the gas-liquid mixing unit is not limited to the ejector type, and the ozone introduced from the gas flow channel 114 and the water flowing through the liquid flow channel 121 are mixed and the ozone is dissolved in the water. What is necessary is just to have a structure.
  • the ozone water generating device 200 according to the second embodiment is different from the ozone water generating device 100 according to the first embodiment in that the ozone water generating device 200 is replaced with a gas-liquid separator 140.
  • a gas-liquid separation unit 240 is provided, and a water level detection unit 208 is provided instead of the ozone detection unit 108.
  • a water level detection unit 208 is disposed above the gas-liquid separation unit 240.
  • the water level detection unit 208 detects the position of the plug unit 61 of the valve 60 as the water level inside the container 104.
  • the water level detection unit 208 as a position sensor is electrically or electronically connected to the control unit 180 (see FIG. 5).
  • the water level detection unit 208 is an example of an ozone detection unit.
  • the data reading unit 181 receives a signal transmitted from the water level detection unit 208.
  • the signal transmitted from the water level detection unit 208 includes information on the position of the plug unit 61 in the container 104.
  • the determination unit 182 determines whether the position of the plug unit 61 is above a predetermined position, or whether the position of the plug unit 61 has reached a predetermined position. Determine.
  • the ozone generation control unit 183 applies the electrode of the ozone generator 120 so as to stop the generation of ozone.
  • the ozone generator 120 is controlled by adjusting the applied voltage.
  • the ozone generation control unit 183 applies the voltage to the electrode of the ozone generator 120 so as to stop the generation of ozone.
  • the ozone generator 120 is controlled by adjusting the applied voltage.
  • the determination unit 182 can determine whether ozone has leaked from a part of the gas flow path 114.
  • the water level detection unit 208 may detect whether or not the plug unit 61 has blocked the outlet 143. Alternatively, the water level detection unit 208 may detect whether or not the gas flow from the gas-liquid separation unit 240 to the gas flow path 114 is stopped by the plug unit 61 closing the outlet 143.
  • control unit 180 controls the ozone generator 120 so as to stop the generation of ozone when the water level inside the container 104 is equal to or higher than the predetermined water level. That is, the control unit 180 controls the ozone generator 120 to stop the generation of ozone when ozone is detected based on the position of the stopper 61 in the container 104 detected by the water level detection unit 208. .
  • the water level detection unit 208 as the ozone detection unit is disposed in the gas-liquid separation unit 240.
  • the water level detection unit 208 detects the water level inside the container 104 of the gas-liquid separation unit 240.
  • the control unit 180 controls the ozone generator 120 to stop the generation of ozone when the water level inside the container 104 is equal to or higher than a predetermined water level.
  • the ozone water generating apparatus 200 When ozone in a gaseous state leaks from the gas flow path 114 between the gas-liquid separator 240 and the ejector 130 of the ozone water generator 200, the volume of gas inside the container 104 of the gas-liquid separator 240. As the water level decreases, the water level of ozone water rises.
  • the water level detection unit 208 detects the water level inside the container 104 of the gas-liquid separation unit 240.
  • the control part 180 controls the ozone generator 120 so that the production
  • the ozone water generating apparatus 200 it is possible to prevent further ozone from leaking into the housing 101 based on the water level inside the gas-liquid separator 240.
  • the configuration has the same function as the configuration of the ozone water generation device 100 (see FIG. 1) according to the first embodiment and the configuration of the ozone water generation device 200 (see FIG. 4) according to the second embodiment.
  • the configuration of the ozone water generation device 100 see FIG. 1
  • the configuration of the ozone water generation device 200 see FIG. 4
  • the ozone water generating device according to the third embodiment is different from the ozone water generating device 200 according to the second embodiment in that the ozone water generating device according to the third embodiment is a gas-liquid separator.
  • a gas-liquid separation unit 340 is provided instead of 240, and a water level detection unit 308 is provided instead of the water level detection unit 208.
  • the water level detection unit 308 is disposed outside the peripheral wall 149 of the container 104 in the gas-liquid separation unit 340.
  • the water level detection unit 308 detects the position of the float 62 as the water level inside the container 104.
  • the water level detection unit 308 as a position sensor is electrically or electronically connected to the control unit 180 (see FIG. 5).
  • the water level detection unit 308 is an example of an ozone detection unit.
  • the data reading unit 181 receives a signal transmitted from the water level detection unit 308.
  • the signal transmitted from the water level detection unit 308 includes information on the position of the float 62 in the container 104.
  • the determination unit 182 determines whether or not the position of the float 62 is above a predetermined position, or whether or not the position of the float 62 has reached a predetermined position. To do.
  • the ozone generation control unit 183 applies an electrode to the ozone generator 120 so as to stop the generation of ozone.
  • the ozone generator 120 is controlled by adjusting the applied voltage.
  • control unit 180 controls the ozone generator 120 so as to stop the generation of ozone when the water level inside the container 104 is equal to or higher than the predetermined water level. That is, the control unit 180 controls the ozone generator 120 to stop the generation of ozone when ozone is detected based on the position of the float 62 in the container 104 detected by the water level detection unit 308.
  • FIG. 1 the configuration of the ozone water generation device 100 (see FIG. 1) according to the first embodiment, the configuration of the ozone water generation device 200 (see FIG. 4) according to the second embodiment, and the third embodiment.
  • the components having the same functions as those of the ozone water generator are denoted by the same reference numerals, and the description thereof is omitted.
  • the ozone water generating device according to the fourth embodiment is different from the ozone water generating device 200 according to the second embodiment in that the ozone water generating device according to the fourth embodiment is a gas-liquid separator.
  • a gas-liquid separation unit 440 not having a valve as a water level adjustment unit is provided, and a water level detection unit 408 is provided instead of the water level detection unit 208.
  • the water level detection unit 408 is disposed outside the peripheral wall 149 of the container 104 in the upper part of the gas-liquid separation unit 440.
  • the water level detection unit 408 detects the water level inside the container 104.
  • a water level detection unit 408 as a water level sensor or a water amount sensor is electrically or electronically connected to the control unit 180 (see FIG. 5).
  • the water level detection unit 408 is an example of an ozone detection unit.
  • the data reading unit 181 receives a signal transmitted from the water level detection unit 408.
  • the signal transmitted from the water level detection unit 408 includes information on the water level inside the container 104.
  • the determination unit 182 determines whether the water level inside the container 104 is above a predetermined water level, or whether the water level has reached a predetermined water level. .
  • the ozone generation control unit 183 is applied to the electrode of the ozone generator 120 so as to stop the generation of ozone.
  • the ozone generator 120 is controlled by adjusting the voltage.
  • control unit 180 controls the ozone generator 120 so as to stop the generation of ozone when the water level inside the container 104 is equal to or higher than the predetermined water level. That is, the control unit 180 controls the ozone generator 120 to stop the generation of ozone when ozone is detected based on the water level inside the container 104 detected by the water level detection unit 408.
  • the ozone water generator apparatus 100 can be used for a sanitary appliance cleaning apparatus.
  • Sanitary ware includes, for example, toilets, toilets, large and small urinals used in bathrooms, hand-washers, wash-basins, bathtubs, and the like. That is, the sanitary appliance cleaning device provided with the ozone water generating device 100 is, for example, a device used for a toilet, a toilet, or a bathroom, or a device for cleaning a toilet, a toilet, or a bathroom. .
  • a sanitary appliance cleaning device 950 for cleaning the urinals 901, 902, and 903 is installed in the toilet 900.
  • the toilet 900 is an example of a sanitary equipment facility.
  • the sanitary appliance cleaning device 950 is connected to a pipe 910 for supplying water to the toilet including the urinals 901, 902, and 903.
  • the sanitary appliance cleaning device 950 includes an ozone water generator 100. When water flowing through the pipe 910 passes through the sanitary appliance cleaning device 950, ozone is dissolved in the water, thereby generating ozone water.
  • the ozone water flowing through the pipe 910 after passing through the sanitary appliance cleaning device 950 is supplied to a toilet including the urinals 901, 902, and 903.
  • the urinal 920 includes a sanitary appliance cleaning device 922 for cleaning the sanitary ware 921.
  • the urinal 920 is an example of a sanitary instrument.
  • the sanitary appliance cleaning device 922 is disposed above the urinal 920.
  • the sanitary appliance cleaning device 922 includes an ozone water generator 100.
  • the toilet 940 includes a cleaning toilet seat 930.
  • the cleaning toilet seat 930 includes a cleaning unit 934 provided with the ozone water generating device 100, a toilet seat cover 933, and a toilet seat 932.
  • the cleaning unit 934 is an example of a sanitary appliance cleaning device for cleaning the sanitary ware 931.
  • the toilet 940 is an example of a sanitary instrument.
  • the sanitary appliance cleaning device provided with the ozone water generating device 100 prevents the release of ozone to the outside of the housing 101 even when gaseous ozone leaks inside the housing 101 (see FIG. 1). And ozone can be prevented from further leaking into the housing. Therefore, the cleaning device for sanitary ware provided with the ozone water generating device 100 can prevent the environment from being adversely affected by the leakage of ozone gas.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Epidemiology (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Bidet-Like Cleaning Device And Other Flush Toilet Accessories (AREA)
  • Degasification And Air Bubble Elimination (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

Provided are: an ozone water generator which is capable of preventing the environment from being adversely affected by leakage of an ozone gas; and a sanitary device cleaning apparatus which is provided with the ozone water generator. An ozone water generator (100) is provided with a gas channel (114), a liquid channel (121), an ozone generator (120), an ejector (130), a gas-liquid separation unit (140), a case (101), an ozone detection unit (108) and a control unit (180). The case (101) contains the gas channel (114), the liquid channel (121), the ozone generator (120), the ejector (130) and the gas-liquid separation unit (140). The ozone detection unit (108) is arranged on the case (101) and detects ozone. The control unit (180) controls the ozone generator (120) to stop generation of ozone in cases where ozone is detected by the ozone detection unit (108).

Description

オゾン水生成装置、および、それを備えた衛生器具用洗浄装置Ozone water generator and sanitary equipment cleaning device equipped therewith
 本発明は、オゾン水生成装置、および、それを備えた衛生器具用洗浄装置に関する。 The present invention relates to an ozone water generating device and a cleaning device for sanitary instruments provided with the same.
 水とオゾンとを混合することによって、水中にオゾンが溶解されたオゾン水を生成するオゾン水生成装置として、例えば特開平2-207892号公報(以下、特許文献1という)に記載されたオゾン水生成装置が従来から知られている。特許文献1に記載されたオゾン水生成装置は、酸素供給手段と、オゾン発生器と、気液混合手段と、密閉タンクと、ガス返送路とを備えている。 As an ozone water generating device for generating ozone water in which ozone is dissolved in water by mixing water and ozone, for example, ozone water described in Japanese Patent Laid-Open No. 2-207892 (hereinafter referred to as Patent Document 1). Generation devices are conventionally known. The ozone water generator described in Patent Document 1 includes an oxygen supply means, an ozone generator, a gas-liquid mixing means, a sealed tank, and a gas return path.
 特許文献1に記載されたオゾン水生成装置において、酸素供給手段は、当該オゾン水生成装置に酸素を供給する。オゾン発生器は、酸素供給手段からの酸素を受け入れ、オゾンを発生させる。気液混合手段は、オゾン発生手段からのオゾン含有ガスを水と混合する。密閉タンクは、気液混合手段からのオゾン含有水を貯留し、気液分離する。ガス返送路は、密閉タンクによって分離されたオゾン含有ガスをオゾン発生器の流入側に返送させる。 In the ozone water generator described in Patent Document 1, the oxygen supply means supplies oxygen to the ozone water generator. The ozone generator receives oxygen from the oxygen supply means and generates ozone. The gas-liquid mixing means mixes the ozone-containing gas from the ozone generating means with water. The sealed tank stores ozone-containing water from the gas-liquid mixing means and separates the gas and liquid. The gas return path returns the ozone-containing gas separated by the sealed tank to the inflow side of the ozone generator.
特開平2-207892号公報Japanese Patent Laid-Open No. 2-207892
 例えば経年劣化または破損等によって、ガス返送路からガス漏れが発生する場合には、数百ppmを超える高濃度のオゾンガスが大気中に放出される危険がある。そのため、オゾンガスの漏出によって環境に悪影響が及ぼされるという問題がある。 If there is a gas leak from the gas return path due to, for example, aging or damage, there is a risk that ozone gas with a high concentration exceeding several hundred ppm will be released into the atmosphere. Therefore, there is a problem that the ozone gas leaks adversely affects the environment.
 そこで、本発明の目的は、オゾン水生成装置であって、オゾンガスの漏出によって環境に悪影響が及ぼされることを防止することが可能なオゾン水生成装置およびそれを備えた衛生器具用洗浄装置を提供することである。 SUMMARY OF THE INVENTION An object of the present invention is to provide an ozone water generator, which can prevent an adverse effect on the environment due to leakage of ozone gas, and a sanitary equipment cleaning device equipped with the ozone water generator. It is to be.
 本発明に従ったオゾン水生成装置は、気体流路と、液体流路と、オゾン発生部と、気液混合部と、気液分離部と、筐体と、オゾン検知部と、制御部とを備えている。気体流路は、気体状態のオゾンを流通させる。液体流路は、オゾンが溶解される水を流通させる。 An ozone water generating device according to the present invention includes a gas flow channel, a liquid flow channel, an ozone generation unit, a gas-liquid mixing unit, a gas-liquid separation unit, a housing, an ozone detection unit, and a control unit. It has. The gas flow channel circulates gaseous ozone. The liquid channel circulates water in which ozone is dissolved.
 オゾン発生部は、気体状態のオゾンを生成し且つ生成したオゾンを気体流路に供給する。気液混合部は、液体流路の一部を形成する。気液混合部には、気体流路の一端が接続されている。気液混合部は、オゾン発生部から気体流路に供給されるオゾンを、液体流路を流通する水に気体流路の一端から溶解させる。気液分離部は、液体流路のうちの気液混合部よりも水の流れ方向の下流の一部を形成する。気液分離部には、気体流路の他端が接続されている。気液分離部は、液体流路を流通する水からオゾンの気泡を分離させ且つオゾンの一部を気体流路の他端から気体流路に排気する。 The ozone generation unit generates gaseous ozone and supplies the generated ozone to the gas flow path. The gas-liquid mixing unit forms part of the liquid flow path. One end of a gas flow path is connected to the gas-liquid mixing unit. The gas-liquid mixing unit dissolves ozone supplied from the ozone generation unit to the gas channel in water flowing through the liquid channel from one end of the gas channel. The gas-liquid separation unit forms a part of the liquid flow path downstream of the gas-liquid mixing unit in the water flow direction. The other end of the gas flow path is connected to the gas-liquid separator. The gas-liquid separation unit separates the bubbles of ozone from the water flowing through the liquid channel and exhausts a part of the ozone from the other end of the gas channel to the gas channel.
 筐体は、気体流路と、液体流路と、オゾン発生部と、気液混合部と、気液分離部とを収容する。オゾン検知部は、筐体に設けられ、オゾンを検知する。制御部は、オゾン検知部によってオゾンが検知される場合に、オゾンの生成を停止させるようにオゾン発生部を制御する。 The housing accommodates a gas channel, a liquid channel, an ozone generation unit, a gas-liquid mixing unit, and a gas-liquid separation unit. The ozone detector is provided in the housing and detects ozone. The control unit controls the ozone generation unit to stop the generation of ozone when ozone is detected by the ozone detection unit.
 本発明によれば、気体流路と液体流路とオゾン発生部と気液混合部と気液分離部とが筐体に収容されている。そのため、筐体の内部において気体状態のオゾンが漏出する場合でも、筐体の外部へのオゾンの放出を防止することができる。 According to the present invention, the gas flow path, the liquid flow path, the ozone generation part, the gas-liquid mixing part, and the gas-liquid separation part are accommodated in the casing. Therefore, even when gaseous ozone leaks inside the housing, it is possible to prevent the release of ozone to the outside of the housing.
 さらに、筐体の内部において気体状態のオゾンが漏出している場合には、筐体に設けられたオゾン検知部により、オゾンを検知することができる。オゾン検知部によってオゾンが検知される場合には、制御部がオゾン発生部を制御することにより、オゾン発生部はオゾンの生成を停止する。これにより、筐体の内部にオゾンがさらに漏出することを防止することができる。 Furthermore, when gaseous ozone leaks inside the casing, ozone can be detected by an ozone detector provided in the casing. When ozone is detected by the ozone detection unit, the control unit controls the ozone generation unit so that the ozone generation unit stops generating ozone. Thereby, it is possible to prevent further ozone from leaking into the housing.
 したがって、本発明によれば、オゾンガスの漏出によって環境に悪影響が及ぼされることを防止することが可能なオゾン水生成装置を提供することができる。 Therefore, according to the present invention, it is possible to provide an ozone water generating apparatus capable of preventing adverse effects on the environment due to leakage of ozone gas.
 本発明に従ったオゾン水生成装置において、好ましくは、オゾン検知部は、筐体の内部に配置されている。オゾン検知部は、好ましくは、筐体の内部のオゾンの濃度を検知する。制御部は、好ましくは、筐体の内部のオゾンの濃度が所定の濃度以上である場合に、オゾンの生成を停止させるようにオゾン発生部を制御する。 In the ozone water generating apparatus according to the present invention, preferably, the ozone detector is disposed inside the housing. The ozone detector preferably detects the concentration of ozone inside the housing. The control unit preferably controls the ozone generation unit to stop the generation of ozone when the concentration of ozone inside the housing is equal to or higher than a predetermined concentration.
 この構成によれば、筐体の内部において気体状態のオゾンが漏出している場合には、筐体の内部に配置されたオゾン検知部によってオゾンの濃度を検知することができる。筐体の内部のオゾンの濃度が所定の濃度以上である場合に、制御部がオゾン発生部を制御することにより、オゾン発生部はオゾンの生成を停止する。これにより、筐体の内部にオゾンがさらに漏出することを防止することができる。 According to this configuration, when gaseous ozone leaks inside the casing, the ozone concentration can be detected by the ozone detector disposed inside the casing. When the concentration of ozone inside the housing is equal to or higher than a predetermined concentration, the ozone generating unit stops generating ozone by the control unit controlling the ozone generating unit. Thereby, it is possible to prevent further ozone from leaking into the housing.
 本発明に従ったオゾン水生成装置において、好ましくは、オゾン検知部は、気液分離部に配置されている。オゾン検知部は、好ましくは、気液分離部の内部の水位を検知する。制御部は、好ましくは、気液分離部の内部の水位が所定の水位以上である場合に、オゾンの生成を停止させるようにオゾン発生部を制御する。 In the ozone water generating apparatus according to the present invention, preferably, the ozone detector is disposed in the gas-liquid separator. The ozone detection unit preferably detects the water level inside the gas-liquid separation unit. Preferably, the control unit controls the ozone generation unit to stop the generation of ozone when the water level inside the gas-liquid separation unit is equal to or higher than a predetermined water level.
 本発明に従ったオゾン水生成装置の気液分離部と気液混合部との間において気体状態のオゾンが気体流路から漏出している場合には、気液分離部の内部の気体の容積が減少することにより、オゾン水の水位が上昇する。本発明に従ったオゾン水生成装置においては、オゾン検知部は、気液分離部の内部の水位を検知する。また、制御部は、気液分離部の内部の水位が所定の水位以上である場合に、オゾンの生成を停止させるようにオゾン発生部を制御する。このように、本発明に従ったオゾン水生成装置の構成によれば、気液分離部の内部の水位に基づいて、筐体の内部にオゾンがさらに漏出することを防止することができる。 When ozone in a gas state leaks from the gas flow path between the gas-liquid separation unit and the gas-liquid mixing unit of the ozone water generating device according to the present invention, the volume of gas inside the gas-liquid separation unit As the water level decreases, the water level of ozone water rises. In the ozone water generating apparatus according to the present invention, the ozone detection unit detects the water level inside the gas-liquid separation unit. Moreover, a control part controls an ozone generation part so that the production | generation of ozone may be stopped when the water level inside a gas-liquid separation part is more than a predetermined water level. Thus, according to the configuration of the ozone water generating device according to the present invention, it is possible to prevent ozone from further leaking into the housing based on the water level inside the gas-liquid separator.
 本発明に従ったオゾン水生成装置において、好ましくは、気体流路の他端から気体流路にオゾンの一部を排気するための流出口が気液分離部に形成されている。気液分離部は、好ましくは、水位調整部を有している。水位調整部は、好ましくは、気液分離部の内部の水位が所定の水位以上である場合に、流出口を閉塞する。 In the ozone water generating apparatus according to the present invention, preferably, an outlet for exhausting a part of ozone from the other end of the gas channel to the gas channel is formed in the gas-liquid separation unit. The gas-liquid separation unit preferably has a water level adjustment unit. The water level adjusting unit preferably closes the outlet when the water level inside the gas-liquid separation unit is equal to or higher than a predetermined water level.
 この構成によれば、気液分離部と気液混合部との間において気体状態のオゾンが気体流路から漏出している場合でも、水位調整部が流出口を閉塞することにより、気液分離部から気体流路へのオゾンの流出を停止することができる。これにより、筐体の内部にオゾンがさらに漏出することを防止することができる。 According to this configuration, even when ozone in a gaseous state leaks from the gas flow path between the gas-liquid separation unit and the gas-liquid mixing unit, the water level adjustment unit blocks the outflow port, so that the gas-liquid separation is performed. The outflow of ozone from the section to the gas flow path can be stopped. Thereby, it is possible to prevent further ozone from leaking into the housing.
 また、水位調整部が流出口を閉塞することにより、気液分離部の内部に勢いよく溶液が流入する場合でも、流出口から溶液が噴出することを防止することができる。 Also, since the water level adjusting unit closes the outlet, it is possible to prevent the solution from being ejected from the outlet even when the solution flows into the gas-liquid separation unit vigorously.
 本発明に従った衛生器具用洗浄装置は、上記のいずれかのオゾン水生成装置を備えていることが好ましい。 It is preferable that the sanitary appliance cleaning device according to the present invention includes any one of the ozone water generating devices described above.
 オゾン水生成装置を備えた衛生器具用洗浄装置は、気体状態のオゾンの漏出によって環境に悪影響が及ぼされることを防止することができる。 The cleaning device for sanitary ware provided with the ozone water generating device can prevent the environment from being adversely affected by the leakage of gaseous ozone.
 以上のように、本発明によれば、オゾン水生成装置であって、オゾンガスの漏出によって環境に悪影響が及ぼされることを防止することが可能なオゾン水生成装置およびそれを備えた衛生器具用洗浄装置を提供することができる。 As described above, according to the present invention, an ozone water generating device that can prevent an adverse effect on the environment due to leakage of ozone gas, and a sanitary ware cleaning device including the ozone water generating device. An apparatus can be provided.
本発明に従ったオゾン水生成装置の一例を模式的に示す図である。It is a figure which shows typically an example of the ozone water production | generation apparatus according to this invention. 本発明に従ったオゾン水生成装置の一例の制御部の構成を示すブロック図である。It is a block diagram which shows the structure of the control part of an example of the ozone water generating apparatus according to this invention. 本発明に従ったオゾン水生成装置の一例の気液混合器の断面図である。It is sectional drawing of the gas-liquid mixer of an example of the ozone water generating apparatus according to this invention. 本発明に従ったオゾン水生成装置の別の一例を模式的に示す図である。It is a figure which shows typically another example of the ozone water generating apparatus according to this invention. 本発明に従ったオゾン水生成装置の別の一例の制御部の構成を示すブロック図である。It is a block diagram which shows the structure of the control part of another example of the ozone water generating apparatus according to this invention. 本発明に従ったオゾン水生成装置の別の一例の気液混合器の一例の断面図である。It is sectional drawing of an example of the gas-liquid mixer of another example of the ozone water generating apparatus according to this invention. 本発明に従ったオゾン水生成装置の別の一例の気液混合器の別の一例の断面図である。It is sectional drawing of another example of the gas-liquid mixer of another example of the ozone water generating apparatus according to this invention. 本発明に従ったオゾン水生成装置の別の一例の気液混合器のさらに別の一例の断面図である。It is sectional drawing of another example of the gas-liquid mixer of another example of the ozone water generating apparatus according to this invention. 衛生器具設備の一例としての便所を洗浄するためのオゾン水生成装置を備えた衛生器具用洗浄装置の一例を示す模式図である。It is a schematic diagram which shows an example of the washing | cleaning apparatus for sanitary equipment provided with the ozone water production | generation apparatus for wash | cleaning the toilet as an example of sanitary equipment equipment. 衛生器具の一例としての小便器を洗浄するためのオゾン水生成装置を備えた衛生器具用洗浄装置の一例を示す模式図である。It is a schematic diagram which shows an example of the washing | cleaning apparatus for sanitary instruments provided with the ozone water production | generation apparatus for wash | cleaning the urinal as an example of a sanitary instrument. 衛生器具の一例としての大便器を洗浄するためのオゾン水生成装置を備えた衛生器具用洗浄装置の一例を示す模式図である。It is a schematic diagram which shows an example of the washing | cleaning apparatus for sanitary instruments provided with the ozone water production | generation apparatus for wash | cleaning the toilet bowl as an example of a sanitary instrument.
 以下、本発明の実施の形態を図面に基づいて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 (第1実施形態)
 図1に、本発明に係るオゾン水生成装置100を示す。オゾン水生成装置100は、オゾンが溶解した水を供給する装置である。オゾン水生成装置100は、気体流路114と、液体流路121と、オゾン発生器120と、気液混合部の一例としてのエジェクタ130と、気液分離器の一例としての気液分離部140と、筐体101とを備えている。
(First embodiment)
FIG. 1 shows an ozone water generator 100 according to the present invention. The ozone water generation apparatus 100 is an apparatus that supplies water in which ozone is dissolved. The ozone water generating apparatus 100 includes a gas channel 114, a liquid channel 121, an ozone generator 120, an ejector 130 as an example of a gas-liquid mixing unit, and a gas-liquid separation unit 140 as an example of a gas-liquid separator. And a housing 101.
 オゾン水生成装置100は、当該装置の外部から気体を導入する気体導入部110を備えている。気体導入部110は、管路111と逆止弁112とを有している。管路111の一端は、酸素または空気を貯蔵したガスボンベ(図示せず)等と接続している。ただし、管路111の一端は、大気圧に開放されていてもよい。なお、管路111と気体流路114と液体流路121とは、一般的な配管によって形成されており、図示しない管状部材によって形成されている。 The ozone water generation apparatus 100 includes a gas introduction unit 110 that introduces a gas from the outside of the apparatus. The gas introduction part 110 has a pipe line 111 and a check valve 112. One end of the pipe line 111 is connected to a gas cylinder (not shown) that stores oxygen or air. However, one end of the pipe line 111 may be opened to atmospheric pressure. In addition, the pipe line 111, the gas flow path 114, and the liquid flow path 121 are formed with general piping, and are formed with the tubular member which is not shown in figure.
 管路111の他端は、接続部113を介して気体流路114に接続されている。気体流路114は、気体状態のオゾンを流通させるためのものである。気体流路114には、逆止弁115が配置されている。 The other end of the pipe line 111 is connected to the gas flow path 114 via the connection part 113. The gas flow path 114 is for circulating ozone in a gaseous state. A check valve 115 is disposed in the gas flow path 114.
 なお、管路111には、オゾンガスを還元する機能を有するオゾンフィルタ(図示せず)が配置されていてもよい。オゾンフィルタは、例えば、オゾンを分解するための触媒が、格子状に構成された紙またはアルミニウムに付着されたもの等、一般的なオゾンフィルタである。 Note that an ozone filter (not shown) having a function of reducing ozone gas may be disposed in the pipe line 111. The ozone filter is a general ozone filter, for example, a catalyst for decomposing ozone attached to paper or aluminum configured in a lattice shape.
 オゾン発生器120は、気体状態のオゾンを生成し且つ生成したオゾンを気体流路114に供給する。気体導入部110によって導入された空気または酸素等の気体は、管路111と気体流路114とを通ってオゾン発生器120に導入される。オゾン発生器120は、金属電極によって形成されたオゾン発生素子(図示せず)を有している。オゾン発生素子は、導入された空気または酸素を材料にしてオゾンガスを発生させる。なお、オゾン発生器120の構成は、特に限定されず、気体流路114から導入される空気または酸素等の気体からオゾンガスを生成するように構成されていればよい。オゾン発生器120としては、一般的なオゾン発生器を用いることが可能である。 The ozone generator 120 generates gaseous ozone and supplies the generated ozone to the gas flow path 114. A gas such as air or oxygen introduced by the gas introduction unit 110 is introduced into the ozone generator 120 through the pipe 111 and the gas flow path 114. The ozone generator 120 has an ozone generating element (not shown) formed by a metal electrode. The ozone generating element generates ozone gas using the introduced air or oxygen as a material. In addition, the structure of the ozone generator 120 is not specifically limited, What is necessary is just to be comprised so that ozone gas may be produced | generated from gas, such as air introduced from the gas flow path 114, or oxygen. As the ozone generator 120, a general ozone generator can be used.
 オゾン水生成装置100において、液体としての水は液体流路121を流通する。液体流路121は、オゾンが溶解される水を流通させる。オゾン水生成装置100は、給水部150を備えている。オゾン水生成装置100の使用者が図示しない水道蛇口を開放することにより、原水としての水道水が給水部150からオゾン水生成装置100に供給される。ただし、原水は、水道水に限定されず、浄化もしくは精製された水であってもよい。 In the ozone water generating apparatus 100, water as a liquid flows through the liquid channel 121. The liquid channel 121 circulates water in which ozone is dissolved. The ozone water generating apparatus 100 includes a water supply unit 150. When the user of the ozone water generating apparatus 100 opens a water tap (not shown), tap water as raw water is supplied from the water supply unit 150 to the ozone water generating apparatus 100. However, the raw water is not limited to tap water, and may be purified or purified water.
 液体流路121は、給水部150に接続されている。給水部150は、図示しない電磁弁を有している。給水部150は、オゾン水生成装置100の本体(図示せず)の外部に配置されていてもよく、本体の内部に収容されていてもよい。給水部150の弁は、液体流路121のうちのエジェクタ130よりも水の流れ方向の上流の部分を開閉する。 The liquid channel 121 is connected to the water supply unit 150. The water supply unit 150 has a solenoid valve (not shown). The water supply part 150 may be arrange | positioned outside the main body (not shown) of the ozone water production | generation apparatus 100, and may be accommodated in the inside of a main body. The valve of the water supply unit 150 opens and closes a portion of the liquid channel 121 upstream of the ejector 130 in the water flow direction.
 オゾン水生成装置100においては、気液混合部として、エジェクタ型のものが利用されている。気液混合部の一例としてのエジェクタ130は、液体流路121の一部を形成している。エジェクタ130には、気体の流入口133と液体の流入口131とオゾン水の流出口132とが形成されている。気体流路114の一端は、流入口133を介してエジェクタ130に接続されている。 In the ozone water generating apparatus 100, an ejector type is used as the gas-liquid mixing unit. An ejector 130 as an example of a gas-liquid mixing unit forms part of the liquid channel 121. The ejector 130 is formed with a gas inlet 133, a liquid inlet 131, and an ozone water outlet 132. One end of the gas flow path 114 is connected to the ejector 130 via the inflow port 133.
 オゾン発生器120から気体流路114に供給されるオゾンは、気体流路114の一端からエジェクタ130に導入される。エジェクタ130に導入されるオゾンは、液体流路121を流通する水に混合され、且つ、液体流路121の流れの圧力に基づいて水に溶解される。このようにして、エジェクタ130は、液体流路121を流通する水に、オゾン発生器120から気体流路114に供給される気体としてのオゾンを溶解させる。 Ozone supplied from the ozone generator 120 to the gas flow path 114 is introduced into the ejector 130 from one end of the gas flow path 114. The ozone introduced into the ejector 130 is mixed with water flowing through the liquid channel 121 and is dissolved in water based on the pressure of the flow in the liquid channel 121. In this way, the ejector 130 dissolves ozone as a gas supplied from the ozone generator 120 to the gas channel 114 in the water flowing through the liquid channel 121.
 エジェクタ130よりも、液体流路121を流通する水の流れ方向の下流には、気液分離部140が配置されている。気液分離部140は、液体流路121のうちのエジェクタ130よりも水の流れ方向の下流の一部を形成している。気液分離部140には、気体の流出口143とオゾン水の流入口141とオゾン水の流出口142とが形成されている。流出口143には、気体流路114の他端が接続されている。 The gas-liquid separator 140 is disposed downstream of the ejector 130 in the flow direction of the water flowing through the liquid channel 121. The gas-liquid separator 140 forms a part of the liquid flow path 121 downstream of the ejector 130 in the water flow direction. In the gas-liquid separator 140, a gas outlet 143, an ozone water inlet 141, and an ozone water outlet 142 are formed. The other end of the gas flow path 114 is connected to the outflow port 143.
 流入口141から気液分離部140の内部に流入したオゾン水には、オゾンの気泡が、水に完全に溶解しないまま残っている。気液分離部140において、オゾンの気泡と水中に含まれる空気等の気体とは、液体流路121を流通する水から分離された後に、流出口143から気体流路114に排出される。気液分離部140は、液体流路121を流通する水からオゾンの気泡を含む気体を分離させる。また、気液分離部140は、水から分離されたオゾンの一部を気体流路114の他端から気体流路114に排出する。 In the ozone water that has flowed into the gas-liquid separator 140 from the inlet 141, ozone bubbles remain without being completely dissolved in the water. In the gas-liquid separation unit 140, the bubbles of ozone and the gas such as air contained in the water are separated from the water flowing through the liquid channel 121 and then discharged from the outlet 143 to the gas channel 114. The gas-liquid separator 140 separates the gas containing ozone bubbles from the water flowing through the liquid channel 121. In addition, the gas-liquid separation unit 140 discharges a part of the ozone separated from the water from the other end of the gas channel 114 to the gas channel 114.
 筐体101は、気体流路114と、液体流路121と、オゾン発生器120と、エジェクタ130と、気液分離部140とを収容する。筐体101には、開口部12と開口部13と開口部14とが形成されている。気体導入部110の管路111を形成する管状部材は、開口部14を通り且つ筐体101を貫通している。同様に、給水部150とエジェクタ130とを繋ぐ液体流路121の一部を形成する管状部材は、開口部12を通り且つ筐体101を貫通している。気液分離部140と吐水部160とを繋ぐ液体流路121の一部を形成する管状部材は、開口部13を通り且つ筐体101を貫通している。 The housing 101 accommodates a gas flow path 114, a liquid flow path 121, an ozone generator 120, an ejector 130, and a gas-liquid separation unit 140. An opening 12, an opening 13, and an opening 14 are formed in the housing 101. The tubular member that forms the pipe 111 of the gas introduction part 110 passes through the opening 14 and penetrates the housing 101. Similarly, a tubular member that forms a part of the liquid flow path 121 that connects the water supply unit 150 and the ejector 130 passes through the opening 12 and penetrates the housing 101. A tubular member that forms part of the liquid flow path 121 that connects the gas-liquid separator 140 and the water discharger 160 passes through the opening 13 and penetrates the housing 101.
 管路111を形成する管状部材の外周面(図示せず)と、開口部14の縁(図示せず)との間の隙間は埋められている。同様に、給水部150とエジェクタ130とを繋ぐ液体流路121の一部を形成する管状部材の外周面(図示せず)と、開口部12の縁(図示せず)との間の隙間は埋められている。気液分離部140と吐水部160とを繋ぐ液体流路121の一部を形成する管状部材の外周面(図示せず)と、開口部13の縁(図示せず)との間の隙間は埋められている。このようにして、筐体101の内部は、密閉された空間が形成されている。 The clearance gap between the outer peripheral surface (not shown) of the tubular member which forms the pipe line 111, and the edge (not shown) of the opening part 14 is filled up. Similarly, the gap between the outer peripheral surface (not shown) of the tubular member that forms a part of the liquid flow path 121 that connects the water supply unit 150 and the ejector 130 and the edge (not shown) of the opening 12 is as follows. Buried. The gap between the outer peripheral surface (not shown) of the tubular member that forms a part of the liquid flow path 121 that connects the gas-liquid separator 140 and the water discharger 160 and the edge (not shown) of the opening 13 is Buried. In this way, a sealed space is formed inside the housing 101.
 オゾン水生成装置100は、制御部180を備えている。制御部180は、筐体101の内部に配置されていてもよく、筐体101の外部に配置されていてもよい。 The ozone water generating apparatus 100 includes a control unit 180. The control unit 180 may be disposed inside the housing 101 or may be disposed outside the housing 101.
 筐体101の内部には、オゾンを検知するオゾン検知部108が配置されている。オゾン検知部108は、筐体101の内部のオゾンの濃度を検知する。濃度センサとしてのオゾン検知部108は、電気的または電子的に制御部180に接続されている。 Inside the housing 101, an ozone detector 108 that detects ozone is disposed. The ozone detection unit 108 detects the concentration of ozone inside the housing 101. The ozone detection unit 108 as a concentration sensor is electrically or electronically connected to the control unit 180.
 図2に示すように、制御部180は、データ読み取り部181と、判断部182とオゾン発生制御部183とを有している。データ読み取り部181は、オゾン検知部108から送信される信号を受け取る。オゾン検知部108から送信される信号には、筐体101の内部のオゾンの濃度の情報が含まれている。判断部182は、データ読み取り部181が受け取った信号に基づき、筐体101の内部のオゾンの濃度が所定の濃度以上であるかどうかを判定する。 As shown in FIG. 2, the control unit 180 includes a data reading unit 181, a determination unit 182, and an ozone generation control unit 183. The data reading unit 181 receives a signal transmitted from the ozone detection unit 108. The signal transmitted from the ozone detector 108 includes information on the concentration of ozone inside the housing 101. Based on the signal received by the data reading unit 181, the determination unit 182 determines whether the ozone concentration inside the housing 101 is equal to or higher than a predetermined concentration.
 オゾン発生制御部183は、オゾン発生器120を制御する。オゾン発生制御部183は、例えば図示しない電源回路を制御することにより、オゾン発生器120の電極に印加される電圧を調整する。判断部182によって、筐体101(図1参照)の内部のオゾンの濃度が所定の濃度以上であることが判定される場合には、オゾン発生制御部183は、オゾンの生成を停止させるようにオゾン発生器120の電極に印加される電圧を調整することにより、オゾン発生器120を制御する。なお、2点鎖線の矢印は信号の流れを示す。 The ozone generation control unit 183 controls the ozone generator 120. The ozone generation control unit 183 adjusts the voltage applied to the electrode of the ozone generator 120, for example, by controlling a power supply circuit (not shown). When the determination unit 182 determines that the ozone concentration in the housing 101 (see FIG. 1) is equal to or higher than the predetermined concentration, the ozone generation control unit 183 stops the generation of ozone. The ozone generator 120 is controlled by adjusting the voltage applied to the electrode of the ozone generator 120. The two-dot chain arrows indicate the signal flow.
 このようにして、制御部180は、オゾン検知部108によってオゾンが検知される場合に、オゾンの生成を停止させるようにオゾン発生器120を制御する。詳細には、制御部180は、筐体101の内部のオゾンの濃度が所定の濃度以上である場合に、オゾンの生成を停止させるようにオゾン発生器120を制御する。 Thus, the control unit 180 controls the ozone generator 120 so as to stop the generation of ozone when ozone is detected by the ozone detection unit 108. Specifically, the control unit 180 controls the ozone generator 120 to stop the generation of ozone when the concentration of ozone inside the housing 101 is equal to or higher than a predetermined concentration.
 図3に示すように、気液分離部140は、容器104と弁60とを有している。容器104は、天井面146と、底面145と、周壁149とを有している。容器104は、例えば樹脂材料によって形成されている。周壁149は、天井面146と底面145との間を上下方向に延びている。例えば、図3の左右方向のことを容器104の幅方向という。また、図3の上下方向は、鉛直上下方向と略一致している。 As shown in FIG. 3, the gas-liquid separation unit 140 includes a container 104 and a valve 60. The container 104 has a ceiling surface 146, a bottom surface 145, and a peripheral wall 149. The container 104 is made of, for example, a resin material. The peripheral wall 149 extends vertically between the ceiling surface 146 and the bottom surface 145. For example, the horizontal direction in FIG. 3 is referred to as the width direction of the container 104. Further, the vertical direction in FIG. 3 substantially coincides with the vertical vertical direction.
 オゾン水の流入口141とオゾン水の流出口142とは、周壁149に形成されている。流入口141は、容器104の内部と外部とを連通する。上下方向に沿った流入口141の下端の位置は、底面145の位置と略一致している。 The ozone water inlet 141 and the ozone water outlet 142 are formed in the peripheral wall 149. The inflow port 141 communicates the inside and the outside of the container 104. The position of the lower end of the inflow port 141 along the vertical direction is substantially coincident with the position of the bottom surface 145.
 一方、流出口142は、容器104の内部と外部とを連通する。流入口141と流出口142とは、容器104の幅方向に沿って互いに対向するように周壁149に形成されている。上下方向に沿った流出口142の下端の位置は、底面145の位置と略一致している。気体の流出口143は、天井面146に形成されている。流出口143は、容器104の内部と外部とを連通する。 On the other hand, the outflow port 142 communicates the inside and the outside of the container 104. The inflow port 141 and the outflow port 142 are formed in the peripheral wall 149 so as to face each other along the width direction of the container 104. The position of the lower end of the outflow port 142 along the vertical direction substantially matches the position of the bottom surface 145. The gas outlet 143 is formed on the ceiling surface 146. The outlet 143 communicates the inside and the outside of the container 104.
 容器104の上壁の一部には、筒状部144が形成されている。筒状部144の下端の開口は、流出口143である。筒状部144の上端から下端までは、気体流路114(図1参照)の一部を形成している。気体流路114の他端において、気体流路114と容器104の内部とは、流出口143によって連通されている(図1参照)。 A cylindrical portion 144 is formed on a part of the upper wall of the container 104. An opening at the lower end of the cylindrical portion 144 is an outlet 143. A part of the gas flow path 114 (see FIG. 1) is formed from the upper end to the lower end of the cylindrical portion 144. At the other end of the gas flow path 114, the gas flow path 114 and the inside of the container 104 are communicated with each other by an outlet 143 (see FIG. 1).
 容器104の左側の周壁149には流入口141を容器104の外方から覆うように、ノズル21pが取り付けられている。容器104の右側の周壁149には流出口142を容器104の外方から覆うように、ノズル22pが取り付けられている。ノズル21pの内部とノズル22pの内部とは、液体流路121の一部を形成している。 The nozzle 21 p is attached to the left peripheral wall 149 of the container 104 so as to cover the inlet 141 from the outside of the container 104. A nozzle 22 p is attached to the right peripheral wall 149 of the container 104 so as to cover the outlet 142 from the outside of the container 104. The inside of the nozzle 21p and the inside of the nozzle 22p form a part of the liquid channel 121.
 容器104の内部において、周壁149の内面149sと天井面146と底面145とに囲まれた空間は、液体流路121の一部を形成している。なお、周壁149の内面149sとは、容器104の内部に面した面であり、オゾンを含む溶液と接触する面のことである。 Inside the container 104, a space surrounded by the inner surface 149s, the ceiling surface 146, and the bottom surface 145 of the peripheral wall 149 forms a part of the liquid flow path 121. The inner surface 149s of the peripheral wall 149 is a surface facing the inside of the container 104 and is a surface that comes into contact with a solution containing ozone.
 弁60は、水位調整部の一例であって、気液分離部140の内部の水位が所定の水位以上である場合に、気体の流出口143を閉塞する。弁60は、栓部61とフロート62とフロートガイド63と支持部64とを有している。支持部64は、フロートガイド63を介してフロート62および栓部61を支持する部分であって、天井面146に配置されている。フロートガイド63は、支持部64を中心に回転自在であるように、支持部64に固定されている。フロートガイド63は、ロッド状もしくは板状の部材であって、支持部64とフロート62とを接続している。 The valve 60 is an example of a water level adjustment unit, and closes the gas outlet 143 when the water level inside the gas-liquid separation unit 140 is equal to or higher than a predetermined water level. The valve 60 includes a plug part 61, a float 62, a float guide 63, and a support part 64. The support portion 64 is a portion that supports the float 62 and the plug portion 61 via the float guide 63, and is disposed on the ceiling surface 146. The float guide 63 is fixed to the support portion 64 so as to be rotatable around the support portion 64. The float guide 63 is a rod-shaped or plate-shaped member, and connects the support portion 64 and the float 62.
 栓部61は、流出口143を塞ぐ栓としての機能を有している。栓部61は、略円錐形状を有している。栓部61は、フロートガイド63の上面に固定されている。なお、栓部61の形状は、特に限定されない。 The plug part 61 has a function as a plug that closes the outlet 143. The plug part 61 has a substantially conical shape. The plug part 61 is fixed to the upper surface of the float guide 63. The shape of the plug portion 61 is not particularly limited.
 フロート62は、容器104に貯留される溶液の比重よりも小さい比重を有する物質からなる物体、または、所定の比重を有する中空の物体等によって形成されている。フロート62は、容器104内部の溶液の液位に応じて上下に移動する。容器104へ貯留される溶液が増加することによって液位が所定の液位よりも高くなったときに、流出口143が弁60によって塞がれる。容器104内部の液位が所定の液位よりも低いときには、流出口143は開放されている。このように、弁60は、容器104の内部に溜められた液量に応じて流出口143を開閉する。 The float 62 is formed of an object made of a substance having a specific gravity smaller than the specific gravity of the solution stored in the container 104, a hollow object having a predetermined specific gravity, or the like. The float 62 moves up and down according to the liquid level of the solution inside the container 104. When the liquid level becomes higher than a predetermined liquid level due to an increase in the solution stored in the container 104, the outlet 143 is blocked by the valve 60. When the liquid level inside the container 104 is lower than a predetermined liquid level, the outflow port 143 is opened. As described above, the valve 60 opens and closes the outlet 143 according to the amount of liquid stored in the container 104.
 弁60の構成によれば、フロートガイド63の回転中心から栓部61までの距離が、フロートガイド63の回転中心からフロートガイド63とフロート62との接続部分までの距離よりも小さい。そのため、てこの原理によって、流出口143をより強固に閉塞することできる。さらに、比較的小さい浮力によってフロート62が上下に移動する場合でも、栓部61は流出口143を強固に閉塞することが可能であるため、弁60の小型化が可能である。そのため、容器104内部の容積を大きく保ったまま、弁60を配置させることができる。 According to the configuration of the valve 60, the distance from the rotation center of the float guide 63 to the plug portion 61 is smaller than the distance from the rotation center of the float guide 63 to the connecting portion between the float guide 63 and the float 62. Therefore, the outlet 143 can be closed more firmly by the lever principle. Further, even when the float 62 moves up and down by a relatively small buoyancy, the plug portion 61 can firmly block the outflow port 143, so that the valve 60 can be downsized. Therefore, the valve 60 can be arranged while keeping the volume inside the container 104 large.
 次に、図1と図3とを用いて、オゾン水生成装置100の水の流れと、オゾンを含む気体の流れとを説明する。オゾン水生成装置100において、液体としての水は、給水部150から液体流路121に供給される。液体流路121を流れる水は、流入口131からエジェクタ130の内部に流入する。エジェクタ130の内部を流通した水は、流出口132からエジェクタ130の外部に流出する。 Next, the flow of water in the ozone water generator 100 and the flow of gas containing ozone will be described with reference to FIGS. 1 and 3. In the ozone water generating apparatus 100, water as a liquid is supplied from the water supply unit 150 to the liquid channel 121. Water flowing through the liquid flow path 121 flows into the ejector 130 from the inlet 131. The water that has circulated through the ejector 130 flows out of the ejector 130 from the outlet 132.
 エジェクタ130の内部には、オゾン発生器120が発生させた気体のオゾンが流入口133から流入する。流入口133から流入した気体のオゾンは、液体流路121としてエジェクタ130の内部を流通する水に混合される。水に混合されたオゾンの一部は、水流の圧力に基づいて水に溶解される。オゾンを含む水は、流出口132からエジェクタ130の外部に流出する。 The gaseous ozone generated by the ozone generator 120 flows into the ejector 130 from the inlet 133. The gaseous ozone flowing in from the inflow port 133 is mixed with water flowing through the ejector 130 as the liquid flow path 121. Part of the ozone mixed with water is dissolved in water based on the pressure of the water stream. Water containing ozone flows out of the ejector 130 from the outlet 132.
 流出口132からエジェクタ130の外部に流出したオゾンを含む水は、流入口141から気液分離部140の内部に流入する。図3に示すように、ノズル21pの内部から容器104の内部に流入したオゾンを含む水は、底面145から上方に向かって容器104の内部を流通するとともに、流入口141から流出口142に向かって容器104の幅方向に移動する。底面145と天井面146と周壁149の内面149sとに囲まれた空間に貯められた溶液は、流出口142の近傍において次第に加速されながら、流出口142から容器104の外部に流出する。 Water containing ozone that has flowed out of the ejector 130 from the outlet 132 flows into the gas-liquid separator 140 from the inlet 141. As shown in FIG. 3, the water containing ozone that has flowed into the container 104 from the inside of the nozzle 21p circulates in the container 104 upward from the bottom surface 145, and from the inlet 141 toward the outlet 142. Then, the container 104 moves in the width direction. The solution stored in the space surrounded by the bottom surface 145, the ceiling surface 146, and the inner surface 149 s of the peripheral wall 149 flows out of the container 104 from the outlet 142 while being gradually accelerated in the vicinity of the outlet 142.
 溶液の気泡に含まれるオゾンまたは空気等の気体は、容器104の内部を流通する間に、溶液から分離される。このように、溶液の気泡に含まれるオゾンまたは空気等の気体が溶液から分離された水として、オゾンが水に溶解したオゾン水が生成される。オゾンが水に溶解したオゾン水は、流出口142からノズル22pの内部に流出することにより、気液分離部140の外部に流出する。 Gas such as ozone or air contained in the bubbles of the solution is separated from the solution while flowing inside the container 104. Thus, ozone water in which ozone is dissolved in water is generated as water in which a gas such as ozone or air contained in the bubbles of the solution is separated from the solution. The ozone water in which ozone is dissolved in water flows out of the gas-liquid separation unit 140 by flowing out of the outlet port 142 into the nozzle 22p.
 一方、溶液から分離されたオゾンまたは空気等の気体は、容器104の内部を流通する間に、オゾン水の水面の上方に集められる。水面の上方に集められた気体は、弁60が流出口143を開放している場合に、流出口143から筒状部144の内部を流通することにより、気液分離部140の外部に排出される。 On the other hand, a gas such as ozone or air separated from the solution is collected above the surface of the ozone water while circulating inside the container 104. When the valve 60 opens the outlet 143, the gas collected above the water surface is discharged outside the gas-liquid separator 140 by flowing through the inside of the tubular portion 144 from the outlet 143. The
 気液分離部140において水から分離された空気とオゾンの一部とは、流出口143から気体流路114に流出する(図1参照)。水に溶解されていないオゾンと空気とは、気体流路114に排出された後に流入口133からエジェクタ130(図1参照)の内部に再び流入する。エジェクタ130において水に溶解されなかったオゾンは、気体流路114と、エジェクタ130と気液分離部140との間に延びる液体流路121の一部とを循環する間に、液体流路121を流通する水に次第に溶解される。オゾンが溶解したオゾン水は、流出口142から気液分離部140の外部に排出された後に、吐水部160からオゾン水生成装置100の外部に供給される。 The air and a part of ozone separated from water in the gas-liquid separator 140 flow out from the outlet 143 to the gas flow path 114 (see FIG. 1). The ozone and air that are not dissolved in water flow into the ejector 130 (see FIG. 1) again from the inlet 133 after being discharged to the gas flow path 114. The ozone not dissolved in the water in the ejector 130 circulates in the liquid flow path 121 while circulating through the gas flow path 114 and a part of the liquid flow path 121 extending between the ejector 130 and the gas-liquid separation unit 140. It is gradually dissolved in the circulating water. The ozone water in which ozone is dissolved is discharged from the outlet 142 to the outside of the gas-liquid separator 140 and then supplied from the water discharger 160 to the outside of the ozone water generator 100.
 例えば気液分離部140とエジェクタ130との間に延びる気体流路114(図1参照)の一部からオゾンが漏出している場合、または、液体流路121を流通する水の量が一時的に増加する場合等には、容器104の内部に貯められた溶液の量が増加して水位が上昇する。容器104の内部の水位が所定の水位以上である場合には、弁60によって流出口143が閉塞される。 For example, when ozone leaks from a part of the gas channel 114 (see FIG. 1) extending between the gas-liquid separator 140 and the ejector 130, or the amount of water flowing through the liquid channel 121 is temporarily For example, the amount of the solution stored in the container 104 increases and the water level rises. When the water level inside the container 104 is equal to or higher than a predetermined water level, the outlet 143 is closed by the valve 60.
 流出口143が閉塞されている場合には、気液分離部140からオゾン発生器120(図1参照)にオゾンが供給されないため、オゾン発生器120には気体導入部110(図1参照)から必要な気体が導入される。この場合には、オゾン発生器120が気体導入部110から気体を取り入れるように、制御部180(図2参照)がオゾン発生器120を制御する。このように、流出口143が弁60によって閉塞されている場合に、オゾン発生器120は、気体導入部110から気体を導入することによって、オゾンを生成することができる。 When the outlet 143 is closed, ozone is not supplied from the gas-liquid separation unit 140 to the ozone generator 120 (see FIG. 1), and therefore, the ozone generator 120 is supplied from the gas introduction unit 110 (see FIG. 1). Necessary gas is introduced. In this case, the control unit 180 (see FIG. 2) controls the ozone generator 120 so that the ozone generator 120 takes in gas from the gas introduction unit 110. Thus, when the outlet 143 is closed by the valve 60, the ozone generator 120 can generate ozone by introducing gas from the gas introduction unit 110.
 以上のように、オゾン水生成装置100は、気体流路114と、液体流路121と、オゾン発生器120と、エジェクタ130と、気液分離部140と、筐体101と、オゾン検知部108と、制御部180とを備えている。気体流路114は、気体状態のオゾンを流通させる。液体流路121は、オゾンが溶解される水を流通させる。 As described above, the ozone water generating apparatus 100 includes the gas channel 114, the liquid channel 121, the ozone generator 120, the ejector 130, the gas-liquid separator 140, the housing 101, and the ozone detector 108. And a control unit 180. The gas flow path 114 circulates gaseous ozone. The liquid channel 121 circulates water in which ozone is dissolved.
 オゾン発生器120は、気体状態のオゾンを生成し且つ生成したオゾンを気体流路114に供給する。エジェクタ130は、液体流路121の一部を形成する。エジェクタ130には、気体流路114の一端が接続されている。エジェクタ130は、オゾン発生器120から気体流路114に供給されるオゾンを、液体流路121を流通する水に気体流路114の一端から溶解させる。気液分離部140は、液体流路121のうちのエジェクタ130よりも水の流れ方向の下流の一部を形成する。気液分離部140には、気体流路114の他端が接続されている。気液分離部140は、液体流路121を流通する水からオゾンの気泡を分離させ且つオゾンの一部を気体流路114の他端から気体流路114に排気する。 The ozone generator 120 generates gaseous ozone and supplies the generated ozone to the gas flow path 114. The ejector 130 forms part of the liquid channel 121. One end of a gas flow path 114 is connected to the ejector 130. The ejector 130 dissolves ozone supplied from the ozone generator 120 to the gas channel 114 in water flowing through the liquid channel 121 from one end of the gas channel 114. The gas-liquid separator 140 forms a part of the liquid flow path 121 downstream of the ejector 130 in the water flow direction. The other end of the gas flow path 114 is connected to the gas-liquid separation unit 140. The gas-liquid separation unit 140 separates ozone bubbles from the water flowing through the liquid channel 121 and exhausts part of the ozone from the other end of the gas channel 114 to the gas channel 114.
 筐体101は、気体流路114と、液体流路121と、オゾン発生器120と、エジェクタ130と、気液分離部140とを収容する。オゾン検知部108は、筐体101に設けられ、オゾンを検知する。制御部180は、オゾン検知部108によってオゾンが検知される場合に、オゾンの生成を停止させるようにオゾン発生器120を制御する。 The housing 101 accommodates a gas flow path 114, a liquid flow path 121, an ozone generator 120, an ejector 130, and a gas-liquid separation unit 140. The ozone detection unit 108 is provided in the housing 101 and detects ozone. The control unit 180 controls the ozone generator 120 so as to stop the generation of ozone when ozone is detected by the ozone detection unit 108.
 オゾン水生成装置100によれば、気体流路114と液体流路121とオゾン発生器120とエジェクタ130と気液分離部140とが筐体101に収容されている。そのため、筐体101の内部において気体状態のオゾンが漏出する場合でも、筐体101の外部へのオゾンの放出を防止することができる。 According to the ozone water generating apparatus 100, the gas flow path 114, the liquid flow path 121, the ozone generator 120, the ejector 130, and the gas-liquid separation unit 140 are accommodated in the housing 101. Therefore, even when gaseous ozone leaks inside the housing 101, the release of ozone to the outside of the housing 101 can be prevented.
 さらに、筐体101の内部において気体状態のオゾンが漏出している場合には、筐体101に設けられたオゾン検知部108により、オゾンを検知することができる。オゾン検知部108によってオゾンが検知される場合には、制御部180がオゾン発生器120を制御することにより、オゾン発生器120はオゾンの生成を停止する。これにより、筐体101の内部にオゾンがさらに漏出することを防止することができる。 Furthermore, when gaseous ozone leaks inside the casing 101, the ozone can be detected by the ozone detector 108 provided in the casing 101. When ozone is detected by the ozone detector 108, the controller 180 controls the ozone generator 120, so that the ozone generator 120 stops generating ozone. Thereby, it is possible to prevent further ozone from leaking into the housing 101.
 このようにして、オゾンガスの漏出によって環境に悪影響が及ぼされることを防止することが可能なオゾン水生成装置100を提供することができる。 In this way, it is possible to provide the ozone water generation apparatus 100 that can prevent the environment from being adversely affected by leakage of ozone gas.
 オゾン水生成装置100において、オゾン検知部108は、筐体101の内部に配置されている。オゾン検知部108は、筐体101の内部のオゾンの濃度を検知する。制御部180は、筐体101の内部のオゾンの濃度が所定の濃度以上である場合に、オゾンの生成を停止させるようにオゾン発生器120を制御する。 In the ozone water generating apparatus 100, the ozone detector 108 is disposed inside the housing 101. The ozone detection unit 108 detects the concentration of ozone inside the housing 101. The control unit 180 controls the ozone generator 120 to stop the generation of ozone when the concentration of ozone inside the housing 101 is equal to or higher than a predetermined concentration.
 この構成によれば、筐体101の内部において気体状態のオゾンが漏出している場合には、筐体101の内部に配置されたオゾン検知部108によってオゾンの濃度を検知することができる。筐体101の内部のオゾンの濃度が所定の濃度以上である場合に、制御部180がオゾン発生器120を制御することにより、オゾン発生器120はオゾンの生成を停止する。これにより、筐体101の内部にオゾンがさらに漏出することを防止することができる。 According to this configuration, when gaseous ozone leaks inside the casing 101, the ozone concentration can be detected by the ozone detector 108 disposed inside the casing 101. When the concentration of ozone inside the housing 101 is equal to or higher than a predetermined concentration, the controller 180 controls the ozone generator 120 so that the ozone generator 120 stops generating ozone. Thereby, it is possible to prevent further ozone from leaking into the housing 101.
 オゾン水生成装置100において、気液分離部140の容器104に流出口143が形成されている。流出口143は、気体流路114の他端から気体流路114にオゾンの一部を排気させる。気液分離部140は、弁60を有している。弁60は、気液分離部140の内部の水位が所定の水位以上である場合に、流出口143を閉塞する。 In the ozone water generating apparatus 100, an outlet 143 is formed in the container 104 of the gas-liquid separator 140. The outflow port 143 exhausts a part of ozone from the other end of the gas channel 114 to the gas channel 114. The gas-liquid separator 140 has a valve 60. The valve 60 closes the outflow port 143 when the water level inside the gas-liquid separator 140 is equal to or higher than a predetermined water level.
 この構成によれば、気液分離部140とエジェクタ130との間において気体状態のオゾンが気体流路114から漏出している場合でも、弁60が流出口143を閉塞することにより、気液分離部140から気体流路114へのオゾンの流出を停止することができる。これにより、筐体101の内部にオゾンがさらに漏出することを防止することができる。また、弁60が流出口143を閉塞することにより、容器104の内部に勢いよく溶液が流入する場合でも、流出口143から溶液が噴出することを防止することができる。 According to this configuration, even when gaseous ozone leaks from the gas flow path 114 between the gas-liquid separator 140 and the ejector 130, the valve 60 blocks the outlet 143, so that the gas-liquid separation is performed. The outflow of ozone from the portion 140 to the gas flow path 114 can be stopped. Thereby, it is possible to prevent further ozone from leaking into the housing 101. Further, since the valve 60 closes the outflow port 143, it is possible to prevent the solution from being ejected from the outflow port 143 even when the solution vigorously flows into the container 104.
 なお、筐体101の内部のオゾンの濃度を検知するオゾン検知部108は、筐体101の外部に配置されていてもよい。 Note that the ozone detector 108 that detects the concentration of ozone inside the housing 101 may be disposed outside the housing 101.
 なお、オゾン水生成装置100において、気体流路114には、逆止弁115が配置されていなくてもよい。つまり、オゾン水生成装置100は、逆止弁115を備えていなくてもよい。 In the ozone water generating apparatus 100, the check valve 115 may not be disposed in the gas flow path 114. That is, the ozone water generating apparatus 100 may not include the check valve 115.
 なお、ノズル21pが延びる方向と、ノズル22pが延びる方向とは、それぞれ異なっていてもよい。ノズル21pが延びる方向と、ノズル22pが延びる方向とは、略水平方向であることに限定されない。ただし、ノズル21pは、ノズル21pの内部から容器104の内部に略水平方向に溶液が流入するように、容器104に取り付けられていることが好ましい。また、ノズル22pは、容器104の内部からノズル22pの内部に略水平方向に溶液が流出するように、容器104に取り付けられていることが好ましい。 The direction in which the nozzle 21p extends may be different from the direction in which the nozzle 22p extends. The direction in which the nozzle 21p extends and the direction in which the nozzle 22p extends are not limited to being substantially horizontal. However, it is preferable that the nozzle 21p is attached to the container 104 so that the solution flows from the inside of the nozzle 21p into the container 104 in a substantially horizontal direction. The nozzle 22p is preferably attached to the container 104 so that the solution flows out from the inside of the container 104 into the nozzle 22p in a substantially horizontal direction.
 流出口143は、天井面146にではなく、流入口141が形成された周壁149と反対側の周壁149(図3の右側の周壁149)に形成されていてもよい。 The outlet 143 may be formed not on the ceiling surface 146 but on the peripheral wall 149 opposite to the peripheral wall 149 where the inlet 141 is formed (the peripheral wall 149 on the right side in FIG. 3).
 弁60は、図3に示す構成を備えていることに限定されない。例えば容器104においての流出口143の位置に応じて、栓部61が周壁149に対向するように、弁60は構成されていてもよい。 The valve 60 is not limited to having the configuration shown in FIG. For example, the valve 60 may be configured such that the plug portion 61 faces the peripheral wall 149 according to the position of the outlet 143 in the container 104.
 なお、気体導入部110は、オゾン水生成装置100の外部から内部に気体を導入させることが可能であるように構成されていればよい。例えば、気体導入部110の構成は、逆止弁112の代わりにオゾン発生器120に供給される気体量を制御することが可能な開閉バルブまたは電磁弁等を備えていてもよい。あるいは、気体導入部110は、逆止弁112を備えていなくてもよく、接続部113に三方向弁が配置されたような構成であってもよい。この三方向弁は、例えば、電子的に制御されるものであって、制御部180によって制御される。 In addition, the gas introduction part 110 should just be comprised so that gas can be introduce | transduced into the inside from the outside of the ozone water production | generation apparatus 100. FIG. For example, the configuration of the gas introduction unit 110 may include an on-off valve or an electromagnetic valve that can control the amount of gas supplied to the ozone generator 120 instead of the check valve 112. Alternatively, the gas introduction unit 110 may not include the check valve 112 and may have a configuration in which a three-way valve is arranged at the connection unit 113. This three-way valve is electronically controlled, for example, and is controlled by the control unit 180.
 接続部113の位置は、気体流路114のうち、オゾン発生器120とエジェクタ130との間であってもよい。つまり、管路111は、気体流路114のうち、オゾン発生器120とエジェクタ130との間を延びる部分に接続されていてもよい。 The position of the connecting portion 113 may be between the ozone generator 120 and the ejector 130 in the gas flow path 114. That is, the pipe line 111 may be connected to a portion of the gas flow path 114 that extends between the ozone generator 120 and the ejector 130.
 なお、気液混合部の構成は、エジェクタ型のものに限定されず、気体流路114から導入されたオゾンと液体流路121を流通する水とを混合させ、且つ、オゾンを水に溶解させる構成を有していればよい。 The configuration of the gas-liquid mixing unit is not limited to the ejector type, and the ozone introduced from the gas flow channel 114 and the water flowing through the liquid flow channel 121 are mixed and the ozone is dissolved in the water. What is necessary is just to have a structure.
 (第2実施形態)
 以下では、第2実施形態に係るオゾン水生成装置200について、図4~図6を用いて説明する。なお、以下において、第1実施形態に係るオゾン水生成装置100の構成と同様の機能を有する構成には同符号を付し、その説明を省略する。
(Second Embodiment)
Hereinafter, an ozone water generating apparatus 200 according to the second embodiment will be described with reference to FIGS. In addition, below, the same code | symbol is attached | subjected to the structure which has a function similar to the structure of the ozone water generating apparatus 100 which concerns on 1st Embodiment, and the description is abbreviate | omitted.
 以下に説明するように、第2実施形態に係るオゾン水生成装置200が第1実施形態に係るオゾン水生成装置100と異なる点は、オゾン水生成装置200は、気液分離部140の代わりに気液分離部240を備え、且つ、オゾン検知部108の代わりに水位検知部208を備えている。 As will be described below, the ozone water generating device 200 according to the second embodiment is different from the ozone water generating device 100 according to the first embodiment in that the ozone water generating device 200 is replaced with a gas-liquid separator 140. A gas-liquid separation unit 240 is provided, and a water level detection unit 208 is provided instead of the ozone detection unit 108.
 図6に示すように、気液分離部240の上部には、水位検知部208が配置されている。水位検知部208は、容器104の内部の水位として、弁60の栓部61の位置を検知する。位置センサとしての水位検知部208は、電気的または電子的に制御部180(図5参照)に接続されている。水位検知部208は、オゾン検知部の一例である。 As shown in FIG. 6, a water level detection unit 208 is disposed above the gas-liquid separation unit 240. The water level detection unit 208 detects the position of the plug unit 61 of the valve 60 as the water level inside the container 104. The water level detection unit 208 as a position sensor is electrically or electronically connected to the control unit 180 (see FIG. 5). The water level detection unit 208 is an example of an ozone detection unit.
 データ読み取り部181は、水位検知部208から送信される信号を受け取る。水位検知部208から送信される信号には、容器104においての栓部61の位置の情報が含まれている。判断部182は、データ読み取り部181が受け取った信号に基づき、栓部61の位置が所定の位置よりも上方であるかどうか、または、栓部61の位置が所定の位置に達したか否かを判定する。 The data reading unit 181 receives a signal transmitted from the water level detection unit 208. The signal transmitted from the water level detection unit 208 includes information on the position of the plug unit 61 in the container 104. Based on the signal received by the data reading unit 181, the determination unit 182 determines whether the position of the plug unit 61 is above a predetermined position, or whether the position of the plug unit 61 has reached a predetermined position. Determine.
 判断部182によって、栓部61の位置が所定の位置よりも上方であることが判定される場合には、オゾン発生制御部183は、オゾンの生成を停止させるようにオゾン発生器120の電極に印加される電圧を調整することにより、オゾン発生器120を制御する。あるいは、判断部182によって、栓部61の位置が所定の位置に達したことが判定される場合に、オゾン発生制御部183は、オゾンの生成を停止させるようにオゾン発生器120の電極に印加される電圧を調整することにより、オゾン発生器120を制御する。 When the determination unit 182 determines that the position of the plug unit 61 is above the predetermined position, the ozone generation control unit 183 applies the electrode of the ozone generator 120 so as to stop the generation of ozone. The ozone generator 120 is controlled by adjusting the applied voltage. Alternatively, when the determination unit 182 determines that the position of the plug unit 61 has reached a predetermined position, the ozone generation control unit 183 applies the voltage to the electrode of the ozone generator 120 so as to stop the generation of ozone. The ozone generator 120 is controlled by adjusting the applied voltage.
 例えば気液分離部240とエジェクタ130との間に延びる気体流路114(図4参照)の一部からオゾンが漏出している場合には、容器104の内部に貯められた溶液の量が増加して水位が上昇する。容器104の内部の水位が所定の水位以上である場合には、弁60によって流出口143が閉塞される。そのため、容器104においての栓部61の位置を水位検知部208が検知することにより、気体流路114の一部からオゾンが漏出しているか否かを判断部182が判定することができる。 For example, when ozone leaks from a part of the gas flow path 114 (see FIG. 4) extending between the gas-liquid separator 240 and the ejector 130, the amount of the solution stored in the container 104 increases. Then the water level rises. When the water level inside the container 104 is equal to or higher than a predetermined water level, the outlet 143 is closed by the valve 60. Therefore, when the water level detection unit 208 detects the position of the plug unit 61 in the container 104, the determination unit 182 can determine whether ozone has leaked from a part of the gas flow path 114.
 なお、水位検知部208は、栓部61が流出口143を閉塞したか否かを検知していてもよい。あるいは、水位検知部208は、栓部61が流出口143を閉塞することにより、気液分離部240から気体流路114への気体の流通が停止されたか否かを検知していてもよい。 The water level detection unit 208 may detect whether or not the plug unit 61 has blocked the outlet 143. Alternatively, the water level detection unit 208 may detect whether or not the gas flow from the gas-liquid separation unit 240 to the gas flow path 114 is stopped by the plug unit 61 closing the outlet 143.
 このようにして、制御部180は、容器104の内部の水位が所定の水位以上である場合に、オゾンの生成を停止させるようにオゾン発生器120を制御する。つまり、制御部180は、水位検知部208によって検知される容器104においての栓部61の位置に基づいてオゾンが検知される場合に、オゾンの生成を停止させるようにオゾン発生器120を制御する。 Thus, the control unit 180 controls the ozone generator 120 so as to stop the generation of ozone when the water level inside the container 104 is equal to or higher than the predetermined water level. That is, the control unit 180 controls the ozone generator 120 to stop the generation of ozone when ozone is detected based on the position of the stopper 61 in the container 104 detected by the water level detection unit 208. .
 以上のように、オゾン水生成装置200において、オゾン検知部としての水位検知部208は、気液分離部240に配置されている。水位検知部208は、気液分離部240の容器104の内部の水位を検知する。制御部180は、容器104の内部の水位が所定の水位以上である場合に、オゾンの生成を停止させるようにオゾン発生器120を制御する。 As described above, in the ozone water generating apparatus 200, the water level detection unit 208 as the ozone detection unit is disposed in the gas-liquid separation unit 240. The water level detection unit 208 detects the water level inside the container 104 of the gas-liquid separation unit 240. The control unit 180 controls the ozone generator 120 to stop the generation of ozone when the water level inside the container 104 is equal to or higher than a predetermined water level.
 オゾン水生成装置200の気液分離部240とエジェクタ130との間において気体状態のオゾンが気体流路114から漏出している場合には、気液分離部240の容器104の内部の気体の容積が減少することにより、オゾン水の水位が上昇する。オゾン水生成装置200においては、水位検知部208は、気液分離部240の容器104の内部の水位を検知する。また、制御部180は、容器104の内部の水位が所定の水位以上である場合に、オゾンの生成を停止させるようにオゾン発生器120を制御する。このように、オゾン水生成装置200によれば、気液分離部240の内部の水位に基づいて、筐体101の内部にオゾンがさらに漏出することを防止することができる。 When ozone in a gaseous state leaks from the gas flow path 114 between the gas-liquid separator 240 and the ejector 130 of the ozone water generator 200, the volume of gas inside the container 104 of the gas-liquid separator 240. As the water level decreases, the water level of ozone water rises. In the ozone water generating apparatus 200, the water level detection unit 208 detects the water level inside the container 104 of the gas-liquid separation unit 240. Moreover, the control part 180 controls the ozone generator 120 so that the production | generation of ozone is stopped when the water level inside the container 104 is more than a predetermined water level. Thus, according to the ozone water generating apparatus 200, it is possible to prevent further ozone from leaking into the housing 101 based on the water level inside the gas-liquid separator 240.
 (第3実施形態)
 以下では、第3実施形態に係るオゾン水生成装置について、図7を用いて説明する。なお、以下において、第1実施形態に係るオゾン水生成装置100(図1参照)の構成および第2実施形態に係るオゾン水生成装置200(図4参照)の構成と同様の機能を有する構成には同符号を付し、その説明を省略する。
(Third embodiment)
Below, the ozone water generating apparatus which concerns on 3rd Embodiment is demonstrated using FIG. In the following, the configuration has the same function as the configuration of the ozone water generation device 100 (see FIG. 1) according to the first embodiment and the configuration of the ozone water generation device 200 (see FIG. 4) according to the second embodiment. Are given the same reference numerals, and the description thereof is omitted.
 以下に説明するように、第3実施形態に係るオゾン水生成装置が第2実施形態に係るオゾン水生成装置200と異なる点は、第3実施形態に係るオゾン水生成装置は、気液分離部240の代わりに気液分離部340を備え、且つ、水位検知部208の代わりに水位検知部308を備えている。 As will be described below, the ozone water generating device according to the third embodiment is different from the ozone water generating device 200 according to the second embodiment in that the ozone water generating device according to the third embodiment is a gas-liquid separator. A gas-liquid separation unit 340 is provided instead of 240, and a water level detection unit 308 is provided instead of the water level detection unit 208.
 図7に示すように、水位検知部308は、気液分離部340において、容器104の周壁149の外部に配置されている。水位検知部308は、容器104の内部の水位として、フロート62の位置を検知する。位置センサとしての水位検知部308は、電気的または電子的に制御部180(図5参照)に接続されている。水位検知部308は、オゾン検知部の一例である。 7, the water level detection unit 308 is disposed outside the peripheral wall 149 of the container 104 in the gas-liquid separation unit 340. The water level detection unit 308 detects the position of the float 62 as the water level inside the container 104. The water level detection unit 308 as a position sensor is electrically or electronically connected to the control unit 180 (see FIG. 5). The water level detection unit 308 is an example of an ozone detection unit.
 なお、以下に説明する事項を除いて、第3実施形態に係るオゾン水生成装置の制御部の構成は、第2実施形態に係るオゾン水生成装置200の制御部180(図5参照)と同様である。データ読み取り部181は、水位検知部308から送信される信号を受け取る。水位検知部308から送信される信号には、容器104においてのフロート62の位置の情報が含まれている。判断部182は、データ読み取り部181が受け取った信号に基づき、フロート62の位置が所定の位置よりも上方であるかどうか、または、フロート62の位置が所定の位置に達したか否かを判定する。 In addition, except the matter demonstrated below, the structure of the control part of the ozone water generating apparatus which concerns on 3rd Embodiment is the same as that of the control part 180 (refer FIG. 5) of the ozone water generating apparatus 200 which concerns on 2nd Embodiment. It is. The data reading unit 181 receives a signal transmitted from the water level detection unit 308. The signal transmitted from the water level detection unit 308 includes information on the position of the float 62 in the container 104. Based on the signal received by the data reading unit 181, the determination unit 182 determines whether or not the position of the float 62 is above a predetermined position, or whether or not the position of the float 62 has reached a predetermined position. To do.
 判断部182によって、例えばフロート62の位置が所定の位置よりも上方であることが判定される場合には、オゾン発生制御部183は、オゾンの生成を停止させるようにオゾン発生器120の電極に印加される電圧を調整することにより、オゾン発生器120を制御する。 For example, when the determination unit 182 determines that the position of the float 62 is above a predetermined position, the ozone generation control unit 183 applies an electrode to the ozone generator 120 so as to stop the generation of ozone. The ozone generator 120 is controlled by adjusting the applied voltage.
 このようにして、制御部180は、容器104の内部の水位が所定の水位以上である場合に、オゾンの生成を停止させるようにオゾン発生器120を制御する。つまり、制御部180は、水位検知部308によって検知される容器104においてのフロート62の位置に基づいてオゾンが検知される場合に、オゾンの生成を停止させるようにオゾン発生器120を制御する。 Thus, the control unit 180 controls the ozone generator 120 so as to stop the generation of ozone when the water level inside the container 104 is equal to or higher than the predetermined water level. That is, the control unit 180 controls the ozone generator 120 to stop the generation of ozone when ozone is detected based on the position of the float 62 in the container 104 detected by the water level detection unit 308.
 (第4実施形態)
 以下では、第4実施形態に係るオゾン水生成装置について、図8を用いて説明する。なお、以下において、第1実施形態に係るオゾン水生成装置100(図1参照)の構成、第2実施形態に係るオゾン水生成装置200(図4参照)の構成、および、第3実施形態に係るオゾン水生成装置の構成と同様の機能を有する構成には同符号を付し、その説明を省略する。
(Fourth embodiment)
Below, the ozone water generating apparatus which concerns on 4th Embodiment is demonstrated using FIG. In the following, the configuration of the ozone water generation device 100 (see FIG. 1) according to the first embodiment, the configuration of the ozone water generation device 200 (see FIG. 4) according to the second embodiment, and the third embodiment. The components having the same functions as those of the ozone water generator are denoted by the same reference numerals, and the description thereof is omitted.
 以下に説明するように、第4実施形態に係るオゾン水生成装置が第2実施形態に係るオゾン水生成装置200と異なる点は、第4実施形態に係るオゾン水生成装置は、気液分離部240の代わりに、水位調整部としての弁を有していない気液分離部440を備え、且つ、水位検知部208の代わりに水位検知部408を備えている。 As will be described below, the ozone water generating device according to the fourth embodiment is different from the ozone water generating device 200 according to the second embodiment in that the ozone water generating device according to the fourth embodiment is a gas-liquid separator. Instead of 240, a gas-liquid separation unit 440 not having a valve as a water level adjustment unit is provided, and a water level detection unit 408 is provided instead of the water level detection unit 208.
 図8に示すように、水位検知部408は、気液分離部440の上部において、容器104の周壁149の外部に配置されている。水位検知部408は、容器104の内部の水位を検知する。水位センサまたは水量センサとしての水位検知部408は、電気的または電子的に制御部180(図5参照)に接続されている。水位検知部408は、オゾン検知部の一例である。 As shown in FIG. 8, the water level detection unit 408 is disposed outside the peripheral wall 149 of the container 104 in the upper part of the gas-liquid separation unit 440. The water level detection unit 408 detects the water level inside the container 104. A water level detection unit 408 as a water level sensor or a water amount sensor is electrically or electronically connected to the control unit 180 (see FIG. 5). The water level detection unit 408 is an example of an ozone detection unit.
 なお、以下に説明する事項を除いて、第4実施形態に係るオゾン水生成装置の制御部の構成は、第2実施形態に係るオゾン水生成装置200の制御部180(図5参照)と同様である。データ読み取り部181は、水位検知部408から送信される信号を受け取る。水位検知部408から送信される信号には、容器104の内部の水位の情報が含まれている。判断部182は、データ読み取り部181が受け取った信号に基づき、容器104の内部の水位が所定の水位よりも上方であるかどうか、または、水位が所定の水位に達したか否かを判定する。 In addition, except the matter demonstrated below, the structure of the control part of the ozone water generating apparatus which concerns on 4th Embodiment is the same as that of the control part 180 (refer FIG. 5) of the ozone water generating apparatus 200 which concerns on 2nd Embodiment. It is. The data reading unit 181 receives a signal transmitted from the water level detection unit 408. The signal transmitted from the water level detection unit 408 includes information on the water level inside the container 104. Based on the signal received by the data reading unit 181, the determination unit 182 determines whether the water level inside the container 104 is above a predetermined water level, or whether the water level has reached a predetermined water level. .
 判断部182によって、例えば水位が所定の水位よりも上方であることが判定される場合には、オゾン発生制御部183は、オゾンの生成を停止させるようにオゾン発生器120の電極に印加される電圧を調整することにより、オゾン発生器120を制御する。 For example, when the determination unit 182 determines that the water level is higher than a predetermined water level, the ozone generation control unit 183 is applied to the electrode of the ozone generator 120 so as to stop the generation of ozone. The ozone generator 120 is controlled by adjusting the voltage.
 このようにして、制御部180は、容器104の内部の水位が所定の水位以上である場合に、オゾンの生成を停止させるようにオゾン発生器120を制御する。つまり、制御部180は、水位検知部408によって検知される容器104の内部の水位に基づいてオゾンが検知される場合に、オゾンの生成を停止させるようにオゾン発生器120を制御する。 Thus, the control unit 180 controls the ozone generator 120 so as to stop the generation of ozone when the water level inside the container 104 is equal to or higher than the predetermined water level. That is, the control unit 180 controls the ozone generator 120 to stop the generation of ozone when ozone is detected based on the water level inside the container 104 detected by the water level detection unit 408.
 第1実施形態に係るオゾン水生成装置100と第2実施形態に係るオゾン水生成装置200と第3実施形態に係るオゾン水生成装置と第4実施形態に係るオゾン水生成装置とのうち、例えばオゾン水生成装置100は、衛生器具用洗浄装置に用いることができる。衛生器具には、例えば、便所、洗面所、または、浴室に用いられた大小便器、手洗い器、洗面器、または、浴槽等が含まれる。つまり、オゾン水生成装置100を備えた衛生器具用洗浄装置は、例えば、便所、洗面所、もしくは、浴室に用いられる器具、または、便所、洗面所、もしくは、浴室を洗浄するための装置である。 Among the ozone water generator 100 according to the first embodiment, the ozone water generator 200 according to the second embodiment, the ozone water generator according to the third embodiment, and the ozone water generator according to the fourth embodiment, for example The ozone water generating apparatus 100 can be used for a sanitary appliance cleaning apparatus. Sanitary ware includes, for example, toilets, toilets, large and small urinals used in bathrooms, hand-washers, wash-basins, bathtubs, and the like. That is, the sanitary appliance cleaning device provided with the ozone water generating device 100 is, for example, a device used for a toilet, a toilet, or a bathroom, or a device for cleaning a toilet, a toilet, or a bathroom. .
 例えば、図9に示すように、小便器901,902,903を洗浄するための衛生器具用洗浄装置950が便所900に設置されている。便所900は、衛生器具設備の一例である。衛生器具用洗浄装置950は、小便器901,902,903を含む便器に水を供給するための配管910に接続されている。衛生器具用洗浄装置950は、オゾン水生成装置100を備えている。配管910を流通する水が衛生器具用洗浄装置950を通過するときに水にオゾンが溶解されることにより、オゾン水が生成される。衛生器具用洗浄装置950を通過した後に配管910を流通するオゾン水は、小便器901,902,903を含む便器に供給される。 For example, as shown in FIG. 9, a sanitary appliance cleaning device 950 for cleaning the urinals 901, 902, and 903 is installed in the toilet 900. The toilet 900 is an example of a sanitary equipment facility. The sanitary appliance cleaning device 950 is connected to a pipe 910 for supplying water to the toilet including the urinals 901, 902, and 903. The sanitary appliance cleaning device 950 includes an ozone water generator 100. When water flowing through the pipe 910 passes through the sanitary appliance cleaning device 950, ozone is dissolved in the water, thereby generating ozone water. The ozone water flowing through the pipe 910 after passing through the sanitary appliance cleaning device 950 is supplied to a toilet including the urinals 901, 902, and 903.
 また例えば、図10に示すように、小便器920は、衛生陶器921を洗浄するための衛生器具用洗浄装置922を備えている。小便器920は、衛生器具の一例である。衛生器具用洗浄装置922は、小便器920の上部に配置されている。衛生器具用洗浄装置922は、オゾン水生成装置100を備えている。 For example, as shown in FIG. 10, the urinal 920 includes a sanitary appliance cleaning device 922 for cleaning the sanitary ware 921. The urinal 920 is an example of a sanitary instrument. The sanitary appliance cleaning device 922 is disposed above the urinal 920. The sanitary appliance cleaning device 922 includes an ozone water generator 100.
 さらに例えば、図11に示すように、大便器940は、洗浄便座930を備えている。洗浄便座930は、オゾン水生成装置100を備えた洗浄ユニット934と、便座カバー933と、便座932とを有する。洗浄ユニット934は、衛生陶器931を洗浄するための衛生器具用洗浄装置の一例である。大便器940は、衛生器具の一例である。 Further, for example, as shown in FIG. 11, the toilet 940 includes a cleaning toilet seat 930. The cleaning toilet seat 930 includes a cleaning unit 934 provided with the ozone water generating device 100, a toilet seat cover 933, and a toilet seat 932. The cleaning unit 934 is an example of a sanitary appliance cleaning device for cleaning the sanitary ware 931. The toilet 940 is an example of a sanitary instrument.
 オゾン水生成装置100を備えた衛生器具用洗浄装置は、筐体101(図1参照)の内部において気体状態のオゾンが漏出する場合でも、筐体101の外部へのオゾンの放出を防止することができるとともに、筐体の内部にオゾンがさらに漏出することを防止することができる。そのため、オゾン水生成装置100を備えた衛生器具用洗浄装置は、オゾンガスの漏出によって環境に悪影響が及ぼされることを防止することができる。 The sanitary appliance cleaning device provided with the ozone water generating device 100 prevents the release of ozone to the outside of the housing 101 even when gaseous ozone leaks inside the housing 101 (see FIG. 1). And ozone can be prevented from further leaking into the housing. Therefore, the cleaning device for sanitary ware provided with the ozone water generating device 100 can prevent the environment from being adversely affected by the leakage of ozone gas.
 以上に開示された実施の形態はすべての点で例示であって制限的なものではないと考慮されるべきである。本発明の範囲は、以上の実施の形態ではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての修正と変形を含むものである。 It should be considered that the embodiments disclosed above are illustrative and non-restrictive in every respect. The scope of the present invention is shown not by the above embodiments but by the scope of claims, and includes all modifications and variations within the meaning and scope equivalent to the scope of claims.
 60:弁、100:オゾン水生成装置、101:筐体、108:オゾン検知部、114:気体流路、120:オゾン発生器、121:液体流路、130:エジェクタ、140:気液分離部、143:流出口、180:制御部 60: valve, 100: ozone water generator, 101: housing, 108: ozone detector, 114: gas flow path, 120: ozone generator, 121: liquid flow path, 130: ejector, 140: gas-liquid separator 143: Outflow port 180: Control unit

Claims (5)

  1.  気体状態のオゾンを流通させるための気体流路と、
     オゾンが溶解される水を流通させるための液体流路と、
     気体状態のオゾンを生成し且つ生成したオゾンを前記気体流路に供給するためのオゾン発生部と、
     前記液体流路の一部を形成し、前記気体流路の一端が接続され、且つ、前記オゾン発生部から前記気体流路に供給されるオゾンを、前記液体流路を流通する水に前記気体流路の一端から溶解させるための気液混合部と、
     前記液体流路のうちの前記気液混合部よりも水の流れ方向の下流の一部を形成し、前記気体流路の他端が接続され、前記液体流路を流通する水からオゾンの気泡を分離させ且つオゾンの一部を前記気体流路の他端から前記気体流路に排気するための気液分離部と、
       前記気体流路と、前記液体流路と、前記オゾン発生部と、前記気液混合部と、前記気液分離部とを収容する筐体と、
       前記筐体に設けられ、オゾンを検知するオゾン検知部と、
       前記オゾン検知部によってオゾンが検知される場合に、オゾンの生成を停止させるように前記オゾン発生部を制御する制御部とを備えた、オゾン水生成装置。
    A gas flow path for circulating gaseous ozone;
    A liquid flow path for circulating water in which ozone is dissolved;
    An ozone generator for generating gaseous ozone and supplying the generated ozone to the gas flow path;
    The gas that forms a part of the liquid flow path, is connected to one end of the gas flow path, and is supplied to the gas flow path from the ozone generation unit into the water flowing through the liquid flow path. A gas-liquid mixing part for dissolving from one end of the flow path;
    A part of the liquid channel downstream of the gas-liquid mixing part in the water flow direction is formed, the other end of the gas channel is connected, and bubbles of ozone from water flowing through the liquid channel And a gas-liquid separation unit for exhausting a part of ozone from the other end of the gas channel to the gas channel;
    A housing that houses the gas flow path, the liquid flow path, the ozone generation section, the gas-liquid mixing section, and the gas-liquid separation section;
    An ozone detector provided in the housing for detecting ozone;
    An ozone water generation apparatus comprising: a control unit that controls the ozone generation unit so as to stop the generation of ozone when ozone is detected by the ozone detection unit.
  2.  前記オゾン検知部は、前記筐体の内部に配置され、前記筐体の内部のオゾンの濃度を検知し、
     前記制御部は、前記筐体の内部のオゾンの濃度が所定の濃度以上である場合に、オゾンの生成を停止させるように前記オゾン発生部を制御する、
    請求項1に記載のオゾン水生成装置。
    The ozone detector is disposed inside the housing, detects the concentration of ozone inside the housing,
    The control unit controls the ozone generation unit to stop the generation of ozone when the concentration of ozone inside the housing is equal to or higher than a predetermined concentration.
    The ozone water generator according to claim 1.
  3.  前記オゾン検知部は、前記気液分離部に配置され、前記気液分離部の内部の水位を検知し、
     前記制御部は、前記気液分離部の内部の水位が所定の水位以上である場合に、オゾンの生成を停止させるように前記オゾン発生部を制御する、
    請求項1に記載のオゾン水生成装置。
    The ozone detector is arranged in the gas-liquid separator, detects the water level inside the gas-liquid separator,
    The control unit controls the ozone generation unit to stop the generation of ozone when the water level inside the gas-liquid separation unit is equal to or higher than a predetermined water level.
    The ozone water generator according to claim 1.
  4.  前記気液分離部には、前記気体流路の他端から前記気体流路にオゾンの一部を排気するための流出口が形成され、
     前記気液分離部は、前記気液分離部の内部の水位が所定の水位以上である場合に、前記流出口を閉塞する水位調整部を有している、
    請求項1から請求項3までのいずれか1項に記載のオゾン水生成装置。
    In the gas-liquid separation unit, an outlet for exhausting a part of ozone from the other end of the gas channel to the gas channel is formed,
    The gas-liquid separation unit has a water level adjustment unit that closes the outlet when the water level inside the gas-liquid separation unit is equal to or higher than a predetermined water level.
    The ozone water generator according to any one of claims 1 to 3.
  5.  請求項1から請求項4までのいずれか1項に記載のオゾン水生成装置を備えた、
    衛生器具用洗浄装置。
    The ozone water generator according to any one of claims 1 to 4 is provided.
    Cleaning device for sanitary equipment.
PCT/JP2012/080850 2011-12-13 2012-11-29 Ozone water generator and sanitary device cleaning apparatus provided with same WO2013088960A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-271907 2011-12-13
JP2011271907A JP2013123650A (en) 2011-12-13 2011-12-13 Ozone water generator and cleaning apparatus for sanitary fixture equipped with the same

Publications (1)

Publication Number Publication Date
WO2013088960A1 true WO2013088960A1 (en) 2013-06-20

Family

ID=48612415

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/080850 WO2013088960A1 (en) 2011-12-13 2012-11-29 Ozone water generator and sanitary device cleaning apparatus provided with same

Country Status (2)

Country Link
JP (1) JP2013123650A (en)
WO (1) WO2013088960A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102291477B1 (en) * 2021-03-31 2021-08-19 이길우 radical water generating apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003020207A (en) * 2001-07-02 2003-01-24 Kurita Water Ind Ltd Apparatus for monitoring ozone gas
JP2003305348A (en) * 2002-03-29 2003-10-28 Dongwoo Gi Yeon Co Ltd Ozone water generation system and method for controlling the same
JP3100194U (en) * 2003-09-01 2004-04-30 坪田 章男 (Ozone bubble water generator for toilet with sensor)
JP2004188246A (en) * 2002-12-06 2004-07-08 Toshiba Plant Systems & Services Corp System for manufacturing ozonized water
JP2011062694A (en) * 2002-04-26 2011-03-31 Mks Instruments Inc Method for mixing pressurized fluid for semiconductor process tool and apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003020207A (en) * 2001-07-02 2003-01-24 Kurita Water Ind Ltd Apparatus for monitoring ozone gas
JP2003305348A (en) * 2002-03-29 2003-10-28 Dongwoo Gi Yeon Co Ltd Ozone water generation system and method for controlling the same
JP2011062694A (en) * 2002-04-26 2011-03-31 Mks Instruments Inc Method for mixing pressurized fluid for semiconductor process tool and apparatus
JP2004188246A (en) * 2002-12-06 2004-07-08 Toshiba Plant Systems & Services Corp System for manufacturing ozonized water
JP3100194U (en) * 2003-09-01 2004-04-30 坪田 章男 (Ozone bubble water generator for toilet with sensor)

Also Published As

Publication number Publication date
JP2013123650A (en) 2013-06-24

Similar Documents

Publication Publication Date Title
US9119284B2 (en) Plasma generator and method for producing radical, and cleaning and purifying apparatus and small-sized electrical appliance using the same
US20130333841A1 (en) Plasma generator and cleaning/purification apparatus using same
US9392680B2 (en) Plasma generator, and cleaning and purifying device apparatus and small-sized electrical appliance using plasma generator
KR101170089B1 (en) Microbubble generator connecting the water pipe
WO2013011762A1 (en) Plasma generating apparatus, and cleaning/purifying apparatus using same
JP2014169784A (en) Vacuum breaker, chair toilet bowl automatic water flushing system and electronic chair toilet bowl
US20130299090A1 (en) Plasma generator, and cleaning and purifying apparatus and small-sized electrical appliance using plasma generator
WO2013088960A1 (en) Ozone water generator and sanitary device cleaning apparatus provided with same
JP4967836B2 (en) bathroom
JP2008005973A (en) Bathroom apparatus using hydrogen water
KR101781727B1 (en) Control system of generatimg apparatus for micro-bubble
WO2013061654A1 (en) Solution generation device and ozone water generation device, and sanitary equipment cleaning device equipped with same
JP2013150966A (en) Ozone-containing liquid production unit and cleaning apparatus provided with the same, and ozone-containing liquid production method
KR101599941B1 (en) Apparatus for separating hydrogen and system for treating ballast water having the same
CN110998037A (en) Toilet bowl cleaning system
JP2013123675A (en) Solution generator and cleaning apparatus for sanitary fixture equipped with the same
JP6369271B2 (en) Liquid sterilizer and bathtub water sterilization system
JP2010131547A (en) Apparatus for producing electrolytic water
TW201430193A (en) Automatic flushing system for toilet and electronic bidet toilet having the same
JP6117667B2 (en) Ozone-containing liquid generator
JP2010155213A (en) Minute bubble generation apparatus
JP5959860B2 (en) Gas-liquid separator, dissolution liquid generating apparatus including the same, and sanitary instrument cleaning apparatus including the same
JP2013091051A (en) Gas-liquid separator, ozone water generator with the same and cleaning device for sanitary fixture with the same
JP2006297174A (en) Sterilized water production apparatus
JP6109768B2 (en) Water treatment apparatus and water treatment method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12857129

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12857129

Country of ref document: EP

Kind code of ref document: A1