WO2013088883A1 - Device for chromatographic analysis and method for chromatographic analysis - Google Patents

Device for chromatographic analysis and method for chromatographic analysis Download PDF

Info

Publication number
WO2013088883A1
WO2013088883A1 PCT/JP2012/079319 JP2012079319W WO2013088883A1 WO 2013088883 A1 WO2013088883 A1 WO 2013088883A1 JP 2012079319 W JP2012079319 W JP 2012079319W WO 2013088883 A1 WO2013088883 A1 WO 2013088883A1
Authority
WO
WIPO (PCT)
Prior art keywords
membrane member
membrane sheet
membrane
chromatographic
specimen
Prior art date
Application number
PCT/JP2012/079319
Other languages
French (fr)
Japanese (ja)
Inventor
大輔 濱中
史生 長井
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2013549169A priority Critical patent/JP5962666B2/en
Publication of WO2013088883A1 publication Critical patent/WO2013088883A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/90Plate chromatography, e.g. thin layer or paper chromatography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54366Apparatus specially adapted for solid-phase testing
    • G01N33/54386Analytical elements
    • G01N33/54387Immunochromatographic test strips
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54366Apparatus specially adapted for solid-phase testing
    • G01N33/54386Analytical elements

Definitions

  • the present invention relates to a chromatography analysis apparatus and a chromatography analysis method.
  • a plate-like chromatography test piece is used.
  • the chromatographic test piece is provided with a case opened upward and a membrane sheet (membrane member) accommodated in the case.
  • the membrane sheet is provided with a fixed area in which a antigen-specific antibody that specifically captures an immune complex of an antigen (analyte) in a specimen and a dye-labeled antibody is immobilized in a strip shape.
  • the immunochromatography method as described above has a problem that the detection sensitivity of the analyte is low compared to the gene amplification method (PCR method).
  • this invention is made
  • the chromatographic test piece is: A membrane member that is formed in a sheet shape that allows the specimen to be developed, and is provided with a fixing region that specifically captures and fixes the analyte in the specimen or a composite containing the analyte; A support member that contacts the one surface of the membrane member and supports the membrane member; With The chromatographic analyzer is A light source that emits excitation light to at least the fixed region of the other surface of the membrane member; Detecting means for detecting fluorescence generated due to the excitation light; Vaporization means for vaporizing the liquid contained in the membrane member after the specimen is deployed on the membrane member and before the detection means detects fluorescence; It is characterized by providing.
  • a chromatographic analysis method for detecting the state of an analyte in a chromatographic test strip supplied with a specimen As the chromatographic test piece, A membrane member that is formed in a sheet shape that allows the specimen to be developed, and is provided with a fixing region that specifically captures and fixes the analyte in the specimen or a composite containing the analyte; A support member that contacts the one surface of the membrane member and supports the membrane member; Use the one with The chromatographic analysis method is as follows: An irradiation step of irradiating at least the fixed region with excitation light among the other surface of the membrane member; A detection step of detecting fluorescence generated due to the excitation light; A vaporization step of vaporizing the liquid contained in the membrane member between the time when the specimen is deployed on the membrane member and before the detection step; It is characterized by providing.
  • the detection sensitivity of the analyte can be reliably increased.
  • FIG. 1 is a top view showing an example of an external configuration of a chromatographic test piece (hereinafter referred to as a test piece) 2.
  • the test piece 2 has a rectangular plate-like case 20 elongated in the direction in which the sample solution K (see FIG. 2) is developed (hereinafter referred to as the development direction A), and the case 20 And a seat portion 3 accommodated therein.
  • developing the sample solution K means spreading the sample solution K.
  • the case 20 has a sample addition window 21 at one end of the upper surface and an opening window 22 at the center of the upper surface.
  • the sample addition window 21 is an opening for supplying the specimen solution K (see FIG. 2) to the sheet portion 3.
  • the opening window 22 is an opening for exposing a fixed region 31 (see FIG. 2) described later in the seat portion 3 to the outside.
  • seat part 3 has the membrane sheet 30 long in the expansion
  • the membrane sheet 30 is a membrane member in the present invention, and is formed in a sheet shape capable of developing a specimen.
  • the membrane sheet 30 is made of nitrocellulose or the like.
  • a fixed region that specifically captures and fixes an analysis target for example, an antigen such as a virus
  • an analysis target for example, an antigen such as a virus
  • an antigen-specific antibody that specifically captures an immune complex between the analyte and the dye-labeled antibody is disposed.
  • a substance that specifically supplements the analysis target may be disposed in the fixed region 31.
  • a region different from the fixed region 31 in the membrane sheet 30 will be described as a non-fixed region 300.
  • a sample pad 32 is provided at one end (upstream side in the development direction A) of the upper surface of the membrane sheet 30 and an absorption pad 33 is provided at the other end (downstream side in the development direction A).
  • the sample pad 32 is a portion to which the specimen solution K is dropped and supplied.
  • the absorption pad 33 is a portion that absorbs the sample solution K dropped on the sample pad 32 and causes the sample solution K to flow in the developing direction A by capillary action.
  • a conjugate pad (not shown) is disposed downstream of the sample pad 32 in the development direction A.
  • This conjugate pad includes a dye-labeled antibody that binds to the analyte contained in the sample solution K, and moves the sample solution K supplied from the sample pad 32 to the downstream side in the development direction A, while The analyte in the solution K is bound to the dye-labeled antibody.
  • a support sheet 35 is disposed below the membrane sheet 30.
  • the support sheet 35 is a support member according to the present invention, is in contact with the lower surface of the membrane sheet 30 to support the membrane sheet 30 from below, and prevents warping and undulation of the membrane sheet 30.
  • the support sheet 35 prevents the sample solution K from leaking downward, so that the sample solution K is held in the membrane sheet 30 and developed in the membrane sheet 30.
  • the above support sheet 35 is formed of a laminate film such as polyester or polyvinyl chloride. Note that the material of the support sheet 35 has a property of causing fluorescence more easily than the material of the membrane sheet 30 (nitrocellulose or the like).
  • the autofluorescence L2 (1) generated by exciting the membrane sheet 30 includes fluorescence generated by exciting the dye-labeled antibody remaining on the membrane sheet 30.
  • the amount of autofluorescence L2 (1) is always substantially constant. Further, the amount of the fluorescence L2 (0) is always substantially constant as long as the amount of the analysis object is equal.
  • the amount of light of the autofluorescence L2 (2) is significantly greater when the membrane sheet 30 is wet than when it is not wet. This is because the permeability of light such as excitation light L1 and fluorescence L2 increases in the membrane sheet 30 when the membrane sheet 30 gets wet.
  • test piece 2 as described above, a conventionally known chromatographic test piece can be used.
  • FIG. 3A and 3B are schematic views showing an example of a schematic configuration of the chromatography analyzer 1.
  • FIG. 3A and 3B are schematic views showing an example of a schematic configuration of the chromatography analyzer 1.
  • the chromatographic analyzer 100 detects the state of the analysis object on the test piece 2, and includes a scanning device 5, a light source 10, a line sensor inside the housing 8. 4, a vaporizer 6, a control unit 9, and the like.
  • the housing 8 is a box-shaped member and has an insertion port 80 on a side surface.
  • the insertion port 80 is an opening for inserting the test piece 2 into the chromatographic analyzer 1 and discharging the test piece 2 in the chromatographic analyzer 1.
  • the insertion port 80 is preferably provided with a lid member that can be opened and closed.
  • the scanning device 5 scans the test piece 2 in the scanning direction Y.
  • the scanning device 5 includes a movable table 51 on a fixed table 50 fixed to the housing 8.
  • the movable base 51 is formed in a flat plate shape so as to support the test piece 2 from below, and moves back and forth in the scanning direction Y so as to protrude from the insertion port 80 of the housing 8.
  • the scanning direction Y is parallel to the development direction A.
  • the light source 10 irradiates at least the fixed region 31 of the membrane sheet 30 on the upper surface of the test piece 2 with the excitation light L1, and is a laser light source in the present embodiment.
  • the wavelength of the laser light source is preferably in the range of 630 nm to 780 nm, although it depends on the type of dye-labeled antibody used.
  • it is preferable that the irradiation light quantity of the membrane sheet 30 by the light source 10 is about 200 ⁇ W.
  • An optical system for guiding the excitation light L1 emitted from the light source 10 to the test piece 2 may be disposed between the light source 10 and the test piece 2.
  • the line sensor 4 is a light receiving sensor that performs photoelectric conversion by a plurality of pixels arranged in a line, and is arranged to extend in the X direction (a direction orthogonal to the scanning direction Y) in the drawing.
  • the line sensor 4 is a detecting means in the present invention, and detects the fluorescence L2 generated in the test piece 2 due to the excitation light L1 from the light source 10.
  • a line CCD is used in the present embodiment.
  • An optical system for guiding the fluorescence L2 generated in the test piece 2 to the line sensor 4 may be disposed between the line sensor 4 and the test piece 2.
  • the light source 10 and the line sensor 4 described above are disposed in the light shielding box 7, and external light hits the light source 10 and the line sensor 4.
  • the light shielding box 7 is provided with a hole on the optical axis of the light source 10 and the line sensor 4.
  • the excitation light L 1 from the light source 10 is irradiated to the test piece 2, and the fluorescence L 2 from the test piece 2 is lined.
  • the sensor 4 receives light.
  • the vaporizer 6 is a device that vaporizes the liquid contained in the membrane sheet 30 of the test piece 2.
  • the vaporizer 6 is a blower in the present embodiment, and applies air to the upper surface of the membrane sheet 30 to vaporize the liquid contained in the membrane sheet 30.
  • the vaporizer 6 can apply wind to the upper surface of the membrane sheet 30 and is used for the optical path of the excitation light L1 from the light source 10 to the test piece 2 and the optical path of the fluorescence L2 from the test piece 2 to the line sensor 4. As long as they do not interfere with each other.
  • the control unit 9 performs instructions to each functional unit of the chromatographic analyzer 1 and data transfer, and controls the chromatographic analyzer 1 as a whole and performs various calculations.
  • the control unit 9 specifies the state of the analysis object based on the output signal from the line sensor 4, and in this embodiment, specifies the presence or absence of the analysis object in the sample. It is supposed to be. More specifically, the control unit 9 specifies the presence / absence (positive / negative) of the analysis object by the following procedures (1) to (3).
  • control unit 9 is generated by the signal value output from the line sensor 4 due to the amount of fluorescence generated in the non-fixed region 300 of the test piece 2 and the fluorescence generated in the fixed region 31.
  • the signal value output from the line sensor 4 due to the amount of fluorescent light is detected, and the former signal value is subtracted from the latter signal value.
  • the control unit 9 uses the former signal value (the signal value output from the line sensor 4 due to the amount of fluorescent light generated in the non-fixed region 300) as the calculation result of the procedure (1). )
  • the control part 9 compares the calculation result (henceforth SB value) of a procedure (2) with a predetermined threshold value, and when a SB value is larger than a threshold value, it is positive (analysis object) If the SB value is smaller than the threshold value, the result is negative (no analysis object exists).
  • the signal value detected in step (1) is larger when the membrane sheet 30 is wet than when it is not wet. This is because, as described above, when the membrane sheet 30 gets wet, the light transmission through the membrane sheet 30 increases, and the amount of autofluorescence L2 (2) generated in the support sheet 35 increases. On the other hand, under the condition where the amount of the analysis object is equal, the signal value output from the line sensor 4 due to the fluorescence L2 (0) generated from the analysis object is the case where the membrane sheet 30 is wet. Even if the membrane sheet 30 is not wet, the same applies.
  • the output signal value of the line sensor 4 (the light amount of the fluorescence L2 generated in the sheet portion 3) when the membrane sheet 30 is not wet and when the membrane sheet 30 is wet under the condition that the amount of the analysis object is equal.
  • the ratio of the signal values attributed to the autofluorescence L2 (1) and L2 (2) to the autofluorescence L2 (1) and L2 (2) in the latter output signal value This is smaller than the ratio occupied by the resulting signal value. That is, in the former output signal value, the ratio of the signal value resulting from fluorescence other than the analysis object, that is, noise fluorescence, is smaller than the latter output signal value. Accordingly, when the membrane sheet 30 is not wet, it is possible to prevent erroneous detection of the analysis object due to noise fluorescence, compared with the case where the membrane sheet 30 is wet. Can be performed with high accuracy.
  • a positive specimen solution (1) containing the analyte at a concentration of 1000 PFU / ml (however, expressed as “sample 1” in the figure), and the analyte Prepare two samples of negative sample solution (2) containing the substance at a concentration of 100 PFU / ml (however, indicated as “sample: 2” in the figure), and the membrane sheet 30 is not wet,
  • the sample solutions (1) and (2) are negative when the membrane sheet 30 is wet, whereas the membrane sheet 30 is wet.
  • the sample solution (2) is negative and the sample solution (1) is positive.
  • the non-fixed region 300 is displayed.
  • the signal value output from the line sensor 4 due to the amount of fluorescent light generated in the detection is detected as “100 mV”, and the signal value output from the line sensor 4 due to the amount of fluorescent light generated in the fixed region 31 is detected. Is detected as “130 mV”, “30 mV-100 mV” is used to calculate “30 mV”.
  • the SB value “0.3” is calculated from “30 mV / 100 mV”.
  • it is determined that the SB value “0.3” is smaller than a predetermined threshold (here, “1.5”), and it is determined negative.
  • step (1) a line is generated due to the amount of fluorescence generated in the non-fixed region 300.
  • the signal value output from the sensor 4 is detected as “100 mV” and the signal value output from the line sensor 4 due to the amount of fluorescence generated by the fluorescence generated in the fixed region 31 is detected as “200 mV”
  • “100 mV” is calculated by “200 mV-100 mV”.
  • step (2) the SB value “1” is calculated from “100 mV / 100 mV”.
  • step (3) it is determined that the SB value “1” is smaller than the predetermined threshold value “1.5”, and the result is determined as negative.
  • step (1) when the procedures (1) to (3) are performed on the sample solution (2) in a state where the membrane sheet 30 is not wet, first, the fluorescence generated in the non-fixed region 300 in the procedure (1).
  • the signal value output from the line sensor 4 due to the light amount of the light is detected as “50 mV”
  • the signal value output from the line sensor 4 due to the light amount of the fluorescence generated by the fluorescence generated in the fixed region 31 is “80 mV”.
  • “30 mV” is calculated from "80 mV-50 mV”.
  • step (2) the SB value “0.6” is calculated from “30 mV / 50 mV”.
  • step (3) it is determined that the SB value “0.6” is smaller than the predetermined threshold value “1.5”, and it is determined negative.
  • a line is generated due to the amount of fluorescence generated in the non-fixed region 300.
  • the signal value output from the sensor 4 is detected as “50 mV” and the signal value output from the line sensor 4 due to the amount of fluorescence generated by the fluorescence generated in the fixed region 31 is detected as “150 mV”
  • “100 mV” is calculated from “150 mV-50 mV”.
  • the SB value “2” is calculated from “100 mV / 50 mV”.
  • it is determined that the SB value “2” is larger than the predetermined threshold value “1.5”, and it is determined as positive.
  • the tester collects a sample such as blood from the patient (step S1), dissolves the sample in a developing solution to generate a sample solution K (step S2), and then the test piece 2 (Step S3). More specifically, in this step S3, the specimen solution K is dropped onto the sample pad 32 through the sample addition window 21 of the test piece 2.
  • the tester waits until the sample solution K is developed on the membrane sheet 30 (step S4), and inserts the test piece 2 into the chromatography analyzer 1. More specifically, in this step S4, the tester waits until the specimen solution K is developed from the upstream side in the development direction A (the sample pad 32 side) of the membrane sheet 30 to a position at least beyond the fixed region 31. , Preferably, it waits until it develops completely to the downstream end part (end part on the absorption pad 33 side) in the development direction A. For example, it takes about 15 minutes for the sample solution K to completely develop on the membrane sheet 30.
  • control unit 9 causes the vaporizer 6 to vaporize the liquid contained in the membrane sheet 30 and dry the membrane sheet 30 (step S5). Thereby, the light transmittance in the membrane sheet 30 falls.
  • the degree of drying is preferably such that, for example, the signal value output from the line sensor 4 is “50 mV” due to the amount of fluorescent light generated in the non-fixed region 300 of the membrane sheet 30.
  • control unit 9 detects the state of the analysis object by performing the above-described procedures (1) to (3) (step S6).
  • step S6 the control unit 9 causes the light source 10 to irradiate the excitation light L1 toward the fixed region 31 of the membrane sheet 30 in the test piece 2, and the line sensor 4 emits the fluorescence L2 generated in the test piece 2. Then, the above-mentioned SB value is calculated based on the output signal from the line sensor 4, and the presence or absence of the analysis target is specified. At this time, since the membrane sheet 30 is dried in the above-described step S5, the detection sensitivity and detection accuracy of the analysis object are increased.
  • the liquid contained in the membrane sheet 30 is vaporized after the sample solution K is developed on the membrane sheet 30 until the line sensor 4 detects the fluorescence L2. Therefore, the detection sensitivity and detection accuracy of the analysis target can be increased as compared with the case where the membrane sheet 30 is wet.
  • the vaporizer 6 applies air to the upper surface of the membrane sheet 30 to vaporize the liquid contained in the membrane sheet 30, the liquid contained in the membrane sheet 30 can be surely vaporized.
  • the chromatographic analyzer 1A in this embodiment includes a vaporizer 6A.
  • the vaporizer 6A has a heat transfer heater 60 that heats the lower surface of the membrane sheet 30 by heat transfer.
  • the heat transfer heater 60 heats the lower surface of the support sheet 35 in the sheet portion 3 through the movable base 51 of the scanning device 5, and further heats the lower surface of the membrane sheet 30 through the support sheet 35.
  • the liquid contained in the membrane sheet 30 is vaporized.
  • the heat transfer heater 60 is a Peltier element and is in contact with a heat sink 61 for radiating excess heat.
  • the vaporizer 6 is included in the membrane sheet 30 by blowing air on the upper surface of the membrane sheet 30 or heating the lower surface of the membrane sheet 30 via the movable base 51.
  • the liquid in the membrane sheet 30 may be vaporized by other methods such as heating the membrane sheet 30 by radiant heat.
  • a vaporizer that heats the membrane sheet 30 by radiant heat for example, a halogen heater or the like can be used.
  • control unit 9 has been described as specifying the presence or absence of an analysis object, the control unit 9 may specify the concentration of the analysis object or may specify another state.
  • the detection means in the present invention has been described as the line sensor 4, it may be a light receiving sensor of another shape such as an area sensor or a photodiode.
  • the present invention is suitable for a chromatographic analyzer and a chromatographic analysis method that need to increase the detection sensitivity of an analysis object.

Landscapes

  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Hematology (AREA)
  • Pathology (AREA)
  • Molecular Biology (AREA)
  • Urology & Nephrology (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biomedical Technology (AREA)
  • Cell Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

This device (1) for chromatographic analysis detects the state of an object to be analyzed in a test piece (2) that is provided with a sample. The test piece (2) is provided with: a membrane sheet (30) on which a fixation region (31) which is formed into a sheet shape in which a sample can be expanded and which also specifically traps and affixes an object to be analyzed in a sample or conjugates that include the object to be analyzed is provided; and a supporting sheet (35) that supports the membrane sheet (30) by making contact with the lower surface of the membrane sheet (30). The device (1) for chromatographic analysis is provided with: a light source (10) that radiates excitation light (L1) at least onto the fixation region (31) of the upper surface of the membrane sheet (30); a line sensor (4) that detects fluorescence (L2) the generation of which is caused by the excitation light (L1); and a gasification device (6) that, after the sample is expanded on the membrane sheet (30), gasifies liquid contained in the membrane sheet (30) until the line sensor (4) detects the fluorescence.

Description

クロマトグラフィー分析装置及びクロマトグラフィー分析方法Chromatography analyzer and chromatography analysis method
 本発明は、クロマトグラフィー分析装置及びクロマトグラフィー分析方法に関するものである。 The present invention relates to a chromatography analysis apparatus and a chromatography analysis method.
 成人病・腫瘍などの疾患マーカやウィルス・細菌の検体検査では、従来、省力化によるコスト削減の観点から専ら大規模病院や検査センタに設置された集中検査装置が利用されてきた。ところが、90年代後半に抗インフルエンザウィルス薬が開発され、診療現場においてウィルス種を同定し、その場で抗ウィルス薬を処方する迅速性が必要になった。この要求に、簡便性と一定の感度を備えた安価なイムノクロマト法が応え、急速に普及した。現場における検査(POCT;Pointof Care Testing)は、感染症をはじめ心筋梗塞などの生活習慣病の予防、治療などの分野において、将来にわたる拡大が予想され、イムノクロマトはPOCTの有力デバイスのひとつとして期待されている。 In the examination of disease markers such as adult diseases and tumors, and specimens of viruses and bacteria, centralized inspection devices installed in large-scale hospitals and inspection centers have conventionally been used from the viewpoint of cost reduction through labor saving. However, anti-influenza virus drugs were developed in the latter half of the 1990s, and it was necessary to quickly identify the virus species at the clinical site and prescribe antiviral drugs on the spot. In response to this demand, an inexpensive immunochromatographic method having simplicity and constant sensitivity has been rapidly spread. On-site testing (POCT; Pointofe Care Testing) is expected to expand in the future in the field of prevention and treatment of lifestyle diseases such as infectious diseases such as myocardial infarction, and immunochromatography is expected as one of the leading devices of POCT. ing.
 このようなイムノクロマト法には、板状のクロマトグラフィー試験片が用いられている。クロマトグラフィー試験片には、上方に開口したケースと、当該ケース内に収容されたメンブレンシート(膜部材)とが具備されている。メンブレンシートには、検体中の抗原(分析対象物)と色素標識抗体との免疫複合体を特異的に捕捉する抗原特異的抗体が固定化された固定領域が短冊状に設けられている。 In such an immunochromatography method, a plate-like chromatography test piece is used. The chromatographic test piece is provided with a case opened upward and a membrane sheet (membrane member) accommodated in the case. The membrane sheet is provided with a fixed area in which a antigen-specific antibody that specifically captures an immune complex of an antigen (analyte) in a specimen and a dye-labeled antibody is immobilized in a strip shape.
 このようなクロマトグラフィー試験片においては、一端に液状の検体が滴下されると、色素標識抗体と抗原との結合が促された後、毛細管現象により免疫複合体と色素標識抗体がクロマトグラフィー試験片上を他端に向かって移動する結果、固定領域で免疫複合体が捕捉されるので、当該固定領域の呈色を光学的に検出することによって、分析対象物が定性的あるいは定量的に検出される。 In such a chromatographic test strip, when a liquid sample is dropped at one end, the binding between the dye-labeled antibody and the antigen is promoted, and then the immune complex and the dye-labeled antibody are separated on the chromatographic test strip by capillary action. As a result of moving toward the other end, the immune complex is captured in the fixed region, so that the analyte can be detected qualitatively or quantitatively by optically detecting the coloration of the fixed region. .
 ところで、以上のようなイムノクロマト法には、遺伝子増幅法(PCR法)と比較して、分析対象物の検出感度が低いという問題がある。 By the way, the immunochromatography method as described above has a problem that the detection sensitivity of the analyte is low compared to the gene amplification method (PCR method).
 この点、試薬の開発や測定方法の改良などのアプローチによって高感度化を図ることも考えられるが、既に用いられているイムノクロマト法の構成(特にメンブレンシート内に検体を展開させつつ分析対象物を固定領域に固定して検出する構成)を大きく変更することは好ましくない。そのため、近年、高感度化の手法として、溶液の展開速度を上げることで検出感度を高めつつ測定時間を短縮する手法が提案されている(例えば特許文献1参照)。 In this regard, it is conceivable to increase the sensitivity by approaches such as the development of reagents and improvement of the measurement method, but the structure of the immunochromatography method already used (especially the analyte to be analyzed while developing the sample in the membrane sheet) It is not preferable to greatly change the configuration in which detection is performed while being fixed to a fixed region. Therefore, in recent years, as a technique for increasing the sensitivity, a technique for increasing the detection speed by increasing the developing speed of the solution and reducing the measurement time has been proposed (for example, see Patent Document 1).
国際公開第2008/041773号パンフレットInternational Publication No. 2008/041773 Pamphlet
 しかしながら、上記特許文献1の技術では、流速が高くなることによって抗原抗体反応が起こり難くなり、感度が低下する場合があるため、確実に検出感度を高めることはできない。 However, in the technique of the above-mentioned Patent Document 1, since the antigen-antibody reaction is less likely to occur due to the increase in the flow rate and the sensitivity may be lowered, the detection sensitivity cannot be reliably increased.
 そこで、本発明は以上のような事情に鑑みてなされたものであり、分析対象物の検出感度を確実に高めることのできるクロマトグラフィー分析装置及びクロマトグラフィー分析方法を提供することを目的とするものである。 Then, this invention is made | formed in view of the above situations, and it aims at providing the chromatography analysis apparatus and chromatography analysis method which can raise the detection sensitivity of an analysis object reliably. It is.
 上記課題を解決するため、本発明の第1の側面によれば、
 検体を供給されたクロマトグラフィー試験片における分析対象物の状態を検知するクロマトグラフィー分析装置において、
 前記クロマトグラフィー試験片は、
 検体を展開可能なシート状に形成されるとともに、当該検体中の分析対象物、或いは当該分析対象物を含む複合物を特異的に捕捉して固定する固定領域が設けられた膜部材と、
 前記膜部材における一方の面に当接して当該膜部材を支持する支持部材と、
を備え、
 当該クロマトグラフィー分析装置は、
 前記膜部材における他方の面のうち、少なくとも前記固定領域に励起光を照射する光源と、
 前記励起光に起因して発生する蛍光を検出する検出手段と、
 前記膜部材に検体が展開された後、前記検出手段が蛍光を検出するまでの間に、当該膜部材に含まれる液体を気化させる気化手段と、
を備えることを特徴とする。
In order to solve the above problems, according to the first aspect of the present invention,
In a chromatographic analyzer that detects the state of an analyte in a chromatographic test strip supplied with a specimen,
The chromatographic test piece is:
A membrane member that is formed in a sheet shape that allows the specimen to be developed, and is provided with a fixing region that specifically captures and fixes the analyte in the specimen or a composite containing the analyte;
A support member that contacts the one surface of the membrane member and supports the membrane member;
With
The chromatographic analyzer is
A light source that emits excitation light to at least the fixed region of the other surface of the membrane member;
Detecting means for detecting fluorescence generated due to the excitation light;
Vaporization means for vaporizing the liquid contained in the membrane member after the specimen is deployed on the membrane member and before the detection means detects fluorescence;
It is characterized by providing.
 また、本発明の第2の側面によれば、
 検体を供給されたクロマトグラフィー試験片における分析対象物の状態を検知するクロマトグラフィー分析方法において、
 前記クロマトグラフィー試験片として、
 検体を展開可能なシート状に形成されるとともに、当該検体中の分析対象物、或いは当該分析対象物を含む複合物を特異的に捕捉して固定する固定領域が設けられた膜部材と、
 前記膜部材における一方の面に当接して当該膜部材を支持する支持部材と、
を備えるものを用い、
 当該クロマトグラフィー分析方法は、
 前記膜部材における他方の面のうち、少なくとも前記固定領域に励起光を照射する照射工程と、
 前記励起光に起因して発生する蛍光を検出する検出工程と、
 前記膜部材に検体が展開された後、前記検出工程までの間に、当該膜部材に含まれる液体を気化させる気化工程と、
を備えることを特徴とする。
According to the second aspect of the present invention,
In a chromatographic analysis method for detecting the state of an analyte in a chromatographic test strip supplied with a specimen,
As the chromatographic test piece,
A membrane member that is formed in a sheet shape that allows the specimen to be developed, and is provided with a fixing region that specifically captures and fixes the analyte in the specimen or a composite containing the analyte;
A support member that contacts the one surface of the membrane member and supports the membrane member;
Use the one with
The chromatographic analysis method is as follows:
An irradiation step of irradiating at least the fixed region with excitation light among the other surface of the membrane member;
A detection step of detecting fluorescence generated due to the excitation light;
A vaporization step of vaporizing the liquid contained in the membrane member between the time when the specimen is deployed on the membrane member and before the detection step;
It is characterized by providing.
 本発明によれば、分析対象物の検出感度を確実に高めることができる。 According to the present invention, the detection sensitivity of the analyte can be reliably increased.
クロマトグラフィー試験片の外観構成を示す図である。It is a figure which shows the external appearance structure of a chromatography test piece. クロマトグラフィー試験片の内部構成を示す図である。It is a figure which shows the internal structure of a chromatography test piece. クロマトグラフィー分析装置の概略構成を示す模式図である。It is a schematic diagram which shows schematic structure of a chromatography analyzer. クロマトグラフィー分析装置の概略構成を示す模式図である。It is a schematic diagram which shows schematic structure of a chromatography analyzer. メンブレンシートが濡れた状態で、2種類の検体溶液について分析対象物の検出を行った結果を示す図である。It is a figure which shows the result of having detected the analysis target object about two types of sample solutions in the state where the membrane sheet was wet. メンブレンシートが濡れていない状態で、2種類の検体溶液について分析対象物の検出を行った結果を示す図である。It is a figure which shows the result of having detected the analysis target object about two types of sample solutions in the state where the membrane sheet is not wet. 分析処理を示すフローチャートである。It is a flowchart which shows an analysis process. 変形例におけるクロマトグラフィー分析装置の内部構成を示す図である。It is a figure which shows the internal structure of the chromatography analyzer in a modification.
 以下、本発明を図示の実施の形態に基づいて説明するが、本発明は該実施の形態に限られない。なお、図中、同一あるいは同等の部分には同一の番号を付与し、重複する説明は省略する。 Hereinafter, although the present invention will be described based on the illustrated embodiment, the present invention is not limited to the embodiment. In the drawings, the same or equivalent parts are denoted by the same reference numerals, and redundant description is omitted.
(1.クロマトグラフィー試験片)
 始めに、本実施の形態におけるクロマトグラフィー試験片について、図1を用いて説明する。
 図1はクロマトグラフィー試験片(以下、試験片とする)2の外観構成の一例を示す上面図である。
(1. Chromatographic test piece)
First, the chromatography test piece in this Embodiment is demonstrated using FIG.
FIG. 1 is a top view showing an example of an external configuration of a chromatographic test piece (hereinafter referred to as a test piece) 2.
 この図に示すように、試験片2は、検体溶液K(図2参照)を展開させる方向(以下、展開方向Aとする)に長尺な矩形板状のケース20と、当該ケース20内に収容されたシート部3とを備えている。ここで、検体溶液Kを展開させるとは、検体溶液Kを行き渡らせることを言う。 As shown in this figure, the test piece 2 has a rectangular plate-like case 20 elongated in the direction in which the sample solution K (see FIG. 2) is developed (hereinafter referred to as the development direction A), and the case 20 And a seat portion 3 accommodated therein. Here, developing the sample solution K means spreading the sample solution K.
 ケース20は、上面の一端部に試料添加窓21を有するとともに、上面の中央部に開口窓22を有している。 The case 20 has a sample addition window 21 at one end of the upper surface and an opening window 22 at the center of the upper surface.
 試料添加窓21は、検体溶液K(図2参照)をシート部3に供給するための開口である。また、開口窓22は、シート部3における後述の固定領域31(図2参照)を外部に露出させるための開口である。 The sample addition window 21 is an opening for supplying the specimen solution K (see FIG. 2) to the sheet portion 3. The opening window 22 is an opening for exposing a fixed region 31 (see FIG. 2) described later in the seat portion 3 to the outside.
 シート部3は、図2に示すように、展開方向Aに長尺なメンブレンシート30を有している。
 メンブレンシート30は、本発明における膜部材であり、検体を展開可能なシート状に形成されている。このメンブレンシート30は、ニトロセルロース等によって形成されている。
The sheet | seat part 3 has the membrane sheet 30 long in the expansion | deployment direction A, as shown in FIG.
The membrane sheet 30 is a membrane member in the present invention, and is formed in a sheet shape capable of developing a specimen. The membrane sheet 30 is made of nitrocellulose or the like.
 このメンブレンシート30における展開方向Aの中途部には、検体溶液K中の分析対象物(例えばウイルスなどの抗原)、或いは当該分析対象物を含む複合物を特異的に捕捉して固定する固定領域31が設けられている。この固定領域31には、分析対象物と色素標識抗体との免疫複合体を特異的に捕捉する抗原特異的抗体が配設されている。但し、分析対象物を特異的に補足する物質が固定領域31に配設されることとしても良い。なお、以下の説明では、メンブレンシート30のうち、固定領域31とは異なる領域を非固定領域300として説明する。
 このメンブレンシート30は、検体溶液Kによって濡れると、後述の励起光L1や蛍光L2などの光の透過性が高まるようになっている。
In the middle part of the membrane sheet 30 in the development direction A, a fixed region that specifically captures and fixes an analysis target (for example, an antigen such as a virus) in the sample solution K or a complex containing the analysis target. 31 is provided. In the fixed region 31, an antigen-specific antibody that specifically captures an immune complex between the analyte and the dye-labeled antibody is disposed. However, a substance that specifically supplements the analysis target may be disposed in the fixed region 31. In the following description, a region different from the fixed region 31 in the membrane sheet 30 will be described as a non-fixed region 300.
When the membrane sheet 30 is wetted by the sample solution K, the transparency of light such as excitation light L1 and fluorescence L2, which will be described later, is enhanced.
 以上のメンブレンシート30の上面における一端部(展開方向Aの上流側)には、サンプルパッド32が設けられ、他端部(展開方向Aの下流側)には吸収パッド33が設けられている。 A sample pad 32 is provided at one end (upstream side in the development direction A) of the upper surface of the membrane sheet 30 and an absorption pad 33 is provided at the other end (downstream side in the development direction A).
 このうち、サンプルパッド32は、検体溶液Kが滴下されて供給される部分である。また、吸収パッド33は、サンプルパッド32に滴下された検体溶液Kを吸収することにより、当該検体溶液Kを毛細管現象によって展開方向Aに流させる部分である。 Among these, the sample pad 32 is a portion to which the specimen solution K is dropped and supplied. The absorption pad 33 is a portion that absorbs the sample solution K dropped on the sample pad 32 and causes the sample solution K to flow in the developing direction A by capillary action.
 サンプルパッド32に対して展開方向Aの下流側には、コンジュゲートパッド(図示せず)が配設されている。このコンジュゲートパッドは、検体溶液K中に含まれる分析対象物と結合する色素標識抗体を含んでおり、サンプルパッド32から供給される検体溶液Kを展開方向Aの下流側に移動させつつ、検体溶液K内の分析対象物を色素標識抗体と結合させるようになっている。 A conjugate pad (not shown) is disposed downstream of the sample pad 32 in the development direction A. This conjugate pad includes a dye-labeled antibody that binds to the analyte contained in the sample solution K, and moves the sample solution K supplied from the sample pad 32 to the downstream side in the development direction A, while The analyte in the solution K is bound to the dye-labeled antibody.
 また、メンブレンシート30の下部には、支持シート35が配設されている。この支持シート35は、本発明における支持部材であり、メンブレンシート30における下面に当接して当該メンブレンシート30を下方から支持するとともに、メンブレンシート30の反りや波打ちを防止するようになっている。また、この支持シート35は、検体溶液Kの下方への漏れを防止することにより、検体溶液Kをメンブレンシート30内に押し留め、メンブレンシート30内で展開させるようになっている。以上の支持シート35は、ポリエステルやポリ塩化ビニル等のラミネートフィルムによって形成されている。なお、このような支持シート35の材料は、メンブレンシート30の材料(ニトロセルロース等)よりも蛍光を生じさせ易い性質を有している。 Further, a support sheet 35 is disposed below the membrane sheet 30. The support sheet 35 is a support member according to the present invention, is in contact with the lower surface of the membrane sheet 30 to support the membrane sheet 30 from below, and prevents warping and undulation of the membrane sheet 30. In addition, the support sheet 35 prevents the sample solution K from leaking downward, so that the sample solution K is held in the membrane sheet 30 and developed in the membrane sheet 30. The above support sheet 35 is formed of a laminate film such as polyester or polyvinyl chloride. Note that the material of the support sheet 35 has a property of causing fluorescence more easily than the material of the membrane sheet 30 (nitrocellulose or the like).
 ここで、以上の試験片2においては、メンブレンシート30に励起光L1が当たると、蛍光L2が生じるようになっている。この蛍光L2には、メンブレンシート30が励起されて生じる自家蛍光L2(1)と、励起光L1がメンブレンシート30を透過して支持シート35に到達する結果、当該支持シート35が励起されて生じる自家蛍光L2(2)とが含まれる。更に、メンブレンシート30の固定領域31に励起光L1が当たる場合であって、固定領域31に分析対象物が存在する場合には、当該分析対象物が励起されて生じる蛍光L2(0)が蛍光L2に含まれる。なお、本実施の形態においては、メンブレンシート30が励起されて生じる自家蛍光L2(1)には、メンブレンシート30上に残存した色素標識抗体が励起されて生じる蛍光が含まれる。 Here, in the above-described test piece 2, when the excitation light L1 hits the membrane sheet 30, fluorescence L2 is generated. Autofluorescence L2 (1) generated when the membrane sheet 30 is excited and excitation light L1 passes through the membrane sheet 30 and reaches the support sheet 35 as a result of the support sheet 35 being excited in the fluorescence L2. Autofluorescence L2 (2) is included. Further, when the excitation light L1 strikes the fixed region 31 of the membrane sheet 30 and there is an analyte in the fixed region 31, the fluorescence L2 (0) generated by exciting the analyte is fluorescence. Included in L2. In the present embodiment, the autofluorescence L2 (1) generated by exciting the membrane sheet 30 includes fluorescence generated by exciting the dye-labeled antibody remaining on the membrane sheet 30.
 これらの自家蛍光L2(1),L2(2)及び蛍光L2(0)のうち、自家蛍光L2(1)の光量は常にほぼ一定である。また、蛍光L2(0)の光量は、分析対象物の量が等しい限りにおいて、常にほぼ一定である。一方、自家蛍光L2(2)の光量は、メンブレンシート30が濡れている場合の方が、濡れていない場合よりも顕著に大きくなる。これは、メンブレンシート30が濡れることにより、当該メンブレンシート30において励起光L1や蛍光L2などの光の透過性が高まるためである。 Of these autofluorescence L2 (1), L2 (2) and fluorescence L2 (0), the amount of autofluorescence L2 (1) is always substantially constant. Further, the amount of the fluorescence L2 (0) is always substantially constant as long as the amount of the analysis object is equal. On the other hand, the amount of light of the autofluorescence L2 (2) is significantly greater when the membrane sheet 30 is wet than when it is not wet. This is because the permeability of light such as excitation light L1 and fluorescence L2 increases in the membrane sheet 30 when the membrane sheet 30 gets wet.
 なお、以上のような試験片2としては、従来より公知のクロマトグラフィー試験片を用いることができる。 In addition, as a test piece 2 as described above, a conventionally known chromatographic test piece can be used.
(2.クロマトグラフィー分析装置)
 続いて、本発明に係るクロマトグラフィー分析装置の構成について、図3A,図3Bを用いて説明する。
 図3A,図3Bはクロマトグラフィー分析装置1の概略構成の一例を示す模式図である。
(2. Chromatography analyzer)
Then, the structure of the chromatography analyzer which concerns on this invention is demonstrated using FIG. 3A and FIG. 3B.
3A and 3B are schematic views showing an example of a schematic configuration of the chromatography analyzer 1. FIG.
 これらの図に示すように、クロマトグラフィー分析装置100は、試験片2上における分析対象物の状態を検知するものであり、筐体8の内部に、走査装置5と、光源10と、ラインセンサ4と、気化装置6と、制御部9等とを備えている。 As shown in these drawings, the chromatographic analyzer 100 detects the state of the analysis object on the test piece 2, and includes a scanning device 5, a light source 10, a line sensor inside the housing 8. 4, a vaporizer 6, a control unit 9, and the like.
 筐体8は、箱状の部材であり、側面に挿入口80を有している。この挿入口80は、クロマトグラフィー分析装置1に対して試験片2を挿入したり、クロマトグラフィー分析装置1内の試験片2を排出したりするための開口部である。なお、挿入口80には開閉可能な蓋部材が設けられることが好ましい。 The housing 8 is a box-shaped member and has an insertion port 80 on a side surface. The insertion port 80 is an opening for inserting the test piece 2 into the chromatographic analyzer 1 and discharging the test piece 2 in the chromatographic analyzer 1. The insertion port 80 is preferably provided with a lid member that can be opened and closed.
 走査装置5は、試験片2を走査方向Yに走査させるものであり、本実施の形態においては、筐体8に対して固定された固定台50上に、可動台51を備えている。この可動台51は、試験片2を下方から支持できるよう平板状に形成されており、走査方向Yに往復移動して筐体8の挿入口80から出没するようになっている。なお、本実施の形態においては、走査方向Yは展開方向Aと平行になっている。 The scanning device 5 scans the test piece 2 in the scanning direction Y. In the present embodiment, the scanning device 5 includes a movable table 51 on a fixed table 50 fixed to the housing 8. The movable base 51 is formed in a flat plate shape so as to support the test piece 2 from below, and moves back and forth in the scanning direction Y so as to protrude from the insertion port 80 of the housing 8. In the present embodiment, the scanning direction Y is parallel to the development direction A.
 光源10は、試験片2の上面のうち、少なくともメンブレンシート30における固定領域31に励起光L1を照射するものであり、本実施の形態においては、レーザー光源となっている。このレーザー光源の波長は、使用する色素標識抗体の種類に依存するものの、630nm~780nmの範囲であることが好ましい。また、光源10によるメンブレンシート30の照射光量は200μW程度であることが好ましい。なお、光源10と試験片2との間には、光源10から照射された励起光L1を試験片2に導くための光学系が配設されていても良い。 The light source 10 irradiates at least the fixed region 31 of the membrane sheet 30 on the upper surface of the test piece 2 with the excitation light L1, and is a laser light source in the present embodiment. The wavelength of the laser light source is preferably in the range of 630 nm to 780 nm, although it depends on the type of dye-labeled antibody used. Moreover, it is preferable that the irradiation light quantity of the membrane sheet 30 by the light source 10 is about 200 μW. An optical system for guiding the excitation light L1 emitted from the light source 10 to the test piece 2 may be disposed between the light source 10 and the test piece 2.
 ラインセンサ4は、ライン状に配列された複数の画素によって光電変換を行う受光センサであり、図中のX方向(走査方向Yの直交方向)に延在して配設されている。このラインセンサ4は、本発明における検出手段であり、光源10からの励起光L1に起因して試験片2で発生する蛍光L2を検出するようになっている。このようなラインセンサ4として、本実施の形態においてはラインCCDが用いられている。なお、このラインセンサ4と試験片2との間には、試験片2で生じた蛍光L2をラインセンサ4に導くための光学系が配設されていても良い。 The line sensor 4 is a light receiving sensor that performs photoelectric conversion by a plurality of pixels arranged in a line, and is arranged to extend in the X direction (a direction orthogonal to the scanning direction Y) in the drawing. The line sensor 4 is a detecting means in the present invention, and detects the fluorescence L2 generated in the test piece 2 due to the excitation light L1 from the light source 10. As such a line sensor 4, a line CCD is used in the present embodiment. An optical system for guiding the fluorescence L2 generated in the test piece 2 to the line sensor 4 may be disposed between the line sensor 4 and the test piece 2.
 以上の光源10及びラインセンサ4は遮光ボックス7内に配設されており、光源10やラインセンサ4に外部の光が当たるのが防止されている。この遮光ボックス7には、光源10及びラインセンサ4の光軸上に孔部が設けられており、光源10からの励起光L1を試験片2に照射させ、試験片2からの蛍光L2をラインセンサ4に受光させるようになっている。 The light source 10 and the line sensor 4 described above are disposed in the light shielding box 7, and external light hits the light source 10 and the line sensor 4. The light shielding box 7 is provided with a hole on the optical axis of the light source 10 and the line sensor 4. The excitation light L 1 from the light source 10 is irradiated to the test piece 2, and the fluorescence L 2 from the test piece 2 is lined. The sensor 4 receives light.
 気化装置6は、試験片2のメンブレンシート30に含まれる液体を気化させる装置である。この気化装置6は、本実施の形態においては送風機となっており、メンブレンシート30の上面に風を当てることで、当該メンブレンシート30に含まれる液体を気化させるようになっている。この気化装置6は、メンブレンシート30の上面に風を当てることができ、かつ光源10から試験片2への励起光L1の光路、及び、試験片2からラインセンサ4へ蛍光L2の光路に対して干渉しない限りにおいて、任意の位置に配設することができる。 The vaporizer 6 is a device that vaporizes the liquid contained in the membrane sheet 30 of the test piece 2. The vaporizer 6 is a blower in the present embodiment, and applies air to the upper surface of the membrane sheet 30 to vaporize the liquid contained in the membrane sheet 30. The vaporizer 6 can apply wind to the upper surface of the membrane sheet 30 and is used for the optical path of the excitation light L1 from the light source 10 to the test piece 2 and the optical path of the fluorescence L2 from the test piece 2 to the line sensor 4. As long as they do not interfere with each other.
 制御部9は、クロマトグラフィー分析装置1の各機能部への指示やデータの転送等を行い、クロマトグラフィー分析装置1を統括的に制御するとともに、種々の演算を行うものである。例えば、この制御部9は、ラインセンサ4からの出力信号に基づいて分析対象物の状態を特定するようになっており、本実施の形態においては、検体中での分析対象物の有無を特定するようになっている。より詳細には、制御部9は、以下の手順(1)~(3)により分析対象物の有無(陽性・陰性)を特定するようになっている。 The control unit 9 performs instructions to each functional unit of the chromatographic analyzer 1 and data transfer, and controls the chromatographic analyzer 1 as a whole and performs various calculations. For example, the control unit 9 specifies the state of the analysis object based on the output signal from the line sensor 4, and in this embodiment, specifies the presence or absence of the analysis object in the sample. It is supposed to be. More specifically, the control unit 9 specifies the presence / absence (positive / negative) of the analysis object by the following procedures (1) to (3).
 即ち、手順(1)として、まず制御部9は、試験片2の非固定領域300で生じる蛍光の光量に起因してラインセンサ4から出力される信号値と、固定領域31で生じる蛍光で生じる蛍光の光量に起因してラインセンサ4から出力される信号値とを検出し、後者の信号値から前者の信号値を引く。 That is, as the procedure (1), first, the control unit 9 is generated by the signal value output from the line sensor 4 due to the amount of fluorescence generated in the non-fixed region 300 of the test piece 2 and the fluorescence generated in the fixed region 31. The signal value output from the line sensor 4 due to the amount of fluorescent light is detected, and the former signal value is subtracted from the latter signal value.
 次に、手順(2)として、制御部9は、手順(1)の計算結果を、前者の信号値(非固定領域300で生じる蛍光の光量に起因してラインセンサ4から出力される信号値)で割る。 Next, as the procedure (2), the control unit 9 uses the former signal value (the signal value output from the line sensor 4 due to the amount of fluorescent light generated in the non-fixed region 300) as the calculation result of the procedure (1). )
 そして、手順(3)として、制御部9は、手順(2)の計算結果(以下、SB値とする)を所定の閾値と比較し、閾値よりもSB値が大きい場合には陽性(分析対象物が存在する)、閾値よりもSB値が小さい場合には陰性(分析対象物が存在しない)とする。 And as a procedure (3), the control part 9 compares the calculation result (henceforth SB value) of a procedure (2) with a predetermined threshold value, and when a SB value is larger than a threshold value, it is positive (analysis object) If the SB value is smaller than the threshold value, the result is negative (no analysis object exists).
 ここで、手順(1)で検出される信号値は、メンブレンシート30が濡れている場合の方が濡れていない場合よりも大きくなる。これは、上述したように、メンブレンシート30が濡れることで当該メンブレンシート30における光の透過性が高まり、支持シート35で生じる自家蛍光L2(2)の光量が大きくなるためである。一方、分析対象物の量が等しい条件下では、分析対象物から生じる蛍光L2(0)に起因してラインセンサ4から出力される信号値は、メンブレンシート30が濡れている場合であっても、メンブレンシート30が濡れていない場合であっても同一である。 Here, the signal value detected in step (1) is larger when the membrane sheet 30 is wet than when it is not wet. This is because, as described above, when the membrane sheet 30 gets wet, the light transmission through the membrane sheet 30 increases, and the amount of autofluorescence L2 (2) generated in the support sheet 35 increases. On the other hand, under the condition where the amount of the analysis object is equal, the signal value output from the line sensor 4 due to the fluorescence L2 (0) generated from the analysis object is the case where the membrane sheet 30 is wet. Even if the membrane sheet 30 is not wet, the same applies.
 以上により、メンブレンシート30が濡れていない場合には、メンブレンシート30が濡れている場合と比較して、分析対象物の検出を高精度に行うことが可能となる。 As described above, when the membrane sheet 30 is not wet, it is possible to detect the analysis object with higher accuracy than when the membrane sheet 30 is wet.
 すなわち、分析対象物の量が等しい条件下において、メンブレンシート30が濡れていない場合と、メンブレンシート30が濡れている場合とでラインセンサ4の出力信号値(シート部3で生じる蛍光L2の光量)を比較すると、前者の出力信号値において自家蛍光L2(1)、L2(2)に起因する信号値が占める割合は、後者の出力信号値において自家蛍光L2(1)、L2(2)に起因する信号値が占める割合よりも小さくなる。つまり、前者の出力信号値では、分析対象物以外から生じる蛍光、いわばノイズの蛍光に起因する信号値の割合が、後者の出力信号値よりも小さくなる。これにより、メンブレンシート30が濡れていない場合には、メンブレンシート30が濡れている場合と比べ、ノイズの蛍光により分析対象物を誤検出してしまうのが防止されるため、分析対象物の検出を高精度に行うことが可能となる。 That is, the output signal value of the line sensor 4 (the light amount of the fluorescence L2 generated in the sheet portion 3) when the membrane sheet 30 is not wet and when the membrane sheet 30 is wet under the condition that the amount of the analysis object is equal. ) In the former output signal value, the ratio of the signal values attributed to the autofluorescence L2 (1) and L2 (2) to the autofluorescence L2 (1) and L2 (2) in the latter output signal value. This is smaller than the ratio occupied by the resulting signal value. That is, in the former output signal value, the ratio of the signal value resulting from fluorescence other than the analysis object, that is, noise fluorescence, is smaller than the latter output signal value. Accordingly, when the membrane sheet 30 is not wet, it is possible to prevent erroneous detection of the analysis object due to noise fluorescence, compared with the case where the membrane sheet 30 is wet. Can be performed with high accuracy.
 また、メンブレンシート30が濡れていない場合には、メンブレンシート30が濡れている場合と比較して、分析対象物の検出を高感度に行うことが可能となる。 In addition, when the membrane sheet 30 is not wet, it is possible to detect the analysis object with higher sensitivity than when the membrane sheet 30 is wet.
 即ち、例えば図4A,図4Bに示すように、分析対象物を1000PFU/mlの濃度で含む陽性の検体溶液(1)(但し、図中では「検体:1」として表記する)と、分析対象物を100PFU/mlの濃度で含む陰性の検体溶液(2)(但し、図中では「検体:2」として表記する)とを2つずつ用意し、メンブレンシート30が濡れていない場合と、メンブレンシート30が濡れている場合とでそれぞれ分析対象物を検出すると、メンブレンシート30が濡れている状態では検体溶液(1),(2)とも陰性となってしまうのに対し、メンブレンシート30が濡れていない状態では検体溶液(2)が陰性、検体溶液(1)が陽性となる。 That is, for example, as shown in FIG. 4A and FIG. 4B, a positive specimen solution (1) containing the analyte at a concentration of 1000 PFU / ml (however, expressed as “sample 1” in the figure), and the analyte Prepare two samples of negative sample solution (2) containing the substance at a concentration of 100 PFU / ml (however, indicated as “sample: 2” in the figure), and the membrane sheet 30 is not wet, When the analysis object is detected when the sheet 30 is wet, the sample solutions (1) and (2) are negative when the membrane sheet 30 is wet, whereas the membrane sheet 30 is wet. When not, the sample solution (2) is negative and the sample solution (1) is positive.
 具体的には、図4Aに示すように、メンブレンシート30が濡れている状態で検体溶液(2)について手順(1)~(3)を行うと、まず手順(1)において、非固定領域300で生じる蛍光の光量に起因してラインセンサ4から出力される信号値が「100mV」として検出され、固定領域31で生じる蛍光で生じる蛍光の光量に起因してラインセンサ4から出力される信号値が「130mV」として検出された後、「130mV-100mV」により「30mV」が算出される。次に、手順(2)において、「30mV/100mV」によりSB値「0.3」が算出される。そして、手順(3)においてSB値「0.3」が所定の閾値(ここでは「1.5」とする)よりも小さいと判定され、陰性と決定される。 Specifically, as shown in FIG. 4A, when the procedures (1) to (3) are performed on the sample solution (2) while the membrane sheet 30 is wet, first, in the procedure (1), the non-fixed region 300 is displayed. The signal value output from the line sensor 4 due to the amount of fluorescent light generated in the detection is detected as “100 mV”, and the signal value output from the line sensor 4 due to the amount of fluorescent light generated in the fixed region 31 is detected. Is detected as “130 mV”, “30 mV-100 mV” is used to calculate “30 mV”. Next, in step (2), the SB value “0.3” is calculated from “30 mV / 100 mV”. Then, in step (3), it is determined that the SB value “0.3” is smaller than a predetermined threshold (here, “1.5”), and it is determined negative.
 また、メンブレンシート30が濡れている状態で検体溶液(1)について手順(1)~(3)を行うと、まず手順(1)において、非固定領域300で生じる蛍光の光量に起因してラインセンサ4から出力される信号値が「100mV」として検出され、固定領域31で生じる蛍光で生じる蛍光の光量に起因してラインセンサ4から出力される信号値が「200mV」として検出された後、「200mV-100mV」により「100mV」が算出される。次に、手順(2)において、「100mV/100mV」によりSB値「1」が算出される。そして、手順(3)においてSB値「1」が所定の閾値「1.5」よりも小さいと判定され、陰性と決定される。 When the steps (1) to (3) are performed on the sample solution (1) while the membrane sheet 30 is wet, first, in step (1), a line is generated due to the amount of fluorescence generated in the non-fixed region 300. After the signal value output from the sensor 4 is detected as “100 mV” and the signal value output from the line sensor 4 due to the amount of fluorescence generated by the fluorescence generated in the fixed region 31 is detected as “200 mV”, “100 mV” is calculated by “200 mV-100 mV”. Next, in step (2), the SB value “1” is calculated from “100 mV / 100 mV”. In step (3), it is determined that the SB value “1” is smaller than the predetermined threshold value “1.5”, and the result is determined as negative.
 一方、図4Bに示すように、メンブレンシート30が濡れていない状態で検体溶液(2)について手順(1)~(3)を行うと、まず手順(1)において、非固定領域300で生じる蛍光の光量に起因してラインセンサ4から出力される信号値が「50mV」として検出され、固定領域31で生じる蛍光で生じる蛍光の光量に起因してラインセンサ4から出力される信号値が「80mV」として検出された後、「80mV-50mV」により「30mV」が算出される。次に、手順(2)において、「30mV/50mV」によりSB値「0.6」が算出される。そして、手順(3)においてSB値「0.6」が所定の閾値「1.5」よりも小さいと判定され、陰性と決定される。 On the other hand, as shown in FIG. 4B, when the procedures (1) to (3) are performed on the sample solution (2) in a state where the membrane sheet 30 is not wet, first, the fluorescence generated in the non-fixed region 300 in the procedure (1). The signal value output from the line sensor 4 due to the light amount of the light is detected as “50 mV”, and the signal value output from the line sensor 4 due to the light amount of the fluorescence generated by the fluorescence generated in the fixed region 31 is “80 mV”. "30 mV" is calculated from "80 mV-50 mV". Next, in step (2), the SB value “0.6” is calculated from “30 mV / 50 mV”. In step (3), it is determined that the SB value “0.6” is smaller than the predetermined threshold value “1.5”, and it is determined negative.
 また、メンブレンシート30が濡れていない状態で検体溶液(1)について手順(1)~(3)を行うと、まず手順(1)において、非固定領域300で生じる蛍光の光量に起因してラインセンサ4から出力される信号値が「50mV」として検出され、固定領域31で生じる蛍光で生じる蛍光の光量に起因してラインセンサ4から出力される信号値が「150mV」として検出された後、「150mV-50mV」により「100mV」が算出される。次に、手順(2)において、「100mV/50mV」によりSB値「2」が算出される。そして、手順(3)においてSB値「2」が所定の閾値「1.5」よりも大きいと判定され、陽性と決定される。 Further, when the procedures (1) to (3) are performed on the sample solution (1) in a state where the membrane sheet 30 is not wet, first, in the procedure (1), a line is generated due to the amount of fluorescence generated in the non-fixed region 300. After the signal value output from the sensor 4 is detected as “50 mV” and the signal value output from the line sensor 4 due to the amount of fluorescence generated by the fluorescence generated in the fixed region 31 is detected as “150 mV”, “100 mV” is calculated from “150 mV-50 mV”. Next, in step (2), the SB value “2” is calculated from “100 mV / 50 mV”. Then, in step (3), it is determined that the SB value “2” is larger than the predetermined threshold value “1.5”, and it is determined as positive.
 このように、メンブレンシート30が濡れていない場合には、メンブレンシート30が濡れている場合と異なり、少量の分析対象物でも陽性とすることができるため、分析対象物の検出を高感度に行うことが可能となる。 In this way, when the membrane sheet 30 is not wet, unlike a case where the membrane sheet 30 is wet, even a small amount of the analyte can be positive, and therefore the analyte is detected with high sensitivity. It becomes possible.
 続いて、クロマトグラフィー分析装置1を用いた分析処理について、図5を参照しながら説明する。 Subsequently, an analysis process using the chromatography analyzer 1 will be described with reference to FIG.
 まず、図5に示すように、試験者が患者から血液などの検体を採取し(ステップS1)、当該検体を展開液に溶解させて検体溶液Kを生成した後(ステップS2)、試験片2に滴下する(ステップS3)。より詳細には、このステップS3において検体溶液Kは試験片2の試料添加窓21を介してサンプルパッド32に滴下される。 First, as shown in FIG. 5, the tester collects a sample such as blood from the patient (step S1), dissolves the sample in a developing solution to generate a sample solution K (step S2), and then the test piece 2 (Step S3). More specifically, in this step S3, the specimen solution K is dropped onto the sample pad 32 through the sample addition window 21 of the test piece 2.
 次に、試験者は、検体溶液Kがメンブレンシート30に展開するまで待機しつつ(ステップS4)、試験片2をクロマトグラフィー分析装置1に挿入する。より具体的には、このステップS4において試験者は、検体溶液Kがメンブレンシート30における展開方向Aの上流側(サンプルパッド32の側)から少なくとも固定領域31を越えた位置へ展開するまで待機し、好ましくは展開方向Aの下流側端部(吸収パッド33側の端部)へ完全に展開するまで待機する。検体溶液Kがメンブレンシート30に完全に展開するには、例えば15分程度の時間を要する。 Next, the tester waits until the sample solution K is developed on the membrane sheet 30 (step S4), and inserts the test piece 2 into the chromatography analyzer 1. More specifically, in this step S4, the tester waits until the specimen solution K is developed from the upstream side in the development direction A (the sample pad 32 side) of the membrane sheet 30 to a position at least beyond the fixed region 31. , Preferably, it waits until it develops completely to the downstream end part (end part on the absorption pad 33 side) in the development direction A. For example, it takes about 15 minutes for the sample solution K to completely develop on the membrane sheet 30.
 次に、制御部9が気化装置6によってメンブレンシート30に含まれる液体を気化させ、メンブレンシート30を乾燥させる(ステップS5)。これにより、メンブレンシート30における光の透過性が低下する。なお、乾燥の程度としては、例えばメンブレンシート30の非固定領域300で生じる蛍光の光量に起因してラインセンサ4から出力される信号値が「50mV」となる程度が好ましい。 Next, the control unit 9 causes the vaporizer 6 to vaporize the liquid contained in the membrane sheet 30 and dry the membrane sheet 30 (step S5). Thereby, the light transmittance in the membrane sheet 30 falls. The degree of drying is preferably such that, for example, the signal value output from the line sensor 4 is “50 mV” due to the amount of fluorescent light generated in the non-fixed region 300 of the membrane sheet 30.
 そして、制御部9が上述の手順(1)~(3)を行うことにより、分析対象物の状態を検知する(ステップS6)。 Then, the control unit 9 detects the state of the analysis object by performing the above-described procedures (1) to (3) (step S6).
 より詳細には、このステップS6において制御部9は、試験片2におけるメンブレンシート30の固定領域31に向かって光源10に励起光L1を照射させるとともに、試験片2で生じる蛍光L2をラインセンサ4に受光させ、当該ラインセンサ4からの出力信号に基づき上述のSB値を算出して、分析対象物の有無を特定する。このとき、上述のステップS5においてメンブレンシート30が乾燥されたことにより、分析対象物の検出感度,検出精度が高められる。 More specifically, in step S6, the control unit 9 causes the light source 10 to irradiate the excitation light L1 toward the fixed region 31 of the membrane sheet 30 in the test piece 2, and the line sensor 4 emits the fluorescence L2 generated in the test piece 2. Then, the above-mentioned SB value is calculated based on the output signal from the line sensor 4, and the presence or absence of the analysis target is specified. At this time, since the membrane sheet 30 is dried in the above-described step S5, the detection sensitivity and detection accuracy of the analysis object are increased.
 以上のように、本実施形態によれば、メンブレンシート30に検体溶液Kが展開された後、ラインセンサ4が蛍光L2を検出するまでの間に、当該メンブレンシート30に含まれる液体が気化装置6によって気化されるので、メンブレンシート30が濡れている場合と比較して、分析対象物の検出感度、検出精度を高めることができる。 As described above, according to this embodiment, the liquid contained in the membrane sheet 30 is vaporized after the sample solution K is developed on the membrane sheet 30 until the line sensor 4 detects the fluorescence L2. Therefore, the detection sensitivity and detection accuracy of the analysis target can be increased as compared with the case where the membrane sheet 30 is wet.
 また、気化装置6がメンブレンシート30の上面に風を当てることで、当該メンブレンシート30に含まれる液体を気化させるので、メンブレンシート30に含まれる液体を確実に気化させることができる。 Further, since the vaporizer 6 applies air to the upper surface of the membrane sheet 30 to vaporize the liquid contained in the membrane sheet 30, the liquid contained in the membrane sheet 30 can be surely vaporized.
<変形例>
 続いて、上記の実施形態におけるクロマトグラフィー分析装置1の変形例について説明する。なお、上記実施形態と同様の構成要素には同一の符号を付し、その説明を省略する。
<Modification>
Then, the modification of the chromatography analyzer 1 in said embodiment is demonstrated. In addition, the same code | symbol is attached | subjected to the component similar to the said embodiment, and the description is abbreviate | omitted.
 図6に示すように、本実施形態におけるクロマトグラフィー分析装置1Aは、気化装置6Aを備えている。 As shown in FIG. 6, the chromatographic analyzer 1A in this embodiment includes a vaporizer 6A.
 気化装置6Aは、メンブレンシート30の下面を熱伝達によって加熱する伝熱ヒーター60を有している。この伝熱ヒーター60は、走査装置5の可動台51を介してシート部3における支持シート35の下面を加熱し、更にこの支持シート35を介してメンブレンシート30の下面を加熱することにより、当該メンブレンシート30に含まれる液体を気化させるようになっている。なお、本実施の形態においては、伝熱ヒーター60はペルチェ素子であり、過剰な熱を放熱するためのヒートシンク61と当接している。 The vaporizer 6A has a heat transfer heater 60 that heats the lower surface of the membrane sheet 30 by heat transfer. The heat transfer heater 60 heats the lower surface of the support sheet 35 in the sheet portion 3 through the movable base 51 of the scanning device 5, and further heats the lower surface of the membrane sheet 30 through the support sheet 35. The liquid contained in the membrane sheet 30 is vaporized. In the present embodiment, the heat transfer heater 60 is a Peltier element and is in contact with a heat sink 61 for radiating excess heat.
 このようなクロマトグラフィー分析装置1Aにおいても、上記実施形態におけるクロマトグラフィー分析装置1と同様の効果を得ることができる。 Even in such a chromatographic analyzer 1A, the same effect as the chromatographic analyzer 1 in the above embodiment can be obtained.
 なお、本発明を適用可能な実施形態は、上述した実施形態に限定されることなく、本発明の趣旨を逸脱しない範囲で適宜変更可能である。 Note that embodiments to which the present invention can be applied are not limited to the above-described embodiments, and can be appropriately changed without departing from the spirit of the present invention.
 例えば、上記の実施形態においては、気化装置6はメンブレンシート30の上面に風を当てたり、可動台51を介してメンブレンシート30の下面を加熱したりすることで、当該メンブレンシート30に含まれる液体を気化させることとして説明したが、メンブレンシート30を放射熱によって加熱するなど、他の手法によってメンブレンシート30内の液体を気化させることとしても良い。メンブレンシート30を放射熱によって加熱する気化装置としては、例えばハロゲンヒーター等を用いることができる。 For example, in the above embodiment, the vaporizer 6 is included in the membrane sheet 30 by blowing air on the upper surface of the membrane sheet 30 or heating the lower surface of the membrane sheet 30 via the movable base 51. Although described as vaporizing the liquid, the liquid in the membrane sheet 30 may be vaporized by other methods such as heating the membrane sheet 30 by radiant heat. As a vaporizer that heats the membrane sheet 30 by radiant heat, for example, a halogen heater or the like can be used.
 また、制御部9は分析対象物の有無を特定することとして説明したが、分析対象物の濃度を特定することとしても良いし、他の状態を特定することとしても良い。 In addition, although the control unit 9 has been described as specifying the presence or absence of an analysis object, the control unit 9 may specify the concentration of the analysis object or may specify another state.
 また、本発明における検出手段をラインセンサ4として説明したが、エリアセンサやフォトダイオードなど、他の形状の受光センサとしても良い。 Further, although the detection means in the present invention has been described as the line sensor 4, it may be a light receiving sensor of another shape such as an area sensor or a photodiode.
 なお、明細書、請求の範囲、図面および要約を含む2011年12月15日に出願された日本語特許出願No.2011-274140号の全ての開示は、そのまま本出願の一部に組み込まれる。 It should be noted that Japanese Patent Application No. 1 filed on December 15, 2011 including the description, claims, drawings and abstract. The entire disclosure of 2011-274140 is incorporated in its entirety into this application.
 以上のように、本発明は、分析対象物の検出感度を高める必要のあるクロマトグラフィー分析装置及びクロマトグラフィー分析方法に適している。 As described above, the present invention is suitable for a chromatographic analyzer and a chromatographic analysis method that need to increase the detection sensitivity of an analysis object.
1    クロマトグラフィー分析装置
2    クロマトグラフィー試験片
4    ラインセンサ(検出手段)
6    気化装置(気化手段)
10   光源
30   メンブレンシート(膜部材)
31   固定領域
35   支持シート(支持部材)
DESCRIPTION OF SYMBOLS 1 Chromatography analyzer 2 Chromatography test piece 4 Line sensor (detection means)
6 Vaporizer (Vaporizer)
10 Light source 30 Membrane sheet (membrane member)
31 Fixing area 35 Support sheet (support member)

Claims (6)

  1.  検体を供給されたクロマトグラフィー試験片における分析対象物の状態を検知するクロマトグラフィー分析装置において、
     前記クロマトグラフィー試験片は、
     検体を展開可能なシート状に形成されるとともに、当該検体中の分析対象物、或いは当該分析対象物を含む複合物を特異的に捕捉して固定する固定領域が設けられた膜部材と、
     前記膜部材における一方の面に当接して当該膜部材を支持する支持部材と、
    を備え、
     当該クロマトグラフィー分析装置は、
     前記膜部材における他方の面のうち、少なくとも前記固定領域に励起光を照射する光源と、
     前記励起光に起因して発生する蛍光を検出する検出手段と、
     前記膜部材に検体が展開された後、前記検出手段が蛍光を検出するまでの間に、当該膜部材に含まれる液体を気化させる気化手段と、
    を備えることを特徴とするクロマトグラフィー分析装置。
    In a chromatographic analyzer that detects the state of an analyte in a chromatographic test strip supplied with a specimen,
    The chromatographic test piece is:
    A membrane member that is formed in a sheet shape that allows the specimen to be developed, and is provided with a fixing region that specifically captures and fixes the analyte in the specimen or a composite containing the analyte;
    A support member that contacts the one surface of the membrane member and supports the membrane member;
    With
    The chromatographic analyzer is
    A light source that emits excitation light to at least the fixed region of the other surface of the membrane member;
    Detecting means for detecting fluorescence generated due to the excitation light;
    Vaporization means for vaporizing the liquid contained in the membrane member after the specimen is deployed on the membrane member and before the detection means detects fluorescence;
    A chromatography analysis apparatus comprising:
  2.  請求項1記載のクロマトグラフィー分析装置において、
     前記気化手段は、
     前記支持部材を、当該支持部材に対して前記膜部材とは反対の側から加熱することで、前記膜部材に含まれる液体を気化させることを特徴とするクロマトグラフィー分析装置。
    The chromatography analyzer according to claim 1, wherein
    The vaporizing means includes
    A chromatography analysis apparatus, wherein the support member is heated from the side opposite to the membrane member with respect to the support member to vaporize a liquid contained in the membrane member.
  3.  請求項1記載のクロマトグラフィー分析装置において、
     前記気化手段は、
     前記膜部材における前記他方の面に風を当てることで、当該膜部材に含まれる液体を気化させることを特徴とするクロマトグラフィー分析装置。
    The chromatography analyzer according to claim 1, wherein
    The vaporizing means includes
    A chromatographic analyzer characterized by vaporizing a liquid contained in the membrane member by applying wind to the other surface of the membrane member.
  4.  検体を供給されたクロマトグラフィー試験片における分析対象物の状態を検知するクロマトグラフィー分析方法において、
     前記クロマトグラフィー試験片として、
     検体を展開可能なシート状に形成されるとともに、当該検体中の分析対象物、或いは当該分析対象物を含む複合物を特異的に捕捉して固定する固定領域が設けられた膜部材と、
     前記膜部材における一方の面に当接して当該膜部材を支持する支持部材と、
    を備えるものを用い、
     当該クロマトグラフィー分析方法は、
     前記膜部材における他方の面のうち、少なくとも前記固定領域に励起光を照射する照射工程と、
     前記励起光に起因して発生する蛍光を検出する検出工程と、
     前記膜部材に検体が展開された後、前記検出工程までの間に、当該膜部材に含まれる液体を気化させる気化工程と、
    を備えることを特徴とするクロマトグラフィー分析方法。
    In a chromatographic analysis method for detecting the state of an analyte in a chromatographic test strip supplied with a specimen,
    As the chromatographic test piece,
    A membrane member that is formed in a sheet shape that allows the specimen to be developed, and is provided with a fixing region that specifically captures and fixes the analyte in the specimen or a composite containing the analyte;
    A support member that contacts the one surface of the membrane member and supports the membrane member;
    Use the one with
    The chromatographic analysis method is as follows:
    An irradiation step of irradiating at least the fixed region with excitation light among the other surface of the membrane member;
    A detection step of detecting fluorescence generated due to the excitation light;
    A vaporization step of vaporizing the liquid contained in the membrane member between the time when the specimen is deployed on the membrane member and before the detection step;
    A chromatographic analysis method comprising:
  5.  請求項4記載のクロマトグラフィー分析方法において、
     前記気化工程では、
     前記支持部材を、当該支持部材に対して前記膜部材とは反対の側から加熱することで、前記膜部材に含まれる液体を気化させることを特徴とするクロマトグラフィー分析方法。
    The chromatography analysis method according to claim 4, wherein
    In the vaporization step,
    A chromatography analysis method, wherein the liquid contained in the membrane member is vaporized by heating the support member from a side opposite to the membrane member with respect to the support member.
  6.  請求項4記載のクロマトグラフィー分析方法において、
     前記気化工程では、
     前記膜部材における前記他方の面に風を当てることで、当該膜部材に含まれる液体を気化させることを特徴とするクロマトグラフィー分析方法。
    The chromatography analysis method according to claim 4, wherein
    In the vaporization step,
    A chromatography analysis method comprising: evaporating a liquid contained in a membrane member by applying wind to the other surface of the membrane member.
PCT/JP2012/079319 2011-12-15 2012-11-13 Device for chromatographic analysis and method for chromatographic analysis WO2013088883A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013549169A JP5962666B2 (en) 2011-12-15 2012-11-13 Chromatography analyzer and chromatography analysis method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-274140 2011-12-15
JP2011274140 2011-12-15

Publications (1)

Publication Number Publication Date
WO2013088883A1 true WO2013088883A1 (en) 2013-06-20

Family

ID=48612338

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/079319 WO2013088883A1 (en) 2011-12-15 2012-11-13 Device for chromatographic analysis and method for chromatographic analysis

Country Status (2)

Country Link
JP (1) JP5962666B2 (en)
WO (1) WO2013088883A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103884702A (en) * 2014-04-12 2014-06-25 山西省肿瘤医院 Determination method for content of volatile oil in atractylodes macrocephala volatile oil/beta-cyclodextrin inclusion compound
WO2017002882A1 (en) * 2015-06-30 2017-01-05 田中貴金属工業株式会社 Chromatographic analysis device and chromatographic analysis method
JP2017201282A (en) * 2016-05-07 2017-11-09 ニプロ株式会社 Chromatography test piece coloration measuring apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008249416A (en) * 2007-03-29 2008-10-16 Toyo Kohan Co Ltd Board for microarray and microarray using board
JP2011214858A (en) * 2010-03-31 2011-10-27 Fujifilm Corp Chromatograph measuring method, and insoluble carrier and measuring device used for the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7547904B2 (en) * 2005-12-22 2009-06-16 Palo Alto Research Center Incorporated Sensing photon energies emanating from channels or moving objects

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008249416A (en) * 2007-03-29 2008-10-16 Toyo Kohan Co Ltd Board for microarray and microarray using board
JP2011214858A (en) * 2010-03-31 2011-10-27 Fujifilm Corp Chromatograph measuring method, and insoluble carrier and measuring device used for the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103884702A (en) * 2014-04-12 2014-06-25 山西省肿瘤医院 Determination method for content of volatile oil in atractylodes macrocephala volatile oil/beta-cyclodextrin inclusion compound
CN103884702B (en) * 2014-04-12 2016-01-20 山西省肿瘤医院 The assay method of volatile oil content in Baizhu volatile oil/Benexate Hydrochloride
WO2017002882A1 (en) * 2015-06-30 2017-01-05 田中貴金属工業株式会社 Chromatographic analysis device and chromatographic analysis method
JP2017201282A (en) * 2016-05-07 2017-11-09 ニプロ株式会社 Chromatography test piece coloration measuring apparatus

Also Published As

Publication number Publication date
JPWO2013088883A1 (en) 2015-04-27
JP5962666B2 (en) 2016-08-03

Similar Documents

Publication Publication Date Title
JP6231999B2 (en) Interactive testing device and apparatus having timing mechanism
CN107505465B (en) Thermal contrast assay and reader
JP4846573B2 (en) Lateral flow assay device and method with natural analyte as reference
Yin et al. One-step multiplexed detection of foodborne pathogens: Combining a quantum dot-mediated reverse assaying strategy and magnetic separation
US10816492B2 (en) Lateral flow assays with thermal contrast readers
WO2007007849A1 (en) Analyzer and analyzing method
Ojaghi et al. High-sensitivity interpretation of lateral flow immunoassays using thermophotonic lock-in imaging
Martiskainen et al. Upconverting nanoparticle reporter–based highly sensitive rapid lateral flow immunoassay for hepatitis B virus surface antigen
JP5414424B2 (en) Method for detecting target substance and chromatographic test kit for detecting target substance
JP6203706B2 (en) Analyte detection device
JP5962666B2 (en) Chromatography analyzer and chromatography analysis method
JP2024074809A (en) Systems, devices and methods for amplifying signals in lateral flow assays - Patents.com
JP5006459B1 (en) Composite particles for labeling
JP7267211B2 (en) Sandwich-type assays using the decreasing signal portion of the dose-response curve to measure analytes, such as high-concentration analytes
BR112020000092A2 (en) methods and apparatus for sample analysis using lateral flow
JP5742040B2 (en) Sensor for the detection of the target of interest
US20180128827A1 (en) Lateral flow assays with thermal contrast readers
Boumar et al. Spike-and nucleocapsid-based gold colloid assay toward the development of an adhesive bandage for rapid SARS-CoV-2 immune response detection and screening
Olkhov et al. Whole blood screening of antibodies using label-free nanoparticle biophotonic array platform
US20130330812A1 (en) Sensor for detection of a target of interest
JP2022105961A (en) Method for detection or quantification of target biomolecule using temperature-responsive fluorescent particle
KR20080067543A (en) A cartridge and apparatus for the detection of laser-induced epifluoresecne
JP2018021790A (en) Fluid control mechanism and immuno chromatography analysis kit using the fluid control mechanism
JP2017083203A (en) Inspection method
JP2009145079A (en) Strip for chromatography analysis

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12856922

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013549169

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12856922

Country of ref document: EP

Kind code of ref document: A1