WO2013088612A1 - Communication device and data forwarding method - Google Patents

Communication device and data forwarding method Download PDF

Info

Publication number
WO2013088612A1
WO2013088612A1 PCT/JP2012/005864 JP2012005864W WO2013088612A1 WO 2013088612 A1 WO2013088612 A1 WO 2013088612A1 JP 2012005864 W JP2012005864 W JP 2012005864W WO 2013088612 A1 WO2013088612 A1 WO 2013088612A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
data
terminal
lte
base station
Prior art date
Application number
PCT/JP2012/005864
Other languages
French (fr)
Japanese (ja)
Inventor
貴博 大山
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2013088612A1 publication Critical patent/WO2013088612A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2627Modulators
    • H04L27/2634Inverse fast Fourier transform [IFFT] or inverse discrete Fourier transform [IDFT] modulators in combination with other circuits for modulation
    • H04L27/2636Inverse fast Fourier transform [IFFT] or inverse discrete Fourier transform [IDFT] modulators in combination with other circuits for modulation with FFT or DFT modulators, e.g. standard single-carrier frequency-division multiple access [SC-FDMA] transmitter or DFT spread orthogonal frequency division multiplexing [DFT-SOFDM]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0096Indication of changes in allocation
    • H04L5/0098Signalling of the activation or deactivation of component carriers, subcarriers or frequency bands
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • H04W84/047Public Land Mobile systems, e.g. cellular systems using dedicated repeater stations

Definitions

  • the present invention relates to a communication apparatus and a data transfer method used in a system in which a terminal that supports LTE (Long Term Evolution) -Advanced and a terminal that does not support LTE-Advanced exists.
  • LTE Long Term Evolution
  • FIG. 1 is a diagram showing CC in LTE.
  • FIG. 2 is a diagram illustrating CA in LTE-Advanced.
  • LTE as shown in FIG. 1, downlink data is mapped to a single CC # 1 and transmitted to a terminal.
  • LTE-Advanced as shown in FIG. 2, downlink data is mapped to each of a plurality of different CCs # 2 to #n and transmitted to the terminal.
  • the usable frequency band can be expanded, higher-speed communication can be performed, and the throughput can be improved.
  • An object of the present invention is to provide a communication device and a data transfer method capable of improving throughput in a terminal not supporting LTE-Advanced when there are LTE-Advanced compatible terminals and LTE-Advanced non-compatible terminals. is there.
  • the communication device of the present invention is transmitted from the base station after being mapped to a plurality of different bands obtained by dividing a part of the bandwidth usable in the communication system used with the base station, Receiving means for receiving data addressed to a terminal device existing in the vicinity of the terminal device, and the plurality of received data received by the receiving means when requested by the base station to transfer data addressed to the terminal device to the terminal device Re-mapping means for re-mapping data mapped to different bands to a single band, and transfer means for transferring the data re-mapped to the single band by the re-mapping means to the terminal device,
  • the structure which comprises is taken.
  • the data transfer method of the present invention is transmitted from the base station after being mapped to a plurality of different bands obtained by dividing a part of the bandwidth that can be used in the communication system used with the base station.
  • FIG. 3 is a block diagram showing a configuration of communication apparatus 100 according to Embodiment 1 of the present invention.
  • the communication device 100 is an LTE-Advanced compatible terminal.
  • the antenna 101 receives a signal and outputs it to the RF unit 102.
  • the signals received here are transmitted from the base station after being mapped to CCs, which are a plurality of different bands obtained by dividing a part of the bandwidth available in the communication system used with the base station.
  • CCs are a plurality of different bands obtained by dividing a part of the bandwidth available in the communication system used with the base station.
  • the data addressed to the terminal not supporting LTE-Advanced existing around the communication apparatus 100 is included.
  • the RF unit 102 down-converts the received signal input from the antenna 101 and outputs it to the synchronization unit 103.
  • the synchronization unit 103 performs a synchronization process using the received signal input from the RF unit 102 and outputs the received signal after the synchronization process to the GI removal unit 104.
  • the GI removal unit 104 removes a guard interval (GI) from the received signal input from the synchronization unit 103.
  • GI removal section 104 outputs the received signal from which the guard interval has been removed to FFT section 105.
  • the FFT unit 105 performs fast Fourier transform (FFT) on the received signal input from the GI removal unit 104 and outputs the result to the resource demapping unit 106.
  • FFT fast Fourier transform
  • the resource demapping unit 106 extracts a reference signal (RS signal) included in the received signal input from the FFT unit 105 and outputs it to the line quality measurement unit 107.
  • the resource demapping unit 106 extracts a frequency component from the reception signal input from the FFT unit 105 and outputs the frequency component to the data demodulation unit 109.
  • the resource demapping unit 106 extracts subcarriers (resource elements) or resource blocks as frequency components from the received signal.
  • the channel quality measuring unit 107 measures the channel quality using the received signal (reference signal: RS) input from the resource demapping unit 106 and outputs the measurement result to the channel quality reporting unit 108.
  • RS reference signal
  • the channel quality reporting unit 108 generates channel quality information including the channel quality measurement result input from the channel quality measuring unit 107, and outputs the generated channel quality information to the error correction encoding unit 115.
  • the line quality information includes identification information for identifying the communication device 100 from other communication devices.
  • the data demodulation unit 109 demodulates the received signal input from the resource demapping unit 106 and outputs the demodulated signal to the error correction decoding unit 110.
  • the error correction decoding unit 110 performs error correction decoding on the received signal input from the data demodulation unit 109 to generate decoded data, and outputs the generated decoded data to the switching unit 111.
  • the error correction decoding unit 110 also has a rate mismatch function, but the description thereof is omitted.
  • the switching unit 111 switches between the output of the decoded data input from the error correction decoding unit 110 to the relay control information decoding unit 112 and the output to the switching unit 114 according to the control of the transfer control unit 117. That is, the switching unit 111 outputs the decoded data input from the error correction decoding unit 110 to the relay control information decoding unit 112 by connecting the terminals 111a and 111c. Further, the switching unit 111 outputs the decoded data input from the error correction decoding unit 110 to the switching unit 114 by connecting the terminal 111a and the terminal 111b.
  • the relay control information decoding unit 112 decodes the decoded data input from the switching unit 111 and outputs the decoding result to the transfer control unit 117.
  • the relay control information decoding unit 112 extracts the transfer destination ID when the decrypted data input from the switching unit 111 includes the transfer destination ID, and outputs the extracted transfer destination ID to the transfer control unit 117.
  • the transfer destination ID is included in a transfer start request transmitted from the base station, for example.
  • the transmission data generation unit 113 generates transmission data and outputs it to the switching unit 114.
  • the switching unit 114 outputs the transmission data input from the transmission data generation unit 113 to the error correction encoding unit 115 and the error correction encoding unit 115 of the decoded data input from the switching unit 111 according to the control of the transfer control unit 117. Switch to output to. That is, the switching unit 114 outputs the transmission data input from the transmission data generation unit 113 to the error correction encoding unit 115 by connecting the terminal 114a and the terminal 114c. The switching unit 114 outputs the decoded data input from the switching unit 111 to the error correction coding unit 115 by connecting the terminal 114b and the terminal 114c.
  • Error correction coding section 115 performs error correction coding on transmission data or decoded data input from switching section 114, channel quality information input from channel quality reporting section 108, or position information input from position information generating section 126. Processing is performed to generate encoded data.
  • the error correction encoding unit 115 outputs the generated encoded data to the data modulation unit 116.
  • the decoded data is data to be transmitted to the transfer destination LTE-Advanced non-compliant terminal, and the channel quality information and the position information are information to be transmitted to the base station 200.
  • the error correction coding unit 115 also has a rate matching function, but a description thereof is omitted.
  • the data modulator 116 modulates the encoded data input from the error correction encoder 115 to generate a modulated signal, and outputs the generated modulated signal to the resource mapping unit 119.
  • the transfer control unit 117 switches and controls the switching unit 111 or the switching unit 114 based on the decoding result input from the relay control information decoding unit 112.
  • the transfer control unit 117 connects the terminals 111a and 111b when the decoding result input from the relay control information decoding unit 112 is a relay start request for requesting to start transfer.
  • the switching unit 111 is controlled. At this time, the transfer control unit 117 controls the switching unit 114 to connect the terminal 114b and the terminal 114c.
  • the transfer control unit 117 switches the switching unit to connect the terminals 111a and 111c.
  • 111 is controlled. At this time, the transfer control unit 117 controls the switching unit 114 to connect the terminal 114a and the terminal 114c.
  • the transfer control unit 117 When the transfer destination ID is input from the relay control information decoding unit 112, the transfer control unit 117 outputs the input transfer destination ID to the control information generation unit 118.
  • the transfer control unit 117 controls the resource mapping unit 119 to map to all frequency resources in a single CC prepared for use in LTE.
  • the transfer control unit 117 switches the carrier frequency after up-conversion to that for downlink when transmitting to a transfer destination LTE-Advanced non-compatible terminal. This is instructed to the RF unit 122.
  • the control information generation unit 118 generates control information including the transfer destination ID input from the transfer control unit 117 and outputs the control information to the resource mapping unit 119.
  • the resource mapping unit 119 that is a remapping unit follows the control of the transfer control unit 117.
  • the modulation signal input from the data modulation unit 116 is mapped to a single CC. That is, when the modulation signal input from the data modulation unit 116 is a data modulation signal to be transmitted to a transfer destination LTE-Advanced non-compliant terminal, the resource mapping unit 119 receives the modulation signal input from the data modulation unit 116, Map to all frequency resources in a single CC prepared for use in LTE.
  • the resource mapping unit 119 performs mapping so as to include the control information input from the control information generation unit 118.
  • the resource mapping unit 119 transmits a transmission power smaller by a predetermined amount ⁇ p than a predetermined transmission power P when the modulation signal input from the data modulation unit 116 is a modulation signal of data to be transmitted to a transfer destination LTE-Advanced non-compliant terminal. Mapping is performed so that (P ⁇ p) is transmitted.
  • the predetermined transmission power P is, for example, transmission power set in advance.
  • the resource mapping unit 119 performs mapping to an appropriate frequency (subcarrier or resource block) when the modulation signal input from the data modulation unit 116 is a modulation signal of data to be transmitted to the base station 200.
  • the resource mapping unit 119 also has a DFT (Discrete FourierformTransform) function, and performs DFT processing on a modulated signal before mapping for a signal transmitted to the base station 200.
  • the resource mapping unit 119 does not perform DFT processing on a signal transmitted to a transfer destination LTE-Advanced non-compliant terminal.
  • the resource mapping unit 119 outputs the mapped modulated signal to the IFFT unit 120. Note that a method of mapping data to be transferred to the transfer destination LTE-Advanced non-compliant terminal will be described later.
  • the IFFT unit 120 performs inverse fast Fourier transform (IFFT) on the modulation signal input from the resource mapping unit 119 and outputs the result to the GI insertion unit 121.
  • IFFT inverse fast Fourier transform
  • the GI insertion unit 121 inserts a guard interval into the signal input from the IFFT unit 120 and outputs the signal to the RF unit 122.
  • the RF unit 122 up-converts the signal input from the GI insertion unit 121 and outputs it to the antenna 123.
  • the RF unit 122 reduces the carrier frequency after up-conversion according to an instruction from the transfer control unit 117 when transmitting to a transfer destination LTE-Advanced non-compliant terminal. Switch to the link.
  • the antenna 123 transmits a signal input from the RF unit 122.
  • the antenna 124 receives a signal from a GPS satellite and outputs it to the GPS receiver 125.
  • the GPS receiver 125 analyzes the received signal input from the antenna 124 to identify the current position, and outputs the identified current position to the position information generator 126.
  • the position information generation unit 126 generates position information indicating the current position input from the GPS reception unit 125, and outputs the generated position information to the error correction encoding unit 115.
  • FIG. 4 is a block diagram showing a configuration of base station 200 according to Embodiment 1 of the present invention.
  • the antenna 201 receives a signal and outputs it to the RF unit 202.
  • the RF unit 202 down-converts the signal input from the antenna 201 and outputs it to the resource demapping unit 203. Note that synchronization processing, GI removal, FFT processing, and the like are also required between the down-conversion processing and the resource demapping processing. These processing may be performed by the RF unit 202 or the resource demapping unit 203. Also good.
  • the resource demapping unit 203 extracts a frequency component (subcarrier or resource block) corresponding to each user (each communication device 100) from the received signal input from the RF unit 202 and outputs the frequency component (subcarrier or resource block) to the demodulation unit 204.
  • the demodulator 204 performs demodulation processing on the received signal input from the resource demapping unit 203 to generate a demodulated signal, and outputs the generated demodulated signal to the error correction decoding unit 205.
  • the error correction decoding unit 205 performs error correction decoding on the demodulated signal input from the demodulation unit 204 to generate decoded data, and outputs the generated decoded data to the terminal location information decoding unit 206.
  • the terminal location information decoding unit 206 analyzes the decoded data input from the error correction decoding unit 205 and acquires the location information of the communication device 100 that is a TE-Advanced compatible terminal and a terminal that does not support LTE-Advanced.
  • the terminal location information decoding unit 206 identifies the locations of the communication device 100 that is an LTE-Advanced compatible terminal and a terminal that is not LTE-Advanced based on the acquired location information.
  • the terminal location information decoding unit 206 outputs the specified location to the relay control unit 208.
  • Terminal position information decoding section 206 analyzes the decoded data input from error correction decoding section 205 to acquire line quality information, and outputs the acquired line quality information to scheduler 207.
  • the terminal location information decoding unit 206 obtains the reference signal received from each terminal from the resource demapping unit 203, performs arrival direction estimation and propagation distance estimation using this, and estimates the position of each terminal. Also good.
  • the antenna 124, the GPS receiving unit 125, and the position information generating unit 126 in each terminal are not essential for the configuration.
  • the scheduler 207 performs scheduling based on the line quality information input from the terminal location information decoding unit 206.
  • the scheduler 207 controls the relay control unit 208 or the resource mapping unit 212 based on the scheduling.
  • the relay control unit 208 acquires the transmission data amount to be transmitted to the LTE-Advanced non-compliant terminal from the transmission data generation unit 209, and decides to start relaying to the LTE-Advanced non-compliant terminal whose transmission data amount is equal to or greater than the threshold. To do.
  • the relay control unit 208 determines to start relaying, the relay control unit 208 determines the start of relaying based on the positions of the communication device 100 and the LTE-Advanced non-supporting terminal input from the terminal location information decoding unit 206. Is selected as a relay station.
  • the relay control unit 208 instructs the transmission data generation unit 209 to transmit a relay start request to the selected relay station.
  • the relay control unit 208 transmits a relay end request to the transmission data generation unit 209 when there is no data to be transmitted in the transmission data generation unit 209 after instructing to transmit the relay start request. To give instructions.
  • the transmission data generation unit 209 generates transmission data for each user and outputs the transmission data to the error correction coding unit 210.
  • the transmission data generation unit 209 receives an instruction to transmit a relay start request from the relay control unit 208
  • the transmission data generation unit 209 generates a relay start request and outputs the relay start request to the error correction encoding unit 210.
  • the transmission data generation unit 209 receives an instruction to transmit a relay end request from the relay control unit 208
  • the transmission data generation unit 209 generates a relay end request and outputs the relay end request to the error correction encoding unit 210.
  • the error correction encoding unit 210 performs error correction encoding on the transmission data, the relay start request or the relay end request input from the transmission data generation unit 209 to generate encoded data, and the generated encoded data is converted into data. Output to the modulation unit 211.
  • the error correction encoding unit 210 also performs rate matching processing, but the description thereof is omitted.
  • the data modulator 211 modulates the encoded data input from the error correction encoder 210 to generate a modulated signal, and outputs the generated modulated signal to the resource mapping unit 212.
  • the resource mapping unit 212 maps the modulation signal input from the data modulation unit 211 to an appropriate frequency (subcarrier or resource block) according to the control of the scheduler 207.
  • the resource mapping unit 212 outputs the mapped signal to the RF unit 213. Note that IFFT processing, GI insertion processing, and the like are also required between the resource mapping processing and the up-conversion processing, but these processing may be performed by the resource mapping unit 212 or the RF unit 213.
  • the RF unit 213 up-converts the signal input from the resource mapping unit 212 and outputs it to the antenna 214.
  • the antenna 214 transmits a signal input from the RF unit 213.
  • FIG. 5 is a sequence diagram showing operations of communication apparatus 100 and base station 200 according to Embodiment 1 of the present invention.
  • the LTE-Advanced compatible terminal since the LTE-Advanced compatible terminal has the same configuration as that of the communication device 100, the same reference numerals as those of the communication device 100 are used for description.
  • the LTE-Advanced compatible terminal is described as an LTE-A terminal, and the LTE-Advanced non-compatible terminal (LTE compatible terminal) is described as an LTE terminal.
  • the location information is periodically notified to the base station 200 from the plurality of LTE-A terminals 100 or LTE terminals 300 (step ST501 and step ST502).
  • the location information may be acquired by the LTE-A terminal 100 or the LTE terminal 300 using GPS or the like, or may be estimated by the base station 200 based on the arrival direction estimation and the propagation delay amount. good.
  • base station 200 receives a communication start request from LTE terminal 300 (step ST503).
  • the base station 200 may request
  • the base station 200 selects a relay station based on the position information acquired in Step ST501 and Step ST502 (Step ST504).
  • the relay station selected here is an LTE-A terminal 100 that exists near the LTE terminal 300 that starts communication and is not currently communicating. Note that the base station 200 may select a relay station for relaying only when the amount of data to be transmitted to the LTE terminal 300 is equal to or greater than a threshold value.
  • base station 200 transmits a relay start request to LTE-A terminal 100 selected as the relay station (step ST505).
  • the relay start request includes terminal information (such as ID or RNTI (Radio Network Temporary Identity)) of the transfer destination LTE terminal 300 as the transfer destination ID.
  • LTE-A terminal 100 selected as the relay station returns a relay start response to base station 200 (step ST506).
  • base station 200 performs scheduling using CA for LTE-A terminal 100 in scheduler 207 (step ST507), and performs downlink transmission (CA transmission) in a wide band (step ST508).
  • LTE-A terminal 100 as a relay station demodulates the signal received from base station 200 in data demodulator 109. Then, in the resource mapping section 119, the LTE-A terminal 100 remaps the downlink data to all resources of a single CC (step ST509), and transmits it to the transfer destination LTE terminal 300 (single CC transmission) (Ste ST510). At this time, the LTE-A terminal 100 sets the transmission power to be a predetermined amount smaller.
  • the LTE-A terminal 100 uses terminal information of a transfer destination as a transfer destination ID when generating control information such as a header used for the LTE terminal 300 to perform data demodulation. This process (the processes of steps ST507 to ST510) is repeated until communication is completed.
  • the base station 200 transmits a relay end request to the LTE-A terminal 100 of the relay station (step ST511).
  • LTE-A terminal 100 as a relay station returns a relay end response to base station 200 (step ST512).
  • FIG. 6 is a diagram illustrating a remapping method.
  • the LTE-Advanced compatible terminal since the LTE-Advanced compatible terminal has the same configuration as that of the communication apparatus 100, the same reference numerals as those of the communication apparatus 100 are used for description.
  • the LTE-Advanced compatible terminal is described as an LTE-A terminal, and the LTE-Advanced non-compatible terminal (LTE compatible terminal) is described as an LTE terminal.
  • the LTE-A terminal 100 is mapped to a plurality of CCs # 601 to # 603 obtained by dividing a part of the bandwidth that can be used in the communication system (LTE) used with the base station 200.
  • Downlink data D 1 to D 3 are received from the base station 200.
  • the number of CCs is assumed to be three, but the number of CCs is not necessarily three.
  • the downlink data D1 to D3 transmitted from the base station 200 is assigned a part of the frequency resource in each CC # 601 to # 603.
  • the LTE-A terminal 100 that has received the downlink data remaps the downlink data to a single CC # 610 in the resource mapping unit 119.
  • the remapped downlink data D4 is all allocated frequency resources in a single CC # 610.
  • the data addressed to the LTE-Advanced non-compliant terminal is remapped to all resources of a single CC and transferred to the LTE-Advanced non-compliant terminal.
  • the throughput of the LTE-Advanced non-compatible terminals can be improved.
  • the transmission power is reduced when transferring to a terminal that does not support LTE-Advanced, so that interference with other terminals can be suppressed.
  • FIG. 7 is a block diagram showing a configuration of communication apparatus 700 according to Embodiment 2 of the present invention.
  • a communication apparatus 700 illustrated in FIG. 7 adds a channel estimation unit 701 and a directivity forming unit 703 to the communication apparatus 100 according to the first embodiment illustrated in FIG. 3, and a transfer control unit instead of the transfer control unit 117. And a resource demapping unit 704 instead of the resource demapping unit 106.
  • FIG. 7 parts having the same configuration as in FIG.
  • the RF unit 102 down-converts the reception signal input from the antenna 101 and outputs it to the synchronization unit 103.
  • the channel estimation unit 701 performs channel estimation with the data transfer destination using the reference signal input from the resource demapping unit 704 according to the instruction from the transfer control unit 702, and the estimation result is transmitted to the directivity forming unit 703. Output to.
  • the GI insertion unit 121 inserts a guard interval into the signal input from the IFFT unit 120 and outputs the signal to the directivity forming unit 703.
  • the directivity forming unit 703 weights the signal input from the GI insertion unit 121 to provide directivity and transmits the directivity to the data transfer destination. Is output to the RF unit 122.
  • the RF unit 122 up-converts the signal input from the directivity forming unit 703 and outputs it to the antenna 123.
  • the transfer control unit 702 When the transfer control unit 702 starts the transfer, the transfer control unit 702 instructs the channel estimation unit 701 to perform channel estimation with the transfer destination terminal.
  • the transfer control unit 702 instructs the resource demapping unit 704 to extract the reference signal received from the transfer destination terminal and pass it to the channel estimation unit 701. Note that other configurations and operations of the transfer control unit 702 are the same as those of the transfer control unit 117, and thus description thereof is omitted.
  • the FFT unit 105 performs fast Fourier transform (FFT) on the received signal input from the GI removal unit 104 and outputs the result to the resource demapping unit 704.
  • FFT fast Fourier transform
  • the resource demapping unit 704 extracts a reference signal included in the received signal input from the FFT unit 105 in accordance with an instruction from the transfer control unit 702 and outputs the reference signal to the channel estimation unit 701. Note that other configurations and operations in the resource demapping unit 704 are the same as those in the first embodiment, and a description thereof will be omitted.
  • the data demodulator 109 demodulates the received signal input from the resource demapping unit 704 and outputs the demodulated signal to the error correction decoding unit 110.
  • the switching unit 111 switches between the output of the decoded data input from the error correction decoding unit 110 to the relay control information decoding unit 112 and the output to the switching unit 114 according to the control of the transfer control unit 702. Note that other configurations and operations in the switching unit 111 are the same as those in the first embodiment, and thus the description thereof is omitted.
  • the relay control information decoding unit 112 extracts the transfer destination ID when the decrypted data input from the switching unit 111 includes the transfer destination ID, and outputs the extracted transfer destination ID to the transfer control unit 702. Note that other configurations and operations in the relay control information decoding unit 112 are the same as those in the first embodiment, and a description thereof will be omitted.
  • the switching unit 114 outputs the transmission data input from the transmission data generation unit 113 to the error correction encoding unit 115 and the error correction encoding unit 115 of the decoded data input from the switching unit 111 according to the control of the transfer control unit 702. Switch to output to. Note that the other configuration and operation of the switching unit 114 are the same as those of the first embodiment, and thus description thereof is omitted.
  • the control information generation unit 118 generates control information including the transfer destination ID input from the transfer control unit 702 and outputs the control information to the resource mapping unit 119.
  • the resource mapping unit 119 receives data from the data modulation unit 116 according to the control of the transfer control unit 702.
  • the input modulation signal is mapped to a single CC. Note that other configurations and operations in the resource mapping unit 119 are the same as those in the first embodiment, and a description thereof will be omitted.
  • the RF unit 122 switches the carrier frequency at the time of transfer to that for downlink according to the instruction of the transfer control unit 702. Note that other configurations and operations in the RF unit 122 are the same as those in the first embodiment, and a description thereof will be omitted.
  • the base station has the same configuration as that shown in FIG. Further, in the present embodiment, the operations of the communication apparatus and the base station are the same as those in the first embodiment except that directional transmission is performed, and thus the description thereof is omitted.
  • directional transmission is performed during transfer to a terminal that does not support LTE-Advanced, so that interference with other terminals can be further suppressed.
  • FIG. 8 is a block diagram showing a configuration of communication apparatus 800 according to Embodiment 3 of the present invention.
  • FIG. 8 has a transfer control unit 801 instead of the transfer control unit 117, compared to the communication device 100 according to the first embodiment shown in FIG. In FIG. 8, parts having the same configuration as in FIG.
  • the transfer control unit 801 instructs the error correction coding unit 115 to perform coding at a coding rate larger than a predetermined coding rate. For example, if the transfer control unit 801 is currently encoding at a coding rate of 1/3, the error correction coding unit may perform coding at a coding rate of 1/2 when starting transfer. 115 is instructed.
  • the predetermined coding rate is a coding rate set in advance, for example.
  • the error correction coding unit 115 has a rate matching function. Therefore, the coding rate is one related to error correction coding and / or one related to rate matching.
  • the transfer control unit 801 instructs the data modulation unit 116 to perform modulation with a modulation multilevel number larger than a predetermined modulation multilevel number. For example, if the transfer control unit 801 currently modulates with 16 QAM, the transfer control unit 801 instructs the data modulation unit 116 to perform modulation with 64 QAM when starting the transfer.
  • the predetermined modulation multilevel number is, for example, a preset modulation multilevel number. Note that the other configuration and operation of the transfer control unit 801 are the same as those of the transfer control unit 117, and thus description thereof is omitted.
  • the switching unit 111 switches between the output of the decoded data input from the error correction decoding unit 110 to the relay control information decoding unit 112 and the output to the switching unit 114 according to the control of the transfer control unit 801. Note that other configurations and operations in the switching unit 111 are the same as those in the first embodiment, and thus the description thereof is omitted.
  • the relay control information decoding unit 112 extracts the transfer destination ID when the decrypted data input from the switching unit 111 includes the transfer destination ID, and outputs the extracted transfer destination ID to the transfer control unit 801. Note that other configurations and operations in the relay control information decoding unit 112 are the same as those in the first embodiment, and a description thereof will be omitted.
  • the switching unit 114 outputs the transmission data input from the transmission data generation unit 113 to the error correction encoding unit 115 and the error correction encoding unit 115 of the decoded data input from the switching unit 111 according to the control of the transfer control unit 801. Switch to output to. Note that the other configuration and operation of the switching unit 114 are the same as those of the first embodiment, and thus description thereof is omitted.
  • Error correction coding section 115 performs error correction coding on transmission data or decoded data input from switching section 114, channel quality information input from channel quality reporting section 108, or position information input from position information generating section 126. Processing is performed to generate encoded data.
  • the error correction encoding unit 115 outputs the generated encoded data to the data modulation unit 116. At this time, the error correction coding unit 115 performs coding at a coding rate larger than a predetermined coding rate when coding the decoded data to be transferred in accordance with an instruction from the transfer control unit 801.
  • the data modulator 116 modulates the encoded data input from the error correction encoder 115 to generate a modulated signal, and outputs the generated modulated signal to the resource mapping unit 119. At this time, the data modulation unit 116 modulates the data signal to be transferred with a modulation multilevel number larger than the current modulation multilevel number in accordance with the instruction of the transfer control unit 801.
  • the control information generation unit 118 generates control information including the transfer destination ID input from the transfer control unit 801 and outputs the control information to the resource mapping unit 119.
  • the resource mapping unit 119 receives data from the data modulation unit 116 according to the control of the transfer control unit 801. The input modulation signal is mapped to a single CC. Note that other configurations and operations in the resource mapping unit 119 are the same as those in the first embodiment, and a description thereof will be omitted.
  • the RF unit 122 switches the carrier frequency at the time of transfer to that for downlink according to the instruction of the transfer control unit 801. Note that other configurations and operations in the RF unit 122 are the same as those in the first embodiment, and a description thereof will be omitted.
  • the coding rate is increased and the modulation multi-level number is increased when transferring to a terminal that does not support LTE-Advanced, remapping to a single CC is easy. And the data transfer efficiency can be improved. Since the distance between the communication apparatus and the transfer destination terminal is short, communication is possible even if the coding rate and the modulation multi-level number are increased.
  • the coding rate is increased and the modulation multi-level number is increased.
  • the present invention is not limited to this, and either the coding rate or the modulation multi-level number is selected. You may enlarge only.
  • transmission is performed with transmission power lower than the predetermined transmission power at the time of transfer.
  • transmission may be performed with predetermined transmission power.
  • the transmission power is reduced during remapping, but the present invention is not limited to this, and the transmission power may be reduced during the transmission processing in the RF unit.
  • the scramble unit (not shown) may generate a scramble code using the transfer destination ID.
  • the communication apparatuses 100, 700, and 800 that perform transfer may be relay apparatuses (Relay Node or the like) that support LTE-Advanced in addition to LTE-Advanced terminals. Good.
  • the communication devices 100, 700, and 800 that perform transfer are LTE-Advanced compatible terminals, relaying or relaying during or after relaying, You may notify a user using display media, such as a screen, a speaker, or LED.
  • the communication device and the data transfer method according to the present invention are suitable for use in a system in which there are LTE-Advanced compatible terminals and LTE-Advanced non-compatible terminals.
  • DESCRIPTION OF SYMBOLS 100 Communication apparatus 101 Antenna 102 RF part 103 Synchronization part 104 GI removal part 105 FFT part 106 Resource demapping part 107 Line quality measurement part 108 Line quality report part 109 Data demodulation part 110 Error correction decoding part 111 Switching part 112 Relay control information decoding Unit 113 transmission data generation unit 114 switching unit 115 error correction coding unit 116 data modulation unit 117 transfer control unit 118 control information generation unit 119 resource mapping unit 120 IFFT unit 121 GI insertion unit 122 RF unit 123 antenna 124 antenna 125 GPS reception unit 126 Position information generation unit

Abstract

This communication device increases throughput in a terminal that does not support LTE-Advanced in cases when a terminal that supports LTE-Advanced and a terminal that does not support LTE-Advanced are present. A communication device (100) receives data that is addressed to a terminal that does not support LTE-Advanced present in the vicinity thereof and that is transmitted mapped to a plurality of differing component carriers (CCs) that result from dividing the bandwidth of a portion of the bandwidth useable by a communication system used for communication with a base station. A resource mapping unit (119) re-maps data mapped to a plurality of CCs to a single CC when a deciphering result input from a relay control information deciphering unit (112) is a relay start request that requests the start of forwarding. The communication device (100) forwards the data re-mapped to a single band to the terminal that does not support LTE-Advanced.

Description

通信装置及びデータ転送方法Communication apparatus and data transfer method
 本発明は、LTE(Long Term Evolution)-Advanced対応端末とLTE-Advanced非対応端末とが存在するシステムに用いられる通信装置及びデータ転送方法に関する。 The present invention relates to a communication apparatus and a data transfer method used in a system in which a terminal that supports LTE (Long Term Evolution) -Advanced and a terminal that does not support LTE-Advanced exists.
 LTE-Advancedでは、LTEにおいて使用可能な周波数帯域の単位であるCC(Component Carrier)を、複数割り当てるCA(Carrier Aggregation)技術の検討が行われている(例えば、特許文献1)。 In LTE-Advanced, a CA (Carrier-Aggregation) technique for assigning a plurality of CCs (Component-Carrier), which is a unit of a frequency band usable in LTE, is being studied (for example, Patent Document 1).
 図1は、LTEにおけるCCを示す図である。図2は、LTE-AdvancedにおけるCAを示す図である。LTEでは、図1に示すように、単一のCC#1に下りデータをマッピングして端末に送信される。LTE-Advancedでは、図2に示すように、複数の異なるCC#2~#nの各々に下りデータをマッピングして端末に送信される。これにより、LTE-Advancedでは、使用可能な周波数帯域を広げることができるとともに、より高速な通信を行うことができ、スループットを向上させることができる。 FIG. 1 is a diagram showing CC in LTE. FIG. 2 is a diagram illustrating CA in LTE-Advanced. In LTE, as shown in FIG. 1, downlink data is mapped to a single CC # 1 and transmitted to a terminal. In LTE-Advanced, as shown in FIG. 2, downlink data is mapped to each of a plurality of different CCs # 2 to #n and transmitted to the terminal. Thereby, in LTE-Advanced, the usable frequency band can be expanded, higher-speed communication can be performed, and the throughput can be improved.
国際公開第2010/064521号International Publication No. 2010/064521
 しかしながら、従来の装置においては、LTEにのみ対応し、LTE-Advanced非対応の端末へは、CA技術により複数のCCを割り当てることは不可能である。従って、LTE-Advanced非対応の端末においては、スループットを向上させることができないという問題がある。 However, in the conventional apparatus, it is impossible to assign a plurality of CCs using CA technology to a terminal that supports only LTE and does not support LTE-Advanced. Accordingly, there is a problem that the throughput cannot be improved in a terminal that does not support LTE-Advanced.
 本発明の目的は、LTE-Advanced対応端末とLTE-Advanced非対応端末とが存在する場合において、LTE-Advanced非対応端末におけるスループットを向上させることができる通信装置及びデータ転送方法を提供することである。 An object of the present invention is to provide a communication device and a data transfer method capable of improving throughput in a terminal not supporting LTE-Advanced when there are LTE-Advanced compatible terminals and LTE-Advanced non-compatible terminals. is there.
 本発明の通信装置は、基地局との間で用いられる通信システムで使用可能な帯域幅の中の一部の帯域幅を分割した複数の異なる帯域にマッピングされて前記基地局より送信された、自分の周辺に存在する端末装置宛のデータを受信する受信手段と、前記端末装置宛のデータの前記端末装置への転送を前記基地局より要求された場合に、前記受信手段により受信した前記複数の異なる帯域にマッピングされているデータを、単一の帯域に再マッピングする再マッピング手段と、前記再マッピング手段により前記単一の帯域に再マッピングしたデータを前記端末装置に転送する転送手段と、を具備する構成を採る。 The communication device of the present invention is transmitted from the base station after being mapped to a plurality of different bands obtained by dividing a part of the bandwidth usable in the communication system used with the base station, Receiving means for receiving data addressed to a terminal device existing in the vicinity of the terminal device, and the plurality of received data received by the receiving means when requested by the base station to transfer data addressed to the terminal device to the terminal device Re-mapping means for re-mapping data mapped to different bands to a single band, and transfer means for transferring the data re-mapped to the single band by the re-mapping means to the terminal device, The structure which comprises is taken.
 本発明のデータ転送方法は、基地局との間で用いられる通信システムで使用可能な帯域幅の中の一部の帯域幅を分割した複数の異なる帯域にマッピングされて前記基地局より送信された、自分の周辺に存在する端末装置宛のデータを受信するステップと、前記端末装置宛のデータの前記端末装置への転送を前記基地局より要求された場合に、受信した前記複数の異なる帯域にマッピングされているデータを、単一の帯域に再マッピングするステップと、前記単一の帯域に再マッピングしたデータを前記端末装置に転送するステップと、を具備するようにした。 The data transfer method of the present invention is transmitted from the base station after being mapped to a plurality of different bands obtained by dividing a part of the bandwidth that can be used in the communication system used with the base station. Receiving the data addressed to a terminal device existing in the vicinity of the terminal device, and, when requested by the base station to transfer the data addressed to the terminal device to the terminal device, the received plurality of different bands Remapping the mapped data to a single band, and transferring the remapped data to the single band to the terminal device.
 本発明によれば、LTE-Advanced対応端末とLTE-Advanced非対応端末とが存在する場合において、全ての端末においてスループットを向上させることができる。 According to the present invention, when there are LTE-Advanced compatible terminals and LTE-Advanced non-compatible terminals, throughput can be improved in all terminals.
LTEにおけるCCを示す図Diagram showing CC in LTE LTE-AdvancedにおけるCAを示す図Diagram showing CA in LTE-Advanced 本発明の実施の形態1に係る通信装置の構成を示すブロック図The block diagram which shows the structure of the communication apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態1における基地局の構成を示すブロック図The block diagram which shows the structure of the base station in Embodiment 1 of this invention. 本発明の実施の形態1における通信装置及び基地局の動作を示すシーケンス図The sequence diagram which shows the operation | movement of the communication apparatus and base station in Embodiment 1 of this invention 本発明の実施の形態1における再マッピングの方法を示す図The figure which shows the method of the remapping in Embodiment 1 of this invention 本発明の実施の形態2に係る通信装置の構成を示すブロック図The block diagram which shows the structure of the communication apparatus which concerns on Embodiment 2 of this invention. 本発明の実施の形態3に係る通信装置の構成を示すブロック図The block diagram which shows the structure of the communication apparatus which concerns on Embodiment 3 of this invention.
 以下、本発明の実施の形態について、図面を参照して詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
 (実施の形態1)
 <通信装置の構成>
 図3は、本発明の実施の形態1に係る通信装置100の構成を示すブロック図である。通信装置100は、LTE-Advanced対応端末である。
(Embodiment 1)
<Configuration of communication device>
FIG. 3 is a block diagram showing a configuration of communication apparatus 100 according to Embodiment 1 of the present invention. The communication device 100 is an LTE-Advanced compatible terminal.
 アンテナ101は、信号を受信してRF部102に出力する。ここで受信される信号は、基地局との間で用いられる通信システムで使用可能な帯域幅の中の一部の帯域幅を分割した複数の異なる帯域であるCCにマッピングされて基地局より送信された、通信装置100の周辺に存在するLTE-Advanced非対応端末宛のデータを含む。 The antenna 101 receives a signal and outputs it to the RF unit 102. The signals received here are transmitted from the base station after being mapped to CCs, which are a plurality of different bands obtained by dividing a part of the bandwidth available in the communication system used with the base station. The data addressed to the terminal not supporting LTE-Advanced existing around the communication apparatus 100 is included.
 RF部102は、アンテナ101から入力した受信信号をダウンコンバートして同期部103に出力する。 The RF unit 102 down-converts the received signal input from the antenna 101 and outputs it to the synchronization unit 103.
 同期部103は、RF部102から入力した受信信号を用いて同期処理を行い、同期処理後の受信信号をGI除去部104に出力する。 The synchronization unit 103 performs a synchronization process using the received signal input from the RF unit 102 and outputs the received signal after the synchronization process to the GI removal unit 104.
 GI除去部104は、同期部103から入力した受信信号からガードインターバル(GI; Guard Interval)を除去する。GI除去部104は、ガードインターバルを除去した受信信号をFFT部105に出力する。 The GI removal unit 104 removes a guard interval (GI) from the received signal input from the synchronization unit 103. GI removal section 104 outputs the received signal from which the guard interval has been removed to FFT section 105.
 FFT部105は、GI除去部104から入力した受信信号を高速フーリエ変換(FFT)してリソースデマッピング部106に出力する。 The FFT unit 105 performs fast Fourier transform (FFT) on the received signal input from the GI removal unit 104 and outputs the result to the resource demapping unit 106.
 リソースデマッピング部106は、FFT部105から入力した受信信号に含まれるリファレンス信号(RS信号)を抽出して回線品質測定部107に出力する。リソースデマッピング部106は、FFT部105から入力した受信信号より周波数成分を抽出してデータ復調部109に出力する。具体的には、リソースデマッピング部106は、受信信号より周波数成分としてサブキャリア(リソースエレメント)またはリソースブロックを抽出する。 The resource demapping unit 106 extracts a reference signal (RS signal) included in the received signal input from the FFT unit 105 and outputs it to the line quality measurement unit 107. The resource demapping unit 106 extracts a frequency component from the reception signal input from the FFT unit 105 and outputs the frequency component to the data demodulation unit 109. Specifically, the resource demapping unit 106 extracts subcarriers (resource elements) or resource blocks as frequency components from the received signal.
 回線品質測定部107は、リソースデマッピング部106から入力した受信信号(リファレンス信号:RS)を用いて回線品質を測定し、測定結果を回線品質報告部108に出力する。 The channel quality measuring unit 107 measures the channel quality using the received signal (reference signal: RS) input from the resource demapping unit 106 and outputs the measurement result to the channel quality reporting unit 108.
 回線品質報告部108は、回線品質測定部107から入力した回線品質の測定結果を含む回線品質情報を生成し、生成した回線品質情報を誤り訂正符号化部115に出力する。ここで、回線品質情報は、通信装置100を他の通信装置と識別する識別情報を含む。 The channel quality reporting unit 108 generates channel quality information including the channel quality measurement result input from the channel quality measuring unit 107, and outputs the generated channel quality information to the error correction encoding unit 115. Here, the line quality information includes identification information for identifying the communication device 100 from other communication devices.
 データ復調部109は、リソースデマッピング部106から入力した受信信号を復調して誤り訂正復号部110に出力する。 The data demodulation unit 109 demodulates the received signal input from the resource demapping unit 106 and outputs the demodulated signal to the error correction decoding unit 110.
 誤り訂正復号部110は、データ復調部109から入力した受信信号に対して誤り訂正復号を施して復号データを生成し、生成した復号データを切替部111に出力する。なお、誤り訂正復号部110はレートデマッチ機能も有しているが、その説明は省略する。 The error correction decoding unit 110 performs error correction decoding on the received signal input from the data demodulation unit 109 to generate decoded data, and outputs the generated decoded data to the switching unit 111. The error correction decoding unit 110 also has a rate mismatch function, but the description thereof is omitted.
 切替部111は、転送制御部117の制御に従って、誤り訂正復号部110から入力した復号データの中継制御情報解読部112への出力と、切替部114への出力とを切り替える。即ち、切替部111は、端子111aと端子111cとを接続することにより、誤り訂正復号部110から入力した復号データを中継制御情報解読部112に出力する。また、切替部111は、端子111aと端子111bとを接続することにより、誤り訂正復号部110から入力した復号データを切替部114に出力する。 The switching unit 111 switches between the output of the decoded data input from the error correction decoding unit 110 to the relay control information decoding unit 112 and the output to the switching unit 114 according to the control of the transfer control unit 117. That is, the switching unit 111 outputs the decoded data input from the error correction decoding unit 110 to the relay control information decoding unit 112 by connecting the terminals 111a and 111c. Further, the switching unit 111 outputs the decoded data input from the error correction decoding unit 110 to the switching unit 114 by connecting the terminal 111a and the terminal 111b.
 中継制御情報解読部112は、切替部111から入力した復号データを解読して、解読結果を転送制御部117に出力する。中継制御情報解読部112は、切替部111から入力した復号データに転送先IDが含まれている場合には転送先IDを抽出し、抽出した転送先IDを転送制御部117に出力する。転送先IDは、例えば基地局から送信される転送開始要求に含まれている。 The relay control information decoding unit 112 decodes the decoded data input from the switching unit 111 and outputs the decoding result to the transfer control unit 117. The relay control information decoding unit 112 extracts the transfer destination ID when the decrypted data input from the switching unit 111 includes the transfer destination ID, and outputs the extracted transfer destination ID to the transfer control unit 117. The transfer destination ID is included in a transfer start request transmitted from the base station, for example.
 送信データ生成部113は、送信データを生成して切替部114に出力する。 The transmission data generation unit 113 generates transmission data and outputs it to the switching unit 114.
 切替部114は、転送制御部117の制御に従って、送信データ生成部113から入力した送信データの誤り訂正符号化部115への出力と、切替部111から入力した復号データの誤り訂正符号化部115への出力とを切り替える。即ち、切替部114は、端子114aと端子114cとを接続することにより、送信データ生成部113から入力した送信データを誤り訂正符号化部115に出力する。また、切替部114は、端子114bと端子114cとを接続することにより、切替部111から入力した復号データを誤り訂正符号化部115に出力する。 The switching unit 114 outputs the transmission data input from the transmission data generation unit 113 to the error correction encoding unit 115 and the error correction encoding unit 115 of the decoded data input from the switching unit 111 according to the control of the transfer control unit 117. Switch to output to. That is, the switching unit 114 outputs the transmission data input from the transmission data generation unit 113 to the error correction encoding unit 115 by connecting the terminal 114a and the terminal 114c. The switching unit 114 outputs the decoded data input from the switching unit 111 to the error correction coding unit 115 by connecting the terminal 114b and the terminal 114c.
 誤り訂正符号化部115は、切替部114から入力した送信データ若しくは復号データ、回線品質報告部108から入力した回線品質情報、または位置情報生成部126から入力した位置情報に対して誤り訂正符号化処理を施して符号化データを生成する。誤り訂正符号化部115は、生成した符号化データをデータ変調部116に出力する。ここで、復号データは、転送先のLTE-Advanced非対応端末に送信するデータであり、回線品質情報及び位置情報は、基地局200に送信する情報である。また、誤り訂正符号化部115はレートマッチ機能も有しているが、その説明は省略する。 Error correction coding section 115 performs error correction coding on transmission data or decoded data input from switching section 114, channel quality information input from channel quality reporting section 108, or position information input from position information generating section 126. Processing is performed to generate encoded data. The error correction encoding unit 115 outputs the generated encoded data to the data modulation unit 116. Here, the decoded data is data to be transmitted to the transfer destination LTE-Advanced non-compliant terminal, and the channel quality information and the position information are information to be transmitted to the base station 200. The error correction coding unit 115 also has a rate matching function, but a description thereof is omitted.
 データ変調部116は、誤り訂正符号化部115から入力した符号化データを変調して変調信号を生成し、生成した変調信号をリソースマッピング部119に出力する。 The data modulator 116 modulates the encoded data input from the error correction encoder 115 to generate a modulated signal, and outputs the generated modulated signal to the resource mapping unit 119.
 転送制御部117は、中継制御情報解読部112から入力した解読結果に基づいて、切替部111または切替部114を切り替え制御する。 The transfer control unit 117 switches and controls the switching unit 111 or the switching unit 114 based on the decoding result input from the relay control information decoding unit 112.
 具体的には、転送制御部117は、中継制御情報解読部112から入力した解読結果が転送を開始することを要求する中継開始要求である場合には、端子111aと端子111bとを接続するように切替部111を制御する。また、このとき、転送制御部117は、端子114bと端子114cとを接続するように切替部114を制御する。また、転送制御部117は、中継制御情報解読部112から入力した解読結果が中継を終了することを要求する中継終了要求である場合には、端子111aと端子111cとを接続するように切替部111を制御する。また、このとき、転送制御部117は、端子114aと端子114cとを接続するように切替部114を制御する。 Specifically, the transfer control unit 117 connects the terminals 111a and 111b when the decoding result input from the relay control information decoding unit 112 is a relay start request for requesting to start transfer. The switching unit 111 is controlled. At this time, the transfer control unit 117 controls the switching unit 114 to connect the terminal 114b and the terminal 114c. In addition, when the decoding result input from the relay control information decoding unit 112 is a relay end request for requesting to end the relay, the transfer control unit 117 switches the switching unit to connect the terminals 111a and 111c. 111 is controlled. At this time, the transfer control unit 117 controls the switching unit 114 to connect the terminal 114a and the terminal 114c.
 転送制御部117は、中継制御情報解読部112から転送先IDが入力した際に、入力した転送先IDを制御情報生成部118に出力する。転送制御部117は、転送を開始する場合には、LTEで使用するために用意された単一のCC内の全周波数リソースにマッピングするようにリソースマッピング部119を制御する。ここで、転送制御部117は、FDM(Frequency Division Multiplexing)方式の場合、転送先のLTE-Advanced非対応端末に送信を行う際には、アップコンバート後のキャリア周波数をダウンリンク用のものに切り替えることをRF部122に指示する。 When the transfer destination ID is input from the relay control information decoding unit 112, the transfer control unit 117 outputs the input transfer destination ID to the control information generation unit 118. When starting the transfer, the transfer control unit 117 controls the resource mapping unit 119 to map to all frequency resources in a single CC prepared for use in LTE. Here, in the case of FDM (Frequency Division Multiplexing), the transfer control unit 117 switches the carrier frequency after up-conversion to that for downlink when transmitting to a transfer destination LTE-Advanced non-compatible terminal. This is instructed to the RF unit 122.
 制御情報生成部118は、転送制御部117から入力した転送先IDを含む制御情報を生成してリソースマッピング部119に出力する。 The control information generation unit 118 generates control information including the transfer destination ID input from the transfer control unit 117 and outputs the control information to the resource mapping unit 119.
 再マッピング手段であるリソースマッピング部119は、データ変調部116から入力した変調信号が転送先のLTE-Advanced非対応端末に送信するデータの変調信号である場合に、転送制御部117の制御に従って、データ変調部116から入力した変調信号を単一のCCにマッピングする。即ち、リソースマッピング部119は、データ変調部116から入力した変調信号が転送先のLTE-Advanced非対応端末に送信するデータの変調信号である場合に、データ変調部116から入力した変調信号を、LTEで使用するために用意された単一のCC内の全周波数リソースにマッピングする。この際、リソースマッピング部119は、制御情報生成部118から入力した制御情報を含むようにマッピングする。リソースマッピング部119は、データ変調部116から入力した変調信号が転送先のLTE-Advanced非対応端末に送信するデータの変調信号である場合に、所定の送信電力Pよりも所定量Δp小さい送信電力(P-Δp)で送信されるようにマッピングを行う。ここで、所定の送信電力Pとは、例えば予め設定されている送信電力である。 When the modulation signal input from the data modulation unit 116 is a modulation signal of data to be transmitted to a transfer destination LTE-Advanced non-compliant terminal, the resource mapping unit 119 that is a remapping unit follows the control of the transfer control unit 117. The modulation signal input from the data modulation unit 116 is mapped to a single CC. That is, when the modulation signal input from the data modulation unit 116 is a data modulation signal to be transmitted to a transfer destination LTE-Advanced non-compliant terminal, the resource mapping unit 119 receives the modulation signal input from the data modulation unit 116, Map to all frequency resources in a single CC prepared for use in LTE. At this time, the resource mapping unit 119 performs mapping so as to include the control information input from the control information generation unit 118. The resource mapping unit 119 transmits a transmission power smaller by a predetermined amount Δp than a predetermined transmission power P when the modulation signal input from the data modulation unit 116 is a modulation signal of data to be transmitted to a transfer destination LTE-Advanced non-compliant terminal. Mapping is performed so that (P−Δp) is transmitted. Here, the predetermined transmission power P is, for example, transmission power set in advance.
 リソースマッピング部119は、データ変調部116から入力した変調信号が基地局200に送信するデータの変調信号である場合に、適切な周波数(サブキャリアまたはリソースブロック)にマッピングする。なお、リソースマッピング部119は、DFT(Discrete Fourier Transform)機能も有しており、基地局200に送信する信号に対しては、マッピングの前に変調信号に対してDFT処理を行う。一方、リソースマッピング部119は、転送先のLTE-Advanced非対応端末に送信する信号に対しては、DFT処理は実施しない。 The resource mapping unit 119 performs mapping to an appropriate frequency (subcarrier or resource block) when the modulation signal input from the data modulation unit 116 is a modulation signal of data to be transmitted to the base station 200. Note that the resource mapping unit 119 also has a DFT (Discrete FourierformTransform) function, and performs DFT processing on a modulated signal before mapping for a signal transmitted to the base station 200. On the other hand, the resource mapping unit 119 does not perform DFT processing on a signal transmitted to a transfer destination LTE-Advanced non-compliant terminal.
 リソースマッピング部119は、マッピングした変調信号をIFFT部120に出力する。なお、転送先のLTE-Advanced非対応端末に転送するデータのマッピングの方法については後述する。 The resource mapping unit 119 outputs the mapped modulated signal to the IFFT unit 120. Note that a method of mapping data to be transferred to the transfer destination LTE-Advanced non-compliant terminal will be described later.
 IFFT部120は、リソースマッピング部119から入力した変調信号を逆高速フーリエ変換(IFFT)してGI挿入部121に出力する。 The IFFT unit 120 performs inverse fast Fourier transform (IFFT) on the modulation signal input from the resource mapping unit 119 and outputs the result to the GI insertion unit 121.
 GI挿入部121は、IFFT部120から入力した信号にガードインターバルを挿入してRF部122に出力する。 The GI insertion unit 121 inserts a guard interval into the signal input from the IFFT unit 120 and outputs the signal to the RF unit 122.
 RF部122は、GI挿入部121から入力した信号をアップコンバートしてアンテナ123に出力する。ここで、RF部122は、FDM(Frequency Division Multiplexing)方式の場合、転送先のLTE-Advanced非対応端末に送信を行う際には、転送制御部117の指示によりアップコンバート後のキャリア周波数をダウンリンク用のものに切り替える。 The RF unit 122 up-converts the signal input from the GI insertion unit 121 and outputs it to the antenna 123. Here, in the case of FDM (Frequency Division Multiplexing), the RF unit 122 reduces the carrier frequency after up-conversion according to an instruction from the transfer control unit 117 when transmitting to a transfer destination LTE-Advanced non-compliant terminal. Switch to the link.
 アンテナ123は、RF部122から入力した信号を送信する。 The antenna 123 transmits a signal input from the RF unit 122.
 アンテナ124は、GPS衛星からの信号を受信してGPS受信部125に出力する。 The antenna 124 receives a signal from a GPS satellite and outputs it to the GPS receiver 125.
 GPS受信部125は、アンテナ124から入力した受信信号を解析して現在位置を特定し、特定した現在位置を位置情報生成部126に出力する。 The GPS receiver 125 analyzes the received signal input from the antenna 124 to identify the current position, and outputs the identified current position to the position information generator 126.
 位置情報生成部126は、GPS受信部125から入力した現在位置を示す位置情報を生成し、生成した位置情報を誤り訂正符号化部115に出力する。 The position information generation unit 126 generates position information indicating the current position input from the GPS reception unit 125, and outputs the generated position information to the error correction encoding unit 115.
 <基地局の構成>
 図4は、本発明の実施の形態1における基地局200の構成を示すブロック図である。
<Base station configuration>
FIG. 4 is a block diagram showing a configuration of base station 200 according to Embodiment 1 of the present invention.
 アンテナ201は、信号を受信してRF部202に出力する。 The antenna 201 receives a signal and outputs it to the RF unit 202.
 RF部202は、アンテナ201から入力した信号ダウンコンバートしてリソースデマッピング部203に出力する。なお、ダウンコンバート処理とリソースデマッピング処理との間に、同期処理、GI除去、FFT処理等も必要だが、これらの処理はRF部202で行っても良いし、リソースデマッピング部203で行っても良い。 The RF unit 202 down-converts the signal input from the antenna 201 and outputs it to the resource demapping unit 203. Note that synchronization processing, GI removal, FFT processing, and the like are also required between the down-conversion processing and the resource demapping processing. These processing may be performed by the RF unit 202 or the resource demapping unit 203. Also good.
 リソースデマッピング部203は、RF部202から入力した受信信号より、ユーザ毎(通信装置100毎)に対応する周波数成分(サブキャリアまたはリソースブロック)を抽出して復調部204に出力する。 The resource demapping unit 203 extracts a frequency component (subcarrier or resource block) corresponding to each user (each communication device 100) from the received signal input from the RF unit 202 and outputs the frequency component (subcarrier or resource block) to the demodulation unit 204.
 復調部204は、リソースデマッピング部203から入力した受信信号の復調処理を行って復調信号を生成し、生成した復調信号を誤り訂正復号部205に出力する。 The demodulator 204 performs demodulation processing on the received signal input from the resource demapping unit 203 to generate a demodulated signal, and outputs the generated demodulated signal to the error correction decoding unit 205.
 誤り訂正復号部205は、復調部204から入力した復調信号に対して誤り訂正復号を施して復号データを生成し、生成した復号データを端末位置情報解読部206に出力する。 The error correction decoding unit 205 performs error correction decoding on the demodulated signal input from the demodulation unit 204 to generate decoded data, and outputs the generated decoded data to the terminal location information decoding unit 206.
 端末位置情報解読部206は、誤り訂正復号部205から入力した復号データを解析して、TE-Advanced対応端末である通信装置100及びLTE-Advanced非対応端末の位置情報を取得する。端末位置情報解読部206は、取得した位置情報に基づいて、LTE-Advanced対応端末である通信装置100及びLTE-Advanced非対応端末の位置を特定する。端末位置情報解読部206は、特定した位置を中継制御部208に出力する。端末位置情報解読部206は、誤り訂正復号部205から入力した復号データを解析して回線品質情報を取得し、取得した回線品質情報をスケジューラ207に出力する。 The terminal location information decoding unit 206 analyzes the decoded data input from the error correction decoding unit 205 and acquires the location information of the communication device 100 that is a TE-Advanced compatible terminal and a terminal that does not support LTE-Advanced. The terminal location information decoding unit 206 identifies the locations of the communication device 100 that is an LTE-Advanced compatible terminal and a terminal that is not LTE-Advanced based on the acquired location information. The terminal location information decoding unit 206 outputs the specified location to the relay control unit 208. Terminal position information decoding section 206 analyzes the decoded data input from error correction decoding section 205 to acquire line quality information, and outputs the acquired line quality information to scheduler 207.
 なお、端末位置情報解読部206は、各端末より受信したリファレンス信号を、リソースデマッピング部203から取得し、これを用いて到来方向推定及び伝搬距離推定を行い、各端末の位置を推定してもよい。この場合、各端末におけるアンテナ124、GPS受信部125及び位置情報生成部126は、構成上必須ではない。 The terminal location information decoding unit 206 obtains the reference signal received from each terminal from the resource demapping unit 203, performs arrival direction estimation and propagation distance estimation using this, and estimates the position of each terminal. Also good. In this case, the antenna 124, the GPS receiving unit 125, and the position information generating unit 126 in each terminal are not essential for the configuration.
 スケジューラ207は、端末位置情報解読部206から入力した回線品質情報に基づいてスケジューリングを行う。スケジューラ207は、スケジューリングに基づいて、中継制御部208またはリソースマッピング部212を制御する。 The scheduler 207 performs scheduling based on the line quality information input from the terminal location information decoding unit 206. The scheduler 207 controls the relay control unit 208 or the resource mapping unit 212 based on the scheduling.
 中継制御部208は、LTE-Advanced非対応端末に対して送信する送信データ量を送信データ生成部209から取得し、送信データ量が閾値以上のLTE-Advanced非対応端末に対して中継開始を決定する。中継制御部208は、中継開始を決定した場合に、端末位置情報解読部206から入力した通信装置100及びLTE-Advanced非対応端末の位置に基づいて、中継開始を決定したLTE-Advanced非対応端末の周辺に存在する通信装置100を中継局として選択する。中継制御部208は、送信データ生成部209に対して、選択した中継局に対して中継開始要求を送信するための指示を行う。 The relay control unit 208 acquires the transmission data amount to be transmitted to the LTE-Advanced non-compliant terminal from the transmission data generation unit 209, and decides to start relaying to the LTE-Advanced non-compliant terminal whose transmission data amount is equal to or greater than the threshold. To do. When the relay control unit 208 determines to start relaying, the relay control unit 208 determines the start of relaying based on the positions of the communication device 100 and the LTE-Advanced non-supporting terminal input from the terminal location information decoding unit 206. Is selected as a relay station. The relay control unit 208 instructs the transmission data generation unit 209 to transmit a relay start request to the selected relay station.
 中継制御部208は、中継開始要求を送信するための指示を行った後、送信データ生成部209において送信するデータがなくなった場合に、送信データ生成部209に対して、中継終了要求を送信するための指示を行う。 The relay control unit 208 transmits a relay end request to the transmission data generation unit 209 when there is no data to be transmitted in the transmission data generation unit 209 after instructing to transmit the relay start request. To give instructions.
 送信データ生成部209は、ユーザ毎に送信データを生成して誤り訂正符号化部210に出力する。送信データ生成部209は、中継制御部208から中継開始要求を送信する指示を受けた場合に、中継開始要求を生成して誤り訂正符号化部210に出力する。送信データ生成部209は、中継制御部208から中継終了要求を送信する指示を受けた場合に、中継終了要求を生成して誤り訂正符号化部210に出力する。 The transmission data generation unit 209 generates transmission data for each user and outputs the transmission data to the error correction coding unit 210. When the transmission data generation unit 209 receives an instruction to transmit a relay start request from the relay control unit 208, the transmission data generation unit 209 generates a relay start request and outputs the relay start request to the error correction encoding unit 210. When the transmission data generation unit 209 receives an instruction to transmit a relay end request from the relay control unit 208, the transmission data generation unit 209 generates a relay end request and outputs the relay end request to the error correction encoding unit 210.
 誤り訂正符号化部210は、送信データ生成部209から入力した送信データ、中継開始要求または中継終了要求に対して誤り訂正符号化を施して符号化データを生成し、生成した符号化データをデータ変調部211に出力する。なお、誤り訂正符号化部210はレートマッチ処理も行うが、その説明は省略する。 The error correction encoding unit 210 performs error correction encoding on the transmission data, the relay start request or the relay end request input from the transmission data generation unit 209 to generate encoded data, and the generated encoded data is converted into data. Output to the modulation unit 211. The error correction encoding unit 210 also performs rate matching processing, but the description thereof is omitted.
 データ変調部211は、誤り訂正符号化部210から入力した符号化データを変調して変調信号を生成し、生成した変調信号をリソースマッピング部212に出力する。 The data modulator 211 modulates the encoded data input from the error correction encoder 210 to generate a modulated signal, and outputs the generated modulated signal to the resource mapping unit 212.
 リソースマッピング部212は、スケジューラ207の制御に従って、データ変調部211から入力した変調信号を適切な周波数(サブキャリアまたはリソースブロック)にマッピングする。リソースマッピング部212は、マッピングした信号をRF部213に出力する。なお、リソースマッピング処理とアップコンバート処理との間に、IFFT処理及びGI挿入処理等も必要だが、これらの処理はリソースマッピング部212で行っても良いし、RF部213で行っても良い。 The resource mapping unit 212 maps the modulation signal input from the data modulation unit 211 to an appropriate frequency (subcarrier or resource block) according to the control of the scheduler 207. The resource mapping unit 212 outputs the mapped signal to the RF unit 213. Note that IFFT processing, GI insertion processing, and the like are also required between the resource mapping processing and the up-conversion processing, but these processing may be performed by the resource mapping unit 212 or the RF unit 213.
 RF部213は、リソースマッピング部212から入力した信号をアップコンバートしてアンテナ214に出力する。 The RF unit 213 up-converts the signal input from the resource mapping unit 212 and outputs it to the antenna 214.
 アンテナ214は、RF部213から入力した信号を送信する。 The antenna 214 transmits a signal input from the RF unit 213.
 <通信装置及び基地局の動作>
 図5は、本発明の実施の形態1における通信装置100及び基地局200の動作を示すシーケンス図である。なお、図5において、LTE-Advanced対応端末は、通信装置100と同一構成であるので、通信装置100と同一符号を付して説明する。また、図5及び図5を用いた説明において、LTE-Advanced対応端末をLTE-A端末と記載し、LTE-Advanced非対応端末(LTE対応端末)をLTE端末と記載する。
<Operation of communication apparatus and base station>
FIG. 5 is a sequence diagram showing operations of communication apparatus 100 and base station 200 according to Embodiment 1 of the present invention. In FIG. 5, since the LTE-Advanced compatible terminal has the same configuration as that of the communication device 100, the same reference numerals as those of the communication device 100 are used for description. In the description using FIG. 5 and FIG. 5, the LTE-Advanced compatible terminal is described as an LTE-A terminal, and the LTE-Advanced non-compatible terminal (LTE compatible terminal) is described as an LTE terminal.
 まず、複数のLTE-A端末100またはLTE端末300から、基地局200に対して周期的に位置情報が通知される(ステップST501及びステップST502)。なお、位置情報は、LTE-A端末100またはLTE端末300が、GPS等を用いて取得したものであってもよいし、基地局200が到来方向推定及び伝播遅延量に基づいて推定しても良い。 First, the location information is periodically notified to the base station 200 from the plurality of LTE-A terminals 100 or LTE terminals 300 (step ST501 and step ST502). The location information may be acquired by the LTE-A terminal 100 or the LTE terminal 300 using GPS or the like, or may be estimated by the base station 200 based on the arrival direction estimation and the propagation delay amount. good.
 次に、基地局200は、LTE端末300から通信開始要求を受ける(ステップST503)。なお、図5では、LTE端末300から基地局200に対して通信開始要求を行う例を示しているが、基地局200がLTE端末300に対して通信開始を要求してもよい。 Next, base station 200 receives a communication start request from LTE terminal 300 (step ST503). In addition, although the example which performs the communication start request | requirement with respect to the base station 200 from the LTE terminal 300 is shown in FIG. 5, the base station 200 may request | require communication start with respect to the LTE terminal 300. FIG.
 次に、基地局200は、中継制御部208において、LTE端末300との通信を開始する必要がある場合、ステップST501及びステップST502において取得した位置情報に基づいて、中継局を選択する(ステップST504)。ここで選択される中継局は、通信を開始するLTE端末300の近くに存在し、かつ現在通信中ではないLTE-A端末100である。なお、基地局200は、LTE端末300へ送信するデータ量が閾値以上の場合にのみ、中継を行う中継局を選択するようにしてもよい。 Next, when the relay control unit 208 needs to start communication with the LTE terminal 300, the base station 200 selects a relay station based on the position information acquired in Step ST501 and Step ST502 (Step ST504). ). The relay station selected here is an LTE-A terminal 100 that exists near the LTE terminal 300 that starts communication and is not currently communicating. Note that the base station 200 may select a relay station for relaying only when the amount of data to be transmitted to the LTE terminal 300 is equal to or greater than a threshold value.
 また、基地局200は、中継局として選択したLTE-A端末100に対して、中継開始要求を送信する(ステップST505)。中継開始要求には、転送先のLTE端末300の端末情報(IDまたはRNTI(Radio Network Temporary Identity)等)が転送先IDとして含まれている。 Further, base station 200 transmits a relay start request to LTE-A terminal 100 selected as the relay station (step ST505). The relay start request includes terminal information (such as ID or RNTI (Radio Network Temporary Identity)) of the transfer destination LTE terminal 300 as the transfer destination ID.
 中継局として選ばれたLTE-A端末100は、基地局200へ中継開始応答を返す(ステップST506)。 LTE-A terminal 100 selected as the relay station returns a relay start response to base station 200 (step ST506).
 次に、基地局200は、スケジューラ207において、LTE-A端末100に対して、CAを用いたスケジューリングを行い(ステップST507)、広帯域で下り送信(CA送信)を行う(ステップST508)。 Next, base station 200 performs scheduling using CA for LTE-A terminal 100 in scheduler 207 (step ST507), and performs downlink transmission (CA transmission) in a wide band (step ST508).
 次に、中継局であるLTE-A端末100は、基地局200から受けた信号をデータ復調部109において復調する。そして、LTE-A端末100は、リソースマッピング部119において、単一のCCの全リソースへ下りデータを再マッピングし(ステップST509)、転送先のLTE端末300へ送信(単一CC送信)する(ステップST510)。この際、LTE-A端末100は、送信電力を所定量小さく設定する。また、LTE-A端末100は、LTE端末300がデータ復調を行うために使用するヘッダなどの制御情報を生成する際に、転送先の端末情報を転送先IDとして使用する。この処理(ステップST507~ステップST510の処理)を通信が終了するまで繰り返す。 Next, LTE-A terminal 100 as a relay station demodulates the signal received from base station 200 in data demodulator 109. Then, in the resource mapping section 119, the LTE-A terminal 100 remaps the downlink data to all resources of a single CC (step ST509), and transmits it to the transfer destination LTE terminal 300 (single CC transmission) ( Step ST510). At this time, the LTE-A terminal 100 sets the transmission power to be a predetermined amount smaller. The LTE-A terminal 100 uses terminal information of a transfer destination as a transfer destination ID when generating control information such as a header used for the LTE terminal 300 to perform data demodulation. This process (the processes of steps ST507 to ST510) is repeated until communication is completed.
 通信が終了した場合、基地局200は、中継局のLTE-A端末100へ中継終了要求を送信する(ステップST511)。 When the communication is completed, the base station 200 transmits a relay end request to the LTE-A terminal 100 of the relay station (step ST511).
 次に、中継局であるLTE-A端末100は、基地局200へ中継終了応答を返す(ステップST512)。 Next, LTE-A terminal 100 as a relay station returns a relay end response to base station 200 (step ST512).
 <再マッピングについて>
 図6は、再マッピングの方法を示す図である。なお、図6において、LTE-Advanced対応端末は、通信装置100と同一構成であるので、通信装置100と同一符号を付して説明する。また、図6及び図6を用いた説明において、LTE-Advanced対応端末をLTE-A端末と記載し、LTE-Advanced非対応端末(LTE対応端末)をLTE端末と記載する。
<About remapping>
FIG. 6 is a diagram illustrating a remapping method. In FIG. 6, since the LTE-Advanced compatible terminal has the same configuration as that of the communication apparatus 100, the same reference numerals as those of the communication apparatus 100 are used for description. In the description using FIG. 6 and FIG. 6, the LTE-Advanced compatible terminal is described as an LTE-A terminal, and the LTE-Advanced non-compatible terminal (LTE compatible terminal) is described as an LTE terminal.
 LTE-A端末100は、基地局200との間で用いられる通信システム(LTE)で使用可能な帯域幅の中の一部の帯域幅を分割した複数のCC#601~#603にマッピングされた下りデータD1~D3を、基地局200より受信する。ここでは、説明を簡単にするため、CCの数を3として説明するが、CCの数は必ずしも3である必要はない。この際、基地局200から送信される下りデータD1~D3は、各CC#601~#603において、周波数リソースの一部が割り当てられている。 The LTE-A terminal 100 is mapped to a plurality of CCs # 601 to # 603 obtained by dividing a part of the bandwidth that can be used in the communication system (LTE) used with the base station 200. Downlink data D 1 to D 3 are received from the base station 200. Here, for simplicity of explanation, the number of CCs is assumed to be three, but the number of CCs is not necessarily three. At this time, the downlink data D1 to D3 transmitted from the base station 200 is assigned a part of the frequency resource in each CC # 601 to # 603.
 下りデータを受信したLTE-A端末100は、リソースマッピング部119において、下りデータを単一のCC#610に再マッピングする。この際、再マッピングされた下りデータD4は、単一のCC#610において、周波数リソースの全部が割り当てられる。 The LTE-A terminal 100 that has received the downlink data remaps the downlink data to a single CC # 610 in the resource mapping unit 119. At this time, the remapped downlink data D4 is all allocated frequency resources in a single CC # 610.
 <本実施の形態の効果>
 本実施の形態によれば、LTE-Advanced対応端末において、LTE-Advanced非対応端末宛のデータを単一CCの全リソースに再マッピングしてLTE-Advanced非対応端末に転送する。これにより、LTE-Advanced対応端末とLTE-Advanced非対応端末とが存在する場合において、LTE-Advanced非対応端末のスループットを向上させることができる。
<Effects of the present embodiment>
According to the present embodiment, in the LTE-Advanced compatible terminal, the data addressed to the LTE-Advanced non-compliant terminal is remapped to all resources of a single CC and transferred to the LTE-Advanced non-compliant terminal. As a result, when there are LTE-Advanced compatible terminals and LTE-Advanced non-compatible terminals, the throughput of the LTE-Advanced non-compatible terminals can be improved.
 また、本実施の形態によれば、LTE-Advanced非対応端末への転送の際に送信電力を低くするので、他の端末への与干渉を抑制することができる。 Also, according to the present embodiment, the transmission power is reduced when transferring to a terminal that does not support LTE-Advanced, so that interference with other terminals can be suppressed.
 (実施の形態2)
 図7は、本発明の実施の形態2に係る通信装置700の構成を示すブロック図である。
(Embodiment 2)
FIG. 7 is a block diagram showing a configuration of communication apparatus 700 according to Embodiment 2 of the present invention.
 図7に示す通信装置700は、図3に示す実施の形態1に係る通信装置100に対して、チャネル推定部701及び指向性形成部703を追加し、転送制御部117の代わりに転送制御部702を有し、リソースデマッピング部106の代わりにリソースデマッピング部704を有する。なお、図7において、図3と同一構成である部分には同一の符号を付してその説明を省略する。 A communication apparatus 700 illustrated in FIG. 7 adds a channel estimation unit 701 and a directivity forming unit 703 to the communication apparatus 100 according to the first embodiment illustrated in FIG. 3, and a transfer control unit instead of the transfer control unit 117. And a resource demapping unit 704 instead of the resource demapping unit 106. In FIG. 7, parts having the same configuration as in FIG.
 RF部102は、アンテナ101から入力した受信信号をダウンコンバートして同期部103及に出力する。 The RF unit 102 down-converts the reception signal input from the antenna 101 and outputs it to the synchronization unit 103.
 チャネル推定部701は、転送制御部702からの指示に従って、リソースデマッピング部704から入力したリファレンス信号を用いて、データの転送先との間のチャネル推定を行い、推定結果を指向性形成部703に出力する。 The channel estimation unit 701 performs channel estimation with the data transfer destination using the reference signal input from the resource demapping unit 704 according to the instruction from the transfer control unit 702, and the estimation result is transmitted to the directivity forming unit 703. Output to.
 GI挿入部121は、IFFT部120から入力した信号にガードインターバルを挿入して指向性形成部703に出力する。 The GI insertion unit 121 inserts a guard interval into the signal input from the IFFT unit 120 and outputs the signal to the directivity forming unit 703.
 指向性形成部703は、データの転送先に対して指向性を向けて送信するために、GI挿入部121から入力した信号に対して重み付けを行って指向性を設け、指向性を設けた信号をRF部122に出力する。 The directivity forming unit 703 weights the signal input from the GI insertion unit 121 to provide directivity and transmits the directivity to the data transfer destination. Is output to the RF unit 122.
 RF部122は、指向性形成部703から入力した信号をアップコンバートしてアンテナ123に出力する。 The RF unit 122 up-converts the signal input from the directivity forming unit 703 and outputs it to the antenna 123.
 転送制御部702は、転送を開始する場合には、チャネル推定部701に対して、転送先の端末との間のチャネル推定を行うように指示する。転送制御部702は、リソースデマッピング部704に対して、転送先の端末から受信したリファレンス信号を抽出し、チャネル推定部701へ渡すように指示する。なお、転送制御部702におけるその他の構成及び動作は転送制御部117と同様であるので、その説明を省略する。 When the transfer control unit 702 starts the transfer, the transfer control unit 702 instructs the channel estimation unit 701 to perform channel estimation with the transfer destination terminal. The transfer control unit 702 instructs the resource demapping unit 704 to extract the reference signal received from the transfer destination terminal and pass it to the channel estimation unit 701. Note that other configurations and operations of the transfer control unit 702 are the same as those of the transfer control unit 117, and thus description thereof is omitted.
 FFT部105は、GI除去部104から入力した受信信号を高速フーリエ変換(FFT)してリソースデマッピング部704に出力する。 The FFT unit 105 performs fast Fourier transform (FFT) on the received signal input from the GI removal unit 104 and outputs the result to the resource demapping unit 704.
 リソースデマッピング部704は、転送制御部702の指示に従って、FFT部105から入力した受信信号に含まれるリファレンス信号を抽出してチャネル推定部701に出力する。なお、リソースデマッピング部704におけるその他の構成及び動作は上記実施の形態1と同様であるので、その説明を省略する。 The resource demapping unit 704 extracts a reference signal included in the received signal input from the FFT unit 105 in accordance with an instruction from the transfer control unit 702 and outputs the reference signal to the channel estimation unit 701. Note that other configurations and operations in the resource demapping unit 704 are the same as those in the first embodiment, and a description thereof will be omitted.
 データ復調部109は、リソースデマッピング部704から入力した受信信号を復調して誤り訂正復号部110に出力する。 The data demodulator 109 demodulates the received signal input from the resource demapping unit 704 and outputs the demodulated signal to the error correction decoding unit 110.
 切替部111は、転送制御部702の制御に従って、誤り訂正復号部110から入力した復号データの中継制御情報解読部112への出力と、切替部114への出力とを切り替える。なお、切替部111におけるその他の構成及び動作は上記実施の形態1と同様であるので、その説明を省略する。 The switching unit 111 switches between the output of the decoded data input from the error correction decoding unit 110 to the relay control information decoding unit 112 and the output to the switching unit 114 according to the control of the transfer control unit 702. Note that other configurations and operations in the switching unit 111 are the same as those in the first embodiment, and thus the description thereof is omitted.
 中継制御情報解読部112は、切替部111から入力した復号データに転送先IDが含まれている場合には転送先IDを抽出し、抽出した転送先IDを転送制御部702に出力する。なお、中継制御情報解読部112におけるその他の構成及び動作は上記実施の形態1と同様であるので、その説明を省略する。 The relay control information decoding unit 112 extracts the transfer destination ID when the decrypted data input from the switching unit 111 includes the transfer destination ID, and outputs the extracted transfer destination ID to the transfer control unit 702. Note that other configurations and operations in the relay control information decoding unit 112 are the same as those in the first embodiment, and a description thereof will be omitted.
 切替部114は、転送制御部702の制御に従って、送信データ生成部113から入力した送信データの誤り訂正符号化部115への出力と、切替部111から入力した復号データの誤り訂正符号化部115への出力とを切り替える。なお、切替部114におけるその他の構成及び動作は上記実施の形態1と同様であるので、その説明を省略する。 The switching unit 114 outputs the transmission data input from the transmission data generation unit 113 to the error correction encoding unit 115 and the error correction encoding unit 115 of the decoded data input from the switching unit 111 according to the control of the transfer control unit 702. Switch to output to. Note that the other configuration and operation of the switching unit 114 are the same as those of the first embodiment, and thus description thereof is omitted.
 制御情報生成部118は、転送制御部702から入力した転送先IDを含む制御情報を生成してリソースマッピング部119に出力する。 The control information generation unit 118 generates control information including the transfer destination ID input from the transfer control unit 702 and outputs the control information to the resource mapping unit 119.
 リソースマッピング部119は、データ変調部116から入力した変調信号が転送先のLTE-Advanced非対応端末に送信するデータの変調信号である場合に、転送制御部702の制御に従って、データ変調部116から入力した変調信号を単一のCCにマッピングする。なお、リソースマッピング部119におけるその他の構成及び動作は上記実施の形態1と同様であるので、その説明を省略する。 When the modulation signal input from the data modulation unit 116 is a modulation signal of data to be transmitted to a transfer destination LTE-Advanced non-compliant terminal, the resource mapping unit 119 receives data from the data modulation unit 116 according to the control of the transfer control unit 702. The input modulation signal is mapped to a single CC. Note that other configurations and operations in the resource mapping unit 119 are the same as those in the first embodiment, and a description thereof will be omitted.
 RF部122は、転送制御部702の指示に従って、転送時のキャリア周波数をダウンリンク用のものに切り替える。なお、RF部122におけるその他の構成及び動作は上記実施の形態1と同様であるので、その説明を省略する。 The RF unit 122 switches the carrier frequency at the time of transfer to that for downlink according to the instruction of the transfer control unit 702. Note that other configurations and operations in the RF unit 122 are the same as those in the first embodiment, and a description thereof will be omitted.
 なお、本実施の形態において、基地局は図4と同一構成であるので、その説明を省略する。また、本実施の形態において、通信装置及び基地局の動作は指向性送信する以外は上記実施の形態1と同様であるので、その説明を省略する。 In this embodiment, the base station has the same configuration as that shown in FIG. Further, in the present embodiment, the operations of the communication apparatus and the base station are the same as those in the first embodiment except that directional transmission is performed, and thus the description thereof is omitted.
 このように、本実施の形態によれば、LTE-Advanced非対応端末への転送の際に指向性送信するので、他の端末への与干渉を更に抑制することができる。 Thus, according to the present embodiment, directional transmission is performed during transfer to a terminal that does not support LTE-Advanced, so that interference with other terminals can be further suppressed.
 (実施の形態3)
 図8は、本発明の実施の形態3に係る通信装置800の構成を示すブロック図である。
(Embodiment 3)
FIG. 8 is a block diagram showing a configuration of communication apparatus 800 according to Embodiment 3 of the present invention.
 図8に示す通信装置800は、図3に示す実施の形態1に係る通信装置100に対して、転送制御部117の代わりに転送制御部801を有する。なお、図8において、図3と同一構成である部分には同一の符号を付してその説明を省略する。 8 has a transfer control unit 801 instead of the transfer control unit 117, compared to the communication device 100 according to the first embodiment shown in FIG. In FIG. 8, parts having the same configuration as in FIG.
 転送制御部801は、転送を開始する場合には、所定の符号化率よりも大きい符号化率で符号化することを誤り訂正符号化部115に指示する。例えば、転送制御部801は、現在符号化率1/3で符号化している場合には、転送を開始する場合には、符号化率1/2で符号化を行うように誤り訂正符号化部115に指示する。ここで、所定の符号化率とは、例えば予め設定されている符号化率である。また、誤り訂正符号化部115はレートマッチ機能を有している。従って、符号化率は、誤り訂正符号化に関するものと、レートマッチに関するものとの、両方またはいずれか一方のものである。 When starting the transfer, the transfer control unit 801 instructs the error correction coding unit 115 to perform coding at a coding rate larger than a predetermined coding rate. For example, if the transfer control unit 801 is currently encoding at a coding rate of 1/3, the error correction coding unit may perform coding at a coding rate of 1/2 when starting transfer. 115 is instructed. Here, the predetermined coding rate is a coding rate set in advance, for example. Further, the error correction coding unit 115 has a rate matching function. Therefore, the coding rate is one related to error correction coding and / or one related to rate matching.
 転送制御部801は、転送を開始する場合には、所定の変調多値数よりも大きい変調多値数で変調することをデータ変調部116に指示する。例えば、転送制御部801は、現在16QAMで変調している場合には、転送を開始する場合には、64QAMで変調することをデータ変調部116に指示する。ここで、所定の変調多値数とは、例えば予め設定されている変調多値数である。なお、転送制御部801におけるその他の構成及び動作は転送制御部117と同様であるので、その説明を省略する。 When starting the transfer, the transfer control unit 801 instructs the data modulation unit 116 to perform modulation with a modulation multilevel number larger than a predetermined modulation multilevel number. For example, if the transfer control unit 801 currently modulates with 16 QAM, the transfer control unit 801 instructs the data modulation unit 116 to perform modulation with 64 QAM when starting the transfer. Here, the predetermined modulation multilevel number is, for example, a preset modulation multilevel number. Note that the other configuration and operation of the transfer control unit 801 are the same as those of the transfer control unit 117, and thus description thereof is omitted.
 切替部111は、転送制御部801の制御に従って、誤り訂正復号部110から入力した復号データの中継制御情報解読部112への出力と、切替部114への出力とを切り替える。なお、切替部111におけるその他の構成及び動作は上記実施の形態1と同様であるので、その説明を省略する。 The switching unit 111 switches between the output of the decoded data input from the error correction decoding unit 110 to the relay control information decoding unit 112 and the output to the switching unit 114 according to the control of the transfer control unit 801. Note that other configurations and operations in the switching unit 111 are the same as those in the first embodiment, and thus the description thereof is omitted.
 中継制御情報解読部112は、切替部111から入力した復号データに転送先IDが含まれている場合には転送先IDを抽出し、抽出した転送先IDを転送制御部801に出力する。なお、中継制御情報解読部112におけるその他の構成及び動作は上記実施の形態1と同様であるので、その説明を省略する。 The relay control information decoding unit 112 extracts the transfer destination ID when the decrypted data input from the switching unit 111 includes the transfer destination ID, and outputs the extracted transfer destination ID to the transfer control unit 801. Note that other configurations and operations in the relay control information decoding unit 112 are the same as those in the first embodiment, and a description thereof will be omitted.
 切替部114は、転送制御部801の制御に従って、送信データ生成部113から入力した送信データの誤り訂正符号化部115への出力と、切替部111から入力した復号データの誤り訂正符号化部115への出力とを切り替える。なお、切替部114におけるその他の構成及び動作は上記実施の形態1と同様であるので、その説明を省略する。 The switching unit 114 outputs the transmission data input from the transmission data generation unit 113 to the error correction encoding unit 115 and the error correction encoding unit 115 of the decoded data input from the switching unit 111 according to the control of the transfer control unit 801. Switch to output to. Note that the other configuration and operation of the switching unit 114 are the same as those of the first embodiment, and thus description thereof is omitted.
 誤り訂正符号化部115は、切替部114から入力した送信データ若しくは復号データ、回線品質報告部108から入力した回線品質情報、または位置情報生成部126から入力した位置情報に対して誤り訂正符号化処理を施して符号化データを生成する。誤り訂正符号化部115は、生成した符号化データをデータ変調部116に出力する。この際、誤り訂正符号化部115は、転送制御部801の指示に従って、転送する復号データを符号化する際に、所定の符号化率よりも大きい符号化率で符号化する。 Error correction coding section 115 performs error correction coding on transmission data or decoded data input from switching section 114, channel quality information input from channel quality reporting section 108, or position information input from position information generating section 126. Processing is performed to generate encoded data. The error correction encoding unit 115 outputs the generated encoded data to the data modulation unit 116. At this time, the error correction coding unit 115 performs coding at a coding rate larger than a predetermined coding rate when coding the decoded data to be transferred in accordance with an instruction from the transfer control unit 801.
 データ変調部116は、誤り訂正符号化部115から入力した符号化データを変調して変調信号を生成し、生成した変調信号をリソースマッピング部119に出力する。この際、データ変調部116は、転送制御部801の指示に従って、転送するデータ信号に対して、現在の変調多値数よりも大きな変調多値数で変調する。 The data modulator 116 modulates the encoded data input from the error correction encoder 115 to generate a modulated signal, and outputs the generated modulated signal to the resource mapping unit 119. At this time, the data modulation unit 116 modulates the data signal to be transferred with a modulation multilevel number larger than the current modulation multilevel number in accordance with the instruction of the transfer control unit 801.
 制御情報生成部118は、転送制御部801から入力した転送先IDを含む制御情報を生成してリソースマッピング部119に出力する。 The control information generation unit 118 generates control information including the transfer destination ID input from the transfer control unit 801 and outputs the control information to the resource mapping unit 119.
 リソースマッピング部119は、データ変調部116から入力した変調信号が転送先のLTE-Advanced非対応端末に送信するデータの変調信号である場合に、転送制御部801の制御に従って、データ変調部116から入力した変調信号を単一のCCにマッピングする。なお、リソースマッピング部119におけるその他の構成及び動作は上記実施の形態1と同様であるので、その説明を省略する。 When the modulation signal input from the data modulation unit 116 is a modulation signal of data to be transmitted to a transfer destination LTE-Advanced non-compliant terminal, the resource mapping unit 119 receives data from the data modulation unit 116 according to the control of the transfer control unit 801. The input modulation signal is mapped to a single CC. Note that other configurations and operations in the resource mapping unit 119 are the same as those in the first embodiment, and a description thereof will be omitted.
 RF部122は、転送制御部801の指示に従って、転送時のキャリア周波数をダウンリンク用のものに切り替える。なお、RF部122におけるその他の構成及び動作は上記実施の形態1と同様であるので、その説明を省略する。 The RF unit 122 switches the carrier frequency at the time of transfer to that for downlink according to the instruction of the transfer control unit 801. Note that other configurations and operations in the RF unit 122 are the same as those in the first embodiment, and a description thereof will be omitted.
 このように、本実施の形態によれば、LTE-Advanced非対応端末への転送の際に符号化率を高くするとともに変調多値数を大きくするので、単一のCCへの再マッピングを容易に実施することができるとともに、データの転送効率を向上させることができる。なお、通信装置と、転送先の端末との距離は近いため、符号化率や変調多値数を大きくしても、通信可能となる。 As described above, according to the present embodiment, since the coding rate is increased and the modulation multi-level number is increased when transferring to a terminal that does not support LTE-Advanced, remapping to a single CC is easy. And the data transfer efficiency can be improved. Since the distance between the communication apparatus and the transfer destination terminal is short, communication is possible even if the coding rate and the modulation multi-level number are increased.
 なお、本実施の形態において、転送の際に、符号化率を大きくするとともに変調多値数を大きくしたが、本発明はこれに限らず、符号化率と変調多値数との何れか一方のみを大きくしてもよい。 In this embodiment, at the time of transfer, the coding rate is increased and the modulation multi-level number is increased. However, the present invention is not limited to this, and either the coding rate or the modulation multi-level number is selected. You may enlarge only.
 <全ての実施の形態に共通の変形例>
 上記実施の形態1~実施の形態3において、転送の際に、所定の送信電力よりも低い送信電力で送信したが、本発明はこれに限らず、所定の送信電力で送信してもよい。
<Modification common to all embodiments>
In the first to third embodiments, transmission is performed with transmission power lower than the predetermined transmission power at the time of transfer. However, the present invention is not limited to this, and transmission may be performed with predetermined transmission power.
 上記実施の形態1~実施の形態3において、再マッピングの際に送信電力を低くしたが、本発明はこれに限らず、RF部における送信処理の際に送信電力を低くしてもよい。 In Embodiments 1 to 3, the transmission power is reduced during remapping, but the present invention is not limited to this, and the transmission power may be reduced during the transmission processing in the RF unit.
 上記実施の形態1~実施の形態3において、図示しないスクランブル部において、転送先IDを用いてスクランブルコードを生成するようにしてもよい。 In Embodiments 1 to 3, the scramble unit (not shown) may generate a scramble code using the transfer destination ID.
 上記実施の形態1~実施の形態3において、転送を行う通信装置100、700および800は、LTE-Advanced対応端末の他に、LTE-Advancedに対応した中継装置(Relay Node等)であってもよい。 In the first to third embodiments, the communication apparatuses 100, 700, and 800 that perform transfer may be relay apparatuses (Relay Node or the like) that support LTE-Advanced in addition to LTE-Advanced terminals. Good.
 上記実施の形態1~実施の形態3において、転送を行う通信装置100、700および800がLTE-Advanced対応端末であった場合、中継中または中継後に、中継していること若しくは中継したことを、画面などの表示媒体、スピーカ若しくはLED等を用いてユーザへ通知してもよい。 In the first to third embodiments, when the communication devices 100, 700, and 800 that perform transfer are LTE-Advanced compatible terminals, relaying or relaying during or after relaying, You may notify a user using display media, such as a screen, a speaker, or LED.
 2011年12月15日出願の特願2011-274637の日本出願に含まれる明細書、図面および要約書の開示内容は、すべて本願に援用される。 The disclosure of the specification, drawings and abstract contained in the Japanese application of Japanese Patent Application No. 2011-274737 filed on December 15, 2011 is incorporated herein by reference.
 本発明にかかる通信装置及びデータ転送方法は、LTE-Advanced対応端末とLTE-Advanced非対応端末とが存在するシステムに用いるのに好適である。 The communication device and the data transfer method according to the present invention are suitable for use in a system in which there are LTE-Advanced compatible terminals and LTE-Advanced non-compatible terminals.
 100 通信装置
 101 アンテナ
 102 RF部
 103 同期部
 104 GI除去部
 105 FFT部
 106 リソースデマッピング部
 107 回線品質測定部
 108 回線品質報告部
 109 データ復調部
 110 誤り訂正復号部
 111 切替部
 112 中継制御情報解読部
 113 送信データ生成部
 114 切替部
 115 誤り訂正符号化部
 116 データ変調部
 117 転送制御部
 118 制御情報生成部
 119 リソースマッピング部
 120 IFFT部
 121 GI挿入部
 122 RF部
 123 アンテナ
 124 アンテナ
 125 GPS受信部
 126 位置情報生成部
DESCRIPTION OF SYMBOLS 100 Communication apparatus 101 Antenna 102 RF part 103 Synchronization part 104 GI removal part 105 FFT part 106 Resource demapping part 107 Line quality measurement part 108 Line quality report part 109 Data demodulation part 110 Error correction decoding part 111 Switching part 112 Relay control information decoding Unit 113 transmission data generation unit 114 switching unit 115 error correction coding unit 116 data modulation unit 117 transfer control unit 118 control information generation unit 119 resource mapping unit 120 IFFT unit 121 GI insertion unit 122 RF unit 123 antenna 124 antenna 125 GPS reception unit 126 Position information generation unit

Claims (6)

  1.  基地局との間で用いられる通信システムで使用可能な帯域幅の中の一部の帯域幅を分割した複数の異なる帯域にマッピングされて前記基地局より送信された、自分の周辺に存在する端末装置宛のデータを受信する受信手段と、
     前記端末装置宛のデータの前記端末装置への転送を前記基地局より要求された場合に、前記受信手段により受信した前記複数の異なる帯域にマッピングされているデータを、単一の帯域に再マッピングする再マッピング手段と、
     前記再マッピング手段により前記単一の帯域に再マッピングしたデータを前記端末装置に転送する転送手段と、
     を具備する通信装置。
    A terminal existing in the vicinity of the base station, which is transmitted from the base station after being mapped to a plurality of different bands obtained by dividing a part of the bandwidth usable in the communication system used with the base station Receiving means for receiving data addressed to the device;
    When the base station requests transfer of data addressed to the terminal device, the data mapped to the plurality of different bands received by the receiving unit is remapped to a single band. Remapping means to
    Transfer means for transferring the data remapped to the single band by the remapping means to the terminal device;
    A communication apparatus comprising:
  2.  前記再マッピング手段は、単一の帯域に再マッピングしたデータを転送する際の送信電力を所定量小さくする、
     請求項1記載の通信装置。
    The remapping means reduces a transmission power when transferring data remapped to a single band by a predetermined amount.
    The communication apparatus according to claim 1.
  3.  前記転送手段は、前記再マッピング手段により単一の帯域に再マッピングしたデータを転送する際に、前記端末装置に対して指向性を向けて送信する、
     請求項1記載の通信装置。
    The transfer means transmits the data remapped to a single band by the remapping means and transmits the data with directivity to the terminal device.
    The communication apparatus according to claim 1.
  4.  前記受信手段により受信した前記複数の異なる帯域にマッピングされているデータを復調及び復号する復調及び復号手段と、
     前記復調及び復号手段により復号した前記複数の異なる帯域にマッピングされているデータを符号化するとともに、前記符号化の際の符号化率を所定の符号化率よりも大きくする符号化手段と、
     をさらに具備し、
     前記再マッピング手段は、前記符号化手段により符号化された前記複数の異なる帯域にマッピングされているデータを単一の帯域に再マッピングする、
     請求項1記載の通信装置。
    Demodulation and decoding means for demodulating and decoding the data mapped to the plurality of different bands received by the receiving means;
    Encoding means for encoding the data mapped to the plurality of different bands decoded by the demodulation and decoding means, and for making the encoding rate at the time of encoding larger than a predetermined encoding rate;
    Further comprising
    The remapping means re-maps the data mapped to the plurality of different bands encoded by the encoding means to a single band;
    The communication apparatus according to claim 1.
  5.  前記受信手段により受信した前記複数の異なる帯域にマッピンされているデータを復調及び復号する復調及び復号手段と、
     前記復調及び復号手段により復号した前記複数の異なる帯域にマッピングされているデータを変調するとともに、前記変調の際の変調多値数を所定の変調多値数よりも大きくする変調手段と、
     をさらに具備し、
     前記再マッピング手段は、前記変調手段により変調された前記複数の異なる帯域にマッピングされているデータを単一の帯域に再マッピングする、
     請求項1記載の通信装置。
    Demodulation and decoding means for demodulating and decoding the data mapped to the different bands received by the receiving means;
    Modulation means for modulating the data mapped to the plurality of different bands decoded by the demodulation and decoding means, and for making the modulation multilevel number at the time of modulation larger than a predetermined modulation multilevel number;
    Further comprising
    The remapping means re-maps the data mapped to the plurality of different bands modulated by the modulating means to a single band;
    The communication apparatus according to claim 1.
  6.  基地局との間で用いられる通信システムで使用可能な帯域幅の中の一部の帯域幅を分割した複数の異なる帯域にマッピングされて前記基地局より送信された、自分の周辺に存在する端末装置宛のデータを受信するステップと、
     前記端末装置宛のデータの前記端末装置への転送を前記基地局より要求された場合に、受信した前記複数の異なる帯域にマッピングされているデータを、単一の帯域に再マッピングするステップと、
     前記単一の帯域に再マッピングしたデータを前記端末装置に転送するステップと、
     を具備するデータ転送方法。
    A terminal existing in the vicinity of the base station, which is transmitted from the base station after being mapped to a plurality of different bands obtained by dividing a part of the bandwidth usable in the communication system used with the base station Receiving data addressed to the device;
    Re-mapping the received data mapped to the plurality of different bands to a single band when the base station requests transfer of data addressed to the terminal apparatus to the terminal apparatus;
    Transferring the remapped data to the single band to the terminal device;
    A data transfer method comprising:
PCT/JP2012/005864 2011-12-15 2012-09-14 Communication device and data forwarding method WO2013088612A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-274637 2011-12-15
JP2011274637A JP2013126156A (en) 2011-12-15 2011-12-15 Communication device and data transfer method

Publications (1)

Publication Number Publication Date
WO2013088612A1 true WO2013088612A1 (en) 2013-06-20

Family

ID=48612095

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/005864 WO2013088612A1 (en) 2011-12-15 2012-09-14 Communication device and data forwarding method

Country Status (2)

Country Link
JP (1) JP2013126156A (en)
WO (1) WO2013088612A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018513632A (en) * 2015-04-03 2018-05-24 華為技術有限公司Huawei Technologies Co.,Ltd. Data transmission method, user equipment, and base station

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008541607A (en) * 2005-05-11 2008-11-20 テレフオンアクチーボラゲット エル エム エリクソン(パブル) Multi-carrier scheduling
JP2011066869A (en) * 2009-08-19 2011-03-31 Panasonic Corp Wireless communication base station apparatus, small-scale wireless communication base station apparatus, wireless communication terminal apparatus, radio transmitting method, radio relaying method, and radio receiving method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008541607A (en) * 2005-05-11 2008-11-20 テレフオンアクチーボラゲット エル エム エリクソン(パブル) Multi-carrier scheduling
JP2011066869A (en) * 2009-08-19 2011-03-31 Panasonic Corp Wireless communication base station apparatus, small-scale wireless communication base station apparatus, wireless communication terminal apparatus, radio transmitting method, radio relaying method, and radio receiving method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018513632A (en) * 2015-04-03 2018-05-24 華為技術有限公司Huawei Technologies Co.,Ltd. Data transmission method, user equipment, and base station

Also Published As

Publication number Publication date
JP2013126156A (en) 2013-06-24

Similar Documents

Publication Publication Date Title
JP7359269B2 (en) Terminal equipment, base station equipment, communication method and program
CN105338518B (en) Apparatus and method in a wireless communication system
US20200053528A1 (en) Multiplexing of physical sidelink control channel (pscch) and physical sidelink shared channel (pssch)
US8743815B2 (en) Method and base station for transmitting SA-preamble and method and user equipment for receiving SA-preamble
US20230254191A1 (en) Communication apparatuses, methods, system, programs and recording media
WO2019195505A1 (en) Control information signaling and procedure for new radio (nr) vehicle-to-everything (v2x) communications
EP2557833A1 (en) Wireless relay station device, wireless base station device, and relay frequency allocation method
JP5484635B2 (en) Control channel structure in which control information is distributed to multiple subframes on different carriers
EP3544347B1 (en) Method for transmitting information, network device and terminal device
KR20080035867A (en) Apparatus and method for control information communication in multi-hop relay broadband wireless access communication system
WO2012132295A1 (en) Transmission device, receiving device, transmission method and receiving method
KR20110099231A (en) Radio terminal, radio base station, channel signal forming method and channel signal receiving method
JP2009017547A (en) Apparatus and method for processing transmission information of broadcast message constituted by relay station in multhop relay broadband wireless communication system
KR20110135393A (en) Radio terminal, radio base station, channel signal forming method, and channel signal receiving method
EP3373645A1 (en) Radio communication method and apparatus
KR20110096679A (en) Apparatus and methof for supporting asymmetric carrier aggregation in wireless communication system
JP7253625B2 (en) Downlink data transmission method, reception method, device and storage medium
WO2015141715A1 (en) Terminal device, base station device, integrated circuit, and communication method
KR20190073357A (en) Communication method, terminal and network device
EP3927044A1 (en) Method and device for determining sr configuration, and storage medium
CN110612759A (en) Base station device, terminal device, wireless communication system, and wireless communication method
US20090262671A1 (en) Apparatus and method for allocating uplink resources in a wireless communication system
WO2020088609A1 (en) End-to-end data transmission method and device
JP2009164816A (en) Wireless communication system, first wireless communication apparatus, second wireless communication apparatus, wireless receiving method, and wireless transmitting method
KR100949986B1 (en) Apparatus and method for transmiting and receiving control information in multi-hop relay broadband wireless communication system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12857939

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12857939

Country of ref document: EP

Kind code of ref document: A1