WO2013088594A1 - Backlight apparatus and liquid crystal display apparatus - Google Patents

Backlight apparatus and liquid crystal display apparatus Download PDF

Info

Publication number
WO2013088594A1
WO2013088594A1 PCT/JP2012/004534 JP2012004534W WO2013088594A1 WO 2013088594 A1 WO2013088594 A1 WO 2013088594A1 JP 2012004534 W JP2012004534 W JP 2012004534W WO 2013088594 A1 WO2013088594 A1 WO 2013088594A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
light
led
crystal panel
light source
Prior art date
Application number
PCT/JP2012/004534
Other languages
French (fr)
Japanese (ja)
Inventor
義一 山野
久昇 佐々木
高原 一郎
友徳 水谷
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2013088594A1 publication Critical patent/WO2013088594A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133611Direct backlight including means for improving the brightness uniformity
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133603Direct backlight with LEDs
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • G02F1/133607Direct backlight including a specially adapted diffusing, scattering or light controlling members the light controlling member including light directing or refracting elements, e.g. prisms or lenses

Definitions

  • the present disclosure relates to a backlight device and a liquid crystal display device using an LED (Light Emitting Diode) as a light source.
  • LED Light Emitting Diode
  • the backlight device of a conventional large liquid crystal display device a large number of cold cathode tubes are arranged directly under the liquid crystal panel, and these cold cathode tubes are used together with members such as a diffusion plate and a reflector.
  • LEDs have been used as light sources for backlight devices.
  • the efficiency of LEDs has been improved and is expected to be a light source with low power consumption, which is replaced with a fluorescent lamp.
  • the power consumption of the liquid crystal display device can be reduced by controlling the brightness of the LED according to the image.
  • Patent Document 1 proposes a light source having a plurality of point light sources arranged in a one-dimensional manner and an elongated cylindrical lens provided on the plurality of point light sources.
  • the present disclosure provides a backlight device and a liquid crystal display device capable of ensuring appropriate brightness while suppressing the number of LEDs used.
  • a backlight device is a backlight device that emits light from the back of a liquid crystal panel, and a plurality of LEDs that emit light toward the liquid crystal panel, and a lens unit that expands the light emitted from the plurality of LEDs And a light diffusing plate that is disposed between the liquid crystal panel and the light source unit and diffuses light emitted from the plurality of LEDs.
  • the light source unit a plurality of LED rows are formed.
  • a plurality of LEDs are arranged, and in the plurality of LED rows, there are two LED rows having different main emission directions of light.
  • the backlight device of the present disclosure is useful for ensuring appropriate brightness while suppressing the number of LEDs used.
  • FIG. 1 is an exploded perspective view showing a schematic configuration of the entire liquid crystal display device using the backlight device according to the first embodiment.
  • FIG. 2 is a cross-sectional view taken along the line AA in FIG.
  • FIG. 3 is a diagram illustrating a transmission state of light emitted from the LED according to the first embodiment.
  • FIG. 4 is a diagram illustrating an example of the directivity characteristic of the emitted light of the LED.
  • FIG. 5 is a diagram showing the intensity distribution of incident light on the entrance surface of the diffuser plate.
  • FIG. 6 is a diagram showing a luminance distribution on the exit surface of the diffusion plate.
  • FIG. 7 is a diagram illustrating an example of a pattern formed on the diffusion plate.
  • FIG. 8 is a schematic configuration diagram of the liquid crystal panel of the liquid crystal display device according to Embodiment 2 as seen through from the front.
  • FIG. 9 is a longitudinal sectional view of the liquid crystal display device according to the second embodiment.
  • FIG. 1 is an exploded perspective view showing an overall schematic configuration of a liquid crystal display device 11 using a backlight device 12 according to the present embodiment.
  • the liquid crystal display device 11 includes a front frame 1, a rectangular flat plate-shaped transmissive liquid crystal panel 2, and a backlight device 12 disposed on the back side of the liquid crystal panel 2. .
  • the backlight device 12 is formed in a rectangular parallelepiped shape having a size corresponding to the liquid crystal panel 2.
  • the liquid crystal display device 11 includes a drive device that drives the liquid crystal panel 2 based on the video signal, but the description thereof is omitted in the present embodiment.
  • the liquid crystal panel 2 is disposed in front of the backlight device 12 and transmits light emitted from the backlight device 12.
  • the front frame 1 is formed in a rectangular frame shape. Inside the front frame 1, a liquid crystal panel 2 and the like are provided.
  • the backlight device 12 includes a light source unit 10 that is linearly disposed at a substantially central portion in the short side direction of the liquid crystal panel 2, a rear frame 9 that accommodates the light source unit 10, and the liquid crystal panel 2 and the light source unit 10. Reflection that reflects the light radiated from the diffusion plate 4 disposed between, the diffusion sheet 3 disposed between the diffusion plate 4 and the liquid crystal panel 2, and the light source unit 10 toward the liquid crystal panel 2 side, that is, the diffusion plate 4 side. And a sheet 8.
  • the light emission surface of the diffusion sheet 3 (the surface on the liquid crystal panel 2 side) is the light emission surface of the backlight device 12.
  • the diffusion plate 4 performs diffusion for reducing uneven brightness of light emitted from the light source unit 10.
  • the diffusion plate 4 is made of a plate-like body such as an acrylic resin.
  • the diffusing plate 4 has dispersed minute particles in order to diffuse the light incident from one surface (incident surface on the light source unit 10 side) and emit the light from the other surface (emitted surface on the liquid crystal panel 2 side). It is composed of a translucent resin plate.
  • the diffusion sheet 3 is a rectangular sheet.
  • the diffusion sheet 3 has a size corresponding to the liquid crystal panel 2 and is disposed between the liquid crystal panel 2 and the diffusion plate 4.
  • the diffusion sheet 3 includes an optical sheet laminate.
  • This optical sheet laminate includes, for example, a prism sheet that condenses light incident from the diffusion plate 4 side toward the front liquid crystal panel 2 side, a diffusion sheet that further diffuses light incident from the diffusion plate 4 side, and a diffusion sheet 3 is constituted by a polarizing sheet or the like that transmits light having a specific polarization plane so that the polarization plane of the light emitted from 3 corresponds to the polarization plane of the liquid crystal panel 2.
  • the rear frame 9 and the front frame 1 constitute a casing of the liquid crystal display device 11.
  • the rear frame 9 has a substantially rectangular shape when viewed from the front.
  • a mountain-shaped substrate installation surface 9 a for installing two printed circuit boards 6 to be described later is formed along the longitudinal direction of the rear frame 9 at the central portion in the short direction of the rear frame 9.
  • the reflection sheet 8 is provided in front of the rear frame 9 over almost the entire area except for the installation area of the plurality of LEDs 7.
  • the reflection surface of the reflection sheet 8 has a concave curved surface so that the light emitted from the light source unit 10 can be efficiently and uniformly reflected to the diffusion plate 4 side.
  • FIG. 2 is a cross-sectional view taken along the line AA in FIG.
  • the light source unit 10 includes a plurality of LEDs 7 that emit light toward the liquid crystal panel 2, an LED installation unit 6 that has an LED installation surface 6 a, and a lens unit 5 that expands the light emitted from the plurality of LEDs 7. .
  • the light source unit 10 according to the present embodiment includes two printed circuit boards 6 each corresponding to the LED installation unit 6, a plurality of LEDs 7 mounted in a row on each printed circuit board 6, and a Fresnel corresponding to the lens unit 5. And a lens 5.
  • a plurality of LEDs 7 are arranged so that a plurality of LED rows 21 and 22 are formed.
  • Each printed circuit board 6 is formed in a strip shape, that is, an elongated rectangular shape.
  • the number of LED rows 21 and 22 in the light source unit 10 is two.
  • the number of LED rows is not limited to two.
  • the two LED rows 21 and 22 are the first LED row 21 mounted on the first printed circuit board 6 (the left printed circuit board 6 in FIG. 2) and the second printed circuit board 6 (the right printed circuit board in FIG. 2).
  • the second LED row 22 mounted on the printed circuit board 6).
  • Each LED row 21, 22 is mounted on the LED installation surface 6 a on the liquid crystal panel 2 side of the corresponding printed circuit board 6.
  • the LED rows 21 and 22 are mounted such that the main radiation direction of light of each LED 7 (the direction with the largest relative illuminance) is substantially perpendicular to the LED installation surface 6a.
  • the main radiation direction of the light of the LED 7 may be inclined to some extent with respect to the vertical without being substantially perpendicular to the LED installation surface 6a.
  • the Fresnel lens 5 is disposed between the liquid crystal panel 2 and the LED 7.
  • the Fresnel lens 5 is installed on the rear frame 9 so as to cover the two LED rows 21 and 22.
  • the Fresnel lens 5 extends in the longitudinal direction of the liquid crystal panel 2.
  • one Fresnel lens 5 is disposed in front of the plurality of LEDs 7 so as to cover all the LEDs 7.
  • the Fresnel lens 5 expands and emits the light emitted from the LED 7.
  • the Fresnel lens 5 extends the liquid crystal panel 2 in the short direction with respect to the light emitted from the two LED rows 21 and 22.
  • the Fresnel lens 5 is made of a transparent material having a refractive index of about 1.4 to 2.0, for example.
  • a transparent material having a refractive index of about 1.4 to 2.0, for example.
  • epoxy resin, silicon resin, acrylic resin, polycarbonate resin or the like, glass, or rubber such as silicon rubber can be used.
  • the two printed circuit boards 6 are disposed at substantially central portions in the short side direction of the liquid crystal panel 2 in a state of being inclined in different directions with respect to the main surface (front surface and back surface) of the liquid crystal panel 2.
  • the two printed circuit boards 6 are arranged along the longitudinal direction of the liquid crystal panel 2.
  • a plurality of LEDs 7 are arranged in the longitudinal direction of the liquid crystal panel 2.
  • the two printed circuit boards 6 have two LED rows 21 and 22 (LED groups) in which LEDs 7 are arranged in a row at substantially the center in the short side direction of the liquid crystal panel 2.
  • the two printed circuit boards 6 are arranged on the main surface of the liquid crystal panel 2 so that the main emission direction of the light in the first LED row 21 and the main emission direction of the light in the second LED row 22 are different from each other. On the other hand, they are arranged in an inclined state in different directions.
  • the 1st printed circuit board 6 and the 2nd printed circuit board 6 are arrange
  • the first printed circuit board 6 and the second printed circuit board 6 are inclined in the opposite direction by the same angle with respect to the main surface of the liquid crystal panel 2.
  • the first printed circuit board 6 and the second printed circuit board 6 are adjacent to each other.
  • the first LED row 21 is arranged closer to the first side 2 a than the second LED row 22.
  • the main radiation directions of the light in the two LED rows 21 and 22 are made different from each other by making the directions of the LED installation surfaces 6 a of the two printed circuit boards 6 different from each other.
  • the main radiation direction of the light in the first LED row 21 is closer to the first long side 2 a (first side) of the liquid crystal panel 2 than the thickness direction of the liquid crystal panel 2.
  • the main radiation direction of the light in the second LED row 22 is inclined to the second long side 2b (second side) side of the liquid crystal panel 2 with respect to the thickness direction of the liquid crystal panel 2.
  • FIG. 3 is a diagram showing a transmission state (light trajectory) of light emitted by the LED 7 according to the present embodiment.
  • FIG. 3 is a cross-sectional view taken along line AA of FIG. In FIG. 3, the light of the LED 7 is indicated by an arrow.
  • FIG. 4 is a diagram illustrating an example of the directivity characteristic of the emitted light of the LED 7.
  • the light having the directivity shown in FIG. 4 is emitted from the LED 7 shown in FIG.
  • the direction with the maximum relative illuminance and the radiation angle of 0 ° is the main radiation direction of the emitted light of the LED 7.
  • the left LED 7 is an LED in the first LED row 21, and the right LED 7 is an LED in the second LED row 22.
  • the LEDs 7 in the LED rows 21 and 22 are arranged to emit light in different directions.
  • the Fresnel lens 5 Most of the light emitted from the LED 7 is directly incident on the Fresnel lens 5. On the other hand, a part of the light emitted from the LED 7 is reflected by the incident surface of the Fresnel lens 5, but is reflected again by the reflection sheet 8 and enters the Fresnel lens 5. The light incident on the Fresnel lens 5 is expanded according to the optical shape and the refractive index. Most of the light emitted from the Fresnel lens 5 is directly incident on the diffusion plate 4. On the other hand, a part of the light emitted from the Fresnel lens 5 is reflected by the incident surface of the diffusion plate 4, but is reflected by the reflection sheet 8 again and enters the diffusion plate 4.
  • diffusion for reducing luminance unevenness is performed.
  • Light emitted from the diffusion plate 4 enters the diffusion sheet 3.
  • the diffusion sheet 3 light condensing toward the liquid crystal panel 2 side, diffusion, correspondence to the polarization plane, and the like are performed.
  • the light emitted from the diffusion sheet 3 enters the liquid crystal panel 2 and is modulated by a video signal or the like to form an image.
  • FIG. 5 is a diagram showing the intensity distribution of incident light on the incident surface of the diffuser plate 4.
  • FIG. 6 is a diagram showing a luminance distribution of outgoing light on the outgoing surface of the diffusion plate 4. 5 and 6, the lighter the position, the stronger the light intensity or the higher the luminance.
  • FIG. 7 is a diagram illustrating an example of a pattern formed on the diffusion plate 4.
  • the intensity distribution of incident light on the incident surface of the diffusion plate 4 corresponds to the luminance distribution of light immediately before entering the diffusion plate 4.
  • the luminance distribution of the emitted light on the exit surface of the diffusion plate 4 corresponds to the luminance distribution of the light immediately after being emitted from the diffusion plate 4.
  • the diffuser plate 4 of the present embodiment is configured such that the light transmittance in the thickness direction of the diffuser plate 4 becomes relatively smaller as the incident light intensity on the incident surface on the light source unit 10 side is higher. . That is, in the diffuser plate 4, the position where the intensity of incident light on the incident surface is high has a small light transmittance in the thickness direction of the diffuser plate 4, and the position where the intensity of incident light on the incident surface is weak is the diffuser plate 4. The light transmittance in the thickness direction is large. In the diffusing plate 4, as shown in FIG. 7, the luminance distribution of the exit surface of the diffusing plate 4 is inverted with respect to the intensity distribution of incident light on the incident surface so that the luminance distribution has almost no unevenness as shown in FIG.
  • Pattern that is, a pattern having a darker color in a lighter region in FIG. 5 is formed.
  • This pattern is formed on the entrance surface or the exit surface of the diffusion plate 4 by, for example, screen printing.
  • luminance unevenness on the exit surface of the diffusion plate 4 is reduced. Therefore, it is possible to realize a backlight device 12 of a surface light source that reduces luminance unevenness on the screen of the liquid crystal panel 2 using light emitted from the LED 7.
  • ink in which fine powder made of a transparent material having a high refractive index such as titanium oxide is dispersed in a transparent binder is used.
  • a pattern with a low transmittance (a pattern that has a large influence on the passing light beam in FIG. 7) is used at a location where the intensity of the incident light is strong, and a pattern with a high transmittance (a passing light beam in FIG. Small pattern).
  • each of the two LED rows 21 and 22 is different from the main surface of the liquid crystal panel 2 so that the main emission directions of light are different from each other.
  • the printed circuit board 6 is inclined. Therefore, it is possible to provide the liquid crystal display device 11 that can ensure appropriate brightness while suppressing the number of LEDs 7 used. Further, since the number of LEDs 7 used can be suppressed, it is possible to provide an inexpensive liquid crystal display device 11 with a simple configuration.
  • a pattern (printing pattern) that can make the intensity distribution of the light reaching the liquid crystal panel 2 uniform with respect to the intensity distribution of the light from the LED 7 reaching the diffusion plate 4 is a diffusion plate. 4 is formed. Therefore, it is possible to further reduce luminance unevenness on the light emission surface of the backlight device 12.
  • FIG. 8 is a schematic configuration diagram of the liquid crystal panel 2 of the liquid crystal display device 11 according to Embodiment 2 as seen through from the front.
  • FIG. 9 is a longitudinal sectional view of the liquid crystal display device 11.
  • the liquid crystal panel 2 is divided into two rectangular areas 31 and 32.
  • a first light source unit 10a is provided in the first rectangular area 31 on the left side.
  • the second rectangular area 32 on the right side the second light source unit 10b is provided.
  • Each of the light source units 10 a and 10 b includes a first LED row 21, a second LED row 22, a printed circuit board 6 provided in each LED row 21, 22, and a Fresnel lens 5.
  • the first LED row 21 is provided along the longitudinal direction of the first rectangular region 31 in the center of the first rectangular region 31 in the short direction.
  • the second LED row 22 is provided along the longitudinal direction of the second rectangular region 32 in the center of the second rectangular region 32 in the short direction.
  • the Fresnel lens 5 is disposed so as to cover all the LEDs 7 of the light source units 10a and 10b to which the Fresnel lens 5 belongs.
  • the Fresnel lens 5 extends the rectangular regions 31 and 32 in the short direction with respect to the light emitted from the two LED rows 21 and 22.
  • Each LED row 21, 22 is mounted on the LED installation surface 6 a on the liquid crystal panel 2 side of each printed circuit board 6.
  • the first printed circuit board 6 on which the first LED array 21 is mounted is different from the second printed circuit board 6 on which the second LED array 22 is mounted on the mountain-shaped substrate mounting surface 9 a of the rear frame 9. It is arranged parallel to the slope.
  • the main radiation direction of the light in the first LED row 21 is inclined toward the first short side 2 c (first side) of the liquid crystal panel 2 with respect to the thickness direction of the liquid crystal panel 2.
  • the main radiation direction of the light in the second LED row 22 is tilted toward the second short side 2d (second side) of the liquid crystal panel 2 with respect to the thickness direction of the liquid crystal panel 2.
  • the main radiation direction of the light in the first LED row 21 in the first rectangular area 31 is the same as the main radiation direction of the light in the first LED row 21 in the second rectangular area 32.
  • the main radiation direction of the light in the second LED row 22 in the first rectangular region 31 is the same as the main radiation direction of the light in the second LED row 22 in the second rectangular region 32.
  • the backlight device 12 divides the liquid crystal panel 2 into two rectangular areas 31 and 32 to emit light. Therefore, the thickness of the liquid crystal display device 11 can be reduced as compared with the case where the backlight device 12 emits light with the liquid crystal panel 2 as one region.
  • the backlight device 12 divides the liquid crystal panel 2 into a plurality of rectangular areas 31 and 32 (for example, two rectangular areas) and emits light.
  • the rectangular regions 31 and 32 are provided with light source units 10a and 10b, respectively.
  • Each light source unit is provided along the longitudinal direction of the corresponding rectangular region at the center in the short direction of the corresponding rectangular region.
  • a plurality of LEDs are arranged so that a plurality of LED rows are formed.
  • the main radiation direction of the light of all the LED columns of each light source unit is directed in the thickness direction of the liquid crystal panel 2.
  • Each light source unit expands the rectangular region in the short direction with respect to the light emitted from the plurality of LED columns by the lens unit 5 (for example, Fresnel lens), so that the light source unit faces the rectangular region that the light source unit faces.
  • Light is supplied not only to the central portion but also to both short sides of the rectangular area.
  • Embodiments 1 and 2 have been described as examples of the technology disclosed in the present application. However, the technology in the present disclosure is not limited to this, and can also be applied to an embodiment in which changes, replacements, additions, omissions, and the like are appropriately performed. In addition, it is possible to combine the components described in the first and second embodiments to form a new embodiment. Therefore, other embodiments will be exemplified below.
  • arranging a plurality of LEDs 7 in a row indicates that the LEDs 7 need only be arranged in a row. That is, in each LED row 21 and 22, a plurality of LEDs 7 are arranged in a straight line, but in each LED row 21 and 22, a plurality of LEDs 7 are slightly shifted from the straight line in the direction perpendicular to the straight line. May be.
  • the number of LED rows of the light source unit 10 is two, but the number of LED rows of the light source unit 10 may be three or more.
  • the interval between the two LED rows 21 and 22 described in the first and second embodiments is widened, and the liquid crystal panel 2 is placed between these LED rows 21 and 22.
  • One LED row (third LED row) arranged on the LED installation surface parallel to the main surface is provided. Also in this case, the inclination of each LED installation surface may be adjusted so that the main emission directions of the three LED columns are different from each other.
  • two printed circuit boards 6 are installed on the mountain-shaped board installation surface 9a, but two printed circuit boards 6 may be installed on the valley-shaped board installation surface 9a.
  • one lens 5 for expanding light is used for the plurality of LED rows 21 and 22.
  • the diffusion sheet 3 (thin diffusion plate) and the diffusion plate 4 are used for light diffusion. However, only one of them or another diffusion member may be used. May be.
  • the Fresnel lens 5 is described as an example of the lens unit 5.
  • the lens unit 5 is not limited to this.
  • the lens unit 5 may be another type of lens that expands light.
  • the reflection sheet 8 has been described as an example of the reflection unit that reflects the light emitted from the light source unit 10 to the side thereof toward the liquid crystal panel 2 side.
  • the reflection part is not limited to this.
  • the reflecting portion may be another reflecting mirror or a reflecting member having a color that easily reflects light such as white.
  • the present disclosure is useful in obtaining a backlight device, a liquid crystal display device, and the like that can ensure appropriate brightness while suppressing the number of LEDs used.

Abstract

A backlight apparatus (12) has: a light source section (10), which has a plurality of LEDs (7) that emit light to the liquid crystal panel (2) side, and a lens section (5) that expands the light emitted from the LEDs (7); and a diffusion plate (4), which is disposed between a liquid crystal panel (2) and the light source section (10), and diffuses the light emitted from the LEDs (7). In the light source section (10), a plurality of LEDs (7) are arranged such that a plurality of rows of the LEDs (7) are formed. Among the LED rows, there are two LED rows (21, 22) respectively having main light emitting directions different from each other.

Description

バックライト装置および液晶表示装置Backlight device and liquid crystal display device
 本開示は、LED(Light Emitting Diode)を光源として用いるバックライト装置および液晶表示装置に関するものである。 The present disclosure relates to a backlight device and a liquid crystal display device using an LED (Light Emitting Diode) as a light source.
 従来の大型の液晶表示装置のバックライト装置では、冷陰極管が液晶パネル直下に多数配置され、これらの冷陰極管が拡散板や反射板等の部材と共に使われていた。また、近年では、バックライト装置の光源としてLEDが使用されるようになっている。LEDは、近年効率が向上し、蛍光灯に変わる消費電力の少ない光源として期待されている。LEDを液晶表示装置の光源として使用した場合は、映像に応じてLEDの明暗を制御することで、液晶表示装置の消費電力を下げることができる。 In the backlight device of a conventional large liquid crystal display device, a large number of cold cathode tubes are arranged directly under the liquid crystal panel, and these cold cathode tubes are used together with members such as a diffusion plate and a reflector. In recent years, LEDs have been used as light sources for backlight devices. In recent years, the efficiency of LEDs has been improved and is expected to be a light source with low power consumption, which is replaced with a fluorescent lamp. When the LED is used as the light source of the liquid crystal display device, the power consumption of the liquid crystal display device can be reduced by controlling the brightness of the LED according to the image.
 また、液晶表示装置において多数のLEDを用いることで、液晶表示装置の画面で均一な明るさを得ることができる。しかし、LEDを多数用いると、液晶表示装置を安価にできない問題がある。さらに、1個のLEDの出力を大きくし、LEDの使用個数を減らす取り組みがなされている。例えば特許文献1では、1次元的に並べて配置された複数の点光源と、その複数の点光源上に設けられた、細長い形状のシリンドリカルレンズとを有する光源が提案されている。 Also, by using a large number of LEDs in the liquid crystal display device, uniform brightness can be obtained on the screen of the liquid crystal display device. However, when many LEDs are used, there is a problem that the liquid crystal display device cannot be made inexpensive. Furthermore, efforts are being made to increase the output of one LED and reduce the number of LEDs used. For example, Patent Document 1 proposes a light source having a plurality of point light sources arranged in a one-dimensional manner and an elongated cylindrical lens provided on the plurality of point light sources.
特開2006-286608号公報JP 2006-286608 A
 本開示は、LEDの使用個数を抑制しつつ適切な明るさを確保できるバックライト装置および液晶表示装置を提供する。 The present disclosure provides a backlight device and a liquid crystal display device capable of ensuring appropriate brightness while suppressing the number of LEDs used.
 本開示におけるバックライト装置は、液晶パネルの後方から光を放射するバックライト装置であって、液晶パネル側へ光を放射する複数のLEDと、複数のLEDから放射された光を拡張するレンズ部とを有する光源部と、液晶パネルと光源部との間に配置され、複数のLEDから放射された光を拡散する拡散板とを有し、光源部では、LEDの列が複数形成されるように複数のLEDが配列され、複数のLEDの列には、光の主放射方向が互いに異なる2つのLEDの列が存在する。 A backlight device according to the present disclosure is a backlight device that emits light from the back of a liquid crystal panel, and a plurality of LEDs that emit light toward the liquid crystal panel, and a lens unit that expands the light emitted from the plurality of LEDs And a light diffusing plate that is disposed between the liquid crystal panel and the light source unit and diffuses light emitted from the plurality of LEDs. In the light source unit, a plurality of LED rows are formed. A plurality of LEDs are arranged, and in the plurality of LED rows, there are two LED rows having different main emission directions of light.
 本開示のバックライト装置は、LEDの使用個数を抑制しつつ適切な明るさを確保するのに有用である。 The backlight device of the present disclosure is useful for ensuring appropriate brightness while suppressing the number of LEDs used.
図1は、実施の形態1に係るバックライト装置を用いた液晶表示装置全体の概略構成を示す分解斜視図である。FIG. 1 is an exploded perspective view showing a schematic configuration of the entire liquid crystal display device using the backlight device according to the first embodiment. 図2は、図1のA-A断面図である。FIG. 2 is a cross-sectional view taken along the line AA in FIG. 図3は、実施の形態1に係るLEDが放射する光の伝達状態を示す図である。FIG. 3 is a diagram illustrating a transmission state of light emitted from the LED according to the first embodiment. 図4は、LEDの放射光の指向特性の一例を示す図である。FIG. 4 is a diagram illustrating an example of the directivity characteristic of the emitted light of the LED. 図5は、拡散板に入射面における入射光の強度分布を示す図である。FIG. 5 is a diagram showing the intensity distribution of incident light on the entrance surface of the diffuser plate. 図6は、拡散板の出射面における輝度分布を示す図である。FIG. 6 is a diagram showing a luminance distribution on the exit surface of the diffusion plate. 図7は、拡散板に形成されたパターンの一例を示す図である。FIG. 7 is a diagram illustrating an example of a pattern formed on the diffusion plate. 図8は、実施の形態2に係る液晶表示装置の液晶パネルを正面から透視した概略構成図である。FIG. 8 is a schematic configuration diagram of the liquid crystal panel of the liquid crystal display device according to Embodiment 2 as seen through from the front. 図9は、実施の形態2に係る液晶表示装置の長手方向の断面図である。FIG. 9 is a longitudinal sectional view of the liquid crystal display device according to the second embodiment.
 以下、適宜図面を参照しながら、実施の形態を詳細に説明する。但し、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明や実質的に同一の構成に対する重複説明を省略する場合がある。これは、以下の説明が不必要に冗長になるのを避け、当業者の理解を容易にするためである。 Hereinafter, embodiments will be described in detail with reference to the drawings as appropriate. However, more detailed description than necessary may be omitted. For example, detailed descriptions of already well-known matters and repeated descriptions for substantially the same configuration may be omitted. This is to avoid the following description from becoming unnecessarily redundant and to facilitate understanding by those skilled in the art.
 なお、発明者は、当業者が本開示を十分に理解するために添付図面および以下の説明を提供するものであって、これらによって特許請求の範囲に記載の主題を限定することを意図するものではない。 The inventor provides the accompanying drawings and the following description in order for those skilled in the art to fully understand the present disclosure, and is intended to limit the subject matter described in the claims. is not.
 (実施の形態1)
 以下、図1~7を用いて、実施の形態1を説明する。
(Embodiment 1)
The first embodiment will be described below with reference to FIGS.
 [1-1.液晶表示装置の構成]
 図1は、本実施の形態に係るバックライト装置12を用いた液晶表示装置11の全体の概略構成を示す分解斜視図である。
[1-1. Configuration of liquid crystal display device]
FIG. 1 is an exploded perspective view showing an overall schematic configuration of a liquid crystal display device 11 using a backlight device 12 according to the present embodiment.
 図1に示すように、液晶表示装置11は、前フレーム1と、長方形の平板形状で透過型の液晶パネル2と、液晶パネル2の背面側に配置されたバックライト装置12とを備えている。バックライト装置12は、液晶パネル2に対応する大きさの直方体形状に形成されている。なお、液晶表示装置11は、映像信号に基づいて液晶パネル2を駆動する駆動装置などを備えるが、本実施の形態では説明を省略している。 As shown in FIG. 1, the liquid crystal display device 11 includes a front frame 1, a rectangular flat plate-shaped transmissive liquid crystal panel 2, and a backlight device 12 disposed on the back side of the liquid crystal panel 2. . The backlight device 12 is formed in a rectangular parallelepiped shape having a size corresponding to the liquid crystal panel 2. The liquid crystal display device 11 includes a drive device that drives the liquid crystal panel 2 based on the video signal, but the description thereof is omitted in the present embodiment.
 液晶パネル2は、バックライト装置12の前方に配置され、バックライト装置12から放射された光を透過する。前フレーム1は、矩形枠状に形成されている。前フレーム1の内側には、液晶パネル2などが設けられている。 The liquid crystal panel 2 is disposed in front of the backlight device 12 and transmits light emitted from the backlight device 12. The front frame 1 is formed in a rectangular frame shape. Inside the front frame 1, a liquid crystal panel 2 and the like are provided.
 [1-2.バックライト装置の構成]
 バックライト装置12は、液晶パネル2の短辺方向のほぼ中央部に直線上に配置された光源部10と、この光源部10を収容する後フレーム9と、液晶パネル2と光源部10との間に配置される拡散板4と、拡散板4と液晶パネル2の間に配置される拡散シート3と、光源部10が放射した光を液晶パネル2側、すなわち拡散板4側に反射する反射シート8とを備えている。拡散シート3の光の出射面(液晶パネル2側の面)は、バックライト装置12の光の出射面になる。
[1-2. Configuration of backlight device]
The backlight device 12 includes a light source unit 10 that is linearly disposed at a substantially central portion in the short side direction of the liquid crystal panel 2, a rear frame 9 that accommodates the light source unit 10, and the liquid crystal panel 2 and the light source unit 10. Reflection that reflects the light radiated from the diffusion plate 4 disposed between, the diffusion sheet 3 disposed between the diffusion plate 4 and the liquid crystal panel 2, and the light source unit 10 toward the liquid crystal panel 2 side, that is, the diffusion plate 4 side. And a sheet 8. The light emission surface of the diffusion sheet 3 (the surface on the liquid crystal panel 2 side) is the light emission surface of the backlight device 12.
 拡散板4は、光源部10から放射される光の輝度ムラを低減するための拡散を行う。拡散板4は、例えばアクリル樹脂などの板状体からなる。拡散板4は、一方の面(光源部10側の入射面)から入射した光を拡散させて他方の面(液晶パネル2側の出射面)から出射させるために、微小な粒子を分散させた半透明な樹脂板により構成されている。 The diffusion plate 4 performs diffusion for reducing uneven brightness of light emitted from the light source unit 10. The diffusion plate 4 is made of a plate-like body such as an acrylic resin. The diffusing plate 4 has dispersed minute particles in order to diffuse the light incident from one surface (incident surface on the light source unit 10 side) and emit the light from the other surface (emitted surface on the liquid crystal panel 2 side). It is composed of a translucent resin plate.
 拡散シート3は、矩形形状のシートである。拡散シート3は、液晶パネル2に対応する大きさで、液晶パネル2と拡散板4の間に配置されている。拡散シート3は、光学シート積層体を備えている。この光学シート積層体は、例えば、拡散板4側から入射する光を前方の液晶パネル2側に向けて集光するプリズムシート、拡散板4側から入射する光をさらに拡散する拡散シート、拡散シート3から出射する光の偏光面が液晶パネル2の偏光面に対応するように特定の偏光面を有する光を透過する偏光シート等により構成されている。 The diffusion sheet 3 is a rectangular sheet. The diffusion sheet 3 has a size corresponding to the liquid crystal panel 2 and is disposed between the liquid crystal panel 2 and the diffusion plate 4. The diffusion sheet 3 includes an optical sheet laminate. This optical sheet laminate includes, for example, a prism sheet that condenses light incident from the diffusion plate 4 side toward the front liquid crystal panel 2 side, a diffusion sheet that further diffuses light incident from the diffusion plate 4 side, and a diffusion sheet 3 is constituted by a polarizing sheet or the like that transmits light having a specific polarization plane so that the polarization plane of the light emitted from 3 corresponds to the polarization plane of the liquid crystal panel 2.
 後フレーム9は、前フレーム1と共に、液晶表示装置11のケーシングを構成している。後フレーム9は、正面視において略長方形状である。後フレーム9の短手方向の中央部には、後フレーム9の長手方向に沿って、後述する2つのプリント基板6を設置する山型の基板設置面9aが形成されている。反射シート8は、後フレーム9の前方に、複数のLED7の設置領域を除くほぼ全領域に亘って設けられている。反射シート8の反射面は、光源部10から放射される光を効率よく均一に拡散板4側に反射できるように、凹形状の曲面を有している。 The rear frame 9 and the front frame 1 constitute a casing of the liquid crystal display device 11. The rear frame 9 has a substantially rectangular shape when viewed from the front. A mountain-shaped substrate installation surface 9 a for installing two printed circuit boards 6 to be described later is formed along the longitudinal direction of the rear frame 9 at the central portion in the short direction of the rear frame 9. The reflection sheet 8 is provided in front of the rear frame 9 over almost the entire area except for the installation area of the plurality of LEDs 7. The reflection surface of the reflection sheet 8 has a concave curved surface so that the light emitted from the light source unit 10 can be efficiently and uniformly reflected to the diffusion plate 4 side.
 [1-3.光源部の構成]
 図2は、図1のA-A断面図である。
[1-3. Configuration of light source section]
FIG. 2 is a cross-sectional view taken along the line AA in FIG.
 光源部10は、液晶パネル2側へ光を放射する複数のLED7と、LED設置面6aを有するLED設置部6と、複数のLED7から放射された光を拡張するレンズ部5とを備えている。本実施の形態の光源部10は、それぞれがLED設置部6に相当する2つのプリント基板6と、各プリント基板6上に列状に実装された複数のLED7と、レンズ部5に相当するフレネルレンズ5とを備えている。光源部10では、LEDの列21,22が複数形成されるように、複数のLED7が配列されている。各プリント基板6は、短冊形状、つまり細長い矩形形状に形成されている。 The light source unit 10 includes a plurality of LEDs 7 that emit light toward the liquid crystal panel 2, an LED installation unit 6 that has an LED installation surface 6 a, and a lens unit 5 that expands the light emitted from the plurality of LEDs 7. . The light source unit 10 according to the present embodiment includes two printed circuit boards 6 each corresponding to the LED installation unit 6, a plurality of LEDs 7 mounted in a row on each printed circuit board 6, and a Fresnel corresponding to the lens unit 5. And a lens 5. In the light source unit 10, a plurality of LEDs 7 are arranged so that a plurality of LED rows 21 and 22 are formed. Each printed circuit board 6 is formed in a strip shape, that is, an elongated rectangular shape.
 本実施の形態では、光源部10におけるLEDの列21,22の列数が2列である。なお、LEDの列の列数は2列に限定されない。2つのLEDの列21,22は、第1のプリント基板6(図2において左側のプリント基板6)に実装された第1のLEDの列21と、第2のプリント基板6(図2において右側のプリント基板6)に実装された第2のLEDの列22とにより構成されている。各LEDの列21,22は、対応するプリント基板6の液晶パネル2側のLED設置面6aに実装されている。各LEDの列21,22は、各LED7の光の主放射方向(相対照度が最も大きい方向)がLED設置面6aに対して略垂直になるように実装されている。なお、LED7の光の主放射方向を、LED設置面6aに対して略垂直にせずに、垂直に対してある程度傾けてもよい。 In the present embodiment, the number of LED rows 21 and 22 in the light source unit 10 is two. The number of LED rows is not limited to two. The two LED rows 21 and 22 are the first LED row 21 mounted on the first printed circuit board 6 (the left printed circuit board 6 in FIG. 2) and the second printed circuit board 6 (the right printed circuit board in FIG. 2). And the second LED row 22 mounted on the printed circuit board 6). Each LED row 21, 22 is mounted on the LED installation surface 6 a on the liquid crystal panel 2 side of the corresponding printed circuit board 6. The LED rows 21 and 22 are mounted such that the main radiation direction of light of each LED 7 (the direction with the largest relative illuminance) is substantially perpendicular to the LED installation surface 6a. The main radiation direction of the light of the LED 7 may be inclined to some extent with respect to the vertical without being substantially perpendicular to the LED installation surface 6a.
 フレネルレンズ5は、液晶パネル2とLED7の間に配置されている。フレネルレンズ5は、2つのLEDの列21,22を覆うように後フレーム9に設置されている。フレネルレンズ5は、液晶パネル2の長手方向に延びている。本実施の形態では、1つのフレネルレンズ5が、全てのLED7を覆うように、複数のLED7の前方に配置されている。フレネルレンズ5は、LED7から放射された光を拡張して出射する。具体的に、フレネルレンズ5は、2つのLEDの列21,22から放射された光に対して、液晶パネル2の短手方向の拡張を行う。フレネルレンズ5は、例えば、1.4から2.0程度の屈折率を有する透明な材料で構成されている。フレネルレンズ5を構成する透明材料としては、エポキシ樹脂、シリコン樹脂、アクリル樹脂、ポリカーボネイト等の樹脂、硝子、またはシリコンゴム等のゴムを用いることができる。 The Fresnel lens 5 is disposed between the liquid crystal panel 2 and the LED 7. The Fresnel lens 5 is installed on the rear frame 9 so as to cover the two LED rows 21 and 22. The Fresnel lens 5 extends in the longitudinal direction of the liquid crystal panel 2. In the present embodiment, one Fresnel lens 5 is disposed in front of the plurality of LEDs 7 so as to cover all the LEDs 7. The Fresnel lens 5 expands and emits the light emitted from the LED 7. Specifically, the Fresnel lens 5 extends the liquid crystal panel 2 in the short direction with respect to the light emitted from the two LED rows 21 and 22. The Fresnel lens 5 is made of a transparent material having a refractive index of about 1.4 to 2.0, for example. As the transparent material constituting the Fresnel lens 5, epoxy resin, silicon resin, acrylic resin, polycarbonate resin or the like, glass, or rubber such as silicon rubber can be used.
 2つのプリント基板6は、液晶パネル2の短辺方向のほぼ中央部に、液晶パネル2の主面(前面および背面)に対して互いに異なる向きに傾斜した状態で配置されている。2つのプリント基板6は、液晶パネル2の長手方向に沿って配置されている。各LEDの列21,22では、複数のLED7が液晶パネル2の長手方向に並んでいることになる。2つのプリント基板6は、液晶パネル2の短辺方向のほぼ中央部に、LED7を列状に配列したLEDの列21,22(LED群)を2列配置している。2つのプリント基板6は、第1のLEDの列21の光の主放射方向と第2のLEDの列22の光の主放射方向とが互いに異なる向きになるよう、液晶パネル2の主面に対して互いに異なる向きに傾斜した状態で配置されている。第1のプリント基板6と第2のプリント基板6とは、山型の基板設置面9aの異なる斜面に、平行に配置されている。第1のプリント基板6と第2のプリント基板6とは、逆方向に、液晶パネル2の主面に対して同じ角度だけ傾いている。第1のプリント基板6と第2のプリント基板6とは隣接している。第1のLEDの列21は、第2のLEDの列22よりも第1辺2a側に配置されている。光源部10では、2つのプリント基板6のLED設置面6aの向きを互いに異ならせることにより、2つのLEDの列21,22の光の主放射方向を互いに異ならせている。2つのLEDの列21,22では、第1のLEDの列21の光の主放射方向が、液晶パネル2の厚み方向よりも液晶パネル2の第1の長辺2a(第1辺)の側に傾き、第2のLEDの列22の光の主放射方向が、液晶パネル2の厚み方向よりも液晶パネル2の第2の長辺2b(第2辺)の側に傾いている。 The two printed circuit boards 6 are disposed at substantially central portions in the short side direction of the liquid crystal panel 2 in a state of being inclined in different directions with respect to the main surface (front surface and back surface) of the liquid crystal panel 2. The two printed circuit boards 6 are arranged along the longitudinal direction of the liquid crystal panel 2. In each LED row 21, 22, a plurality of LEDs 7 are arranged in the longitudinal direction of the liquid crystal panel 2. The two printed circuit boards 6 have two LED rows 21 and 22 (LED groups) in which LEDs 7 are arranged in a row at substantially the center in the short side direction of the liquid crystal panel 2. The two printed circuit boards 6 are arranged on the main surface of the liquid crystal panel 2 so that the main emission direction of the light in the first LED row 21 and the main emission direction of the light in the second LED row 22 are different from each other. On the other hand, they are arranged in an inclined state in different directions. The 1st printed circuit board 6 and the 2nd printed circuit board 6 are arrange | positioned in parallel on the different slope of the mountain-shaped board | substrate installation surface 9a. The first printed circuit board 6 and the second printed circuit board 6 are inclined in the opposite direction by the same angle with respect to the main surface of the liquid crystal panel 2. The first printed circuit board 6 and the second printed circuit board 6 are adjacent to each other. The first LED row 21 is arranged closer to the first side 2 a than the second LED row 22. In the light source unit 10, the main radiation directions of the light in the two LED rows 21 and 22 are made different from each other by making the directions of the LED installation surfaces 6 a of the two printed circuit boards 6 different from each other. In the two LED rows 21 and 22, the main radiation direction of the light in the first LED row 21 is closer to the first long side 2 a (first side) of the liquid crystal panel 2 than the thickness direction of the liquid crystal panel 2. The main radiation direction of the light in the second LED row 22 is inclined to the second long side 2b (second side) side of the liquid crystal panel 2 with respect to the thickness direction of the liquid crystal panel 2.
 図3は、本実施の形態に係るLED7が放射する光の伝達状態(光の軌跡)を示す図である。図3は、図1をA-A線で切断した断面図である。図3において、LED7の光を矢印で示している。図4は、LED7の放射光の指向特性の一例を示す図である。 FIG. 3 is a diagram showing a transmission state (light trajectory) of light emitted by the LED 7 according to the present embodiment. FIG. 3 is a cross-sectional view taken along line AA of FIG. In FIG. 3, the light of the LED 7 is indicated by an arrow. FIG. 4 is a diagram illustrating an example of the directivity characteristic of the emitted light of the LED 7.
 図3に示すLED7からは、図4に示す指向特性を持った光が放射される。なお、図4において、相対照度が最大の放射角度0°の方向が、LED7の放射光の主放射方向である。図3において、左側のLED7は第1のLEDの列21のLEDであり、右側のLED7は第2のLEDの列22のLEDである。図3に示すように、各LEDの列21,22のLED7は、互いに異なる向きに光を放射するよう配置されている。 The light having the directivity shown in FIG. 4 is emitted from the LED 7 shown in FIG. In FIG. 4, the direction with the maximum relative illuminance and the radiation angle of 0 ° is the main radiation direction of the emitted light of the LED 7. In FIG. 3, the left LED 7 is an LED in the first LED row 21, and the right LED 7 is an LED in the second LED row 22. As shown in FIG. 3, the LEDs 7 in the LED rows 21 and 22 are arranged to emit light in different directions.
 LED7から放射された光の大部分は、フレネルレンズ5に直接入射する。一方、LED7から放射された光の一部は、フレネルレンズ5の入射面で反射するが、再び反射シート8で反射されてフレネルレンズ5に入射する。フレネルレンズ5に入射した光は、光学形状と屈折率に応じて拡張される。フレネルレンズ5から出射した光の大部分は、拡散板4に直接入射する。一方、フレネルレンズ5から出射した光の一部は、拡散板4の入射面で反射するが、再び反射シート8で反射されて拡散板4に入射する。拡散板4では、輝度ムラを低減するための拡散が行われる。拡散板4から出射した光は、拡散シート3に入射する。拡散シート3では、液晶パネル2側に向けての集光、拡散、偏光面に対する対応などが行われる。拡散シート3から出射された光は、液晶パネル2に入射し映像信号などにより変調されて、画像が形成される。 Most of the light emitted from the LED 7 is directly incident on the Fresnel lens 5. On the other hand, a part of the light emitted from the LED 7 is reflected by the incident surface of the Fresnel lens 5, but is reflected again by the reflection sheet 8 and enters the Fresnel lens 5. The light incident on the Fresnel lens 5 is expanded according to the optical shape and the refractive index. Most of the light emitted from the Fresnel lens 5 is directly incident on the diffusion plate 4. On the other hand, a part of the light emitted from the Fresnel lens 5 is reflected by the incident surface of the diffusion plate 4, but is reflected by the reflection sheet 8 again and enters the diffusion plate 4. In the diffusing plate 4, diffusion for reducing luminance unevenness is performed. Light emitted from the diffusion plate 4 enters the diffusion sheet 3. In the diffusion sheet 3, light condensing toward the liquid crystal panel 2 side, diffusion, correspondence to the polarization plane, and the like are performed. The light emitted from the diffusion sheet 3 enters the liquid crystal panel 2 and is modulated by a video signal or the like to form an image.
 [1-4.拡散板]
 次に、拡散板4に形成された模様について説明する。
[1-4. Diffusion plate]
Next, the pattern formed on the diffusion plate 4 will be described.
 図5は、拡散板4の入射面における入射光の強度分布を示す図である。図6は、拡散板4の出射面における出射光の輝度分布を示す図である。図5および図6では、色が薄い位置ほど、光の強度が強い、又は輝度が大きい。図7は、拡散板4に形成されたパターンの一例を示す図である。なお、拡散板4の入射面における入射光の強度分布は、拡散板4に入射直前の光の輝度分布に対応している。拡散板4の出射面における出射光の輝度分布は、拡散板4から出射直後の光の輝度分布に対応している。 FIG. 5 is a diagram showing the intensity distribution of incident light on the incident surface of the diffuser plate 4. FIG. 6 is a diagram showing a luminance distribution of outgoing light on the outgoing surface of the diffusion plate 4. 5 and 6, the lighter the position, the stronger the light intensity or the higher the luminance. FIG. 7 is a diagram illustrating an example of a pattern formed on the diffusion plate 4. The intensity distribution of incident light on the incident surface of the diffusion plate 4 corresponds to the luminance distribution of light immediately before entering the diffusion plate 4. The luminance distribution of the emitted light on the exit surface of the diffusion plate 4 corresponds to the luminance distribution of the light immediately after being emitted from the diffusion plate 4.
 本実施の形態の拡散板4は、光源部10側の入射面における入射光の強度が高い位置ほど当該拡散板4の厚み方向の光の透過率が相対的に小さくなるように構成されている。つまり、拡散板4では、その入射面における入射光の強度が強い位置は、拡散板4の厚み方向の光の透過率が小さく、その入射面における入射光の強度が弱い位置は、拡散板4の厚み方向の光の透過率が大きい。拡散板4では、拡散板4の出射面の輝度分布が図6に示すようにムラがほとんどない輝度分布となるよう、図7に示すように、入射面における入射光の強度分布に対して反転したパターン(つまり、図5において色が薄い領域ほど色が濃いパターン)が形成されている。このパターンは、例えばスクリーン印刷により、拡散板4の入射面または出射面に形成される。これにより、拡散板4の出射面における輝度ムラが少なくなる。そのため、LED7から放射される光を用いて、液晶パネル2の画面で輝度ムラが少なくなる面光源のバックライト装置12を実現出来る。また、パターンの印刷には、透バインダ内に、酸化チタンなどの高屈折率の透明材料からなる微粉末を分散させたインキを用いる。入射光の強度が強い箇所では透過率が低いパターン(図7における通過光束に影響が大きいパターン)を、入射光の強度が弱い箇所は、透過率が高いパターン(図7における通過光束に影響が小さいパターン)を形成する。 The diffuser plate 4 of the present embodiment is configured such that the light transmittance in the thickness direction of the diffuser plate 4 becomes relatively smaller as the incident light intensity on the incident surface on the light source unit 10 side is higher. . That is, in the diffuser plate 4, the position where the intensity of incident light on the incident surface is high has a small light transmittance in the thickness direction of the diffuser plate 4, and the position where the intensity of incident light on the incident surface is weak is the diffuser plate 4. The light transmittance in the thickness direction is large. In the diffusing plate 4, as shown in FIG. 7, the luminance distribution of the exit surface of the diffusing plate 4 is inverted with respect to the intensity distribution of incident light on the incident surface so that the luminance distribution has almost no unevenness as shown in FIG. Pattern (that is, a pattern having a darker color in a lighter region in FIG. 5) is formed. This pattern is formed on the entrance surface or the exit surface of the diffusion plate 4 by, for example, screen printing. As a result, luminance unevenness on the exit surface of the diffusion plate 4 is reduced. Therefore, it is possible to realize a backlight device 12 of a surface light source that reduces luminance unevenness on the screen of the liquid crystal panel 2 using light emitted from the LED 7. For pattern printing, ink in which fine powder made of a transparent material having a high refractive index such as titanium oxide is dispersed in a transparent binder is used. A pattern with a low transmittance (a pattern that has a large influence on the passing light beam in FIG. 7) is used at a location where the intensity of the incident light is strong, and a pattern with a high transmittance (a passing light beam in FIG. Small pattern).
 [1-5.本実施の形態の効果等]
 以上のように、本実施の形態では、LED7を用いたバックライト装置12において、2つのLEDの列21,22が光の主放射方向が互いに異なるよう、液晶パネル2の主面に対して各プリント基板6を傾けて配置している。そのため、LED7の使用個数を抑制しつつ適切な明るさを確保できる液晶表示装置11を提供することができる。また、LED7の使用個数を抑制できるため、簡単な構成で安価な液晶表示装置11を提供することができる。
[1-5. Effects of this embodiment]
As described above, in the present embodiment, in the backlight device 12 using the LED 7, each of the two LED rows 21 and 22 is different from the main surface of the liquid crystal panel 2 so that the main emission directions of light are different from each other. The printed circuit board 6 is inclined. Therefore, it is possible to provide the liquid crystal display device 11 that can ensure appropriate brightness while suppressing the number of LEDs 7 used. Further, since the number of LEDs 7 used can be suppressed, it is possible to provide an inexpensive liquid crystal display device 11 with a simple configuration.
 また、本実施の形態では、拡散板4に到達したLED7からの光の強度分布に対して、液晶パネル2に到達する光の強度分布を均一にすることができる模様(印刷パターン)を拡散板4に形成している。そのため、さらにバックライト装置12の光の出射面における輝度ムラを減少させることができる。 Further, in the present embodiment, a pattern (printing pattern) that can make the intensity distribution of the light reaching the liquid crystal panel 2 uniform with respect to the intensity distribution of the light from the LED 7 reaching the diffusion plate 4 is a diffusion plate. 4 is formed. Therefore, it is possible to further reduce luminance unevenness on the light emission surface of the backlight device 12.
 (実施の形態2)
 以下、図8及び図9を用いて、実施の形態2を説明する。
(Embodiment 2)
The second embodiment will be described below with reference to FIGS.
 図8は、実施の形態2に係る液晶表示装置11の液晶パネル2を正面から透視した概略構成図である。図9は、液晶表示装置11の長手方向の断面図である。 FIG. 8 is a schematic configuration diagram of the liquid crystal panel 2 of the liquid crystal display device 11 according to Embodiment 2 as seen through from the front. FIG. 9 is a longitudinal sectional view of the liquid crystal display device 11.
 本実施の形態では、図8に示すように、液晶パネル2が2つの矩形領域31,32に分けられている。左側の第1矩形領域31には、第1の光源部10aが設けられている。右側の第2矩形領域32には、第2の光源部10bが設けられている。各光源部10a,10bは、第1のLEDの列21と、第2のLEDの列22と、各LEDの列21,22に設けられたプリント基板6と、フレネルレンズ5とを備えている。第1のLEDの列21は、第1矩形領域31の短手方向の中央部に、第1矩形領域31の長手方向に沿って設けられている。第2のLEDの列22は、第2矩形領域32の短手方向の中央部に、第2矩形領域32の長手方向に沿って設けられている。フレネルレンズ5は、自身が属する光源部10a,10bの全てのLED7を覆うように配置されている。フレネルレンズ5は、2つのLEDの列21,22から放射された光に対して、矩形領域31,32の短手方向の拡張を行う。 In the present embodiment, as shown in FIG. 8, the liquid crystal panel 2 is divided into two rectangular areas 31 and 32. In the first rectangular area 31 on the left side, a first light source unit 10a is provided. In the second rectangular area 32 on the right side, the second light source unit 10b is provided. Each of the light source units 10 a and 10 b includes a first LED row 21, a second LED row 22, a printed circuit board 6 provided in each LED row 21, 22, and a Fresnel lens 5. . The first LED row 21 is provided along the longitudinal direction of the first rectangular region 31 in the center of the first rectangular region 31 in the short direction. The second LED row 22 is provided along the longitudinal direction of the second rectangular region 32 in the center of the second rectangular region 32 in the short direction. The Fresnel lens 5 is disposed so as to cover all the LEDs 7 of the light source units 10a and 10b to which the Fresnel lens 5 belongs. The Fresnel lens 5 extends the rectangular regions 31 and 32 in the short direction with respect to the light emitted from the two LED rows 21 and 22.
 各LEDの列21,22は、各プリント基板6の液晶パネル2側のLED設置面6aに実装されている。第1のLEDの列21を実装した第1のプリント基板6と、第2のLEDの列22を実装した第2のプリント基板6とは、後フレーム9の山型の基板設置面9aの異なる斜面に、平行に配置されている。 Each LED row 21, 22 is mounted on the LED installation surface 6 a on the liquid crystal panel 2 side of each printed circuit board 6. The first printed circuit board 6 on which the first LED array 21 is mounted is different from the second printed circuit board 6 on which the second LED array 22 is mounted on the mountain-shaped substrate mounting surface 9 a of the rear frame 9. It is arranged parallel to the slope.
 各矩形領域31,32では、第1のLEDの列21の光の主放射方向が、液晶パネル2の厚み方向よりも液晶パネル2の第1の短辺2c(第1辺)の側に傾き、第2のLEDの列22の光の主放射方向が、液晶パネル2の厚み方向よりも液晶パネル2の第2の短辺2d(第2辺)の側に傾いている。第1矩形領域31の第1のLEDの列21の光の主放射方向と、第2矩形領域32の第1のLEDの列21の光の主放射方向とは同じである。第1矩形領域31の第2のLEDの列22の光の主放射方向と、第2矩形領域32の第2のLEDの列22の光の主放射方向とは同じである。 In each of the rectangular regions 31 and 32, the main radiation direction of the light in the first LED row 21 is inclined toward the first short side 2 c (first side) of the liquid crystal panel 2 with respect to the thickness direction of the liquid crystal panel 2. The main radiation direction of the light in the second LED row 22 is tilted toward the second short side 2d (second side) of the liquid crystal panel 2 with respect to the thickness direction of the liquid crystal panel 2. The main radiation direction of the light in the first LED row 21 in the first rectangular area 31 is the same as the main radiation direction of the light in the first LED row 21 in the second rectangular area 32. The main radiation direction of the light in the second LED row 22 in the first rectangular region 31 is the same as the main radiation direction of the light in the second LED row 22 in the second rectangular region 32.
 [本実施の形態の効果等]
 以上のように、本実施の形態では、LED7の使用個数を抑制しつつ適切な明るさを確保できる液晶表示装置11を提供することができる。また、LED7の使用個数を抑制できるため、簡単な構成で安価な液晶表示装置11を提供することができる。
[Effects of this embodiment, etc.]
As described above, in the present embodiment, it is possible to provide the liquid crystal display device 11 that can ensure appropriate brightness while suppressing the number of LEDs 7 used. Further, since the number of LEDs 7 used can be suppressed, it is possible to provide an inexpensive liquid crystal display device 11 with a simple configuration.
 また、バックライト装置12が、液晶パネル2を2つの矩形領域31,32に分けて光を放射する。そのため、バックライト装置12が液晶パネル2を1つの領域として光を放射する場合に比べて、液晶表示装置11の厚みを薄くすることができる。 Further, the backlight device 12 divides the liquid crystal panel 2 into two rectangular areas 31 and 32 to emit light. Therefore, the thickness of the liquid crystal display device 11 can be reduced as compared with the case where the backlight device 12 emits light with the liquid crystal panel 2 as one region.
 (実施の形態2の参考形態)
 参考形態では、実施の形態2と同様に、バックライト装置12が、液晶パネル2を複数の矩形領域31,32(例えば、2つの矩形領域)に分けて光を放射している。各矩形領域31,32には、光源部10a,10bがそれぞれ設けられている。各光源部は、対応する矩形領域の短手方向の中央部に、対応する矩形領域の長手方向に沿って設けられている。各光源部では、LEDの列が複数形成されるように複数のLEDが配列されている。参考形態は、実施の形態2と異なり、各光源部の全てのLEDの列の光の主放射方向が液晶パネル2の厚み方向を向いている。各光源部は、レンズ部5(例えば、フレネルレンズ)が複数のLEDの列から放射された光に対して矩形領域の短手方向の拡張を行うことで、その光源部が対面する矩形領域の中央部だけでなく、その矩形領域の両短辺の側へ光を供給している。
(Reference form of Embodiment 2)
In the reference mode, as in the second embodiment, the backlight device 12 divides the liquid crystal panel 2 into a plurality of rectangular areas 31 and 32 (for example, two rectangular areas) and emits light. The rectangular regions 31 and 32 are provided with light source units 10a and 10b, respectively. Each light source unit is provided along the longitudinal direction of the corresponding rectangular region at the center in the short direction of the corresponding rectangular region. In each light source unit, a plurality of LEDs are arranged so that a plurality of LED rows are formed. In the reference mode, unlike the second embodiment, the main radiation direction of the light of all the LED columns of each light source unit is directed in the thickness direction of the liquid crystal panel 2. Each light source unit expands the rectangular region in the short direction with respect to the light emitted from the plurality of LED columns by the lens unit 5 (for example, Fresnel lens), so that the light source unit faces the rectangular region that the light source unit faces. Light is supplied not only to the central portion but also to both short sides of the rectangular area.
 (その他の実施の形態)
 以上のように、本出願において開示する技術の例示として、実施の形態1~2を説明した。しかしながら、本開示における技術は、これに限定されず、適宜、変更、置き換え、付加、省略などを行った実施の形態にも適用可能である。また、上記実施の形態1~2で説明した各構成要素を組み合わせて、新たな実施の形態とすることも可能である。
 そこで、以下、他の実施の形態を例示する。
(Other embodiments)
As described above, Embodiments 1 and 2 have been described as examples of the technology disclosed in the present application. However, the technology in the present disclosure is not limited to this, and can also be applied to an embodiment in which changes, replacements, additions, omissions, and the like are appropriately performed. In addition, it is possible to combine the components described in the first and second embodiments to form a new embodiment.
Therefore, other embodiments will be exemplified below.
 実施の形態1~2では、LED7を列状に複数配置するとは、LED7が、ほぼ列状に配置されていればよいことを示す。つまり、各LEDの列21,22において、複数のLED7が直線上に並べられているが、各LEDの列21,22において、複数のLED7が直線上から、その直線の直角方向に多少ずれていてもよい。 In the first and second embodiments, arranging a plurality of LEDs 7 in a row indicates that the LEDs 7 need only be arranged in a row. That is, in each LED row 21 and 22, a plurality of LEDs 7 are arranged in a straight line, but in each LED row 21 and 22, a plurality of LEDs 7 are slightly shifted from the straight line in the direction perpendicular to the straight line. May be.
 また、実施の形態1~2では、光源部10のLEDの列数を2列にしたが、光源部10のLEDの列数を3列以上にしてもよい。例えば、3列の場合は、実施の形態1~2に記載の2列のLEDの列21,22の間隔を広くして、これらのLEDの列の21,22の間に、液晶パネル2の主面に平行なLED設置面に配置した1つのLEDの列(第3のLEDの列)を設ける。この場合も、3つのLEDの列光の主放射方向が互いに異なるように、各LED設置面の傾きを調整してもよい。 In the first and second embodiments, the number of LED rows of the light source unit 10 is two, but the number of LED rows of the light source unit 10 may be three or more. For example, in the case of three rows, the interval between the two LED rows 21 and 22 described in the first and second embodiments is widened, and the liquid crystal panel 2 is placed between these LED rows 21 and 22. One LED row (third LED row) arranged on the LED installation surface parallel to the main surface is provided. Also in this case, the inclination of each LED installation surface may be adjusted so that the main emission directions of the three LED columns are different from each other.
 また、実施の形態1~2では、山型の基板設置面9aに2つのプリント基板6を設置したが、谷型の基板設置面9aに2つのプリント基板6を設置してもよい。 In the first and second embodiments, two printed circuit boards 6 are installed on the mountain-shaped board installation surface 9a, but two printed circuit boards 6 may be installed on the valley-shaped board installation surface 9a.
 また、実施の形態1~2では、複数のLEDの列21,22に対して、光を拡張する1つのレンズ5を使用している。しかし、LED7毎、または、LEDの列21,22毎に、光を拡張するレンズ5を設けてもよい。 In the first and second embodiments, one lens 5 for expanding light is used for the plurality of LED rows 21 and 22. However, you may provide the lens 5 which expands light for every LED7 or every row | line | columns 21 and 22 of LED.
 また、実施の形態1~2では、光の拡散に拡散シート3(薄い拡散板)と拡散板4とを使用しているが、何れか一方だけでもよいし、さらに他の拡散部材を使用してもよい。 In the first and second embodiments, the diffusion sheet 3 (thin diffusion plate) and the diffusion plate 4 are used for light diffusion. However, only one of them or another diffusion member may be used. May be.
 また、実施の形態1~2では、レンズ部5の一例としてフレネルレンズ5を説明した。しかし、レンズ部5は、これに限定されない。レンズ部5は、光を拡張する他の種類のレンズであってもよい。 In the first and second embodiments, the Fresnel lens 5 is described as an example of the lens unit 5. However, the lens unit 5 is not limited to this. The lens unit 5 may be another type of lens that expands light.
 また、実施の形態1~2では、光源部10からその側方へ放射された光を液晶パネル2側へ反射する反射部の一例として、反射シート8を説明した。しかし、反射部は、これに限定されない。反射部は、他の反射鏡であってもよいし、白色などの光を反射しやすい色の反射部材であってもよい。 Further, in the first and second embodiments, the reflection sheet 8 has been described as an example of the reflection unit that reflects the light emitted from the light source unit 10 to the side thereof toward the liquid crystal panel 2 side. However, the reflection part is not limited to this. The reflecting portion may be another reflecting mirror or a reflecting member having a color that easily reflects light such as white.
 以上のように、本開示における技術の例示として、実施の形態を説明した。そのために、添付図面および詳細な説明を提供した。 As described above, the embodiments have been described as examples of the technology in the present disclosure. For this purpose, the accompanying drawings and detailed description are provided.
 したがって、添付図面および詳細な説明に記載された構成要素の中には、課題解決のために必須な構成要素だけでなく、上記技術を例示するために、課題解決のためには必須ではない構成要素も含まれ得る。そのため、それらの必須ではない構成要素が添付図面や詳細な説明に記載されているからといって、直ちに、それらの必須ではない構成要素が必須であるとの認定を受けるべきではない。 Accordingly, among the components described in the accompanying drawings and the detailed description, not only the components essential for solving the problem, but also the components not essential for solving the problem in order to exemplify the above technique. Elements can also be included. Therefore, just because those non-essential components are described in the accompanying drawings and detailed description, the non-essential components should not be recognized as essential.
 また、上述の実施の形態は、本開示における技術を例示するためのものであるから、特許請求の範囲またはその均等な範囲において種々の変更、置き換え、付加、省略などを行うことができる。 In addition, since the above-described embodiment is for illustrating the technique in the present disclosure, various modifications, replacements, additions, omissions, and the like can be performed within the scope of the claims or an equivalent scope thereof.
 以上のように、本開示は、LEDの使用個数を抑制しつつ適切な明るさを確保できるバックライト装置および液晶表示装置などを得る上で有用である。 As described above, the present disclosure is useful in obtaining a backlight device, a liquid crystal display device, and the like that can ensure appropriate brightness while suppressing the number of LEDs used.
 1 前フレーム
 2 液晶パネル
 3 拡散シート
 4 拡散板
 5 フレネルレンズ
 6 プリント基板(LED設置部)
 6a LED設置面
 7 LED
 8 反射シート
 9 後フレーム
 10 光源部
 11 液晶表示装置
 12 バックライト装置
 21 第1のLEDの列
 22 第2のLEDの列
1 Front frame 2 Liquid crystal panel 3 Diffusion sheet 4 Diffusion plate 5 Fresnel lens 6 Printed circuit board (LED installation part)
6a LED installation surface 7 LED
DESCRIPTION OF SYMBOLS 8 Reflective sheet 9 Rear frame 10 Light source part 11 Liquid crystal display device 12 Backlight apparatus 21 1st LED row | line | column 22 2nd LED row | line | column

Claims (18)

  1.  液晶パネルの後方から光を放射するバックライト装置であって、
     前記液晶パネル側へ光を放射する複数のLEDと、前記複数のLEDから放射された光を拡張するレンズ部とを有する光源部と、
     前記液晶パネルと前記光源部との間に配置され、前記複数のLEDから放射された光を拡散する拡散板とを有し、
     前記光源部では、LEDの列が複数形成されるように前記複数のLEDが配列され、
     前記複数のLEDの列には、光の主放射方向が互いに異なる2つのLEDの列が存在することを特徴とするバックライト装置。
    A backlight device that emits light from the back of a liquid crystal panel,
    A light source unit having a plurality of LEDs that emit light toward the liquid crystal panel, and a lens unit that expands the light emitted from the plurality of LEDs;
    A diffusion plate that is disposed between the liquid crystal panel and the light source unit and diffuses light emitted from the plurality of LEDs;
    In the light source unit, the plurality of LEDs are arranged so that a plurality of LED rows are formed,
    2. The backlight device according to claim 1, wherein in the plurality of LED rows, there are two LED rows having different main emission directions of light.
  2.  前記光源部は、前記LEDの列毎に、前記LEDを設置するLED設置面を有し、
     前記2つのLEDの列では、前記LED設置面の向きを互いに異ならせることにより、光の主放射方向を互いに異ならせていることを特徴とする請求項1に記載のバックライト装置。
    The light source unit has an LED installation surface for installing the LED for each row of the LEDs,
    2. The backlight device according to claim 1, wherein in the two LED rows, the main radiation directions of light are made different from each other by making directions of the LED installation surfaces different from each other.
  3.  前記光源部では、前記LEDの列の数が2つであり、2つの前記LEDの列の光の主放射方向が互いに異なることを特徴とする請求項1に記載のバックライト装置。 2. The backlight device according to claim 1, wherein in the light source unit, the number of the LED rows is two, and main light emission directions of the two LED rows are different from each other.
  4.  前記2つのLEDの列では、一方の第1のLEDの列の光の主放射方向が、前記液晶パネルの厚み方向よりも該液晶パネルの第1辺の側に傾き、他方の第2のLEDの列の光の主放射方向が、前記液晶パネルの厚み方向よりも該液晶パネルにおいて前記第1辺に相対する第2辺の側に傾いていることを特徴とする請求項1に記載のバックライト装置。 In the two LED rows, the main radiation direction of the light of one first LED row is inclined toward the first side of the liquid crystal panel with respect to the thickness direction of the liquid crystal panel, and the other second LED 2. The back according to claim 1, wherein a main radiation direction of light in the first column is inclined toward a second side opposite to the first side in the liquid crystal panel with respect to a thickness direction of the liquid crystal panel. Light equipment.
  5.  前記第1のLEDの列は、前記第2のLEDの列よりも前記第1の辺の側に配置されていることを特徴とする請求項4に記載のバックライト装置。 The backlight device according to claim 4, wherein the first LED row is disposed closer to the first side than the second LED row.
  6.  前記拡散板は、前記光源部側の面における入射光の強度が高い位置ほど当該拡散板の厚み方向の光の透過率が相対的に小さくなるように構成されていることを特徴とする請求項1記載のバックライト装置。 The diffuser plate is configured such that the light transmittance in the thickness direction of the diffuser plate becomes relatively smaller as the intensity of incident light on the surface on the light source unit side is higher. The backlight device according to 1.
  7.  前記レンズ部は、前記複数のLEDの列から放射された光を拡張する1つのレンズを有することを特徴とする請求項1に記載のバックライト装置。 The backlight device according to claim 1, wherein the lens unit includes one lens that expands light emitted from the row of the plurality of LEDs.
  8.  前記複数のLEDの列は、矩形板状の前記液晶パネルの短手方向の中央部に、前記液晶パネルの長手方向に沿って設けられていることを特徴とする請求項1記載のバックライト装置。 2. The backlight device according to claim 1, wherein the plurality of LED rows are provided along a longitudinal direction of the liquid crystal panel at a central portion in a short direction of the liquid crystal panel having a rectangular plate shape. .
  9.  当該バックライト装置は、前記液晶パネルを複数の矩形領域に分けて光を放射し、
     前記各矩形領域に対して、前記光源部がそれぞれ設けられ、
     前記各光源部では、前記複数のLEDの列が、前記各矩形領域の短手方向の中央部に前記各矩形領域の長手方向に沿ってそれぞれ設けられていることを特徴とする請求項1記載のバックライト装置。
    The backlight device radiates light by dividing the liquid crystal panel into a plurality of rectangular regions,
    The light source unit is provided for each rectangular area,
    2. The light source unit according to claim 1, wherein the plurality of LED rows are respectively provided in a central portion in a short direction of each rectangular region along a longitudinal direction of each rectangular region. Backlight device.
  10.  液晶パネルと、
     前記液晶パネルの背面側に配置されたバックライト装置とを備え、
     前記バックライト装置は、
      前記液晶パネル側へ光を放射する複数のLEDと、前記複数のLEDから放射された光を拡張するレンズ部とを有する光源部と、
      前記液晶パネルと前記光源部との間に配置され、前記複数のLEDから放射された光を拡散する拡散板とを有し、
     前記光源部では、LEDの列が複数形成されるように前記複数のLEDが配列され、
     前記複数のLEDの列には、光の主放射方向が互いに異なる2つのLEDの列が存在することを特徴とする液晶表示装置。
    LCD panel,
    A backlight device disposed on the back side of the liquid crystal panel,
    The backlight device includes:
    A light source unit having a plurality of LEDs that emit light toward the liquid crystal panel, and a lens unit that expands the light emitted from the plurality of LEDs;
    A diffusion plate that is disposed between the liquid crystal panel and the light source unit and diffuses light emitted from the plurality of LEDs;
    In the light source unit, the plurality of LEDs are arranged so that a plurality of LED rows are formed,
    2. The liquid crystal display device according to claim 1, wherein in the plurality of LED rows, there are two LED rows having different main light emission directions.
  11.  前記光源部は、前記LEDの列毎に、前記LEDを設置するLED設置面を有し、
     前記2つのLEDの列では、前記LED設置面の向きを互いに異ならせることにより、光の主放射方向を互いに異ならせていることを特徴とする請求項10に記載の液晶表示装置。
    The light source unit has an LED installation surface for installing the LED for each row of the LEDs,
    11. The liquid crystal display device according to claim 10, wherein in the two LED rows, the main radiation directions of light are made different from each other by making directions of the LED installation surfaces different from each other.
  12.  前記光源部では、前記LEDの列の数が2つであり、2つの前記LEDの列の光の主放射方向が互いに異なることを特徴とする請求項10に記載の液晶表示装置。 11. The liquid crystal display device according to claim 10, wherein in the light source unit, the number of the LED rows is two, and main light emission directions of the two LED rows are different from each other.
  13.  前記2つのLEDの列では、一方の第1のLEDの列の光の主放射方向が、前記液晶パネルの厚み方向よりも該液晶パネルの第1辺の側に傾き、他方の第2のLEDの列の光の主放射方向が、前記液晶パネルの厚み方向よりも該液晶パネルにおいて前記第1辺に相対する第2辺の側に傾いていることを特徴とする請求項10に記載のバックライト装置。 In the two LED rows, the main radiation direction of the light of one first LED row is inclined toward the first side of the liquid crystal panel with respect to the thickness direction of the liquid crystal panel, and the other second LED 11. The back according to claim 10, wherein a main radiation direction of light in the column is inclined toward a second side opposite to the first side in the liquid crystal panel with respect to a thickness direction of the liquid crystal panel. Light equipment.
  14.  前記第1のLEDの列は、前記第2のLEDの列よりも前記第1の辺の側に配置されていることを特徴とする請求項13に記載の液晶表示装置。 14. The liquid crystal display device according to claim 13, wherein the first LED row is arranged closer to the first side than the second LED row.
  15.  前記拡散板は、前記光源部側の面における入射光の強度が高い位置ほど当該拡散板の厚み方向の光の透過率が相対的に小さくなるように構成されていることを特徴とする請求項10記載の液晶表示装置。 The diffuser plate is configured such that the light transmittance in the thickness direction of the diffuser plate becomes relatively smaller as the intensity of incident light on the surface on the light source unit side is higher. 10. A liquid crystal display device according to 10.
  16.  前記レンズ部は、前記複数のLEDの列から放射された光を拡張する1つのレンズを有することを特徴とする請求項10に記載の液晶表示装置。 The liquid crystal display device according to claim 10, wherein the lens unit includes one lens that expands light emitted from the plurality of LED rows.
  17.  前記複数のLEDの列は、矩形板状の前記液晶パネルの短手方向の中央部に、前記液晶パネルの長手方向に沿って設けられていることを特徴とする請求項10記載の液晶表示装置。 11. The liquid crystal display device according to claim 10, wherein the plurality of LED rows are provided along a longitudinal direction of the liquid crystal panel at a central portion in a short direction of the liquid crystal panel having a rectangular plate shape. .
  18.  当該バックライト装置は、前記液晶パネルを複数の矩形領域に分けて光を放射し、
     前記各矩形領域に対して、前記光源部がそれぞれ設けられ、
     前記各光源部では、前記複数のLEDの列が、前記各矩形領域の短手方向の中央部に前記各矩形領域の長手方向に沿ってそれぞれ設けられていることを特徴とする請求項10記載の液晶表示装置。
    The backlight device radiates light by dividing the liquid crystal panel into a plurality of rectangular regions,
    The light source unit is provided for each rectangular area,
    The said light source part WHEREIN: The row | line | column of these LED is provided in the center part of the transversal direction of each said rectangular area along the longitudinal direction of each said rectangular area, respectively. Liquid crystal display device.
PCT/JP2012/004534 2011-12-15 2012-07-13 Backlight apparatus and liquid crystal display apparatus WO2013088594A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011274164A JP2015038812A (en) 2011-12-15 2011-12-15 Backlight device and liquid crystal display device
JP2011-274164 2011-12-15

Publications (1)

Publication Number Publication Date
WO2013088594A1 true WO2013088594A1 (en) 2013-06-20

Family

ID=48612078

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/004534 WO2013088594A1 (en) 2011-12-15 2012-07-13 Backlight apparatus and liquid crystal display apparatus

Country Status (2)

Country Link
JP (1) JP2015038812A (en)
WO (1) WO2013088594A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106125396A (en) * 2015-05-08 2016-11-16 三星电子株式会社 Display device
CN107884992A (en) * 2017-12-26 2018-04-06 惠州市华星光电技术有限公司 The backlight module and display device of low cost
US10802332B2 (en) 2017-12-26 2020-10-13 Huizhou China Star Optoelectronics Technology Co., Ltd. Low cost backlight module and display device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001312916A (en) * 2000-02-24 2001-11-09 Sony Corp Surface light source device
JP2004319458A (en) * 2003-03-31 2004-11-11 Fujitsu Display Technologies Corp Plane lighting device, and liquid crystal display device using the same
JP2007134224A (en) * 2005-11-11 2007-05-31 Showa Denko Kk Plane light source device and display device
JP2007328309A (en) * 2006-06-06 2007-12-20 Mikuni Denshi Kk Surface light source device, prism sheet and liquid crystal display device
WO2010029801A1 (en) * 2008-09-11 2010-03-18 シャープ株式会社 Illuminating device and liquid crystal display device provided with the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001312916A (en) * 2000-02-24 2001-11-09 Sony Corp Surface light source device
JP2004319458A (en) * 2003-03-31 2004-11-11 Fujitsu Display Technologies Corp Plane lighting device, and liquid crystal display device using the same
JP2007134224A (en) * 2005-11-11 2007-05-31 Showa Denko Kk Plane light source device and display device
JP2007328309A (en) * 2006-06-06 2007-12-20 Mikuni Denshi Kk Surface light source device, prism sheet and liquid crystal display device
WO2010029801A1 (en) * 2008-09-11 2010-03-18 シャープ株式会社 Illuminating device and liquid crystal display device provided with the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106125396A (en) * 2015-05-08 2016-11-16 三星电子株式会社 Display device
CN107884992A (en) * 2017-12-26 2018-04-06 惠州市华星光电技术有限公司 The backlight module and display device of low cost
WO2019127784A1 (en) * 2017-12-26 2019-07-04 惠州市华星光电技术有限公司 Low-cost backlight module and display apparatus
US10802332B2 (en) 2017-12-26 2020-10-13 Huizhou China Star Optoelectronics Technology Co., Ltd. Low cost backlight module and display device

Also Published As

Publication number Publication date
JP2015038812A (en) 2015-02-26

Similar Documents

Publication Publication Date Title
US10838255B2 (en) Direct view display device and light unit for direct view display device
KR101167301B1 (en) Back light unit of liquid crystal display device
TW569045B (en) Liquid crystal display panel, liquid crystal display device and composite optical element
US7206491B2 (en) Light guide device and backlight module using the same
JP5509154B2 (en) Light emitting device and display device
KR100814559B1 (en) Backlight device and liquid crystal apparatus
US20070189032A1 (en) Backlight system
JP2003132722A (en) Surface-formed lightsource device and liquid crystal display device provided with the same
JP2004311353A (en) Surface light source device and liquid crystal display device using this device
JP2006024439A (en) Surface light source device
JP2006196458A (en) Backlight module and its lens
JP2012529670A (en) Flat panel optical display system with high control output
JP2010040192A (en) Backlight unit and liquid crystal display equipped with the same
JP2010170897A (en) Edge light partial drive backlight unit, and liquid crystal display device
JP5899722B2 (en) Planar light source device and display device
KR100806708B1 (en) Back-light unit for liquid cristal display(lcd)
JP2008262906A (en) Back-light unit
KR20140123432A (en) Backlight unit and Liquid crystal display device including the same
JP2010108601A (en) Planar light source and liquid crystal display
WO2013088594A1 (en) Backlight apparatus and liquid crystal display apparatus
WO2012164791A1 (en) Surface light source and liquid crystal display device
WO2019021952A1 (en) Lighting device and display device
JP2007256697A (en) Liquid crystal display
WO2012081185A1 (en) Backlight device and liquid-crystal display device
WO2011145134A1 (en) Backlight unit and liquid crystal display device using said backlight unit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12856883

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12856883

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP