WO2013088556A1 - Optical lens, optical module, backlight assembly, and display device - Google Patents

Optical lens, optical module, backlight assembly, and display device Download PDF

Info

Publication number
WO2013088556A1
WO2013088556A1 PCT/JP2011/079082 JP2011079082W WO2013088556A1 WO 2013088556 A1 WO2013088556 A1 WO 2013088556A1 JP 2011079082 W JP2011079082 W JP 2011079082W WO 2013088556 A1 WO2013088556 A1 WO 2013088556A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical lens
optical
light
inclined portion
outer peripheral
Prior art date
Application number
PCT/JP2011/079082
Other languages
French (fr)
Japanese (ja)
Inventor
一廣 村松
秀樹 大柴
晃由 若藤
広司 藤森
Original Assignee
クイックディール・リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by クイックディール・リミテッド filed Critical クイックディール・リミテッド
Priority to PCT/JP2011/079082 priority Critical patent/WO2013088556A1/en
Publication of WO2013088556A1 publication Critical patent/WO2013088556A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0033Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
    • G02B19/0047Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source
    • G02B19/0061Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source the light source comprising a LED
    • G02B19/0066Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source the light source comprising a LED in the form of an LED array
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0004Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed
    • G02B19/0009Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed having refractive surfaces only
    • G02B19/0014Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed having refractive surfaces only at least one surface having optical power
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133603Direct backlight with LEDs

Definitions

  • the present invention relates to an optical lens, an optical module, a backlight assembly, and a display device.
  • a liquid crystal display is known as a kind of display device.
  • a liquid crystal display device is a device that displays an image using a liquid crystal substance, and can be made thinner and lighter than a CRT display device that has been widely used before, and can have low power consumption. Because it is possible, it is currently spreading rapidly.
  • the liquid crystal material (or the liquid crystal panel using the liquid crystal material) itself does not emit light, so that a separate light source for supplying light is required.
  • a fluorescent lamp type light source is used as the light source device.
  • a light emitting diode (LED) type light source is used. The use of light sources is increasing.
  • a light source of a light emitting diode system is called a uniform diffusion surface light source, and emits light with a so-called Lambertian light distribution. Therefore, when used as a light source as it is, it is necessary per unit area of a liquid crystal display device due to the narrow illumination range.
  • the number of light sources increases, and uniform light is supplied to the optical elements in the subsequent stage (in the case of a liquid crystal display device, a light guide member that guides light from the light source or a diffusion member that diffuses light from the light source). Difficult to do.
  • FIG. 14 is a cross-sectional view of a conventional optical lens 910.
  • Reference numeral 900 denotes an optical module including a light source 920 made of a light emitting diode and an optical lens 910.
  • the conventional optical lens 910 is an optical lens that expands the illumination range of light emitted from the light source 920 by using the optical lens 910 disposed on the emission side of the light source 920, and has a concave shape.
  • An incident surface 912 having a predetermined first outer diameter, an exit surface 914 having a convex shape and a second outer diameter larger than the first outer diameter, and an outer periphery of the exit surface 914 from an outer peripheral end of the incident surface 912.
  • a bottom surface 916 located in a region up to the end.
  • the bottom surface 916 includes a first flat surface portion 917 that abuts on a substrate 922 that supplies power to the light source 920, and a second flat surface portion 918 that is one step lower than the first flat surface portion 917.
  • the light emitted from the light source 920 is refracted by the incident surface 912 and the emission surface 914, and the illumination range is expanded as compared with the case where the light is emitted by the light source 920.
  • the light illumination range can be expanded and the number of light sources required per unit area can be reduced as compared with the case where a light source (particularly a light source composed of a light emitting diode) is used as it is. It becomes.
  • the present invention has been made to solve the above-described problems.
  • an optical module When an optical module is used, it is possible to supply light with higher uniformity to the optical element at the subsequent stage than a conventional optical lens. It is an object to provide a simple optical lens. It is another object of the present invention to provide an optical module including the optical lens of the present invention and capable of supplying light with higher uniformity to a subsequent optical element than a conventional optical module. It is another object of the present invention to provide a backlight assembly that includes the optical module of the present invention and can supply high-quality light. It is another object of the present invention to provide a display device that includes the backlight assembly of the present invention and can display a beautiful image using high-quality light.
  • the inventors of the present invention have conducted extensive research on the problem that light is incident nonuniformly on the optical element in the subsequent stage, and as a result, the light reflected without being emitted from the emission surface is further reflected on the bottom surface. It has been found that this is caused by a large incidence on a specific region (ring-shaped narrow region centered on the optical axis) of the optical elements in the subsequent stage.
  • This invention is made
  • the optical lens of the present invention is an optical lens that expands an illumination range of light emitted from the light source by being used in a state of being arranged on the light emission side of the light source, and the optical lens is emitted from the light source.
  • An incident surface having a concave shape surrounding the light source and having a predetermined first outer diameter, and an emission surface having a convex shape and a second outer diameter larger than the first outer diameter when arranged on the side
  • a bottom surface located in a predetermined region from the outer peripheral end of the incident surface to the outer peripheral end of the exit surface, the direction being parallel to the optical axis of the optical lens, from the exit surface to the entrance surface
  • the bottom surface has an inclined portion that inclines toward the first direction side as the distance from the optical axis of the optical lens increases.
  • the bottom surface has the inclined portion that inclines toward the first direction as the distance from the optical axis of the optical lens increases, the light reflected by the exit surface concentrates on the specific region described above.
  • light with higher uniformity can be supplied to the optical element at the subsequent stage than the conventional optical lens.
  • the incident surface having a concave shape and a predetermined first outer diameter, and the emission surface having a convex shape and a second outer diameter larger than the first outer diameter are provided. Therefore, like the conventional optical lens, the illumination range of the light emitted from the light source can be expanded, and the number of light sources required per unit area can be reduced.
  • optical lens of the present invention it is possible to alleviate the concentration of light that increases when attempting to further expand the illumination range of light into a specific region, so that uniformity can be reduced. While maintaining high light, it is possible to shorten the spatial distance and further reduce the number of light sources required per unit area.
  • the “predetermined area” may be the entire bottom area or a part of the bottom area.
  • the “concave surface shape” may be a concave shape as a whole, and is preferably a shape composed of a continuous curved surface, but a shape including a plane, a protrusion, a dent, etc. in a part (particularly near the optical axis). It may be.
  • the “convex shape” may be a convex shape as a whole, and is preferably a shape composed of a continuous curved surface, but a shape including a plane, a protrusion, a dent, etc. in part (particularly near the optical axis). It may be.
  • the arrangement interval of the optical modules is 50 mm (a general arrangement interval in this technical field).
  • the optical lens according to the present invention is used, the spatial distance is reduced to 15 mm or less even when the optical modules are arranged in the same manner. Has been found to be possible.
  • the bottom surface further includes a plane portion that is in contact with the outer peripheral end of the incident surface and is a plane perpendicular to the optical axis of the optical lens, and the inclined portion is It is preferable to be located on the outer peripheral side of the flat portion.
  • the inclined portion is in contact with both the outer peripheral end of the incident surface and the outer peripheral end of the exit surface.
  • the bottom surface is in contact with the outer peripheral end of the incident surface, and includes a first flat portion that is a plane perpendicular to the optical axis of the optical lens, and an outer peripheral end of the emission surface. And a second plane part formed of a plane perpendicular to the optical axis of the optical lens, and the inclined part is located between the first plane part and the second plane part. Is preferred.
  • the inclined portion is positioned on the outer peripheral side considered to have a relatively large amount of reflected light reflected by the exit surface, and the outermost periphery is the second flat portion formed of a plane.
  • the term “in contact with the outer peripheral edge of the incident surface” for the flat portion, the first flat portion and the inclined portion described in the above [2] to [4] means that each portion and the outer peripheral end of the incident surface are Not only when they are completely in contact, but also when each part is substantially in contact with the outer peripheral edge of the incident surface (for example, each part and the outer peripheral edge of the incident surface are connected via a step having no optical effect). Including contact).
  • each portion and the outer peripheral edge of the injection surface are completely in contact, but also each portion and the outer peripheral edge of the injection surface. This includes cases where they are substantially in contact (for example, where each part is in contact with the outer peripheral edge of the exit surface through a step or the like that does not have an optical effect).
  • the optical lens of the present invention it is preferable that the optical lens has a rotationally symmetric shape, and the surface of the inclined portion is a straight line on a predetermined plane including the optical axis of the optical lens.
  • This one has legs for installing the optical lens on the substrate (see each embodiment described later), and one with the end cut off when the optical lens is viewed from the top (mainly for arrangement reasons). Included in the invention.
  • the surface of the inclined portion is a straight line
  • the surface of the inclined portion (the cross section thereof) may be a straight line on a predetermined plane as a whole. Even in the case where the rough surface machining is not performed, the case where the inclined portion is a straight line is also included in the scope of the present invention.
  • an inclination angle of the inclined portion is in a range of 5 ° to 30 ° with respect to a plane perpendicular to the optical axis of the optical lens.
  • the inclination angle is within the range of 5 ° to 30 ° with respect to the virtual plane.
  • the inclination angle is smaller than 5 °, the light is concentrated in a specific region. In some cases, it is difficult to sufficiently relieve the inclination, and when the inclination angle is larger than 30 °, it may be difficult to obtain a sufficiently large area ratio of the inclined portion when viewed from above. Because. Even when the inclination angle is large, it is possible to increase the area ratio of the inclined portion when viewed from the top by increasing the area ratio of the inclined portion itself, but particularly when an optical lens is used for the display device. If the thickness of the optical lens is increased, the thickness of the display device must be increased. Therefore, the inclination angle is preferably 30 ° or less.
  • the incident surface is a rotationally symmetric aspherical surface.
  • Such a configuration makes it possible to spread light in a rotationally symmetric manner with respect to the optical axis.
  • the incident surface when the cross section of the incident surface is viewed as a curve on a predetermined plane including the optical axis of the optical lens, the incident surface has an inclination of a tangent to the curve only at a point overlapping the optical axis. It is preferable to have a shape that becomes zero.
  • the incident surface when the cross section of the incident surface is viewed as a curve on a predetermined plane including the optical axis of the optical lens, the incident surface is tangent to the optical axis and the optical axis at any location. It is also preferred that and are not parallel.
  • the exit surface is a rotationally symmetric aspherical surface.
  • Such a configuration makes it possible to spread light in a rotationally symmetric manner with respect to the optical axis.
  • the exit surface when the cross section of the exit surface is viewed as a curve on a predetermined plane including the optical axis of the optical lens, the exit surface has a tangent slope in the curve only at a point overlapping the optical axis. It is preferable to have a shape that becomes zero.
  • the exit surface when the cross section of the exit surface is viewed as a curve on a predetermined plane including the optical axis of the optical lens, the exit surface is tangent to the optical axis and the optical axis at any location. Are preferably not parallel to each other.
  • the surface of the inclined portion is a rough surface.
  • An optical module of the present invention includes a light source that emits light and the optical lens of the present invention.
  • the optical lens of the present invention since the optical lens of the present invention is provided, it becomes possible to supply light with higher uniformity to the optical element in the subsequent stage than the optical module using the conventional optical lens. .
  • the light source is preferably a light emitting diode.
  • the optical lens of the present invention is an optical lens suitable for use with a light source composed of a light emitting diode, even in such a case, light with higher uniformity can be supplied.
  • a backlight assembly of the present invention includes a circuit board and an optical module disposed on the circuit board, the optical module of the present invention.
  • the optical module of the present invention since the optical module of the present invention is provided, it is possible to supply light of good quality.
  • a display device of the present invention includes the backlight assembly of the present invention and a display panel that displays an image using light supplied from the backlight assembly.
  • the backlight assembly of the present invention since the backlight assembly of the present invention is provided, it is possible to display a beautiful image using high-quality light.
  • FIG. 3 is a perspective view for explaining the backlight assembly 200 according to the first embodiment.
  • FIG. 3 is an exploded perspective view for explaining the display device 1000 according to the first embodiment. It is a figure shown in order to demonstrate the optical lens 30 which concerns on Embodiment 2.
  • FIG. It is a figure shown in order to demonstrate the optical lens 40 which concerns on Embodiment 3.
  • FIG. It is a figure shown in order to demonstrate the optical lens 50 which concerns on Embodiment 4.
  • FIG. 60 which concerns on Embodiment 5.
  • FIG. 70 It is a figure shown in order to demonstrate the optical lens 70 which concerns on Embodiment 6.
  • FIG. 80 which concerns on Embodiment 7.
  • FIG. 90 It is a figure shown in order to demonstrate distribution of the light by the optical lens 90a which concerns on an experiment example.
  • inner diameter refers to the diameter of the inner peripheral end
  • outer diameter refers to the diameter of the outer peripheral end
  • FIG. 1 is a diagram for explaining an optical lens 10 according to the first embodiment.
  • FIG. 1A is a perspective view of the optical lens 10
  • FIG. 1B is a cross-sectional view of the optical lens 10.
  • contour lines that are not directly visible are indicated by broken lines.
  • FIG. 2 is a diagram for explaining the optical module 100 according to the first embodiment. 2A is an exploded perspective view of the optical module 100
  • FIG. 2B is a cross-sectional view of the optical module 100. The arrows in FIG. 2 simply represent the path followed by the light reflected by the exit surface.
  • FIG. 2B represents a circuit board of the backlight assembly 200 described later, and is not a component of the optical module 100.
  • FIG. 3 is a perspective view for explaining the backlight assembly 200 according to the first embodiment.
  • FIG. 4 is an exploded perspective view for explaining the display device 1000 according to the first embodiment.
  • the optical lens 10 is an optical lens that expands the illumination range of light emitted from the light source 20 by using the optical lens 10 arranged on the emission side of the light source 20 (described later).
  • the optical lens includes a leg 11, an incident surface 12, an exit surface 14, and a bottom surface 16.
  • the optical lens 10 has a rotationally symmetric shape.
  • the optical lens 10 is made of, for example, an acrylic resin.
  • the optical lens of the present invention may be made of a material other than acrylic resin (for example, polycarbonate resin, epoxy resin, optical glass, etc.).
  • the diameter of the optical lens 10 is 14.96 mm, the thickness including the leg portion 11 is 5.15 mm, and the thickness excluding the leg portion is 5.10 mm.
  • the leg 11 is for fixing the optical lens 10 to the substrate 24.
  • the incident surface 12 has a concave shape surrounding the light source 20 when the optical lens 10 is disposed on the emission side of the light source 20, and has a predetermined first outer diameter (see FIG. 1B). In the first embodiment, the first outer diameter is 4.20 mm.
  • the incident surface 12 is composed of a rotationally symmetric aspherical surface.
  • the exit surface 14 has a convex shape and a second outer diameter that is larger than the first outer diameter. In the first embodiment, the second outer diameter is 14.96 mm.
  • the exit surface 18 is a rotationally symmetric aspherical surface.
  • the bottom surface 16 is located in a region from the outer peripheral end of the incident surface 12 to the outer peripheral end of the exit surface 14, and includes a first flat portion 17, an inclined portion 18, and a second flat portion 19.
  • the first flat surface portion 17, the inclined portion 18 and the second flat surface portion 19 are rough surfaces (satin surface in the optical lens 10).
  • the first flat surface portion 17 has an average depth of 84 ⁇ m to 89 ⁇ m, which is the minimum required.
  • the draft is 9.5 °
  • the average depth of the inclined portion 18 is 8 ⁇ m to 12 ⁇ m
  • the minimum required draft is 2 °
  • the second flat portion 19 is the average depth of 9 ⁇ m to 12 ⁇ m, the minimum required draft
  • the satin finish is done at 1.5 °.
  • the first plane portion 17 is in contact with the outer peripheral end of the incident surface 12 and is a plane perpendicular to the optical axis of the optical lens 10.
  • the inner diameter of the first plane part 17 is 4.20 mm
  • the outer diameter of the first plane part 17 is 6.00 mm.
  • the second plane portion 19 is in contact with the outer peripheral end of the exit surface 14 and is a plane perpendicular to the optical axis of the optical lens 10.
  • the inner diameter of the second plane part 19 is 12.76 mm
  • the outer diameter of the second plane part 19 is 14.96 mm.
  • the inclined portion 18 is parallel to the optical axis of the optical lens 10, and when the direction from the exit surface 14 toward the entrance surface 12 is the first direction, the inclined portion 18 is closer to the first direction as the distance from the optical axis of the optical lens 10 increases. Inclined towards.
  • the inclined portion 18 is located between the first plane portion 17 and the second plane portion 19.
  • the inner diameter of the inclined portion 18 is 6.00 mm
  • the outer diameter of the inclined portion 18 is 12.76 mm.
  • the thickness of the inclined part 18 is 0.50 mm.
  • the inclined portion 18 is a straight line.
  • the inclination angle of the inclined portion 18 is in the range of 5 ° to 30 ° with respect to a plane perpendicular to the optical axis of the optical lens, and is, for example, about 8.4 °.
  • the surface shapes of the entrance surface 12, the exit surface 14, and the bottom surface 16 can be determined by computer simulation, for example (experimental examples described later). reference.).
  • the optical module 100 includes a light source 20 that emits light and the optical lens 10 according to the first embodiment.
  • the light source 20 is composed of a white light emitting diode. Although the detailed description is omitted, the light source 20 is obtained by sealing a light emitting portion disposed on the substrate 22 with a resin containing a phosphor.
  • each optical lens after Embodiment 2 is designed so as to correspond to the light source 20 described above, similarly to the optical lens 10 according to Embodiment 1.
  • the backlight assembly 200 includes a circuit board 210 and an optical module 100 disposed on the circuit board 210 as shown in FIG.
  • the arrangement shape, arrangement interval, number, and the like of the optical modules can be arbitrarily determined depending on the scale of the backlight assembly (or the scale of the display device using the backlight assembly).
  • the arrangement interval of the optical modules 100 is 35 mm to 50 mm
  • the arrangement shape is a rectangular shape of 26 rows and 15 columns
  • the number is 390. 3 and 4, the number of optical modules 100 and the number of rows of circuit boards 210 are reduced.
  • the display device 1000 includes a backlight assembly 200, a light guide member 300 that guides light from the backlight assembly 200, and light from the light guide member 300.
  • a diffusing member 400 that diffuses to further increase the uniformity of light
  • a display panel 500 that displays an image using light supplied from the backlight assembly 200
  • a top chassis 600 that is a cover as a whole are provided.
  • the display panel 500 includes a display panel drive circuit 510 that drives the display panel 500.
  • the spatial distance in the display device 1000 is, for example, 10 mm to 27 mm. Note that since the configuration of the entire display device is widely known, in this specification, only optical-related components will be briefly described.
  • the bottom surface 16 has the inclined portion 18 that is inclined toward the first direction side as being away from the optical axis of the optical lens, the light reflected on the exit surface is the above-described specific.
  • the optical module is formed, light with higher uniformity can be supplied to the optical element at the subsequent stage than the conventional optical lens. It becomes possible.
  • the incident surface 12 has a concave shape and has a predetermined first outer diameter
  • the second outer diameter has a convex shape and is larger than the first outer diameter
  • optical lens 10 it is possible to reduce the concentration of light that increases when attempting to further expand the illumination range of light in a specific region. It is possible to shorten the spatial distance and to further reduce the number of light sources required per unit area while maintaining highly uniform light.
  • the bottom surface 16 is in contact with the outer peripheral end of the incident surface 12, and the first flat surface portion 17 that is a plane perpendicular to the optical axis of the optical lens 10 and the exit surface 14 further includes a second plane portion 19 that is in contact with the outer peripheral edge of the optical lens 10 and is a plane perpendicular to the optical axis of the optical lens 10, and the inclined portion 18 is formed between the first plane portion 17 and the second plane portion 19 Since the inclined portion is located on the outer peripheral side considered to have a relatively large amount of reflected light reflected by the exit surface because it is located between the two, and the outermost periphery is the second flat portion formed of a plane, the optical module When compared with the conventional optical lens, it becomes possible to supply light with higher uniformity to the optical element at the subsequent stage and to make the optical lens easy to install on a substrate or the like. .
  • the optical lens 10 has a rotationally symmetric shape, and the inclined portion 18 is a straight line on a predetermined plane including the optical axis of the optical lens 10.
  • the design and processing can be simplified as compared with the case where the lens is inclined while changing the angle, and the cost of the optical lens can be reduced.
  • the inclination angle of the inclined portion 18 is in the range of 5 ° to 30 ° with respect to the plane perpendicular to the optical axis of the optical lens 10, and thus the light is specified. It is possible to sufficiently alleviate the concentration in the region, and the area ratio of the inclined portion when viewed from above can be made sufficiently wide.
  • the incident surface 12 is formed of a rotationally symmetric aspherical surface, it is possible to spread light in a rotationally symmetrical manner with respect to the optical axis.
  • the exit surface 14 is formed of a rotationally symmetric aspherical surface, it is possible to spread light in a rotationally symmetrical manner with respect to the optical axis.
  • the optical lens 10 since the surface of the inclined portion 18 is a rough surface, it is possible to scatter light reflected by the inclined portion, and as a result, compared to the conventional optical lens, When an optical module is used, more uniform light can be supplied to the optical element at the subsequent stage.
  • optical module 100 since the optical lens 10 according to the first embodiment is provided, light with higher uniformity is supplied to the subsequent optical element than the optical module using the conventional optical lens. It becomes possible to do.
  • the optical module 100 since the light source 20 is formed of a light emitting diode, it is possible to achieve further reduction in power consumption.
  • the optical lens 10 according to the first embodiment is an optical lens suitable for use with the light source 20 formed of a light emitting diode, even in such a case, light with higher uniformity can be supplied.
  • the backlight assembly 200 is an optical module disposed on the circuit board 210 and includes the optical module 100 according to the first embodiment. Therefore, it is possible to supply high-quality light. It becomes.
  • the display device includes the backlight assembly 200 according to the first embodiment, it is possible to display a beautiful image using high-quality light.
  • FIG. 5 is a diagram for explaining the optical lens 30 according to the second embodiment.
  • FIG. 6 is a view for explaining the optical lens 40 according to the third embodiment.
  • FIG. 7 is a diagram for explaining the optical lens 50 according to the fourth embodiment.
  • FIG. 8 is a view for explaining the optical lens 60 according to the fifth embodiment.
  • the optical lenses 30 to 60 according to the second to fifth embodiments basically have the same configuration as the optical lens 10 according to the first embodiment, but the configuration (parameters) of each surface is the optical lens 10 according to the first embodiment. It is different from the case of.
  • the optical lens 30 includes an optical leg 31, an incident surface 32, an exit surface 34, and a bottom surface 36 (first flat surface portion 37, inclined portion 38, second inclined portion 39). It is a lens.
  • the optical lens 40 includes an optical element including a leg portion 41, an incident surface 42, an exit surface 44, and a bottom surface 46 (first flat portion 47, inclined portion 48, second inclined portion 49). It is a lens.
  • the optical lens 50 includes an optical leg including a leg 51, an incident surface 52, an exit surface 54, and a bottom surface 56 (first flat portion 57, inclined portion 58, second inclined portion 59). It is a lens.
  • the optical lens 60 includes a leg portion 61, an incident surface 62, an exit surface 64, and a bottom surface 66 (a first plane portion 67, an inclined portion 68, and a second inclined portion 69). It is a lens.
  • Optical lens 30 40 50 60 Diameter 15.50 15.50 15.50 19.70 Thickness (including legs) 5.10 5.10 5.10 5.70 Thickness (excluding legs) 5.05 5.05 5.05 5.62 Leg diameter 1.00 1.00 1.00 1.67 First outer diameter 4.21 4.22 4.40 2.86 Second outer diameter 15.50 15.50 15.50 19.70 Inner diameter of first plane part 4.21 4.22 4.40 2.86 Outer diameter of the first flat portion 10.50 10.50 12.55 Inner diameter of inclined portion 10.50 10.50 10.50 12.55 Outer diameter of inclined portion 13.30 13.30 13.30 18.70 Inner diameter of second plane portion 13.30 13.30 13.30 18.70 Outer diameter of the second flat portion 15.50 15.50 19.70 Inclined part thickness 0.50 0.50 0.50 0.90 Tilt angle 20.0 20.0 20.0 14.9
  • the bottom surfaces of the optical lenses 30 to 50 according to the second to fourth embodiments are rough surfaces like the bottom surface 16 of the first embodiment, and are satin-finished.
  • the bottom surface 66 of the optical lens 60 according to Embodiment 5 is a smooth surface.
  • the optical lenses 30 to 60 according to the second to fifth embodiments are different from the optical lens 10 according to the first embodiment in the configuration (parameters) of each surface, but as the bottom surface moves away from the optical axis of the optical lens, As the optical lens 10 according to the first embodiment has the inclined portion that is inclined toward the surface, it is possible to reduce the concentration of the light reflected on the exit surface in the specific area described above. As a result, when it is set as an optical module, it becomes possible to supply a highly uniform light with respect to an optical element of a back
  • the optical lenses 30 to 60 according to the second to fifth embodiments have the same configuration as that of the optical lens 10 according to the first embodiment except for the configuration (parameter) of each surface. Of the effects of the optical lens 10, the corresponding effects are provided as they are.
  • FIG. 9 is a diagram for explaining the optical lens 70 according to the sixth embodiment.
  • the optical lens 70 according to the sixth embodiment basically has the same configuration as the optical lens 10 according to the first embodiment, but the optical lens according to the first embodiment is different in that the bottom surface has one plane portion and an inclined portion. This is different from the case of the lens 10.
  • the optical lens 70 is an optical lens including a leg portion 71, an incident surface 72, an exit surface 74, a bottom surface 76, and an outer peripheral surface 79.
  • the bottom surface 76 is in contact with the outer peripheral end of the incident surface 72, and has a flat portion 77 that is a plane perpendicular to the optical axis of the optical lens 70, and an inclined portion 78 that is positioned on the outer peripheral side of the flat portion 77.
  • the outer peripheral surface 79 is a curved surface provided between the outer peripheral end of the emission surface 74 and the outer peripheral end of the inclined portion 78.
  • the outer peripheral surface 79 is a rough surface (satin surface in the optical lens 70), and is subjected to a textured process with an average depth of 9 ⁇ m to 12 ⁇ m and a minimum required draft of 1.5 °.
  • a textured process with an average depth of 9 ⁇ m to 12 ⁇ m and a minimum required draft of 1.5 °.
  • the diameter of the optical lens 70 as a whole is 18.01 mm, and the thickness including the leg portion 71 is 5.81 mm.
  • the diameter of the leg 71 is 2.05 mm.
  • the first outer diameter is 2.87 mm.
  • the second outer diameter is 18.01 mm.
  • the flat surface portion 77 and the inclined portion 88 have a rough surface (satin surface in the optical lens 70).
  • the flat surface portion 77 has an average depth of 84 ⁇ m to 89 ⁇ m and a minimum required draft 9.5 °.
  • No. 78 has been subjected to a satin treatment with an average depth of 8 ⁇ m to 12 ⁇ m and a minimum draft of 2 °.
  • the inner diameter of the flat portion 77 is 2.87 mm
  • the outer diameter of the flat portion 77 is 9.00 mm.
  • the inner diameter of the inclined portion 78 is 9.00 mm
  • the outer diameter of the inclined portion 78 is 17.54 mm.
  • the thickness of the inclined part 78 is 0.75 mm.
  • the inclination angle of the inclined portion 78 is in the range of 5 ° to 30 ° with respect to the plane perpendicular to the optical axis of the optical lens, and is, for example, about 9.9 °.
  • the optical lens 70 according to the sixth embodiment is different from the optical lens 10 according to the first embodiment in that the bottom surface has one flat surface portion and an inclined portion, but the bottom surface 76 increases as the distance from the optical axis of the optical lens 70 increases. Since it has the inclined portion 78 inclined toward the first direction side, it becomes possible to reflect the light reflected by the exit surface toward a place other than a specific place, like the optical lens 10 according to the first embodiment. As a result, when an optical module is formed, light with higher uniformity can be supplied to the optical element at the subsequent stage than the conventional optical lens.
  • the bottom surface 76 has the flat surface portion 77 that is in contact with the outer peripheral end of the incident surface 72 and has a flat surface that is perpendicular to the optical axis of the optical lens 70.
  • 78 is located on the outer peripheral side of the flat surface portion 77, and therefore, the inclined portion is located on the outer peripheral side considered to have a relatively large amount of light reflected by the exit surface. As compared with the optical lens, it becomes possible to supply light with higher uniformity to the subsequent optical element.
  • the optical lens 70 according to the sixth embodiment has the same configuration as that of the optical lens 10 according to the first embodiment except that the bottom surface has one plane portion and an inclined portion. Among the effects of the optical lens 10 according to the above, the corresponding effect is directly used.
  • FIG. 10 is a diagram for explaining the optical lens 80 according to the seventh embodiment.
  • the optical lens 80 according to the seventh embodiment basically has the same configuration as the optical lens 10 according to the first embodiment, except that the bottom surface has only an inclined portion (no flat portion). This is different from the case of the optical lens 10.
  • the optical lens 80 is an optical lens including a leg portion 81, an incident surface 82, an exit surface 84, and a bottom surface 86.
  • the bottom surface 86 has an inclined portion 88 that is in contact with both the outer peripheral end of the incident surface 82 and the outer peripheral end of the exit surface 84.
  • a step 87 and an outer peripheral surface 89 exist between the outer peripheral end of the inclined portion 88 and the outer peripheral end of the emission surface 84, and these exist for the convenience of installation of the optical lens, and the inclined portion 88. Is substantially in contact with the outer peripheral end of the exit surface 84 (via the step 87 and the outer peripheral surface 89).
  • the diameter of the optical lens 80 as a whole is 18.00 mm, and the thickness including the leg portion 81 is 5.75 mm.
  • the diameter of the leg 81 is 1.67 mm.
  • the first outer diameter is 2.86 mm.
  • the second outer diameter is 18.00 mm.
  • the inclined portion 88 has a smooth surface. In addition, it is good also as an inclined part which the surface becomes a rough surface.
  • the inner diameter of the inclined portion 88 is 2.86 mm, and the outer diameter of the inclined portion 88 is 17.54 mm. Moreover, the thickness of the inclined part 88 is 0.75 mm.
  • the inclination angle of the inclined portion 88 is in the range of 5 ° to 30 ° with respect to a plane perpendicular to the optical axis of the optical lens, and is, for example, about 5.00 °.
  • the optical lens 80 according to the seventh embodiment is different from the optical lens 10 according to the first embodiment in that the bottom surface has only an inclined portion, but the bottom surface 86 becomes closer to the first direction as the distance from the optical axis of the optical lens 80 increases. Since it has the inclination part 88 which inclines toward, like the optical lens 10 which concerns on Embodiment 1, it becomes possible to reflect light reflected on the output surface toward places other than a specific place, As a result, an optical module Then, it becomes possible to supply light with higher uniformity to the optical element at the subsequent stage than the conventional optical lens.
  • the optical lens 80 according to the seventh embodiment since the inclined portion 88 is in contact with both the outer peripheral end of the incident surface 82 and the outer peripheral end of the exit surface 84, the ratio of the inclined portion on the bottom surface increases. Therefore, since it is possible to reflect a lot of light in a direction away from the optical axis, when it is used as an optical module, more uniform light is applied to the optical element in the subsequent stage than the conventional optical lens. It becomes possible to supply.
  • the optical lens 80 according to the seventh embodiment has the same configuration as that of the optical lens 10 according to the first embodiment except that the bottom surface has only the inclined portion, and thus the optical lens 10 according to the first embodiment. Among the effects possessed, the corresponding effect is maintained as it is.
  • FIG. 11 is a diagram for explaining the light distribution by the optical lens 90a according to the experimental example.
  • 11A is a cross-sectional view of the optical lens 90a
  • FIG. 11B is a diagram showing the light distribution in the illumination target
  • FIG. 11C is a graph of the light distribution around the optical axis. It is a thing.
  • a region closer to white indicates a region where more light is incident on the optical element in the subsequent stage, and this is the same in FIGS. 12 (b) and 13 (b) described later. is there.
  • the vertical axis is a luminance (unit: cd) and the horizontal axis is an angle.
  • the element Since the element is flat, it is not necessary to emit very strong light near the front where the distance from the optical element in the rear stage is short, and in consideration of light diffusion in an oblique direction where the distance from the optical element in the rear stage is far This is because it is necessary to emit strong light.
  • FIG. 12 is a diagram for explaining the light distribution by the optical lens 90b according to the experimental example.
  • 12A is a cross-sectional view of the optical lens 90b
  • FIG. 12B is a diagram showing the light distribution in the illumination target
  • FIG. 12C is a graph of the light distribution around the optical axis.
  • FIG. 13 is a diagram for explaining the light distribution by the optical lens 90c according to the experimental example. 13A is a cross-sectional view of the optical lens 90c
  • FIG. 13B is a diagram showing the light distribution in the illumination target
  • FIG. 13C is a graph of the light distribution around the optical axis. It is a thing.
  • FIGS. 11 (b) to 13 (b) and FIGS. 11 (c) to 13 (c) in an experiment relating to the optical lens 90a, a ring shape around the optical axis in which a lot of light is incident. A portion corresponding to a narrow region is indicated by “a” in FIG. 11, “b” in FIG. 12, and “c” in FIG.
  • the optical lens 90a corresponds to a conventional optical lens
  • the optical lenses 90b and 90c correspond to the optical lens of the present invention. That is, the bottom surface 96a (reference sign not shown) of the optical lens 90a is a flat surface, and the bottom faces 96b and 96c (reference sign not shown) of the optical lenses 90b and 90c are inclined portions 98b and 98c (reference sign not shown). ).
  • the bottom surface 96a of the optical lens 90a is a flat surface, the inclination angle of the inclined portion 98b in the optical lens 90a is 9.9 °, and the inclination angle of the inclined portion 98c in the optical lens 90c is 20 °.
  • each flat surface portion is a smooth surface
  • the configuration of the optical lenses 90a, 90b, and 90c is the same as that of the optical lens 80 according to the seventh embodiment, and a detailed description thereof will be omitted.
  • substrate in a light source to the transmissive member was 10 mm.
  • the optical lens 90a corresponding to the conventional optical lens
  • light is non-uniformly incident on the optical element in the subsequent stage (many light is incident on a ring-shaped narrow region centered on the optical axis).
  • it turned out that it was difficult to supply uniform light with respect to an optical element of a back
  • the optical lenses 90b and 90c which are the optical lenses of the present invention, it has been confirmed that the portions (ring-shaped regions) where light is incident non-uniformly are widened or dissipated (FIGS. 12 and 13). reference.).
  • the surface of the inclined portion is a rough surface
  • the light reflected by the inclined portion can be scattered, so that it becomes possible to blur or completely dissipate the portion where the light is incident unevenly. Conceivable.
  • the ring-shaped region at first glance is widened, and it seems that the non-uniformity of the light incident on the optical element at the subsequent stage has increased.
  • the larger ring-shaped region supplies more uniform light to the optical element in the subsequent stage than the smaller ring-shaped region. It becomes possible.
  • a light source that emits “light that can be used as white light” is used, but the present invention is not limited to this.
  • a light source that emits light other than “light that can be used as white light” for example, monochromatic light such as red light, green light, and blue light, or light that includes a large amount of a specific color light component may be used.
  • the present invention has been described using an optical lens that is assumed to be used in a display device, but the present invention is not limited to this.
  • it may be an optical lens premised on use in a lighting device.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Planar Illumination Modules (AREA)

Abstract

This optical lens is an optical lens (10) for enlarging the range of illumination of light emitted from a light source (20) by being used in a state where the optical lens is disposed on the emission side of the light source (20), the optical lens being provided with an incidence surface (12) having a predetermined first outside diameter and a concave shape which surrounds the light source (20) when the optical lens (10) is disposed on the emission side of the light source (20), an emission surface (14) having a convex shape and a second outside diameter larger than the first outside diameter, and a bottom surface (16) positioned in a predetermined region ranging from the external peripheral edge of the incidence surface (12) to the external peripheral edge of the emission surface (14), and the bottom surface (16) having an inclined part (18) inclined toward a first direction progressively away from the optical axis of the optical lens (10), where the first direction is a direction parallel to the optical axis of the optical lens (10) and leading from the emission surface (14) to the incidence surface (12). When an optical module is configured using this optical lens, it is possible to supply subsequent optical elements with more highly uniform light than by a conventional optical lens.

Description

光学レンズ、光学モジュール、バックライト組立体及び表示装置Optical lens, optical module, backlight assembly and display device
 本発明は、光学レンズ、光学モジュール、バックライト組立体及び表示装置に関する。 The present invention relates to an optical lens, an optical module, a backlight assembly, and a display device.
 表示装置の一種として液晶表示装置(LCD)が知られている。液晶表示装置は、液晶物質を用いて画像を表示する装置であり、以前広く普及していたCRT式の表示装置よりも薄型軽量とすることが可能であり、また、低消費電力とすることが可能であるため、現在、急速に普及が進んでいる。 A liquid crystal display (LCD) is known as a kind of display device. A liquid crystal display device is a device that displays an image using a liquid crystal substance, and can be made thinner and lighter than a CRT display device that has been widely used before, and can have low power consumption. Because it is possible, it is currently spreading rapidly.
 ところで、液晶表示装置においては、液晶物質(あるいは、液晶物質を用いた液晶パネル)そのものは発光しないので、別途に光を供給するための光源が必要となる。現在使用されている多くの液晶表示装置においては、当該光源装置として蛍光ランプ系の光源が用いられているが、近年、一層の低消費電力化を達成するために、発光ダイオード(LED)系の光源を用いる場合が増えてきている。 By the way, in the liquid crystal display device, the liquid crystal material (or the liquid crystal panel using the liquid crystal material) itself does not emit light, so that a separate light source for supplying light is required. In many currently used liquid crystal display devices, a fluorescent lamp type light source is used as the light source device. In recent years, in order to achieve further lower power consumption, a light emitting diode (LED) type light source is used. The use of light sources is increasing.
 発光ダイオード系の光源は均等拡散面光源といわれ、いわゆるランバーシャン(Lambertian)配光で光を射出するため、そのまま光源として用いると、照明可能範囲の狭さから液晶表示装置の単位面積当たりに必要な光源の数が多くなり、また、後段の光学要素(液晶表示装置の場合、光源からの光を導光する導光部材や、光源からの光を拡散させる拡散部材)に均一な光を供給することが困難となる。 A light source of a light emitting diode system is called a uniform diffusion surface light source, and emits light with a so-called Lambertian light distribution. Therefore, when used as a light source as it is, it is necessary per unit area of a liquid crystal display device due to the narrow illumination range. The number of light sources increases, and uniform light is supplied to the optical elements in the subsequent stage (in the case of a liquid crystal display device, a light guide member that guides light from the light source or a diffusion member that diffuses light from the light source). Difficult to do.
 上記したような経緯から、従来、液晶表示装置には上記のような光源(発光ダイオード)に用いる光学レンズが用いられている(例えば、特許文献1参照。)。図14は、従来の光学レンズ910の断面図である。なお、符号900で表すのは、発光ダイオードからなる光源920と光学レンズ910とを備える光学モジュールである。従来の光学レンズ910は、図14に示すように、光源920の射出側に配置した状態で用いることにより、光源920から射出される光の照明範囲を拡大する光学レンズであって、凹面形状を有し所定の第1外径を有する入射面912と、凸面形状を有し第1外径よりも大きい第2外径を有する射出面914と、入射面912の外周端から射出面914の外周端までの領域に位置する底面916とを備える。底面916は、光源920に電力を供給する基板922に当接する第1平面部917と、第1平面部917よりも一段低くなっている第2平面部918とを有する。光源920から射出される光は、入射面912と射出面914とで屈折され、光源920で射出されたときよりも照明範囲が拡大される。このため、従来の光学レンズ910によれば、光源(特に発光ダイオードからなる光源)をそのまま使用したときよりも光の照明範囲を拡大し、単位面積当たりに必要な光源の数を減らすことが可能となる。 From the background described above, conventionally, an optical lens used for a light source (light emitting diode) as described above has been used in a liquid crystal display device (for example, see Patent Document 1). FIG. 14 is a cross-sectional view of a conventional optical lens 910. Reference numeral 900 denotes an optical module including a light source 920 made of a light emitting diode and an optical lens 910. As shown in FIG. 14, the conventional optical lens 910 is an optical lens that expands the illumination range of light emitted from the light source 920 by using the optical lens 910 disposed on the emission side of the light source 920, and has a concave shape. An incident surface 912 having a predetermined first outer diameter, an exit surface 914 having a convex shape and a second outer diameter larger than the first outer diameter, and an outer periphery of the exit surface 914 from an outer peripheral end of the incident surface 912. And a bottom surface 916 located in a region up to the end. The bottom surface 916 includes a first flat surface portion 917 that abuts on a substrate 922 that supplies power to the light source 920, and a second flat surface portion 918 that is one step lower than the first flat surface portion 917. The light emitted from the light source 920 is refracted by the incident surface 912 and the emission surface 914, and the illumination range is expanded as compared with the case where the light is emitted by the light source 920. For this reason, according to the conventional optical lens 910, the light illumination range can be expanded and the number of light sources required per unit area can be reduced as compared with the case where a light source (particularly a light source composed of a light emitting diode) is used as it is. It becomes.
特許第4568194号公報Japanese Patent No. 4568194
 しかしながら、本発明の発明者らの研究により、従来の光学レンズ910においては、上記のように光学モジュールとしたとき、後段の光学要素に不均一に光が入射し(多くの光が、光軸を中心とするリング状の狭い領域に入射してしまう。後述の実験例(特に図10)参照。)、後段の光学要素に対して均一性の高い光を供給することが困難であるという問題があることがわかった。これは、光学モジュールにおける基板の上面から直近後段の光学部材までの距離(いわゆる空間距離)を短くしようとし、かつ、光の照明範囲を一層拡大して単位面積当たりに必要な光源の数を一層減らそうとする場合には特に深刻な問題となる。 However, according to the research of the inventors of the present invention, in the conventional optical lens 910, when the optical module is used as described above, light is incident nonuniformly on the optical element in the subsequent stage (a lot of light is reflected on the optical axis). It is difficult to supply light with high uniformity to the optical element in the subsequent stage, as will be described later in the experimental example (especially FIG. 10). I found out that This is intended to shorten the distance (so-called spatial distance) from the upper surface of the substrate in the optical module to the nearest optical member, and further increase the illumination range of light to further increase the number of light sources required per unit area. This is a particularly serious problem when trying to reduce it.
 そこで、本発明は上記した問題を解決するためになされたもので、光学モジュールとしたときに、従来の光学レンズよりも、後段の光学要素に対して均一性の高い光を供給することが可能な光学レンズを提供することを目的とする。また、本発明の光学レンズを備え、従来の光学モジュールよりも、後段の光学要素に対して均一性の高い光を供給することが可能な光学モジュールを提供することを目的とする。また、本発明の光学モジュールを備え、品質の良い光を供給することが可能なバックライト組立体を提供することを目的とする。さらにまた、本発明のバックライト組立体を備え、品質の良い光を用いて美麗な画像を表示することが可能な表示装置を提供することを目的とする。 Accordingly, the present invention has been made to solve the above-described problems. When an optical module is used, it is possible to supply light with higher uniformity to the optical element at the subsequent stage than a conventional optical lens. It is an object to provide a simple optical lens. It is another object of the present invention to provide an optical module including the optical lens of the present invention and capable of supplying light with higher uniformity to a subsequent optical element than a conventional optical module. It is another object of the present invention to provide a backlight assembly that includes the optical module of the present invention and can supply high-quality light. It is another object of the present invention to provide a display device that includes the backlight assembly of the present invention and can display a beautiful image using high-quality light.
 本発明の発明者らは、後段の光学要素に不均一に光が入射するという問題について鋭意研究を重ねた結果、射出面から射出されずに反射された光が底面でさらに反射され、この光が後段の光学要素のうち特定の領域(光軸を中心とするリング状の狭い領域)に多く入射することが原因であるという知見を得た。また、さらなる研究の結果、空間距離を短くしようとし、かつ、光の照明範囲を一層拡大しようとする場合には、射出面から射出されずに反射される光の割合が増加するという知見も得た。本発明は上記知見に基づいてなされたものであり、以下の要素から構成される。 The inventors of the present invention have conducted extensive research on the problem that light is incident nonuniformly on the optical element in the subsequent stage, and as a result, the light reflected without being emitted from the emission surface is further reflected on the bottom surface. It has been found that this is caused by a large incidence on a specific region (ring-shaped narrow region centered on the optical axis) of the optical elements in the subsequent stage. In addition, as a result of further research, when it was attempted to shorten the spatial distance and further expand the light illumination range, it was also found that the proportion of light reflected without being emitted from the exit surface increases. It was. This invention is made | formed based on the said knowledge, and is comprised from the following elements.
[1]本発明の光学レンズは、光源の射出側に配置した状態で用いることにより、前記光源から射出される光の照明範囲を拡大する光学レンズであって、前記光学レンズを前記光源の射出側に配置したとき、前記光源を囲う凹面形状を有し、所定の第1外径を有する入射面と、凸面形状を有し、前記第1外径よりも大きい第2外径を有する射出面と、前記入射面の外周端から前記射出面の外周端までの所定の領域に位置する底面とを備え、前記光学レンズの光軸と平行な方向であって、前記射出面から前記入射面へ向かう方向を第1方向とするとき、前記底面は、前記光学レンズの光軸から離れるに従って前記第1方向側に向かって傾斜する傾斜部を有することを特徴とする。 [1] The optical lens of the present invention is an optical lens that expands an illumination range of light emitted from the light source by being used in a state of being arranged on the light emission side of the light source, and the optical lens is emitted from the light source. An incident surface having a concave shape surrounding the light source and having a predetermined first outer diameter, and an emission surface having a convex shape and a second outer diameter larger than the first outer diameter when arranged on the side And a bottom surface located in a predetermined region from the outer peripheral end of the incident surface to the outer peripheral end of the exit surface, the direction being parallel to the optical axis of the optical lens, from the exit surface to the entrance surface When the direction toward the first direction is the first direction, the bottom surface has an inclined portion that inclines toward the first direction side as the distance from the optical axis of the optical lens increases.
 本発明の光学レンズによれば、底面が光学レンズの光軸から離れるに従って第1方向側に向かって傾斜する傾斜部を有するため、射出面で反射された光が上記した特定の領域に集中してしまうのを緩和することが可能となり、その結果、光学モジュールとしたときに、従来の光学レンズよりも、後段の光学要素に対して均一性の高い光を供給することが可能となる。 According to the optical lens of the present invention, since the bottom surface has the inclined portion that inclines toward the first direction as the distance from the optical axis of the optical lens increases, the light reflected by the exit surface concentrates on the specific region described above. As a result, when an optical module is formed, light with higher uniformity can be supplied to the optical element at the subsequent stage than the conventional optical lens.
 また、本発明の光学レンズによれば、凹面形状を有し所定の第1外径を有する入射面と、凸面形状を有し第1外径よりも大きい第2外径を有する射出面とを備えるため、従来の光学レンズと同様に、光源から射出される光の照明範囲を拡大し、単位面積当たりに必要な光源の数を減らすことが可能となる。 According to the optical lens of the present invention, the incident surface having a concave shape and a predetermined first outer diameter, and the emission surface having a convex shape and a second outer diameter larger than the first outer diameter are provided. Therefore, like the conventional optical lens, the illumination range of the light emitted from the light source can be expanded, and the number of light sources required per unit area can be reduced.
 また、本発明の光学レンズによれば、光の照明範囲を一層拡大しようとする場合に増加する光についても特定の領域に集中してしまうのを緩和することが可能であるため、均一性の高い光としたまま、空間距離を短くし、かつ、単位面積当たりに必要な光源の数を一層減らすことが可能となる。 Further, according to the optical lens of the present invention, it is possible to alleviate the concentration of light that increases when attempting to further expand the illumination range of light into a specific region, so that uniformity can be reduced. While maintaining high light, it is possible to shorten the spatial distance and further reduce the number of light sources required per unit area.
 なお、本発明において「所定の領域」とは、底面の領域の全てでもよいし、底面の領域の一部でもよい。
 また、「凹面形状」とは、全体として凹面形状であればよく、連続した曲面からなる形状であることが好ましいが、一部(特に光軸付近)に平面、突出部、へこみ等を含む形状であっても良い。
 さらにまた、「凸面形状」も、全体として凸面形状であればよく、連続した曲面からなる形状であることが好ましいが、一部(特に光軸付近)に平面、突出部、へこみ等を含む形状であっても良い。
In the present invention, the “predetermined area” may be the entire bottom area or a part of the bottom area.
The “concave surface shape” may be a concave shape as a whole, and is preferably a shape composed of a continuous curved surface, but a shape including a plane, a protrusion, a dent, etc. in a part (particularly near the optical axis). It may be.
Furthermore, the “convex shape” may be a convex shape as a whole, and is preferably a shape composed of a continuous curved surface, but a shape including a plane, a protrusion, a dent, etc. in part (particularly near the optical axis). It may be.
 なお、本発明の発明者らの研究によれば、特許文献1に係る従来の光学レンズ900を用いた場合には、光学モジュールの配置間隔を50mm(当該技術分野においては一般的な配置間隔である。)としたとき、空間距離が30mm以上必要になるのに対し、本発明に係る光学レンズを用いた場合には、光学モジュールの配置が同じでも、空間距離を15mm以下にまで低減することが可能であることが判明している。 According to the research of the inventors of the present invention, when the conventional optical lens 900 according to Patent Document 1 is used, the arrangement interval of the optical modules is 50 mm (a general arrangement interval in this technical field). When the optical lens according to the present invention is used, the spatial distance is reduced to 15 mm or less even when the optical modules are arranged in the same manner. Has been found to be possible.
[2]本発明の光学レンズにおいては、前記底面は、前記入射面の外周端に接し、前記光学レンズの光軸に対して垂直な平面からなる平面部をさらに有し、前記傾斜部は、前記平面部の外周側に位置することが好ましい。 [2] In the optical lens of the present invention, the bottom surface further includes a plane portion that is in contact with the outer peripheral end of the incident surface and is a plane perpendicular to the optical axis of the optical lens, and the inclined portion is It is preferable to be located on the outer peripheral side of the flat portion.
 このような構成とすることにより、射出面で反射される光が比較的多いと考えられる外周側に傾斜部が位置することとなるため、光学モジュールとしたときに、従来の光学レンズよりも、後段の光学要素に対して一層均一性の高い光を供給することが可能となる。 By adopting such a configuration, since the inclined portion is positioned on the outer peripheral side considered to have a relatively large amount of light reflected on the exit surface, when an optical module is used, than a conventional optical lens, It becomes possible to supply light with higher uniformity to the optical element at the subsequent stage.
[3]本発明の光学レンズにおいては、前記傾斜部は、前記入射面の外周端及び前記射出面の外周端の両方に接していることが好ましい。 [3] In the optical lens of the present invention, it is preferable that the inclined portion is in contact with both the outer peripheral end of the incident surface and the outer peripheral end of the exit surface.
 このような構成とすることにより、底面における傾斜部が占める割合が多くなることから、多くの光を光軸から離れる方向に反射することが可能となるため、光学モジュールとしたときに、従来の光学レンズよりも、後段の光学要素に対して一層均一性の高い光を供給することが可能となる。 By adopting such a configuration, since the proportion of the inclined portion on the bottom surface increases, it becomes possible to reflect a lot of light in a direction away from the optical axis. As compared with the optical lens, it becomes possible to supply light with higher uniformity to the subsequent optical element.
[4]本発明の光学レンズにおいては、前記底面は、前記入射面の外周端に接し、前記光学レンズの光軸に対して垂直な平面からなる第1平面部と、前記射出面の外周端に接し、前記光学レンズの光軸に対して垂直な平面からなる第2平面部とをさらに有し、前記傾斜部は、前記第1平面部と前記第2平面部との間に位置することが好ましい。 [4] In the optical lens of the present invention, the bottom surface is in contact with the outer peripheral end of the incident surface, and includes a first flat portion that is a plane perpendicular to the optical axis of the optical lens, and an outer peripheral end of the emission surface. And a second plane part formed of a plane perpendicular to the optical axis of the optical lens, and the inclined part is located between the first plane part and the second plane part. Is preferred.
 このような構成とすることにより、射出面で反射される反射光が比較的多いと考えられる外周側に傾斜部が位置することとなり、かつ、最外周が平面からなる第2平面部であるため、光学モジュールとしたときに、従来の光学レンズよりも、後段の光学要素に対して一層均一性の高い光を供給することが可能となり、かつ、基板等に設置しやすい光学レンズとすることが可能となる。 By adopting such a configuration, the inclined portion is positioned on the outer peripheral side considered to have a relatively large amount of reflected light reflected by the exit surface, and the outermost periphery is the second flat portion formed of a plane. When an optical module is used, it is possible to supply light with higher uniformity to the optical element at the subsequent stage than a conventional optical lens, and to make the optical lens easy to install on a substrate or the like. It becomes possible.
 なお、本発明においては、上記[2]~[4]について記載した平面部、第1平面部及び傾斜部について「入射面の外周端に接する」とは、各部と入射面の外周端とが完全に接している場合だけでなく、各部と入射面の外周端とが実質的に接している場合(例えば、光学的な効果を有しない段差等を介して各部と入射面の外周端とが接している場合)も含む。 In the present invention, the term “in contact with the outer peripheral edge of the incident surface” for the flat portion, the first flat portion and the inclined portion described in the above [2] to [4] means that each portion and the outer peripheral end of the incident surface are Not only when they are completely in contact, but also when each part is substantially in contact with the outer peripheral edge of the incident surface (for example, each part and the outer peripheral edge of the incident surface are connected via a step having no optical effect). Including contact).
 また、傾斜部及び第2平面部について「射出面の外周端に接する」とは、各部と射出面の外周端とが完全に接している場合だけでなく、各部と射出面の外周端とが実質的に接している場合(例えば、光学的な効果を有しない段差等を介して各部と射出面の外周端とが接している場合)も含む。 In addition, “in contact with the outer peripheral edge of the injection surface” for the inclined portion and the second flat surface portion not only means that each portion and the outer peripheral edge of the injection surface are completely in contact, but also each portion and the outer peripheral edge of the injection surface. This includes cases where they are substantially in contact (for example, where each part is in contact with the outer peripheral edge of the exit surface through a step or the like that does not have an optical effect).
[5]本発明の光学レンズにおいては、前記光学レンズは回転対称の形状を有し、前記光学レンズの光軸を含む所定の平面において、前記傾斜部の表面は、直線からなることが好ましい。 [5] In the optical lens of the present invention, it is preferable that the optical lens has a rotationally symmetric shape, and the surface of the inclined portion is a straight line on a predetermined plane including the optical axis of the optical lens.
 光学レンズを表示装置に用いる場合、用いられる数量が多くなるので、コストの削減は重要な課題となる。上記のような構成とすることにより、傾斜部が非直線状に傾斜している場合よりも、設計や加工を簡易なものとすることが可能となり、光学レンズのコストを低減することが可能となる。 When an optical lens is used for a display device, the amount used is increased, so that cost reduction is an important issue. By adopting the configuration as described above, it becomes possible to simplify the design and processing as compared with the case where the inclined portion is inclined non-linearly, and it is possible to reduce the cost of the optical lens. Become.
 なお、本発明において「光学レンズが回転対称の形状を有する」とは、光学レンズのうち光を通過させる光学面が回転対称であることをいい、光学レンズ全体が完全に回転対称であることをいうものではない。光学レンズを基板に設置するための脚部を有するもの(後述する各実施形態参照。)や、光学レンズを上面視したときに(主に配置上の理由で)端部を切り落としたものも本発明に含まれる。 In the present invention, “the optical lens has a rotationally symmetric shape” means that an optical surface through which light passes among the optical lenses is rotationally symmetric, and that the entire optical lens is completely rotationally symmetric. It doesn't mean that. This one has legs for installing the optical lens on the substrate (see each embodiment described later), and one with the end cut off when the optical lens is viewed from the top (mainly for arrangement reasons). Included in the invention.
 また、「傾斜部の表面は直線からなる」とは、全体として、傾斜部の表面(の断面)が所定の平面において直線からなればよく、例えば、傾斜部に微小な粗面加工等がなされている場合にも、粗面加工をしなかった場合に傾斜部が直線からなる場合も本発明の範囲に含まれる。 In addition, “the surface of the inclined portion is a straight line” means that the surface of the inclined portion (the cross section thereof) may be a straight line on a predetermined plane as a whole. Even in the case where the rough surface machining is not performed, the case where the inclined portion is a straight line is also included in the scope of the present invention.
[6]本発明の光学レンズにおいては、前記傾斜部の傾斜角度は、前記光学レンズの光軸に垂直な平面に対して5°~30°の範囲内にあることが好ましい。 [6] In the optical lens of the present invention, it is preferable that an inclination angle of the inclined portion is in a range of 5 ° to 30 ° with respect to a plane perpendicular to the optical axis of the optical lens.
 このような構成とすることにより、光が特定の領域に集中してしまうのを十分に緩和することが可能となり、かつ、上面視したときにおける傾斜部の面積割合を十分に広く取ることが可能となる。 With such a configuration, it is possible to sufficiently reduce the concentration of light in a specific region, and it is possible to take a sufficiently large area ratio of the inclined portion when viewed from above. It becomes.
 なお、上記の傾斜角度としては、仮想平面に対して5°~30°の範囲内にあることとしたのは、当該傾斜角度が5°より小さい場合には光が特定の領域に集中してしまうのを十分に緩和することが困難となる場合があり、当該傾斜角度が30°より大きい場合には上面視したときにおける傾斜部の面積割合を十分に広く取ることが困難となる場合があるためである。なお、傾斜角度が大きい場合でも、傾斜部そのものの面積割合を大きくすることで上面視したときにおける傾斜部の面積割合についても広くすることが可能ではあるが、特に光学レンズを表示装置に用いる場合、光学レンズの厚みを大きくすると表示装置の厚みも大きくせざるをえないので、上記傾斜角度は30°以下であることが好ましい。 Note that the inclination angle is within the range of 5 ° to 30 ° with respect to the virtual plane. When the inclination angle is smaller than 5 °, the light is concentrated in a specific region. In some cases, it is difficult to sufficiently relieve the inclination, and when the inclination angle is larger than 30 °, it may be difficult to obtain a sufficiently large area ratio of the inclined portion when viewed from above. Because. Even when the inclination angle is large, it is possible to increase the area ratio of the inclined portion when viewed from the top by increasing the area ratio of the inclined portion itself, but particularly when an optical lens is used for the display device. If the thickness of the optical lens is increased, the thickness of the display device must be increased. Therefore, the inclination angle is preferably 30 ° or less.
[7]本発明の光学レンズにおいては、前記入射面は、回転対称の非球面からなることが好ましい。 [7] In the optical lens of the present invention, it is preferable that the incident surface is a rotationally symmetric aspherical surface.
 このような構成とすることにより、光軸を基準として回転対称に光を拡げることが可能となる。 Such a configuration makes it possible to spread light in a rotationally symmetric manner with respect to the optical axis.
 上記[7]に記載の光学レンズにおいては、光学レンズの光軸を含む所定の平面において入射面の断面を曲線としてみたとき、入射面は、光軸と重なる点においてのみ曲線における接線の傾きが0となる形状を有することが好ましい。 In the optical lens described in [7] above, when the cross section of the incident surface is viewed as a curve on a predetermined plane including the optical axis of the optical lens, the incident surface has an inclination of a tangent to the curve only at a point overlapping the optical axis. It is preferable to have a shape that becomes zero.
 また、上記[7]に記載の光学レンズにおいては、光学レンズの光軸を含む所定の平面において入射面の断面を曲線としてみたとき、入射面は、いずれの箇所においても曲線における接線と光軸とが平行とならないことも好ましい。 In the optical lens described in [7] above, when the cross section of the incident surface is viewed as a curve on a predetermined plane including the optical axis of the optical lens, the incident surface is tangent to the optical axis and the optical axis at any location. It is also preferred that and are not parallel.
[8]本発明の光学レンズにおいては、前記射出面は、回転対称の非球面からなることが好ましい。 [8] In the optical lens of the present invention, it is preferable that the exit surface is a rotationally symmetric aspherical surface.
 このような構成とすることにより、光軸を基準として回転対称に光を拡げることが可能となる。 Such a configuration makes it possible to spread light in a rotationally symmetric manner with respect to the optical axis.
 上記[8]に記載の光学レンズにおいては、光学レンズの光軸を含む所定の平面において射出面の断面を曲線としてみたとき、射出面は、光軸と重なる点においてのみ曲線における接線の傾きが0となる形状を有することが好ましい。 In the optical lens described in [8] above, when the cross section of the exit surface is viewed as a curve on a predetermined plane including the optical axis of the optical lens, the exit surface has a tangent slope in the curve only at a point overlapping the optical axis. It is preferable to have a shape that becomes zero.
 また、上記[8]に記載の光学レンズにおいては、光学レンズの光軸を含む所定の平面において射出面の断面を曲線としてみたとき、射出面は、いずれの箇所においても曲線における接線と光軸とが平行とならないことが好ましい。 In the optical lens described in [8] above, when the cross section of the exit surface is viewed as a curve on a predetermined plane including the optical axis of the optical lens, the exit surface is tangent to the optical axis and the optical axis at any location. Are preferably not parallel to each other.
[9]本発明の光学レンズにおいては、前記傾斜部の表面は、粗面からなることが好ましい。 [9] In the optical lens of the present invention, it is preferable that the surface of the inclined portion is a rough surface.
 このような構成とすることにより、傾斜部で反射される光を散らすことが可能となり、その結果、従来の光学レンズよりも、光学モジュールとしたときに後段の光学要素に対してより一層均一な光を供給することが可能となる。 By adopting such a configuration, it becomes possible to scatter light reflected by the inclined portion, and as a result, it is more uniform with respect to the optical element at the subsequent stage when the optical module is used than the conventional optical lens. It becomes possible to supply light.
[10]本発明の光学モジュールは、光を射出する光源と、本発明の光学レンズとを備えることを特徴とする。 [10] An optical module of the present invention includes a light source that emits light and the optical lens of the present invention.
 本発明の光学モジュールによれば、本発明の光学レンズを備えるため、後段の光学要素に対して、従来の光学レンズを用いる光学モジュールよりも、均一性の高い光を供給することが可能となる。 According to the optical module of the present invention, since the optical lens of the present invention is provided, it becomes possible to supply light with higher uniformity to the optical element in the subsequent stage than the optical module using the conventional optical lens. .
[11]本発明の光学モジュールにおいては、前記光源は、発光ダイオードからなることが好ましい。 [11] In the optical module of the present invention, the light source is preferably a light emitting diode.
 このような構成とすることにより、一層の低消費電力化を達成することが可能となる。 Such a configuration makes it possible to achieve further reduction in power consumption.
 また、本発明の光学レンズは発光ダイオードからなる光源とともに用いることに適する光学レンズであるため、このような場合にも、一層均一性の高い光を供給することが可能となる。 Further, since the optical lens of the present invention is an optical lens suitable for use with a light source composed of a light emitting diode, even in such a case, light with higher uniformity can be supplied.
[12]本発明のバックライト組立体は、回路基板と、前記回路基板上に配置される光学モジュールであって、本発明の光学モジュールとを備えることを特徴とする。 [12] A backlight assembly of the present invention includes a circuit board and an optical module disposed on the circuit board, the optical module of the present invention.
 本発明のバックライト組立体によれば、本発明の光学モジュールを備えるため、品質の良い光を供給することが可能となる。 According to the backlight assembly of the present invention, since the optical module of the present invention is provided, it is possible to supply light of good quality.
[13]本発明の表示装置は、本発明のバックライト組立体と、前記バックライト組立体から供給される光を用いて画像を表示する表示パネルとを備えることを特徴とする。 [13] A display device of the present invention includes the backlight assembly of the present invention and a display panel that displays an image using light supplied from the backlight assembly.
 本発明の表示装置によれば、本発明のバックライト組立体を備えるため、品質の良い光を用いて美麗な画像を表示することが可能となる。 According to the display device of the present invention, since the backlight assembly of the present invention is provided, it is possible to display a beautiful image using high-quality light.
実施形態1に係る光学レンズ10を説明するために示す図である。It is a figure shown in order to demonstrate the optical lens 10 which concerns on Embodiment 1. FIG. 実施形態1に係る光学モジュール100を説明するために示す図である。It is a figure shown in order to demonstrate the optical module 100 which concerns on Embodiment 1. FIG. 実施形態1に係るバックライト組立体200を説明するために示す斜視図である。FIG. 3 is a perspective view for explaining the backlight assembly 200 according to the first embodiment. 実施形態1に係る表示装置1000を説明するために示す分解斜視図である。FIG. 3 is an exploded perspective view for explaining the display device 1000 according to the first embodiment. 実施形態2に係る光学レンズ30を説明するために示す図である。It is a figure shown in order to demonstrate the optical lens 30 which concerns on Embodiment 2. FIG. 実施形態3に係る光学レンズ40を説明するために示す図である。It is a figure shown in order to demonstrate the optical lens 40 which concerns on Embodiment 3. FIG. 実施形態4に係る光学レンズ50を説明するために示す図である。It is a figure shown in order to demonstrate the optical lens 50 which concerns on Embodiment 4. FIG. 実施形態5に係る光学レンズ60を説明するために示す図である。It is a figure shown in order to demonstrate the optical lens 60 which concerns on Embodiment 5. FIG. 実施形態6に係る光学レンズ70を説明するために示す図である。It is a figure shown in order to demonstrate the optical lens 70 which concerns on Embodiment 6. FIG. 実施形態7に係る光学レンズ80を説明するために示す図である。It is a figure shown in order to demonstrate the optical lens 80 which concerns on Embodiment 7. FIG. 実験例に係る光学レンズ90aによる光の分布を説明するために示す図である。It is a figure shown in order to demonstrate distribution of the light by the optical lens 90a which concerns on an experiment example. 実験例に係る光学レンズ90bによる光の分布を説明するために示す図である。It is a figure shown in order to demonstrate the distribution of the light by the optical lens 90b which concerns on an experiment example. 実験例に係る光学レンズ90cによる光の分布を説明するために示す図である。It is a figure shown in order to demonstrate the distribution of the light by the optical lens 90c which concerns on an experiment example. 従来の光学レンズ910の断面図である。It is sectional drawing of the conventional optical lens 910. FIG.
 以下、本発明の光学レンズ、光学モジュール、バックライト組立体及び表示装置について、図に示す実施の形態に基づいて説明する。なお、以下の説明において「内径」というときは内周端の直径のことをいい、「外径」というときは外周端の直径のことをいう。 Hereinafter, an optical lens, an optical module, a backlight assembly, and a display device of the present invention will be described based on embodiments shown in the drawings. In the following description, “inner diameter” refers to the diameter of the inner peripheral end, and “outer diameter” refers to the diameter of the outer peripheral end.
[実施形態1]
 図1は、実施形態1に係る光学レンズ10を説明するために示す図である。図1(a)は光学レンズ10の斜視図であり、図1(b)は光学レンズ10の断面図である。図1(a)においては、直接見えない輪郭線について破線で表示している。これは、後述する図5(a)~図10(a)においても同様である。
 図2は、実施形態1に係る光学モジュール100を説明するために示す図である。図2(a)は光学モジュール100の分解斜視図であり、図2(b)は光学モジュール100の断面図である。図2の矢印は、射出面で反射された光が辿る経路を簡易的に表したものである。なお、図2(b)に符号210で表したのは後述するバックライト組立体200の回路基板であり、光学モジュール100の構成要素ではない。
 図3は、実施形態1に係るバックライト組立体200を説明するために示す斜視図である。
 図4は、実施形態1に係る表示装置1000を説明するために示す分解斜視図である。
[Embodiment 1]
FIG. 1 is a diagram for explaining an optical lens 10 according to the first embodiment. FIG. 1A is a perspective view of the optical lens 10, and FIG. 1B is a cross-sectional view of the optical lens 10. In FIG. 1 (a), contour lines that are not directly visible are indicated by broken lines. The same applies to FIGS. 5A to 10A described later.
FIG. 2 is a diagram for explaining the optical module 100 according to the first embodiment. 2A is an exploded perspective view of the optical module 100, and FIG. 2B is a cross-sectional view of the optical module 100. The arrows in FIG. 2 simply represent the path followed by the light reflected by the exit surface. 2B represents a circuit board of the backlight assembly 200 described later, and is not a component of the optical module 100.
FIG. 3 is a perspective view for explaining the backlight assembly 200 according to the first embodiment.
FIG. 4 is an exploded perspective view for explaining the display device 1000 according to the first embodiment.
 実施形態1に係る光学レンズ10は、図1に示すように、光源20(後述)の射出側に配置した状態で用いることにより、光源20から射出される光の照明範囲を拡大する光学レンズであって、脚部11と、入射面12と、射出面14と、底面16とを備える光学レンズである。光学レンズ10は、回転対称の形状を有する。光学レンズ10は、例えば、アクリル系の樹脂からなる。なお、本発明の光学レンズは、アクリル系の樹脂以外の材料(例えば、ポリカーボネート系の樹脂、エポキシ系の樹脂、光学ガラス等。)からなるものであってもよい。
 光学レンズ10の直径は14.96mmであり、脚部11を含めた厚さは5.15mmであり、脚部を含めない厚さは5.10mmである。
As shown in FIG. 1, the optical lens 10 according to the first embodiment is an optical lens that expands the illumination range of light emitted from the light source 20 by using the optical lens 10 arranged on the emission side of the light source 20 (described later). The optical lens includes a leg 11, an incident surface 12, an exit surface 14, and a bottom surface 16. The optical lens 10 has a rotationally symmetric shape. The optical lens 10 is made of, for example, an acrylic resin. The optical lens of the present invention may be made of a material other than acrylic resin (for example, polycarbonate resin, epoxy resin, optical glass, etc.).
The diameter of the optical lens 10 is 14.96 mm, the thickness including the leg portion 11 is 5.15 mm, and the thickness excluding the leg portion is 5.10 mm.
 脚部11は、基板24に光学レンズ10を固定するためのものである。脚部11は合計3本あり、直径は、例えば、全て1.00mmである。
 入射面12は、光学レンズ10を光源20の射出側に配置したとき、光源20を囲う凹面形状を有し、所定の第1外径を有する(図1(b)参照。)。実施形態1においては、第1外径は4.20mmである。入射面12は、回転対称の非球面からなる。
 射出面14は、凸面形状を有し、第1外径よりも大きい第2外径を有する。実施形態1においては、第2外径は14.96mmである。射出面18は、回転対称の非球面からなる。
The leg 11 is for fixing the optical lens 10 to the substrate 24. There are a total of three legs 11 and the diameters are all 1.00 mm, for example.
The incident surface 12 has a concave shape surrounding the light source 20 when the optical lens 10 is disposed on the emission side of the light source 20, and has a predetermined first outer diameter (see FIG. 1B). In the first embodiment, the first outer diameter is 4.20 mm. The incident surface 12 is composed of a rotationally symmetric aspherical surface.
The exit surface 14 has a convex shape and a second outer diameter that is larger than the first outer diameter. In the first embodiment, the second outer diameter is 14.96 mm. The exit surface 18 is a rotationally symmetric aspherical surface.
 底面16は、入射面12の外周端から射出面14の外周端までの領域に位置し、第1平面部17、傾斜部18及び第2平面部19を有する。第1平面部17、傾斜部18及び第2平面部19は、表面が粗面(光学レンズ10においては梨地)からなり、第1平面部17については深さ平均値が84μm~89μm、最低必要抜き勾配9.5°で、傾斜部18については深さ平均値が8μm~12μm、最低必要抜き勾配2°で、第2平面部19については深さ平均値が9μm~12μm、最低必要抜き勾配1.5°で梨地処理がなされている。 The bottom surface 16 is located in a region from the outer peripheral end of the incident surface 12 to the outer peripheral end of the exit surface 14, and includes a first flat portion 17, an inclined portion 18, and a second flat portion 19. The first flat surface portion 17, the inclined portion 18 and the second flat surface portion 19 are rough surfaces (satin surface in the optical lens 10). The first flat surface portion 17 has an average depth of 84 μm to 89 μm, which is the minimum required. The draft is 9.5 °, the average depth of the inclined portion 18 is 8 μm to 12 μm, the minimum required draft is 2 °, and the second flat portion 19 is the average depth of 9 μm to 12 μm, the minimum required draft The satin finish is done at 1.5 °.
 第1平面部17は、入射面12の外周端に接し、光学レンズ10の光軸に対して垂直な平面からなる。第1平面部17を光軸を中心とする環状領域として見たとき、第1平面部17の内径は4.20mmであり、第1平面部17の外径は6.00mmである。
 第2平面部19は、射出面14の外周端に接し、光学レンズ10の光軸に対して垂直な平面からなる。第2平面部19を光軸を中心とする環状領域として見たとき、第2平面部19の内径は12.76mmであり、第2平面部19の外径は14.96mmである。
The first plane portion 17 is in contact with the outer peripheral end of the incident surface 12 and is a plane perpendicular to the optical axis of the optical lens 10. When the first plane part 17 is viewed as an annular region centered on the optical axis, the inner diameter of the first plane part 17 is 4.20 mm, and the outer diameter of the first plane part 17 is 6.00 mm.
The second plane portion 19 is in contact with the outer peripheral end of the exit surface 14 and is a plane perpendicular to the optical axis of the optical lens 10. When the second plane part 19 is viewed as an annular region centered on the optical axis, the inner diameter of the second plane part 19 is 12.76 mm, and the outer diameter of the second plane part 19 is 14.96 mm.
 傾斜部18は、光学レンズ10の光軸と平行な方向であって、射出面14から入射面12に向かう方向を第1方向とするとき、光学レンズ10の光軸から離れるに従って第1方向側に向かって傾斜する。傾斜部18は、第1平面部17と第2平面部19との間に位置する。傾斜部18を光軸を中心とする環状領域として見たとき、傾斜部18の内径は6.00mmであり、傾斜部18の外径は12.76mmである。また、傾斜部18の厚みは0.50mmである。
 光学レンズ10の光軸を含む所定の平面(例えば、図1(b)参照。)において、傾斜部18は、直線からなる。傾斜部18の傾斜角度は光学レンズの光軸に垂直な平面に対して5°~30°の範囲内にあり、例えば、約8.4°にある。
The inclined portion 18 is parallel to the optical axis of the optical lens 10, and when the direction from the exit surface 14 toward the entrance surface 12 is the first direction, the inclined portion 18 is closer to the first direction as the distance from the optical axis of the optical lens 10 increases. Inclined towards. The inclined portion 18 is located between the first plane portion 17 and the second plane portion 19. When the inclined portion 18 is viewed as an annular region centered on the optical axis, the inner diameter of the inclined portion 18 is 6.00 mm, and the outer diameter of the inclined portion 18 is 12.76 mm. Moreover, the thickness of the inclined part 18 is 0.50 mm.
In a predetermined plane including the optical axis of the optical lens 10 (see, for example, FIG. 1B), the inclined portion 18 is a straight line. The inclination angle of the inclined portion 18 is in the range of 5 ° to 30 ° with respect to a plane perpendicular to the optical axis of the optical lens, and is, for example, about 8.4 °.
 なお、入射面12、射出面14及び底面16(第1平面部17、傾斜部18及び第2平面部19)の面形状は、例えば、コンピューターによるシミュレーションにより決定することができる(後述する実験例参照。)。 Note that the surface shapes of the entrance surface 12, the exit surface 14, and the bottom surface 16 (the first flat surface portion 17, the inclined portion 18, and the second flat surface portion 19) can be determined by computer simulation, for example (experimental examples described later). reference.).
 実施形態1に係る光学モジュール100は、図2に示すように、光を射出する光源20と、実施形態1に係る光学レンズ10とを備える。
 光源20は、白色発光ダイオードからなる。光源20は、詳細な説明は省略するが、基板22上に配設された発光部を蛍光体入り樹脂で封止したものである。なお、実施形態2以降の各光学レンズは、実施形態1に係る光学レンズ10と同様に、上記した光源20に対応するように設計されている。
As shown in FIG. 2, the optical module 100 according to the first embodiment includes a light source 20 that emits light and the optical lens 10 according to the first embodiment.
The light source 20 is composed of a white light emitting diode. Although the detailed description is omitted, the light source 20 is obtained by sealing a light emitting portion disposed on the substrate 22 with a resin containing a phosphor. In addition, each optical lens after Embodiment 2 is designed so as to correspond to the light source 20 described above, similarly to the optical lens 10 according to Embodiment 1.
 実施形態1に係るバックライト組立体200は、図3に示すように、回路基板210と、回路基板210上に配置される光学モジュール100とを備える。光学モジュールの配置形状、配置間隔、個数等は、バックライト組立体の規模(あるいは、バックライト組立体を用いる表示装置の規模)により任意に決定することができる。実施形態1においては、光学モジュール100の配置間隔は35mm~50mmであり、配置形状は26行15列の長方形状であり、個数は390個である。なお、図3及び図4においては、光学モジュール100の数や回路基板210の行数を少なく表示している。 The backlight assembly 200 according to Embodiment 1 includes a circuit board 210 and an optical module 100 disposed on the circuit board 210 as shown in FIG. The arrangement shape, arrangement interval, number, and the like of the optical modules can be arbitrarily determined depending on the scale of the backlight assembly (or the scale of the display device using the backlight assembly). In the first embodiment, the arrangement interval of the optical modules 100 is 35 mm to 50 mm, the arrangement shape is a rectangular shape of 26 rows and 15 columns, and the number is 390. 3 and 4, the number of optical modules 100 and the number of rows of circuit boards 210 are reduced.
 実施形態1に係る表示装置1000は、図4に示すように、バックライト組立体200と、バックライト組立体200からの光を導光する導光部材300と、導光部材300からの光を拡散して光の均一性をさらに高くする拡散部材400と、バックライト組立体200から供給される光を用いて画像を表示する表示パネル500と、全体としての覆いであるトップシャーシ600とを備える。表示パネル500は、表示パネル500を駆動する表示パネル駆動回路510を有する。
 表示装置1000における空間距離は、例えば、10mm~27mmである。
 なお、表示装置全体としての構成は広く知られているため、本明細書においては、光学関連の構成要素を簡単に取り上げるに留める。
As shown in FIG. 4, the display device 1000 according to the first embodiment includes a backlight assembly 200, a light guide member 300 that guides light from the backlight assembly 200, and light from the light guide member 300. A diffusing member 400 that diffuses to further increase the uniformity of light, a display panel 500 that displays an image using light supplied from the backlight assembly 200, and a top chassis 600 that is a cover as a whole are provided. . The display panel 500 includes a display panel drive circuit 510 that drives the display panel 500.
The spatial distance in the display device 1000 is, for example, 10 mm to 27 mm.
Note that since the configuration of the entire display device is widely known, in this specification, only optical-related components will be briefly described.
 次に、実施形態1に係る光学レンズ10、光学モジュール100、バックライト組立体200及び表示装置1000の効果を説明する。 Next, effects of the optical lens 10, the optical module 100, the backlight assembly 200, and the display device 1000 according to the first embodiment will be described.
 実施形態1に係る光学レンズ10によれば、底面16が光学レンズの光軸から離れるに従って第1方向側に向かって傾斜する傾斜部18を有するため、射出面で反射された光が上記した特定の領域に集中してしまうのを緩和することが可能となり、その結果、光学モジュールとしたときに、従来の光学レンズよりも、後段の光学要素に対して均一性の高い光を供給することが可能となる。 According to the optical lens 10 according to the first embodiment, since the bottom surface 16 has the inclined portion 18 that is inclined toward the first direction side as being away from the optical axis of the optical lens, the light reflected on the exit surface is the above-described specific. As a result, when the optical module is formed, light with higher uniformity can be supplied to the optical element at the subsequent stage than the conventional optical lens. It becomes possible.
 また、実施形態1に係る光学レンズ10によれば、凹面形状を有し所定の第1外径を有する入射面12と、凸面形状を有し第1外径よりも大きい第2外径を有する射出面14とを備えるため、従来の光学レンズと同様に、光源から射出される光の照明範囲を拡大し、単位面積当たりに必要な光源の数を減らすことが可能となる。 In addition, according to the optical lens 10 according to the first embodiment, the incident surface 12 has a concave shape and has a predetermined first outer diameter, and the second outer diameter has a convex shape and is larger than the first outer diameter. Since the emission surface 14 is provided, the illumination range of the light emitted from the light source can be expanded and the number of light sources required per unit area can be reduced as in the conventional optical lens.
 また、実施形態1に係る光学レンズ10によれば、光の照明範囲を一層拡大しようとする場合に増加する光についても特定の領域に集中してしまうのを緩和することが可能であるため、均一性の高い光としたまま、空間距離を短くし、かつ、単位面積当たりに必要な光源の数を一層減らすことが可能となる。 Further, according to the optical lens 10 according to the first embodiment, it is possible to reduce the concentration of light that increases when attempting to further expand the illumination range of light in a specific region. It is possible to shorten the spatial distance and to further reduce the number of light sources required per unit area while maintaining highly uniform light.
 また、実施形態1に係る光学レンズ10によれば、底面16は、入射面12の外周端に接し、光学レンズ10の光軸に対して垂直な平面からなる第1平面部17と、射出面14の外周端に接し、光学レンズ10の光軸に対して垂直な平面からなる第2平面部19とをさらに有し、傾斜部18は、第1平面部17と第2平面部19との間に位置するため、射出面で反射される反射光が比較的多いと考えられる外周側に傾斜部が位置することとなり、かつ、最外周が平面からなる第2平面部であるため、光学モジュールとしたときに、従来の光学レンズよりも、後段の光学要素に対して一層均一性の高い光を供給することが可能となり、かつ、基板等に設置しやすい光学レンズとすることが可能となる。 In addition, according to the optical lens 10 according to the first embodiment, the bottom surface 16 is in contact with the outer peripheral end of the incident surface 12, and the first flat surface portion 17 that is a plane perpendicular to the optical axis of the optical lens 10 and the exit surface 14 further includes a second plane portion 19 that is in contact with the outer peripheral edge of the optical lens 10 and is a plane perpendicular to the optical axis of the optical lens 10, and the inclined portion 18 is formed between the first plane portion 17 and the second plane portion 19 Since the inclined portion is located on the outer peripheral side considered to have a relatively large amount of reflected light reflected by the exit surface because it is located between the two, and the outermost periphery is the second flat portion formed of a plane, the optical module When compared with the conventional optical lens, it becomes possible to supply light with higher uniformity to the optical element at the subsequent stage and to make the optical lens easy to install on a substrate or the like. .
 また、実施形態1に係る光学レンズ10によれば、光学レンズ10は回転対称の形状を有し、光学レンズ10の光軸を含む所定の平面において、傾斜部18は直線からなるため、傾斜部が角度変化しながら傾斜している場合よりも、設計や加工を簡易なものとすることが可能となり、光学レンズのコストを低減することが可能となる。 In addition, according to the optical lens 10 according to the first embodiment, the optical lens 10 has a rotationally symmetric shape, and the inclined portion 18 is a straight line on a predetermined plane including the optical axis of the optical lens 10. The design and processing can be simplified as compared with the case where the lens is inclined while changing the angle, and the cost of the optical lens can be reduced.
 また、実施形態1に係る光学レンズ10によれば、傾斜部18の傾斜角度は、光学レンズ10の光軸に垂直な平面に対して5°~30°の範囲内にあるため、光が特定の領域に集中してしまうのを十分に緩和することが可能となり、かつ、上面視したときにおける傾斜部の面積割合を十分に広く取ることが可能となる。 Further, according to the optical lens 10 according to the first embodiment, the inclination angle of the inclined portion 18 is in the range of 5 ° to 30 ° with respect to the plane perpendicular to the optical axis of the optical lens 10, and thus the light is specified. It is possible to sufficiently alleviate the concentration in the region, and the area ratio of the inclined portion when viewed from above can be made sufficiently wide.
 また、実施形態1に係る光学レンズ10によれば、入射面12が回転対称の非球面からなるため、光軸を基準として回転対称に光を拡げることが可能となる。 Further, according to the optical lens 10 according to the first embodiment, since the incident surface 12 is formed of a rotationally symmetric aspherical surface, it is possible to spread light in a rotationally symmetrical manner with respect to the optical axis.
 また、実施形態1に係る光学レンズ10によれば、射出面14が回転対称の非球面からなるため、光軸を基準として回転対称に光を拡げることが可能となる。 Further, according to the optical lens 10 according to the first embodiment, since the exit surface 14 is formed of a rotationally symmetric aspherical surface, it is possible to spread light in a rotationally symmetrical manner with respect to the optical axis.
 また、実施形態1に係る光学レンズ10によれば、傾斜部18の表面が粗面からなるため、傾斜部で反射される光を散らすことが可能となり、その結果、従来の光学レンズよりも、光学モジュールとしたときに後段の光学要素に対してより一層均一な光を供給することが可能となる。 Further, according to the optical lens 10 according to the first embodiment, since the surface of the inclined portion 18 is a rough surface, it is possible to scatter light reflected by the inclined portion, and as a result, compared to the conventional optical lens, When an optical module is used, more uniform light can be supplied to the optical element at the subsequent stage.
 実施形態1に係る光学モジュール100によれば、実施形態1に係る光学レンズ10を備えるため、後段の光学要素に対して、従来の光学レンズを用いる光学モジュールよりも、均一性の高い光を供給することが可能となる。 According to the optical module 100 according to the first embodiment, since the optical lens 10 according to the first embodiment is provided, light with higher uniformity is supplied to the subsequent optical element than the optical module using the conventional optical lens. It becomes possible to do.
 また、実施形態1に係る光学モジュール100によれば、光源20が発光ダイオードからなるため、一層の低消費電力化を達成することが可能となる。また、実施形態1に係る光学レンズ10は発光ダイオードからなる光源20とともに用いることに適する光学レンズであるため、このような場合にも、一層均一性の高い光を供給することが可能となる。 Further, according to the optical module 100 according to the first embodiment, since the light source 20 is formed of a light emitting diode, it is possible to achieve further reduction in power consumption. In addition, since the optical lens 10 according to the first embodiment is an optical lens suitable for use with the light source 20 formed of a light emitting diode, even in such a case, light with higher uniformity can be supplied.
 実施形態1に係るバックライト組立体200によれば、回路基板210上に配置される光学モジュールであって、実施形態1に係る光学モジュール100を備えるため、品質の良い光を供給することが可能となる。 According to the backlight assembly 200 according to the first embodiment, it is an optical module disposed on the circuit board 210 and includes the optical module 100 according to the first embodiment. Therefore, it is possible to supply high-quality light. It becomes.
 実施形態1に係る表示装置は、実施形態1に係るバックライト組立体200を備えるため、品質の良い光を用いて美麗な画像を表示することが可能となる。 Since the display device according to the first embodiment includes the backlight assembly 200 according to the first embodiment, it is possible to display a beautiful image using high-quality light.
[実施形態2~5]
 図5は、実施形態2に係る光学レンズ30を説明するために示す図である。
 図6は、実施形態3に係る光学レンズ40を説明するために示す図である。
 図7は、実施形態4に係る光学レンズ50を説明するために示す図である。
 図8は、実施形態5に係る光学レンズ60を説明するために示す図である。
[Embodiments 2 to 5]
FIG. 5 is a diagram for explaining the optical lens 30 according to the second embodiment.
FIG. 6 is a view for explaining the optical lens 40 according to the third embodiment.
FIG. 7 is a diagram for explaining the optical lens 50 according to the fourth embodiment.
FIG. 8 is a view for explaining the optical lens 60 according to the fifth embodiment.
 実施形態2~5に係る光学レンズ30~60は、基本的には実施形態1に係る光学レンズ10と同様の構成を有するが、各面の構成(パラメーター)が実施形態1に係る光学レンズ10の場合とは異なる。 The optical lenses 30 to 60 according to the second to fifth embodiments basically have the same configuration as the optical lens 10 according to the first embodiment, but the configuration (parameters) of each surface is the optical lens 10 according to the first embodiment. It is different from the case of.
 光学レンズ30は、図5に示すように、脚部31と、入射面32と、射出面34と、底面36(第1平面部37、傾斜部38、第2傾斜部39)とを備える光学レンズである。
 光学レンズ40は、図6に示すように、脚部41と、入射面42と、射出面44と、底面46(第1平面部47、傾斜部48、第2傾斜部49)とを備える光学レンズである。
 光学レンズ50は、図7に示すように、脚部51と、入射面52と、射出面54と、底面56(第1平面部57、傾斜部58、第2傾斜部59)とを備える光学レンズである。
 光学レンズ60は、図8に示すように、脚部61と、入射面62と、射出面64と、底面66(第1平面部67、傾斜部68、第2傾斜部69)とを備える光学レンズである。
As shown in FIG. 5, the optical lens 30 includes an optical leg 31, an incident surface 32, an exit surface 34, and a bottom surface 36 (first flat surface portion 37, inclined portion 38, second inclined portion 39). It is a lens.
As shown in FIG. 6, the optical lens 40 includes an optical element including a leg portion 41, an incident surface 42, an exit surface 44, and a bottom surface 46 (first flat portion 47, inclined portion 48, second inclined portion 49). It is a lens.
As shown in FIG. 7, the optical lens 50 includes an optical leg including a leg 51, an incident surface 52, an exit surface 54, and a bottom surface 56 (first flat portion 57, inclined portion 58, second inclined portion 59). It is a lens.
As shown in FIG. 8, the optical lens 60 includes a leg portion 61, an incident surface 62, an exit surface 64, and a bottom surface 66 (a first plane portion 67, an inclined portion 68, and a second inclined portion 69). It is a lens.
 以下、実施形態1に係る光学レンズ10との差異がある点について、表にして記載する。なお、記載を省略するが、傾斜角度以外の項目における単位は「mm」であり、傾斜角度における単位は「°」である。 Hereinafter, the differences from the optical lens 10 according to Embodiment 1 will be described in a table. In addition, although description is abbreviate | omitted, the unit in items other than an inclination angle is "mm", and the unit in an inclination angle is "degree".
光学レンズ      30    40    50    60 
直径       15.50 15.50 15.50 19.70
厚さ(脚部含む)  5.10  5.10  5.10  5.70
厚さ(脚部含まず) 5.05  5.05  5.05  5.62
脚部直径      1.00  1.00  1.00  1.67
第1外径      4.21  4.22  4.40  2.86
第2外径     15.50 15.50 15.50 19.70
第1平面部の内径  4.21  4.22  4.40  2.86
第1平面部の外径 10.50 10.50 10.50 12.55
傾斜部の内径   10.50 10.50 10.50 12.55
傾斜部の外径   13.30 13.30 13.30 18.70
第2平面部の内径 13.30 13.30 13.30 18.70
第2平面部の外径 15.50 15.50 15.50 19.70
傾斜部の厚み    0.50  0.50  0.50  0.90
傾斜角度     20.0  20.0  20.0  14.9
Optical lens 30 40 50 60
Diameter 15.50 15.50 15.50 19.70
Thickness (including legs) 5.10 5.10 5.10 5.70
Thickness (excluding legs) 5.05 5.05 5.05 5.62
Leg diameter 1.00 1.00 1.00 1.67
First outer diameter 4.21 4.22 4.40 2.86
Second outer diameter 15.50 15.50 15.50 19.70
Inner diameter of first plane part 4.21 4.22 4.40 2.86
Outer diameter of the first flat portion 10.50 10.50 10.50 12.55
Inner diameter of inclined portion 10.50 10.50 10.50 12.55
Outer diameter of inclined portion 13.30 13.30 13.30 18.70
Inner diameter of second plane portion 13.30 13.30 13.30 18.70
Outer diameter of the second flat portion 15.50 15.50 15.50 19.70
Inclined part thickness 0.50 0.50 0.50 0.90
Tilt angle 20.0 20.0 20.0 14.9
 なお、実施形態2~4に係る光学レンズ30~50の底面については、実施形態1の底面16と同様に粗面からなり、梨地加工がなされている。
 一方、実施形態5に係る光学レンズ60の底面66は、平滑面からなる。
Note that the bottom surfaces of the optical lenses 30 to 50 according to the second to fourth embodiments are rough surfaces like the bottom surface 16 of the first embodiment, and are satin-finished.
On the other hand, the bottom surface 66 of the optical lens 60 according to Embodiment 5 is a smooth surface.
 実施形態2~5に係る光学レンズ30~60は、各面の構成(パラメーター)が実施形態1に係る光学レンズ10とは異なるが、底面が光学レンズの光軸から離れるに従って第1方向側に向かって傾斜する傾斜部を有するため、実施形態1に係る光学レンズ10と同様に、射出面で反射された光が上記した特定の領域に集中してしまうのを緩和することが可能となり、その結果、光学モジュールとしたときに、従来の光学レンズよりも、後段の光学要素に対して均一性の高い光を供給することが可能となる。 The optical lenses 30 to 60 according to the second to fifth embodiments are different from the optical lens 10 according to the first embodiment in the configuration (parameters) of each surface, but as the bottom surface moves away from the optical axis of the optical lens, As the optical lens 10 according to the first embodiment has the inclined portion that is inclined toward the surface, it is possible to reduce the concentration of the light reflected on the exit surface in the specific area described above. As a result, when it is set as an optical module, it becomes possible to supply a highly uniform light with respect to an optical element of a back | latter stage rather than the conventional optical lens.
 なお、実施形態2~5に係る光学レンズ30~60は、各面の構成(パラメーター)以外の点においては、実施形態1に係る光学レンズ10と同様の構成を有するため、実施形態1に係る光学レンズ10が有する効果のうち該当する効果をそのまま有する。 The optical lenses 30 to 60 according to the second to fifth embodiments have the same configuration as that of the optical lens 10 according to the first embodiment except for the configuration (parameter) of each surface. Of the effects of the optical lens 10, the corresponding effects are provided as they are.
[実施形態6]
 図9は、実施形態6に係る光学レンズ70を説明するために示す図である。
[Embodiment 6]
FIG. 9 is a diagram for explaining the optical lens 70 according to the sixth embodiment.
 実施形態6に係る光学レンズ70は、基本的には実施形態1に係る光学レンズ10と同様の構成を有するが、底面が1つの平面部と傾斜部とを有する点で実施形態1に係る光学レンズ10の場合とは異なる。 The optical lens 70 according to the sixth embodiment basically has the same configuration as the optical lens 10 according to the first embodiment, but the optical lens according to the first embodiment is different in that the bottom surface has one plane portion and an inclined portion. This is different from the case of the lens 10.
 光学レンズ70は、図9に示すように、脚部71と、入射面72と、射出面74と、底面76と、外周面79とを備える光学レンズである。底面76は、入射面72の外周端に接し、光学レンズ70の光軸に対して垂直な平面からなる平面部77と、平面部77の外周側に位置する傾斜部78とを有する。
 外周面79は、射出面74の外周端と傾斜部78の外周端との間に設けられている曲面である。外周面79は、表面が粗面(光学レンズ70においては梨地)からなり、深さ平均値が9μm~12μm、最低必要抜き勾配1.5°で梨地処理がなされている。
 以下、実施形態1に係る光学レンズ10との差異がある点についてのみ記載する。
As shown in FIG. 9, the optical lens 70 is an optical lens including a leg portion 71, an incident surface 72, an exit surface 74, a bottom surface 76, and an outer peripheral surface 79. The bottom surface 76 is in contact with the outer peripheral end of the incident surface 72, and has a flat portion 77 that is a plane perpendicular to the optical axis of the optical lens 70, and an inclined portion 78 that is positioned on the outer peripheral side of the flat portion 77.
The outer peripheral surface 79 is a curved surface provided between the outer peripheral end of the emission surface 74 and the outer peripheral end of the inclined portion 78. The outer peripheral surface 79 is a rough surface (satin surface in the optical lens 70), and is subjected to a textured process with an average depth of 9 μm to 12 μm and a minimum required draft of 1.5 °.
Hereinafter, only differences from the optical lens 10 according to Embodiment 1 will be described.
 光学レンズ70全体としての直径は18.01mmであり、脚部71を含めた厚さは5.81mmである。
 脚部71の直径は、2.05mmである。
 実施形態6においては、第1外径は2.87mmである。
 実施形態6においては、第2外径は18.01mmである。
 平面部77及び傾斜部88は、表面が粗面(光学レンズ70においては梨地)からなり、平面部77については深さ平均値が84μm~89μm、最低必要抜き勾配9.5°で、傾斜部78については深さ平均値が8μm~12μm、最低必要抜き勾配2°で梨地処理がなされている。
The diameter of the optical lens 70 as a whole is 18.01 mm, and the thickness including the leg portion 71 is 5.81 mm.
The diameter of the leg 71 is 2.05 mm.
In Embodiment 6, the first outer diameter is 2.87 mm.
In the sixth embodiment, the second outer diameter is 18.01 mm.
The flat surface portion 77 and the inclined portion 88 have a rough surface (satin surface in the optical lens 70). The flat surface portion 77 has an average depth of 84 μm to 89 μm and a minimum required draft 9.5 °. No. 78 has been subjected to a satin treatment with an average depth of 8 μm to 12 μm and a minimum draft of 2 °.
 平面部77を光軸を中心とする環状領域として見たとき、平面部77の内径は2.87mmであり、平面部77の外径は9.00mmである。
 傾斜部78を光軸を中心とする環状領域として見たとき、傾斜部78の内径は9.00mmであり、傾斜部78の外径は17.54mmである。また、傾斜部78の厚みは0.75mmである。
 傾斜部78の傾斜角度は光学レンズの光軸に垂直な平面に対して5°~30°の範囲内にあり、例えば、約9.9°にある。
When the flat portion 77 is viewed as an annular region centered on the optical axis, the inner diameter of the flat portion 77 is 2.87 mm, and the outer diameter of the flat portion 77 is 9.00 mm.
When the inclined portion 78 is viewed as an annular region centered on the optical axis, the inner diameter of the inclined portion 78 is 9.00 mm, and the outer diameter of the inclined portion 78 is 17.54 mm. Moreover, the thickness of the inclined part 78 is 0.75 mm.
The inclination angle of the inclined portion 78 is in the range of 5 ° to 30 ° with respect to the plane perpendicular to the optical axis of the optical lens, and is, for example, about 9.9 °.
 実施形態6に係る光学レンズ70は、底面が1つの平面部と傾斜部とを有する点が実施形態1に係る光学レンズ10とは異なるが、底面76は、光学レンズ70の光軸から離れるに従って第1方向側に向かって傾斜する傾斜部78を有するため、実施形態1に係る光学レンズ10と同様に、射出面で反射された光を特定の場所以外へ向けて反射することが可能となり、その結果、光学モジュールとしたときに、従来の光学レンズよりも、後段の光学要素に対して均一性の高い光を供給することが可能となる。 The optical lens 70 according to the sixth embodiment is different from the optical lens 10 according to the first embodiment in that the bottom surface has one flat surface portion and an inclined portion, but the bottom surface 76 increases as the distance from the optical axis of the optical lens 70 increases. Since it has the inclined portion 78 inclined toward the first direction side, it becomes possible to reflect the light reflected by the exit surface toward a place other than a specific place, like the optical lens 10 according to the first embodiment. As a result, when an optical module is formed, light with higher uniformity can be supplied to the optical element at the subsequent stage than the conventional optical lens.
 また、実施形態6に係る光学レンズ70によれば、底面76は、入射面72の外周端に接し、光学レンズ70の光軸に対して垂直な平面からなる平面部77を有し、傾斜部78は、平面部77の外周側に位置するため、射出面で反射される光が比較的多いと考えられる外周側に傾斜部が位置することとなるため、光学モジュールとしたときに、従来の光学レンズよりも、後段の光学要素に対して一層均一性の高い光を供給することが可能となる。 Further, according to the optical lens 70 according to the sixth embodiment, the bottom surface 76 has the flat surface portion 77 that is in contact with the outer peripheral end of the incident surface 72 and has a flat surface that is perpendicular to the optical axis of the optical lens 70. 78 is located on the outer peripheral side of the flat surface portion 77, and therefore, the inclined portion is located on the outer peripheral side considered to have a relatively large amount of light reflected by the exit surface. As compared with the optical lens, it becomes possible to supply light with higher uniformity to the subsequent optical element.
 なお、実施形態6に係る光学レンズ70は、底面が1つの平面部と傾斜部とを有する点以外の点においては、実施形態1に係る光学レンズ10と同様の構成を有するため、実施形態1に係る光学レンズ10が有する効果のうち該当する効果をそのまま有する。 The optical lens 70 according to the sixth embodiment has the same configuration as that of the optical lens 10 according to the first embodiment except that the bottom surface has one plane portion and an inclined portion. Among the effects of the optical lens 10 according to the above, the corresponding effect is directly used.
[実施形態7]
 図10は、実施形態7に係る光学レンズ80を説明するために示す図である。
[Embodiment 7]
FIG. 10 is a diagram for explaining the optical lens 80 according to the seventh embodiment.
 実施形態7に係る光学レンズ80は、基本的には実施形態1に係る光学レンズ10と同様の構成を有するが、底面が傾斜部のみを有する(平面部を有しない)点が実施形態1に係る光学レンズ10の場合とは異なる。 The optical lens 80 according to the seventh embodiment basically has the same configuration as the optical lens 10 according to the first embodiment, except that the bottom surface has only an inclined portion (no flat portion). This is different from the case of the optical lens 10.
 光学レンズ80は、図10に示すように、脚部81と、入射面82と、射出面84と、底面86とを備える光学レンズである。底面86は、入射面82の外周端及び射出面84の外周端の両方に接している傾斜部88を有する。なお、傾斜部88の外周端と射出面84の外周端との間には、段差87及び外周面89が存在するが、これらは光学レンズの設置の都合上存在するものであり、傾斜部88は射出面84の外周端と実質的に(段差87及び外周面89を介して)接しているといえる。
 以下、実施形態1に係る光学レンズ10との差異がある点についてのみ記載する。
As shown in FIG. 10, the optical lens 80 is an optical lens including a leg portion 81, an incident surface 82, an exit surface 84, and a bottom surface 86. The bottom surface 86 has an inclined portion 88 that is in contact with both the outer peripheral end of the incident surface 82 and the outer peripheral end of the exit surface 84. Note that a step 87 and an outer peripheral surface 89 exist between the outer peripheral end of the inclined portion 88 and the outer peripheral end of the emission surface 84, and these exist for the convenience of installation of the optical lens, and the inclined portion 88. Is substantially in contact with the outer peripheral end of the exit surface 84 (via the step 87 and the outer peripheral surface 89).
Hereinafter, only differences from the optical lens 10 according to Embodiment 1 will be described.
 光学レンズ80全体としての直径は18.00mmであり、脚部81を含めた厚さは5.75mmである。
 脚部81の直径は、1.67mmである。
 実施形態7においては、第1外径は2.86mmである。
 実施形態7においては、第2外径は18.00mmである。
 傾斜部88は、表面が平滑面からなる。なお、表面が粗面からなる傾斜部としてもよい。
The diameter of the optical lens 80 as a whole is 18.00 mm, and the thickness including the leg portion 81 is 5.75 mm.
The diameter of the leg 81 is 1.67 mm.
In Embodiment 7, the first outer diameter is 2.86 mm.
In Embodiment 7, the second outer diameter is 18.00 mm.
The inclined portion 88 has a smooth surface. In addition, it is good also as an inclined part which the surface becomes a rough surface.
 傾斜部88を光軸を中心とする環状領域として見たとき、傾斜部88の内径は2.86mmであり、傾斜部88の外径は17.54mmである。また、傾斜部88の厚みは0.75mmである。
 傾斜部88の傾斜角度は光学レンズの光軸に垂直な平面に対して5°~30°の範囲内にあり、例えば、約5.00°にある。
When the inclined portion 88 is viewed as an annular region centered on the optical axis, the inner diameter of the inclined portion 88 is 2.86 mm, and the outer diameter of the inclined portion 88 is 17.54 mm. Moreover, the thickness of the inclined part 88 is 0.75 mm.
The inclination angle of the inclined portion 88 is in the range of 5 ° to 30 ° with respect to a plane perpendicular to the optical axis of the optical lens, and is, for example, about 5.00 °.
 実施形態7に係る光学レンズ80は、底面が傾斜部のみを有する点が実施形態1に係る光学レンズ10とは異なるが、底面86は、光学レンズ80の光軸から離れるに従って第1方向側に向かって傾斜する傾斜部88を有するため、実施形態1に係る光学レンズ10と同様に、射出面で反射された光を特定の場所以外へ向けて反射することが可能となり、その結果、光学モジュールとしたときに、従来の光学レンズよりも、後段の光学要素に対して均一性の高い光を供給することが可能となる。 The optical lens 80 according to the seventh embodiment is different from the optical lens 10 according to the first embodiment in that the bottom surface has only an inclined portion, but the bottom surface 86 becomes closer to the first direction as the distance from the optical axis of the optical lens 80 increases. Since it has the inclination part 88 which inclines toward, like the optical lens 10 which concerns on Embodiment 1, it becomes possible to reflect light reflected on the output surface toward places other than a specific place, As a result, an optical module Then, it becomes possible to supply light with higher uniformity to the optical element at the subsequent stage than the conventional optical lens.
 また、実施形態7に係る光学レンズ80によれば、傾斜部88は、入射面82の外周端及び射出面84の外周端の両方に接しているため、底面における傾斜部が占める割合が多くなることから、多くの光を光軸から離れる方向に反射することが可能となるため、光学モジュールとしたときに、従来の光学レンズよりも、後段の光学要素に対して一層均一性の高い光を供給することが可能となる。 Further, according to the optical lens 80 according to the seventh embodiment, since the inclined portion 88 is in contact with both the outer peripheral end of the incident surface 82 and the outer peripheral end of the exit surface 84, the ratio of the inclined portion on the bottom surface increases. Therefore, since it is possible to reflect a lot of light in a direction away from the optical axis, when it is used as an optical module, more uniform light is applied to the optical element in the subsequent stage than the conventional optical lens. It becomes possible to supply.
 なお、実施形態7に係る光学レンズ80は、底面が傾斜部のみを有する点以外の点においては、実施形態1に係る光学レンズ10と同様の構成を有するため、実施形態1に係る光学レンズ10が有する効果のうち該当する効果をそのまま有する。 The optical lens 80 according to the seventh embodiment has the same configuration as that of the optical lens 10 according to the first embodiment except that the bottom surface has only the inclined portion, and thus the optical lens 10 according to the first embodiment. Among the effects possessed, the corresponding effect is maintained as it is.
[実験例]
 図11は、実験例に係る光学レンズ90aによる光の分布を説明するために示す図である。図11(a)は光学レンズ90aの断面図であり、図11(b)は照明対象における光の分布を示す図であり、図11(c)は光軸を中心として光の分布をグラフ化したものである。図11(b)においては、白色に近い領域ほど後段の光学要素に光が多く入射する領域であることを示し、これは、後述する図12(b)及び図13(b)においても同様である。
 なお、図11(c)におけるグラフにおいては、縦軸が輝度(単位:cd)、横軸が角度のグラフとなっている。これは、光源(光学モジュール)のレンズ表面と照度計の表面との距離が1mとなるように配置し、その状態で光源のレンズ表面を回転中心として光源を回転させ、各角度における輝度を計測したものである。後述する図12(c)及び図13(c)においても同様である。
 図11(c)~図13(c)のグラフにおいては、正面付近の輝度が低く、80度付近の輝度が高くなっているが、これは、実際に光学モジュールを用いる場合において、後段の光学要素が平面であるため、後段の光学要素との距離が近い正面付近にはあまり強い光を射出する必要がなく、後段の光学要素との距離が遠い斜め方向には光の拡散を考慮して強い光を射出する必要があるためである。
[Experimental example]
FIG. 11 is a diagram for explaining the light distribution by the optical lens 90a according to the experimental example. 11A is a cross-sectional view of the optical lens 90a, FIG. 11B is a diagram showing the light distribution in the illumination target, and FIG. 11C is a graph of the light distribution around the optical axis. It is a thing. In FIG. 11 (b), a region closer to white indicates a region where more light is incident on the optical element in the subsequent stage, and this is the same in FIGS. 12 (b) and 13 (b) described later. is there.
In the graph in FIG. 11C, the vertical axis is a luminance (unit: cd) and the horizontal axis is an angle. This is arranged so that the distance between the lens surface of the light source (optical module) and the surface of the illuminometer is 1 m, and in that state, the light source is rotated around the lens surface of the light source, and the luminance at each angle is measured. It is a thing. The same applies to FIGS. 12C and 13C described later.
In the graphs of FIGS. 11 (c) to 13 (c), the luminance near the front is low and the luminance near 80 degrees is high. This is because the optical module in the latter stage is used when the optical module is actually used. Since the element is flat, it is not necessary to emit very strong light near the front where the distance from the optical element in the rear stage is short, and in consideration of light diffusion in an oblique direction where the distance from the optical element in the rear stage is far This is because it is necessary to emit strong light.
 図12は、実験例に係る光学レンズ90bによる光の分布を説明するために示す図である。図12(a)は光学レンズ90bの断面図であり、図12(b)は照明対象における光の分布を示す図であり、図12(c)は光軸を中心として光の分布をグラフ化したものである。
 図13は、実験例に係る光学レンズ90cによる光の分布を説明するために示す図である。図13(a)は光学レンズ90cの断面図であり、図13(b)は照明対象における光の分布を示す図であり、図13(c)は光軸を中心として光の分布をグラフ化したものである。
FIG. 12 is a diagram for explaining the light distribution by the optical lens 90b according to the experimental example. 12A is a cross-sectional view of the optical lens 90b, FIG. 12B is a diagram showing the light distribution in the illumination target, and FIG. 12C is a graph of the light distribution around the optical axis. It is a thing.
FIG. 13 is a diagram for explaining the light distribution by the optical lens 90c according to the experimental example. 13A is a cross-sectional view of the optical lens 90c, FIG. 13B is a diagram showing the light distribution in the illumination target, and FIG. 13C is a graph of the light distribution around the optical axis. It is a thing.
 なお、図11(b)~図13(b)及び図11(c)~図13(c)においては、光学レンズ90aに関する実験において、多くの光が入射した、光軸を中心とするリング状の狭い領域に相当する部分を図11においては「a」、図12においては「b」、図13においては「c」で表示している。 In FIGS. 11 (b) to 13 (b) and FIGS. 11 (c) to 13 (c), in an experiment relating to the optical lens 90a, a ring shape around the optical axis in which a lot of light is incident. A portion corresponding to a narrow region is indicated by “a” in FIG. 11, “b” in FIG. 12, and “c” in FIG.
 実験例においては、実験例に係る光学レンズ90a,90b,90cについて、後段の光学要素(光学レンズの直近後段にある透過部材)における光の様子を観察した。なお、当該実験例は、全てコンピューターでのシミュレーションにより行ったものである。 In the experimental example, with respect to the optical lenses 90a, 90b, and 90c according to the experimental example, the state of light in the subsequent optical element (the transmissive member in the immediately subsequent stage of the optical lens) was observed. All of the experimental examples were performed by computer simulation.
 なお、光学レンズ90a,90b,90cのうち、光学レンズ90aが従来の光学レンズに相当するものであり、光学レンズ90b,90cが本発明の光学レンズに相当するものである。すなわち、光学レンズ90aの底面96a(符号を図示せず。)は平面からなり、光学レンズ90b,90cの底面96b,96c(符号を図示せず。)は傾斜部98b,98c(符号を図示せず。)を有する。なお、光学レンズ90aの底面96aは平面からなり、光学レンズ90aにおける傾斜部98bの傾斜角度は9.9°であり、光学レンズ90cにおける傾斜部98cの傾斜角度は20°であり、各傾斜部及び各平面部が平滑面からなることを除いては、光学レンズ90a,90b,90cの構成は実施形態7に係る光学レンズ80と同様であるため、詳細な説明を省略する。
 なお、光源における基板の上面から透過部材までの距離は10mmとした。
Of the optical lenses 90a, 90b, and 90c, the optical lens 90a corresponds to a conventional optical lens, and the optical lenses 90b and 90c correspond to the optical lens of the present invention. That is, the bottom surface 96a (reference sign not shown) of the optical lens 90a is a flat surface, and the bottom faces 96b and 96c (reference sign not shown) of the optical lenses 90b and 90c are inclined portions 98b and 98c (reference sign not shown). ). The bottom surface 96a of the optical lens 90a is a flat surface, the inclination angle of the inclined portion 98b in the optical lens 90a is 9.9 °, and the inclination angle of the inclined portion 98c in the optical lens 90c is 20 °. Except for the fact that each flat surface portion is a smooth surface, the configuration of the optical lenses 90a, 90b, and 90c is the same as that of the optical lens 80 according to the seventh embodiment, and a detailed description thereof will be omitted.
In addition, the distance from the upper surface of the board | substrate in a light source to the transmissive member was 10 mm.
 その結果、従来の光学レンズに相当する光学レンズ90aにおいては、後段の光学要素に不均一に光が入射し(多くの光が光軸を中心とするリング状の狭い領域に入射した。)、後段の光学要素に対して均一な光を供給することが困難であることがわかった(図11参照。)。一方、本発明の光学レンズである光学レンズ90b,90cにおいては、不均一に光が入射する部分(リング状の領域)が広くなるか、あるいは消散することが確認できた(図12及び図13参照。)。なお、傾斜部の表面が粗面からなる場合には、傾斜部で反射される光を散らすことができるため、不均一に光が入射する部分をぼやかしたり、完全に消散させることが可能となると考えられる。なお、光学レンズ90b(図12(b))においては、一見リング状の領域が広くなっており、後段の光学要素に入射する光の不均一さが増大してしまったように見えるが、上記のように粗面(梨地)で光を散らすことを考えた場合、リング状の領域が広い方が、リング状の領域が狭いよりも後段の光学要素に対して均一性の高い光を供給することが可能となる。 As a result, in the optical lens 90a corresponding to the conventional optical lens, light is non-uniformly incident on the optical element in the subsequent stage (many light is incident on a ring-shaped narrow region centered on the optical axis). It turned out that it was difficult to supply uniform light with respect to an optical element of a back | latter stage (refer FIG. 11). On the other hand, in the optical lenses 90b and 90c, which are the optical lenses of the present invention, it has been confirmed that the portions (ring-shaped regions) where light is incident non-uniformly are widened or dissipated (FIGS. 12 and 13). reference.). In addition, when the surface of the inclined portion is a rough surface, the light reflected by the inclined portion can be scattered, so that it becomes possible to blur or completely dissipate the portion where the light is incident unevenly. Conceivable. In addition, in the optical lens 90b (FIG. 12B), the ring-shaped region at first glance is widened, and it seems that the non-uniformity of the light incident on the optical element at the subsequent stage has increased. When the light is scattered on the rough surface (satin surface), the larger ring-shaped region supplies more uniform light to the optical element in the subsequent stage than the smaller ring-shaped region. It becomes possible.
 以上、本発明を上記の実施形態に基づいて説明したが、本発明は上記の実施形態に限定されるものではない。その趣旨を逸脱しない範囲において種々の様態において実施することが可能であり、例えば、次のような変形も可能である。 As mentioned above, although this invention was demonstrated based on said embodiment, this invention is not limited to said embodiment. The present invention can be carried out in various modes without departing from the spirit thereof, and for example, the following modifications are possible.
(1)上記各実施形態において記載した各構成要素の寸法、個数、材質及び形状は例示であり、本発明の効果を損なわない範囲において変更することが可能である。 (1) The dimensions, the number, the material, and the shape of each component described in the above embodiments are exemplifications, and can be changed within a range not impairing the effects of the present invention.
(2)上記実施形態1においては、「白色光として用いることができる光」を射出する光源を用いたが、本発明はこれに限定されるものではない。「白色光として用いることができる光」以外の光(例えば、赤色光、緑色光及び青色光といった単色光や、特定の色光成分を多く含む光)を射出する光源を用いてもよい。 (2) In the first embodiment, a light source that emits “light that can be used as white light” is used, but the present invention is not limited to this. A light source that emits light other than “light that can be used as white light” (for example, monochromatic light such as red light, green light, and blue light, or light that includes a large amount of a specific color light component) may be used.
(3)上記各実施形態1においては、表示装置に用いることを前提とする光学レンズを用いて本発明を説明したが、本発明はこれに限定されるものではない。例えば、照明装置に用いることを前提とする光学レンズとしてもよい。 (3) In each of the first exemplary embodiments, the present invention has been described using an optical lens that is assumed to be used in a display device, but the present invention is not limited to this. For example, it may be an optical lens premised on use in a lighting device.
10,30,40,50,60,70,80,90a,90b,90c,910…光学レンズ、11,31,41,51,61,71,81…脚部、12,32,42,52,62,72,82,912…入射面、14,34,44,54,64,74,84,914…射出面、16,36,46,56,66,76,86,916…底面、17,37,47,57,67,917…第1平面部、18,38,48,58,68,78,88…傾斜部、19,39,49,59,69,918…第2平面部、20,920…光源、22,922…基板、77…平面部、100,900…光学モジュール、200…バックライト組立体、210,924…回路基板、300…導光部材、400…拡散部材、500…表示パネル、510…表示パネル駆動回路、600…トップシャーシ、1000…表示装置 10, 30, 40, 50, 60, 70, 80, 90a, 90b, 90c, 910 ... optical lens, 11, 31, 41, 51, 61, 71, 81 ... leg, 12, 32, 42, 52, 62,72,82,912 ... incident surface, 14,34,44,54,64,74,84,914 ... exit surface, 16,36,46,56,66,76,86,916 ... bottom surface, 17, 37, 47, 57, 67, 917 ... first plane part, 18, 38, 48, 58, 68, 78, 88 ... inclined part, 19, 39, 49, 59, 69, 918 ... second plane part, 20 , 920 ... Light source, 22, 922 ... Substrate, 77 ... Flat part, 100, 900 ... Optical module, 200 ... Backlight assembly, 210, 924 ... Circuit board, 300 ... Light guide member, 400 ... Diffusing member, 500 ... Display panel 510 ... Display panel Le drive circuit, 600 ... top chassis, 1000 ... display device

Claims (13)

  1.  光源の射出側に配置した状態で用いることにより、前記光源から射出される光の照明範囲を拡大する光学レンズであって、
     前記光学レンズを前記光源の射出側に配置したとき、前記光源を囲う凹面形状を有し、所定の第1外径を有する入射面と、
     凸面形状を有し、前記第1外径よりも大きい第2外径を有する射出面と、
     前記入射面の外周端から前記射出面の外周端までの所定の領域に位置する底面とを備え、
     前記光学レンズの光軸と平行な方向であって、前記射出面から前記入射面へ向かう方向を第1方向とするとき、
     前記底面は、前記光学レンズの光軸から離れるに従って前記第1方向側に向かって傾斜する傾斜部を有することを特徴とする光学レンズ。
    An optical lens that expands the illumination range of light emitted from the light source by being used in a state of being arranged on the light emission side of the light source,
    An incident surface having a concave shape surrounding the light source and having a predetermined first outer diameter when the optical lens is disposed on the light emission side of the light source;
    An injection surface having a convex shape and having a second outer diameter larger than the first outer diameter;
    A bottom surface located in a predetermined region from the outer peripheral end of the incident surface to the outer peripheral end of the exit surface;
    When the first direction is a direction parallel to the optical axis of the optical lens and going from the exit surface to the entrance surface,
    The optical lens according to claim 1, wherein the bottom surface has an inclined portion that inclines toward the first direction as the distance from the optical axis of the optical lens increases.
  2.  請求項1に記載の光学レンズにおいて、
     前記底面は、前記入射面の外周端に接し、前記光学レンズの光軸に対して垂直な平面からなる平面部をさらに有し、
     前記傾斜部は、前記平面部の外周側に位置することを特徴とする光学レンズ。
    The optical lens according to claim 1,
    The bottom surface further includes a plane portion that is in contact with the outer peripheral edge of the incident surface and is a plane perpendicular to the optical axis of the optical lens,
    The optical lens according to claim 1, wherein the inclined portion is located on an outer peripheral side of the flat portion.
  3.  請求項1に記載の光学レンズにおいて、
     前記傾斜部は、前記入射面の外周端及び前記射出面の外周端の両方に接していることを特徴とする光学レンズ。
    The optical lens according to claim 1,
    The inclined portion is in contact with both the outer peripheral end of the incident surface and the outer peripheral end of the exit surface.
  4.  請求項1に記載の光学レンズにおいて、
     前記底面は、前記入射面の外周端に接し、前記光学レンズの光軸に対して垂直な平面からなる第1平面部と、前記射出面の外周端に接し、前記光学レンズの光軸に対して垂直な平面からなる第2平面部とをさらに有し、
     前記傾斜部は、前記第1平面部と前記第2平面部との間に位置することを特徴とする光学レンズ。
    The optical lens according to claim 1,
    The bottom surface is in contact with the outer peripheral end of the incident surface and is in contact with the first flat surface portion that is a plane perpendicular to the optical axis of the optical lens, and the outer peripheral end of the emission surface, and with respect to the optical axis of the optical lens. And a second plane part consisting of a perpendicular plane,
    The optical lens, wherein the inclined portion is located between the first flat portion and the second flat portion.
  5.  請求項1~4のいずれかに記載の光学レンズにおいて、
     前記光学レンズは回転対称の形状を有し、
     前記光学レンズの光軸を含む所定の平面において、前記傾斜部の表面は、直線からなることを特徴とする光学レンズ。
    The optical lens according to any one of claims 1 to 4,
    The optical lens has a rotationally symmetric shape;
    In a predetermined plane including the optical axis of the optical lens, the surface of the inclined portion is a straight line.
  6.  請求項5に記載の光学レンズにおいて、
     前記傾斜部の傾斜角度は、前記光学レンズの光軸に垂直な平面に対して5°~30°の範囲内にあることを特徴とする光学レンズ。
    The optical lens according to claim 5, wherein
    The optical lens according to claim 1, wherein an inclination angle of the inclined portion is in a range of 5 ° to 30 ° with respect to a plane perpendicular to the optical axis of the optical lens.
  7.  請求項1~6のいずれかに記載の光学レンズにおいて、
     前記入射面は、回転対称の非球面からなることを特徴とする光学レンズ。
    The optical lens according to any one of claims 1 to 6,
    The optical lens is characterized in that the entrance surface is made of a rotationally symmetric aspherical surface.
  8.  請求項1~6のいずれかに記載の光学レンズにおいて、
     前記射出面は、回転対称の非球面からなることを特徴とする光学レンズ。
    The optical lens according to any one of claims 1 to 6,
    2. The optical lens according to claim 1, wherein the exit surface is a rotationally symmetric aspherical surface.
  9.  請求項1~8のいずれかに記載の光学レンズにおいて、
     前記傾斜部の表面は、粗面からなることを特徴とする光学レンズ。
    The optical lens according to any one of claims 1 to 8,
    The surface of the inclined portion is a rough surface.
  10.  光を射出する光源と、
     請求項1~9のいずれかに記載の光学レンズとを備えることを特徴とする光学モジュール。
    A light source that emits light;
    An optical module comprising the optical lens according to any one of claims 1 to 9.
  11.  請求項10に記載の光学モジュールにおいて、
     前記光源は、発光ダイオードからなることを特徴とする光学モジュール。
    The optical module according to claim 10.
    The optical module, wherein the light source comprises a light emitting diode.
  12.  前記回路基板上に配置される光学モジュールであって、請求項10又は11に記載の光学モジュールとを備えることを特徴とするバックライト組立体。 A backlight assembly comprising the optical module according to claim 10 or 11, wherein the backlight module is an optical module disposed on the circuit board.
  13.  請求項12に記載のバックライト組立体と、
     前記バックライト組立体から供給される光を用いて画像を表示する表示パネルとを備えることを特徴とする表示装置。
    A backlight assembly according to claim 12;
    And a display panel for displaying an image using light supplied from the backlight assembly.
PCT/JP2011/079082 2011-12-15 2011-12-15 Optical lens, optical module, backlight assembly, and display device WO2013088556A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/079082 WO2013088556A1 (en) 2011-12-15 2011-12-15 Optical lens, optical module, backlight assembly, and display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/079082 WO2013088556A1 (en) 2011-12-15 2011-12-15 Optical lens, optical module, backlight assembly, and display device

Publications (1)

Publication Number Publication Date
WO2013088556A1 true WO2013088556A1 (en) 2013-06-20

Family

ID=48612040

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/079082 WO2013088556A1 (en) 2011-12-15 2011-12-15 Optical lens, optical module, backlight assembly, and display device

Country Status (1)

Country Link
WO (1) WO2013088556A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014196048A1 (en) * 2013-06-06 2014-12-11 クイックディール・リミテッド Optical lens, optical module, backlight assembly and display device
CN106945389A (en) * 2017-03-22 2017-07-14 深圳市奇普仕科技有限公司 A kind of ultraviolet LED collimation lens for 3D silk-screens
KR101935019B1 (en) * 2015-11-26 2019-01-03 몰렉스 엘엘씨 Lens and light emitting module having the same
CN111913298A (en) * 2019-05-08 2020-11-10 南京邮电大学 Focal length controllable blazed negative refraction grating lens and design method thereof
US11815258B2 (en) 2018-03-15 2023-11-14 Seoul Semiconductor Co., Ltd. Light emitting module and lens

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008166250A (en) * 2006-12-29 2008-07-17 Lg Display Co Ltd Light source cube and planar light source unit using this, as well as liquid crystal display device
JP2011003460A (en) * 2009-06-19 2011-01-06 Panasonic Corp Illumination lens, light emitting device, surface light source, and liquid crystal display device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008166250A (en) * 2006-12-29 2008-07-17 Lg Display Co Ltd Light source cube and planar light source unit using this, as well as liquid crystal display device
JP2011003460A (en) * 2009-06-19 2011-01-06 Panasonic Corp Illumination lens, light emitting device, surface light source, and liquid crystal display device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014196048A1 (en) * 2013-06-06 2014-12-11 クイックディール・リミテッド Optical lens, optical module, backlight assembly and display device
KR101935019B1 (en) * 2015-11-26 2019-01-03 몰렉스 엘엘씨 Lens and light emitting module having the same
US10386038B2 (en) 2015-11-26 2019-08-20 Molex, Llc Diffusion lens and light emitting module having the same
CN106945389A (en) * 2017-03-22 2017-07-14 深圳市奇普仕科技有限公司 A kind of ultraviolet LED collimation lens for 3D silk-screens
US11815258B2 (en) 2018-03-15 2023-11-14 Seoul Semiconductor Co., Ltd. Light emitting module and lens
CN111913298A (en) * 2019-05-08 2020-11-10 南京邮电大学 Focal length controllable blazed negative refraction grating lens and design method thereof
CN111913298B (en) * 2019-05-08 2022-04-05 南京邮电大学 Focal length controllable blazed negative refraction grating lens and design method thereof

Similar Documents

Publication Publication Date Title
JP6634611B2 (en) Backlight device and liquid crystal display device
US10670919B2 (en) Backlight device and liquid-crystal display device
JP5738742B2 (en) Surface light source device
JP5457440B2 (en) Lighting device with gradual injection
US9803833B2 (en) Multi-aperture illumination layer for tileable display
TW201703009A (en) Display device with aesthetic surface
JP2009193669A (en) Liquid crystal display equipment
US10466536B2 (en) Backlight device and liquid crystal display apparatus
US20090316077A1 (en) Light guide blade with color balancing structures and blue absorption compensation for large screen led backlight unit
WO2017154799A1 (en) Lighting device and display device
JP2012174371A (en) Lighting apparatus, and liquid crystal display
WO2013088556A1 (en) Optical lens, optical module, backlight assembly, and display device
JP2012174370A (en) Lighting apparatus, and liquid crystal display
US11513261B2 (en) Light source lens, illumination unit, and display unit
WO2017104058A1 (en) Display device
WO2014196048A1 (en) Optical lens, optical module, backlight assembly and display device
WO2017154050A1 (en) Backlight device and liquid crystal display device
WO2017002725A1 (en) Light-emitting device, surface light source device and display device
JP2007157520A (en) Side light source mixing type back light
JPWO2013088556A1 (en) Optical lens, optical module, backlight assembly and display device
WO2017057051A1 (en) Diffusion lens, light emitting apparatus, and injection molding mold for diffusion lens
WO2017104081A1 (en) Display device
TWM512721U (en) Back light module
JP2009258317A (en) Display device
JP2020080245A (en) Planar illumination device

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2012517964

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11877231

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 22/10/2014)

122 Ep: pct application non-entry in european phase

Ref document number: 11877231

Country of ref document: EP

Kind code of ref document: A1