WO2013088553A1 - Automobile - Google Patents

Automobile Download PDF

Info

Publication number
WO2013088553A1
WO2013088553A1 PCT/JP2011/079054 JP2011079054W WO2013088553A1 WO 2013088553 A1 WO2013088553 A1 WO 2013088553A1 JP 2011079054 W JP2011079054 W JP 2011079054W WO 2013088553 A1 WO2013088553 A1 WO 2013088553A1
Authority
WO
WIPO (PCT)
Prior art keywords
mode
power
output
battery
engine
Prior art date
Application number
PCT/JP2011/079054
Other languages
French (fr)
Japanese (ja)
Inventor
佐藤 啓太
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2011/079054 priority Critical patent/WO2013088553A1/en
Publication of WO2013088553A1 publication Critical patent/WO2013088553A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/445Differential gearing distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • B60L2210/14Boost converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/441Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/443Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/445Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/24Driver interactions by lever actuation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/20Drive modes; Transition between modes
    • B60L2260/28Four wheel or all wheel drive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/215Selection or confirmation of options
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to an automobile, and more particularly, to an automobile provided with a motor for traveling and a battery capable of supplying electric power to the motor.
  • an EV switch for electric traveling mode In vehicles such as electric vehicles and hybrid vehicles equipped with a motor and a battery for traveling, for example, an EV switch for electric traveling mode, an eco switch for eco mode that prioritizes fuel consumption, and a power mode that prioritizes output of driving force
  • Some switches, such as a power switch for switching the driving mode are provided in the instrument panel in front of the driver's seat. In this case, there is room for improving the operability when switching the driving mode.
  • the vehicle is controlled automatically, so the driver should operate the switch for switching the driving mode in order to change the power performance of the vehicle or the state of charge of the battery to the desired performance or state.
  • the operation cannot be easily performed during driving.
  • the main object of the automobile of the present invention is to improve the operability when switching the driving mode.
  • the automobile of the present invention has taken the following means in order to achieve the above-mentioned main purpose.
  • the automobile of the present invention An automobile comprising a motor for traveling and a battery capable of supplying electric power to the motor, Two paddle switches provided at opposite positions on the left and right of the steering wheel; By operating one of the two paddle switches, the traveling mode is switched in one direction in a predetermined order between three or more traveling modes having different power output characteristics including the normal mode, and the other of the two paddle switches Mode switching means for switching the traveling mode to the other direction in the order opposite to the predetermined order between the three or more traveling modes by the operation of It is a summary to provide.
  • the driving mode is set between three or more driving modes having different power output characteristics including the normal mode by operating one of the two paddle switches provided at the left and right opposing positions of the steering wheel.
  • the driving mode is switched in one direction in a predetermined order, and the driving mode is switched in the other direction in the order opposite to the predetermined order among three or more driving modes by the other operation of the two paddle switches.
  • the “power output characteristic” is at least one of the output characteristic of the power from the engine, the input / output characteristic of the power from the motor, the input / output characteristic of the electric power from the battery, and the output characteristic of the driving force of the vehicle. be able to.
  • the “position” where the two paddle switches are provided may be a position where the driver can operate with the fingers of the hand when the driver holds the steering wheel.
  • the automobile according to the present invention includes an engine capable of outputting driving power
  • the driving mode is an electric motor that makes it easier to continue the electric driving using only the power input / output from the motor than the normal mode.
  • Including a driving priority mode at least one of an eco mode in which driving power output is suppressed from the normal mode and fuel efficiency is prioritized, and a power mode in which driving power output is prioritized over the normal mode. it can. By doing so, it is possible to reduce the switches that instruct the electric travel priority mode, the switches that instruct the eco mode, the switches that instruct the power mode, and the like.
  • the electric travel priority mode is a mode in which the electric travel is prioritized among the hybrid travel that travels using the power output from the engine and the power input / output from the motor and the electric travel. It can also be.
  • the predetermined order is the electric driving priority mode, the eco mode, the normal mode, the power mode, or the electric driving priority.
  • the order of the mode, the eco mode, and the normal mode may be any of the order of the electric travel priority mode, the normal mode, and the power mode.
  • the predetermined order may be an order corresponding to the degree to which the output of driving force is suppressed.
  • “the degree to which the output of the driving force is suppressed” is the adjustment of the relationship of the accelerator opening for control with respect to the accelerator opening, the adjustment of the maximum value of the required driving force, the relationship between the rotational speed at which the engine should be operated and torque Adjustment of the operating line that defines the motor, adjustment of the rate of change of torque from the motor, adjustment of the starting threshold for the required power of the engine to start the engine, adjustment of the degree of engine braking, adjustment of the degree of creep torque, battery It should be adjusted to at least one of the adjustment of the battery storage ratio center for setting the required charge / discharge power, adjustment of the maximum voltage applied to the motor, and adjustment of the required power of the engine. You can also.
  • the predetermined order is an order according to a battery output distribution degree that reflects a ratio of a discharge power amount from the battery to a total amount of traveling power when traveling is continued. It can also be.
  • the mode switching means is means for switching to the travel mode in which the degree of battery output distribution is smaller as the power storage ratio, which is the ratio of the power storage amount to the battery capacity, is lower regardless of the operation of the two paddle switches. There can be. If it carries out like this, driving
  • the automobile of the present invention includes an engine capable of outputting power for traveling, a generator capable of exchanging power with the battery and capable of inputting and outputting power, a drive shaft connected to an axle, and the engine.
  • a planetary gear in which three rotating elements are connected to three axes of an output shaft and a rotating shaft of the generator may be provided, and the rotating shaft of the motor may be connected to the driving shaft.
  • FIG. 1 is a configuration diagram showing an outline of a configuration of a hybrid vehicle 20 as an embodiment of the present invention.
  • 3 is a configuration diagram showing an example of a configuration of a paddle switch 89 provided in the vicinity of a steering wheel 90.
  • FIG. It is explanatory drawing which shows an example of the combination of several driving modes, and an example of the combination of several control items in each driving mode. It is explanatory drawing which shows an example of the map for control accelerator opening setting. It is explanatory drawing which shows an example of the map for request
  • FIG. 11 is a configuration diagram showing an outline of a configuration of a hybrid vehicle 120 according to a modification.
  • FIG. 11 is a configuration diagram showing an outline of a configuration of a hybrid vehicle 120 according to a modification.
  • FIG. 11 is a configuration diagram showing an outline of a configuration of a hybrid vehicle 220 of a modified example.
  • FIG. 11 is a configuration diagram showing an outline of a configuration of a hybrid vehicle 320 of a modified example.
  • FIG. 11 is a configuration diagram showing an outline of a configuration of a hybrid vehicle 420 according to a modification. It is a block diagram which shows the outline of a structure of the electric vehicle 520 of a modification.
  • FIG. 1 is a configuration diagram showing an outline of the configuration of a hybrid vehicle 20 as an embodiment of the present invention.
  • the hybrid vehicle 20 of the embodiment includes an engine 22 that uses gasoline or light oil as fuel, an engine electronic control unit (hereinafter referred to as engine ECU) 24 that controls the drive of the engine 22, and a crank of the engine 22.
  • a planetary gear 30 having a carrier connected to the shaft 26 and a ring gear connected to a drive shaft 36 connected to drive wheels 38a and 38b via a differential gear 37, and a rotor configured as a synchronous generator motor, for example.
  • a motor MG1 connected to the sun gear, a motor MG2 configured as a synchronous generator motor and having a rotor connected to the drive shaft 36, inverters 41 and 42 for driving the motors MG1 and MG2, and lithium ions, for example Battery 50 configured as a secondary battery
  • the drive voltage system is connected to the power line to which the inverters 41 and 42 are connected (hereinafter referred to as the drive voltage system power line 54a) and the power line to which the battery 50 is connected (hereinafter referred to as the battery voltage system power line 54b).
  • Motor MG1 and MG2 are controlled by adjusting voltage VH of power line 54a and controlling inverters 41 and 42, and boost converter 55 that exchanges power between drive voltage system power line 54a and battery voltage system power line 54b.
  • the hybrid electronic control unit (hereinafter referred to as HVECU) It includes a 70, a.
  • the engine ECU 24 is configured as a microprocessor centered on a CPU, and includes a ROM for storing a processing program, a RAM for temporarily storing data, an input / output port, and a communication port in addition to the CPU. .
  • the engine ECU 24 receives signals from various sensors that detect the operating state of the engine 22, for example, a water temperature sensor that detects the crank position ⁇ cr from the crank position sensor that detects the rotational position of the crankshaft 26 and the coolant temperature of the engine 22.
  • a control signal to the variable valve timing mechanism is output via the output port.
  • the engine ECU 24 is in communication with the HVECU 70, controls the operation of the engine 22 by a control signal from the HVECU 70, and outputs data related to the operation state of the engine 22 to the HVECU 70 as necessary.
  • the engine ECU 24 also calculates the rotational speed of the crankshaft 26, that is, the rotational speed Ne of the engine 22 based on a signal from a crank position sensor (not shown) attached to the crankshaft 26.
  • the motor ECU 40 is configured as a microprocessor centered on a CPU, and includes a ROM for storing a processing program, a RAM for temporarily storing data, an input / output port, and a communication port in addition to the CPU. .
  • the motor ECU 40 receives signals necessary for driving and controlling the motors MG1 and MG2, for example, rotational positions ⁇ m1 and ⁇ m2 from rotational position detection sensors 43 and 44 that detect the rotational positions of the rotors of the motors MG1 and MG2, and not shown.
  • a phase current applied to the motors MG1 and MG2 detected by the current sensor is input via the input port, and the motor ECU 40 receives a switching control signal to a switching element (not shown) of the inverters 41 and 42 and a boost converter.
  • a switching control signal 55 to a switching element (not shown) 55 is output through an output port.
  • the motor ECU 40 is in communication with the HVECU 70, controls the driving of the motors MG1 and MG2 by a control signal from the HVECU 70, and outputs data related to the operating state of the motors MG1 and MG2 to the HVECU 70 as necessary.
  • the motor ECU 40 calculates the rotational angular velocities ⁇ m1, ⁇ m2 and the rotational speeds Nm1, Nm2 of the motors MG1, MG2 based on the rotational positions ⁇ m1, ⁇ m2 of the rotors of the motors MG1, MG2 from the rotational position detection sensors 43, 44. It is.
  • the battery ECU 52 is configured as a microprocessor centered on a CPU, and includes a ROM for storing a processing program, a RAM for temporarily storing data, an input / output port, and a communication port in addition to the CPU. .
  • the battery ECU 52 receives signals necessary for managing the battery 50, for example, an inter-terminal voltage Vb from a voltage sensor (not shown) installed between the terminals of the battery 50 and a power line connected to the output terminal of the battery 50.
  • the charging / discharging current Ib from the attached current sensor (not shown), the battery temperature Tb from the temperature sensor (not shown) attached to the battery 50, and the like are input. Send to.
  • the battery ECU 52 is based on the integrated value of the charge / discharge current Ib detected by the current sensor in order to manage the battery 50, and the power storage ratio that is the ratio of the capacity of power that can be discharged from the battery 50 at that time to the total capacity
  • the SOC is calculated, and the input / output limits Win and Wout, which are the maximum allowable power that may charge / discharge the battery 50, are calculated based on the calculated storage ratio SOC and the battery temperature Tb.
  • the input / output limits Win and Wout of the battery 50 are set to the basic values of the input / output limits Win and Wout based on the battery temperature Tb, and the output limiting correction coefficient and the input limiting limit are set based on the storage ratio SOC of the battery 50. It can be set by setting a correction coefficient and multiplying the basic value of the set input / output limits Win and Wout by the correction coefficient.
  • the HVECU 70 is configured as a microprocessor centered on a CPU, and includes a ROM for storing processing programs, a RAM for temporarily storing data, an input / output port, and a communication port in addition to the CPU.
  • the HVECU 70 includes an ignition signal from the ignition switch 80, a shift position SP from the shift position sensor 82 that detects the operation position of the shift lever 81, and an accelerator opening degree from the accelerator pedal position sensor 84 that detects the amount of depression of the accelerator pedal 83.
  • a signal or the like is input from each of two paddle switches 89a and 89b (see FIG. 2) provided at predetermined positions via an input port.
  • the paddle switch 89a is a switch that is disposed on the right side of the steering wheel 90 when viewed from the driver and outputs an upshift signal Mup when operated on the near side
  • the paddle switch 89b is on the left side when viewed from the driver.
  • the predetermined position where the paddle switches 89a and 89b are provided is a position where the driver can operate with the fingers of the hand when the steering wheel 90 is gripped. The position was on the back side of the grip part.
  • the paddle switches 89a and 89b may rotate integrally with the steering wheel 90, or may be fixed to a steering column (not shown) without rotating integrally with the steering wheel 90.
  • the HVECU 70 is connected to the engine ECU 24, the motor ECU 40, and the battery ECU 52 via the communication port, and exchanges various control signals and data with the engine ECU 24, the motor ECU 40, and the battery ECU 52.
  • the required torque Tr * to be output to the drive shaft 36 is calculated based on the accelerator opening Acc and the vehicle speed V corresponding to the depression amount of the accelerator pedal by the driver.
  • the operation of the engine 22, the motor MG1, and the motor MG2 is controlled so that the required power corresponding to the required torque Tr * is output to the drive shaft 36.
  • the operation control of the engine 22, the motor MG1, and the motor MG2 the operation of the engine 22 is controlled so that the power corresponding to the required power is output from the engine 22, and all the power output from the engine 22 is transmitted to the planetary gear 30 and the motor.
  • the torque conversion operation mode in which the motor MG1 and the motor MG2 are driven and controlled so that the torque is converted by the MG1 and the motor MG2 and output to the drive shaft 36, and the sum of the required power and the power required for charging and discharging the battery 50 is met.
  • Operation of the engine 22 is controlled so that power is output from the engine 22, and all or part of the power output from the engine 22 with charge / discharge of the battery 50 is torque generated by the planetary gear 30, the motor MG1, and the motor MG2.
  • the required power is output to the drive shaft 36 with conversion.
  • Charge-discharge drive mode for driving and controlling the motors MG1 and MG2, there is a motor operation mode in which operation control to output a power commensurate to stop the operation of the engine 22 to the required power from the motor MG2 to the drive shaft 36.
  • the torque conversion operation mode and the charge / discharge operation mode are modes in which the engine 22, the motor MG1, and the motor MG2 are controlled so that the required power is output to the drive shaft 36 with the operation of the engine 22. Since there is no substantial difference in control, both are hereinafter referred to as the engine operation mode.
  • the HVECU 70 is requested torque to be output to the drive shaft 36 based on the control accelerator opening Acc * corresponding to the accelerator opening Acc from the accelerator pedal position sensor 84 and the vehicle speed V from the vehicle speed sensor 88. Tr * is set, and the required torque Tr * thus set is multiplied by the rotation speed Nr of the drive shaft 36 (for example, the rotation speed obtained by multiplying the rotation speed Nm2 of the motor MG2 and the vehicle speed V by a conversion factor).
  • the charging / discharging request power Pb * of the battery 50 obtained from the calculated traveling power Pdrv * based on the storage ratio SOC of the battery 50 (a positive value when discharging from the battery 50) Is set to the required power Pe * as the power to be output from the engine 22.
  • the target rotational speed Ne of the engine 22 is obtained using an operation line (for example, a fuel efficiency optimal operation line) as a relationship between the rotational speed Ne of the engine 22 and the torque Te that can efficiently output the required power Pe * from the engine 22.
  • a torque command Tm1 * as a torque to be output from MG1 is set, and when the motor MG1 is driven by the torque command Tm1 *, the torque acting on the drive shaft 36 via the planetary gear 30 is subtracted from the required torque Tr * to reduce the motor MG2.
  • Torque command Tm2 * is set, and the target rotational speed Ne * and target torque Te * are set. In its sent to the engine ECU 24, the torque command Tm1 *, the Tm2 * is sent to the motor ECU 40.
  • the engine ECU 24 that has received the target rotational speed Ne * and the target torque Te *, controls the intake air amount, fuel injection control, and ignition of the engine 22 so that the engine 22 is operated by the target rotational speed Ne * and the target torque Te *.
  • the motor ECU 40 that performs control or the like and receives the torque commands Tm1 * and Tm2 * performs switching control of the switching elements of the inverters 41 and 42 so that the motors MG1 and MG2 are driven by the torque commands Tm1 * and Tm2 *. By such control, it is possible to travel while outputting the required torque Tr * to the drive shaft 36 within the range of the input / output limits Win and Wout of the battery 50 while operating the engine 22 efficiently.
  • the HVECU 70 sets a required torque Tr * to be output to the drive shaft 36 based on the control accelerator opening Acc * corresponding to the accelerator opening Acc and the vehicle speed V, and a torque command Tm1 for the motor MG1.
  • a value 0 is set for * and a torque command Tm2 * of the motor MG2 is set and transmitted to the motor ECU 40 so that the required torque Tr * is output to the drive shaft 36 within the range of the input / output limits Win and Wout of the battery 50. .
  • the motor ECU 40 that receives the torque commands Tm1 * and Tm2 * performs switching control of the switching elements of the inverters 41 and 42 so that the motors MG1 and MG2 are driven by the torque commands Tm1 * and Tm2 *.
  • the engine 22 can travel by outputting the required torque Tr * to the drive shaft 36 within the range of the input / output limits Win and Wout of the battery 50 with the engine 22 stopped.
  • the required power Pe * of the engine 22 obtained by subtracting the charge / discharge required power Pb * of the battery 50 from the traveling power Pdrv * obtained by multiplying the required torque Tr * by the rotational speed Nr of the drive shaft 36.
  • FIG. 3 is an explanatory diagram illustrating an example of a combination of a plurality of travel modes and an example of a combination of a plurality of control items in each travel mode.
  • the vehicle running mode is adjusted by adjusting each control item according to the mode, so that power output characteristics from the engine 22, power input / output characteristics from the motors MG1 and MG2, power input / output characteristics from the battery 50, A plurality of predetermined values are set in advance so that at least one of the output characteristics of the driving force of the vehicle is different (so that the power output characteristics (power performance) are different).
  • the vehicle driving mode of the embodiment includes a normal mode that is basically used when no instruction is given to change the driving mode by operating paddle switches 89a and 89b, and the engine operation mode and motor described above. Priority is given to driving in the motor driving mode (electric driving) over driving in the engine driving mode (hybrid driving) and driving in the motor driving mode is easier to continue than in normal mode (required driving by the driver)
  • the control items adjusted according to the travel mode of the embodiment include the relationship of the accelerator opening Acc * for control with respect to the accelerator opening Acc from the accelerator pedal position sensor 84, the accelerator opening Acc * for control, and the vehicle speed.
  • the maximum value of the required torque Tr * based on V, the operation line that defines the relationship between the rotational speed at which the engine 22 should be operated and the torque, the rate of change in torque from the motors MG1, MG2, and the engine 22 are started. And a starting threshold value for the required power Pe *.
  • the relationship between the accelerator opening Acc * for control and the accelerator opening Acc of the embodiment is shown in FIG. 3 and the map for setting the accelerator opening for control in FIG.
  • the control accelerator opening Acc * is determined so as to increase linearly, and in the power mode, a larger control accelerator opening Acc * is obtained for the same accelerator opening Acc than in the normal mode.
  • the maximum value of the control accelerator opening Acc * is determined to be slightly smaller than that in the normal mode.
  • the control accelerator is opened in a predetermined intermediate region of the accelerator opening Acc. By providing a dead zone in which the degree Acc * is constant, the accelerator opening A for control below the accelerator opening Acc * for eco mode is provided. It was assumed that c * is defined so as to obtain.
  • the required torque Tr * to be output to the drive shaft 36 is set based on the control accelerator opening Acc * and the vehicle speed V.
  • the maximum accelerator opening Acc * is obtained for the maximum value (100%) of the accelerator opening Acc (100%) and the maximum value (100%) is controlled.
  • a torque within the range below the maximum torque Trmax is obtained as the required torque Tr *.
  • the maximum is obtained with respect to the maximum value (100%) of the accelerator opening Acc.
  • a control torque Acc * smaller than the value (100%) is obtained, and the maximum torque is calculated as the required torque Tr * based on the control accelerator opening Acc * and the vehicle speed V. It was assumed that the torque slightly smaller torque Trmax1 the range from click Trmax is obtained.
  • the operation line of the engine 22 of the embodiment is an example of setting the target rotational speed Ne * and the target torque Te * of the engine 22 as well as an example of the fuel efficiency optimum operation line and the torque priority operation line of FIG.
  • the optimum fuel consumption operation line for efficiently operating the engine 22 is used, and in the power mode, the same power (required power Pe *) is given.
  • Torque-priority operation that is determined so that a small rotation speed (target rotation speed Ne *) and a large torque (target torque Te *) can be obtained while allowing a slight deterioration in fuel consumption compared to the fuel efficiency optimal operation line. A line was used.
  • the rate of change in torque from the motors MG1 and MG2 of the embodiment is adjusted by changing the rate value for setting the torque commands Tm1 * and Tm2 * of the motors MG1 and MG2 using rate processing for each mode.
  • rate value ⁇ Tm is used, in power mode, rate value ⁇ Tm1 larger than rate value ⁇ Tm is used, and in eco mode and EV mode, rate value ⁇ Tm2 smaller than rate value ⁇ Tm is used. .
  • the starting threshold value to be compared with the required power Pe * of the engine 22 of the embodiment is the required power Pe * that is better to start the engine 22 in order to operate the engine 22 efficiently in the normal mode and the eco mode.
  • a basic threshold value Pstart defined as the lower limit of the range is used. In the power mode, a threshold value Pstart1 slightly smaller than the threshold value Pstart is used so that the engine 22 is easily started. In the EV mode, the engine 22 is difficult to start. It is assumed that a threshold value Pstart2 slightly larger than the threshold value Pstart is used.
  • the driving mode (electrical driving) is prioritized and is easier to continue than the normal mode.
  • FIGS an example of the relationship between the running mode and the power output characteristics is shown in FIGS.
  • FIGS an example of the relationship between the running mode and the power output characteristics.
  • FIG. 1 by adjusting the accelerator opening Acc * for control, the maximum value of the required torque Tr *, the operating line, and the change rate of the motor torque in accordance with the travel mode, as shown in FIG.
  • the degree of suppressing the output of the driving force of the vehicle (hereinafter referred to as the degree of suppressing the driving force output) is smaller (loosened) in the order of the EV mode, the eco mode, the normal mode, and the power mode. Further, in the embodiment, by further adjusting the starting threshold value of the engine 22 according to the driving mode, as shown in FIG. 8, the driving is continued according to the engine operation mode or the motor operation mode as one of the power output characteristics.
  • Battery output distribution that reflects the ratio of the amount of discharged power from the battery 50 to the total amount of power for traveling output from the engine 22 and the battery 50 (for example, traveling a predetermined distance with a predetermined accelerator operation and brake operation) (Which reflects the ratio of the amount of electric power discharged from the battery 50 to the total amount of travel power required) is small in the order of EV mode, eco mode, normal mode, and power mode (for example, from around 90%) Up to around 10%).
  • the driving force output suppression degree or the battery output distribution degree becomes small, the acceleration force of the vehicle becomes strong and the fuel consumption (energy efficiency) deteriorates.
  • the mode numbers are assigned in the order from the travel mode with the larger driving force output suppression degree and the battery output distribution degree to the smaller travel mode, that is, mode number 1 in the EV mode and eco mode.
  • Mode number 1 in the EV mode and eco mode.
  • Mode number 2 mode number 3 for normal mode, and mode number 4 for power mode.
  • FIG. 9 is a flowchart illustrating an example of a travel mode switching routine executed by the HVECU 70. This routine is repeatedly executed every predetermined time (for example, every several msec) in parallel with a drive control routine (not shown). When the routine is executed for the first time after the ignition is turned on, the normal mode is selected as the first travel mode.
  • the HVECU 70 When the travel mode switching routine is executed, the HVECU 70 first inputs data necessary for switching the travel mode, such as the storage ratio SOC of the battery 50 and the current mode number Nmod which is the mode number of the currently selected travel mode. Processing is executed (step S100).
  • the storage ratio SOC of the battery 50 is calculated based on the integrated value of the charge / discharge current Ib detected by a current sensor (not shown) and is input from the battery ECU 52 by communication.
  • the current mode number Nmod is input with the mode number 3 (see FIGS. 7 and 8) corresponding to the normal mode when the routine is executed for the first time after the ignition is turned on.
  • the mode is not switched, it is retained without being changed, and when it is switched to the travel mode of the target mode number Nmod * by this routine, the target mode number Nmod * at that time is input.
  • step S110 it is determined whether or not switching of the driving mode is instructed (step S110). In this embodiment, this determination is made by determining whether either the upshift signal Mup from the paddle switch 89a or the downshift signal Mdwn from the paddle switch 89b is input.
  • the current mode number that has been input Nmod is set to a temporary mode number Ntmp which is a temporary value of the target mode number Nmod * (step S130).
  • an upshift signal Mup is input from the paddle switch 89a, that is, an upshift to switch to a driving mode having a mode number larger than the current mode number Nmod is instructed, or the paddle switch 89b It is determined whether or not a downshift signal Mdwn is input, that is, whether or not a downshift to switch to a travel mode having a mode number smaller than the current mode number Nmod is instructed (step S120).
  • the upshift or downshift of the travel mode means a shift to a travel mode with a higher mode number or a shift to a travel mode with a lower mode number, and the shift position SP is changed. It has nothing to do with.
  • the larger one of the value obtained by subtracting the value 1 from the current mode number Nmod and the minimum mode number 1 corresponding to the EV mode is set as the temporary mode number Ntmp (step S140).
  • the smaller one of the current mode number Nmod plus 1 and the maximum mode number 4 corresponding to the power mode is set as the temporary mode number Ntmp (step S150). Therefore, when an upshift is instructed when the current mode number Nmod is mode number 4, the current mode number Nmod is set to the temporary mode number Ntmp.
  • the current mode number Nmod is set to the temporary mode number Ntmp.
  • upper and lower limit mode numbers Nmax and Nmin are set as upper and lower limits of target mode number Nmod * based on the storage ratio SOC of battery 50 (step S160).
  • the relationship between the storage ratio SOC of the battery 50 and the upper / lower limit mode numbers Nmax and Nmin is determined in advance and stored in a ROM (not shown) as an upper / lower limit mode number setting map.
  • the upper and lower limit mode numbers Nmax and Nmin corresponding to the stored map are derived and set.
  • An example of the upper / lower limit mode number setting map is shown in FIG.
  • the ratios S1 to S6 increase in this order, and “1 ⁇ 2” and “2 ⁇ 3” corresponding to the ratios S3, S2, and S1 (for example, 50%, 45%, 42%, etc., respectively).
  • “3 ⁇ 4” lines are forcibly shifted (upshifts) from the mode Nos. 1, 2, and 3 to the mode Nos. 2, 3, and 4 when the storage rate SOC decreases.
  • the power storage rate SOC increases, it indicates that the mode number 4, 3, or 2 should be forcibly shifted (downshift) from the mode number 4, 3, or 2 mode.
  • the upper and lower limit mode numbers Nmax and Nmin are set to numbers 4 and 4 when the storage rate SOC is less than the rate S1, respectively, and numbers 4 and 3 are set when the storage rate SOC is greater than or equal to the rate S1 and less than the rate S2.
  • Numbers 4 and 2 are set when the SOC is a ratio S2 or more and less than the ratio S3, numbers 4 and 1 are set when the storage ratio SOC is a ratio S3 or more and less than the ratio S4, and numbers 3 and 3 are set when the storage ratio SOC is a ratio S4 or more and less than the ratio S5. 1 is set, numbers 2 and 1 are set when the power storage rate SOC is greater than or equal to the rate S5 and less than the rate S6, and numbers 1 and 1 are set when the power storage rate SOC is greater than the rate S6.
  • the battery output distribution level is switched to a smaller travel mode as the power storage rate SOC of the battery 50 is lower, and the battery output distribution level is switched to a higher travel mode as the power storage rate SOC is higher (see FIG. 8).
  • the instruction is rejected, or even when a driving mode upshift or downshift is not instructed The mode will be switched automatically.
  • the target mode number Nmod * is set by limiting the temporary mode number Ntmp by the following equation (1) with the set upper / lower limit mode numbers Nmax and Nmin (step S170). It is determined whether the target mode number Nmod * is different from the current mode number Nmod (step S180). When the target mode number Nmod * is different from the current mode number Nmod, the target mode number Nmod * is switched to the travel mode (step S190), and this routine is terminated. The target mode number Nmod * is changed to the current mode number Nmod *. When it is the same as Nmod, this routine is terminated without switching the traveling mode.
  • the engine 22 and the motors MG1 and MG2 are controlled so that travel based on the required torque Tr * is performed by a drive control routine (not shown) in the travel mode after switching.
  • a target operation point of the engine 22 is set by the drive control routine and transmitted to the engine ECU 24, and torque commands Tm1 * and Tm2 * of the motors MG1 and MG2 are set to the motor ECU 40.
  • the engine ECU 24 controls the operation of the engine 22 at the target operation point, and the motor ECU 40 controls the motors MG1, MG2 (switching control of the inverters 41, 42) using the torque commands Tm1 *, Tm2 *.
  • the torque command Tm2 * of the motor MG2 is set and transmitted to the motor ECU 40 by the drive control routine, and the motor MG2 is controlled by the torque command Tm2 * (switching control of the inverter 42).
  • Nmod * max (min (Ntmp, Nmax), Nmin) (1)
  • the driving mode is switched to one direction in a predetermined order (order of mode numbers 1, 2, 3, and 4) by operating the right paddle switch 89a, and the left paddle switch 89b is operated.
  • a predetermined order order of mode numbers 1, 2, 3, and 4
  • the switch for instructing the EV mode the switch for instructing the eco mode
  • the power mode the travel mode can be switched without releasing the hand from the steering wheel 90 during travel, and the operability when switching the travel mode can be improved.
  • it is possible to easily select a driving mode according to the driver's request and it is possible to provide a pleasure for the driver to select a driving mode.
  • the battery 50 is automatically switched to a travel mode in which the battery output distribution is smaller as the storage rate SOC of the battery 50 is lower, the battery 50 is discharged while the storage rate SOC of the battery 50 is lower, and the storage rate SOC is allowed.
  • the storage ratio SOC is prevented from approaching the upper limit value in which the storage ratio SOC is allowed without being discharged so much when the storage ratio SOC of the battery 50 is high. It is possible to suppress the SOC from becoming smaller or larger than the proper range.
  • the power output characteristics including the normal mode differ according to one operation of the two paddle switches 89a and 89b provided at the left and right opposing positions of the steering wheel 90.
  • the travel mode is switched to one direction in a predetermined order between the above (four in the embodiment) travel modes, and the other operation of the two paddle switches 89a and 89b changes the travel mode to be opposite to the predetermined order. Since it switches to another direction in order, the operativity at the time of switching driving modes can be improved.
  • the battery power distribution ratio SOC of the battery 50 is switched to the travel mode in which the battery output distribution is small, the travel is performed so as to prevent the power storage ratio SOC of the battery 50 from becoming smaller or larger than an appropriate range.
  • the mode can be switched automatically.
  • the temporary mode number Ntmp is set to the target mode number Nmod * within the range of the upper and lower limit mode numbers Nmax and Nmin based on the storage ratio SOC of the battery 50. However, based on the storage ratio SOC The temporary mode number Ntmp may be set to the target mode number Nmod * as it is without setting the upper and lower limit mode numbers Nmax and Nmin.
  • the hybrid vehicle 20 of the embodiment four modes of EV mode, eco mode, normal mode, and power mode are prepared as the travel mode, but the eco mode is not prepared among these four travel modes.
  • the power mode may not be prepared among these four travel modes.
  • EV mode In the hybrid vehicle 20 of the embodiment, four modes of EV mode, eco mode, normal mode, and power mode are prepared as driving modes. However, in addition to these four driving modes, power output characteristics are different. Other travel modes may be prepared. For example, as shown in the relationship between the driving mode and the power output characteristics (driving force output suppression degree) in the modified example of FIG. 11, a battery output mode in which the driving force output suppression degree is intermediate between the EV mode and the eco mode is prepared. The driving mode may be switched in the order of EV mode, battery output mode, eco mode, normal mode, and power mode.
  • the battery output mode includes a travel mode in which the dead zone of the accelerator opening Acc is set to a range smaller than the EV mode so that the control accelerator opening Acc * is equal to or less than the eco mode value and equal to or greater than the EV mode value. can do.
  • the motor 22 is started without starting the engine 22 at all as the driving mode having the largest driving force output suppression degree. It is also possible to prepare a complete EV mode that travels using only the power from the MG2 and switch the travel mode in the order of the complete EV mode, EV mode, eco mode, normal mode, and power mode.
  • a slightly eco mode in which the battery output distribution is intermediate between the eco mode and the normal mode is prepared.
  • the driving mode may be switched in the order of EV mode, eco mode, slightly eco mode, normal mode, and power mode.
  • the slightly eco mode can be a travel mode in which the maximum value of the required torque Tr * and the change rate of the motor torque are determined to be an intermediate value between the eco mode and the normal mode.
  • the required power Pe * of the engine 22 as a control item adjusted according to the travel mode is used for travel.
  • the required power Pe * of the engine 22 is calculated from the travel power Pdrv * in the normal mode.
  • a charge travel mode that calculates by reducing the forced charge power that is smaller than the charge / discharge required power Pb * (large on the charge side), and a forced discharge mode that continues the travel in the motor operation mode (electric travel) regardless of the accelerator opening Acc.
  • the charge / discharge required power Pb * is a comparison between the power storage ratio center as the management target value of the charge / discharge request power Pb * of the battery 50 and the power storage ratio SOC of the battery 50, and the power storage ratio SOC is lower than the power storage ratio center.
  • the charge / discharge required power Pb * is increased to the negative side (charge request side), and the charge / discharge required power b * is increased to the positive side (discharge request side) as the storage ratio SOC is higher than the center of the storage ratio. can do.
  • the lower limit value (negative value) of the charge / discharge required power Pb * can be used as the forced charging power.
  • a snow mode for driving on a road surface having a small friction coefficient a mountain mode suitable for driving on an uphill road or a downhill road, and the like may be prepared.
  • the driving modes are switched in the order corresponding to the power output characteristics, but the order of switching the driving modes may be a predetermined order regardless of the power output characteristics.
  • the control items adjusted according to the driving mode include the control accelerator opening Acc *, the maximum value of the required torque Tr *, the operation line of the engine 22, and the torque from the motors MG1 and MG2.
  • the starting threshold value of the required power Pe * of the engine 22 may be a uniform value in all travel modes.
  • the switching order of the driving mode is set to the order corresponding only to the driving force output suppression without considering the switching order of the driving mode according to the battery output distribution degree. The remaining four types of control items may be adjusted.
  • the control items adjusted according to the driving mode include the control accelerator opening Acc *, the maximum value of the required torque Tr *, the operation line of the engine 22, and the torque from the motors MG1 and MG2. Five items of the change rate and the starting threshold value of the required power Pe * of the engine 22 are used.
  • the rotation for motoring the engine 22 by the motor MG1 when the accelerator is off instead of or in addition to these control items, the rotation for motoring the engine 22 by the motor MG1 when the accelerator is off.
  • the size of the so-called engine brake acting on the drive shaft 36 and the output to the drive shaft 36 The size of the so-called creep torque may be as a control item.
  • the power storage as the management target value of the charge / discharge required power Pb * of the battery 50
  • the ratio center may be adjusted according to the travel mode, or the maximum value of the voltage VH applied to the inverters 41 and 42 (motors MG1 and MG2) may be adjusted according to the travel mode under the control of the boost converter 55. .
  • the instruction of upshifting or downshifting by operating the paddle switches 89a and 89b is not related to the change of the shift position SP, but the sequential shift position is one of the shift positions SP.
  • the driving mode may be switched by operating the paddle switches 89a and 89b, or upshifting and downshifting (changing the gear position) at the sequential shift position may be performed.
  • the driving mode is switched in the order of EV mode, eco mode, normal mode, and power mode by operating the paddle switch 89a on the right side of the steering wheel 90, and by operating the paddle switch 89b on the left side of the steering wheel 90.
  • the driving mode is switched in the reverse order, but the driving mode is switched in the order of power mode, normal mode, eco mode, and EV mode by operating the paddle switch 89a on the right side of the steering wheel 90, and the steering wheel 90 is switched.
  • the driving mode may be switched in the reverse order by operating the paddle switch 89b on the left side.
  • the processing of steps S140 and S150 of the travel mode switching routine of FIG. 9 up to the travel mode of the maximum mode number 4 and the travel mode of the minimum mode number 1 are switched as the travel mode.
  • the rotary mode so as to circulate the driving mode.
  • the eco mode, the normal mode, the power mode, the eco mode As shown in the state of switching the eco mode, the normal mode, and the power mode as the travel modes of the modified example of FIG. 17 in the rotary form, the eco mode, the normal mode, the power mode, the eco mode, The driving mode is switched to circulate in a predetermined order of... And the driving mode is changed in the order opposite to the predetermined order of the power mode, normal mode, eco mode, power mode,. It is good also as switching so that it may circulate.
  • the paddle switches 89a and 89b are of a type that outputs a signal when operated (pulled) to the front side. Instead, the paddle switches 89a and 89b are operated to the back side. Two paddle switches of a type that outputs a signal when pressed (pressed) may be provided.
  • the display control associated with the change of the driving mode is not particularly described.
  • the color of the meter display area in front of the driver's seat is changed according to the driving mode, or the front of the driver's seat is changed.
  • Information on the currently selected travel mode (for example, the mode number, the mode name, and the content and size of the control item) may be displayed on the display device.
  • the power from the motor MG2 is output to the drive shaft 36.
  • the drive shaft 36 transmits the power from the motor MG2. It may be connected to an axle (an axle connected to the wheels 39a and 39b in FIG. 18) different from the connected axle (the axle to which the drive wheels 38a and 38b are connected).
  • the power from the engine 22 is output to the drive shaft 36 connected to the drive wheels 38a and 38b via the planetary gear 30, but is exemplified in the hybrid vehicle 220 of the modification of FIG.
  • the inner rotor 232 connected to the crankshaft of the engine 22 and the outer rotor 234 connected to the drive shaft 36 that outputs power to the drive wheels 38a and 38b have a part of the power from the engine 22.
  • a counter-rotor motor 230 that transmits power to the drive shaft 36 and converts remaining power into electric power may be provided.
  • the power from the engine 22 is output to the drive shaft 36 connected to the drive wheels 38a and 38b via the planetary gear 30, and the power from the motor MG2 is output to the drive shaft 36.
  • the motor MG is attached to the drive shaft 36 connected to the drive wheels 38a and 38b via the transmission 330, and the clutch 329 is attached to the rotation shaft of the motor MG.
  • the power from the engine 22 is output to the drive shaft 36 via the rotation shaft of the motor MG and the transmission 330, and the power from the motor MG is output to the drive shaft via the transmission 330. It is good also as what outputs to 36.
  • the power from the engine 22 is output to the drive shaft 36 connected to the drive wheels 38a and 38b via the planetary gear 30, and the power from the motor MG2 is output to the drive shaft 36.
  • the power from the motor MG2 is output to the drive shaft 36.
  • all of the power from the engine 22 is used for power generation by the motor MG1, and the battery 50 is charged and the electric power from the battery 50 is used only from the motor MG2. Power may be output to the drive shaft 36.
  • the present invention is applied to the hybrid vehicle 20.
  • the power from the motor MG is transmitted via the transmission 530 without the engine as illustrated in the electric vehicle 520 of the modified example of FIG. Then, it may be output to the drive shaft connected to the drive wheels 38a, 38b.
  • any type of vehicle may be used as long as the vehicle includes a motor for traveling and a battery capable of supplying electric power to the motor.
  • the motor MG2 corresponds to the “motor”
  • the battery 50 corresponds to the “battery”
  • the paddle switch 89a provided on the right side of the steering wheel 90
  • 89b corresponds to a “paddle switch”
  • the right paddle switch 89a is operated to upshift the driving mode in the order of mode numbers 1, 2, 3, and 4
  • the left paddle switch 89b is operated to operate mode number 4
  • the HVECU 70 that executes the travel mode switching routine of FIG. 9 for downshifting the travel mode in the order of 3, 2, 1 corresponds to “mode switching means”.
  • the engine 22 corresponds to “engine”
  • the motor MG1 corresponds to “generator”
  • the planetary gear 30 corresponds to “planetary gear”.
  • the “motor” is not limited to the motor MG2 configured as a synchronous generator motor, and may be any type of motor that can input and output driving power, such as an induction motor. It doesn't matter.
  • the “battery” is not limited to the battery 50 configured as a lithium ion secondary battery, but can supply power to a motor for traveling such as a nickel hydride secondary battery, a nickel cadmium secondary battery, or a lead storage battery. Any type of battery may be used.
  • the “paddle switch” is not limited to the paddle switch 89a provided on the right side of the steering wheel 90 and the 89b provided on the left side of the steering wheel 90. Any two paddle switches provided at the positions may be used.
  • the traveling mode is upshifted in the order of mode numbers 1, 2, 3 and 4 by operation of the right paddle switch 89a, and mode numbers 4, 3, and 2 are operated by operation of the left paddle switch 89b.
  • 1 is not limited to downshifting the driving mode in order, driving mode between three or more driving modes with different power output characteristics including normal mode by one of the two paddle switches Is switched in one direction in a predetermined order, and the other mode of the two paddle switches is used to switch the traveling mode in the opposite direction to the predetermined order between three or more traveling modes.
  • the “engine” is not limited to the engine 22 using gasoline or light oil as fuel, and any type of engine such as a hydrogen engine may be used.
  • the “generator” is not limited to the motor MG1 configured as a synchronous generator motor.
  • any type of motor such as an induction motor that can exchange power with a battery and input / output power can be used. It may be a generator.
  • the “planetary gear” is not limited to the planetary gear 30, but is a double pinion type other than a single pinion type or a combination of a plurality of planetary gears. As long as three rotating elements are connected to three axes with the rotating shaft of the machine, any configuration may be used.
  • the present invention can be used in the automobile manufacturing industry.

Abstract

By operating one of two paddle switches mounted at opposed positions to the left and right of a steering wheel, three or more (four in an embodiment) travel modes including a normal mode and with different power output characteristics are switched in a predetermined sequence in one direction. By operating the other of the two paddle switches, the travel modes are switched in a sequence opposite to the predetermined sequence and in another direction. Thus, the number of switches for indicating the travel modes can be decreased, and the travel modes can be switched without removing hands off the steering wheel during travel, so that the operability in switching the travel modes can be improved.

Description

自動車Car
 本発明は、自動車に関し、詳しくは、走行用のモータとモータに電力を供給可能なバッテリとを備える自動車に関する。 The present invention relates to an automobile, and more particularly, to an automobile provided with a motor for traveling and a battery capable of supplying electric power to the motor.
 従来、エンジンと自動変速機とを備える自動車において、ステアリング近傍に設けられたパドルスイッチの操作によって、自動変速モードから手動変速モードへの切り替えや自動変速機の変速段の変更を行ない、シフトレバー近傍に設けられたモード切替スイッチの操作によって、ノーマルモード(通常運転パターン)とスポーツモード(スポーツ運転パターン)との間の切り替えを行なうものが提案されている(例えば、特許文献1参照)。 Conventionally, in an automobile equipped with an engine and an automatic transmission, the operation of a paddle switch provided in the vicinity of the steering wheel is used to switch from the automatic transmission mode to the manual transmission mode or change the automatic transmission gear position, and in the vicinity of the shift lever. There has been proposed one that switches between a normal mode (normal driving pattern) and a sports mode (sport driving pattern) by operating a mode switching switch provided in the (see, for example, Patent Document 1).
特開2009-243594号公報JP 2009-243594 A
 走行用のモータとバッテリとを備える電気自動車やハイブリッド自動車などの自動車では、例えば、電動走行モード用のEVスイッチや、燃費を優先するエコモード用のエコスイッチ、駆動力の出力を優先するパワーモード用のパワースイッチなど、走行モードを切り替えるための複数のスイッチを運転席前方のインストルメントパネルなどに備えるものがあり、この場合、走行モードを切り替える際の操作性を向上させる余地があった。例えば、各走行モードでは、車両の制御は自動で行なわれるため、運転者が車両の動力性能やバッテリの充電状態などを好みの性能や状態に変更するために走行モード切り替え用のスイッチを操作しようとしても、運転中には操作を容易に行なうことができない場合があった。 In vehicles such as electric vehicles and hybrid vehicles equipped with a motor and a battery for traveling, for example, an EV switch for electric traveling mode, an eco switch for eco mode that prioritizes fuel consumption, and a power mode that prioritizes output of driving force Some switches, such as a power switch for switching the driving mode, are provided in the instrument panel in front of the driver's seat. In this case, there is room for improving the operability when switching the driving mode. For example, in each driving mode, the vehicle is controlled automatically, so the driver should operate the switch for switching the driving mode in order to change the power performance of the vehicle or the state of charge of the battery to the desired performance or state. However, there are cases where the operation cannot be easily performed during driving.
 本発明の自動車は、走行モードを切り替える際の操作性を向上させることを主目的とする。 The main object of the automobile of the present invention is to improve the operability when switching the driving mode.
 本発明の自動車は、上述の主目的を達成するために以下の手段を採った。 The automobile of the present invention has taken the following means in order to achieve the above-mentioned main purpose.
 本発明の自動車は、
 走行用のモータと該モータに電力を供給可能なバッテリとを備える自動車であって、
 ステアリングホイールの左右の対向する位置に設けられた2つのパドルスイッチと、
 前記2つのパドルスイッチの一方の操作によって、ノーマルモードを含む動力出力特性が異なる3つ以上の走行モードの間で該走行モードを所定の順序で一方向に切り替えると共に、前記2つのパドルスイッチの他方の操作によって、前記3つ以上の走行モードの間で該走行モードを前記所定の順序とは反対の順序で他方向に切り替えるモード切り替え手段と、
 を備えることを要旨とする。
The automobile of the present invention
An automobile comprising a motor for traveling and a battery capable of supplying electric power to the motor,
Two paddle switches provided at opposite positions on the left and right of the steering wheel;
By operating one of the two paddle switches, the traveling mode is switched in one direction in a predetermined order between three or more traveling modes having different power output characteristics including the normal mode, and the other of the two paddle switches Mode switching means for switching the traveling mode to the other direction in the order opposite to the predetermined order between the three or more traveling modes by the operation of
It is a summary to provide.
 この本発明の自動車では、ステアリングホイールの左右の対向する位置に設けられた2つのパドルスイッチの一方の操作によって、ノーマルモードを含む動力出力特性が異なる3つ以上の走行モードの間で走行モードを所定の順序で一方向に切り替えると共に、2つのパドルスイッチの他方の操作によって、3つ以上の走行モードの間で走行モードを所定の順序とは反対の順序で他方向に切り替える。これにより、走行モードを切り替える際の操作性を向上させることができる。ここで、「動力出力特性」は、エンジンからの動力の出力特性,モータからの動力の入出力特性,バッテリからの電力の入出力特性,車両の駆動力の出力特性の少なくともいずれかなどとすることができる。また、2つのパドルスイッチが設けられた「位置」としては、運転者がステアリングホイールを握ったときに手の指で操作可能な位置などとすることができる。 In this automobile of the present invention, the driving mode is set between three or more driving modes having different power output characteristics including the normal mode by operating one of the two paddle switches provided at the left and right opposing positions of the steering wheel. The driving mode is switched in one direction in a predetermined order, and the driving mode is switched in the other direction in the order opposite to the predetermined order among three or more driving modes by the other operation of the two paddle switches. Thereby, the operativity at the time of switching driving modes can be improved. Here, the “power output characteristic” is at least one of the output characteristic of the power from the engine, the input / output characteristic of the power from the motor, the input / output characteristic of the electric power from the battery, and the output characteristic of the driving force of the vehicle. be able to. Further, the “position” where the two paddle switches are provided may be a position where the driver can operate with the fingers of the hand when the driver holds the steering wheel.
 こうした本発明の自動車において、走行用の動力を出力可能なエンジンを備え、前記走行モードは、前記モータから入出力される動力だけを用いて走行する電動走行を前記ノーマルモードより継続しやすくする電動走行優先モードと、前記ノーマルモードより駆動力の出力を抑制して燃費を優先するエコモードおよび前記ノーマルモードより駆動力の出力を優先するパワーモードの少なくとも一方と、を含む、ものとすることもできる。こうすれば、電動走行優先モードを指示するスイッチや、エコモードを指示するスイッチ、パワーモードを指示するスイッチなどを削減することができる。この場合、前記電動走行優先モードは、前記エンジンから出力される動力および前記モータから入出力される動力を用いて走行するハイブリッド走行と前記電動走行とのうち前記電動走行を優先して走行するモードである、ものとすることもできる。 The automobile according to the present invention includes an engine capable of outputting driving power, and the driving mode is an electric motor that makes it easier to continue the electric driving using only the power input / output from the motor than the normal mode. Including a driving priority mode, at least one of an eco mode in which driving power output is suppressed from the normal mode and fuel efficiency is prioritized, and a power mode in which driving power output is prioritized over the normal mode. it can. By doing so, it is possible to reduce the switches that instruct the electric travel priority mode, the switches that instruct the eco mode, the switches that instruct the power mode, and the like. In this case, the electric travel priority mode is a mode in which the electric travel is prioritized among the hybrid travel that travels using the power output from the engine and the power input / output from the motor and the electric travel. It can also be.
 この走行モードは電動走行優先モードなどを含む態様の本発明の自動車において、前記所定の順序は、前記電動走行優先モード,前記エコモード,前記ノーマルモード,前記パワーモードの順序か、前記電動走行優先モード,前記エコモード,前記ノーマルモードの順序か、前記電動走行優先モード,前記ノーマルモード,前記パワーモードの順序かのいずれかである、ものとすることもできる。 In the vehicle of the present invention in which the driving mode includes an electric driving priority mode, the predetermined order is the electric driving priority mode, the eco mode, the normal mode, the power mode, or the electric driving priority. The order of the mode, the eco mode, and the normal mode may be any of the order of the electric travel priority mode, the normal mode, and the power mode.
 また、本発明の自動車において、前記所定の順序は、駆動力の出力を抑制する程度に応じた順序である、ものとすることもできる。ここで、「駆動力の出力を抑制する程度」は、アクセル開度に対する制御用アクセル開度の関係の調整,要求駆動力の最大値の調整,エンジンを運転すべき回転数とトルクとの関係を定めた動作ラインの調整,モータからのトルクの変化レートの調整,エンジンを始動するためのエンジンの要求パワーの始動用閾値の調整,エンジンブレーキの程度の調整,クリープトルクの程度の調整,バッテリの充放電要求パワーを設定するためのバッテリの蓄電割合中心の調整,モータに印加される最大電圧の調整,エンジンの要求パワーの調整の少なくともいずれかによって調整される程度である、ものとすることもできる。 Further, in the automobile of the present invention, the predetermined order may be an order corresponding to the degree to which the output of driving force is suppressed. Here, “the degree to which the output of the driving force is suppressed” is the adjustment of the relationship of the accelerator opening for control with respect to the accelerator opening, the adjustment of the maximum value of the required driving force, the relationship between the rotational speed at which the engine should be operated and torque Adjustment of the operating line that defines the motor, adjustment of the rate of change of torque from the motor, adjustment of the starting threshold for the required power of the engine to start the engine, adjustment of the degree of engine braking, adjustment of the degree of creep torque, battery It should be adjusted to at least one of the adjustment of the battery storage ratio center for setting the required charge / discharge power, adjustment of the maximum voltage applied to the motor, and adjustment of the required power of the engine. You can also.
 さらに、本発明の自動車において、前記所定の順序は、走行を継続したときの走行用パワーの総量に占める前記バッテリからの放電電力量の割合を反映するバッテリ出力分配程度に応じた順序である、ものとすることもできる。この場合、前記モード切り替え手段は、前記2つのパドルスイッチの操作に拘わらず、前記バッテリの容量に対する蓄電量の割合である蓄電割合が低いほど前記バッテリ出力分配程度が小さな前記走行モードに切り替える手段である、ものとすることもできる。こうすれば、バッテリの蓄電割合が適正な範囲を超えて小さくなったり大きくなったりするのを抑制するように、走行モードを自動的に切り替えることができる。 Furthermore, in the automobile of the present invention, the predetermined order is an order according to a battery output distribution degree that reflects a ratio of a discharge power amount from the battery to a total amount of traveling power when traveling is continued. It can also be. In this case, the mode switching means is means for switching to the travel mode in which the degree of battery output distribution is smaller as the power storage ratio, which is the ratio of the power storage amount to the battery capacity, is lower regardless of the operation of the two paddle switches. There can be. If it carries out like this, driving | running | working mode can be switched automatically so that it may suppress that the electrical storage ratio of a battery exceeds a suitable range, and becomes small or becomes large.
 あるいは、本発明の自動車において、走行用の動力を出力可能なエンジンを備え、前記バッテリと電力のやりとりが可能で動力を入出力可能な発電機と、車軸に連結された駆動軸と前記エンジンの出力軸と前記発電機の回転軸との3軸に3つの回転要素が接続されたプラネタリギヤと、を備え、前記モータの回転軸が前記駆動軸に接続されてなる、ものとすることもできる。 Alternatively, the automobile of the present invention includes an engine capable of outputting power for traveling, a generator capable of exchanging power with the battery and capable of inputting and outputting power, a drive shaft connected to an axle, and the engine. A planetary gear in which three rotating elements are connected to three axes of an output shaft and a rotating shaft of the generator may be provided, and the rotating shaft of the motor may be connected to the driving shaft.
本発明の一実施例としてのハイブリッド自動車20の構成の概略を示す構成図である。1 is a configuration diagram showing an outline of a configuration of a hybrid vehicle 20 as an embodiment of the present invention. ステアリングホイール90近傍に設けられたパドルスイッチ89の構成の一例を示す構成図である。3 is a configuration diagram showing an example of a configuration of a paddle switch 89 provided in the vicinity of a steering wheel 90. FIG. 複数の走行モードの組み合わせの一例と各走行モードにおける複数の制御項目の組み合わせの一例とを示す説明図である。It is explanatory drawing which shows an example of the combination of several driving modes, and an example of the combination of several control items in each driving mode. 制御用アクセル開度設定用マップの一例を示す説明図である。It is explanatory drawing which shows an example of the map for control accelerator opening setting. 要求トルク設定用マップの一例を示す説明図である。It is explanatory drawing which shows an example of the map for request | requirement torque setting. 燃費最適動作ラインおよびトルク優先動作ラインの一例とエンジン22の目標回転数Ne*および目標トルクTe*を設定する様子の一例とを示す説明図である。It is explanatory drawing which shows an example of a fuel consumption optimal operation line and an example of a torque priority operation line, and an example of a mode which sets the target rotational speed Ne * of the engine 22, and the target torque Te *. 走行モードと動力出力特性(駆動力出力抑制程度)との関係の一例を示す説明図である。It is explanatory drawing which shows an example of the relationship between driving | running | working mode and motive power output characteristics (a driving force output suppression grade). 走行モードと動力出力特性(バッテリ出力分配程度)との関係の一例を示す説明図である。It is explanatory drawing which shows an example of the relationship between driving modes and motive power output characteristics (about battery output distribution). HVECU70により実行される走行モード切り替えルーチンの一例を示すフローチャートである。5 is a flowchart showing an example of a travel mode switching routine executed by an HVECU 70. 上下限モード番号設定用マップの一例を示す説明図である。It is explanatory drawing which shows an example of the map for an upper / lower limit mode number setting. 変形例の走行モードと動力出力特性(駆動力出力抑制程度)との関係の一例を示す説明図である。It is explanatory drawing which shows an example of the relationship between the travel mode of a modification, and power output characteristics (driving force output suppression grade). 変形例の走行モードと動力出力特性(駆動力出力抑制程度)との関係の一例を示す説明図である。It is explanatory drawing which shows an example of the relationship between the travel mode of a modification, and power output characteristics (driving force output suppression grade). 変形例の走行モードと動力出力特性(バッテリ出力分配程度)との関係の一例を示す説明図である。It is explanatory drawing which shows an example of the relationship between the driving mode of a modification, and power output characteristics (about battery output distribution). 変形例の走行モードと動力出力特性(バッテリ充放電特性)との関係の一例を示す説明図である。It is explanatory drawing which shows an example of the relationship between the driving mode of a modification, and motive power output characteristics (battery charging / discharging characteristic). 変形例の各走行モードにおける制御項目の組み合わせの一例を示す説明図である。It is explanatory drawing which shows an example of the combination of the control item in each driving mode of a modification. 変形例の各走行モードにおける制御項目の組み合わせの一例を示す説明図である。It is explanatory drawing which shows an example of the combination of the control item in each driving mode of a modification. 変形例の走行モードをロータリー形式で切り替える様子の一例を示す説明図である。It is explanatory drawing which shows an example of a mode that the driving mode of a modification is switched in a rotary format. 変形例のハイブリッド自動車120の構成の概略を示す構成図である。FIG. 11 is a configuration diagram showing an outline of a configuration of a hybrid vehicle 120 according to a modification. 変形例のハイブリッド自動車220の構成の概略を示す構成図である。FIG. 11 is a configuration diagram showing an outline of a configuration of a hybrid vehicle 220 of a modified example. 変形例のハイブリッド自動車320の構成の概略を示す構成図である。FIG. 11 is a configuration diagram showing an outline of a configuration of a hybrid vehicle 320 of a modified example. 変形例のハイブリッド自動車420の構成の概略を示す構成図である。FIG. 11 is a configuration diagram showing an outline of a configuration of a hybrid vehicle 420 according to a modification. 変形例の電気自動車520の構成の概略を示す構成図である。It is a block diagram which shows the outline of a structure of the electric vehicle 520 of a modification.
 次に、本発明を実施するための形態を実施例を用いて説明する。 Next, a mode for carrying out the present invention will be described using examples.
 図1は本発明の一実施例としてのハイブリッド自動車20の構成の概略を示す構成図である。実施例のハイブリッド自動車20は、図示するように、ガソリンや軽油などを燃料とするエンジン22と、エンジン22を駆動制御するエンジン用電子制御ユニット(以下、エンジンECUという)24と、エンジン22のクランクシャフト26にキャリアが接続されると共に駆動輪38a,38bにデファレンシャルギヤ37を介して連結された駆動軸36にリングギヤが接続されたプラネタリギヤ30と、例えば同期発電電動機として構成されて回転子がプラネタリギヤ30のサンギヤに接続されたモータMG1と、例えば同期発電電動機として構成されて回転子が駆動軸36に接続されたモータMG2と、モータMG1,MG2を駆動するためのインバータ41,42と、例えばリチウムイオン二次電池として構成されたバッテリ50と、インバータ41,42が接続された電力ライン(以下、駆動電圧系電力ライン54aという)とバッテリ50が接続された電力ライン(以下、電池電圧系電力ライン54bという)とに接続されて駆動電圧系電力ライン54aの電圧VHを調節すると共に駆動電圧系電力ライン54aと電池電圧系電力ライン54bとの間で電力のやりとりを行なう昇圧コンバータ55と、インバータ41,42を制御することによってモータMG1,MG2を駆動制御すると共に昇圧コンバータ55を制御するモータ用電子制御ユニット(以下、モータECUという)40と、バッテリ50を管理するバッテリ用電子制御ユニット(以下、バッテリECUという)52と、車両全体を制御するハイブリッド用電子制御ユニット(以下、HVECUという)70と、を備える。 FIG. 1 is a configuration diagram showing an outline of the configuration of a hybrid vehicle 20 as an embodiment of the present invention. As shown in the figure, the hybrid vehicle 20 of the embodiment includes an engine 22 that uses gasoline or light oil as fuel, an engine electronic control unit (hereinafter referred to as engine ECU) 24 that controls the drive of the engine 22, and a crank of the engine 22. A planetary gear 30 having a carrier connected to the shaft 26 and a ring gear connected to a drive shaft 36 connected to drive wheels 38a and 38b via a differential gear 37, and a rotor configured as a synchronous generator motor, for example. A motor MG1 connected to the sun gear, a motor MG2 configured as a synchronous generator motor and having a rotor connected to the drive shaft 36, inverters 41 and 42 for driving the motors MG1 and MG2, and lithium ions, for example Battery 50 configured as a secondary battery The drive voltage system is connected to the power line to which the inverters 41 and 42 are connected (hereinafter referred to as the drive voltage system power line 54a) and the power line to which the battery 50 is connected (hereinafter referred to as the battery voltage system power line 54b). Motor MG1 and MG2 are controlled by adjusting voltage VH of power line 54a and controlling inverters 41 and 42, and boost converter 55 that exchanges power between drive voltage system power line 54a and battery voltage system power line 54b. A motor electronic control unit (hereinafter referred to as motor ECU) 40 for controlling the boost converter 55, a battery electronic control unit (hereinafter referred to as battery ECU) 52 for managing the battery 50, and the entire vehicle. The hybrid electronic control unit (hereinafter referred to as HVECU) It includes a 70, a.
 エンジンECU24は、図示しないが、CPUを中心とするマイクロプロセッサとして構成されており、CPUの他に、処理プログラムを記憶するROMやデータを一時的に記憶するRAM,入出力ポート,通信ポートを備える。エンジンECU24には、エンジン22の運転状態を検出する各種センサから信号、例えば、クランクシャフト26の回転位置を検出するクランクポジションセンサからのクランクポジションθcrやエンジン22の冷却水の温度を検出する水温センサからの冷却水温Tw,燃焼室内に取り付けられた圧力センサからの筒内圧力Pin,燃焼室へ吸排気を行なう吸気バルブや排気バルブを開閉するカムシャフトの回転位置を検出するカムポジションセンサからのカムポジションθca,スロットルバルブのポジションを検出するスロットルバルブポジションセンサからのスロットルポジションSP,吸気管に取り付けられたエアフローメータからの吸入空気量Qa,同じく吸気管に取り付けられた温度センサからの吸気温Ta,排気系に取り付けられた空燃比センサからの空燃比AF,同じく排気系に取り付けられた酸素センサからの酸素信号O2などが入力ポートを介して入力されており、エンジンECU24からは、エンジン22を駆動するための種々の制御信号、例えば、燃料噴射弁への駆動信号やスロットルバルブのポジションを調節するスロットルモータへの駆動信号,イグナイタと一体化されたイグニッションコイルへの制御信号,吸気バルブの開閉タイミングの変更可能な可変バルブタイミング機構への制御信号などが出力ポートを介して出力されている。また、エンジンECU24は、HVECU70と通信しており、HVECU70からの制御信号によりエンジン22を運転制御すると共に必要に応じてエンジン22の運転状態に関するデータをHVECU70に出力する。なお、エンジンECU24は、クランクシャフト26に取り付けられた図示しないクランクポジションセンサからの信号に基づいてクランクシャフト26の回転数、即ちエンジン22の回転数Neも演算している。 Although not shown, the engine ECU 24 is configured as a microprocessor centered on a CPU, and includes a ROM for storing a processing program, a RAM for temporarily storing data, an input / output port, and a communication port in addition to the CPU. . The engine ECU 24 receives signals from various sensors that detect the operating state of the engine 22, for example, a water temperature sensor that detects the crank position θcr from the crank position sensor that detects the rotational position of the crankshaft 26 and the coolant temperature of the engine 22. From the cam position sensor for detecting the cooling water temperature Tw from the cylinder, the in-cylinder pressure Pin from the pressure sensor installed in the combustion chamber, the rotational position of the intake valve for intake and exhaust to the combustion chamber and the camshaft for opening and closing the exhaust valve Position θca, throttle position SP from a throttle valve position sensor for detecting the position of the throttle valve, intake air amount Qa from an air flow meter attached to the intake pipe, intake air temperature Ta from a temperature sensor also attached to the intake pipe, Installed in the exhaust system The air-fuel ratio AF from the air-fuel ratio sensor and the oxygen signal O2 from the oxygen sensor attached to the exhaust system are input via the input port, and the engine ECU 24 is for driving the engine 22. Various control signals, such as the drive signal to the fuel injection valve, the drive signal to the throttle motor that adjusts the throttle valve position, the control signal to the ignition coil integrated with the igniter, and the opening / closing timing of the intake valve can be changed A control signal to the variable valve timing mechanism is output via the output port. The engine ECU 24 is in communication with the HVECU 70, controls the operation of the engine 22 by a control signal from the HVECU 70, and outputs data related to the operation state of the engine 22 to the HVECU 70 as necessary. The engine ECU 24 also calculates the rotational speed of the crankshaft 26, that is, the rotational speed Ne of the engine 22 based on a signal from a crank position sensor (not shown) attached to the crankshaft 26.
 モータECU40は、図示しないが、CPUを中心とするマイクロプロセッサとして構成されており、CPUの他に、処理プログラムを記憶するROMやデータを一時的に記憶するRAM,入出力ポート,通信ポートを備える。モータECU40には、モータMG1,MG2を駆動制御するために必要な信号、例えばモータMG1,MG2の回転子の回転位置を検出する回転位置検出センサ43,44からの回転位置θm1,θm2や図示しない電流センサにより検出されるモータMG1,MG2に印加される相電流などが入力ポートを介して入力されており、モータECU40からは、インバータ41,42の図示しないスイッチング素子へのスイッチング制御信号や昇圧コンバータ55の図示しないスイッチング素子へのスイッチング制御信号などが出力ポートを介して出力されている。また、モータECU40は、HVECU70と通信しており、HVECU70からの制御信号によってモータMG1,MG2を駆動制御すると共に必要に応じてモータMG1,MG2の運転状態に関するデータをHVECU70に出力する。なお、モータECU40は、回転位置検出センサ43,44からのモータMG1,MG2の回転子の回転位置θm1,θm2に基づいてモータMG1,MG2の回転角速度ωm1,ωm2や回転数Nm1,Nm2を演算したりしている。 Although not shown, the motor ECU 40 is configured as a microprocessor centered on a CPU, and includes a ROM for storing a processing program, a RAM for temporarily storing data, an input / output port, and a communication port in addition to the CPU. . The motor ECU 40 receives signals necessary for driving and controlling the motors MG1 and MG2, for example, rotational positions θm1 and θm2 from rotational position detection sensors 43 and 44 that detect the rotational positions of the rotors of the motors MG1 and MG2, and not shown. A phase current applied to the motors MG1 and MG2 detected by the current sensor is input via the input port, and the motor ECU 40 receives a switching control signal to a switching element (not shown) of the inverters 41 and 42 and a boost converter. A switching control signal 55 to a switching element (not shown) 55 is output through an output port. The motor ECU 40 is in communication with the HVECU 70, controls the driving of the motors MG1 and MG2 by a control signal from the HVECU 70, and outputs data related to the operating state of the motors MG1 and MG2 to the HVECU 70 as necessary. The motor ECU 40 calculates the rotational angular velocities ωm1, ωm2 and the rotational speeds Nm1, Nm2 of the motors MG1, MG2 based on the rotational positions θm1, θm2 of the rotors of the motors MG1, MG2 from the rotational position detection sensors 43, 44. It is.
 バッテリECU52は、図示しないが、CPUを中心とするマイクロプロセッサとして構成されており、CPUの他に、処理プログラムを記憶するROMやデータを一時的に記憶するRAM,入出力ポート,通信ポートを備える。バッテリECU52には、バッテリ50を管理するのに必要な信号、例えば、バッテリ50の端子間に設置された図示しない電圧センサからの端子間電圧Vbやバッテリ50の出力端子に接続された電力ラインに取り付けられた図示しない電流センサからの充放電電流Ib,バッテリ50に取り付けられた図示しない温度センサからの電池温度Tbなどが入力されており、必要に応じてバッテリ50の状態に関するデータを通信によりHVECU70に送信する。また、バッテリECU52は、バッテリ50を管理するために電流センサにより検出された充放電電流Ibの積算値に基づいてそのときのバッテリ50から放電可能な電力の容量の全容量に対する割合である蓄電割合SOCを演算したり、演算した蓄電割合SOCと電池温度Tbとに基づいてバッテリ50を充放電してもよい最大許容電力である入出力制限Win,Woutを演算したりしている。なお、バッテリ50の入出力制限Win,Woutは、電池温度Tbに基づいて入出力制限Win,Woutの基本値を設定し、バッテリ50の蓄電割合SOCに基づいて出力制限用補正係数と入力制限用補正係数とを設定し、設定した入出力制限Win,Woutの基本値に補正係数を乗じることにより設定することができる。 Although not shown, the battery ECU 52 is configured as a microprocessor centered on a CPU, and includes a ROM for storing a processing program, a RAM for temporarily storing data, an input / output port, and a communication port in addition to the CPU. . The battery ECU 52 receives signals necessary for managing the battery 50, for example, an inter-terminal voltage Vb from a voltage sensor (not shown) installed between the terminals of the battery 50 and a power line connected to the output terminal of the battery 50. The charging / discharging current Ib from the attached current sensor (not shown), the battery temperature Tb from the temperature sensor (not shown) attached to the battery 50, and the like are input. Send to. Further, the battery ECU 52 is based on the integrated value of the charge / discharge current Ib detected by the current sensor in order to manage the battery 50, and the power storage ratio that is the ratio of the capacity of power that can be discharged from the battery 50 at that time to the total capacity The SOC is calculated, and the input / output limits Win and Wout, which are the maximum allowable power that may charge / discharge the battery 50, are calculated based on the calculated storage ratio SOC and the battery temperature Tb. The input / output limits Win and Wout of the battery 50 are set to the basic values of the input / output limits Win and Wout based on the battery temperature Tb, and the output limiting correction coefficient and the input limiting limit are set based on the storage ratio SOC of the battery 50. It can be set by setting a correction coefficient and multiplying the basic value of the set input / output limits Win and Wout by the correction coefficient.
 HVECU70は、図示しないが、CPUを中心とするマイクロプロセッサとして構成されており、CPUの他に、処理プログラムを記憶するROMやデータを一時的に記憶するRAM,入出力ポート,通信ポートを備える。HVECU70には、イグニッションスイッチ80からのイグニッション信号やシフトレバー81の操作位置を検出するシフトポジションセンサ82からのシフトポジションSP,アクセルペダル83の踏み込み量を検出するアクセルペダルポジションセンサ84からのアクセル開度Acc,ブレーキペダル85の踏み込み量を検出するブレーキペダルポジションセンサ86からのブレーキペダルポジションBP,車速センサ88からの車速V,車両の走行モードを切り替えるためにステアリングホイール(ハンドル)90の左右の対向する所定位置に設けられた2つのパドルスイッチ89a,89b(図2参照)の各々から信号などが入力ポートを介して入力されている。実施例では、パドルスイッチ89aは、運転者からみてステアリングホイール90の右側に配置され手前側に操作されたときにアップシフト信号Mupを出力するスイッチであり、パドルスイッチ89bは、運転者からみて左側に配置されステアリングホイール90の手前側に操作されたときにダウンシフト信号Mdwnを出力するスイッチであるものとした。また、パドルスイッチ89a,89bが設けられる所定位置は、実施例では、運転者がステアリングホイール90を握ったときに手の指で操作可能な位置であって、左右で一対となるステアリングホイール90のグリップ部の裏側の位置であるものとした。なお、パドルスイッチ89a,89bは、ステアリングホイール90と一体に回転するものとしてもよいし、ステアリングホイール90と一体に回転することなく図示しないステアリングコラムに固定されているものとしてもよい。また、HVECU70は、前述したように、エンジンECU24やモータECU40,バッテリECU52と通信ポートを介して接続されており、エンジンECU24やモータECU40,バッテリECU52と各種制御信号やデータのやりとりを行なっている。 Although not shown, the HVECU 70 is configured as a microprocessor centered on a CPU, and includes a ROM for storing processing programs, a RAM for temporarily storing data, an input / output port, and a communication port in addition to the CPU. The HVECU 70 includes an ignition signal from the ignition switch 80, a shift position SP from the shift position sensor 82 that detects the operation position of the shift lever 81, and an accelerator opening degree from the accelerator pedal position sensor 84 that detects the amount of depression of the accelerator pedal 83. Acc, the brake pedal position BP from the brake pedal position sensor 86 that detects the amount of depression of the brake pedal 85, the vehicle speed V from the vehicle speed sensor 88, and the steering wheel (handle) 90 on the left and right sides to switch the vehicle running mode. A signal or the like is input from each of two paddle switches 89a and 89b (see FIG. 2) provided at predetermined positions via an input port. In the embodiment, the paddle switch 89a is a switch that is disposed on the right side of the steering wheel 90 when viewed from the driver and outputs an upshift signal Mup when operated on the near side, and the paddle switch 89b is on the left side when viewed from the driver. And a switch that outputs a downshift signal Mdwn when operated on the front side of the steering wheel 90. In addition, in the embodiment, the predetermined position where the paddle switches 89a and 89b are provided is a position where the driver can operate with the fingers of the hand when the steering wheel 90 is gripped. The position was on the back side of the grip part. The paddle switches 89a and 89b may rotate integrally with the steering wheel 90, or may be fixed to a steering column (not shown) without rotating integrally with the steering wheel 90. Further, as described above, the HVECU 70 is connected to the engine ECU 24, the motor ECU 40, and the battery ECU 52 via the communication port, and exchanges various control signals and data with the engine ECU 24, the motor ECU 40, and the battery ECU 52.
 こうして構成された実施例のハイブリッド自動車20では、運転者によるアクセルペダルの踏み込み量に対応するアクセル開度Accと車速Vとに基づいて駆動軸36に出力すべき要求トルクTr*を計算し、この要求トルクTr*に対応する要求動力が駆動軸36に出力されるように、エンジン22とモータMG1とモータMG2とが運転制御される。エンジン22とモータMG1とモータMG2との運転制御としては、要求動力に見合う動力がエンジン22から出力されるようにエンジン22を運転制御すると共にエンジン22から出力される動力のすべてがプラネタリギヤ30とモータMG1とモータMG2とによってトルク変換されて駆動軸36に出力されるようモータMG1およびモータMG2を駆動制御するトルク変換運転モードや、要求動力とバッテリ50の充放電に必要な電力との和に見合う動力がエンジン22から出力されるようにエンジン22を運転制御すると共にバッテリ50の充放電を伴ってエンジン22から出力される動力の全部またはその一部がプラネタリギヤ30とモータMG1とモータMG2とによるトルク変換を伴って要求動力が駆動軸36に出力されるようモータMG1およびモータMG2を駆動制御する充放電運転モード,エンジン22の運転を停止してモータMG2からの要求動力に見合う動力を駆動軸36に出力するよう運転制御するモータ運転モードなどがある。なお、トルク変換運転モードと充放電運転モードとは、いずれもエンジン22の運転を伴って要求動力が駆動軸36に出力されるようエンジン22とモータMG1とモータMG2とを制御するモードであり、実質的な制御における差異はないため、以下、両者を合わせてエンジン運転モードという。 In the hybrid vehicle 20 of the embodiment thus configured, the required torque Tr * to be output to the drive shaft 36 is calculated based on the accelerator opening Acc and the vehicle speed V corresponding to the depression amount of the accelerator pedal by the driver. The operation of the engine 22, the motor MG1, and the motor MG2 is controlled so that the required power corresponding to the required torque Tr * is output to the drive shaft 36. As the operation control of the engine 22, the motor MG1, and the motor MG2, the operation of the engine 22 is controlled so that the power corresponding to the required power is output from the engine 22, and all the power output from the engine 22 is transmitted to the planetary gear 30 and the motor. The torque conversion operation mode in which the motor MG1 and the motor MG2 are driven and controlled so that the torque is converted by the MG1 and the motor MG2 and output to the drive shaft 36, and the sum of the required power and the power required for charging and discharging the battery 50 is met. Operation of the engine 22 is controlled so that power is output from the engine 22, and all or part of the power output from the engine 22 with charge / discharge of the battery 50 is torque generated by the planetary gear 30, the motor MG1, and the motor MG2. The required power is output to the drive shaft 36 with conversion. Charge-discharge drive mode for driving and controlling the motors MG1 and MG2, there is a motor operation mode in which operation control to output a power commensurate to stop the operation of the engine 22 to the required power from the motor MG2 to the drive shaft 36. The torque conversion operation mode and the charge / discharge operation mode are modes in which the engine 22, the motor MG1, and the motor MG2 are controlled so that the required power is output to the drive shaft 36 with the operation of the engine 22. Since there is no substantial difference in control, both are hereinafter referred to as the engine operation mode.
 エンジン運転モードでは、HVECU70は、アクセルペダルポジションセンサ84からのアクセル開度Accに応じた制御用アクセル開度Acc*と車速センサ88からの車速Vとに基づいて駆動軸36に出力すべき要求トルクTr*を設定し、設定した要求トルクTr*に駆動軸36の回転数Nr(例えば、モータMG2の回転数Nm2や車速Vに換算係数を乗じて得られる回転数)を乗じて走行に要求される走行用パワーPdrv*を計算すると共に計算した走行用パワーPdrv*からバッテリ50の蓄電割合SOCに基づいて得られるバッテリ50の充放電要求パワーPb*(バッテリ50から放電するときが正の値)を減じてエンジン22から出力すべきパワーとしての要求パワーPe*を設定する。そして、要求パワーPe*を効率よくエンジン22から出力することができるエンジン22の回転数NeとトルクTeとの関係としての動作ライン(例えば燃費最適動作ライン)を用いてエンジン22の目標回転数Ne*と目標トルクTe*とを設定し、バッテリ50の入出力制限Win,Woutの範囲内で、エンジン22の回転数Neが目標回転数Ne*となるようにするための回転数フィードバック制御によってモータMG1から出力すべきトルクとしてのトルク指令Tm1*を設定すると共にモータMG1をトルク指令Tm1*で駆動したときにプラネタリギヤ30を介して駆動軸36に作用するトルクを要求トルクTr*から減じてモータMG2のトルク指令Tm2*を設定し、設定した目標回転数Ne*と目標トルクTe*とについてはエンジンECU24に送信し、トルク指令Tm1*,Tm2*についてはモータECU40に送信する。目標回転数Ne*と目標トルクTe*とを受信したエンジンECU24は、目標回転数Ne*と目標トルクTe*とによってエンジン22が運転されるようエンジン22の吸入空気量制御や燃料噴射制御,点火制御などを行ない、トルク指令Tm1*,Tm2*を受信したモータECU40は、モータMG1,MG2がトルク指令Tm1*,Tm2*で駆動されるようインバータ41,42のスイッチング素子のスイッチング制御を行なう。こうした制御により、エンジン22を効率よく運転しながらバッテリ50の入出力制限Win,Woutの範囲内で要求トルクTr*を駆動軸36に出力して走行することができる。このエンジン運転モードでは、エンジン22の要求パワーPe*がエンジン22を運転停止した方がよい要求パワーPe*の範囲の上限として定められた停止用閾値以下に至ったときなどエンジン22の停止条件が成立したときに、エンジン22の運転を停止してモータ運転モードに移行する。 In the engine operation mode, the HVECU 70 is requested torque to be output to the drive shaft 36 based on the control accelerator opening Acc * corresponding to the accelerator opening Acc from the accelerator pedal position sensor 84 and the vehicle speed V from the vehicle speed sensor 88. Tr * is set, and the required torque Tr * thus set is multiplied by the rotation speed Nr of the drive shaft 36 (for example, the rotation speed obtained by multiplying the rotation speed Nm2 of the motor MG2 and the vehicle speed V by a conversion factor). The charging / discharging request power Pb * of the battery 50 obtained from the calculated traveling power Pdrv * based on the storage ratio SOC of the battery 50 (a positive value when discharging from the battery 50) Is set to the required power Pe * as the power to be output from the engine 22. Then, the target rotational speed Ne of the engine 22 is obtained using an operation line (for example, a fuel efficiency optimal operation line) as a relationship between the rotational speed Ne of the engine 22 and the torque Te that can efficiently output the required power Pe * from the engine 22. * And the target torque Te * are set, and the motor is controlled by the rotational speed feedback control so that the rotational speed Ne of the engine 22 becomes the target rotational speed Ne * within the range of the input / output limits Win and Wout of the battery 50. A torque command Tm1 * as a torque to be output from MG1 is set, and when the motor MG1 is driven by the torque command Tm1 *, the torque acting on the drive shaft 36 via the planetary gear 30 is subtracted from the required torque Tr * to reduce the motor MG2. Torque command Tm2 * is set, and the target rotational speed Ne * and target torque Te * are set. In its sent to the engine ECU 24, the torque command Tm1 *, the Tm2 * is sent to the motor ECU 40. The engine ECU 24 that has received the target rotational speed Ne * and the target torque Te *, controls the intake air amount, fuel injection control, and ignition of the engine 22 so that the engine 22 is operated by the target rotational speed Ne * and the target torque Te *. The motor ECU 40 that performs control or the like and receives the torque commands Tm1 * and Tm2 * performs switching control of the switching elements of the inverters 41 and 42 so that the motors MG1 and MG2 are driven by the torque commands Tm1 * and Tm2 *. By such control, it is possible to travel while outputting the required torque Tr * to the drive shaft 36 within the range of the input / output limits Win and Wout of the battery 50 while operating the engine 22 efficiently. In this engine operation mode, when the required power Pe * of the engine 22 is equal to or lower than the stop threshold value determined as the upper limit of the range of the required power Pe * that is better to stop the operation of the engine 22, the stop condition of the engine 22 is When it is established, the operation of the engine 22 is stopped and the motor operation mode is shifted to.
 モータ運転モードでは、HVECU70は、アクセル開度Accに応じた制御用アクセル開度Acc*と車速Vとに基づいて駆動軸36に出力すべき要求トルクTr*を設定し、モータMG1のトルク指令Tm1*に値0を設定する共にバッテリ50の入出力制限Win,Woutの範囲内で要求トルクTr*が駆動軸36に出力されるようモータMG2のトルク指令Tm2*を設定してモータECU40に送信する。そして、トルク指令Tm1*,Tm2*を受信したモータECU40は、モータMG1,MG2がトルク指令Tm1*,Tm2*で駆動されるようインバータ41,42のスイッチング素子のスイッチング制御を行なう。こうした制御により、エンジン22を運転停止した状態でバッテリ50の入出力制限Win,Woutの範囲内で要求トルクTr*を駆動軸36に出力して走行することができる。このモータ運転モードでは、要求トルクTr*に駆動軸36の回転数Nrを乗じて得られる走行用パワーPdrv*からバッテリ50の充放電要求パワーPb*を減じて得られるエンジン22の要求パワーPe*がエンジン22を始動した方がよい要求パワーPe*の範囲の下限として停止用閾値より若干大きい値に定められた始動用閾値以上に至ったときなどエンジン22の始動条件が成立したときに、エンジン22を始動してエンジン運転モードに移行する。 In the motor operation mode, the HVECU 70 sets a required torque Tr * to be output to the drive shaft 36 based on the control accelerator opening Acc * corresponding to the accelerator opening Acc and the vehicle speed V, and a torque command Tm1 for the motor MG1. A value 0 is set for * and a torque command Tm2 * of the motor MG2 is set and transmitted to the motor ECU 40 so that the required torque Tr * is output to the drive shaft 36 within the range of the input / output limits Win and Wout of the battery 50. . Then, the motor ECU 40 that receives the torque commands Tm1 * and Tm2 * performs switching control of the switching elements of the inverters 41 and 42 so that the motors MG1 and MG2 are driven by the torque commands Tm1 * and Tm2 *. With such control, the engine 22 can travel by outputting the required torque Tr * to the drive shaft 36 within the range of the input / output limits Win and Wout of the battery 50 with the engine 22 stopped. In this motor operation mode, the required power Pe * of the engine 22 obtained by subtracting the charge / discharge required power Pb * of the battery 50 from the traveling power Pdrv * obtained by multiplying the required torque Tr * by the rotational speed Nr of the drive shaft 36. When the engine 22 has a start condition such as when the engine 22 has reached a start threshold that is set to a value slightly larger than the stop threshold as the lower limit of the range of the required power Pe * that is better to start the engine 22, 22 is started to shift to the engine operation mode.
 続いて、車両の走行モードについて説明する。図3は、複数の走行モードの組み合わせの一例と各走行モードにおける複数の制御項目の組み合わせの一例とを示す説明図である。車両の走行モードは、各制御項目をモードに応じて調整することによって、エンジン22からの動力の出力特性,モータMG1,MG2からの動力の入出力特性,バッテリ50からの電力の入出力特性,車両の駆動力の出力特性の少なくともいずれかが異なるように(動力出力特性(動力性能)が異なるように)予め複数定められている。実施例の車両の走行モードとしては、図示するように、パドルスイッチ89a,89bの操作によって走行モードを変更する指示がなされない場合に基本的に用いられるノーマルモードと、前述のエンジン運転モードとモータ運転モードとのうちエンジン運転モードによる走行(ハイブリッド走行)よりもモータ運転モードによる走行(電動走行)を優先すると共にモータ運転モードによる走行をノーマルモードより継続しやすくする(運転者による電動走行の要求に応える)EVモードと、ノーマルモードより車両の駆動力の出力を抑制して燃費を優先するエコモードと、ノーマルモードより車両の駆動力の出力を優先するパワーモードと、の4つの走行モードが予め用意されているものとした。また、実施例の走行モードに応じて調整される制御項目としては、アクセルペダルポジションセンサ84からのアクセル開度Accに対する制御用アクセル開度Acc*の関係と、制御用アクセル開度Acc*と車速Vとに基づく要求トルクTr*の最大値と、エンジン22を運転すべき回転数とトルクとの関係を定めた動作ラインと、モータMG1,MG2からのトルクの変化レートと、エンジン22を始動するための要求パワーPe*の始動用閾値と、を用いるものとした。 Next, the vehicle travel mode will be described. FIG. 3 is an explanatory diagram illustrating an example of a combination of a plurality of travel modes and an example of a combination of a plurality of control items in each travel mode. The vehicle running mode is adjusted by adjusting each control item according to the mode, so that power output characteristics from the engine 22, power input / output characteristics from the motors MG1 and MG2, power input / output characteristics from the battery 50, A plurality of predetermined values are set in advance so that at least one of the output characteristics of the driving force of the vehicle is different (so that the power output characteristics (power performance) are different). As shown in the figure, the vehicle driving mode of the embodiment includes a normal mode that is basically used when no instruction is given to change the driving mode by operating paddle switches 89a and 89b, and the engine operation mode and motor described above. Priority is given to driving in the motor driving mode (electric driving) over driving in the engine driving mode (hybrid driving) and driving in the motor driving mode is easier to continue than in normal mode (required driving by the driver) The four driving modes, EV mode, eco mode that gives priority to fuel consumption by suppressing the output of the driving force of the vehicle over the normal mode, and power mode that gives priority to the output of the driving force of the vehicle over the normal mode It was prepared in advance. The control items adjusted according to the travel mode of the embodiment include the relationship of the accelerator opening Acc * for control with respect to the accelerator opening Acc from the accelerator pedal position sensor 84, the accelerator opening Acc * for control, and the vehicle speed. The maximum value of the required torque Tr * based on V, the operation line that defines the relationship between the rotational speed at which the engine 22 should be operated and the torque, the rate of change in torque from the motors MG1, MG2, and the engine 22 are started. And a starting threshold value for the required power Pe *.
 実施例のアクセル開度Accに対する制御用アクセル開度Acc*の関係は、図3と共に、図4の制御用アクセル開度設定用マップに示すように、ノーマルモードでは、アクセル開度Accが大きいほど制御用アクセル開度Acc*が線形に大きくなるように定められ、パワーモードでは、ノーマルモードに比して同一のアクセル開度Accに対してより大きい制御用アクセル開度Acc*が得られるように定められ、エコモードでは、ノーマルモードに比して制御用アクセル開度Acc*の最大値が若干小さくなるように定められ、EVモードでは、アクセル開度Accの所定の中間領域で制御用アクセル開度Acc*が一定となる不感帯が設けられることによってエコモードの制御用アクセル開度Acc*以下の制御用アクセル開度Acc*が得られるように定められているものとした。実施例では、図5の要求トルク設定用マップに示すように、制御用アクセル開度Acc*と車速Vとに基づいて駆動軸36に出力すべき要求トルクTr*を設定するものとし、これにより、ノーマルモードとパワーモードでは、アクセル開度Accの最大値(100%)に対して最大値(100%)の制御用アクセル開度Acc*が得られると共に最大値(100%)までの制御用アクセル開度Accと車速Vとに基づいて要求トルクTr*として最大トルクTrmax以下の範囲のトルクが得られ、エコモードとEVモードでは、アクセル開度Accの最大値(100%)に対して最大値(100%)より小さい制御用トルクAcc*が得られると共にこの制御用アクセル開度Acc*と車速Vとに基づいて要求トルクTr*として最大トルクTrmaxより若干小さいトルクTrmax1以下の範囲のトルクが得られるものとした。 The relationship between the accelerator opening Acc * for control and the accelerator opening Acc of the embodiment is shown in FIG. 3 and the map for setting the accelerator opening for control in FIG. The control accelerator opening Acc * is determined so as to increase linearly, and in the power mode, a larger control accelerator opening Acc * is obtained for the same accelerator opening Acc than in the normal mode. In the eco mode, the maximum value of the control accelerator opening Acc * is determined to be slightly smaller than that in the normal mode. In the EV mode, the control accelerator is opened in a predetermined intermediate region of the accelerator opening Acc. By providing a dead zone in which the degree Acc * is constant, the accelerator opening A for control below the accelerator opening Acc * for eco mode is provided. It was assumed that c * is defined so as to obtain. In the embodiment, as shown in the required torque setting map of FIG. 5, the required torque Tr * to be output to the drive shaft 36 is set based on the control accelerator opening Acc * and the vehicle speed V. In normal mode and power mode, the maximum accelerator opening Acc * is obtained for the maximum value (100%) of the accelerator opening Acc (100%) and the maximum value (100%) is controlled. Based on the accelerator opening Acc and the vehicle speed V, a torque within the range below the maximum torque Trmax is obtained as the required torque Tr *. In the eco mode and the EV mode, the maximum is obtained with respect to the maximum value (100%) of the accelerator opening Acc. A control torque Acc * smaller than the value (100%) is obtained, and the maximum torque is calculated as the required torque Tr * based on the control accelerator opening Acc * and the vehicle speed V. It was assumed that the torque slightly smaller torque Trmax1 the range from click Trmax is obtained.
 また、実施例のエンジン22の動作ラインは、図3と共に、図6の燃費最適動作ラインおよびトルク優先動作ラインの一例とエンジン22の目標回転数Ne*および目標トルクTe*を設定する様子の一例とに示すように、ノーマルモードとエコモードとEVモードでは、エンジン22を効率よく運転するための燃費最適動作ラインが用いられ、パワーモードでは、同一のパワー(要求パワーPe*)が与えられたときに燃費最適動作ラインに比して若干の燃費の悪化を許容して小さい回転数(目標回転数Ne*)と大きいトルク(目標トルクTe*)とが得られるように定められたトルク優先動作ラインが用いられるものとした。 In addition, the operation line of the engine 22 of the embodiment is an example of setting the target rotational speed Ne * and the target torque Te * of the engine 22 as well as an example of the fuel efficiency optimum operation line and the torque priority operation line of FIG. As shown in the above, in the normal mode, the eco mode, and the EV mode, the optimum fuel consumption operation line for efficiently operating the engine 22 is used, and in the power mode, the same power (required power Pe *) is given. Torque-priority operation that is determined so that a small rotation speed (target rotation speed Ne *) and a large torque (target torque Te *) can be obtained while allowing a slight deterioration in fuel consumption compared to the fuel efficiency optimal operation line. A line was used.
 さらに、実施例のモータMG1,MG2からのトルクの変化レートは、モータMG1,MG2のトルク指令Tm1*,Tm2*をレート処理を用いて設定する際のレート値をモード毎に変更することによって調整され、ノーマルモードでは、レート値ΔTmが用いられ、パワーモードでは、レート値ΔTmより大きいレート値ΔTm1が用いられ、エコモードとEVモードでは、レート値ΔTmより小さいレート値ΔTm2が用いられるものとした。 Furthermore, the rate of change in torque from the motors MG1 and MG2 of the embodiment is adjusted by changing the rate value for setting the torque commands Tm1 * and Tm2 * of the motors MG1 and MG2 using rate processing for each mode. In normal mode, rate value ΔTm is used, in power mode, rate value ΔTm1 larger than rate value ΔTm is used, and in eco mode and EV mode, rate value ΔTm2 smaller than rate value ΔTm is used. .
 加えて、実施例のエンジン22の要求パワーPe*と比較する始動用閾値は、ノーマルモードとエコモードでは、エンジン22を効率よく運転するためにエンジン22を始動した方がよい要求パワーPe*の範囲の下限として定められた基本的な閾値Pstartが用いられ、パワーモードでは、エンジン22が始動されやすくなるように閾値Pstartより若干小さい閾値Pstart1が用いられ、EVモードでは、エンジン22が始動されにくくなるように閾値Pstartより若干大きい閾値Pstart2が用いられるものとした。 In addition, the starting threshold value to be compared with the required power Pe * of the engine 22 of the embodiment is the required power Pe * that is better to start the engine 22 in order to operate the engine 22 efficiently in the normal mode and the eco mode. A basic threshold value Pstart defined as the lower limit of the range is used. In the power mode, a threshold value Pstart1 slightly smaller than the threshold value Pstart is used so that the engine 22 is easily started. In the EV mode, the engine 22 is difficult to start. It is assumed that a threshold value Pstart2 slightly larger than the threshold value Pstart is used.
 したがって、EVモードでは、アクセル開度Accと制御用アクセル開度Acc*との関係においてアクセル開度Accの不感帯を設けると共にエンジン22の始動用閾値としてノーマルモードより大きい閾値Pstart2を用いることによって、モータ運転モードによる走行(電動走行)を優先し且つノーマルモードより継続しやすくするものとなっている。ここで、走行モードと動力出力特性との関係の一例を図7および図8に示す。実施例では、走行モードに応じて制御用アクセル開度Acc*,要求トルクTr*の最大値,動作ライン,モータトルクの変化レートを調整することによって、図7に示すように、動力出力特性の1つとして、車両の駆動力の出力を抑制する程度(以下、駆動力出力抑制程度という)が、EVモード,エコモード,ノーマルモード,パワーモードの順序で小さく(緩く)なっている。また、実施例では、走行モードに応じて更にエンジン22の始動用閾値を調整することによって、図8に示すように、動力出力特性の1つとして、エンジン運転モードやモータ運転モードによって走行を継続したときのエンジン22やバッテリ50から出力される走行用パワーの総量に占めるバッテリ50からの放電電力量の割合を反映するバッテリ出力分配程度(例えば、所定距離を所定のアクセル操作およびブレーキ操作で走行したときに要した走行用パワーの総量に対するバッテリ50からの放電電力量の割合などを反映するもの)が、EVモード,エコモード,ノーマルモード,パワーモードの順序で小さく(例えば、90%近傍から10%近傍までなど)なっている。なお、実施例では、駆動力出力抑制程度やバッテリ出力分配程度が小さくなると、車両の加速力が強くなると共に燃費(エネルギ効率)が悪化することになる。また、実施例では、こうした駆動力出力抑制程度やバッテリ出力分配程度が大きい方の走行モードから小さい方の走行モードの順にモード番号を付与する、即ち、EVモードにはモード番号1,エコモードにはモード番号2,ノーマルモードにモード番号3,パワーモードにはモード番号4を付与するものとした。 Therefore, in the EV mode, by providing a dead zone of the accelerator opening Acc in relation to the accelerator opening Acc and the control accelerator opening Acc *, and using a threshold value Pstart2 larger than the normal mode as a starting threshold value of the engine 22, The driving mode (electrical driving) is prioritized and is easier to continue than the normal mode. Here, an example of the relationship between the running mode and the power output characteristics is shown in FIGS. In the embodiment, by adjusting the accelerator opening Acc * for control, the maximum value of the required torque Tr *, the operating line, and the change rate of the motor torque in accordance with the travel mode, as shown in FIG. For example, the degree of suppressing the output of the driving force of the vehicle (hereinafter referred to as the degree of suppressing the driving force output) is smaller (loosened) in the order of the EV mode, the eco mode, the normal mode, and the power mode. Further, in the embodiment, by further adjusting the starting threshold value of the engine 22 according to the driving mode, as shown in FIG. 8, the driving is continued according to the engine operation mode or the motor operation mode as one of the power output characteristics. Battery output distribution that reflects the ratio of the amount of discharged power from the battery 50 to the total amount of power for traveling output from the engine 22 and the battery 50 (for example, traveling a predetermined distance with a predetermined accelerator operation and brake operation) (Which reflects the ratio of the amount of electric power discharged from the battery 50 to the total amount of travel power required) is small in the order of EV mode, eco mode, normal mode, and power mode (for example, from around 90%) Up to around 10%). In the embodiment, when the driving force output suppression degree or the battery output distribution degree becomes small, the acceleration force of the vehicle becomes strong and the fuel consumption (energy efficiency) deteriorates. In the embodiment, the mode numbers are assigned in the order from the travel mode with the larger driving force output suppression degree and the battery output distribution degree to the smaller travel mode, that is, mode number 1 in the EV mode and eco mode. Mode number 2, mode number 3 for normal mode, and mode number 4 for power mode.
 次に、実施例のハイブリッド自動車20の動作、特に2つのパドルスイッチ89a,89bの操作によって走行モードを切り替える際の動作について説明する。図9は、HVECU70により実行される走行モード切り替えルーチンの一例を示すフローチャートである。このルーチンは、図示しない駆動制御ルーチンと並行して所定時間毎(例えば、数msec毎)に繰り返し実行される。なお、イグニッションオンされて最初に本ルーチンが実行されるときには、最初の走行モードとしてノーマルモードが選択されているものとした。 Next, the operation of the hybrid vehicle 20 of the embodiment, in particular, the operation when the traveling mode is switched by operating the two paddle switches 89a and 89b will be described. FIG. 9 is a flowchart illustrating an example of a travel mode switching routine executed by the HVECU 70. This routine is repeatedly executed every predetermined time (for example, every several msec) in parallel with a drive control routine (not shown). When the routine is executed for the first time after the ignition is turned on, the normal mode is selected as the first travel mode.
 走行モード切り替えルーチンが実行されると、HVECU70は、まず、バッテリ50の蓄電割合SOCや現在選択されている走行モードのモード番号である現在モード番号Nmodなど走行モードの切り替えに必要なデータを入力する処理を実行する(ステップS100)。バッテリ50の蓄電割合SOCは、実施例では、図示しない電流センサにより検出された充放電電流Ibの積算値に基づいて演算されたものをバッテリECU52から通信により入力するものとした。また、現在モード番号Nmodは、イグニッションオンされて最初に本ルーチンが実行されたときには、ノーマルモードに対応するモード番号3(図7および図8参照)が入力され、その後は、本ルーチンによっても走行モードが切り替えらないときには変更されずに保持され、本ルーチンによって目標モード番号Nmod*の走行モードに切り替えられたときにはそのときの目標モード番号Nmod*が入力されるものとした。 When the travel mode switching routine is executed, the HVECU 70 first inputs data necessary for switching the travel mode, such as the storage ratio SOC of the battery 50 and the current mode number Nmod which is the mode number of the currently selected travel mode. Processing is executed (step S100). In the embodiment, the storage ratio SOC of the battery 50 is calculated based on the integrated value of the charge / discharge current Ib detected by a current sensor (not shown) and is input from the battery ECU 52 by communication. The current mode number Nmod is input with the mode number 3 (see FIGS. 7 and 8) corresponding to the normal mode when the routine is executed for the first time after the ignition is turned on. When the mode is not switched, it is retained without being changed, and when it is switched to the travel mode of the target mode number Nmod * by this routine, the target mode number Nmod * at that time is input.
 こうしてデータを入力すると、走行モードの切り替えが指示されたか否かを判定する(ステップS110)。この判定は、実施例では、パドルスイッチ89aからのアップシフト信号Mupまたはパドルスイッチ89bからのダウンシフト信号Mdwnのいずれかが入力されたか否かを判定することにより行なうものとした。走行モードの切り替えが指示されていないと判定されたとき、即ち、パドルスイッチ89aからのアップシフト信号Mupおよびパドルスイッチ89bからのダウンシフト信号Mdwnがいずれも入力されていないときには、入力した現在モード番号Nmodを目標モード番号Nmod*の仮の値である仮モード番号Ntmpに設定する(ステップS130)。 When the data is input in this way, it is determined whether or not switching of the driving mode is instructed (step S110). In this embodiment, this determination is made by determining whether either the upshift signal Mup from the paddle switch 89a or the downshift signal Mdwn from the paddle switch 89b is input. When it is determined that switching of the driving mode is not instructed, that is, when neither the upshift signal Mup from the paddle switch 89a nor the downshift signal Mdwn from the paddle switch 89b is input, the current mode number that has been input Nmod is set to a temporary mode number Ntmp which is a temporary value of the target mode number Nmod * (step S130).
 走行モードの切り替えが指示されたと判定されたときには、パドルスイッチ89aからアップシフト信号Mupが入力された、即ち現在モード番号Nmodより大きいモード番号の走行モードに切り替えるアップシフトが指示されたか、パドルスイッチ89bからダウンシフト信号Mdwnが入力された、即ち現在モード番号Nmodより小さいモード番号の走行モードに切り替えるダウンシフトが指示されたか、を判定する(ステップS120)。なお、実施例では、走行モードのアップシフトやダウンシフトは、モード番号のより大きい番号の走行モードへの移行やモード番号のより小さい番号の走行モードへの移行を意味し、シフトポジションSPの変更とは関係ない。 When it is determined that switching of the driving mode is instructed, an upshift signal Mup is input from the paddle switch 89a, that is, an upshift to switch to a driving mode having a mode number larger than the current mode number Nmod is instructed, or the paddle switch 89b It is determined whether or not a downshift signal Mdwn is input, that is, whether or not a downshift to switch to a travel mode having a mode number smaller than the current mode number Nmod is instructed (step S120). In the embodiment, the upshift or downshift of the travel mode means a shift to a travel mode with a higher mode number or a shift to a travel mode with a lower mode number, and the shift position SP is changed. It has nothing to do with.
 ダウンシフトが指示されたと判定されたときには、現在モード番号Nmodから値1を減じたものとEVモードに対応する最小モード番号1とのうち大きい方を仮モード番号Ntmpに設定し(ステップS140)、アップシフトが指示されたと判定されたときには、現在モード番号Nmodに値1を加えたものとパワーモードに対応する最大モード番号4とのうち小さい方を仮モード番号Ntmpに設定する(ステップS150)。したがって、現在モード番号Nmodがモード番号4のときにアップシフトが指示されたときには、現在モード番号Nmodが仮モード番号Ntmpに設定される。また、現在モード番号Nmodがモード番号1のときにダウンシフトが指示されたときには、現在モード番号Nmodが仮モード番号Ntmpに設定される。 When it is determined that the downshift is instructed, the larger one of the value obtained by subtracting the value 1 from the current mode number Nmod and the minimum mode number 1 corresponding to the EV mode is set as the temporary mode number Ntmp (step S140). When it is determined that an upshift has been instructed, the smaller one of the current mode number Nmod plus 1 and the maximum mode number 4 corresponding to the power mode is set as the temporary mode number Ntmp (step S150). Therefore, when an upshift is instructed when the current mode number Nmod is mode number 4, the current mode number Nmod is set to the temporary mode number Ntmp. When downshift is instructed when the current mode number Nmod is mode number 1, the current mode number Nmod is set to the temporary mode number Ntmp.
 こうして仮モード番号Ntmpを設定すると、バッテリ50の蓄電割合SOCに基づいて目標モード番号Nmod*の上下限としての上下限モード番号Nmax,Nminを設定する(ステップS160)。この設定は、実施例では、バッテリ50の蓄電割合SOCと上下限モード番号Nmax,Nminとの関係を予め定めて上下限モード番号設定用マップとして図示しないROMに記憶しておき、蓄電割合SOCが与えられると記憶したマップから対応する上下限モード番号Nmax,Nminを導出して設定するものとした。上下限モード番号設定用マップの一例を図10に示す。図中、割合S1~S6はこの順で大きくなっており、割合S3,S2,S1(例えば、それぞれ50%,45%,42%など)に対応する「1→2」,「2→3」,「3→4」のライン,は、蓄電割合SOCが低下したときにそれぞれモード番号1,2,3の走行モードからモード番号2,3,4の走行モードへの強制的に移行(アップシフト)すべきことを示し、割合S4,S5,S6(例えば、それぞれ65%,70%,73%など)に対応する「4→3」,「3→2」,「2→1」のラインは、蓄電割合SOCが上昇したときにそれぞれモード番号4,3,2の走行モードからモード番号3,2,1の走行モードへ強制的に移行(ダウンシフト)すべきことを示す。したがって、上下限モード番号Nmax,Nminは、それぞれ、蓄電割合SOCが割合S1未満では番号4,4が設定され、蓄電割合SOCが割合S1以上割合S2未満では番号4,3が設定され、蓄電割合SOCが割合S2以上割合S3未満では番号4,2が設定され、蓄電割合SOCが割合S3以上割合S4未満では番号4,1が設定され、蓄電割合SOCが割合S4以上割合S5未満では番号3,1が設定され、蓄電割合SOCが割合S5以上割合S6未満では番号2,1が設定され、蓄電割合SOCが割合S6以上では番号1,1が設定されている。即ち、バッテリ50の蓄電割合SOCが低いほどバッテリ出力分配程度が小さな走行モードに切り替えられ、蓄電割合SOCが高いほどバッテリ出力分配程度が大きな走行モードに切り替えられることになる(図8参照)。具体的には、走行モードのアップシフトやダウンシフトの指示がなされたときに、その指示がリジェクトされることになったり、走行モードのアップシフトやダウンシフトの指示がなされていないときでも、走行モードが自動的に切り替えられることになる。 Thus, when temporary mode number Ntmp is set, upper and lower limit mode numbers Nmax and Nmin are set as upper and lower limits of target mode number Nmod * based on the storage ratio SOC of battery 50 (step S160). In this embodiment, in this embodiment, the relationship between the storage ratio SOC of the battery 50 and the upper / lower limit mode numbers Nmax and Nmin is determined in advance and stored in a ROM (not shown) as an upper / lower limit mode number setting map. When given, the upper and lower limit mode numbers Nmax and Nmin corresponding to the stored map are derived and set. An example of the upper / lower limit mode number setting map is shown in FIG. In the figure, the ratios S1 to S6 increase in this order, and “1 → 2” and “2 → 3” corresponding to the ratios S3, S2, and S1 (for example, 50%, 45%, 42%, etc., respectively). , “3 → 4” lines are forcibly shifted (upshifts) from the mode Nos. 1, 2, and 3 to the mode Nos. 2, 3, and 4 when the storage rate SOC decreases. ), The lines “4 → 3”, “3 → 2”, “2 → 1” corresponding to the ratios S4, S5, S6 (for example, 65%, 70%, 73%, etc., respectively) When the power storage rate SOC increases, it indicates that the mode number 4, 3, or 2 should be forcibly shifted (downshift) from the mode number 4, 3, or 2 mode. Accordingly, the upper and lower limit mode numbers Nmax and Nmin are set to numbers 4 and 4 when the storage rate SOC is less than the rate S1, respectively, and numbers 4 and 3 are set when the storage rate SOC is greater than or equal to the rate S1 and less than the rate S2. Numbers 4 and 2 are set when the SOC is a ratio S2 or more and less than the ratio S3, numbers 4 and 1 are set when the storage ratio SOC is a ratio S3 or more and less than the ratio S4, and numbers 3 and 3 are set when the storage ratio SOC is a ratio S4 or more and less than the ratio S5. 1 is set, numbers 2 and 1 are set when the power storage rate SOC is greater than or equal to the rate S5 and less than the rate S6, and numbers 1 and 1 are set when the power storage rate SOC is greater than the rate S6. That is, the battery output distribution level is switched to a smaller travel mode as the power storage rate SOC of the battery 50 is lower, and the battery output distribution level is switched to a higher travel mode as the power storage rate SOC is higher (see FIG. 8). Specifically, when a driving mode upshift or downshift is instructed, the instruction is rejected, or even when a driving mode upshift or downshift is not instructed The mode will be switched automatically.
 こうして上下限モード番号Nmax,Nminを設定すると、設定した上下限モード番号Nmax,Nminによって次式(1)により仮モード番号Ntmpを制限して目標モード番号Nmod*を設定し(ステップS170)、設定した目標モード番号Nmod*が現在モード番号Nmodと異なるか否かを判定する(ステップS180)。そして、目標モード番号Nmod*が現在モード番号Nmodと異なるときには、目標モード番号Nmod*の走行モードへの切り替えを行なって(ステップS190)、本ルーチンを終了し、目標モード番号Nmod*が現在モード番号Nmodと同一であるときには、走行モードを切り替えることなく、本ルーチンを終了する。走行モードの切り替えが行なわれると、切り替え後の走行モードで図示しない駆動制御ルーチンによって要求トルクTr*に基づく走行が行なわれるようエンジン22やモータMG1,MG2の制御が行なわれる。具体的には、エンジン運転モードでは、駆動制御ルーチンによりエンジン22の目標運転ポイントが設定されてエンジンECU24に送信されると共にモータMG1,MG2のトルク指令Tm1*,Tm2*が設定されてモータECU40に送信され、エンジンECU24により目標運転ポイントでのエンジン22の運転制御が行なわれると共にモータECU40によりトルク指令Tm1*,Tm2*でのモータMG1,MG2の制御(インバータ41,42のスイッチング制御)が行なわれる。また、モータ運転モードでは、駆動制御ルーチンによりモータMG2のトルク指令Tm2*が設定されてモータECU40に送信され、トルク指令Tm2*でのモータMG2の制御(インバータ42のスイッチング制御)が行なわれる。 When the upper / lower limit mode numbers Nmax and Nmin are set in this way, the target mode number Nmod * is set by limiting the temporary mode number Ntmp by the following equation (1) with the set upper / lower limit mode numbers Nmax and Nmin (step S170). It is determined whether the target mode number Nmod * is different from the current mode number Nmod (step S180). When the target mode number Nmod * is different from the current mode number Nmod, the target mode number Nmod * is switched to the travel mode (step S190), and this routine is terminated. The target mode number Nmod * is changed to the current mode number Nmod *. When it is the same as Nmod, this routine is terminated without switching the traveling mode. When the travel mode is switched, the engine 22 and the motors MG1 and MG2 are controlled so that travel based on the required torque Tr * is performed by a drive control routine (not shown) in the travel mode after switching. Specifically, in the engine operation mode, a target operation point of the engine 22 is set by the drive control routine and transmitted to the engine ECU 24, and torque commands Tm1 * and Tm2 * of the motors MG1 and MG2 are set to the motor ECU 40. The engine ECU 24 controls the operation of the engine 22 at the target operation point, and the motor ECU 40 controls the motors MG1, MG2 (switching control of the inverters 41, 42) using the torque commands Tm1 *, Tm2 *. . In the motor operation mode, the torque command Tm2 * of the motor MG2 is set and transmitted to the motor ECU 40 by the drive control routine, and the motor MG2 is controlled by the torque command Tm2 * (switching control of the inverter 42).
 Nmod*=max(min(Ntmp,Nmax),Nmin)       (1) Nmod * = max (min (Ntmp, Nmax), Nmin) (1)
 このように、基本的には、右側のパドルスイッチ89aの操作によって走行モードを所定の順序(モード番号1,2,3,4の順序)で一方向に切り替えると共に、左側のパドルスイッチ89bの操作によって走行モードを所定の順序とは反対の順序(モード番号4,3,2,1の順序)で他方向に切り替えることにより、EVモードを指示するスイッチや、エコモードを指示するスイッチ、パワーモードを指示するスイッチなどを削減することができると共に、走行中にステアリングホイール90から手を離すことなく走行モードを切り替えることができ、走行モードを切り替える際の操作性を向上させることができる。この結果、運転者の要求に応じた走行モードを選択しやすくすることができ、運転者が走行モードを選択する楽しさを提供することができる。しかも、バッテリ50の蓄電割合SOCが低いほどバッテリ出力分配程度が小さな走行モードに自動的に切り替えるから、バッテリ50の蓄電割合SOCが低い状態でバッテリ50からの放電が行なわれて蓄電割合SOCが許容される下限値に近づいたり、バッテリ50の蓄電割合SOCが高い状態でバッテリ50からの放電があまり行なわれずに蓄電割合SOCが許容される上限値に近づいたりするのを抑制する、即ち、蓄電割合SOCが適正な範囲を超えて小さくなったり大きくなったりするのを抑制することができる。 In this way, basically, the driving mode is switched to one direction in a predetermined order (order of mode numbers 1, 2, 3, and 4) by operating the right paddle switch 89a, and the left paddle switch 89b is operated. By switching the driving mode to the other direction in the order opposite to the predetermined order (order of mode numbers 4, 3, 2, 1), the switch for instructing the EV mode, the switch for instructing the eco mode, the power mode In addition, the travel mode can be switched without releasing the hand from the steering wheel 90 during travel, and the operability when switching the travel mode can be improved. As a result, it is possible to easily select a driving mode according to the driver's request, and it is possible to provide a pleasure for the driver to select a driving mode. Moreover, since the battery 50 is automatically switched to a travel mode in which the battery output distribution is smaller as the storage rate SOC of the battery 50 is lower, the battery 50 is discharged while the storage rate SOC of the battery 50 is lower, and the storage rate SOC is allowed. The storage ratio SOC is prevented from approaching the upper limit value in which the storage ratio SOC is allowed without being discharged so much when the storage ratio SOC of the battery 50 is high. It is possible to suppress the SOC from becoming smaller or larger than the proper range.
 以上説明した実施例のハイブリッド自動車20によれば、ステアリングホイール90の左右の対向する位置に設けられた2つのパドルスイッチ89a,89bの一方の操作によって、ノーマルモードを含む動力出力特性が異なる3つ以上(実施例では4つ)の走行モードの間で走行モードを所定の順序で一方向に切り替えると共に、2つのパドルスイッチ89a,89bの他方の操作によって、走行モードを所定の順序とは反対の順序で他方向に切り替えるから、走行モードを切り替える際の操作性を向上させることができる。しかも、バッテリ50の蓄電割合SOCが低いほどバッテリ出力分配程度が小さな走行モードに切り替えるから、バッテリ50の蓄電割合SOCが適正な範囲を超えて小さくなったり大きくなったりするのを抑制するよう、走行モードを自動的に切り替えることができる。 According to the hybrid vehicle 20 of the embodiment described above, the power output characteristics including the normal mode differ according to one operation of the two paddle switches 89a and 89b provided at the left and right opposing positions of the steering wheel 90. The travel mode is switched to one direction in a predetermined order between the above (four in the embodiment) travel modes, and the other operation of the two paddle switches 89a and 89b changes the travel mode to be opposite to the predetermined order. Since it switches to another direction in order, the operativity at the time of switching driving modes can be improved. In addition, since the battery power distribution ratio SOC of the battery 50 is switched to the travel mode in which the battery output distribution is small, the travel is performed so as to prevent the power storage ratio SOC of the battery 50 from becoming smaller or larger than an appropriate range. The mode can be switched automatically.
 実施例のハイブリッド自動車20では、バッテリ50の蓄電割合SOCに基づく上下限モード番号Nmax,Nminの範囲内で仮モード番号Ntmpを目標モード番号Nmod*に設定するものとしたが、蓄電割合SOCに基づく上下限モード番号Nmax,Nminを設定することなく、仮モード番号Ntmpをそのまま目標モード番号Nmod*に設定するものとしてもよい。 In the hybrid vehicle 20 of the embodiment, the temporary mode number Ntmp is set to the target mode number Nmod * within the range of the upper and lower limit mode numbers Nmax and Nmin based on the storage ratio SOC of the battery 50. However, based on the storage ratio SOC The temporary mode number Ntmp may be set to the target mode number Nmod * as it is without setting the upper and lower limit mode numbers Nmax and Nmin.
 実施例のハイブリッド自動車20では、走行モードとしてEVモード,エコモード,ノーマルモード,パワーモードの4つのモードが用意されているものとしたが、これら4つの走行モードのうちエコモードは用意されていないものとしてもよいし、これら4つの走行モードのうちパワーモードは用意されていないものとしてもよい。 In the hybrid vehicle 20 of the embodiment, four modes of EV mode, eco mode, normal mode, and power mode are prepared as the travel mode, but the eco mode is not prepared among these four travel modes. The power mode may not be prepared among these four travel modes.
 実施例のハイブリッド自動車20では、走行モードとしてEVモード,エコモード,ノーマルモード,パワーモードの4つのモードが用意されているものとしたが、これら4つの走行モードに加えて、動力出力特性が異なる他の走行モードが用意されているものとしてもよい。例えば、図11の変形例の走行モードと動力出力特性(駆動力出力抑制程度)との関係に示すように、駆動力出力抑制程度がEVモードとエコモードとの中間となるバッテリ出力モードを用意し、EVモード,バッテリ出力モード,エコモード,ノーマルモード,パワーモードの順序で走行モードを切り替えるものとしてもよい。ここで、バッテリ出力モードは、アクセル開度Accの不感帯をEVモードより小さい範囲として制御用アクセル開度Acc*がエコモードの値以下かつEVモードの値以上となるように定めた走行モードなどとすることができる。 In the hybrid vehicle 20 of the embodiment, four modes of EV mode, eco mode, normal mode, and power mode are prepared as driving modes. However, in addition to these four driving modes, power output characteristics are different. Other travel modes may be prepared. For example, as shown in the relationship between the driving mode and the power output characteristics (driving force output suppression degree) in the modified example of FIG. 11, a battery output mode in which the driving force output suppression degree is intermediate between the EV mode and the eco mode is prepared. The driving mode may be switched in the order of EV mode, battery output mode, eco mode, normal mode, and power mode. Here, the battery output mode includes a travel mode in which the dead zone of the accelerator opening Acc is set to a range smaller than the EV mode so that the control accelerator opening Acc * is equal to or less than the eco mode value and equal to or greater than the EV mode value. can do.
 また、図12の変形例の走行モードと動力出力特性(駆動力出力抑制程度)との関係に示すように、駆動力出力抑制程度が最も大きい走行モードとして、エンジン22を一切始動することなくモータMG2からの動力だけで走行する完全EVモードを用意し、完全EVモード,EVモード,エコモード,ノーマルモード,パワーモードの順序で走行モードを切り替えるものとしてもよい。 Further, as shown in the relationship between the driving mode and the power output characteristic (the driving force output suppression degree) in the modification of FIG. 12, the motor 22 is started without starting the engine 22 at all as the driving mode having the largest driving force output suppression degree. It is also possible to prepare a complete EV mode that travels using only the power from the MG2 and switch the travel mode in the order of the complete EV mode, EV mode, eco mode, normal mode, and power mode.
 さらに、図13の変形例の走行モードと動力出力特性(バッテリ出力分配程度)との関係に示すように、バッテリ出力分配程度がエコモードとノーマルモードとの中間となる若干エコモードを用意し、EVモード,エコモード,若干エコモード,ノーマルモード,パワーモードの順序で走行モードを切り替えるものとしてもよい。ここで、若干エコモードは、要求トルクTr*の最大値やモータトルクの変化レートをエコモードとノーマルモードとの中間の値となるように定めた走行モードなどとすることができる。 Further, as shown in the relationship between the driving mode and the power output characteristics (about battery output distribution) of the modified example of FIG. 13, a slightly eco mode in which the battery output distribution is intermediate between the eco mode and the normal mode is prepared. The driving mode may be switched in the order of EV mode, eco mode, slightly eco mode, normal mode, and power mode. Here, the slightly eco mode can be a travel mode in which the maximum value of the required torque Tr * and the change rate of the motor torque are determined to be an intermediate value between the eco mode and the normal mode.
 あるいは、図14の変形例の走行モードと動力出力特性(バッテリ充放電特性)との関係に示すように、走行モードに応じて調整される制御項目としてのエンジン22の要求パワーPe*を走行用パワーPdrv*から充放電要求パワーPb*(バッテリ50から放電するときが正の値)を減じて計算するノーマルモードの他に、エンジン22の要求パワーPe*を走行用パワーPdrv*からノーマルモードの充放電要求パワーPb*より小さい(充電側に大きい)強制充電パワーを減じて計算する充電走行モードと、アクセル開度Accに拘わらずモータ運転モードによる走行(電動走行)を継続する強制放電モードとを用意し、充電走行モード,ノーマルモード,強制放電モードの順序で走行モードを切り替えるものとしてもよい。ここで、充放電要求パワーPb*は、バッテリ50の充放電要求パワーPb*の管理目標値としての蓄電割合中心とバッテリ50の蓄電割合SOCとを比較し、蓄電割合SOCが蓄電割合中心より低いほど充放電要求パワーPb*を負側(充電要求側)に大きくすると共に蓄電割合SOCが蓄電割合中心より高いほど充放電要求パワーb*を正側(放電要求側)に大きくすることにより、設定することができる。また、強制充電パワーとしては、充放電要求パワーPb*の下限値(負側の値)などを用いることができる。 Alternatively, as shown in the relationship between the travel mode and the power output characteristics (battery charge / discharge characteristics) of the modification of FIG. 14, the required power Pe * of the engine 22 as a control item adjusted according to the travel mode is used for travel. In addition to the normal mode in which the charge / discharge required power Pb * (a positive value when discharging from the battery 50) is subtracted from the power Pdrv *, the required power Pe * of the engine 22 is calculated from the travel power Pdrv * in the normal mode. A charge travel mode that calculates by reducing the forced charge power that is smaller than the charge / discharge required power Pb * (large on the charge side), and a forced discharge mode that continues the travel in the motor operation mode (electric travel) regardless of the accelerator opening Acc. It is good also as what switches driving mode in order of charge driving mode, normal mode, and forced discharge mode. Here, the charge / discharge required power Pb * is a comparison between the power storage ratio center as the management target value of the charge / discharge request power Pb * of the battery 50 and the power storage ratio SOC of the battery 50, and the power storage ratio SOC is lower than the power storage ratio center. The charge / discharge required power Pb * is increased to the negative side (charge request side), and the charge / discharge required power b * is increased to the positive side (discharge request side) as the storage ratio SOC is higher than the center of the storage ratio. can do. Further, as the forced charging power, the lower limit value (negative value) of the charge / discharge required power Pb * can be used.
 なお、動力出力特性が異なる走行モードとしては、摩擦係数が小さい路面を走行するためのスノウモードや、登坂路や降坂路の走行に適したマウンテンモードなどが用意されているものとしてもよい。 Note that as the driving modes having different power output characteristics, a snow mode for driving on a road surface having a small friction coefficient, a mountain mode suitable for driving on an uphill road or a downhill road, and the like may be prepared.
 実施例のハイブリッド自動車20では、動力出力特性に応じた順序で走行モードを切り替えるものとしたが、走行モードを切り替える順序は、特に動力出力特性に拘わらずに予め定められた順序などとしてもよい。 In the hybrid vehicle 20 of the embodiment, the driving modes are switched in the order corresponding to the power output characteristics, but the order of switching the driving modes may be a predetermined order regardless of the power output characteristics.
 実施例のハイブリッド自動車20では、走行モードに応じて調整される制御項目として、制御用アクセル開度Acc*,要求トルクTr*の最大値,エンジン22の動作ライン,モータMG1,MG2からのトルクの変化レート,エンジン22の要求パワーPe*の始動用閾値の5種類の項目を用いるものとしたが、これら5種類の制御項目の一部のみを用いるものとしてもよい。例えば、エンジン22の要求パワーPe*の始動用閾値については全ての走行モードで一律の値を用いるものとしてもよい。この例の場合、走行モードの切り替えの順序をバッテリ出力分配程度に応じた順序とすることを考慮することなく、走行モードの切り替えの順序を駆動力出力抑制程度のみに応じた順序とするように残り4種類の制御項目を調整するものとしても構わない。 In the hybrid vehicle 20 of the embodiment, the control items adjusted according to the driving mode include the control accelerator opening Acc *, the maximum value of the required torque Tr *, the operation line of the engine 22, and the torque from the motors MG1 and MG2. Although five items of the change rate and the starting threshold value of the required power Pe * of the engine 22 are used, only some of these five types of control items may be used. For example, the starting threshold value of the required power Pe * of the engine 22 may be a uniform value in all travel modes. In the case of this example, the switching order of the driving mode is set to the order corresponding only to the driving force output suppression without considering the switching order of the driving mode according to the battery output distribution degree. The remaining four types of control items may be adjusted.
 実施例のハイブリッド自動車20では、走行モードに応じて調整される制御項目として、制御用アクセル開度Acc*,要求トルクTr*の最大値,エンジン22の動作ライン,モータMG1,MG2からのトルクの変化レート,エンジン22の要求パワーPe*の始動用閾値の5種類の項目を用いるものとしたが、これらの制御項目に代えて又は加えて、アクセルオフ時にモータMG1によるエンジン22をモータリングする回転数を走行モードに応じて調整したり、アクセルオフ時かつ極低車速時の要求トルクTr*を走行モードに応じて調整したりすることによって、図15の変形例の各走行モードにおける制御項目の組み合わせに示すように、駆動軸36に作用するいわゆるエンジンブレーキの大きさや、駆動軸36に出力されるいわゆるクリープトルクの大きさを制御項目とするものとしてもよい。また、これらの制御項目の調整に代えて又は加えて、図16の変形例の各走行モードにおける制御項目の組み合わせに示すように、バッテリ50の充放電要求パワーPb*の管理目標値としての蓄電割合中心を走行モードに応じて調整したり、昇圧コンバータ55の制御によりインバータ41,42(モータMG1,MG2)に作用させる電圧VHの最大値を走行モードに応じて調整したりするものとしてもよい。 In the hybrid vehicle 20 of the embodiment, the control items adjusted according to the driving mode include the control accelerator opening Acc *, the maximum value of the required torque Tr *, the operation line of the engine 22, and the torque from the motors MG1 and MG2. Five items of the change rate and the starting threshold value of the required power Pe * of the engine 22 are used. However, instead of or in addition to these control items, the rotation for motoring the engine 22 by the motor MG1 when the accelerator is off. By adjusting the number according to the travel mode, or by adjusting the required torque Tr * when the accelerator is off and at an extremely low vehicle speed, according to the travel mode, the control items in each travel mode of the modification of FIG. As shown in the combination, the size of the so-called engine brake acting on the drive shaft 36 and the output to the drive shaft 36 The size of the so-called creep torque may be as a control item. Further, instead of or in addition to the adjustment of these control items, as shown in the combination of control items in each travel mode of the modified example of FIG. 16, the power storage as the management target value of the charge / discharge required power Pb * of the battery 50 The ratio center may be adjusted according to the travel mode, or the maximum value of the voltage VH applied to the inverters 41 and 42 (motors MG1 and MG2) may be adjusted according to the travel mode under the control of the boost converter 55. .
 実施例のハイブリッド自動車20では、パドルスイッチ89a,89bの操作によるシフトアップやシフトダウンの指示は、シフトポジションSPの変更とは関係ないものとして説明したが、シフトポジションSPの1つとしてシーケンシャルシフトポジションが用意された車両の場合、パドルスイッチ89a,89bの操作によって走行モードの切り替えを行なったり、シーケンシャルシフトポジションにおけるシフトアップやシフトダウン(変速段の変更)を行なったりするものとしてもよい。 In the hybrid vehicle 20 of the embodiment, it has been described that the instruction of upshifting or downshifting by operating the paddle switches 89a and 89b is not related to the change of the shift position SP, but the sequential shift position is one of the shift positions SP. In the case of a vehicle for which is prepared, the driving mode may be switched by operating the paddle switches 89a and 89b, or upshifting and downshifting (changing the gear position) at the sequential shift position may be performed.
 実施例のハイブリッド自動車20では、ステアリングホイール90右側のパドルスイッチ89aの操作によってEVモード,エコモード,ノーマルモード,パワーモードの順序で走行モードを切り替えると共に、ステアリングホイール90左側のパドルスイッチ89bの操作によってこれとは反対の順序で走行モードを切り替えるものとしたが、ステアリングホイール90右側のパドルスイッチ89aの操作によってパワーモード,ノーマルモード,エコモード,EVモードの順序で走行モードを切り替えると共に、ステアリングホイール90左側のパドルスイッチ89bの操作によってこれとは反対の順序で走行モードを切り替えるものとしてもよい。 In the hybrid vehicle 20 of the embodiment, the driving mode is switched in the order of EV mode, eco mode, normal mode, and power mode by operating the paddle switch 89a on the right side of the steering wheel 90, and by operating the paddle switch 89b on the left side of the steering wheel 90. The driving mode is switched in the reverse order, but the driving mode is switched in the order of power mode, normal mode, eco mode, and EV mode by operating the paddle switch 89a on the right side of the steering wheel 90, and the steering wheel 90 is switched. The driving mode may be switched in the reverse order by operating the paddle switch 89b on the left side.
 実施例のハイブリッド自動車20では、図9の走行モード切り替えルーチンのステップS140,S150の処理により、走行モードの切り替えとして、最大モード番号4の走行モードまでのアップシフトと最小モード番号1の走行モードまでのダウンシフトを行なうものとしたが、これに代えて、走行モードを循環するようにロータリー形式で切り替えるものとしてもよい。例えば、図17の変形例の走行モードとしてエコモード,ノーマルモード,パワーモードをロータリー形式で切り替える様子に示すように、右側のパドルスイッチ89aの操作によってエコモード,ノーマルモード,パワーモード,エコモード,…の所定の順序で走行モードを循環するように切り替えると共に、左側のパドルスイッチ89bの操作によってパワーモード,ノーマルモード,エコモード,パワーモード,…の所定の順序とは反対の順序で走行モードを循環するように切り替えるなどとしてもよい。 In the hybrid vehicle 20 of the embodiment, by the processing of steps S140 and S150 of the travel mode switching routine of FIG. 9, up to the travel mode of the maximum mode number 4 and the travel mode of the minimum mode number 1 are switched as the travel mode. However, instead of this, it is also possible to switch the rotary mode so as to circulate the driving mode. For example, as shown in the state of switching the eco mode, the normal mode, and the power mode as the travel modes of the modified example of FIG. 17 in the rotary form, the eco mode, the normal mode, the power mode, the eco mode, The driving mode is switched to circulate in a predetermined order of... And the driving mode is changed in the order opposite to the predetermined order of the power mode, normal mode, eco mode, power mode,. It is good also as switching so that it may circulate.
 実施例のハイブリッド自動車20では、パドルスイッチ89a,89bは、手前側に操作された(引かれた)ときに信号を出力するタイプであるものとしたが、これに代えて、奥側に操作された(押された)ときに信号を出力するタイプの2つのパドルスイッチを設けるものとしてもよい。 In the hybrid vehicle 20 of the embodiment, the paddle switches 89a and 89b are of a type that outputs a signal when operated (pulled) to the front side. Instead, the paddle switches 89a and 89b are operated to the back side. Two paddle switches of a type that outputs a signal when pressed (pressed) may be provided.
 実施例のハイブリッド自動車20では、走行モードの変更に伴う表示制御については特に説明していないが、例えば、走行モードに応じて運転席前方のメータ表示領域の色を変更したり、運転席前方の表示装置に現在選択されている走行モードの情報(例えば、モード番号やモード名,制御項目の内容や大きさ)を表示したりするものとしてもよい。 In the hybrid vehicle 20 of the embodiment, the display control associated with the change of the driving mode is not particularly described. For example, the color of the meter display area in front of the driver's seat is changed according to the driving mode, or the front of the driver's seat is changed. Information on the currently selected travel mode (for example, the mode number, the mode name, and the content and size of the control item) may be displayed on the display device.
 実施例のハイブリッド自動車20では、モータMG2からの動力を駆動軸36に出力するものとしたが、図18の変形例のハイブリッド自動車120に例示するように、モータMG2からの動力を駆動軸36が接続された車軸(駆動輪38a,38bが接続された車軸)とは異なる車軸(図18における車輪39a,39bに接続された車軸)に接続するものとしてもよい。 In the hybrid vehicle 20 of the embodiment, the power from the motor MG2 is output to the drive shaft 36. However, as illustrated in the hybrid vehicle 120 of the modified example of FIG. 18, the drive shaft 36 transmits the power from the motor MG2. It may be connected to an axle (an axle connected to the wheels 39a and 39b in FIG. 18) different from the connected axle (the axle to which the drive wheels 38a and 38b are connected).
 実施例のハイブリッド自動車20では、エンジン22からの動力をプラネタリギヤ30を介して駆動輪38a,38bに接続された駆動軸36に出力するものとしたが、図19の変形例のハイブリッド自動車220に例示するように、エンジン22のクランクシャフトに接続されたインナーロータ232と駆動輪38a,38bに動力を出力する駆動軸36に接続されたアウターロータ234とを有しエンジン22からの動力の一部を駆動軸36に伝達すると共に残余の動力を電力に変換する対ロータ電動機230を備えるものとしてもよい。 In the hybrid vehicle 20 of the embodiment, the power from the engine 22 is output to the drive shaft 36 connected to the drive wheels 38a and 38b via the planetary gear 30, but is exemplified in the hybrid vehicle 220 of the modification of FIG. As described above, the inner rotor 232 connected to the crankshaft of the engine 22 and the outer rotor 234 connected to the drive shaft 36 that outputs power to the drive wheels 38a and 38b have a part of the power from the engine 22. A counter-rotor motor 230 that transmits power to the drive shaft 36 and converts remaining power into electric power may be provided.
 実施例のハイブリッド自動車20では、エンジン22からの動力をプラネタリギヤ30を介して駆動輪38a,38bに接続された駆動軸36に出力すると共にモータMG2からの動力を駆動軸36に出力するものとしたが、図20の変形例のハイブリッド自動車320に例示するように、駆動輪38a,38bに接続された駆動軸36に変速機330を介してモータMGを取り付け、モータMGの回転軸にクラッチ329を介してエンジン22を接続する構成とし、エンジン22からの動力をモータMGの回転軸と変速機330とを介して駆動軸36に出力すると共にモータMGからの動力を変速機330を介して駆動軸36に出力するものとしてもよい。 In the hybrid vehicle 20 of the embodiment, the power from the engine 22 is output to the drive shaft 36 connected to the drive wheels 38a and 38b via the planetary gear 30, and the power from the motor MG2 is output to the drive shaft 36. However, as illustrated in the hybrid vehicle 320 of the modification of FIG. 20, the motor MG is attached to the drive shaft 36 connected to the drive wheels 38a and 38b via the transmission 330, and the clutch 329 is attached to the rotation shaft of the motor MG. The power from the engine 22 is output to the drive shaft 36 via the rotation shaft of the motor MG and the transmission 330, and the power from the motor MG is output to the drive shaft via the transmission 330. It is good also as what outputs to 36.
 実施例のハイブリッド自動車20では、エンジン22からの動力をプラネタリギヤ30を介して駆動輪38a,38bに接続された駆動軸36に出力すると共にモータMG2からの動力を駆動軸36に出力するものとしたが、図21の変形例のハイブリッド自動車420に例示するように、エンジン22からの動力の全てをモータMG1による発電に用いてバッテリ50を充電すると共にバッテリ50からの電力を用いてモータMG2のみから駆動軸36に動力を出力するものとしてもよい。 In the hybrid vehicle 20 of the embodiment, the power from the engine 22 is output to the drive shaft 36 connected to the drive wheels 38a and 38b via the planetary gear 30, and the power from the motor MG2 is output to the drive shaft 36. However, as illustrated in the hybrid vehicle 420 of the modified example of FIG. 21, all of the power from the engine 22 is used for power generation by the motor MG1, and the battery 50 is charged and the electric power from the battery 50 is used only from the motor MG2. Power may be output to the drive shaft 36.
 実施例では、本発明をハイブリッド自動車20に適用して説明したが、図22の変形例の電気自動車520に例示するように、エンジンを備えずに、モータMGからの動力を変速機530を介して駆動輪38a,38bに接続された駆動軸に出力するものとしてもよい。即ち、走行用のモータとこのモータに電力を供給可能なバッテリとを備える自動車であれば、如何なるタイプの自動車としてもよい。 In the embodiment, the present invention is applied to the hybrid vehicle 20. However, the power from the motor MG is transmitted via the transmission 530 without the engine as illustrated in the electric vehicle 520 of the modified example of FIG. Then, it may be output to the drive shaft connected to the drive wheels 38a, 38b. In other words, any type of vehicle may be used as long as the vehicle includes a motor for traveling and a battery capable of supplying electric power to the motor.
 実施例の主要な要素と発明の概要の欄に記載した発明の主要な要素との対応関係について説明する。実施例では、モータMG2が「モータ」に相当し、バッテリ50が「バッテリ」に相当し、ステアリングホイール90の向かって右側に設けられたパドルスイッチ89aとステアリングホイール90の向かって左側に設けられた89bとが「パドルスイッチ」に相当し、右側のパドルスイッチ89aの操作によってモード番号1,2,3,4の順序で走行モードをアップシフトさせると共に左側のパドルスイッチ89bの操作によってモード番号4,3,2,1の順序で走行モードをダウンシフトさせる図9の走行モード切り替えルーチンを実行するHVECU70が「モード切り替え手段」に相当する。また、エンジン22が「エンジン」に相当し、モータMG1が「発電機」に相当し、プラネタリギヤ30が「プラネタリギヤ」に相当する。 The correspondence between the main elements of the embodiment and the main elements of the invention described in the Summary of Invention will be described. In the embodiment, the motor MG2 corresponds to the “motor”, the battery 50 corresponds to the “battery”, and is provided on the left side of the steering wheel 90 and the paddle switch 89a provided on the right side of the steering wheel 90. 89b corresponds to a “paddle switch”, and the right paddle switch 89a is operated to upshift the driving mode in the order of mode numbers 1, 2, 3, and 4, and the left paddle switch 89b is operated to operate mode number 4, The HVECU 70 that executes the travel mode switching routine of FIG. 9 for downshifting the travel mode in the order of 3, 2, 1 corresponds to “mode switching means”. Further, the engine 22 corresponds to “engine”, the motor MG1 corresponds to “generator”, and the planetary gear 30 corresponds to “planetary gear”.
 ここで、「モータ」としては、同期発電電動機として構成されたモータMG2に限定されるものではなく、例えば誘導電動機など、走行用の動力を入出力可能なものであれば如何なるタイプのモータであっても構わない。「バッテリ」としては、リチウムイオン二次電池として構成されたバッテリ50に限定されるものではなく、ニッケル水素二次電池やニッケルカドミウム二次電池,鉛蓄電池など、走行用のモータに電力を供給可能なものであれば、如何なるタイプのバッテリであっても構わない。「パドルスイッチ」としては、ステアリングホイール90の向かって右側に設けられたパドルスイッチ89aとステアリングホイール90の向かって左側に設けられた89bとに限定されるものではなく、ステアリングホイールの左右の対向する位置に設けられた2つのパドルスイッチであれば如何なるものとしても構わない。「モード切り替え手段」としては、右側のパドルスイッチ89aの操作によってモード番号1,2,3,4の順序で走行モードをアップシフトさせると共に左側のパドルスイッチ89bの操作によってモード番号4,3,2,1の順序で走行モードをダウンシフトさせるものに限定されるものではなく、2つのパドルスイッチの一方の操作によって、ノーマルモードを含む動力出力特性が異なる3つ以上の走行モードの間で走行モードを所定の順序で一方向に切り替えると共に、2つのパドルスイッチの他方の操作によって、3つ以上の走行モードの間で走行モードを所定の順序とは反対の順序で他方向に切り替えるものであれば如何なるものとしても構わない。また、「エンジン」としては、ガソリンや軽油などを燃料とするエンジン22に限定されるものではなく、例えば水素エンジンなど、如何なるタイプのエンジンであっても構わない。「発電機」としては、同期発電電動機として構成されたモータMG1に限定されるものではなく、例えば誘導電動機など、バッテリと電力のやりとりが可能で動力を入出力可能なものであれば如何なるタイプの発電機であっても構わない。「プラネタリギヤ」としては、プラネタリギヤ30に限定されるものではなく、シングルピニオン式以外のダブルピニオン式のものや複数のプラネタリギヤを組み合わせたものなど、車軸に連結された駆動軸とエンジンの出力軸と発電機の回転軸との3軸に3つの回転要素が接続されたものであれば如何なるものとしても構わない。 Here, the “motor” is not limited to the motor MG2 configured as a synchronous generator motor, and may be any type of motor that can input and output driving power, such as an induction motor. It doesn't matter. The “battery” is not limited to the battery 50 configured as a lithium ion secondary battery, but can supply power to a motor for traveling such as a nickel hydride secondary battery, a nickel cadmium secondary battery, or a lead storage battery. Any type of battery may be used. The “paddle switch” is not limited to the paddle switch 89a provided on the right side of the steering wheel 90 and the 89b provided on the left side of the steering wheel 90. Any two paddle switches provided at the positions may be used. As the “mode switching means”, the traveling mode is upshifted in the order of mode numbers 1, 2, 3 and 4 by operation of the right paddle switch 89a, and mode numbers 4, 3, and 2 are operated by operation of the left paddle switch 89b. , 1 is not limited to downshifting the driving mode in order, driving mode between three or more driving modes with different power output characteristics including normal mode by one of the two paddle switches Is switched in one direction in a predetermined order, and the other mode of the two paddle switches is used to switch the traveling mode in the opposite direction to the predetermined order between three or more traveling modes. It doesn't matter what. Further, the “engine” is not limited to the engine 22 using gasoline or light oil as fuel, and any type of engine such as a hydrogen engine may be used. The “generator” is not limited to the motor MG1 configured as a synchronous generator motor. For example, any type of motor such as an induction motor that can exchange power with a battery and input / output power can be used. It may be a generator. The “planetary gear” is not limited to the planetary gear 30, but is a double pinion type other than a single pinion type or a combination of a plurality of planetary gears. As long as three rotating elements are connected to three axes with the rotating shaft of the machine, any configuration may be used.
 なお、実施例の主要な要素と発明の概要の欄に記載した発明の主要な要素との対応関係は、実施例が発明の概要の欄に記載した発明を実施するための形態を具体的に説明するための一例であることから、発明の概要の欄に記載した発明の要素を限定するものではない。即ち、発明の概要の欄に記載した発明についての解釈はその欄の記載に基づいて行なわれるべきものであり、実施例は発明の概要の欄に記載した発明の具体的な一例に過ぎないものである。 The correspondence between the main elements of the embodiment and the main elements of the invention described in the summary section of the invention is a specific form of the embodiment for carrying out the invention described in the summary section of the invention. Since this is an example for explanation, the elements of the invention described in the summary section of the invention are not limited. That is, the interpretation of the invention described in the Summary of Invention column should be made based on the description in that column, and the Examples are only specific examples of the invention described in the Summary of Invention column. It is.
 以上、本発明を実施するための形態について実施例を用いて説明したが、本発明はこうした実施例に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において、種々なる形態で実施し得ることは勿論である。 As mentioned above, although the form for implementing this invention was demonstrated using the Example, this invention is not limited at all to such an Example, In the range which does not deviate from the summary of this invention, it is with various forms. Of course, it can be implemented.
 本発明は、自動車の製造産業などに利用可能である。 The present invention can be used in the automobile manufacturing industry.

Claims (7)

  1.  走行用のモータと該モータに電力を供給可能なバッテリとを備える自動車であって、
     ステアリングホイールの左右の対向する位置に設けられた2つのパドルスイッチと、
     前記2つのパドルスイッチの一方の操作によって、ノーマルモードを含む動力出力特性が異なる3つ以上の走行モードの間で該走行モードを所定の順序で一方向に切り替えると共に、前記2つのパドルスイッチの他方の操作によって、前記3つ以上の走行モードの間で該走行モードを前記所定の順序とは反対の順序で他方向に切り替えるモード切り替え手段と、
     を備える自動車。
    An automobile comprising a motor for traveling and a battery capable of supplying electric power to the motor,
    Two paddle switches provided at opposite positions on the left and right of the steering wheel;
    By operating one of the two paddle switches, the traveling mode is switched in one direction in a predetermined order between three or more traveling modes having different power output characteristics including the normal mode, and the other of the two paddle switches Mode switching means for switching the traveling mode to the other direction in the order opposite to the predetermined order between the three or more traveling modes by the operation of
    Automobile equipped with.
  2.  請求項1記載の自動車であって、
     走行用の動力を出力可能なエンジンを備え、
     前記走行モードは、前記モータから入出力される動力だけを用いて走行する電動走行を前記ノーマルモードより継続しやすくする電動走行優先モードと、前記ノーマルモードより駆動力の出力を抑制して燃費を優先するエコモードおよび前記ノーマルモードより駆動力の出力を優先するパワーモードの少なくとも一方と、を含む、
     自動車。
    The automobile according to claim 1,
    Equipped with an engine that can output power for running,
    The driving mode includes an electric driving priority mode that makes it easier to continue electric driving that uses only power input and output from the motor than the normal mode, and an output of driving force is suppressed from the normal mode to reduce fuel consumption. Including at least one of a priority eco mode and a power mode that prioritizes driving power output over the normal mode,
    Car.
  3.  請求項2記載の自動車であって、
     前記所定の順序は、前記電動走行優先モード,前記エコモード,前記ノーマルモード,前記パワーモードの順序か、前記電動走行優先モード,前記エコモード,前記ノーマルモードの順序か、前記電動走行優先モード,前記ノーマルモード,前記パワーモードの順序かのいずれかである、
     自動車。
    The automobile according to claim 2,
    The predetermined order is the order of the electric driving priority mode, the eco mode, the normal mode, and the power mode, the electric driving priority mode, the eco mode, the order of the normal mode, the electric driving priority mode, Either of the normal mode or the order of the power mode,
    Car.
  4.  請求項1ないし3のいずれか1つの請求項に記載の自動車であって、
     前記所定の順序は、駆動力の出力を抑制する程度に応じた順序である、
     自動車。
    The automobile according to any one of claims 1 to 3,
    The predetermined order is an order according to the degree of suppressing the output of the driving force.
    Car.
  5.  請求項1ないし4のいずれか1つの請求項に記載の自動車であって、
     前記所定の順序は、走行を継続したときの走行用パワーの総量に占める前記バッテリからの放電電力量の割合を反映するバッテリ出力分配程度に応じた順序である、
     自動車。
    The automobile according to any one of claims 1 to 4, wherein
    The predetermined order is an order according to the degree of battery output distribution that reflects the ratio of the amount of discharged electric power from the battery to the total amount of power for traveling when traveling is continued.
    Car.
  6.  請求項5記載の自動車であって、
     前記モード切り替え手段は、前記2つのパドルスイッチの操作に拘わらず、前記バッテリの容量に対する蓄電量の割合である蓄電割合が低いほど前記バッテリ出力分配程度が小さな前記走行モードに切り替える手段である、
     自動車。
    The automobile according to claim 5,
    The mode switching means is means for switching to the travel mode with a smaller battery output distribution degree as the storage ratio, which is the ratio of the storage amount to the battery capacity, is lower regardless of the operation of the two paddle switches.
    Car.
  7.  請求項1ないし6のいずれか1つの請求項に記載の自動車であって、
     走行用の動力を出力可能なエンジンを備え、
     前記バッテリと電力のやりとりが可能で動力を入出力可能な発電機と、
     車軸に連結された駆動軸と前記エンジンの出力軸と前記発電機の回転軸との3軸に3つの回転要素が接続されたプラネタリギヤと、
     を備え、
     前記モータの回転軸が前記駆動軸に接続されてなる、
     自動車。
    The automobile according to any one of claims 1 to 6,
    Equipped with an engine that can output power for running,
    A generator capable of exchanging power with the battery and capable of inputting and outputting power;
    A planetary gear in which three rotating elements are connected to three axes of a driving shaft coupled to an axle, an output shaft of the engine, and a rotating shaft of the generator;
    With
    The rotation shaft of the motor is connected to the drive shaft,
    Car.
PCT/JP2011/079054 2011-12-15 2011-12-15 Automobile WO2013088553A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/079054 WO2013088553A1 (en) 2011-12-15 2011-12-15 Automobile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/079054 WO2013088553A1 (en) 2011-12-15 2011-12-15 Automobile

Publications (1)

Publication Number Publication Date
WO2013088553A1 true WO2013088553A1 (en) 2013-06-20

Family

ID=48612037

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/079054 WO2013088553A1 (en) 2011-12-15 2011-12-15 Automobile

Country Status (1)

Country Link
WO (1) WO2013088553A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013088553A1 (en) * 2011-12-15 2015-04-27 トヨタ自動車株式会社 Automobile
US20220314991A1 (en) * 2021-03-31 2022-10-06 Honda Motor Co., Ltd. Vehicle control system and vehicle control method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007226698A (en) * 2006-02-27 2007-09-06 Yazaki Corp Assembly structure for rocking operating lever
JP2010083394A (en) * 2008-10-01 2010-04-15 Toyota Motor Corp Hybrid vehicle
JP2011166990A (en) * 2010-02-12 2011-08-25 Toyota Motor Corp Power supply system
WO2011114443A1 (en) * 2010-03-16 2011-09-22 トヨタ自動車株式会社 Cooling control device for vehicle battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007226698A (en) * 2006-02-27 2007-09-06 Yazaki Corp Assembly structure for rocking operating lever
JP2010083394A (en) * 2008-10-01 2010-04-15 Toyota Motor Corp Hybrid vehicle
JP2011166990A (en) * 2010-02-12 2011-08-25 Toyota Motor Corp Power supply system
WO2011114443A1 (en) * 2010-03-16 2011-09-22 トヨタ自動車株式会社 Cooling control device for vehicle battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013088553A1 (en) * 2011-12-15 2015-04-27 トヨタ自動車株式会社 Automobile
US20220314991A1 (en) * 2021-03-31 2022-10-06 Honda Motor Co., Ltd. Vehicle control system and vehicle control method
JP2022156372A (en) * 2021-03-31 2022-10-14 本田技研工業株式会社 Vehicle control system and vehicle control method
JP7177879B2 (en) 2021-03-31 2022-11-24 本田技研工業株式会社 Vehicle control system and vehicle control method

Similar Documents

Publication Publication Date Title
CN107161139B (en) Hybrid vehicle and control method for hybrid vehicle
US8849486B2 (en) Vehicle and method of controlling the same
US9162665B2 (en) Kick-down shift control device for electric vehicle
JP5742568B2 (en) Hybrid car
JP5737194B2 (en) Hybrid car
US10543829B2 (en) Hybrid vehicle including electronic control unit configured to correct base driving force using correction driving force
US20100250042A1 (en) Vehicle and method of controlling the vehicle
US9994214B2 (en) Hybrid vehicle
US20130079965A1 (en) Control device of hybrid vehicle
WO2008075502A1 (en) Vehicle, and its control method
WO2013072991A1 (en) Vehicle
JP6390667B2 (en) Hybrid car
US10040442B2 (en) Hybrid vehicle
US10279794B2 (en) Hybrid vehicle
US10046755B2 (en) Hybrid vehicle
US20140330475A1 (en) Hybrid vehicle
WO2013088553A1 (en) Automobile
JP4254764B2 (en) Automobile and control method thereof
JP2009196472A (en) Hybrid vehicle and its control method
JPWO2013088553A1 (en) Automobile
JP2009023527A (en) Vehicle and control method thereof
JP6996278B2 (en) Hybrid vehicle
JP2013038969A (en) Motor vehicle
JP2014100929A (en) Hybrid car
JP2012183852A (en) Hybrid vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11877197

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013549025

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11877197

Country of ref document: EP

Kind code of ref document: A1