WO2013088516A1 - Collision avoidance assistance device - Google Patents

Collision avoidance assistance device Download PDF

Info

Publication number
WO2013088516A1
WO2013088516A1 PCT/JP2011/078800 JP2011078800W WO2013088516A1 WO 2013088516 A1 WO2013088516 A1 WO 2013088516A1 JP 2011078800 W JP2011078800 W JP 2011078800W WO 2013088516 A1 WO2013088516 A1 WO 2013088516A1
Authority
WO
WIPO (PCT)
Prior art keywords
lateral position
moving body
collision avoidance
position information
host vehicle
Prior art date
Application number
PCT/JP2011/078800
Other languages
French (fr)
Japanese (ja)
Inventor
亮 猪俣
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2011/078800 priority Critical patent/WO2013088516A1/en
Priority to JP2013548991A priority patent/JP5704255B2/en
Publication of WO2013088516A1 publication Critical patent/WO2013088516A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K31/00Vehicle fittings, acting on a single sub-unit only, for automatically controlling vehicle speed, i.e. preventing speed from exceeding an arbitrarily established velocity or maintaining speed at a particular velocity, as selected by the vehicle operator
    • B60K31/0008Vehicle fittings, acting on a single sub-unit only, for automatically controlling vehicle speed, i.e. preventing speed from exceeding an arbitrarily established velocity or maintaining speed at a particular velocity, as selected by the vehicle operator including means for detecting potential obstacles in vehicle path
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T7/00Brake-action initiating means
    • B60T7/12Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger
    • B60T7/22Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger initiated by contact of vehicle, e.g. bumper, with an external object, e.g. another vehicle, or by means of contactless obstacle detectors mounted on the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/18Conjoint control of vehicle sub-units of different type or different function including control of braking systems
    • B60W10/184Conjoint control of vehicle sub-units of different type or different function including control of braking systems with wheel brakes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K31/00Vehicle fittings, acting on a single sub-unit only, for automatically controlling vehicle speed, i.e. preventing speed from exceeding an arbitrarily established velocity or maintaining speed at a particular velocity, as selected by the vehicle operator
    • B60K31/0008Vehicle fittings, acting on a single sub-unit only, for automatically controlling vehicle speed, i.e. preventing speed from exceeding an arbitrarily established velocity or maintaining speed at a particular velocity, as selected by the vehicle operator including means for detecting potential obstacles in vehicle path
    • B60K2031/0041Detecting lateral speed of target vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2201/00Particular use of vehicle brake systems; Special systems using also the brakes; Special software modules within the brake system controller
    • B60T2201/02Active or adaptive cruise control system; Distance control
    • B60T2201/022Collision avoidance systems

Definitions

  • the present invention relates to a collision avoidance support device for avoiding a collision with a moving object.
  • a vehicle collision avoidance device described in Japanese Patent Application Laid-Open No. 2010-102641 is known.
  • This vehicle collision avoidance device includes a radar that detects an object in front of the host vehicle and the front left and right sides, determines whether the object is a laterally moving object according to the detection result of the radar, and moves the object laterally.
  • processing is performed so as to control the traveling of the vehicle earlier than in the case where the object is not a laterally moving object.
  • This invention is made in view of such a situation, and makes it a subject to provide the collision avoidance assistance apparatus which enables appropriate collision avoidance assistance.
  • This collision avoidance support device is a collision avoidance support device for avoiding a collision between the host vehicle and the moving body, and is a relative speed between the host vehicle and the moving body and a lateral direction of the moving body in the left-right direction of the host vehicle.
  • the image processing apparatus includes: an acquisition unit that acquires lateral position information indicating a position; and a correction unit that corrects the lateral position information based on a lateral position history and a relative speed indicated by the lateral position information.
  • the acquisition means acquires the relative speed between the host vehicle and the moving body and the lateral position information of the moving body. Then, the correcting means corrects the lateral position information based on the relative speed and the lateral position history indicated in the lateral position information. For this reason, according to this collision avoidance assistance device, it is possible to accurately grasp the actual lateral position of the moving body. Therefore, according to this collision avoidance support device, it is possible to perform appropriate collision avoidance support.
  • the correcting means estimates the lateral movement speed indicating the movement speed of the moving body in the left-right direction of the host vehicle based on the lateral position history, and uses the relative speed and the lateral movement speed.
  • the lateral position information can be corrected.
  • the lateral movement speed of the moving body is estimated based on the lateral position history, and the lateral position information is corrected using the estimated lateral movement speed, so that the actual lateral position of the moving body can be grasped more accurately. Is possible.
  • the correction means calculates the lateral position delay amount of the moving body based on the relative speed and the lateral movement speed, and corrects the lateral position information by the calculated lateral position delay amount. be able to. In this case, it is possible to obtain lateral position information that matches the actual lateral position of the mobile object.
  • the lateral position delay amount can be an amount corresponding to the calculation time in the acquisition unit and the correction unit.
  • the acquisition means acquires lateral position information using a camera, and the correction means is indicated by the lateral position information acquired using the camera when the relative speed is greater than a predetermined value.
  • the lateral position information can be corrected based on the lateral position history. In this case, even when the relative speed between the host vehicle and the moving body is relatively high, erroneous determination of the lateral position of the moving body can be suppressed by the lateral position information with high reliability.
  • FIG. 1 It is a block diagram which shows the structure of one Embodiment of the collision avoidance assistance apparatus which concerns on 1 side of this invention. It is a figure for demonstrating the collision avoidance assistance by the collision avoidance assistance apparatus shown by FIG. It is a flowchart which shows the process of the collision avoidance assistance apparatus for correct
  • FIG. 1 is a block diagram showing a configuration of an embodiment of a collision avoidance assistance device according to one aspect of the present invention.
  • the collision avoidance assistance device 10 includes a millimeter wave radar 1, a front recognition camera 3, a sensor ECU (Electronic Control Unit) 5, a brake ECU 7, and a brake system 9. .
  • a collision avoidance assistance device 10 is mounted on a vehicle.
  • a vehicle equipped with the collision avoidance assistance device 10 is referred to as “own vehicle”.
  • the millimeter wave radar 1 and the forward recognition camera 3 are mounted, for example, at the front of the host vehicle.
  • the millimeter wave radar 1 and the forward recognition camera 3 detect, for example, moving bodies on the front and side of the host vehicle under the control of the sensor ECU 5.
  • the millimeter wave radar 1 and the forward recognition camera 3 transmit information (moving body information) about the detected moving body to the sensor ECU 5.
  • the moving body information includes, for example, the relative speed between the host vehicle and the moving body and the lateral position information of the moving body.
  • the lateral position information of the moving body is information indicating the lateral position of the moving body in the left-right direction of the host vehicle (that is, the direction intersecting the traveling direction of the host vehicle).
  • Sensor ECU (acquisition means, correction means) 5 receives and acquires moving body information from the millimeter wave radar 1 and the forward recognition camera 3. That is, the sensor ECU 5 acquires the moving body information such as the relative speed between the host vehicle and the moving body and the lateral position information of the moving body using the millimeter wave radar 1 and the forward recognition camera 3. For example, an arbitrary number of pieces of moving body information acquired by the millimeter wave radar 1 and the front recognition camera 3 are held in a storage unit (not shown).
  • the sensor ECU 5 estimates the lateral movement speed of the mobile body from the lateral position history of the mobile body indicated in the acquired lateral position information. Then, the lateral position information is corrected based on the lateral movement speed and the relative speed between the host vehicle and the moving body. In particular, when the relative speed between the host vehicle and the moving body is greater than a predetermined value, or when the moving body is at a close distance of the host vehicle, the sensor ECU 5 acquires the lateral position acquired using the front recognition camera 3. The lateral position information is corrected based on the lateral position history indicated in the information.
  • the sensor ECU 5 determines whether the collision possibility between the host vehicle and the moving body is high or low based on the relative speed between the host vehicle and the moving body and the corrected lateral position information. If the possibility of collision between the host vehicle and the moving body is high, the sensor ECU 5 transmits a signal indicating that to the brake ECU 7.
  • the brake ECU 7 controls the brake system 9.
  • the brake ECU 7 controls the behavior of the host vehicle by controlling the brake system 9 (that is, performing automatic braking). To do).
  • the sensor ECU 5 and the brake ECU 7 are mainly configured by a computer system including a CPU, a ROM, a RAM, a communication module, and the like, for example. Each processing of the sensor ECU 5 and the brake ECU 7 is realized by executing a predetermined program in the computer system.
  • FIG. 2 is a diagram for explaining collision avoidance support by the collision avoidance support apparatus shown in FIG.
  • the collision avoidance assistance device 10 performs assistance (for example, the above automatic braking) for avoiding a collision between the host vehicle 20 and the moving body 30.
  • the moving body 30 is moving in a direction that intersects the traveling direction of the host vehicle 20 (the direction indicated by the arrow Ax) (that is, the left-right direction of the host vehicle 20: the direction indicated by the arrow Ay). That is, the moving body 30 is, for example, a crossing pedestrian who moves in the lateral direction with respect to the host vehicle 20.
  • the collision avoidance assisting apparatus 10 has a case where the collision time between the host vehicle 20 and the moving body 30 is equal to or less than a predetermined threshold and the moving body 30 is located within the vehicle width of the own vehicle 20 (that is, the moving body). 30 is located in the automatic braking execution determination region R20), it is determined that the possibility of collision between the host vehicle 20 and the moving body 30 is high. And the collision avoidance assistance apparatus 10 implements automatic braking of the own vehicle 20 according to the determination result.
  • the collision time between the host vehicle 20 and the moving body 30 is obtained by dividing the relative distance between the host vehicle 20 and the moving body 30 by the relative speed between the host vehicle 20 and the moving body 30.
  • the lateral position of the moving body 30 can be detected using a sensor (for example, the millimeter wave radar 1 or the forward recognition camera 3).
  • a sensor for example, the millimeter wave radar 1 or the forward recognition camera 3
  • the lateral position of the moving body 30 detected using the sensor is more than the lateral position of the actual moving body 30 (the solid line L2 in the part (b) of FIG. 2). May be late.
  • the collision avoidance assistance device 10 (particularly the sensor ECU 5) corrects the lateral position information of the moving body 30 in order to perform automatic braking at an appropriate timing, that is, in order to perform appropriate collision avoidance assistance. Subsequently, the operation of such a collision avoidance assistance device 10 will be described with reference to FIG.
  • FIG. 3 is a flowchart showing the process of the collision avoidance support apparatus for correcting the lateral position information.
  • the moving body is detected by the millimeter wave radar 1 or the front recognition camera 3 and the sensor ECU 5 acquires the moving body information.
  • step S1 it is determined whether or not the moving body is a crossing pedestrian (step S1). This step S1 will be described in more detail.
  • FIG. 4 is a flowchart showing details of step S1. As shown in FIG. 4, in step S1, it is first determined whether or not the road on which the host vehicle is traveling is an automobile-only road (step S11). This determination can be made based on, for example, navigation system information (not shown), information acquired by road-to-vehicle communication, and the like.
  • step S11 If the result of the determination in step S11 is that the road on which the host vehicle is traveling is a road other than an automobile-only road (for example, a general road), the vertical speed of the moving body is less than or equal to the predetermined value Vy and the width of the moving body Is determined to be less than or equal to a predetermined value L (step S12).
  • This determination can be made based on the moving body information acquired by the sensor ECU 5.
  • the vertical speed is a speed in a direction parallel to the traveling direction of the host vehicle.
  • step S14 it is determined whether or not the crossing pedestrian probability p1 is greater than 0 (step S14). If the result of determination in step S14 is that the crossing pedestrian probability p1 is greater than 0, it is determined whether or not the speed of the host vehicle is equal to or less than the predetermined value Vx and the shape of the road on which the host vehicle travels is a straight line. Is performed (step S15).
  • step S18 it is determined whether or not the crossing pedestrian probability p1 is larger than a predetermined value p2 (step S18). If the crossing pedestrian probability p1 is larger than the predetermined value p2 as a result of the determination in step S18, the crossing pedestrian determination flag is set to ON (that is, it is determined that the moving body is a crossing direction person (step S19)). The process ends. On the other hand, if the result of determination in step S18 is that the crossing pedestrian probability p1 is not greater than the predetermined value p2, the process returns to step S14 and the subsequent processing is repeated.
  • step S11 if the road on which the host vehicle is traveling is not an automobile-only road, as a result of the determination in step S12, the vertical speed of the moving body is equal to or less than the predetermined value Vy, and the width of the moving body If the crossing pedestrian probability p1 is not greater than 0 as a result of the determination in step S14 other than the case where is less than or equal to the predetermined value L, the process is terminated.
  • the collision avoidance assistance device 10 determines whether or not the crossing pedestrian determination flag is ON after performing the crossing pedestrian determination in step S1 (step S2).
  • the lateral moving speed of the moving body is estimated (step S3).
  • the lateral movement speed of the mobile object can be performed based on the lateral position history of the mobile object indicated in the lateral position information. More specifically, the lateral movement speed can be estimated using the following equation, for example. In the following formula, for example, “lateral position (n)” represents the lateral position indicated in the lateral position information acquired n times. Further, k represents the number of horizontal position information that can be held.
  • the lateral position delay amount of the moving body by the sensor is calculated (step S4).
  • the lateral position delay amount of the sensor estimated from the relative speed and the lateral movement speed is interpolated from a map that holds in advance.
  • the lateral position delay amount is a lateral movement amount of the moving body corresponding to various calculation times (for example, calculation cycle) in the sensor ECU 5.
  • step S5 the lateral position information of the moving body is corrected by the lateral position delay amount calculated in step S4 (step S5). As a result, lateral position information corresponding to the actual lateral position of the moving body is obtained.
  • the sensor ECU 5 uses a sensor such as the millimeter wave radar 1 or the front recognition camera 3 to detect the relative speed between the host vehicle and the moving body, Get lateral position information. Then, the sensor ECU 5 corrects the lateral position information based on the relative speed and the lateral position history indicated by the lateral position information. For this reason, according to the collision avoidance assistance device 10, it is possible to accurately grasp the actual lateral position of the moving body. Therefore, according to the collision avoidance support device 10, it is possible to increase the deceleration amount during automatic braking by speeding up the determination of automatic braking. Unnecessary automatic operation is realized by grasping the lateral position of the actual moving body. Appropriate collision avoidance assistance can be performed, for example, braking can be reduced.
  • FIG. 5 is a diagram for explaining the detection characteristics of the moving body by the millimeter wave radar 1 and the forward recognition camera 3.
  • a black circle Tr indicates the trajectory of the moving object detected by the millimeter wave radar 1
  • a black cross Tc indicates the trajectory of the moving object detected by the front recognition camera 3. Indicates the trajectory of the actual moving object.
  • the locus detected by the millimeter wave radar 1 and the locus detected by the front recognition camera 3 are different from each other. Accordingly, as shown in part (b) of FIG. 5, based on the lateral movement speed Vr estimated based on the lateral position information obtained by the millimeter wave radar 1 and the lateral position information obtained by the front recognition camera 3.
  • the estimated lateral movement speed Vc is different from each other. More specifically, the lateral movement speed Vc estimated based on the lateral position information obtained by the front recognition camera 3 is compared with the lateral movement speed Vr estimated based on the lateral position information obtained by the millimeter wave radar 1. Thus, the deviation from the actual lateral movement speed Va is small.
  • the correction value (lateral position delay amount) Oc for the lateral position information of the front recognition camera 3 is smaller than the correction value Or for the lateral position information of the millimeter wave radar 1. Further, the trajectory of the moving object after correction by the front recognition camera 3 is more in line with the actual trajectory than the trajectory of the moving object after correction by the millimeter wave radar 1. Therefore, in step S3 described above, it is preferable that the lateral movement speed of the moving body is estimated based on the lateral position information obtained by the front recognition camera 3, and the lateral position information is corrected based on the lateral movement speed.
  • a white cross Tc1 and a black cross Tc2 indicate a locus before correction of the moving body by the front recognition camera 3 and a locus after correction of the moving body by the front recognition camera 3, respectively.
  • a white circle Tr1 and a black circle Tr2 are a locus before correction of the moving body by the millimeter wave radar 1 and a locus after correction of the moving body by the millimeter wave radar 1, respectively. Is shown. [Second Embodiment]
  • the collision avoidance assistance device according to the present embodiment has the same configuration as the collision avoidance assistance device 10 according to the first embodiment. Therefore, hereinafter, the collision avoidance assistance device according to the present embodiment is also referred to as “collision avoidance assistance device 10”. However, the collision avoidance device 10 according to the present embodiment differs from the collision avoidance support device 10 according to the first embodiment in the operation for automatic braking of the host vehicle.
  • FIG. 7 is a diagram for explaining detection characteristics of a moving object by the millimeter wave radar 1 and the forward recognition camera 3.
  • the trajectory Tr of the moving object detected by the millimeter wave radar 1 is the actual moving object. May deviate greatly from the locus Ta.
  • a portion P ⁇ b> 1 that is a position where no collision with the host vehicle 20 occurs is generated. There is a case.
  • FIG. 8 is a flowchart showing the automatic braking process of the collision avoidance assistance device 10 according to this embodiment. In the following description, it is assumed that the processing in step S1 described above is performed.
  • step S31 it is determined whether or not the moving body is at a close distance of the host vehicle and the determination flag of the crossing pedestrian is ON. If the result of the determination in step S31 is that the moving body is in the close range of the host vehicle and the crossing pedestrian determination flag is ON, it is determined whether or not the moving body is detected by the front recognition camera 3. (Step S32).
  • step S33 the lateral position information of the moving object is corrected. Details of the correction of the lateral position information in step S33 will be described with reference to FIG.
  • step S33 first, the lateral movement speed of the moving body is estimated based on the lateral position information obtained by the front recognition camera 3 (step S41).
  • step S41 the lateral movement speed can be estimated in the same manner as in step S3 described above. In particular, only the lateral position information (lateral position) obtained by the front recognition camera 3 is used.
  • step S4 the lateral position delay of the moving body by the front recognition camera 3 based on the relative speed between the host vehicle and the moving body and the lateral movement speed of the moving body estimated in step S41.
  • the amount is calculated (step S42).
  • step S43 the lateral position information of the moving body obtained by the front recognition camera 3 is corrected by the calculated lateral position delay amount (step S43).
  • step S34 it is determined whether or not there is a possibility of collision between the host vehicle and the moving body (step S34).
  • the collision time between the host vehicle and the moving body is equal to or less than a predetermined threshold and the moving body is located within the vehicle width of the host vehicle, the collision between the host vehicle and the moving body occurs. It can be determined that there is a possibility.
  • step S35 it is determined whether or not the driver of the host vehicle has no intention to brake the host vehicle.
  • the driver of the host vehicle has no intention to brake the host vehicle.
  • step S36 automatic braking is performed (step S36) and the process is terminated.
  • step S35 when the driver's drowsiness is detected by a driver camera (not shown), when looking aside, or when the wandering (sleeping) is detected by the vehicle wander detection system, the intention of braking the own vehicle to the driver of the own vehicle. It may be determined that there is no.
  • step S31 when the moving body is in the close range of the own vehicle and the determination flag of the crossing pedestrian is ON, the moving object is detected by the millimeter wave radar 1 or the front recognition camera 3. It is determined whether or not there is a detection (step S51). If the result of the determination in step S51 is that a moving body is detected by the millimeter wave radar 1 or the forward recognition camera 3, it is determined whether or not the crossing pedestrian determination flag is ON (step S52).
  • the lateral position information is corrected (step S53).
  • the lateral position information can be corrected in the same manner as in step S33 described above.
  • the lateral position information obtained by the millimeter wave radar 1 is not limited to the lateral position information obtained by the front recognition camera 3. It may be used.
  • step S54 it is determined whether or not there is a possibility of collision between the host vehicle and the moving body. If the result of the determination in step S54 is that there is a possibility of collision between the host vehicle and the moving body, it is determined whether or not the driver of the host vehicle has no intention to brake the host vehicle in the same manner as in step S35. Step S55). If the result of determination in step S55 is that the driver does not intend to brake the host vehicle, automatic braking is performed (step S56) and the process is terminated.
  • step S32 if there is no detection of the moving body by the front recognition camera 3, if the determination result in steps S34 and S54 indicates that there is no possibility of collision between the host vehicle and the moving body, steps S35 and S55. If the driver is willing to brake the vehicle as a result of the determination, the determination result in step S51 is that the moving object is not detected by the millimeter wave radar 1 or the front recognition camera 3, and the determination result in step S52. If the crossing pedestrian determination flag is not ON, the process is terminated.
  • the collision avoidance assistance device 10 As described above, in the collision avoidance assistance device 10 according to the present embodiment, appropriate collision avoidance support can be performed for the same reason as the collision avoidance assistance device 10 according to the first embodiment.
  • the lateral movement speed of the moving body is determined based only on the lateral position information from the front recognition camera 3. Estimate and correct lateral position information. For this reason, even when there is a moving body at a close distance of the host vehicle, it is possible to suppress erroneous determination of the lateral position of the moving body with reliable lateral position information and perform appropriate collision avoidance support.
  • the above embodiment describes one embodiment of the collision avoidance assistance device according to one aspect of the present invention. Therefore, the collision avoidance assistance device according to the present invention is not limited to the above-described collision avoidance assistance device.
  • the collision avoidance assistance device according to the present invention can be arbitrarily modified from the above-described collision avoidance assistance device 10 without changing the gist of each claim.
  • the collision avoidance assistance device 10 can be applied to an arbitrary moving body having a speed component in the left-right direction of the host vehicle. it can.
  • the brake ECU 7 controls the brake system 9 to automatically brake the host vehicle.
  • the collision avoidance assistance device 10 the collision between the host vehicle and the moving body is avoided. Any collision avoidance assistance can be performed.
  • the collision avoidance assistance device 10 determines whether or not the moving body is in the close range of the own vehicle and the crossing pedestrian determination flag is ON in the process of step S31.
  • the process of step S31 is not limited to this aspect.
  • step S31 it can be determined whether or not the relative speed between the host vehicle and the moving body is greater than a predetermined value.
  • the relative speed between the host vehicle and the moving body is high, the lateral moving speed of the moving body is estimated based on only the lateral position information from the front recognition camera 3, and the lateral position information is corrected. It becomes. Therefore, even when the relative speed between the host vehicle and the moving body is large, erroneous determination of the lateral position of the moving body can be suppressed by the lateral position information with high reliability.

Abstract

In a collision avoidance assistance device (10), a sensor ECU (5) uses sensors to acquire a relative speed between a host vehicle and a moving object, and to acquire lateral position information for the moving object, said sensors being a millimeter wave radar device (1) and a front recognition camera (3). The sensor ECU (5) corrects the lateral position information on the basis of said relative speed, and on the basis of the lateral position history indicated by the lateral position information. As a result, the collision avoidance assistance device (10) is capable of accurately determining the actual lateral position of the moving body. Said collision avoidance assistance device (10) is therefore capable of appropriately assisting collision avoidance, enabling, for example: an increase in a deceleration quantity during automatic braking, said increase enabled by making an automatic braking assessment sooner; and a decrease in unneeded automatic braking, said decrease enabled by determining the actual lateral position of the moving body.

Description

衝突回避支援装置Collision avoidance support device
 本発明は、移動体との衝突を回避するための衝突回避支援装置に関する。 The present invention relates to a collision avoidance support device for avoiding a collision with a moving object.
 上記技術分野の従来の技術として、例えば、特開2010-102641号公報に記載の車両用衝突回避装置が知られている。この車両用衝突回避装置は、自車の前方及び前左右側方の物体を検出するレーダを備え、レーダの検出結果に応じて物体が横移動物体である否かを判別し、物体が横移動物体である場合には、物体が横移動物体でない場合に比べて早めに自車の走行を制御するように処理を行う。 As a conventional technique in the above technical field, for example, a vehicle collision avoidance device described in Japanese Patent Application Laid-Open No. 2010-102641 is known. This vehicle collision avoidance device includes a radar that detects an object in front of the host vehicle and the front left and right sides, determines whether the object is a laterally moving object according to the detection result of the radar, and moves the object laterally. In the case of an object, processing is performed so as to control the traveling of the vehicle earlier than in the case where the object is not a laterally moving object.
特開2010-102641号公報JP 2010-102641 A
 ところで、特許文献1に記載の車両用衝突回避装置においては、レーダによって物体を検出し、その検出結果を用いて種々の演算を行っている。レーダによる物体の検出や、その検出結果を用いた各種の演算にはある程度の時間が必要となる。そのため、特許文献1に記載の車両用衝突回避装置にあっては、レーダが検出した物体の位置と、自車の走行を制御するときの実際の物体の位置との乖離が大きくなる場合がある。そのような場合、適切に支援をするという点で改善の余地がある。 Incidentally, in the vehicle collision avoidance device described in Patent Document 1, an object is detected by a radar, and various calculations are performed using the detection result. A certain amount of time is required for detection of an object by the radar and various calculations using the detection result. For this reason, in the vehicle collision avoidance device described in Patent Document 1, there may be a large difference between the position of the object detected by the radar and the actual position of the object when controlling the traveling of the host vehicle. . In such cases, there is room for improvement in terms of providing appropriate support.
 本発明は、そのような事情に鑑みてなされたものであり、適切な衝突回避支援を可能とする衝突回避支援装置を提供することを課題とする。 This invention is made in view of such a situation, and makes it a subject to provide the collision avoidance assistance apparatus which enables appropriate collision avoidance assistance.
 本発明の一側面は衝突回避支援装置に関する。この衝突回避支援装置は、自車両と移動体との衝突を回避するための衝突回避支援装置であって、自車両と移動体との相対速度と、自車両の左右方向についての移動体の横位置を示す横位置情報とを取得する取得手段と、横位置情報に示される横位置の履歴と相対速度とに基づいて、横位置情報を補正する補正手段と、を備えることを特徴とする。 One aspect of the present invention relates to a collision avoidance support device. This collision avoidance support device is a collision avoidance support device for avoiding a collision between the host vehicle and the moving body, and is a relative speed between the host vehicle and the moving body and a lateral direction of the moving body in the left-right direction of the host vehicle. The image processing apparatus includes: an acquisition unit that acquires lateral position information indicating a position; and a correction unit that corrects the lateral position information based on a lateral position history and a relative speed indicated by the lateral position information.
 この衝突回避支援装置においては、取得手段が、自車両と移動体との相対速度と移動体の横位置情報とを取得する。そして、補正手段が、その相対速度と、横位置情報に示される横位置の履歴とに基づいて、横位置情報を補正する。このため、この衝突回避支援装置によれば、移動体の実際の横位置を的確に把握することが可能となる。よって、この衝突回避支援装置によれば、適切な衝突回避支援を行うことが可能となる。 In this collision avoidance support device, the acquisition means acquires the relative speed between the host vehicle and the moving body and the lateral position information of the moving body. Then, the correcting means corrects the lateral position information based on the relative speed and the lateral position history indicated in the lateral position information. For this reason, according to this collision avoidance assistance device, it is possible to accurately grasp the actual lateral position of the moving body. Therefore, according to this collision avoidance support device, it is possible to perform appropriate collision avoidance support.
 この衝突回避支援装置においては、補正手段は、横位置の履歴に基づいて、自車両の左右方向についての移動体の移動速度を示す横移動速度を推定し、相対速度と横移動速度とを用いて横位置情報を補正することができる。この場合、横位置履歴に基づいて移動体の横移動速度を推定し、その推定した横移動速度を用いて横位置情報を補正するので、移動体の実際の横位置をより的確に把握することが可能となる。 In this collision avoidance assistance device, the correcting means estimates the lateral movement speed indicating the movement speed of the moving body in the left-right direction of the host vehicle based on the lateral position history, and uses the relative speed and the lateral movement speed. The lateral position information can be corrected. In this case, the lateral movement speed of the moving body is estimated based on the lateral position history, and the lateral position information is corrected using the estimated lateral movement speed, so that the actual lateral position of the moving body can be grasped more accurately. Is possible.
 この衝突回避支援装置においては、補正手段は、相対速度と横移動速度とに基づいて、移動体の横位置遅れ量を算出すると共に、算出した横位置遅れ量の分だけ横位置情報を補正することができる。この場合、移動体の実際の横位置に即した横位置情報を得ることができる。なお、このとき、横位置遅れ量は、取得手段及び補正手段における演算時間に応じた量とすることができる。 In this collision avoidance assistance device, the correction means calculates the lateral position delay amount of the moving body based on the relative speed and the lateral movement speed, and corrects the lateral position information by the calculated lateral position delay amount. be able to. In this case, it is possible to obtain lateral position information that matches the actual lateral position of the mobile object. At this time, the lateral position delay amount can be an amount corresponding to the calculation time in the acquisition unit and the correction unit.
 この衝突回避支援装置においては、取得手段は、カメラを用いて横位置情報を取得し、補正手段は、相対速度が所定値よりも大きい場合に、カメラを用いて取得した横位置情報に示される横位置の履歴に基づいて横位置情報を補正することができる。この場合、自車両と移動体との相対速度が比較的大きい場合においても、信頼度の高い横位置情報により移動体の横位置の誤判定を抑制することが可能となる。 In this collision avoidance support device, the acquisition means acquires lateral position information using a camera, and the correction means is indicated by the lateral position information acquired using the camera when the relative speed is greater than a predetermined value. The lateral position information can be corrected based on the lateral position history. In this case, even when the relative speed between the host vehicle and the moving body is relatively high, erroneous determination of the lateral position of the moving body can be suppressed by the lateral position information with high reliability.
 本発明によれば、適切な衝突回避支援を可能とする衝突回避支援装置を提供することができる。 According to the present invention, it is possible to provide a collision avoidance support device that enables appropriate collision avoidance support.
本発明の一側面に係る衝突回避支援装置の一実施形態の構成を示すブロック図である。It is a block diagram which shows the structure of one Embodiment of the collision avoidance assistance apparatus which concerns on 1 side of this invention. 図1に示された衝突回避支援装置による衝突回避支援を説明するための図である。It is a figure for demonstrating the collision avoidance assistance by the collision avoidance assistance apparatus shown by FIG. 横位置情報を補正するための衝突回避支援装置の処理を示すフローチャートである。It is a flowchart which shows the process of the collision avoidance assistance apparatus for correct | amending lateral position information. 図3に示されたステップS1の詳細を示すフローチャートである。It is a flowchart which shows the detail of step S1 shown by FIG. ミリ波レーダ及び前方認識カメラによる移動体の検出特性を説明するための図である。It is a figure for demonstrating the detection characteristic of the moving body by a millimeter wave radar and a front recognition camera. ミリ波レーダ及び前方認識カメラによる移動体の検出特性を説明するための図である。It is a figure for demonstrating the detection characteristic of the moving body by a millimeter wave radar and a front recognition camera. ミリ波レーダ及び前方認識カメラによる移動体の検出特性を説明するための図である。It is a figure for demonstrating the detection characteristic of the moving body by a millimeter wave radar and a front recognition camera. 図1に示された衝突回避支援装置の自動制動の処理を示すフローチャートである。It is a flowchart which shows the process of the automatic braking of the collision avoidance assistance apparatus shown by FIG. 図8に示されたステップS33の詳細を示すフローチャートである。It is a flowchart which shows the detail of step S33 shown by FIG.
 以下、本発明の一側面に係る衝突回避支援装置の一実施形態について、図面を参照して詳細に説明する。なお、図面の説明において、同一の要素、或いは相当する要素には互いに同一の符号を付し、重複する説明を省略する。
[第1実施形態]
Hereinafter, an embodiment of a collision avoidance assistance device according to one aspect of the present invention will be described in detail with reference to the drawings. In the description of the drawings, the same elements or corresponding elements will be denoted by the same reference numerals, and redundant description will be omitted.
[First Embodiment]
 まず、本発明の一側面に係る衝突回避支援装置の第1実施形態について説明する。図1は、本発明の一側面に係る衝突回避支援装置の一実施形態の構成を示すブロック図である。図1に示されるように、本実施形態に係る衝突回避支援装置10は、ミリ波レーダ1、前方認識カメラ3、センサECU(Electronic Control Unit)5、ブレーキECU7、及びブレーキシステム9を備えている。このような衝突回避支援装置10は、車両に搭載されている。以下では、衝突回避支援装置10を搭載した車両を「自車両」と称する。 First, a first embodiment of the collision avoidance assistance device according to one aspect of the present invention will be described. FIG. 1 is a block diagram showing a configuration of an embodiment of a collision avoidance assistance device according to one aspect of the present invention. As shown in FIG. 1, the collision avoidance assistance device 10 according to this embodiment includes a millimeter wave radar 1, a front recognition camera 3, a sensor ECU (Electronic Control Unit) 5, a brake ECU 7, and a brake system 9. . Such a collision avoidance assistance device 10 is mounted on a vehicle. Hereinafter, a vehicle equipped with the collision avoidance assistance device 10 is referred to as “own vehicle”.
 ミリ波レーダ1及び前方認識カメラ3は、例えば自車両の前部に搭載されている。ミリ波レーダ1及び前方認識カメラ3は、センサECU5の制御のもとで、例えば自車両の前方及び側方の移動体を検出する。ミリ波レーダ1及び前方認識カメラ3は、検出した移動体についての情報(移動体情報)をセンサECU5に送信する。移動体情報は、例えば、自車両と移動体との相対速度や、移動体の横位置情報を含む。なお、移動体の横位置情報とは、自車両の左右方向(すなわち、自車両の進行方向に交差する方向)についての移動体の横位置を示す情報である。 The millimeter wave radar 1 and the forward recognition camera 3 are mounted, for example, at the front of the host vehicle. The millimeter wave radar 1 and the forward recognition camera 3 detect, for example, moving bodies on the front and side of the host vehicle under the control of the sensor ECU 5. The millimeter wave radar 1 and the forward recognition camera 3 transmit information (moving body information) about the detected moving body to the sensor ECU 5. The moving body information includes, for example, the relative speed between the host vehicle and the moving body and the lateral position information of the moving body. Note that the lateral position information of the moving body is information indicating the lateral position of the moving body in the left-right direction of the host vehicle (that is, the direction intersecting the traveling direction of the host vehicle).
 センサECU(取得手段、補正手段)5は、ミリ波レーダ1や前方認識カメラ3から移動体情報を受信して取得する。つまり、センサECU5は、自車両と移動体との相対速度や移動体の横位置情報といった移動体情報を、ミリ波レーダ1や前方認識カメラ3を用いて取得する。なお、ミリ波レーダ1や前方認識カメラ3により取得された移動体情報は、例えば図示しない記憶手段において任意の数が保持される。 Sensor ECU (acquisition means, correction means) 5 receives and acquires moving body information from the millimeter wave radar 1 and the forward recognition camera 3. That is, the sensor ECU 5 acquires the moving body information such as the relative speed between the host vehicle and the moving body and the lateral position information of the moving body using the millimeter wave radar 1 and the forward recognition camera 3. For example, an arbitrary number of pieces of moving body information acquired by the millimeter wave radar 1 and the front recognition camera 3 are held in a storage unit (not shown).
 また、センサECU5は、詳しくは後述するが、取得した横位置情報に示される移動体の横位置の履歴から移動体の横移動速度を推定する。そして、その横移動速度や自車両と移動体との相対速度に基づいて、横位置情報を補正する。特に、センサECU5は、自車両と移動体との相対速度が所定値よりも大きい場合や、移動体が自車両の至近距離にある場合等には、前方認識カメラ3を用いて取得した横位置情報に示される横位置の履歴に基づいて横位置情報を補正する。 Further, as will be described in detail later, the sensor ECU 5 estimates the lateral movement speed of the mobile body from the lateral position history of the mobile body indicated in the acquired lateral position information. Then, the lateral position information is corrected based on the lateral movement speed and the relative speed between the host vehicle and the moving body. In particular, when the relative speed between the host vehicle and the moving body is greater than a predetermined value, or when the moving body is at a close distance of the host vehicle, the sensor ECU 5 acquires the lateral position acquired using the front recognition camera 3. The lateral position information is corrected based on the lateral position history indicated in the information.
 さらに、センサECU5は、自車両と移動体との相対速度や補正後の横位置情報に基づいて、自車両と移動体との衝突可能性の高低を判定する。そして、センサECU5は、自車両と移動体との衝突可能性が高い場合には、その旨を示す信号をブレーキECU7に送信する。 Further, the sensor ECU 5 determines whether the collision possibility between the host vehicle and the moving body is high or low based on the relative speed between the host vehicle and the moving body and the corrected lateral position information. If the possibility of collision between the host vehicle and the moving body is high, the sensor ECU 5 transmits a signal indicating that to the brake ECU 7.
 ブレーキECU7は、ブレーキシステム9を制御する。特に、ブレーキECU7は、自車両と移動体との衝突可能性が高いことを示す信号をセンサECU5から受信した場合、ブレーキシステム9を制御して自車両の挙動を制御する(すなわち自動制動を実施する)。 The brake ECU 7 controls the brake system 9. In particular, when the brake ECU 7 receives a signal from the sensor ECU 5 indicating that the possibility of collision between the host vehicle and the moving body is high, the brake ECU 7 controls the behavior of the host vehicle by controlling the brake system 9 (that is, performing automatic braking). To do).
 なお、センサECU5及びブレーキECU7は、例えば、CPU、ROM、RAM、及び通信モジュール等を含むコンピュータシステムを主体として構成されている。センサECU5及びブレーキECU7の各処理は、そのコンピュータシステムにおいて所定のプログラムを実行することにより実現される。 Note that the sensor ECU 5 and the brake ECU 7 are mainly configured by a computer system including a CPU, a ROM, a RAM, a communication module, and the like, for example. Each processing of the sensor ECU 5 and the brake ECU 7 is realized by executing a predetermined program in the computer system.
 ここで、図2は、図1に示された衝突回避支援装置による衝突回避支援を説明するための図である。図2の(a)部に示されるように、衝突回避支援装置10は、自車両20と移動体30との衝突を回避するための支援(例えば、上記の自動制動)を行う。ここで、移動体30は、自車両20の進行方向(矢印Axで示される方向)に交差する方向(すなわち自車両20の左右方向:矢印Ayで示される方向)に移動している。つまり、移動体30は、例えば、自車両20に対して横方向に移動する横断歩行者等である。 Here, FIG. 2 is a diagram for explaining collision avoidance support by the collision avoidance support apparatus shown in FIG. As shown in part (a) of FIG. 2, the collision avoidance assistance device 10 performs assistance (for example, the above automatic braking) for avoiding a collision between the host vehicle 20 and the moving body 30. Here, the moving body 30 is moving in a direction that intersects the traveling direction of the host vehicle 20 (the direction indicated by the arrow Ax) (that is, the left-right direction of the host vehicle 20: the direction indicated by the arrow Ay). That is, the moving body 30 is, for example, a crossing pedestrian who moves in the lateral direction with respect to the host vehicle 20.
 衝突回避支援装置10は、自車両20と移動体30との衝突時間が所定の閾値以下であり、且つ、移動体30が自車両20の車幅内に位置している場合(すなわち、移動体30が自動制動実施判断領域R20内に位置している場合)に、自車両20と移動体30との衝突可能性が高いと判定する。そして、衝突回避支援装置10は、その判定結果に応じて、自車両20の自動制動を実施する。なお、自車両20と移動体30との衝突時間とは、自車両20と移動体30との相対距離を自車両20と移動体30との相対速度で除したものである。 The collision avoidance assisting apparatus 10 has a case where the collision time between the host vehicle 20 and the moving body 30 is equal to or less than a predetermined threshold and the moving body 30 is located within the vehicle width of the own vehicle 20 (that is, the moving body). 30 is located in the automatic braking execution determination region R20), it is determined that the possibility of collision between the host vehicle 20 and the moving body 30 is high. And the collision avoidance assistance apparatus 10 implements automatic braking of the own vehicle 20 according to the determination result. The collision time between the host vehicle 20 and the moving body 30 is obtained by dividing the relative distance between the host vehicle 20 and the moving body 30 by the relative speed between the host vehicle 20 and the moving body 30.
 移動体30が自車両20の車幅内に位置するか否かの判定を行うためには、移動体30の横位置を検出する必要がある。移動体30の横位置は、センサ(例えばミリ波レーダ1や前方認識カメラ3)を用いて検出することができる。しかしながら、センサを用いて検出した移動体30の横位置(図2の(b)部の破線L1)は、実際の移動体30の横位置(図2の(b)部の実線L2)よりも遅れている場合がある。 It is necessary to detect the lateral position of the moving body 30 in order to determine whether or not the moving body 30 is located within the vehicle width of the host vehicle 20. The lateral position of the moving body 30 can be detected using a sensor (for example, the millimeter wave radar 1 or the forward recognition camera 3). However, the lateral position of the moving body 30 detected using the sensor (the broken line L1 in the part (b) of FIG. 2) is more than the lateral position of the actual moving body 30 (the solid line L2 in the part (b) of FIG. 2). May be late.
 そのような場合には、自動制動を実施するタイミングT1が、本来自動制動を実施すべきタイミングT2よりも遅れてしまう。そこで、衝突回避支援装置10(特にセンサECU5)は、自動制動を的確なタイミングで行うために、すなわち、適切な衝突回避支援を行うために、移動体30の横位置情報の補正を行う。引き続いて、図3を参照して、そのような衝突回避支援装置10の動作について説明する。 In such a case, the timing T1 at which automatic braking is performed is later than the timing T2 at which automatic braking should be performed. Therefore, the collision avoidance assistance device 10 (particularly the sensor ECU 5) corrects the lateral position information of the moving body 30 in order to perform automatic braking at an appropriate timing, that is, in order to perform appropriate collision avoidance assistance. Subsequently, the operation of such a collision avoidance assistance device 10 will be described with reference to FIG.
 図3は、横位置情報を補正するための衝突回避支援装置の処理を示すフローチャートである。なお、以下の説明においては、ミリ波レーダ1や前方認識カメラ3により移動体を検出し、センサECU5が移動体情報を取得した後とする。 FIG. 3 is a flowchart showing the process of the collision avoidance support apparatus for correcting the lateral position information. In the following description, it is assumed that the moving body is detected by the millimeter wave radar 1 or the front recognition camera 3 and the sensor ECU 5 acquires the moving body information.
 図3に示されるように、まず、移動体が横断歩行者であるか否かの判定を行う(ステップS1)。このステップS1について、より詳細に説明する。図4は、このステップS1の詳細を示すフローチャートである。図4に示されるように、このステップS1においては、まず、自車両の走行する道路が自動車専用道路であるか否かの判定を行う(ステップS11)。この判定は、例えば、図示しないナビゲーションシステムの情報や、路車間通信により取得される情報等に基づいて行うことができる。 As shown in FIG. 3, first, it is determined whether or not the moving body is a crossing pedestrian (step S1). This step S1 will be described in more detail. FIG. 4 is a flowchart showing details of step S1. As shown in FIG. 4, in step S1, it is first determined whether or not the road on which the host vehicle is traveling is an automobile-only road (step S11). This determination can be made based on, for example, navigation system information (not shown), information acquired by road-to-vehicle communication, and the like.
 ステップS11の判定の結果、自車両の走行する道路が自動車専用道路以外である場合(例えば一般道である場合)、移動体の縦方向速度が所定値Vy以下であり、且つ、移動体の幅が所定値L以下あるか否かの判定を行う(ステップS12)。この判定は、センサECU5が取得した移動体情報に基づいて行うことができる。なお、縦方向速度とは、自車両の進行方向に平行な方向についての速度である。 If the result of the determination in step S11 is that the road on which the host vehicle is traveling is a road other than an automobile-only road (for example, a general road), the vertical speed of the moving body is less than or equal to the predetermined value Vy and the width of the moving body Is determined to be less than or equal to a predetermined value L (step S12). This determination can be made based on the moving body information acquired by the sensor ECU 5. Note that the vertical speed is a speed in a direction parallel to the traveling direction of the host vehicle.
 ステップS12の判定の結果、移動体の縦方向速度が所定値Vy以下であり、且つ、移動体の幅が所定値L以下である場合、横断歩行者確率p1をp1=pとして設定する(ステップS13)。 If the result of determination in step S12 is that the vertical velocity of the moving object is not more than the predetermined value Vy and the width of the moving object is not more than the predetermined value L, the crossing pedestrian probability p1 is set as p1 = p (step S13).
 続いて、横断歩行者確率p1が0よりも大きいか否かの判定を行う(ステップS14)。ステップS14の判定の結果、横断歩行者確率p1が0よりも大きい場合、自車両の速度が所定値Vx以下であり、且つ、自車両の走行する道路の形状が直線であるか否かの判定を行う(ステップS15)。 Subsequently, it is determined whether or not the crossing pedestrian probability p1 is greater than 0 (step S14). If the result of determination in step S14 is that the crossing pedestrian probability p1 is greater than 0, it is determined whether or not the speed of the host vehicle is equal to or less than the predetermined value Vx and the shape of the road on which the host vehicle travels is a straight line. Is performed (step S15).
 ステップS15の判定の結果、自車両の速度が所定値Vx以下であり、且つ、自車両の走行する道路の形状が直線である場合、横断歩行者確率p1に△pを加算する(すなわち、p1=p+△pとする)(ステップS16)。一方、ステップS15の判定の結果がそれ以外である場合、横断歩行者確率p1から△pを減算する(すなわち、p1=p-△pとする)(ステップS17)。 As a result of the determination in step S15, if the speed of the host vehicle is equal to or lower than the predetermined value Vx and the shape of the road on which the host vehicle is traveling is a straight line, Δp is added to the crossing pedestrian probability p1 (ie, p1). = P + Δp) (step S16). On the other hand, if the result of determination in step S15 is other than that, Δp is subtracted from the crossing pedestrian probability p1 (ie, p1 = p−Δp) (step S17).
 その後、横断歩行者確率p1が所定値p2よりも大きいか否かの判定を行う(ステップS18)。ステップS18の判定の結果、横断歩行者確率p1が所定値p2よりも大きい場合、横断歩行者の判定フラグをONとして(すなわち、移動体が横断方向者であると判定して(ステップS19))処理を終了する。一方、ステップS18の判定の結果、横断歩行者確率p1が所定値p2よりも大きくない場合、ステップS14に戻り、その後の処理を繰り返す。 Thereafter, it is determined whether or not the crossing pedestrian probability p1 is larger than a predetermined value p2 (step S18). If the crossing pedestrian probability p1 is larger than the predetermined value p2 as a result of the determination in step S18, the crossing pedestrian determination flag is set to ON (that is, it is determined that the moving body is a crossing direction person (step S19)). The process ends. On the other hand, if the result of determination in step S18 is that the crossing pedestrian probability p1 is not greater than the predetermined value p2, the process returns to step S14 and the subsequent processing is repeated.
 なお、ステップS11の判定の結果、自車両の走行する道路が自動車専用道路以外でない場合、ステップS12の判定の結果、移動体の縦方向速度が所定値Vy以下であり、且つ、移動体の幅が所定値L以下である場合以外の場合、及び、ステップS14の判定の結果、横断歩行者確率p1が0よりも大きくない場合には、処理を終了する。 As a result of the determination in step S11, if the road on which the host vehicle is traveling is not an automobile-only road, as a result of the determination in step S12, the vertical speed of the moving body is equal to or less than the predetermined value Vy, and the width of the moving body If the crossing pedestrian probability p1 is not greater than 0 as a result of the determination in step S14 other than the case where is less than or equal to the predetermined value L, the process is terminated.
 図3を参照して説明を続ける。衝突回避支援装置10においては、上記のように、ステップS1において横断歩行者判定を行った後に、横断歩行者の判定フラグがONであるか否かの判定を行う(ステップS2)。 The description will be continued with reference to FIG. As described above, the collision avoidance assistance device 10 determines whether or not the crossing pedestrian determination flag is ON after performing the crossing pedestrian determination in step S1 (step S2).
 ステップS2の判定の結果、横断歩行者の判定フラグがONである場合、すなわち、移動体が横断方向者であると判定された場合、移動体の横移動速度を推定する(ステップS3)。移動体の横移動速度は、横位置情報に示される移動体の横位置の履歴に基づいて行うことができる。より具体的には、横移動速度は、例えば、下記式を用いて推定することができる。なお、下記式において、例えば「横位置(n)」は、n回目に取得した横位置情報に示された横位置を表している。また、kは、保持可能な横位置情報の数を表している。
Figure JPOXMLDOC01-appb-M000001
As a result of the determination in step S2, when the determination flag of the crossing pedestrian is ON, that is, when it is determined that the moving body is a crossing direction person, the lateral moving speed of the moving body is estimated (step S3). The lateral movement speed of the mobile object can be performed based on the lateral position history of the mobile object indicated in the lateral position information. More specifically, the lateral movement speed can be estimated using the following equation, for example. In the following formula, for example, “lateral position (n)” represents the lateral position indicated in the lateral position information acquired n times. Further, k represents the number of horizontal position information that can be held.
Figure JPOXMLDOC01-appb-M000001
 続いて、自車両と移動体との相対速度と、ステップS3で推定した移動体の横移動速度とに基づいて、センサ(ミリ波レーダ1や前方認識カメラ3)による移動体の横位置遅れ量を算出する(ステップS4)。換言すれば、相対速度と横移動速度から推定されるセンサの横位置遅れ量を予め保持するマップから補間する。なお、横位置遅れ量とは、センサECU5における各種の演算時間(例えば演算周期)に応じた移動体の横移動量である。 Subsequently, based on the relative speed between the host vehicle and the moving body and the lateral moving speed of the moving body estimated in step S3, the lateral position delay amount of the moving body by the sensor (millimeter wave radar 1 or forward recognition camera 3). Is calculated (step S4). In other words, the lateral position delay amount of the sensor estimated from the relative speed and the lateral movement speed is interpolated from a map that holds in advance. The lateral position delay amount is a lateral movement amount of the moving body corresponding to various calculation times (for example, calculation cycle) in the sensor ECU 5.
 続いて、ステップS4で算出した横位置遅れ量の分だけ、移動体の横位置情報を補正する(ステップS5)。これにより、移動体の実際の横位置に即した横位置情報が得られる。 Subsequently, the lateral position information of the moving body is corrected by the lateral position delay amount calculated in step S4 (step S5). As a result, lateral position information corresponding to the actual lateral position of the moving body is obtained.
 以上説明したように、本実施形態に係る衝突回避支援装置10においては、センサECU5がミリ波レーダ1や前方認識カメラ3といったセンサを用いて、自車両と移動体との相対速度や移動体の横位置情報を取得する。そして、センサECU5が、その相対速度と横位置情報に示される横位置の履歴とに基づいて、横位置情報を補正する。このため、衝突回避支援装置10によれば、移動体の実際の横位置を的確に把握することが可能となる。よって、この衝突回避支援装置10によれば、自動制動の判断を早めることにより自動制動時の減速量を増加することが可能となる、実際の移動体の横位置を把握することにより不要な自動制動を低減することが可能になる等、適切な衝突回避支援を行うことが可能となる。 As described above, in the collision avoidance assistance device 10 according to the present embodiment, the sensor ECU 5 uses a sensor such as the millimeter wave radar 1 or the front recognition camera 3 to detect the relative speed between the host vehicle and the moving body, Get lateral position information. Then, the sensor ECU 5 corrects the lateral position information based on the relative speed and the lateral position history indicated by the lateral position information. For this reason, according to the collision avoidance assistance device 10, it is possible to accurately grasp the actual lateral position of the moving body. Therefore, according to the collision avoidance support device 10, it is possible to increase the deceleration amount during automatic braking by speeding up the determination of automatic braking. Unnecessary automatic operation is realized by grasping the lateral position of the actual moving body. Appropriate collision avoidance assistance can be performed, for example, braking can be reduced.
 ここで、図5は、ミリ波レーダ1及び前方認識カメラ3による移動体の検出特性を説明するための図である。図5において、黒抜きの丸印Trはミリ波レーダ1によって検出された移動体の軌跡を示し、黒抜きの十字Tcは前方認識カメラ3によって検出された移動体の軌跡を示し、一点鎖線Taは実際の移動体の軌跡を示している。 Here, FIG. 5 is a diagram for explaining the detection characteristics of the moving body by the millimeter wave radar 1 and the forward recognition camera 3. In FIG. 5, a black circle Tr indicates the trajectory of the moving object detected by the millimeter wave radar 1, and a black cross Tc indicates the trajectory of the moving object detected by the front recognition camera 3. Indicates the trajectory of the actual moving object.
 図5の(a)部に示されるように、ミリ波レーダ1により検出された軌跡と、前方認識カメラ3により軌跡とは、互いに異なる。したがって、図5の(b)部に示されるように、ミリ波レーダ1によって得られる横位置情報に基づいて推定される横移動速度Vrと、前方認識カメラ3によって得られる横位置情報に基づいて推定される横移動速度Vcとは、互いに異なっている。より具体的には、前方認識カメラ3によって得られる横位置情報に基づいて推定される横移動速度Vcは、ミリ波レーダ1によって得られる横位置情報に基づいて推定される横移動速度Vrに比べて、実際の横移動速度Vaからの乖離が小さい。 5A, the locus detected by the millimeter wave radar 1 and the locus detected by the front recognition camera 3 are different from each other. Accordingly, as shown in part (b) of FIG. 5, based on the lateral movement speed Vr estimated based on the lateral position information obtained by the millimeter wave radar 1 and the lateral position information obtained by the front recognition camera 3. The estimated lateral movement speed Vc is different from each other. More specifically, the lateral movement speed Vc estimated based on the lateral position information obtained by the front recognition camera 3 is compared with the lateral movement speed Vr estimated based on the lateral position information obtained by the millimeter wave radar 1. Thus, the deviation from the actual lateral movement speed Va is small.
 そのため、図6に示されるように、前方認識カメラ3の横位置情報に対する補正値(横位置遅れ量)Ocは、ミリ波レーダ1の横位置情報に対する補正値Orよりも小さい。また、前方認識カメラ3による補正後の移動体の軌跡は、ミリ波レーダ1による補正後の移動体の軌跡に比べて、実際の軌跡に即している。よって、上述したステップS3において、前方認識カメラ3によって得られる横位置情報に基づいて移動体の横移動速度を推定すると共に、その横移動速度に基づいて横位置情報を補正することが好ましい。 Therefore, as illustrated in FIG. 6, the correction value (lateral position delay amount) Oc for the lateral position information of the front recognition camera 3 is smaller than the correction value Or for the lateral position information of the millimeter wave radar 1. Further, the trajectory of the moving object after correction by the front recognition camera 3 is more in line with the actual trajectory than the trajectory of the moving object after correction by the millimeter wave radar 1. Therefore, in step S3 described above, it is preferable that the lateral movement speed of the moving body is estimated based on the lateral position information obtained by the front recognition camera 3, and the lateral position information is corrected based on the lateral movement speed.
 なお、図6において、白抜きの十字Tc1及び黒抜きの十字Tc2は、それぞれ、前方認識カメラ3による移動体の補正前の軌跡、及び前方認識カメラ3による移動体の補正後の軌跡を示している。また、図6において、白抜きの丸印Tr1及び黒抜きの丸印Tr2は、それぞれ、ミリ波レーダ1による移動体の補正前の軌跡、及び、ミリ波レーダ1による移動体の補正後の軌跡を示している。
[第2実施形態]
In FIG. 6, a white cross Tc1 and a black cross Tc2 indicate a locus before correction of the moving body by the front recognition camera 3 and a locus after correction of the moving body by the front recognition camera 3, respectively. Yes. In FIG. 6, a white circle Tr1 and a black circle Tr2 are a locus before correction of the moving body by the millimeter wave radar 1 and a locus after correction of the moving body by the millimeter wave radar 1, respectively. Is shown.
[Second Embodiment]
 引き続いて、本発明の一側面に係る衝突回避支援装置の第2実施形態について説明する。本実施形態に係る衝突回避支援装置は、第1実施形態に係る衝突回避支援装置10と同様の構成を有している。よって、以下では、本実施形態に係る衝突回避支援装置も「衝突回避支援装置10」と称する。ただし、本実施形態に係る衝突回避装置10は、自車両の自動制動のための動作が、第1実施形態に係る衝突回避支援装置10と異なる。 Subsequently, a second embodiment of the collision avoidance assistance device according to one aspect of the present invention will be described. The collision avoidance assistance device according to the present embodiment has the same configuration as the collision avoidance assistance device 10 according to the first embodiment. Therefore, hereinafter, the collision avoidance assistance device according to the present embodiment is also referred to as “collision avoidance assistance device 10”. However, the collision avoidance device 10 according to the present embodiment differs from the collision avoidance support device 10 according to the first embodiment in the operation for automatic braking of the host vehicle.
 図7は、ミリ波レーダ1及び前方認識カメラ3による移動体の検出特性を説明するための図である。図7の(a)部に示されるように、自車両20からの距離D20が比較的小さい至近距離領域R25においては、ミリ波レーダ1によって検出される移動体の軌跡Trが、実際の移動体の軌跡Taから大きく乖離する場合がある。このため、図7の(b)部に示されるように、ミリ波レーダ1によって得られる横位置情報を補正した場合には、自車両20との衝突が起こらない位置となる部分P1が発生する場合がある。 FIG. 7 is a diagram for explaining detection characteristics of a moving object by the millimeter wave radar 1 and the forward recognition camera 3. As shown in part (a) of FIG. 7, in the close range R25 where the distance D20 from the host vehicle 20 is relatively small, the trajectory Tr of the moving object detected by the millimeter wave radar 1 is the actual moving object. May deviate greatly from the locus Ta. For this reason, as shown in part (b) of FIG. 7, when the lateral position information obtained by the millimeter wave radar 1 is corrected, a portion P <b> 1 that is a position where no collision with the host vehicle 20 occurs is generated. There is a case.
 そこで、本実施形態に係る衝突回避支援装置10は、以下のようにして自車両20の自動制動を実施する。図8は、本実施形態に係る衝突回避支援装置10の自動制動の処理を示すフローチャートである。なお、以下の説明においては、上述したステップS1の処理を行った後とする。 Therefore, the collision avoidance assistance device 10 according to the present embodiment performs automatic braking of the host vehicle 20 as follows. FIG. 8 is a flowchart showing the automatic braking process of the collision avoidance assistance device 10 according to this embodiment. In the following description, it is assumed that the processing in step S1 described above is performed.
 図8に示されるように、まず、移動体が自車両の至近距離にあり、且つ、横断歩行者の判定フラグがONであるか否かの判定を行う(ステップS31)。ステップS31の判定の結果、移動体が自車両の至近距離にあり、且つ、横断歩行者の判定フラグがONである場合、前方認識カメラ3による移動体の検出があるか否かの判定を行う(ステップS32)。 As shown in FIG. 8, first, it is determined whether or not the moving body is at a close distance of the host vehicle and the determination flag of the crossing pedestrian is ON (step S31). If the result of the determination in step S31 is that the moving body is in the close range of the host vehicle and the crossing pedestrian determination flag is ON, it is determined whether or not the moving body is detected by the front recognition camera 3. (Step S32).
 ステップS32の判定の結果、前方認識カメラ3による移動体の検出がある場合、移動体の横位置情報を補正する(ステップS33)。図9を参照して、ステップS33における横位置情報の補正の詳細について説明する。ステップS33では、まず、前方認識カメラ3によって得られた横位置情報に基づいて、移動体の横移動速度を推定する(ステップS41)。このステップS41においては、上述したステップS3と同様にして横移動速度を推定することができるが、特に、前方認識カメラ3によって得られた横位置情報(横位置)のみを用いる。 If the result of determination in step S32 is that the moving object is detected by the front recognition camera 3, the lateral position information of the moving object is corrected (step S33). Details of the correction of the lateral position information in step S33 will be described with reference to FIG. In step S33, first, the lateral movement speed of the moving body is estimated based on the lateral position information obtained by the front recognition camera 3 (step S41). In step S41, the lateral movement speed can be estimated in the same manner as in step S3 described above. In particular, only the lateral position information (lateral position) obtained by the front recognition camera 3 is used.
 続いて、上述したステップS4と同様にして、自車両と移動体との相対速度と、ステップS41で推定した移動体の横移動速度とに基づいて、前方認識カメラ3による移動体の横位置遅れ量を算出する(ステップS42)。そして、算出した横位置遅れ量の分だけ、前方認識カメラ3によって得られた移動体の横位置情報を補正する(ステップS43)。 Subsequently, similarly to step S4 described above, the lateral position delay of the moving body by the front recognition camera 3 based on the relative speed between the host vehicle and the moving body and the lateral movement speed of the moving body estimated in step S41. The amount is calculated (step S42). Then, the lateral position information of the moving body obtained by the front recognition camera 3 is corrected by the calculated lateral position delay amount (step S43).
 図8を参照して説明を続ける。上記のように横位置情報を補正した後、自車両と移動体との衝突の可能性があるか否かの判定を行う(ステップS34)。ここでは、例えば、自車両と移動体との衝突時間が所定の閾値以下であり、且つ、移動体が自車両の車幅内に位置している場合に、自車両と移動体との衝突の可能があると判定することができる。 The description will be continued with reference to FIG. After correcting the lateral position information as described above, it is determined whether or not there is a possibility of collision between the host vehicle and the moving body (step S34). Here, for example, when the collision time between the host vehicle and the moving body is equal to or less than a predetermined threshold and the moving body is located within the vehicle width of the host vehicle, the collision between the host vehicle and the moving body occurs. It can be determined that there is a possibility.
 ステップS34の判定の結果、自車両と移動体との衝突の可能性がある場合、自車両のドライバに自車両を制動する意思が無いか否かの判定を行う(ステップS35)。ここでは、例えば、ドライバによるブレーキの操作の有無等に基づいて、制動の意思が無いか否かの判定を行うことができる。そして、ステップS35の判定の結果、ドライバに自車両を制動する意思がない場合、自動制動を実施して(ステップS36)処理を終了する。なお、ステップS35においては、図示しないドライバカメラによるドライバの居眠り検出時や、脇見検出時、その他、車両のふらつき検出システムによるふらつき(居眠り)検出時において、自車両のドライバに自車両を制動する意思が無いと判定してもよい。 If the result of determination in step S34 is that there is a possibility of collision between the host vehicle and the moving body, it is determined whether or not the driver of the host vehicle has no intention to brake the host vehicle (step S35). Here, for example, it is possible to determine whether or not there is an intention to brake based on the presence or absence of a brake operation by the driver. If the result of determination in step S35 is that the driver does not intend to brake the host vehicle, automatic braking is performed (step S36) and the process is terminated. In step S35, when the driver's drowsiness is detected by a driver camera (not shown), when looking aside, or when the wandering (sleeping) is detected by the vehicle wander detection system, the intention of braking the own vehicle to the driver of the own vehicle. It may be determined that there is no.
 一方、ステップS31の判定の結果、移動体が自車両の至近距離にあり、且つ、横断歩行者の判定フラグがONである場合以外の場合、ミリ波レーダ1又は前方認識カメラ3による移動体の検出があるか否かの判定を行う(ステップS51)。ステップS51の判定の結果、ミリ波レーダ1又は前方認識カメラ3による移動体の検出がある場合、横断歩行者の判定フラグがONであるか否かの判定を行う(ステップS52)。 On the other hand, as a result of the determination in step S31, when the moving body is in the close range of the own vehicle and the determination flag of the crossing pedestrian is ON, the moving object is detected by the millimeter wave radar 1 or the front recognition camera 3. It is determined whether or not there is a detection (step S51). If the result of the determination in step S51 is that a moving body is detected by the millimeter wave radar 1 or the forward recognition camera 3, it is determined whether or not the crossing pedestrian determination flag is ON (step S52).
 ステップS52の判定の結果、横断歩行者の判定フラグがONである場合、横位置情報を補正する(ステップS53)。ここでは、上述したステップS33と同様にして横位置情報を補正することができるが、前方認識カメラ3によって得られた横位置情報のみに限らず、ミリ波レーダ1によって得られた横位置情報を用いてもよい。 If the determination flag of crossing pedestrian is ON as a result of the determination in step S52, the lateral position information is corrected (step S53). Here, the lateral position information can be corrected in the same manner as in step S33 described above. However, the lateral position information obtained by the millimeter wave radar 1 is not limited to the lateral position information obtained by the front recognition camera 3. It may be used.
 続いて、ステップS34と同様にして、自車両と移動体との衝突の可能性があるか否かの判定を行う(ステップS54)。ステップS54の判定の結果、自車両と移動体との衝突の可能性がある場合、ステップS35と同様にして、自車両のドライバに自車両を制動する意思が無いか否かの判定を行う(ステップS55)。ステップS55の判定の結果、ドライバに自車両を制動する意思が無い場合、自動制動を実施して(ステップS56)処理を終了する。 Subsequently, similarly to step S34, it is determined whether or not there is a possibility of collision between the host vehicle and the moving body (step S54). If the result of the determination in step S54 is that there is a possibility of collision between the host vehicle and the moving body, it is determined whether or not the driver of the host vehicle has no intention to brake the host vehicle in the same manner as in step S35. Step S55). If the result of determination in step S55 is that the driver does not intend to brake the host vehicle, automatic braking is performed (step S56) and the process is terminated.
 なお、ステップS32の判定の結果、前方認識カメラ3による移動体の検出がない場合、ステップS34,S54の判定の結果、自車両と移動体との衝突の可能性がない場合、ステップS35,S55の判定の結果、ドライバに自車両の制動の意思がある場合、ステップS51の判定の結果、ミリ波レーダ1又は前方認識カメラ3による移動体の検出が無い場合、及び、ステップS52の判定の結果、横断歩行者の判定フラグがONでない場合には、処理を終了する。 As a result of the determination in step S32, if there is no detection of the moving body by the front recognition camera 3, if the determination result in steps S34 and S54 indicates that there is no possibility of collision between the host vehicle and the moving body, steps S35 and S55. If the driver is willing to brake the vehicle as a result of the determination, the determination result in step S51 is that the moving object is not detected by the millimeter wave radar 1 or the front recognition camera 3, and the determination result in step S52. If the crossing pedestrian determination flag is not ON, the process is terminated.
 以上説明したように、本実施形態に係る衝突回避支援装置10においては、第1実施形態に係る衝突回避支援装置10と同様の理由から、適切な衝突回避支援を行うことができる。特に、本実施形態に係る衝突回避支援装置10においては、移動体が自車両の至近距離にある場合には、前方認識カメラ3からの横位置情報のみに基づいて、移動体の横移動速度を推定し、横位置情報を補正する。このため、自車両の至近距離に移動体がある場合においても、信頼性の高い横位置情報により移動体の横位置の誤判定を抑制し、適切な衝突回避支援を行うことができる。 As described above, in the collision avoidance assistance device 10 according to the present embodiment, appropriate collision avoidance support can be performed for the same reason as the collision avoidance assistance device 10 according to the first embodiment. In particular, in the collision avoidance assistance device 10 according to the present embodiment, when the moving body is at a close distance of the host vehicle, the lateral movement speed of the moving body is determined based only on the lateral position information from the front recognition camera 3. Estimate and correct lateral position information. For this reason, even when there is a moving body at a close distance of the host vehicle, it is possible to suppress erroneous determination of the lateral position of the moving body with reliable lateral position information and perform appropriate collision avoidance support.
 以上の実施形態は、本発明の一側面に係る衝突回避支援装置の一実施形態を説明したものである。したがって、本発明に係る衝突回避支援装置は、上述した衝突回避支援装置に限定されない。本発明に係る衝突回避支援装置は、各請求項の要旨を変更しない範囲において、上述した衝突回避支援装置10を任意に変形したものとすることができる。 The above embodiment describes one embodiment of the collision avoidance assistance device according to one aspect of the present invention. Therefore, the collision avoidance assistance device according to the present invention is not limited to the above-described collision avoidance assistance device. The collision avoidance assistance device according to the present invention can be arbitrarily modified from the above-described collision avoidance assistance device 10 without changing the gist of each claim.
 例えば、上記の実施形態においては、移動体が横断歩行者の場合について説明したが、自車両の左右方向について速度成分を有する任意の移動体に対して、衝突回避支援装置10を適用することができる。 For example, in the above embodiment, the case where the moving body is a crossing pedestrian has been described. However, the collision avoidance assistance device 10 can be applied to an arbitrary moving body having a speed component in the left-right direction of the host vehicle. it can.
 また、上記の実施形態においては、ブレーキECU7がブレーキシステム9を制御することにより自車両の自動制動を行うものとしたが、衝突回避支援装置10においては、自車両と移動体との衝突を回避するための任意の衝突回避支援を行うことができる。 In the above embodiment, the brake ECU 7 controls the brake system 9 to automatically brake the host vehicle. However, in the collision avoidance assistance device 10, the collision between the host vehicle and the moving body is avoided. Any collision avoidance assistance can be performed.
 さらに、第2実施形態に係る衝突回避支援装置10は、ステップS31の処理において、移動体が自車両の至近距離にあり、且つ、横断歩行者の判定フラグがONであるか否かの判定を行うものとしが、ステップS31の処理はこの態様に限定されない。例えば、ステップS31においては、自車両と移動体との相対速度が所定値よりの大きいか否かを判定することができる。この場合には、自車両と移動体との相対速度が大きい場合に、前方認識カメラ3からの横位置情報のみに基づいて、移動体の横移動速度を推定し、横位置情報を補正することとなる。したがって、自車両と移動体との相対速度が大きい場合においても、信頼度の高い横位置情報により移動体の横位置の誤判定を抑制することができる。 Furthermore, the collision avoidance assistance device 10 according to the second embodiment determines whether or not the moving body is in the close range of the own vehicle and the crossing pedestrian determination flag is ON in the process of step S31. Although it shall perform, the process of step S31 is not limited to this aspect. For example, in step S31, it can be determined whether or not the relative speed between the host vehicle and the moving body is greater than a predetermined value. In this case, when the relative speed between the host vehicle and the moving body is high, the lateral moving speed of the moving body is estimated based on only the lateral position information from the front recognition camera 3, and the lateral position information is corrected. It becomes. Therefore, even when the relative speed between the host vehicle and the moving body is large, erroneous determination of the lateral position of the moving body can be suppressed by the lateral position information with high reliability.
 本発明によれば、適切な衝突回避支援を可能とする衝突回避支援装置を提供することができる。 According to the present invention, it is possible to provide a collision avoidance support device that enables appropriate collision avoidance support.
 1…ミリ波レーダ(レーダ)、3…前方認識カメラ(カメラ)、5…センサECU(取得手段、補正手段)、10…衝突回避支援装置、20…自車両、30…移動体。 DESCRIPTION OF SYMBOLS 1 ... Millimeter wave radar (radar), 3 ... Front recognition camera (camera), 5 ... Sensor ECU (acquisition means, correction means), 10 ... Collision avoidance support device, 20 ... Own vehicle, 30 ... Moving body.

Claims (5)

  1.  自車両と移動体との衝突を回避するための衝突回避支援装置であって、
     前記自車両と前記移動体との相対速度と、前記自車両の左右方向についての前記移動体の横位置を示す横位置情報とを取得する取得手段と、
     前記横位置情報に示される前記横位置の履歴と前記相対速度とに基づいて、前記横位置情報を補正する補正手段と、
     を備えることを特徴とする衝突回避支援装置。
    A collision avoidance assistance device for avoiding a collision between the host vehicle and a moving body,
    Acquisition means for acquiring relative speed between the host vehicle and the moving body, and lateral position information indicating a lateral position of the moving body in a lateral direction of the host vehicle;
    Correction means for correcting the lateral position information based on the lateral position history and the relative speed indicated in the lateral position information;
    A collision avoidance assistance device comprising:
  2.  前記補正手段は、前記横位置の履歴に基づいて、前記自車両の左右方向についての前記移動体の移動速度を示す横移動速度を推定し、前記相対速度と前記横移動速度とを用いて前記横位置情報を補正する、ことを特徴とする請求項1に記載の衝突回避支援装置。 The correction means estimates a lateral movement speed indicating a movement speed of the moving body in the left-right direction of the host vehicle based on the lateral position history, and uses the relative speed and the lateral movement speed to The collision avoidance assistance device according to claim 1, wherein the lateral position information is corrected.
  3.  前記補正手段は、前記相対速度と前記横移動速度とに基づいて、前記移動体の横位置遅れ量を算出すると共に、算出した横位置遅れ量の分だけ前記横位置情報を補正する、ことを特徴とする請求項2に記載の衝突回避支援装置。 The correction means calculates a lateral position delay amount of the moving body based on the relative speed and the lateral movement speed, and corrects the lateral position information by the calculated lateral position delay amount. The collision avoidance assistance device according to claim 2, wherein
  4.  前記横位置遅れ量は、前記取得手段及び前記補正手段における演算時間に応じた量である、ことを特徴とする請求項3に記載の衝突回避支援装置。 4. The collision avoidance support device according to claim 3, wherein the lateral position delay amount is an amount corresponding to a calculation time in the acquisition unit and the correction unit.
  5.  前記取得手段は、カメラを用いて前記横位置情報を取得し、
     前記補正手段は、前記相対速度が所定値よりも大きい場合に、前記カメラを用いて取得した前記横位置情報に示される前記横位置の履歴に基づいて前記横位置情報を補正する、ことを特徴とする請求項1~4のいずれか一項に記載の衝突回避支援装置。
    The acquisition means acquires the lateral position information using a camera,
    The correcting means corrects the lateral position information based on the lateral position history indicated in the lateral position information acquired using the camera when the relative speed is larger than a predetermined value. The collision avoidance assistance device according to any one of claims 1 to 4.
PCT/JP2011/078800 2011-12-13 2011-12-13 Collision avoidance assistance device WO2013088516A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2011/078800 WO2013088516A1 (en) 2011-12-13 2011-12-13 Collision avoidance assistance device
JP2013548991A JP5704255B2 (en) 2011-12-13 2011-12-13 Collision avoidance support device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/078800 WO2013088516A1 (en) 2011-12-13 2011-12-13 Collision avoidance assistance device

Publications (1)

Publication Number Publication Date
WO2013088516A1 true WO2013088516A1 (en) 2013-06-20

Family

ID=48612004

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/078800 WO2013088516A1 (en) 2011-12-13 2011-12-13 Collision avoidance assistance device

Country Status (2)

Country Link
JP (1) JP5704255B2 (en)
WO (1) WO2013088516A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017183668A1 (en) * 2016-04-22 2017-10-26 株式会社デンソー Vehicle control device and vehicle control method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008082871A (en) * 2006-09-27 2008-04-10 Mazda Motor Corp Obstacle detector for vehicle
JP2008224361A (en) * 2007-03-12 2008-09-25 Xanavi Informatics Corp On-vehicle electronic device and communication system for vehicle
JP2011000896A (en) * 2009-06-16 2011-01-06 Nissan Motor Co Ltd Vehicle driving support system and vehicle driving support method
JP2011221654A (en) * 2010-04-06 2011-11-04 Toyota Motor Corp Preceding vehicle detection device, and collision warning apparatus and collision avoidance device using the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008247385A (en) * 2003-11-07 2008-10-16 Nissan Motor Co Ltd Vehicle driving operation auxiliary device and vehicle with the vehicle driving operation auxiliary device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008082871A (en) * 2006-09-27 2008-04-10 Mazda Motor Corp Obstacle detector for vehicle
JP2008224361A (en) * 2007-03-12 2008-09-25 Xanavi Informatics Corp On-vehicle electronic device and communication system for vehicle
JP2011000896A (en) * 2009-06-16 2011-01-06 Nissan Motor Co Ltd Vehicle driving support system and vehicle driving support method
JP2011221654A (en) * 2010-04-06 2011-11-04 Toyota Motor Corp Preceding vehicle detection device, and collision warning apparatus and collision avoidance device using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017183668A1 (en) * 2016-04-22 2017-10-26 株式会社デンソー Vehicle control device and vehicle control method
JP2017194926A (en) * 2016-04-22 2017-10-26 株式会社デンソー Vehicle control apparatus and vehicle control method
US11288961B2 (en) 2016-04-22 2022-03-29 Denso Corporation Vehicle control apparatus and vehicle control method

Also Published As

Publication number Publication date
JP5704255B2 (en) 2015-04-22
JPWO2013088516A1 (en) 2015-04-27

Similar Documents

Publication Publication Date Title
US10147003B2 (en) Lane detection device and method thereof, curve starting point detection device and method thereof, and steering assistance device and method thereof
JP6565893B2 (en) Driving assistance device
US9542606B2 (en) Lane line recognition apparatus
JP4400316B2 (en) Driving intention estimation device, vehicle driving assistance device, and vehicle equipped with vehicle driving assistance device
JP4229051B2 (en) Driving intention estimation device, vehicle driving assistance device, and vehicle equipped with vehicle driving assistance device
JP4062310B2 (en) Driving intention estimation device, vehicle driving assistance device, and vehicle equipped with vehicle driving assistance device
US9452759B2 (en) Vehicle-use collision mitigation apparatus
US8520954B2 (en) Apparatus for detecting lane-marking on road
US9988082B2 (en) Traveling path estimation apparatus
US10569769B2 (en) Vehicle control device
JP6458384B2 (en) Lane detection device and lane detection method
US8862326B2 (en) Vehicle travel assisting device
US9499156B2 (en) On-board apparatus
US20190118807A1 (en) Vehicle control apparatus and vehicle control method
US11560174B2 (en) Automatic steering control device
JP5083172B2 (en) Collision prediction device
JP5150958B2 (en) Vehicle travel support device, vehicle, vehicle travel support program
US20190302795A1 (en) Vehicle control device
JP4767930B2 (en) Vehicle travel safety device
JP6497329B2 (en) Vehicle travel control device
JP4850963B1 (en) Vehicle driving support device
JP4852851B2 (en) Driving intention estimation device, vehicle driving assistance device, and vehicle equipped with vehicle driving assistance device
JP5704255B2 (en) Collision avoidance support device
CN111483459A (en) Vehicle control device
JP2012014520A (en) Obstacle detection device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11877264

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013548991

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11877264

Country of ref document: EP

Kind code of ref document: A1