WO2013087028A1 - Iris recognition method and iris recognition method based on multi-directional gabor and adaboost - Google Patents

Iris recognition method and iris recognition method based on multi-directional gabor and adaboost Download PDF

Info

Publication number
WO2013087028A1
WO2013087028A1 PCT/CN2012/086678 CN2012086678W WO2013087028A1 WO 2013087028 A1 WO2013087028 A1 WO 2013087028A1 CN 2012086678 W CN2012086678 W CN 2012086678W WO 2013087028 A1 WO2013087028 A1 WO 2013087028A1
Authority
WO
WIPO (PCT)
Prior art keywords
iris
gabor
iris image
feature
formula
Prior art date
Application number
PCT/CN2012/086678
Other languages
French (fr)
Chinese (zh)
Inventor
王琪
张祥德
单成坤
刘洋
Original Assignee
北京天诚盛业科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京天诚盛业科技有限公司 filed Critical 北京天诚盛业科技有限公司
Publication of WO2013087028A1 publication Critical patent/WO2013087028A1/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/18Eye characteristics, e.g. of the iris
    • G06V40/193Preprocessing; Feature extraction

Definitions

  • Iris recognition method and iris recognition method based on multi-directional Gabor and Adaboost Technical Field The present invention relates to digital image processing and pattern recognition, and more particularly to an iris recognition method and multi-directional iris recognition method.
  • identifying items keys, ID cards, etc.
  • identifying knowledge user names, passwords, etc.
  • it has shortcomings such as easy loss, easy forgery, non-uniqueness, and relatively small application range, which makes people urgently need an identification method that can overcome the above-mentioned shortcomings.
  • Recognition technologies based on biometrics such as face, fingerprint, iris, hand shape, handwriting, etc. have emerged.
  • a multi-directional Gabor and Adaboost iris recognition method which includes the following steps:
  • the expression of feature encoding is as follows:
  • maskA ⁇ maskB Calculate the respective Hamming distances of the MXN iris image submodules corresponding to the two iris images to be matched. For each iris image submodule, 8 Hamming distances can be obtained, and the 8 Hamming distances are composed of features
  • V i HD , ,'h. , ..., HD ,, h, HD pan ⁇ -, ..., HD par, L ⁇ , ..., HD partL% 1;
  • step 1) Use the Adaboost algorithm to classify and recognize the features obtained in step 1), which specifically includes the following steps:
  • X is the multi-dimensional feature vector formed by combining the feature vector formed by the entire iris image and the feature vector after segmentation.
  • is the number of iterations
  • D l+l (i) D t (i) e xp[-a,y,h, ,)]/Z l 'Update the weights of the sample training set, and normalize the sample training set, Among them, A(0 is the weight coefficient of the first sample in the training time, and is the normalized idler;
  • the iris recognition method includes the following steps: step 1) normalize the iris image, and extract the two-dimensional Gabor feature of the normalized iris image; and step 2) calculate two iris images Corresponding to the Hamming distance between Gabor features, use the Adaboost algorithm to classify and recognize the two-dimensional Gabor features using the calculation result as a sample.
  • step 1) includes: performing Gabor filtering on the normalized iris image; encoding the filtered iris image according to the real part of the Gabor filter to obtain the feature encoding of the normalized iris image, and feature encoding As the initial two-dimensional Gabor feature of the normalized iris image.
  • step 1) also includes: dividing the normalized iris image into regions to obtain multiple iris image sub-modules; performing Gabor filtering on the multiple iris image sub-modules respectively; according to the real part of the Gabor filter
  • the filtered multiple iris image sub-modules are respectively coded to obtain feature codes of the multiple iris image sub-modules, and the feature codes of the multiple iris image sub-modules are used as the initial two-dimensional Gabor features of the normalized iris image.
  • the above-mentioned regional division of the normalized iris image includes: dividing the normalized iris image into M rows and N columns, and dividing according to the rows and columns to obtain MXN iris image sub-modules.
  • step 1) performing Gabor filtering on multiple iris image sub-modules respectively includes: filtering multiple iris image sub-modules using Gabor filters with 8 directions at the same scale, where the table of Gabor filters
  • V are the horizontal and vertical center frequencies of the Gabor filter, respectively, and ⁇ and are the spatial constants of the Gaussian envelope along the X axis and the V axis, respectively.
  • I(x, y) is the expression of the iris image
  • G(x, y) is the expression of the Gabor filter
  • sgn (ReIni) represents the real part of the filtering result
  • c (Relm) is the feature code.
  • calculating the Hamming distance between the Gabor features corresponding to two iris images includes-according to the formula: HD ⁇ co ⁇ ⁇ e ⁇ ® coc ⁇ e ⁇ ⁇ maskA ⁇
  • step 2) using the calculation result as a sample to use the Adaboost algorithm to classify and recognize the two-dimensional Gabor features includes: constructing a vector using the calculation result of the Hamming distance between the Gabor features corresponding to the two iris images, the The vector is used as a sample to use the Adaboost algorithm for classification and recognition.
  • the beneficial effects of the present invention are as follows: only a part of the iris containing less noise is used for recognition, the influence of noise is reduced, the recognition problem of low-quality iris images is well solved, and the recognition performance is very good.
  • the feature extraction of the iris image uses multi-directional Gabor wavelet at the same scale, and the expanded iris image is divided into blocks, combined with the overall and local information of the iris, and the Gabor features of the entire iris image and the iris image sub-module are extracted and coded at the same time. Then the whole and the part are combined to form a multi-dimensional feature vector, and the Adaboost algorithm is introduced for feature selection, and finally a classifier is constructed for recognition.
  • Figure 1 is a flowchart of a method for iris recognition based on multi-directional Gabor and Adaboost according to an embodiment of the present invention
  • Figures 2 (a) to 2 (h) are 8 directions of Gabor in an embodiment of the present invention
  • the schematic diagram of the real part filter Fig. 3 (a) to Fig. 3 (h) are the coding process diagrams of Gabor according to the embodiment of the present invention
  • the iris recognition method described in this embodiment is based on the multi-directional Gabor and Adaboost algorithm, and includes the following steps: Step 1) Normalize the iris image, and extract the normalization- Two-dimensional Gabor features of the transformed iris image; and
  • Step 2 Calculate the Hamming distance between the Gabor features corresponding to the two iris images, and use the Adaboost algorithm to classify and recognize the two-dimensional Gabor features using the calculation result as a sample.
  • step 1) Extract two-dimensional Gabor features from the normalized iris image.
  • the 2D Gabor filter has good resolution capabilities in the time domain and frequency domain, and the expression is as follows:
  • 0 is the angle corresponding to the direction of the pixel point (x, y), that is, the direction of the Gabor filter, and the angle between the x'axis and the X axis is 0.
  • 0 * ⁇
  • R1, R2, R3, Ul, U2, U3> Ll, L2, L3, Dl, D2, and D3 are the 12 sub-blocks obtained after block division.
  • the above-mentioned specific method of dividing the annular area of the iris image into 3 rows and 4 columns can be: taking the center of the iris as the center of the circle, and making circles according to different radii to divide It is 3 circular rings, divided into 4 radians evenly according to the radians, thereby obtaining 12 regional blocks for interpolation mapping.
  • the Hamming distance is used as the similarity measure, and the Gabor codes of the two images are XORed.
  • Figure 3 (a) and Figure 3 (b) are schematic diagrams of the real and imaginary parts of the Gabor filter, respectively, and Figure 3 (c) and Figure 3 (d) are two normalized iris images, Figure 3 (e) and Figure 3 (0 is the first iris image Figure 3 (c) Gabor code filtered by the Gabor filter of Figure 3 (a) and Figure 3 (b), Figure 3 (g) and Figure 3 (h) is the second iris image.
  • Figure 3 (f) and Figure 3 (h) for XOR operation.
  • the Adaboost algorithm uses a large number of simple classifiers (weak classifiers) with general classification capabilities, which are combined through certain methods to form a classifier with strong classification capabilities.
  • the iris recognition problem is a typical classification problem.
  • each weak classifier the Hamming distance calculated above
  • the classification judgment is made according to the size of the weak classifier threshold
  • the iris recognition process is the process of Adaboost selecting features, that is The process of selecting weak classifiers.
  • V [HD' hoM ,..., HD, HD ⁇ ⁇ ,-, HZ) — 8 ] (12) as a sample, that is, X in the training set; shooting for the same human eye
  • the Adaboost algorithm for training, select good classification features, and then combine these classification features into a stronger classifier.
  • the Gabor code is the final Gabor feature of the iris, which is used for iris comparison.
  • the Gabor feature of the module is coded, and then the whole and the part are combined to form a multi-dimensional feature vector, and the Adaboost algorithm is introduced for feature selection, and finally a classifier is constructed for recognition.
  • modules or steps of the present invention can be implemented by a general computing device, and they can be concentrated on a single computing device or distributed in a network composed of multiple computing devices.
  • they can be implemented by program codes executable by the computing device, so that they can be stored in the storage device and executed by the computing device, or they can be made into individual integrated circuit modules respectively, or they can be made into various integrated circuit modules.
  • the multiple modules or steps are made into a single integrated circuit module to achieve.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Collating Specific Patterns (AREA)
  • Image Analysis (AREA)

Abstract

Disclosed are an iris recognition method and an iris recognition method based on multi-directional Gabor and Adaboost. The method includes: step 1) retrieving a 2D Gabor feature from a normalized iris image; and step 2) performing classified recognition on the feature obtained in step 1) by using an Adaboost algorithm. Multi-directional Gabor wavelets in one same dimension are adopted to retrieve the feature, at the same time the expanded iris image is divided into blocks, and in combination with the integral information and local information of the iris, the Gabor features of the entire iris image and an iris image submodule are retrieved at the same time and coding is performed. Next, the integral information and the local information are combined to form a multidimensional feature vector, and the Adaboost algorithm is introduced to select features, and eventually a classifier is constructed for recognition. The beneficial effects of the present invention lie in that: only a part, containing a few noises, of the iris is used for recognition, thereby reducing the influences of noises, desirably solving the problem in recognizing a low quality iris image, and having desirable recognition performance.

Description

虹膜识别方法和基于多方向 Gabor和 Adaboost虹膜识别方法 技术领域 本发明涉及数字图像处理和模式识别, 尤其涉及一种虹膜识别方法和基于多方向 Iris recognition method and iris recognition method based on multi-directional Gabor and Adaboost Technical Field The present invention relates to digital image processing and pattern recognition, and more particularly to an iris recognition method and multi-directional iris recognition method.
Gabor和 Adaboost的虹膜识别方法, 属于生物特征识别及安全认证技术领域。 背景技术 在现代社会中, 随着网络技术的高度发展、人员流动的急剧频繁, -种安全可靠、 方便髙效的身份认证系统显得尤为重要。 传统的身份识别主要有两种: 标识物品 (钥 匙、身份证件等)和标识知识(用户名、密码等)。但在实际应用中, 其存在易丢失性、 易伪造性、 非唯一性和应用范 ( 相对较小等不足, 使人们迫切需要一种可以克服上述 缺陷的身份识别方法。 在需求的驱动下, 基于人脸、 指纹、 虹膜、 手形、 笔迹等生物 特征的识别技术应运而生。 目前, 国内外有很多虹膜识别系统。 虹膜特征提取是影响虹膜识别系统性能的主 要因素之一, 现有的虹膜识别算法大多对虹膜图像的质量要求较高。 然而, 自然光下 采集得到的虹膜图像会受到睫毛、 眼睑、 光照、 晃动等丙素的影响, 致使采集到的虹 膜图像质量欠佳, 针对这类低质量虹膜图像, 需要一种有效的虹膜特征提取和识别算 法。 发明内容 本发明的目的是提供 -种虹膜识别方法, 尤其是一种基于多方向 Gabor 和 Adaboost虹膜识别方法, 具有很好的识别性能, 克服了现有技术上述方面的不足。 本发明的目的是通过以下技术方案来实现: 一种基于多方向 Gabor和 Adaboost虹膜识别方法, 其包括如下步骤: The iris recognition methods of Gabor and Adaboost belong to the technical field of biometric identification and security authentication. BACKGROUND In modern society, with the rapid development of network technology and the rapid and frequent flow of people, a safe, reliable, convenient and efficient identity authentication system is particularly important. There are two main types of traditional identification: identifying items (keys, ID cards, etc.) and identifying knowledge (user names, passwords, etc.). However, in practical applications, it has shortcomings such as easy loss, easy forgery, non-uniqueness, and relatively small application range, which makes people urgently need an identification method that can overcome the above-mentioned shortcomings. Driven by demand, Recognition technologies based on biometrics such as face, fingerprint, iris, hand shape, handwriting, etc. have emerged. At present, there are many iris recognition systems at home and abroad. Iris feature extraction is one of the main factors affecting the performance of iris recognition systems. The existing iris Most recognition algorithms have high requirements for the quality of iris images. However, the iris images collected under natural light will be affected by the eyelashes, eyelids, light, shaking, etc., resulting in poor iris image quality. Quality iris images require an effective iris feature extraction and recognition algorithm. SUMMARY OF THE INVENTION The purpose of the present invention is to provide an iris recognition method, especially an iris recognition method based on multi-directional Gabor and Adaboost, which has good recognition performance This overcomes the above-mentioned shortcomings of the prior art. The purpose of the present invention is achieved through the following technical solutions: A multi-directional Gabor and Adaboost iris recognition method, which includes the following steps:
1 ) 对归一化的虹膜图像提取二维 Gabor特征, 其具体包括以下步骤: 1) Extracting two-dimensional Gabor features from a normalized iris image, which specifically includes the following steps:
1.1 ) 将展开的虹膜图像均匀划分为 M行、 N列, 得到 M XN个虹膜图像子模块; 1.1) Divide the expanded iris image evenly into M rows and N columns to obtain M×N iris image sub-modules;
替换页 (细则第 26条) 1.2) 使用同 尺度八个方向的 Gabor滤波器作用于步骤 1.1) 屮归 ·化后的虹膜 图像子模块, 然后根据 Gabor实部对图像滤波结果的正负进行编码; 其屮 Gabor滤波 器的表达式如下: Replacement page (Article 26 of the Rules) 1.2) Use Gabor filters with eight directions of the same scale to act on step 1.1) The normalized iris image sub-module, and then encode the positive and negative results of the image filtering according to the Gabor real part; the expression of the Gabor filter The formula is as follows:
(j{x, y) = exp 1 1 exp , x =xcos9 + ysm0 , χ > (j{x, y) = exp 1 1 exp, x = xcos9 + ysm0, χ>
y' = -xsm0 + ycose , 是 Gabor滤波器的方向, 6» = z'r/8, = 0,1,2,···7 , [/和 分 别为 Gabor滤波器的水平和垂直中心频率, δ和 分别是高斯包络沿着 X轴和 轴的 空间常数, 其代表 Gabor滤波器的尺度; 特征编码的表达式如下: y'= -xsm0 + ycose, is the direction of the Gabor filter, 6» = z'r/8, = 0,1,2,···7, [/ and are the horizontal and vertical center frequencies of the Gabor filter, respectively , Δ and are the spatial constants of the Gaussian envelope along the X axis and the axis respectively, which represent the scale of the Gabor filter; the expression of feature encoding is as follows:
C{Re.Im} y) = Sgn{Re.Imi U ^, * G(X^ ]; 其屮 /是虹膜图像, G是 Gabor滤波器, sgn(Relmi表示滤波结果的实部, c{ReIm>为 特征编码: C {R e .Im} y) = S g n {Re.Imi U ^, * G ( X ^ ]; its 屮/is the iris image, G is the Gabor filter, sgn ( Relmi represents the real part of the filtering result, c {ReIm> is the feature code:
1.3) 按照公式: 1.3) According to the formula:
HQHQ
Figure imgf000004_0001
Figure imgf000004_0001
maskA Π maskB 计算需匹配的两个虹膜图像对应的 MXN个虹膜图像子模块各自的汉明距离, 对 于每个虹膜图像子模块, 可以得到 8个汉明距离, 将 8个汉明距离构成的特征向量记 为 Vwhole , VM = [ DKhalel ' HDHhoIe2 ,···, HDKlwk ]; 其中 code A和 code B分别表示两个虹膜图像的 Gabor特征编码; mask A和 mask B 分别表示两个虹膜图像的噪声模板, 其值为 "1 "时代表有效虹膜部分, 为" 0"时代表 噪声; 1.4)令L=MXN, 按照步骤 1.3) 中汉明计算公式得到 8XL个汉明距离 Vpart, 记 为: maskA Π maskB Calculate the respective Hamming distances of the MXN iris image submodules corresponding to the two iris images to be matched. For each iris image submodule, 8 Hamming distances can be obtained, and the 8 Hamming distances are composed of features The vector is denoted as V whole , V M = [D Khalel 'HD HhoIe2 ,···, HD Klwk ]; where code A and code B respectively represent the Gabor feature codes of two iris images; mask A and mask B represent two respectively The noise template of the iris image. When the value is "1", it represents the effective iris part, and when it is "0", it represents the noise; 1.4) Let L=MXN, and obtain 8XL Hamming distances V part according to the Hamming calculation formula in step 1.3) , Denoted as:
V ^HD ―、, HD 、—2,"' Dy .. 、,"' V ^HD ―,, HD, — 2 ,"' Dy .. ,,"'
1.5) 将整个虹膜图像的汉明距离 Vpart与虹膜图像子模块的汉明距离 ^ ^合并, 组成一个维数是 8+8XMXN的特征向量 V, V=[Vwhoie,Vpart], 即: 1.5) Combine the Hamming distance V part of the entire iris image with the Hamming distance ^ ^ of the iris image submodule to form a feature vector V with a dimension of 8+8XMXN, V=[V who i e ,V part ], which is:
替换页 (细则第 26条) V = iHD、、'h。 ,…, HD、、h , HDpan\-,…, HDpar,L \,…, HD partL % 1; Replacement page (Article 26 of the Rules) V = i HD , ,'h. , …, HD ,, h, HD pan\-, …, HD par, L \, …, HD partL% 1;
2)使用 Adaboost算法对步骤 1)屮得到的特征进行分类识别,其具体包括以下步 骤: 2) Use the Adaboost algorithm to classify and recognize the features obtained in step 1), which specifically includes the following steps:
2.1) 设置一个样本训练集 {(X,, ),···,(½, )}, X, = {¾,···,¾»}, , e{+l,-l} . i=l , 2, ..., N, M是向量 jc,.的维数, 其巾: 2.1) Set up a sample training set {(X,, ),···, (½, )}, X, = {¾,···,¾»},, e{+l,-l}. I= l, 2, ..., N, M are the dimensions of the vector jc,.
X是整个虹膜图像形成的特征向量与分块之后的特征向量结合而成的多维特征向 量, 当两张虹膜图像子模块来自同 -人眼时, y=l, 否则 y=-l ; X is the multi-dimensional feature vector formed by combining the feature vector formed by the entire iris image and the feature vector after segmentation. When the two iris image sub-modules are from the same human eye, y=l, otherwise y=-l ;
2.2) 通过公式:
Figure imgf000005_0001
, 对样本训练集进行权重初始化, 然后对有权重分布的样本 训练集进行训练学习, 得到一个弱分类器
2.2) By formula:
Figure imgf000005_0001
, Perform weight initialization on the sample training set, and then train and learn the weight distribution of the sample training set to obtain a weak classifier
Λ, : →{-1,1} ; t=l, 2, ..., T, Τ为迭代次数; Λ,: →{-1,1}; t=l, 2, ..., T, Τ is the number of iterations;
2.3) 选择步骤 1) 中的一个特征, 然后通过公式- =∑,C ,), m=12'…' Μ' 计算出弱分类器 ,在样本训练集中的分类错误率^,记 s, =min m,当 f,≥0.5时, 令 T=t-1, 并跳出循环; 2.3) Select a feature in step 1), and then use the formula-=∑,C ,), m=1 , 2 '...' Μ 'to calculate the weak classifier, the classification error rate in the sample training set ^, mark s , =mi nm , when f,≥0.5, let T=t-1, and jump out of the loop;
2.4) 通过公式: α( = 0.5 xln[(l , 计算出弱分类器 的权重《,; 2.4) Through the formula: α ( = 0.5 xln[(l, calculate the weight of the weak classifier ",;
2.5) 通过公式: 2.5) By formula:
Dl+l(i) = Dt(i)exp[-a,y,h, ,)]/Zl ' 更新样本训练集权重, 并且对样本训练集进行 归一化, 在式屮, 其中 A(0是第 个样本在第 <次训练时的权重系数, 是归一化闲 子; D l+l (i) = D t (i) e xp[-a,y,h, ,)]/Z l 'Update the weights of the sample training set, and normalize the sample training set, Among them, A(0 is the weight coefficient of the first sample in the training time, and is the normalized idler;
2.6) 最后根据公式: 2.6) Finally according to the formula:
替换页 (细则第 26条) H(x) = sign(^a,h,(^) > 获得最终的分类器, 该分类器的特征即为虹膜图像屮 特征向量 V的特征, 识别完成。 根据本发明的另一个方面还提出了一种虹膜识别方法。 该虹膜识别方法, 包括如 下步骤: 步骤 1 )将虹膜图像进行归 -化, 提取归一化后的虹膜图像的二维 Gabor特 征; 以及步骤 2) 计算两幅虹膜图像对应 Gabor特征之间的汉明距离, 将计算结果作 为样本使用 Adaboost算法对二维 Gabor特征进行分类识别。 进一步地, 步骤 1)包括: 对归 -化后的虹膜图像进行 Gabor滤波; 根据 Gabor 滤波器的实部对滤波后的虹膜图像进行编码, 得到归一化后的虹膜图像的特征编码, 特征编码作为归 · -化后的虹膜图像的初始二维 Gabor特征。 进…步地, 步骤 1)还包括: 对归 ·化后的虹膜图像进行区域划分, 得到多个虹 膜图像子模块; 对多个虹膜图像子模块分别进行 Gabor滤波; 根据 Gabor滤波器的实 部对滤波后的多个虹膜图像子模块分别进行编码, 得到多个虹膜图像子模块的特征编 码,多个虹膜图像子模块的特征编码作为归 -化后的虹膜图像的初始二维 Gabor特征。 进 -步地, 上述对归一化后的虹膜图像进行区域划分包括: 将归一化的虹膜图像 划分为 M行、 N列, 按照行列进行划分得到 MXN个虹膜图像子模块。 进一步地, 步骤 1) 中对多个虹膜图像子模块分别进行 Gabor滤波包括: 使用同 -尺度 8个方向的 Gabor滤波器多个虹膜图像子模块进行滤波, 其中, Gabor滤波器 的表
Figure imgf000006_0001
式屮, x'-cosS + jvsin6>, = - xsin0 + ycos >, 6>是 Gabor滤波器的方向, 6> = /;r/8, ι = 0,1, 2,·-·7 , U和 V分别为 Gabor滤波器的水平和垂直中心频率, ^和 分别是高 斯包络沿着 X轴和. V轴的空间常数。 进一步地, 根据 Gabor滤波器的实部对滤波后的多个虹膜图像子模块分别进行编 码包括: 使用以下公式根据 Gabor滤波器的实部对滤波后的虹膜图像子模块分别进行编 码: c(Re,in,} y) = sgn{Re lm}[/( , y) * G(x, y)];
Replacement page (Article 26 of the Rules) H(x) = sign(^a,h,(^)> Obtain the final classifier, the feature of the classifier is the feature of the iris image 屮 feature vector V, and the recognition is completed. According to another aspect of the present invention, it is also proposed An iris recognition method is provided. The iris recognition method includes the following steps: step 1) normalize the iris image, and extract the two-dimensional Gabor feature of the normalized iris image; and step 2) calculate two iris images Corresponding to the Hamming distance between Gabor features, use the Adaboost algorithm to classify and recognize the two-dimensional Gabor features using the calculation result as a sample. Further, step 1) includes: performing Gabor filtering on the normalized iris image; encoding the filtered iris image according to the real part of the Gabor filter to obtain the feature encoding of the normalized iris image, and feature encoding As the initial two-dimensional Gabor feature of the normalized iris image. Further, step 1) also includes: dividing the normalized iris image into regions to obtain multiple iris image sub-modules; performing Gabor filtering on the multiple iris image sub-modules respectively; according to the real part of the Gabor filter The filtered multiple iris image sub-modules are respectively coded to obtain feature codes of the multiple iris image sub-modules, and the feature codes of the multiple iris image sub-modules are used as the initial two-dimensional Gabor features of the normalized iris image. Further, the above-mentioned regional division of the normalized iris image includes: dividing the normalized iris image into M rows and N columns, and dividing according to the rows and columns to obtain MXN iris image sub-modules. Further, in step 1), performing Gabor filtering on multiple iris image sub-modules respectively includes: filtering multiple iris image sub-modules using Gabor filters with 8 directions at the same scale, where the table of Gabor filters
Figure imgf000006_0001
The formula, x'-cosS + jvsin6>, =-xsin0 + ycos>, 6> is the direction of the Gabor filter, 6> = /;r/8, ι = 0,1, 2,·-·7, U And V are the horizontal and vertical center frequencies of the Gabor filter, respectively, and ^ and are the spatial constants of the Gaussian envelope along the X axis and the V axis, respectively. Further, separately encoding the filtered multiple iris image sub-modules according to the real part of the Gabor filter includes: respectively encoding the filtered iris image sub-modules according to the real part of the Gabor filter using the following formula: c(Re ,in,} y) = sgn {Re lm} [/(, y) * G(x, y)];
替换页 (细则第 26条) 在式中,I(x,y)是虹膜图像的表达式, G(x, y)是 Gabor滤波器的表达式, sgn(ReIni} 表示滤波结果的实部, c(Relm)为特征编码。 进一步地, 计算两幅虹膜图像对应 Gabor特征之间的汉明距离包括- 按照公式: HD ^co<^e^ ® coc^e^ Π maskA Π Replacement page (Article 26 of the Rules) In the formula, I(x, y) is the expression of the iris image, G(x, y) is the expression of the Gabor filter, sgn (ReIni) represents the real part of the filtering result, and c (Relm) is the feature code. Further, calculating the Hamming distance between the Gabor features corresponding to two iris images includes-according to the formula: HD ^ co< ^ e ^ ® coc ^ e ^ Π maskA Π
maskA Π maskB 计算两幅虹膜图像对应 Gabor特征之间的汉明距离, 在式屮, codeA和 codeB分 别表示两幅虹膜图像的对应的特征编码; maskA和 maskB分别表示两幅虹膜图像的噪 声模板。 进一步地, 步骤 2) 中将计算结果作为样本使用 Adaboost算法对二维 Gabor特征 进行分类识别包括: 利用两幅虹膜图像对应 Gabor特征之间的汉明距离的计算结果构 建- --个向量, 该向量作为样本使用 Adaboost算法进行分类识别。 进 -步地, 步骤 2) 屮该向量作为样本使用 Adaboost算法进行分类识别包括: 步骤 2.1)设置 -个样本训练集 {(Χ,, ) .·,^^)}, A ={½,···, }, . e{+l,- 1}, i=l, 2, ..., N, M是向量; c,的维数, 其屮, x是归一化后两张虹膜图像的汉明距离组 成的向量, y的取值为: 两张虹膜图像子模块来自同一人眼时, ^=1, 否则 y = 步骤 2.2)通过公式: D、{T} = \lN,i = \,'''N , 对样本训练集进行权重初始化, 然后 对有权重分布的样本训练集进行训练学习, 得到 ·个弱分类器 ; ht :x^{-\,\) t^l, 2, ..., T, 其屮 Τ为迭代次数; 步骤 2.3 ) 选择步骤 1 ) 中的一个二维 Gabor 特征, 然后通过公式: =∑Λ,( , m=l, 2, …, M, 计算出弱分类器/ 在样本训练集屮的分类错误率 ,记εt =min^,当 £,≥0.5时, 令 T=t-1, 并跳出循环; 步骤 2.4)通过公式: a, =0.5xln[(l_s)/f,], 计算出弱分类器 的权重 ; maskA Π maskB calculates the Hamming distance between the Gabor features of two iris images. In the formula, codeA and codeB respectively represent the corresponding feature codes of the two iris images; maskA and maskB represent the noise templates of the two iris images respectively. Further, in step 2), using the calculation result as a sample to use the Adaboost algorithm to classify and recognize the two-dimensional Gabor features includes: constructing a vector using the calculation result of the Hamming distance between the Gabor features corresponding to the two iris images, the The vector is used as a sample to use the Adaboost algorithm for classification and recognition. Further, step 2) Use the Adaboost algorithm to classify and recognize the vector as a sample, including: Step 2.1) Set a sample training set {(Χ,,) .·,^^)}, A ={½,· . ··,}, e {+ l, - 1}, i = l, 2, ..., N, M is a vector; C rear, the dimension of which Cao, x is the normalized two iris images The value of y is: When the two iris image sub-modules are from the same human eye, ^=1, otherwise y = Step 2.2) Pass the formula: D, {T} = \lN,i = \,'''N, initialize the weight of the sample training set, and then train and learn the weight distribution of the sample training set to obtain a weak classifier ; h t :x^{-\,\) t^l, 2, ..., T, where Τ is the number of iterations; Step 2.3) Select a two-dimensional Gabor feature in Step 1), and then use the formula: =∑ Λ , ( , m =l, 2, …, M, Calculate the classification error rate of the weak classifier/in the sample training set, record ε t =min^, when £ ,≥0.5, let T=t-1, and jump out of the loop; Step 2.4) Pass the formula: a, = 0.5xln[(l_s)/f,], calculate the weight of the weak classifier ;
替换页 (细则第 26条) 步骤 2.5 )通过公式: ί ,+ ) = £), (^Χρ[-α( (χ, )]/Ζ,, 更新样本训练集权重, 并 且对样本训练集进行归一化, 在式屮, 其屮 Dt(i)是第 i个样本在第 t次训练时的权重 系数, 是归一化因子; 步骤 2.6 )根据公式: H(x) = ^«( «»)), 获得最终的分类器, 该分类器的 特征 Η ( x) 即为最终分类器, 完成训练; 步骤 2.7 )把 Adaboost训练出来的分类器对应的 Gabor编码作为最终的虹膜特征, 用于虹膜图像对比。 本发明的有益效果为: 仅使用虹膜中少含噪声的一部分进行识别, 减少了噪声的 影响, 很好地解决了低质量虹膜图像的识别问题, 具有很好的识别性能。 虹膜图像的 特征提取采用同一尺度下多方向的 Gabor小波, 同时将展幵的虹膜图像进行分块, 结 合虹膜的整体和局部信息, 同时提取整个虹膜图像和虹膜图像子模块的 Gabor特征并 且编码, 然后将整体与局部结合起来形成多维特征向量, 并且引入 Adaboost算法进行 特征选择, 最后构造分类器进行识别。 附图说明 构成本申请的一部分的说明书附图用来提供对本发明的进一步理解, 本发明的示 意性实施例及其说明用于解释本发明, 并不构成对本发明的不当限定。 在附图屮- 图 1是本发明实施例所述的基于多方向 Gabor和 Adaboost虹膜识别方法的流程图; 图 2 ( a) 至图 2 (h) 是本发明实施例屮 8个方向的 Gabor实部滤波器的示意图; 图 3 ( a) 至图 3 (h) 是本发明实施例屮 Gabor的编码过程图; 图 4 (a) 至图 4 ( d) 是本发明实施例屮虹胰分块的示意图。 具体实施方式 如图 1 所示, 本实施例所述的一种虹膜识别方法, 该方法基于多方向 Gabor和 Adaboost算法, 其包括如下步骤: 步骤 1 ) 将虹膜图像进行归一化, 提取归 -化后的虹膜图像的二维 Gabor特征; 以及 Replacement page (Article 26 of the Rules) Step 2.5) Through the formula: ί, + ) = £), (^ Χ ρ[- α( (χ, )]/Ζ,, update the weights of the sample training set, and normalize the sample training set, in Equation, where Dt(i) is the weight coefficient of the i-th sample in the t-th training, and is the normalization factor; Step 2.6) According to the formula: H(x) = ^«( «»)), obtain For the final classifier, the feature H(x) of the classifier is the final classifier, and the training is completed; Step 2.7) Use the Gabor code corresponding to the classifier trained by Adaboost as the final iris feature for iris image comparison. The beneficial effects of the present invention are as follows: only a part of the iris containing less noise is used for recognition, the influence of noise is reduced, the recognition problem of low-quality iris images is well solved, and the recognition performance is very good. The feature extraction of the iris image uses multi-directional Gabor wavelet at the same scale, and the expanded iris image is divided into blocks, combined with the overall and local information of the iris, and the Gabor features of the entire iris image and the iris image sub-module are extracted and coded at the same time. Then the whole and the part are combined to form a multi-dimensional feature vector, and the Adaboost algorithm is introduced for feature selection, and finally a classifier is constructed for recognition. BRIEF DESCRIPTION OF THE DRAWINGS The accompanying drawings constituting a part of the present application are used to provide a further understanding of the present invention. The exemplary embodiments and descriptions of the present invention are used to explain the present invention, and do not constitute an improper limitation of the present invention. In the accompanying drawings-Figure 1 is a flowchart of a method for iris recognition based on multi-directional Gabor and Adaboost according to an embodiment of the present invention; Figures 2 (a) to 2 (h) are 8 directions of Gabor in an embodiment of the present invention The schematic diagram of the real part filter; Fig. 3 (a) to Fig. 3 (h) are the coding process diagrams of Gabor according to the embodiment of the present invention; Fig. 4 (a) to Fig. 4 (d) are the embodiment of the present invention Schematic diagram of the block. DETAILED DESCRIPTION As shown in FIG. 1, the iris recognition method described in this embodiment is based on the multi-directional Gabor and Adaboost algorithm, and includes the following steps: Step 1) Normalize the iris image, and extract the normalization- Two-dimensional Gabor features of the transformed iris image; and
替换页 (细则第 26条) 步骤 2) 计算两幅虹膜图像对应 Gabor特征之间的汉明距离, 将计算结果作为样 本使用 Adaboost算法对所述二维 Gabor特征进行分类识别。 其屮, 步骤 1)对归一化的虹膜图像提取二维 Gabor特征, 2D Gabor滤波器由于 在时域和频域具有良好的分辨能力, 表达式如下:
Figure imgf000009_0001
Replacement page (Article 26 of the Rules) Step 2) Calculate the Hamming distance between the Gabor features corresponding to the two iris images, and use the Adaboost algorithm to classify and recognize the two-dimensional Gabor features using the calculation result as a sample. First, step 1) Extract two-dimensional Gabor features from the normalized iris image. The 2D Gabor filter has good resolution capabilities in the time domain and frequency domain, and the expression is as follows:
Figure imgf000009_0001
2πδχδ). 其中, 0为像素点 (x, y) 的方向对应的角度, 也即 Gabor滤波器的方向, x' 轴 与 X轴的夹角为 0。 其中, 0 = *^,ί' = Ο,1,2...,7时, 八方向滤波器依次如图 2 (a) 至 2πδ χ δ ) . Among them, 0 is the angle corresponding to the direction of the pixel point (x, y), that is, the direction of the Gabor filter, and the angle between the x'axis and the X axis is 0. Among them, when 0 = *^, ί'= Ο,1,2...,7, the eight-direction filter is shown in Figure 2 (a) to
8 8
图 2 (h) 所示, 和 分别是高斯包络沿着 X轴和 y轴的空间常数, 和 的取值 优选为 4.0, f为纹线频率。如图 2所示,本发明的实施例使用同一尺度多方向的 Gabor 滤波器,具体地,可以使用 8个方向的 Gabor滤波器,从而 8个方向分别对应 0 = /8, !' = 0,1,2,···7。 将这 8个二维 Gabor滤波器作用于归一化后的虹膜图像, 使用滤波结果的象限进 行编码, 表示如下: ciReMi ( y) = sgn{Rc lm) [I(x, y) * G(x, y)] ( 2 ) 其屮 I是虹膜图像, G是 Gabor滤波器, sgn|Relmi表示滤波结果的实部, c(ReIm>为 特征编码。 整个虹膜区域包含了光斑、 睫毛等噪声, 因此当仅使用虹膜屮少含噪声的某 _ -部 分进行识别时, 可以从一定程度上减少噪声的影响, 反而有可能提高识别性能。闵此, 本实施例屮可以将展开的虹膜图像均匀划分为 M行、 N列,这样就得到 Λ xN个子块, 图 4 (a)至图 4 (d) 是本发明实施例中虹膜分块的示意图, 其中图 4 (a)和图 4 (b) 为待分块的虹膜图像, 按照虹膜图像的环形区域分为 3行 4列(即 M=3、 N=4), 从而 得到 12个子块, 图中 Rl、 R2、 R3、 Ul、 U2、 U3> Ll、 L2、 L3、 Dl、 D2、 D3就是 分块后得到的 12个子块。为了方便 Gabor编码,将原虹膜图像的扇形区域运用双二次 线性插值映射为方形区域, 图 4 (c)和图 4 (d)即为得到的用于 Gabor编码的 M X N =12 个子块。 从而除了整体识别之外, 同吋对图像的不同部分分别进行识别, 提高识别的 正确性。 As shown in Figure 2 (h), and are the spatial constants of the Gaussian envelope along the X-axis and the y-axis, respectively, and the value of the sum is preferably 4.0, and f is the ridge frequency. As shown in FIG. 2, the embodiment of the present invention uses Gabor filters with the same scale and multiple directions. Specifically, Gabor filters with 8 directions can be used, so that the 8 directions respectively correspond to 0 = /8, !'= 0, 1,2,...7. Apply these 8 two-dimensional Gabor filters to the normalized iris image, and use the quadrant of the filtering result to encode, which is expressed as follows: c iReMi (y) = sgn {Rc lm) [I(x, y) * G (x, y)] (2) The I is the iris image, G is the Gabor filter, sgn |Relmi is the real part of the filtering result, and c (ReIm> is the feature code. The entire iris area contains noise such as light spots and eyelashes. Therefore, when only a certain part of the iris with less noise is used for recognition, the influence of noise can be reduced to a certain extent, and the recognition performance may be improved. Therefore, the present embodiment can uniformly expand the iris image. Divide into M rows and N columns, so that Λ x N sub-blocks are obtained. Figures 4 (a) to 4 (d) are schematic diagrams of iris block in an embodiment of the present invention, in which Figure 4 (a) and Figure 4 (b) ) Is the iris image to be divided into 3 rows and 4 columns according to the annular area of the iris image (ie M=3, N=4), so that 12 sub-blocks are obtained. In the figure, R1, R2, R3, Ul, U2, U3> Ll, L2, L3, Dl, D2, and D3 are the 12 sub-blocks obtained after block division. In order to facilitate Gabor coding, the fan-shaped area of the original iris image is mapped to a square area using biquadratic linear interpolation, as shown in Figure 4 (c ) And Figure 4 (d) are the obtained MXN=12 sub-blocks used for Gabor coding. Thus, in addition to the overall recognition, different parts of the image are recognized separately at the same time to improve the accuracy of recognition.
替换页 (细则第 26条) 按照图 4 (a)至图 4 (d) 的划分方法, 上述按照虹膜图像的环形区域分为 3行 4 列的具体方式可以为: 按照虹膜屮心的作为圆心, 按照不同半径做圆, 划分为 3个圆 环, 按照弧度均匀分为 4个弧度, 从而得到 12个区域分块, 以进行插值映射。 本发明步骤 2) 中釆用汉明距离(Hamming distance)作为相似性度量, 将两幅图 像的 Gabor编码进行异或运算。 如图 3所示, 图 3 (a)和图 3 (b) 分别是 Gabor滤波 器的实部和虚部示意图, 图 3 (c) 和图 3 (d) 是两幅归 -化虹膜图像, 图 3 (e) 和 图 3 (0是第一幅虹膜图像图 3 (c)利用图 3 (a) 和图 3 (b) 屮的 Gabor滤波器滤 波得到的 Gabor编码, 图 3 (g)和图 3 (h) 是第二幅虹膜图像图 3 (d)利 |†j图 3 (a) 和图 3 (b) 中的 Gabor滤波器滤波得到的 Gabor编码。 计算需要分别将图 3 (e)和图 3 (g) 进行异或运算、 图 3 (f) 和图 3 (h) 进行异或运算。 即匹配时分别将图 3 (e) 和图 3 (g) 进行比对、 图 3 (f) 和图 3 (h) 进行比对。 考虑两幅图像屮的噪声, 将有效像素点的异或结果加和除以有效像素点的个数作 为一个特征值, 即为汉明距离, 公式如下:
Figure imgf000010_0001
其屮 codeA和 codeB分别是虹膜图像 A和虹膜图像 B的 Gabor特征编码; 和 分别表示虹膜图像 A和虹膜图像 B的噪声模板, 其值为 "1"时代表有效虹膜 部分, 为 "0"时代表噪声。 首先, 计算整个虹膜展开图像的 Gabor编码的汉明距离, 由于本发明选取了 8个 方向的 Gabor滤波器, 所以可以得到 8个汉明距离构成的向量, 记为: Vwhole = [HDKhM , HDMe2, ..., HDKhokt ] ( 4 ) 然后, 计算两个虹膜图像对应的 个分块各自对应的汉明距离, 对于每个子 块, 可以对应得到 8个汉明距离, 令 = ATxN, 就可以得到 8>< 个汉明距离, 记为:
Replacement page (Article 26 of the Rules) According to the division method shown in Fig. 4(a) to Fig. 4(d), the above-mentioned specific method of dividing the annular area of the iris image into 3 rows and 4 columns can be: taking the center of the iris as the center of the circle, and making circles according to different radii to divide It is 3 circular rings, divided into 4 radians evenly according to the radians, thereby obtaining 12 regional blocks for interpolation mapping. In step 2) of the present invention, the Hamming distance is used as the similarity measure, and the Gabor codes of the two images are XORed. As shown in Figure 3, Figure 3 (a) and Figure 3 (b) are schematic diagrams of the real and imaginary parts of the Gabor filter, respectively, and Figure 3 (c) and Figure 3 (d) are two normalized iris images, Figure 3 (e) and Figure 3 (0 is the first iris image Figure 3 (c) Gabor code filtered by the Gabor filter of Figure 3 (a) and Figure 3 (b), Figure 3 (g) and Figure 3 (h) is the second iris image. Figure 3 (d) and the Gabor code obtained by the Gabor filter in Figure 3 (a) and Figure 3 (b). Figure 3 (e) ) And Figure 3 (g) for XOR operation, Figure 3 (f) and Figure 3 (h) for XOR operation. That is, when matching, compare Figure 3 (e) and Figure 3 (g), Figure 3 (f) Compare with Figure 3 (h). Consider the noise of two images, add the XOR result of effective pixels and divide by the number of effective pixels as a feature value, which is the Hamming distance. The formula is as follows:
Figure imgf000010_0001
Its codeA and codeB are the Gabor feature codes of iris image A and iris image B respectively; and respectively represent the noise template of iris image A and iris image B. When the value is "1", it represents the effective iris part, and when it is "0" Represents noise. First, calculate the Hamming distance of the Gabor encoding of the entire iris expanded image. Since the present invention selects Gabor filters in 8 directions, a vector composed of 8 Hamming distances can be obtained, which is denoted as: V whole = [HD KhM , HD Me2 , ..., HD Khokt ] (4) Then, calculate the Hamming distance corresponding to each of the blocks corresponding to the two iris images. For each sub-block, 8 Hamming distances can be obtained correspondingly, let = ATxN, You can get 8>< Hamming distance, which is recorded as:
= iHD —、, HD _2,-- - , HD —S,"', HD L―、,… ' U (5) 最后' 将 ^与 ^,,合并' 得到向量 = 、。te,^„], 即: = [^Ao,fl, , 。fe8,^—,— ,HZ) ,---,HD —8] (6) = iHD —,, HD _ 2 , --, HD — S ,"', HD L ―,,... 'U (5) Finally,'Combine ^ with ^,,' to get the vector = ,. te , ^„ ], that is: = [^ Ao , fl,, . fe8 , ^—,— ,HZ), ---,HD — 8 ] (6)
替换页 (细则第 26条) 从而得到两个虹膜归 化后两个虹膜图像的汉明距离构成的向量, 维数为: 8 + 8xMxN。 Replacement page (Article 26 of the Rules) In this way, a vector composed of the Hamming distance of the two iris images after the two iris normalization is obtained, and the dimension is: 8 + 8xMxN.
Adaboost算法是利用大量分类能力一般的简单分类器(弱分类器),通过一定的方 法结合起来, 构成分类能力很强的分类器。使用 Adaboost算法对上述向量进行分类识 别具体过程如下: 输入: 训练集 {(w' U , 其屮 X, = { ,···, } ' y, e{+l,-\}, i = ,\,l -'N, M是向量 c,.的维数; 迭代次数 T和弱学习算法。 初始化: 权重!) ):^ ,/:^… 。 (7) 操作: 对于 ζ = 0,1,2,·--Γ 1) 对有权重分布的训练集学习, 得到一个弱分类器 The Adaboost algorithm uses a large number of simple classifiers (weak classifiers) with general classification capabilities, which are combined through certain methods to form a classifier with strong classification capabilities. The specific process of using Adaboost algorithm to classify and recognize the above vectors is as follows: Input: training set {(w' U ,其屮X, = {,···,} 'y, e{+l,-\}, i =, \,l -'N, M is the dimension of the vector c,.; the number of iterations T and the weak learning algorithm. Initialization: weight!) ): ^ ,/:^... (7) Operation: For ζ = 0,1,2,·--Γ 1) Learn from the training set with weight distribution to obtain a weak classifier
¾,:χ→{-1,1} (8) ¾,:χ→{-1,1} (8)
2) 选择最好的特征使得分类错误率^„最小, 其屮 2) Choosing the best feature to minimize the classification error rate ^, its 屮
£ m =∑ M^y W^ (9) m = 0,1,2,…… M , 并且记 =min£m。 如果 ≥0.5, 令 Γ = ί_1并跳出循环。 3) 计算弱分类器 的权重:
Figure imgf000011_0001
4) 更新样本权重: +ι (0 = A ('·) exp[- {xt (11) 其中 4是归一化因子。 输出: H(;c) = g"(∑ a,A,(x))。
£ m =∑ M^y W ^ (9) m = 0,1,2,……M, and denote =min£ m . If ≥0.5, let Γ = ί_1 and jump out of the loop. 3) Calculate the weight of the weak classifier:
Figure imgf000011_0001
4) Update sample weight: +ι (0 = A ('·) exp[- {x t (11) where 4 is the normalization factor. Output: H(;c) = g"(∑ a,A,( x)).
替换页 (细则第 26条) 虹膜识别问题是 -个典型的分类问题。 只要令每个弱分类器 (上述计算得出的汉 明距离) 对应于 1个 Gabor编码, 并根据弱分类器阈值的大小来进行分类判断, 则虹 膜识别过程就是 Adaboost挑选特征的过程, 也就是挑选弱分类器的过程。在两幅图像 进行分类的过程中, 使用 V = [HD'hoM,…, HD , HD^ ^,- , HZ) — 8 ] ( 12 ) 作为样本, 即训练集中的 X ; 对于相同人眼拍摄得到的两个图像, 令 = 1, 不同 人眼拍摄得到的两个图像, 令^ = -1。 然后采用 Adaboost算法进行训练, 选取好的分 类特征, 再将这些分类特征组合成更强的分类器。 将上述 Adaboost算法训练得出的分类器进行组合,每一个分类器对应特定的某个 子块的 Gabor编码。 该 Gabor编码即为最终的虹膜 Gabor特征, 用于虹膜比对。 使用上述实施例屮的方法, 虹膜图像的特征提取采用同 尺度下多方向的 Gabor 小波, 同时将展开的虹膜图像进行分块, 结合虹膜的整体和局部信息, 同时提取整个 虹膜图像和虹膜图像子模块的 Gabor特征并且编码, 然后将整体与局部结合起来形成 多维特征向量, 并且引入 Adaboost算法进行特征选择, 最后构造分类器进行识别。 显然, 本领域的技术人员应该明白, 上述的本发明的各模块或各步骤可以用通用 的计算装置来实现, 它们可以集中在单个的计算装置上, 或者分布在多个计算装置所 组成的网络上, 可选地, 它们可以用计算装置可执行的程序代码来实现, 从而, 可以 将它们存储在存储装置中由计算装置来执行, 或者将它们分别制作成各个集成电路模 块, 或者将它们屮的多个模块或步骤制作成单个集成电路模块来实现。 这样, 本发明 不限制于任何特定的硬件和软件结合。 以上所述仅为本发明的优选实施例而已, 并不 /11于限制本发明, 对于本领域的技 术人员来说, 本发明可以有各种更改和变化。 凡在本发明的精神和原则之内, 所作的 任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。 Replacement page (Article 26 of the Rules) The iris recognition problem is a typical classification problem. As long as each weak classifier (the Hamming distance calculated above) corresponds to 1 Gabor code, and the classification judgment is made according to the size of the weak classifier threshold, the iris recognition process is the process of Adaboost selecting features, that is The process of selecting weak classifiers. In the process of classifying two images, use V = [HD' hoM ,..., HD, HD^ ^,-, HZ) — 8 ] (12) as a sample, that is, X in the training set; shooting for the same human eye The two images obtained, let = 1, and the two images taken by different human eyes, let ^ = -1. Then use the Adaboost algorithm for training, select good classification features, and then combine these classification features into a stronger classifier. Combine the classifiers trained by the above-mentioned Adaboost algorithm, and each classifier corresponds to the Gabor code of a specific sub-block. The Gabor code is the final Gabor feature of the iris, which is used for iris comparison. Using the method of the above embodiment, the feature extraction of the iris image adopts multi-directional Gabor wavelets at the same scale, and at the same time, the expanded iris image is divided into blocks, combined with the overall and local information of the iris, and the entire iris image and the iris image are extracted at the same time. The Gabor feature of the module is coded, and then the whole and the part are combined to form a multi-dimensional feature vector, and the Adaboost algorithm is introduced for feature selection, and finally a classifier is constructed for recognition. Obviously, those skilled in the art should understand that the above-mentioned modules or steps of the present invention can be implemented by a general computing device, and they can be concentrated on a single computing device or distributed in a network composed of multiple computing devices. Above, optionally, they can be implemented by program codes executable by the computing device, so that they can be stored in the storage device and executed by the computing device, or they can be made into individual integrated circuit modules respectively, or they can be made into various integrated circuit modules. The multiple modules or steps are made into a single integrated circuit module to achieve. In this way, the present invention is not limited to any specific combination of hardware and software. The above are only preferred embodiments of the present invention, and are not intended to limit the present invention. For those skilled in the art, the present invention can have various modifications and changes. Any modification, equivalent replacement, improvement, etc. made within the spirit and principle of the present invention should be included in the protection scope of the present invention.
替换页 (细则第 26条) Replacement page (Article 26 of the Rules)

Claims

权 利 要 求 书 、 一种基于多方向 Gabor和 Adaboost虹膜识别方法, 其特征在于,其包括如下步 骤: 1 ) 对归 -化的虹膜图像提取二维 Gabor特征; 以及 2) 使 ffl Adaboost算法对步骤 1) 中得到的特征进行分类识别。 、 根据权利要求 1所述的基于多方向 Gabor和 Adaboost虹膜识别方法,其特征在 于, 歩骤 1 ) 具体包括以下步骤- Claims, a method for iris recognition based on multi-directional Gabor and Adaboost, characterized in that it includes the following steps: 1) extracting two-dimensional Gabor features from the normalized iris image; and 2) making the ffl Adaboost algorithm to perform step 1 ) To classify and recognize the features obtained. The method for iris recognition based on multi-directional Gabor and Adaboost according to claim 1, characterized in that, step 1) specifically includes the following steps:
1.1) 将展开的虹膜图像均匀划分为 M行、 N列, 得到 MXN个虹膜图像 子模块; 1.1) Divide the expanded iris image evenly into M rows and N columns to obtain MXN iris image sub-modules;
1.2) 使用同 -尺度八个方向的 Gabor滤波器作川于步骤 1.1) 中的虹膜图 像子模块, 然后根据 Gabor实部对图像滤波结果的正负进行编码, 其屮, 1.2) Use Gabor filters with the same scale and eight directions as the iris image sub-module in step 1.1), and then encode the positive and negative results of the image filtering according to the Gabor real part.
Gabor滤波器的表达式如下:
Figure imgf000013_0001
The expression of Gabor filter is as follows:
Figure imgf000013_0001
θ , y'^-xsm9 + ycos0 , >是 Gabor 滤波器的方向, Θ = ίπ1%, ί = 0,1,2 .·7, ί/和 分别为 Gabor滤波器的水平和垂直屮心频率, δχ和 分别是高斯包络沿着 X轴和 y轴的空间常数, 其代表 Gabor滤波器的尺 度; θ, y'^-xsm9 + ycos0,> is the direction of the Gabor filter, Θ = ίπ1%, ί = 0, 1, 2.·7, ί/ are the horizontal and vertical center frequencies of the Gabor filter, δ χ and are the spatial constants of the Gaussian envelope along the X axis and the y axis, respectively, which represent the scale of the Gabor filter;
特征编码的表达式如下: The expression of feature encoding is as follows:
im} 0, y) = sgn{Re,Im, [/ (x, y) * G(x, y)]; 其中 /是虹膜图像, G是 Gabor滤波器, sgn^^表示滤波结果的实虚部符 号, 为特征编码; im} 0, y) = sgn {Re , Im , [/ (x, y) * G(x, y)]; where / is the iris image, G is the Gabor filter, and sgn^^ represents the real and virtual of the filtering result Department symbol, which is the feature code;
1.3) 按照公式:
Figure imgf000013_0002
1.3) According to the formula:
Figure imgf000013_0002
maskA Π maskB maskA Π maskB
替换页 (细则第 26条) 计算需匹配的两个虹膜图像对应的 MXN个虹膜图像子模块各自的汉明距 离, 对于每个虹膜图像子模块, 可以得到 8个汉明距离, 将 8个汉明距离构成 的特征向量记为 Vwhoie, VKhole = [HD Replacement page (Article 26 of the Rules) Calculate the respective Hamming distances of the MXN iris image submodules corresponding to the two iris images to be matched. For each iris image submodule, 8 Hamming distances can be obtained, and the feature vector composed of the 8 Hamming distances is recorded as V who ie, V Khole = [HD
其中 code A和 code B分别表示两个虹膜图像的 Gabor特征编码; mask A 和 mask B分别表示两个虹膜图像的噪声模板,其值为 "Γ时代表有效虹膜部分, 为" 0"时代表噪声; Among them, code A and code B respectively represent the Gabor feature codes of two iris images; mask A and mask B represent the noise templates of two iris images respectively, the value of "Γ represents the effective iris part, and the value of "0" represents the noise ;
1.4) 令 L=MXN, 按照步骤 1.3) 屮汉明计算公式得到 8XL个汉明距离 Vpar„ 记为: ' , ' ' ', , , , : 1.4) Let L=MXN, follow the step 1.3) Hamming calculation formula to get 8XL Hamming distance V par …… Marked as: ',''',,,,:
1.5) 将整个虹膜图像的汉明距离 {^与虹膜图像子模块的汉明距离 Vwhole 合并, 组成 -个维数是 8+8XMXN的特征向量 V, V=[Vwh0,e,Vpart], 即: 1.5) Combine the Hamming distance { ^ of the entire iris image and the Hamming distance V whole of the iris image submodule to form a feature vector V with a dimension of 8+8XMXN, V=[V wh0 , e ,V part ] , which is:
V = [ DthoM,…, HDM , HD ,■■-, HD^ ,.■·, HD一 ]。 V = [D thoM ,..., HD M , HD, ■■-, HD^ ,.■·, HD一].
根据权利要求 2所述的基于多方向 Gabor和 Adaboost虹膜识别方法,其特征在 于, 步骤 2) 具体包括以下步骤: The method for iris recognition based on multi-directional Gabor and Adaboost according to claim 2, characterized in that step 2) specifically includes the following steps:
2.1 ) 设置 '个样本训练集 {(^ ,),···, V)} , Xl={x ,-,xlM} - jl G{+l,-l}, i=l, 2, ..., N, M是向量 χ,.的维数, 其中: X是整个虹膜图像 形成的特征向量与分块之后的特征向量结合而成的多维特征向量, 当两张虹膜 图像子模块来自同一人眼时, y = l, 否则 - 1; 2.1) Set up a sample training set {(^ ,),···, V)}, Xl ={x ,-,x lM }-j l G {+l,-l}, i=l, 2, ..., N, M are the dimensions of the vector χ,., where: X is the multi-dimensional feature vector formed by combining the feature vector formed by the entire iris image and the feature vector after the block, when the two iris image sub-modules come from For the same person, y = l, otherwise-1;
2.2)通过公式: D\{i、 =
Figure imgf000014_0001
\,-"N, 对样本训练集进行权重初始化, 然 后对有权重分布的样本训练集进行训练学习, 得到- ·个弱分类器; ii ;
2.2) Through the formula: D\{i, =
Figure imgf000014_0001
\,-"N, initialize the weight of the sample training set, and then train and learn the weight distribution of the sample training set to obtain-· weak classifiers; i i;
^ :;C→{-1,1}; t=l, 2, ..., T, Τ为迭代次数; ^ :;C→ {-1,1} ; t =l, 2, ..., T, Τ is the number of iterations;
2.3) 选择步骤 1) 屮的 · '个特征, 然后通过公式: 2.3) Select the characteristics of the step 1) 屮, and then use the formula:
计算出弱分类器 /ί,在样本训练集屮的分类错误率 , 记 =1^11^, 当 ≥0.5时, 令 T=t-1, 并跳出循环; Calculate the weak classifier /ί, the classification error rate in the sample training set, record =1^11^, when ≥0.5, let T=t-1, and jump out of the loop;
2.4) 通过公式: ct, =0.5χΙη[(1_ίΓ,)/£,], 计算出弱分类器 Α(的权重 α( ; 2.4) by the equation: ct, = 0.5χΙη [(1_ίΓ ,) / £,], weak classifiers calculate the weight [alpha] ([alpha] re (;
替换页 (细则第 26条) Replacement page (Article 26 of the Rules)
2.5 ) 通过公式: £»,+1(0
Figure imgf000015_0001
, 更新样本训练集权重, 并且对样本训练集进行归一化, 式中, 是第 个样本在第 Ζ次训练时的权重 系数, 是! )υ · '化因子;
2.5) By formula: £», +1 (0
Figure imgf000015_0001
, Update the weight of the sample training set, and normalize the sample training set, where is the weight coefficient of the first sample in the Zth training, yes! )υ ·'Chemical factor;
2.6 ) 根据公式: H (; c) =
Figure imgf000015_0002
, 获得最终的分类器, 该分类器 的特征即为虹膜图像屮特征向量 V的特征, 识别完成。 、 一种虹膜识别方法, 其特征在于, 包括:
2.6) According to the formula: H (; c) =
Figure imgf000015_0002
, Obtain the final classifier, the feature of the classifier is the feature of the feature vector V of the iris image, and the recognition is completed. 1. An iris recognition method, characterized in that it comprises:
步骤 1 ) 将虹膜图像进行归 · 化, 提取归一化后的虹膜图像的二维 Gabor 特征; 以及 Step 1) Normalize the iris image, and extract the two-dimensional Gabor features of the normalized iris image; and
步骤 2 ) 计算两幅虹膜图像对应 Gabor特征之间的汉明距离, 将计算结果 作为样本使用 Adaboost算法对所述二维 Gabor特征进行分类识别。 、 根据权利要求 4所述的虹膜识别方法, 其特征在于, 所述步骤 1 ) 包括: Step 2) Calculate the Hamming distance between the Gabor features corresponding to the two iris images, and use the calculation result as a sample to classify and recognize the two-dimensional Gabor features using the Adaboost algorithm. 3. The iris recognition method according to claim 4, wherein the step 1) comprises:
对所述归一化后的虹膜图像进行 Gabor滤波; Gabor filtering is performed on the normalized iris image;
根据所述 Gabor滤波器的实部对滤波后的虹膜图像进行编码, 得到所述归 一化后的虹膜图像的特征编码, 所述特征编码作为归一化后的虹膜图像的初始 二维 Gabor特征。 、 根据权利要求 5所述的虹膜识别方法, 其特征在于, 所述步骤 1 ) 还包括- 对归一化后的虹膜图像进行区域划分, 得到多个虹膜图像子模块; 对所述多个虹膜图像子模块分别进行 Gabor滤波; The filtered iris image is coded according to the real part of the Gabor filter to obtain the feature code of the normalized iris image, and the feature code is used as the initial two-dimensional Gabor feature of the normalized iris image . The iris recognition method according to claim 5, wherein the step 1) further comprises: dividing the normalized iris image to obtain a plurality of iris image sub-modules; The image sub-modules respectively perform Gabor filtering;
根据所述 Gabor滤波器的实部对滤波后的所述多个虹膜图像子模块分别进 行编码, 得到所述多个虹膜图像子模块的特征编码, 所述多个虹膜图像子模块 的特征编码作为归一化后的虹膜图像的初始二维 Gabor特征。 、 根据权利要求 6所述的虹膜识别方法, 其特征在于, 对归一化后的虹膜图像进 行区域划分包括- 将所述归一化的虹膜图像划分为 M行、 N列, The filtered multiple iris image sub-modules are respectively coded according to the real part of the Gabor filter to obtain feature codes of the multiple iris image sub-modules, and the feature codes of the multiple iris image sub-modules are taken as The initial two-dimensional Gabor feature of the normalized iris image. The iris recognition method according to claim 6, characterized in that, dividing the normalized iris image into regions comprises-dividing the normalized iris image into M rows and N columns,
按照行列进行划分得到 M XN个虹膜图像子模块。 、 根据权利要求 6所述的虹膜识别方法, 其特征在于, 步骤 1 ) 屮对所述多个虹 膜图像子模块分别进行 Gabor滤波包括: Divide according to the ranks to obtain M×N iris image sub-modules. The iris recognition method according to claim 6, characterized in that step 1) performing Gabor filtering on the plurality of iris image sub-modules respectively comprises:
替换页 (细则第 26条) 使用同- -尺度 8个方向的 Gabor滤波器所述多个虹膜图像子模块进行滤波, 其屮, Gabor滤波器的表达式如下:
Figure imgf000016_0001
Replacement page (Article 26 of the Rules) The multiple iris image sub-modules described by the Gabor filter with 8 directions of the same scale are used for filtering. The expression of the Gabor filter is as follows:
Figure imgf000016_0001
式屮, X' = cos l + _ysin6*, y' = -xsinB + ycosB , (9是 Gabor滤波器的方向, θ = ϊπ , ί· = 0,1,2 ··7, C7和 分别为 Gabor滤波器的水平和垂直中心频率, 和 分别是高斯包络沿着 X轴和 轴的空间常数。 、 根据权利要求 6所述的虹膜识别方法, 其特征在于, 根据所述 Gabor滤波器的 实部对滤波后的所述多个虹膜图像子模块分别进行编码包括: Equation, X'= cos l + _ysin6*, y'= -xsinB + ycosB, (9 is the direction of the Gabor filter, θ = ϊπ, ί· = 0, 1, 2, ··7, C7 and Gabor respectively The horizontal and vertical center frequencies of the filter, and are the spatial constants of the Gaussian envelope along the X axis and the axis, respectively. The iris recognition method according to claim 6, characterized in that, according to the real part of the Gabor filter Encoding the multiple filtered iris image sub-modules respectively includes:
使用以下公式根据所述 Gabor滤波器的实部对滤波后的虹膜图像子模块分 别进行编码: Use the following formula to code the filtered iris image sub-modules according to the real part of the Gabor filter:
, = sgn [I(x,y)*G(x,y)]; 在式中, I (x, y)是虹膜图像的表达式, G (x, y)是 Gabor滤波器的表 达式' sgn^lm|表示滤波结果的实部, c^.w为特征编码。 、 根据权利要求 4 所述的虹膜识别方法, 其特征在于, 计算两幅虹膜图像对应 Gabor特征之间的汉明距离包括: , = Sgn [I(x,y)*G(x,y)]; In the formula, I (x, y) is the expression of the iris image, and G (x, y) is the expression of the Gabor filter' sgn^ lm| represents the real part of the filtering result, and c^.w is the feature code. The iris recognition method according to claim 4, wherein calculating the Hamming distance between the Gabor features corresponding to two iris images comprises:
按照公式:
Figure imgf000016_0002
According to the formula:
Figure imgf000016_0002
计算两幅虹膜图像对应 Gabor特征之间的汉明距离,在式中, code A和 code B分别表示所述两幅虹膜图像的对应的特征编码; mask A和 mask B分别表示 所述两幅虹膜图像的噪声模板。 1、 根据权利要求 4所述的虹膜识别方法, 其特征在于, 所述步骤 2) 中将计算结 果作为样本使用 Adaboost算法对所述二维 Gabor特征进行分类识别包括: 利用两幅虹膜图像对应 Gabor特征之间的汉明距离的计算结果构建- ·个向 量, 该向量作为样本使用 Adaboost算法进行分类识别。 根据权利要求 11所述的虹膜识别方法, 其特征在于, 所述步骤 2) 屮该向量作 为样本使用 Adaboost算法进行分类识别包括- Calculate the Hamming distance between the Gabor features of two iris images. In the formula, code A and code B respectively represent the corresponding feature codes of the two iris images; mask A and mask B represent the two irises respectively The noise template of the image. 1. The iris recognition method according to claim 4, characterized in that, in the step 2), using the calculation result as a sample and using the Adaboost algorithm to classify and recognize the two-dimensional Gabor feature comprises: using two iris images corresponding to Gabor The calculation result of the Hamming distance between the features constructs a vector, which is used as a sample for classification and recognition using the Adaboost algorithm. The iris recognition method according to claim 11, wherein the step 2) using the Adaboost algorithm to classify and recognize the vector as a sample comprises:
替换页 (细则第 26条) 步骤 2.1) 设置一个样本训练集 {(½ ),...,(½, ^)}, X, = {X,,,···,¾},Replacement page (Article 26 of the Rules) Step 2.1) Set up a sample training set {( ½ ),..., ( ½ , ^)}, X, = {X,,,···, ¾},
^ ei+1,-1} , i=l, 2, ..., N, M是向量 χ,.的维数, 其中, 是归一化后两张 虹膜图像的汉明距离组成的向量, y的取值为: 所述两张虹膜图像子模块来自 同一人眼时, ; = 1, 否则: v = -l; 步骤 2.2) 通过公式: D\{i、
Figure imgf000017_0001
, 对样本训练集进行权重初始 化, 然后对有权重分布的样本训练集进行训练学习, 得到 -个弱分类器
^ ei+1,-1}, i=l, 2, ..., N, M is the dimension of the vector χ,., where is the vector composed of the Hamming distance of the two iris images after normalization, The value of y is: When the two iris image sub-modules are from the same human eye,; = 1, otherwise: v = -l; Step 2.2) Pass the formula: D\{i,
Figure imgf000017_0001
, Perform weight initialization on the sample training set, and then train and learn the weight distribution of the sample training set to obtain a weak classifier
Λ,: →{-1,1}; t=l, 2, …, T, Τ为迭代次数; 步骤 2.3) 选择步骤 1 ) 中的一个二维 Gabor 特征, 然后通过公式: ^ (x'), m=l, 2, …, M, 计算出弱分类器/ 在样本训练集屮的分类错误率^, 记 =ηώ! , 当 ≥0.5吋, 令 T=t-1, 并跳出循环; 步骤 2.4)通过公式: α( = 0.5 xln[(l- 计算出弱分类器 的权重《,; 步骤 2.5)通过公式: β,+1(0 = £>,(ζ χρ[-α^Λ( )]/ζ (, 更新样本训练集权 重, 并且对样本训练集进行归一化, 在式屮, 其中 (0是第 ί'个样本在第 次 训练时的权重系数, Ζ,是归一化因子; 步骤 2.6)根据公式: H(x) = ^w( iZ,A,(x)), 获得最终的分类器, 该分 类器的特征 Η (X) 即为最终分类器, 完成训练; Λ,: →{-1,1} ; t=l, 2, …, T, Τ is the number of iterations; Step 2.3) Select a two-dimensional Gabor feature in Step 1), and then use the formula: ^ ( x ') , m=l, 2, …, M, calculate the classification error rate of the weak classifier/in the sample training set^, mark = ηώ! , When ≥ 0.5 inch, let T=t-1, and jump out of the loop; Step 2.4) Pass the formula: α ( = 0.5 xln[(l- calculate the weight of the weak classifier ",; Step 2.5) Pass the formula: β, +1 (0 = £>,(ζ χρ[-α^Λ( )]/ ζ ( , update the weights of the sample training set, and normalize the sample training set, in the formula, where (0 is the first ί' The weight coefficient of each sample in the first training, Z, is the normalization factor; Step 2.6) According to the formula: H(x) = ^w(iZ,A,(x)), the final classifier is obtained, and the classification The feature Η (X) of the detector is the final classifier, and the training is completed;
步骤 2.7) 把 Adaboost训练出来的分类器对应的 Gabor编码作为最终的虹 膜特征, 用于虹膜图像的对比。 Step 2.7) Use the Gabor code corresponding to the classifier trained by Adaboost as the final iris feature for comparison of iris images.
替换页 (细则第 26条) Replacement page (Article 26 of the Rules)
PCT/CN2012/086678 2011-12-16 2012-12-14 Iris recognition method and iris recognition method based on multi-directional gabor and adaboost WO2013087028A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110421796.4 2011-12-16
CN201110421796.4A CN102521575B (en) 2011-12-16 2011-12-16 Iris identification method based on multidirectional Gabor and Adaboost

Publications (1)

Publication Number Publication Date
WO2013087028A1 true WO2013087028A1 (en) 2013-06-20

Family

ID=46292486

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/086678 WO2013087028A1 (en) 2011-12-16 2012-12-14 Iris recognition method and iris recognition method based on multi-directional gabor and adaboost

Country Status (2)

Country Link
CN (1) CN102521575B (en)
WO (1) WO2013087028A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104484649A (en) * 2014-11-27 2015-04-01 北京天诚盛业科技有限公司 Method and device for identifying irises
CN104537334A (en) * 2014-07-08 2015-04-22 珠海易胜电子技术有限公司 Method for improving iris recognition property in non-ideal environment
CN105631285A (en) * 2015-09-28 2016-06-01 宇龙计算机通信科技(深圳)有限公司 Biological feature identity recognition method and apparatus
CN109508695A (en) * 2018-12-13 2019-03-22 北京中科虹霸科技有限公司 Eye multi-modal biological characteristic recognition methods
CN110610066A (en) * 2018-06-15 2019-12-24 武汉安天信息技术有限责任公司 Counterfeit application detection method and related device
CN110852291A (en) * 2019-11-15 2020-02-28 太原科技大学 Palate wrinkle identification method adopting Gabor transformation and blocking dimension reduction
CN111553384A (en) * 2020-04-03 2020-08-18 上海聚虹光电科技有限公司 Matching method of multispectral image and single-spectral image

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102521575B (en) * 2011-12-16 2014-07-02 北京天诚盛业科技有限公司 Iris identification method based on multidirectional Gabor and Adaboost
CN104751150A (en) * 2015-04-21 2015-07-01 南京安穗智能科技有限公司 Method for recognizing iris on basis of odd-symmetry 2D (two-dimensional) Log-Gabor filter and Adaboost combinations
CN105160305B (en) * 2015-08-10 2019-01-11 中国民航大学 A kind of multi-modal Feature fusion of finger
CN105138974B (en) * 2015-08-12 2019-01-11 中国民航大学 A kind of multi-modal Feature fusion of finger based on Gabor coding
CN105095880B (en) * 2015-08-20 2019-01-11 中国民航大学 A kind of multi-modal Feature fusion of finger based on LGBP coding
CN105550661A (en) * 2015-12-29 2016-05-04 北京无线电计量测试研究所 Adaboost algorithm-based iris feature extraction method
CN106940786B (en) * 2017-02-28 2019-12-10 华南理工大学 Iris reconstruction method using iris template based on LLE and PSO
CN110414300B (en) * 2018-04-28 2021-07-06 北京眼神科技有限公司 Method and device for synthesizing iris characteristics
CN110827366B (en) * 2018-08-10 2023-05-02 北京眼神科技有限公司 Iris feature template updating method and device, readable storage medium and equipment
CN109784389A (en) * 2019-01-03 2019-05-21 中国矿业大学 A kind of coal petrography recognition detection method based on Adaboost and Gabor algorithm
CN109753944A (en) * 2019-01-15 2019-05-14 济南浪潮高新科技投资发展有限公司 A kind of iris identification method based on depth tri-layer
CN113553908B (en) * 2021-06-23 2022-01-11 中国科学院自动化研究所 Heterogeneous iris identification method based on equipment unique perception

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1760887A (en) * 2004-10-11 2006-04-19 中国科学院自动化研究所 The robust features of iris image extracts and recognition methods
CN101122949A (en) * 2007-08-30 2008-02-13 中国科学技术大学 Iris identification method based on local frequency characteristic and local direction characteristic
CN102521575A (en) * 2011-12-16 2012-06-27 北京天诚盛业科技有限公司 Iris identification method based on multidirectional Gabor and Adaboost

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100351852C (en) * 2006-07-11 2007-11-28 电子科技大学 Iris recognition method based on wavelet transform and maximum detection

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1760887A (en) * 2004-10-11 2006-04-19 中国科学院自动化研究所 The robust features of iris image extracts and recognition methods
CN101122949A (en) * 2007-08-30 2008-02-13 中国科学技术大学 Iris identification method based on local frequency characteristic and local direction characteristic
CN102521575A (en) * 2011-12-16 2012-06-27 北京天诚盛业科技有限公司 Iris identification method based on multidirectional Gabor and Adaboost

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHEN, RUI ET AL.: "High-speed iris detection and localization based on AdaBoost algorithm", JOURNAL OF TSINGHUA UNIVERSITY(SCIENCE AND TECHNOLOGY), vol. 48, no. 11, November 2008 (2008-11-01), pages 1923 - 1926 *
IHUANG, HUIFANG ET AL.: "Study and implementation of iris recognition algorithms", INFRARED AND LASER ENGINEERING, vol. 31, no. 5, October 2002 (2002-10-01), pages 405 - 408 *
ZHANG, XIANGDE ET AL.: "A Multi-orientation Gabor Filter and Adaboost Based Iris Recognition ethod", JOURNAL OF NORTHEASTERN UNIVERSITY(NATURAL SCIENCE), vol. 33, no. 1, January 2012 (2012-01-01), pages 39 - 42 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104537334A (en) * 2014-07-08 2015-04-22 珠海易胜电子技术有限公司 Method for improving iris recognition property in non-ideal environment
CN104537334B (en) * 2014-07-08 2019-09-10 珠海易胜电子技术有限公司 A method of improving the iris recognition performance under non-ideal environment
CN104484649A (en) * 2014-11-27 2015-04-01 北京天诚盛业科技有限公司 Method and device for identifying irises
CN105631285A (en) * 2015-09-28 2016-06-01 宇龙计算机通信科技(深圳)有限公司 Biological feature identity recognition method and apparatus
CN110610066A (en) * 2018-06-15 2019-12-24 武汉安天信息技术有限责任公司 Counterfeit application detection method and related device
CN109508695A (en) * 2018-12-13 2019-03-22 北京中科虹霸科技有限公司 Eye multi-modal biological characteristic recognition methods
CN110852291A (en) * 2019-11-15 2020-02-28 太原科技大学 Palate wrinkle identification method adopting Gabor transformation and blocking dimension reduction
CN111553384A (en) * 2020-04-03 2020-08-18 上海聚虹光电科技有限公司 Matching method of multispectral image and single-spectral image

Also Published As

Publication number Publication date
CN102521575B (en) 2014-07-02
CN102521575A (en) 2012-06-27

Similar Documents

Publication Publication Date Title
WO2013087028A1 (en) Iris recognition method and iris recognition method based on multi-directional gabor and adaboost
Fei et al. Local apparent and latent direction extraction for palmprint recognition
Luo et al. Local line directional pattern for palmprint recognition
Sun et al. Iris image classification based on hierarchical visual codebook
CN105718889B (en) Based on GB (2D)2The face personal identification method of PCANet depth convolution model
Vijayan et al. Twins 3D face recognition challenge
Sheela et al. Iris recognition methods-survey
Pan et al. Single-sample face recognition based on LPP feature transfer
CN102902980B (en) A kind of biometric image analysis based on linear programming model and recognition methods
Fei et al. Jointly heterogeneous palmprint discriminant feature learning
Dong et al. Finger vein verification based on a personalized best patches map
Van et al. Robust finger vein identification base on discriminant orientation feature
He et al. Iris feature extraction method based on LBP and chunked encoding
Kamaruddin et al. A new filter generation method in PCANet for finger vein recognition
Mohamed et al. Adaptive extended local ternary pattern (aeltp) for recognizing avatar faces
CN108681722A (en) A kind of finger vein features matching process based on texture
Lu et al. Pyramid histogram of double competitive pattern for finger vein recognition
Abdo et al. Iris recognition based on histogram equalization and discrete cosine transform
Li et al. Face recognition based on PCA and SVM
Dubey et al. Palmprint recognition using binary wavelet transform and LBP representation
Singh et al. Face recognition system based on SURF and LDA technique
Sharkas et al. The contourlet transform with the principal component analysis for palmprint recognition
Verma et al. At-a-distance person recognition via combining ocular features
Yang et al. Feature-level fusion of finger veins and finger dorsal texture for personal authentication based on orientation selection
Joshi et al. Color local phase quantization (CLPQ)-a new face representation approach using color texture cues

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12857641

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12857641

Country of ref document: EP

Kind code of ref document: A1