WO2013085355A1 - Apparatus and method for compensating hand blur - Google Patents

Apparatus and method for compensating hand blur Download PDF

Info

Publication number
WO2013085355A1
WO2013085355A1 PCT/KR2012/010653 KR2012010653W WO2013085355A1 WO 2013085355 A1 WO2013085355 A1 WO 2013085355A1 KR 2012010653 W KR2012010653 W KR 2012010653W WO 2013085355 A1 WO2013085355 A1 WO 2013085355A1
Authority
WO
WIPO (PCT)
Prior art keywords
moving distance
driving signal
focal length
actuator
lens moving
Prior art date
Application number
PCT/KR2012/010653
Other languages
French (fr)
Inventor
Jung Hyun Lee
Original Assignee
Lg Innotek Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lg Innotek Co., Ltd. filed Critical Lg Innotek Co., Ltd.
Priority to US14/361,214 priority Critical patent/US9215373B2/en
Priority claimed from KR1020120141592A external-priority patent/KR101989467B1/en
Publication of WO2013085355A1 publication Critical patent/WO2013085355A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B5/00Adjustment of optical system relative to image or object surface other than for focusing
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B2205/00Adjustment of optical system relative to image or object surface other than for focusing
    • G03B2205/0007Movement of one or more optical elements for control of motion blur
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B2205/00Adjustment of optical system relative to image or object surface other than for focusing
    • G03B2205/0046Movement of one or more optical elements for zooming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/57Mechanical or electrical details of cameras or camera modules specially adapted for being embedded in other devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • H04N23/681Motion detection
    • H04N23/6812Motion detection based on additional sensors, e.g. acceleration sensors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • H04N23/682Vibration or motion blur correction
    • H04N23/685Vibration or motion blur correction performed by mechanical compensation
    • H04N23/687Vibration or motion blur correction performed by mechanical compensation by shifting the lens or sensor position

Definitions

  • teachings in accordance with exemplary and non-limiting embodiments of this invention relate generally to an apparatus and method for compensating hand blur.
  • an exposure time of a camera module increases under a low illumination environment, and under this circumstance, problems including motion blurs caused by a moving target or image blurs such as hand blurs caused by handshake may occur. Likewise, problems occur disabling to photograph a stable video (moving image) due to trembling or shake of a camera module due to generation of tilt by outside trembling.
  • an OIS Optical Image Stabilizer
  • an OIS is provided to a camera module in the form of an actuator, and shifts a lens along with an AF (Auto Focus) actuator.
  • the OIS is a mechanical actuator capable of horizontally shifting a lens or a barrel mounted with a lens, or tilting a camera itself to a yaw direction or a pitch direction.
  • the conventional OIS camera module suffers from problems in that a lens shifting or tilt compensation is applied at a fixed focal length, with no consideration of changes in focal lengths including zoom and AF, such that information on an existing fixed focus is inconsistent when the focal length is changed to thereby generating a compensation error.
  • an object of the present invention is to provide an apparatus for compensating hand blur configured to minimize compensation errors in an OIS (Optical Image Stabilizer) by calculating ratio of effective focal length of a lens moving distance, and a method for compensating hand blur.
  • OIS Optical Image Stabilizer
  • an apparatus for compensating an image blur caused by hand blur of a camera module including a first actuator for AF (Auto Focus)/ zoom, and a second actuator for OIS (Optical Image Stabilizer), the apparatus comprising: a controller determining a first driving signal for driving the second actuator using angular velocity information by tilt of the camera module; a calculator calculating a ratio of effective focal length relative to a lens moving distance, in a case a lens focal length is changed by the first actuator; and an amplifier determining a second driving signal amplifying the first driving signal, using the ratio of effective focal length relative to the lens moving distance.
  • AF Auto Focus
  • OIS Optical Image Stabilizer
  • the apparatus may further comprise an angular velocity sensor detecting an angular velocity by the tilt of the camera module.
  • the apparatus may further comprise a first driving unit driving the first actuator.
  • the first driving unit may provide code information based on lens movement to the calculator.
  • the calculator may calculate the ratio of effective focal length relative to the lens moving distance by determining the lens moving distance using the code information based on the lens movement.
  • the apparatus may further comprise storage storing lens moving distance corresponding to the code information based on the lens movement.
  • the calculator may calculate the ratio of effective focal length relative to the lens moving distance by receiving the lens moving distance from the storage.
  • the apparatus may further comprise a second driving unit driving the second actuator using the second driving signal.
  • the controller may obtain an angle tilted by the camera module by integrating the angular velocity, and determining the first driving signal using a compensation stroke by obtaining the compensation stroke from the tilted angle.
  • a method for compensating image blur caused by hand blur in a camera module including a first actuator for AF (Auto Focus)/ zoom, and a second actuator for OIS (Optical Image Stabilizer), the method comprising: receiving an angular velocity by tilt of the camera module; determining a first driving signal for driving the second actuator using the angular velocity; calculating a ratio of effective focal length relative to a lens moving distance using the driving of the first actuator; and determining a second driving signal amplifying the first driving signal, using the ratio of effective focal length relative to the lens moving distance.
  • the determining the first driving signal may include obtaining an angle tilted by the camera module by integrating the angular velocity; obtaining a compensation stroke using the tilted angle; and determining the first driving signal using the compensation stroke.
  • the calculating the ratio may comprise receiving code information based on the lens movement; determining the lens moving distance using the code information; and calculating the ratio of effective focal length relative to the lens moving distance.
  • the calculating the ratio of effective focal length relative to the lens moving distance may comprise receiving the lens moving distance corresponding to the code information based on the lens movement; and calculating the ratio of effective focal length relative to the lens moving distance.
  • the second driving signal may be determined by the following Math Figure:
  • the method may further comprise driving the second actuator using the first driving signal or the second driving signal.
  • the apparatus and method for compensating hand blur according to the exemplary embodiments of the present invention have an advantageous effect in that image blur can be compensated in response to changes in lens focal length by calculating a ratio of effective focal length (EFL) based on a moving distance (D) on a roll axis of a lens, and reflecting the ratio of EFL on a driving signal of an OIS (Optical Image Stabilizer) actuator.
  • EFL effective focal length
  • D moving distance
  • OIS Optical Image Stabilizer
  • Another advantageous effect is that an OIS compensation error can be minimized by compensating the image blur in response to the changes in the lens focal length.
  • FIG. 1 is an exemplary view explaining a blur compensation error in response to changes in the lens focal length of a camera module according to prior art.
  • FIG.2 is a block diagram illustrating an apparatus for compensating hand blur according to an exemplary embodiment of the present invention.
  • FIG.3 is a flowchart illustrating a method for compensating hand blur according to an exemplary embodiment of the present invention.
  • FIG. 1 is an exemplary view explaining a blur compensation error in response to changes in the lens focal length of a camera module according to prior art, where, in a case P is a position of a principal point of a lens at an infinity (I), a distance on a roll axis (R) from the P to a sensor surface (100) is an EFL (Effective Focal Length).
  • a compensation stroke (S) relative to the image blur may be obtained by the following Math Figure 1.
  • a pixel amount to be compensated may be obtained by the following Math Figure 2.
  • a stroke change ⁇ S by a lens moving distance D may be obtained by the following Math Figure 3.
  • an increased amount of image blur in response to the focal length change i.e., a blur amount to be compensated by the OIS
  • Math Figures assuming that an EFL is 4.24mm, and a pixel pitch of an image sensor is 0.0014mm, which are general numerical values).
  • an increased blur amount on the yaw axis is 2.5 pixels
  • an increased blur amount on the pitch axis is 2.0 pixels.
  • the blur must be compensated by reflecting a stroke change corresponding to the changed focal length.
  • an OIS compensation deviation error may be obtained by the following Math Figure 5
  • an OIS compensation error may be obtained by the following Math Figure 6, in a case a change in focal length is generated as much as the lens moving distance D.
  • an OIS camera having a compensation ratio of 0.95 may generate an error of 0.05 (5%), and in this camera, in a case a focal length is changed as much as 0.2mm, a compensation error may increase as much as 4. 27%P as shown in the following Math Figure 7.
  • ⁇ S may be expressed by the following Math Figure 8.
  • the apparatus for compensating hand blur can change a driving signal for control of an OIS actuator by calculating a ratio of effective focal length (EFL) based on a moving distance (D) on a roll axis of a lens, and compensate an image blue, in a case a change in focal length is generated by AF/zoom actuator, thereby minimizing an OIS compensation error.
  • ENL effective focal length
  • FIG.2 is a block diagram illustrating an apparatus for compensating hand blur according to an exemplary embodiment of the present invention.
  • an apparatus (20) for compensating hand blur (hereinafter referred to as "compensating apparatus") according to an exemplary embodiment of the present invention, which is to receive an angular velocity in response to a tilt from an angular velocity sensor of a camera module (10), and to drive an AF/zoom actuator (11) and an OIS actuator (13) using the angular velocity, includes a first driving unit (21), an OIS controller (22), a second driving unit (23), a ratio calculation unit (24), and an amplifier (25).
  • the camera module (10) includes an AF/zoom actuator (11), an angular velocity sensor (12), an OIS actuator (13) and storage (14).
  • the apparatus (20) may be provided inside the camera module (10).
  • the OIS controller (22) receives an angular velocity ( ⁇ ) of the camera module (10) from the angular velocity sensor (12), integrates the angular velocity, obtains an angle ( ⁇ ) tilted by the camera, and determines a compensation stroke (S) corresponding to the angle ( ⁇ ) from the Math Figure 1. Furthermore, an electrical driving signal ( ⁇ V) for driving the OIS actuator (13) may be determined using the compensation stroke (S).
  • the first driving unit (21) transmits code information based on lens movement to the ratio calculation unit (24), in a case there is a change in a lens focal length.
  • the storage (14) stores information of lens moving distance (D) corresponding to the code information based on the lens movement.
  • the storage (14) may be an OTP (One-Time Programmable) EPROM (Erasable- Programmable ROM), for example.
  • the ratio calculation unit (24) receives the information on the lens moving distance (D) from the storage (14) to calculate a ratio of an EFL (Effective Focal Length) relative to the lens moving distance (D). Generally, the EFL is determined at the time of manufacturing of a camera. That is, the ratio calculation unit (24) calculates the ratio according to Math Figure 9.
  • the ratio calculation unit (24) directly determines the lens moving distance (D) using feedback code information in response to the lens movement. That is, the storage (14) may not store the information on focal length corresponding to the code information based on the lens movement, and the ratio calculation unit (24) may calculate the information.
  • the amplifier (25) receives the ratio of EFL relative to the lens moving distance (D) from the ratio calculation unit (24), and amplifies a driving signal in response to the lens movement.
  • a stroke (S+ ⁇ S) of lens to be rotated by the OIS actuator (13) may be expressed by the following Math Figure 10.
  • the amplifier (25) amplifies the driving signal ( ⁇ V) received from the OIS controller (22) using ⁇ V' of the following Math Figure 11.
  • the amplifier (25) transmits the amplified driving signal to the second driving unit (23), the second driving unit (23) is driven by the driving signal amplified by the OIS actuator (13) to compensate the image blur.
  • the second driving unit (23) may be a driver IC, for example, but the present invention is not limited thereto.
  • FIG.3 is a flowchart illustrating a method for compensating hand blur according to an exemplary embodiment of the present invention.
  • the method for compensating hand blur is to receive an angular velocity ( ⁇ ) in response to a camera movement from an angular velocity sensor (12) of a camera module (10) (S41).
  • An OIS controller (22) having received the angular velocity ( ⁇ ) obtains an angle ( ⁇ ) tilted about a yaw axis or a pitch axis of a camera by integrating the angular velocity ( ⁇ ) and obtains a compensation stroke (S) corresponding to the angle ( ⁇ ). Thereafter, the OIS controller (22) determines an electrical driving signal ( ⁇ V) for driving an OIS actuator (13) (S42).
  • a change in lens focal length is received from a first driving unit (21) by driving, by a first driving unit (21), an AF/zoom actuator (S43), the first driving unit (21) transmits code information based on the lens movement to a ratio calculation unit (24).
  • the ratio calculation unit (24) receives information on a lens moving distance (D) corresponding to the code information in response to the lens movement from storage (14), or directly calculates the information on the lens moving distance (D) corresponding to the code information to determine a ratio of an EFL relative to the lens moving distance (D) (S44).
  • An amplifier (25) receives the ration of EFL relative to the lens moving distance (D), and amplifies the electrical driving signal ( ⁇ V) for driving an OIS actuator (13) using ⁇ V' of Math Figure 11 (S46), thereby compensating an image blur.
  • the exemplary embodiments of the present invention can compensate an image blur by differently controlling a driving signal of an OIS actuator and by calculating a ratio of EFL in response to a lens moving distance (D) on a roll axis, whereby an OIS compensation error can be minimized.
  • the apparatus and method for compensating hand blur according to the exemplary embodiments of the invention have an industrial applicability in that image blur can be compensated in response to changes in lens focal length by calculating a ratio of effective focal length (EFL) based on a moving distance (D) on a roll axis of a lens, and reflecting the ratio of EFL on a driving signal of an OIS (Optical Image Stabilizer) actuator, and an OIS compensation error can be minimized by compensating the image blur in response to the changes in the lens focal length.
  • ENL effective focal length
  • D moving distance
  • OIS Optical Image Stabilizer

Abstract

An apparatus and method for compensating hand blur are disclosed. The method according to an exemplary embodiment of the present invention comprises receiving an angular velocity by tilt of the camera module, determining a first driving signal for driving the second actuator using the angular velocity, calculating a ratio of effective focal length relative to a lens moving distance using the driving of the first actuator, and determining a second driving signal amplifying the first driving signal, using the ratio of effective focal length relative to the lens moving distance.

Description

APPARATUS AND METHOD FOR COMPENSATING HAND BLUR
The teachings in accordance with exemplary and non-limiting embodiments of this invention relate generally to an apparatus and method for compensating hand blur.
Generally, an exposure time of a camera module increases under a low illumination environment, and under this circumstance, problems including motion blurs caused by a moving target or image blurs such as hand blurs caused by handshake may occur. Likewise, problems occur disabling to photograph a stable video (moving image) due to trembling or shake of a camera module due to generation of tilt by outside trembling.
In order to prevent the abovementioned conventional problems, camera modules mounted with an OIS (Optical Image Stabilizer) has been used. That is, an OIS is provided to a camera module in the form of an actuator, and shifts a lens along with an AF (Auto Focus) actuator. The OIS is a mechanical actuator capable of horizontally shifting a lens or a barrel mounted with a lens, or tilting a camera itself to a yaw direction or a pitch direction.
However, the conventional OIS camera module suffers from problems in that a lens shifting or tilt compensation is applied at a fixed focal length, with no consideration of changes in focal lengths including zoom and AF, such that information on an existing fixed focus is inconsistent when the focal length is changed to thereby generating a compensation error.
Accordingly, the present invention has been made keeping in mind the above disadvantages/problems occurring in the prior art, and an object of the present invention is to provide an apparatus for compensating hand blur configured to minimize compensation errors in an OIS (Optical Image Stabilizer) by calculating ratio of effective focal length of a lens moving distance, and a method for compensating hand blur.
In order to accomplish the above object, in one general aspect of the present invention, there is provided an apparatus for compensating an image blur caused by hand blur of a camera module including a first actuator for AF (Auto Focus)/ zoom, and a second actuator for OIS (Optical Image Stabilizer), the apparatus comprising: a controller determining a first driving signal for driving the second actuator using angular velocity information by tilt of the camera module; a calculator calculating a ratio of effective focal length relative to a lens moving distance, in a case a lens focal length is changed by the first actuator; and an amplifier determining a second driving signal amplifying the first driving signal, using the ratio of effective focal length relative to the lens moving distance.
In some exemplary embodiments, the apparatus may further comprise an angular velocity sensor detecting an angular velocity by the tilt of the camera module.
In some exemplary embodiments, the apparatus may further comprise a first driving unit driving the first actuator.
In some exemplary embodiments, the first driving unit may provide code information based on lens movement to the calculator.
In some exemplary embodiments, the calculator may calculate the ratio of effective focal length relative to the lens moving distance by determining the lens moving distance using the code information based on the lens movement.
In some exemplary embodiments, the apparatus may further comprise storage storing lens moving distance corresponding to the code information based on the lens movement.
In some exemplary embodiments, the calculator may calculate the ratio of effective focal length relative to the lens moving distance by receiving the lens moving distance from the storage.
In some exemplary embodiments, the apparatus may further comprise a second driving unit driving the second actuator using the second driving signal.
In some exemplary embodiments, the controller may obtain an angle tilted by the camera module by integrating the angular velocity, and determining the first driving signal using a compensation stroke by obtaining the compensation stroke from the tilted angle.
In another general aspect of the present invention, there is provided a method for compensating image blur caused by hand blur in a camera module including a first actuator for AF (Auto Focus)/ zoom, and a second actuator for OIS (Optical Image Stabilizer), the method comprising: receiving an angular velocity by tilt of the camera module; determining a first driving signal for driving the second actuator using the angular velocity; calculating a ratio of effective focal length relative to a lens moving distance using the driving of the first actuator; and determining a second driving signal amplifying the first driving signal, using the ratio of effective focal length relative to the lens moving distance.
In some exemplary embodiments, the determining the first driving signal may include obtaining an angle tilted by the camera module by integrating the angular velocity; obtaining a compensation stroke using the tilted angle; and determining the first driving signal using the compensation stroke.
In some exemplary embodiments, the calculating the ratio may comprise receiving code information based on the lens movement; determining the lens moving distance using the code information; and calculating the ratio of effective focal length relative to the lens moving distance.
In some exemplary embodiments, the calculating the ratio of effective focal length relative to the lens moving distance may comprise receiving the lens moving distance corresponding to the code information based on the lens movement; and calculating the ratio of effective focal length relative to the lens moving distance.
In some exemplary embodiments, the second driving signal may be determined by the following Math Figure:
Figure PCTKR2012010653-appb-I000001
where,
Figure PCTKR2012010653-appb-I000002
is the second driving signal,
Figure PCTKR2012010653-appb-I000003
is the first driving signal,
Figure PCTKR2012010653-appb-I000004
is a ratio of effective focal length relative to the lens moving distance.
In some exemplary embodiments, the method may further comprise driving the second actuator using the first driving signal or the second driving signal.
The apparatus and method for compensating hand blur according to the exemplary embodiments of the present invention have an advantageous effect in that image blur can be compensated in response to changes in lens focal length by calculating a ratio of effective focal length (EFL) based on a moving distance (D) on a roll axis of a lens, and reflecting the ratio of EFL on a driving signal of an OIS (Optical Image Stabilizer) actuator.
Another advantageous effect is that an OIS compensation error can be minimized by compensating the image blur in response to the changes in the lens focal length.
FIG. 1 is an exemplary view explaining a blur compensation error in response to changes in the lens focal length of a camera module according to prior art.
FIG.2 is a block diagram illustrating an apparatus for compensating hand blur according to an exemplary embodiment of the present invention.
FIG.3 is a flowchart illustrating a method for compensating hand blur according to an exemplary embodiment of the present invention.
Although the present invention may be devised by numerous other modifications and embodiments, particular exemplary embodiments will be exemplified by the drawings and explained in detail by the Detailed Description of the present invention. However, it should be understood that the present invention is not limited to any particular exemplary embodiments, but encompasses all other modifications, equivalents and variations without departing from the spirit or scope of the invention.
Now, blur compensation error in response to changes in a lens focal length of a camera module having an OIS (Optical Image Stabilizer) according to the prior art will be illustrated and explained with reference to the accompanying drawings, and exemplary embodiments of the present invention will be explained in detail.
FIG. 1 is an exemplary view explaining a blur compensation error in response to changes in the lens focal length of a camera module according to prior art, where, in a case P is a position of a principal point of a lens at an infinity (I), a distance on a roll axis (R) from the P to a sensor surface (100) is an EFL (Effective Focal Length).
Under this circumstance, in a case a camera module is tilted by hand blur as much as "θ" to a yaw axis or a pitch axis, a blur is generated on the sensor surface (100), because an image is moved from a center of R axis. In this case, a compensation stroke (S) relative to the image blur may be obtained by the following Math Figure 1.
MathFigure 1
Figure PCTKR2012010653-appb-M000001
At this time, a pixel amount to be compensated may be obtained by the following Math Figure 2.
MathFigure 2
Figure PCTKR2012010653-appb-M000002
That is, in a case an EFL is fixed and an OIS actuator is generated with a tilt as much as θ in Math Figure 1, a compensation as much as a distance S in Math Figure 1 is required to compensate a pixel in Math Figure 2.
However, in a case a focal length is changed by the lens being positioned at P along the R axis by an AF (Auto Focus) or a zoom actuator, a stroke change ΔS by a lens moving distance D may be obtained by the following Math Figure 3.
MathFigure 3
Figure PCTKR2012010653-appb-M000003
Thus, although a total stroke for compensating the blur must be "S+ΔS", a conventional camera module cannot cope with a stroke change in response to changes in focal length.
By way of non-limiting example, in a case a tilt is generated on the lens to a yaw axis as much as 1˚ and to a pitch axis as much as 0.8˚, and a focal length of the lens is changed as much as 0.2mm by AF or zoom actuator, an increased amount of image blur in response to the focal length change, i.e., a blur amount to be compensated by the OIS, may be obtained by the following Math Figures (assuming that an EFL is 4.24mm, and a pixel pitch of an image sensor is 0.0014mm, which are general numerical values).
MathFigure 4
Figure PCTKR2012010653-appb-M000004
Figure PCTKR2012010653-appb-I000005
That is, in a case the lens has moved as much as 0.2mm, an increased blur amount on the yaw axis is 2.5 pixels, and an increased blur amount on the pitch axis is 2.0 pixels. Thus, in a case a focal length is changed on the roll axis by the AF or the zoom actuator, the blur must be compensated by reflecting a stroke change corresponding to the changed focal length.
In a case an OIS compensation rate is R on a percentage base, and D=0, an OIS compensation deviation error may be obtained by the following Math Figure 5, and an OIS compensation error may be obtained by the following Math Figure 6, in a case a change in focal length is generated as much as the lens moving distance D.
MathFigure 5
Figure PCTKR2012010653-appb-M000005
MathFigure 6
Figure PCTKR2012010653-appb-M000006
By way of non-limiting example, an OIS camera having a compensation ratio of 0.95 (i.e., 95%) may generate an error of 0.05 (5%), and in this camera, in a case a focal length is changed as much as 0.2mm, a compensation error may increase as much as 4. 27%P as shown in the following Math Figure 7.
MathFigure 7
Figure PCTKR2012010653-appb-M000007
Particularly, in a case of a zoom camera module, as the moving distance D is relatively greater than that of an AF camera module, a blur pixel in response to the change in focal length increases, whereby it can be confirmed that an error increases.
Meanwhile, according to the abovementioned Math Figures 1 and 3, ΔS may be expressed by the following Math Figure 8.
MathFigure 8
Figure PCTKR2012010653-appb-M000008
Figure PCTKR2012010653-appb-I000006
The apparatus for compensating hand blur according to an exemplary embodiment of the present invention can change a driving signal for control of an OIS actuator by calculating a ratio of effective focal length (EFL) based on a moving distance (D) on a roll axis of a lens, and compensate an image blue, in a case a change in focal length is generated by AF/zoom actuator, thereby minimizing an OIS compensation error.
Now, an apparatus for compensating hand blur according to an exemplary embodiment of the present invention will be described with reference to FIG.2.
FIG.2 is a block diagram illustrating an apparatus for compensating hand blur according to an exemplary embodiment of the present invention.
Referring to FIG. 2, an apparatus (20) for compensating hand blur (hereinafter referred to as "compensating apparatus") according to an exemplary embodiment of the present invention, which is to receive an angular velocity in response to a tilt from an angular velocity sensor of a camera module (10), and to drive an AF/zoom actuator (11) and an OIS actuator (13) using the angular velocity, includes a first driving unit (21), an OIS controller (22), a second driving unit (23), a ratio calculation unit (24), and an amplifier (25).
Furthermore, the camera module (10) includes an AF/zoom actuator (11), an angular velocity sensor (12), an OIS actuator (13) and storage (14).
Although detailed configurations of the camera module (10) and the apparatus (20) for compensating hand blur are separately illustrated for convenience sake, it should be understood that each configuration may be mixed together. By way of non-limiting example, the apparatus (20) may be provided inside the camera module (10).
The OIS controller (22) receives an angular velocity (ω) of the camera module (10) from the angular velocity sensor (12), integrates the angular velocity, obtains an angle (θ) tilted by the camera, and determines a compensation stroke (S) corresponding to the angle (θ) from the Math Figure 1. Furthermore, an electrical driving signal (ΔV) for driving the OIS actuator (13) may be determined using the compensation stroke (S).
The first driving unit (21) transmits code information based on lens movement to the ratio calculation unit (24), in a case there is a change in a lens focal length.
The storage (14) stores information of lens moving distance (D) corresponding to the code information based on the lens movement. The storage (14) may be an OTP (One-Time Programmable) EPROM (Erasable- Programmable ROM), for example.
The ratio calculation unit (24) receives the information on the lens moving distance (D) from the storage (14) to calculate a ratio of an EFL (Effective Focal Length) relative to the lens moving distance (D). Generally, the EFL is determined at the time of manufacturing of a camera. That is, the ratio calculation unit (24) calculates the ratio according to Math Figure 9.
MathFigure 9
Figure PCTKR2012010653-appb-M000009
Meanwhile, in a case of closed loop system such as a feedback AF, the ratio calculation unit (24) directly determines the lens moving distance (D) using feedback code information in response to the lens movement. That is, the storage (14) may not store the information on focal length corresponding to the code information based on the lens movement, and the ratio calculation unit (24) may calculate the information.
The amplifier (25) receives the ratio of EFL relative to the lens moving distance (D) from the ratio calculation unit (24), and amplifies a driving signal in response to the lens movement. In the exemplary embodiment of the present invention, a stroke (S+ΔS) of lens to be rotated by the OIS actuator (13) may be expressed by the following Math Figure 10.
MathFigure 10
Figure PCTKR2012010653-appb-M000010
Thus, the amplifier (25) amplifies the driving signal (ΔV) received from the OIS controller (22) using ΔV' of the following Math Figure 11.
MathFigure 11
In a case the amplifier (25) transmits the amplified driving signal to the second driving unit (23), the second driving unit (23) is driven by the driving signal amplified by the OIS actuator (13) to compensate the image blur. The second driving unit (23) may be a driver IC, for example, but the present invention is not limited thereto.
FIG.3 is a flowchart illustrating a method for compensating hand blur according to an exemplary embodiment of the present invention.
Referring to FIG.3, the method for compensating hand blur according to an exemplary embodiment of the present invention is to receive an angular velocity (ω) in response to a camera movement from an angular velocity sensor (12) of a camera module (10) (S41). An OIS controller (22) having received the angular velocity (ω) obtains an angle (θ) tilted about a yaw axis or a pitch axis of a camera by integrating the angular velocity (ω) and obtains a compensation stroke (S) corresponding to the angle (θ). Thereafter, the OIS controller (22) determines an electrical driving signal (ΔV) for driving an OIS actuator (13) (S42).
In a case a change in lens focal length is received from a first driving unit (21) by driving, by a first driving unit (21), an AF/zoom actuator (S43), the first driving unit (21) transmits code information based on the lens movement to a ratio calculation unit (24).
The ratio calculation unit (24) receives information on a lens moving distance (D) corresponding to the code information in response to the lens movement from storage (14), or directly calculates the information on the lens moving distance (D) corresponding to the code information to determine a ratio of an EFL relative to the lens moving distance (D) (S44).
An amplifier (25) receives the ration of EFL relative to the lens moving distance (D), and amplifies the electrical driving signal (ΔV) for driving an OIS actuator (13) using ΔV' of Math Figure 11 (S46), thereby compensating an image blur.
Although a camera module mounted with a conventional OIS cannot solve an image blur due to increased focal length by an AF or zoom actuator, the exemplary embodiments of the present invention can compensate an image blur by differently controlling a driving signal of an OIS actuator and by calculating a ratio of EFL in response to a lens moving distance (D) on a roll axis, whereby an OIS compensation error can be minimized.
The previous description of the present invention is provided to enable any person skilled in the art to make or use the invention. Various modifications to the invention will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other variations without departing from the spirit or scope of the invention. Thus, the invention is not intended to limit the examples described herein, but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.
The apparatus and method for compensating hand blur according to the exemplary embodiments of the invention have an industrial applicability in that image blur can be compensated in response to changes in lens focal length by calculating a ratio of effective focal length (EFL) based on a moving distance (D) on a roll axis of a lens, and reflecting the ratio of EFL on a driving signal of an OIS (Optical Image Stabilizer) actuator, and an OIS compensation error can be minimized by compensating the image blur in response to the changes in the lens focal length.

Claims (15)

  1. An apparatus for compensating an image blur caused by hand blur of a camera module including a first actuator for AF (Auto Focus)/ zoom, and a second actuator for OIS (Optical Image Stabilizer), the apparatus comprising:
    a controller configured to determine a first driving signal for driving the second actuator using angular velocity information by tilt of the camera module;
    a calculator configured to calculate a ratio of effective focal length relative to a lens moving distance, in a case a lens focal length is changed by the first actuator; and
    an amplifier configured to determine a second driving signal amplifying the first driving signal, using the ratio of effective focal length relative to the lens moving distance.
  2. The apparatus of claim 1, further comprising:
    an angular velocity sensor configured to detect an angular velocity by the tilt of the camera module.
  3. The apparatus of claim 1, further comprising:
    a first driving unit configured to drive the first actuator.
  4. The apparatus of claim 3, wherein the first driving unit provides code information based on lens movement to the calculator.
  5. The apparatus of claim 4, wherein the calculator calculates the ratio of effective focal length relative to the lens moving distance by determining the lens moving distance using the code information based on the lens movement.
  6. The apparatus of claim 3, further comprising:
    storage configured to store lens moving distance corresponding to the code information based on the lens movement.
  7. The apparatus of claim 6, wherein the calculator calculates the ratio of effective focal length relative to the lens moving distance by receiving the lens moving distance from the storage.
  8. The apparatus of claim 1, further comprising:
    a second driving unit configured to drive the second actuator using the second driving signal.
  9. The apparatus of claim 1, wherein the controller obtains an angle tilted by the camera module by integrating the angular velocity, and determines the first driving signal using a compensation stroke by obtaining the compensation stroke from the tilted angle.
  10. A method for compensating image blur caused by hand blur in a camera module including a first actuator for AF (Auto Focus)/ zoom, and a second actuator for OIS (Optical Image Stabilizer), the method comprising:
    receiving an angular velocity by tilt of the camera module;
    determining a first driving signal for driving the second actuator using the angular velocity;
    calculating a ratio of effective focal length relative to a lens moving distance using the driving of the first actuator; and
    determining a second driving signal amplifying the first driving signal, using the ratio of effective focal length relative to the lens moving distance.
  11. The method of claim 10, wherein the determining the first driving signal comprises:
    obtaining an angle tilted by the camera module by integrating the angular velocity;
    obtaining a compensation stroke using the tilted angle; and
    determining the first driving signal using the compensation stroke.
  12. The method of claim 10, wherein the calculating the ratio comprises:
    receiving code information based on the lens movement;
    determining the lens moving distance using the code information; and
    calculating the ratio of effective focal length relative to the lens moving distance.
  13. The method of claim 10, wherein the calculating the ratio of effective focal length relative to the lens moving distance comprises:
    receiving the lens moving distance corresponding to the code information based on the lens movement; and
    calculating the ratio of effective focal length relative to the lens moving distance.
  14. The method of claim 10, wherein the second driving signal is determined by the following Math Figure:
    Figure PCTKR2012010653-appb-I000007
    where,
    Figure PCTKR2012010653-appb-I000008
    is the second driving signal,
    Figure PCTKR2012010653-appb-I000009
    is the first driving signal,
    Figure PCTKR2012010653-appb-I000010
    is a ratio of effective focal length relative to the lens moving distance.
  15. The method of claim 10, further comprising:
    driving the second actuator using the first driving signal or the second driving signal.
PCT/KR2012/010653 2011-12-09 2012-12-07 Apparatus and method for compensating hand blur WO2013085355A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/361,214 US9215373B2 (en) 2011-12-09 2012-12-07 Apparatus and method for compensating hand blur

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2011-0131666 2011-12-09
KR20110131666 2011-12-09
KR1020120141592A KR101989467B1 (en) 2011-12-09 2012-12-07 Apparatus and method for compensating hand blur
KR10-2012-0141592 2012-12-07

Publications (1)

Publication Number Publication Date
WO2013085355A1 true WO2013085355A1 (en) 2013-06-13

Family

ID=48574629

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/010653 WO2013085355A1 (en) 2011-12-09 2012-12-07 Apparatus and method for compensating hand blur

Country Status (1)

Country Link
WO (1) WO2013085355A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9124806B1 (en) 2014-02-17 2015-09-01 Samsung Electro-Mechanics Co., Ltd. Apparatus and method for correcting image
US10298845B2 (en) * 2015-03-13 2019-05-21 Tdk Taiwan Corp. Image-capture system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004294569A (en) * 2003-03-26 2004-10-21 Nikon Corp Camera system
JP2004348147A (en) * 2004-06-21 2004-12-09 Nikon Corp Camera with hand-shake correcting function
KR20060088069A (en) * 2005-01-31 2006-08-03 펜탁스 가부시키가이샤 An optical image stabilizer and a method of controlling the optical image stabilizer
JP2011022352A (en) * 2009-07-15 2011-02-03 Canon Inc Camera shake-correcting device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004294569A (en) * 2003-03-26 2004-10-21 Nikon Corp Camera system
JP2004348147A (en) * 2004-06-21 2004-12-09 Nikon Corp Camera with hand-shake correcting function
KR20060088069A (en) * 2005-01-31 2006-08-03 펜탁스 가부시키가이샤 An optical image stabilizer and a method of controlling the optical image stabilizer
JP2011022352A (en) * 2009-07-15 2011-02-03 Canon Inc Camera shake-correcting device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9124806B1 (en) 2014-02-17 2015-09-01 Samsung Electro-Mechanics Co., Ltd. Apparatus and method for correcting image
US10298845B2 (en) * 2015-03-13 2019-05-21 Tdk Taiwan Corp. Image-capture system

Similar Documents

Publication Publication Date Title
WO2017213339A1 (en) Horizontal posture maintaining device and posture maintaining device driving method
WO2014059858A1 (en) Microscope image detecting instrument and automatic focusing method therefor
WO2019151700A1 (en) Camera module
WO2013058474A1 (en) Photographing apparatus and method
WO2020122594A1 (en) Lens assmebly and camera module including same
WO2019035550A1 (en) Electronic device for controlling shaking of lens part contained in camera module and operation method for electronic device
JP4724493B2 (en) Optical apparatus, imaging apparatus, and attitude detection method of optical apparatus
JP2009265182A (en) Imaging device
WO2013089370A1 (en) Image pickup apparatus, method of performing image compensation, and computer readable recording medium
KR102421717B1 (en) Photographing apparatus module, user terminal comprising the photographing apparatus
WO2017078280A1 (en) Multi-scale imaging system
US20090102920A1 (en) Image pickup apparatus
JPH07159836A (en) Optical system driving device for camera
WO2019143116A1 (en) Lens assembly and camera module comprising same
WO2013085355A1 (en) Apparatus and method for compensating hand blur
WO2019221447A1 (en) Camera module and camera comprising same
KR20090015251A (en) Camera module having image sensor
JP2012128202A (en) Optical instrument and imaging device with the same and control method for optical instrument
WO2021145667A1 (en) Camera movement control method and device
WO2020251203A1 (en) Lens assembly driving apparatus and camera module comprising same
WO2019164312A1 (en) Camera module and super resolution image processing method thereof
WO2012057435A1 (en) Camera module and estimation method of auto focus search range thereof
WO2013065980A1 (en) Camera module
WO2015167262A1 (en) System and method for correcting distortion image due to curved surface
WO2016137273A1 (en) Camera module and auto-focus adjustment method using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12854753

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14361214

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12854753

Country of ref document: EP

Kind code of ref document: A1