WO2013085081A1 - Device for measuring gas discharge amount and method thereof - Google Patents

Device for measuring gas discharge amount and method thereof Download PDF

Info

Publication number
WO2013085081A1
WO2013085081A1 PCT/KR2011/009436 KR2011009436W WO2013085081A1 WO 2013085081 A1 WO2013085081 A1 WO 2013085081A1 KR 2011009436 W KR2011009436 W KR 2011009436W WO 2013085081 A1 WO2013085081 A1 WO 2013085081A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
light
specific
voltage
flow rate
Prior art date
Application number
PCT/KR2011/009436
Other languages
French (fr)
Korean (ko)
Inventor
박정익
Original Assignee
Park Jeong Ik
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Park Jeong Ik filed Critical Park Jeong Ik
Priority to PCT/KR2011/009436 priority Critical patent/WO2013085081A1/en
Publication of WO2013085081A1 publication Critical patent/WO2013085081A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/74Devices for measuring flow of a fluid or flow of a fluent solid material in suspension in another fluid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/49Scattering, i.e. diffuse reflection within a body or fluid
    • G01N21/53Scattering, i.e. diffuse reflection within a body or fluid within a flowing fluid, e.g. smoke
    • G01N21/534Scattering, i.e. diffuse reflection within a body or fluid within a flowing fluid, e.g. smoke by measuring transmission alone, i.e. determining opacity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/49Scattering, i.e. diffuse reflection within a body or fluid
    • G01N21/53Scattering, i.e. diffuse reflection within a body or fluid within a flowing fluid, e.g. smoke
    • G01N21/534Scattering, i.e. diffuse reflection within a body or fluid within a flowing fluid, e.g. smoke by measuring transmission alone, i.e. determining opacity
    • G01N2021/536Measurement device mounted at stack

Definitions

  • the present invention relates to a gas emission measurement, and more particularly, to a gas emission measurement apparatus and method for measuring the gas flow rate and gas concentration of a particular gas in a mixed gas using one device.
  • the flow rate measurement of the gas discharged from the chimney, etc. is measured by measuring the gas flow rate to measure the distance traveled per unit time of the gas and multiply the cross section at the point where the flow rate is measured.
  • the flow rate of the total gas discharged is first measured, and then the concentration of the specific gas to be measured is measured by measuring the concentration of the specific gas. Calculate the emissions.
  • the concentration of the specific gas can be measured by obtaining the ratio of the volume of the specific gas to the volume of the entire gas.
  • a non-dispersive infrared method using a characteristic in which a predetermined gas absorbs light of a specific wavelength is used.
  • 1 shows a light absorption spectrum of gas molecules, for example, carbon dioxide absorbs light having a wavelength of 4.26 ⁇ m, and methane has light absorbing light having a wavelength of 3.3 ⁇ m.
  • the non-dispersive infrared method measures concentration using a characteristic that each gas molecule absorbs light having a specific wavelength in proportion to the concentration.
  • a light source for emitting light in a wavelength band absorbed by a gas to be measured and a light detector for detecting light emitted from the light source are required.
  • the path from which the light emitted from the light source reaches the photo detector is called an optical path.
  • gas molecules are positioned on the optical path, part of the emitted light is absorbed by the gas molecules, so that the amount of light detected through the photo detector is reduced. The amount of light absorbed becomes proportional to the concentration of the gas.
  • the method of measuring the concentration of gas using a non-dispersive infrared method has an advantage of high measurement reliability.
  • the gas flow rate measurement technique and the gas concentration measurement technique were independently applied to measure the emission of a specific gas in the mixed gas.
  • a gas flow meter and a gas concentration meter were used independently. Therefore, a plurality of equipments are required to measure gas emissions, and each measuring instrument needs to measure gas flow rate and gas concentration separately using the respective equipment, and then calculate emissions of a specific gas based thereon. Since it must be provided separately, it requires a high cost and has a disadvantage that each meter must be managed after each one.
  • An object of the present invention for overcoming the above disadvantages is to provide a gas emission measuring apparatus that can measure the flow rate and concentration of a particular gas at the same time in a single device in an environment in which several types of gases are mixed and discharged.
  • another object of the present invention is to provide a gas emission measurement method that can measure the flow rate and concentration of a particular gas at the same time in a single device in an environment in which several types of gases are mixed.
  • Gas emission measuring apparatus for achieving the above object of the present invention, emits light of a wavelength absorbed by a particular gas to be measured in the mixed gas mixed with at least one gas, the emission A gas detector which detects the light and provides a detection signal corresponding to the detected amount of light, a gas disturber which disturbs the flow of the mixed gas to measure the flow velocity of the specific gas, and a first detection signal provided by the gas detector
  • the emission A gas detector which detects the light and provides a detection signal corresponding to the detected amount of light
  • a gas disturber which disturbs the flow of the mixed gas to measure the flow velocity of the specific gas
  • a first detection signal provided by the gas detector
  • the gas disturbance unit may input an instruction gas under the control of the controller.
  • the controller may receive a voltage as a first detection signal from the gas detector and convert the voltage into a concentration of the specific gas by using a via-lambert function.
  • the gas detector may include a first light source that emits light having a wavelength absorbed by the specific gas, and a first detection signal that detects light emitted from the first light source and provides a first detection signal corresponding to the detected light amount to the controller.
  • the photodetector, a second light source emitting light having a wavelength absorbed by the specific gas, and light emitted from the second light source may be detected and a second detection signal corresponding to the detected light amount may be provided to the controller.
  • the first optical path between the first light source and the first photodetector and the second optical path between the second light source and the second photodetector may be spaced apart by a predetermined distance to be parallel to each other and to be perpendicular to the flow of the mixed gas. Can be.
  • the control unit calculates the concentration of the specific gas, initializes time, controls the gas disturbing unit, injects an indication gas, and is a peak value of a first voltage provided from the first photodetector and a peak time point of the first voltage. After detecting a first time, after detecting a peak time of a second voltage provided from the second photodetector and a second time point of the peak time of the second voltage according to the flow of the indicating gas, the first time and The flow rate of the specific gas may be measured using the difference between the second time and the predetermined distance.
  • the gas emission measurement method for measuring the emission of a specific gas of the mixed gas in which at least one gas is mixed, the specific Calculating the concentration of the specific gas by emitting light having a wavelength absorbed by the gas to the mixed gas and detecting the emitted light; and directing an indication gas to an exhaust pipe through which the mixed gas flows to disturb the flow of the mixed gas. Calculating a flow rate of the specific gas based on the step of inputting, a peak value of the voltage detected in correspondence with the flow of the indicating gas, and a peak time point of the voltage; and calculating the flow rate of the specific gas based on the calculated concentration and flow rate. Calculating the emissions.
  • the calculating of the concentration of the specific gas may include: emitting light having a wavelength absorbed by the specific gas to the mixed gas; detecting the emitted light and obtaining a voltage corresponding to the detected amount of light; and via Converting the voltage to a concentration of the particular gas using a Lambert function.
  • Injecting an indication gas to disturb the flow of the mixed gas may include initializing time.
  • the calculating of the flow rate of the specific gas may include measuring a peak value of a first voltage provided as the indicator gas flows through a first optical path and a first time that is a peak time point of the first voltage, and the indication Measuring a peak time of the second voltage provided as the gas flows through the second light path spaced a predetermined distance from the first light path, and a second time which is a peak time point of the second voltage;
  • the method may include measuring a flow rate of the specific gas by using a difference of a second time and the predetermined distance.
  • the gas emission measuring method derives a relationship between the diffusion rate of the specific gas and the diffusion rate of the indication gas after the step of calculating the flow rate of the specific gas when the indication gas is a gas of a different type from the specific gas.
  • the method may further include calculating a flow rate of the specific gas using the derived relationship.
  • the gas emission measuring apparatus and the method as described above by detecting the voltage corresponding to the amount of light transmitted through the specific gas by using the light of the wavelength absorbed by the specific gas to be measured and then using the Beer-Lambert theory The concentration of the gas is calculated, the indication gas is introduced, and the flow rate is calculated based on the peak value and time of the voltage detected as the indication gas traverses two optical paths spaced a predetermined distance apart. Then, the hourly emissions of a particular gas are calculated using the calculated concentrations and flow rates.
  • the gas emission measuring apparatus and method according to an embodiment of the present invention rather than simply combining the gas flow meter and the gas concentration meter while maintaining independent characteristics, respectively, the flow rate and concentration of the gas using a single measurement technology It is to measure the flow rate of the gas and the concentration of gas at the same time.
  • the flow rate and concentration of a specific gas can be measured simultaneously with only one measuring device, the measuring device can be easily manufactured, and it is convenient to carry, easy to measure gas emissions, and the maintenance cost can be reduced.
  • the gas emission measuring apparatus and the method according to an embodiment of the present invention may be applied to, for example, a chimney tele-monitoring system (TMS) or a vehicle exhaust gas measuring apparatus.
  • TMS chimney tele-monitoring system
  • vehicle exhaust gas measuring apparatus for example, a chimney tele-monitoring system (TMS) or a vehicle exhaust gas measuring apparatus.
  • FIG. 2 is a conceptual view for explaining a method of measuring the flow rate of the gas discharged through the chimney.
  • 3 is a conceptual diagram for explaining the beer-lambert theory.
  • FIG. 4 is a conceptual diagram for explaining a gas flow rate measurement.
  • FIG. 5 is a conceptual diagram for explaining a method of simultaneously measuring the concentration and the flow rate of a specific gas.
  • FIG. 6 is a block diagram showing the configuration of a gas emission measuring apparatus according to an embodiment of the present invention.
  • FIG. 8 is a flowchart illustrating a gas emission measuring method according to an exemplary embodiment of the present invention.
  • first and second may be used to describe various components, but the components should not be limited by the terms. The terms are used only for the purpose of distinguishing one component from another.
  • the first component may be referred to as the second component, and similarly, the second component may also be referred to as the first component.
  • the gases produced after combustion are carbon dioxide and water vapor, nitrogen not involved in combustion, residual oxygen after combustion, and if the combustion is carried out at high temperature, some nitrogen is also burned and nitrates, incomplete combustion.
  • gases such as carbon monoxide, are emitted through the chimneys. As described above, the emission of carbon dioxide among the various gases emitted is calculated by measuring the ratio (or concentration) of carbon dioxide in the total gas emissions.
  • FIG. 2 is a conceptual view for explaining a method of measuring the flow rate of the gas discharged through the chimney.
  • the flow rate of gas per unit time may be measured by multiplying the cross-sectional area A of the chimney after measuring the flow rate v of the gas. If the cross-sectional area A of the chimney is known in advance, the flow rate of the gas can be easily measured by measuring the flow rate v of the gas.
  • a method of measuring carbon dioxide emission in an environment in which various types of gases are mixed may be calculated by measuring the concentration of carbon dioxide in the total gas flow rate and then multiplying the total gas flow rate by the ratio of carbon dioxide.
  • the discharge amount C of the specific gas during the time t may be calculated by multiplying the concentration N of the specific gas by the distance L traveled during the time t and the cross-sectional area A of the exhaust pipe from which the gas is discharged.
  • Beer-Lambert theory is an analysis of the characteristics of gas molecules absorbing light of a certain wavelength, and defines the correlation between gas concentration and the amount of transmitted light when the gas molecules absorb light of a certain wavelength.
  • Light emitted from the light source reaches a photo detector through a constant light path.
  • gas molecules are located on the optical path, some of the light is absorbed by the gas molecules and some is transmitted to reach the photo detector.
  • the amount of light absorbed by the gas molecules is proportional to the gas concentration, which means that the amount of light transmitted without being absorbed by the gas molecules is inversely proportional to the gas concentration.
  • 3 is a conceptual diagram for explaining the beer-lambert theory.
  • the photo detector outputs a voltage V corresponding to the detected light amount.
  • the output voltage V is derived as a function of the gas concentration X.
  • Vo denotes a voltage when the gas concentration is 0
  • L denotes a length of an optical path
  • b denotes an eigenvalue representing light absorption of one gas molecule.
  • the amount of light reaching the photo detector is linearly proportional to the voltage output by the photo detector. Therefore, it can be said that the voltage V output from the photodetector is equal to the amount of light reaching the photodetector.
  • the light source emits a wavelength absorbed by the gas molecules and the photodetector only detects light of that wavelength.
  • the light source in order to detect carbon dioxide, the light source emits light having a wavelength of 4.26 ⁇ m, and when methane is detected, the light source emits light having a wavelength of 3.3 ⁇ m, and the light detector detects only light having the corresponding wavelength. Therefore, the kind of gas to be detected can be selected by selecting the detection wavelength of a photodetector.
  • the detection wavelength of the photodetector can be selected by applying an optical filter that transmits only light of the wavelength.
  • Detection of gas concentration can be calculated using the Beer-Lambert theory.
  • the gas concentration is obtained by measuring the voltage V output from the photodetector and then obtaining the inverse function of the output voltage V.
  • the product of the light absorptance value b of one gas molecule and the length L of the light path (that is, b ⁇ L) may be derived during the calibration using the reference concentration.
  • measuring the flow rate of the gas is equivalent to measuring the flow velocity of the gas. Therefore, hereinafter, a description will be given of a method of measuring a gas flow rate to replace the description of the method of measuring a gas flow rate.
  • FIG. 4 is a conceptual diagram for explaining a gas flow rate measurement.
  • two pairs of light sources and two pairs of light detectors are used to measure the flow rate of the gas, and the two pairs of light sources are configured to emit light of a specific wavelength absorbed by the gas molecules to measure the flow rate.
  • the two pairs of photo detectors are configured to detect light of a particular wavelength absorbed by the gas molecules for which the flow rate is to be measured.
  • the light emitted from the first light source 110 reaches the first photodetector 130 via the first light path 150, and the light emitted from the second light source 120 passes through the second light path 160. And reaches the second photodetector 140.
  • the first optical path 150 and the second optical path 160 are parallel to each other and spaced apart by a distance ⁇ L.
  • the indicator gas may be the same kind of gas as the gas to be measured, and a high concentration of gas may be used, or another kind of gas capable of converting the flow rate of the gas to be measured may be used. If other species of gas are used as the indicator gas, the concentration is zero for the gas whose flow rate is to be measured.
  • the indicating gas moves vertically with respect to the first light path 150 and the second light path 160.
  • the voltages output from the photo detectors 130 and 140 are connected to a measuring device capable of measuring an amount of change in voltage over time, such as an oscilloscope.
  • a measuring device capable of measuring an amount of change in voltage over time
  • the first photodetector 130 is connected to the first channel CH01 of the oscilloscope and the second photodetector 140 is connected to the second channel CH02 of the oscilloscope to connect the first photodetector 130 and
  • the voltage provided from the second photodetector 140 may be displayed.
  • the first photodetector 150 absorbs the light emitted from the first light source 110 when the high concentration of the indicating gas passes through the first light path 150 at the first time t1.
  • the voltage outputted from is lowered, thereby outputting a voltage waveform having a convex shape downward for the first time t1 in the first channel CH01.
  • the indicator gas absorbs light, so that the voltage output from the second photodetector 140 is also lowered.
  • the voltage waveform convex downward at the second time t2 is output.
  • the voltage output from the first photodetector and the second photodetector based on the via-Lambert theory as shown in FIG. 3 is determined to be measured. It can be converted into the concentration of gas.
  • FIG. 5 is a conceptual view illustrating a method of simultaneously measuring concentration and flow rate of a specific gas, and for example, simultaneously measuring concentration and flow rate of carbon dioxide in a situation in which various types of gases are mixed and discharged.
  • the light emitted from the first light source 110 reaches the first photodetector 130 via the first light path 150, and the light emitted from the second light source 120 receives the second light.
  • the second photodetector 140 is reached via the optical path 160.
  • the first light path 150 and the second light path 160 are parallel to each other, perpendicular to the discharge direction of the gas, and spaced apart from each other by ⁇ L.
  • the indicator gas is a high concentration of carbon dioxide and is discharged in the same direction as the gas emitted from the chimney, and the discharge rate is the same.
  • the voltages V1 and V2 output from the first photodetector 130 and the second photodetector 140 are respectively.
  • the concentration of carbon dioxide is locally disturbed in the chimney, and the same concentration as that of the first channel CH01 shown in FIG. 5 at t1 at which the indicator gas passes the first optical path 150. A rise appears.
  • the same concentration as that of the second channel CH02 shown in FIG. 5 also occurs at t2, which is a point in time at which the indicating gas passes through the second optical path 160.
  • the method of simultaneously measuring the concentration and flow rate of the gas is not limited to the measurement of the emission of carbon dioxide, and may be applied to the measurement of the emission of all gases.
  • the above-described method is also applied to the case where a gas to be measured and a gas of a different kind are used.
  • the indicator gas of a different type from the gas to be measured it is necessary to correct the diffusion rate depending on the molecular weight of the gas. For example, when nitrogen is used as the indicator gas in the method shown in FIG. 5, since nitrogen is lighter than carbon dioxide, the diffusion rate is faster than that of carbon dioxide at the same temperature.
  • the relationship between the diffusion rate of nitrogen and the carbon dioxide diffusion rate is derived by the gas state equation.
  • Equation 1 may be derived using the above characteristics.
  • the moving speed (v 1 ) of nitrogen may be measured and the moving speed (v 2 ) of carbon dioxide may be calculated using Equation (1). That is, since the molecular weight (m 1 ) of nitrogen is 28 and the molecular weight (m 2 ) of carbon dioxide is 44, the moving speeds of nitrogen and carbon dioxide have a relationship as shown in Equation (2).
  • the concentration waveform displayed as the concentration is lowered is convex downward.
  • FIG. 6 is a block diagram illustrating a configuration of a gas emission measuring apparatus according to an embodiment of the present invention, and is a conceptual diagram for describing an operation of the gas emission measuring apparatus illustrated in FIG. 7.
  • the gas emission measuring apparatus includes a gas detection unit 100, a control unit 200, a gas disturbance unit 300, an input / output unit 400, a communication unit 500, and a storage unit 600. can do.
  • the gas detector 100 emits light having a wavelength absorbed by a specific gas to be measured in response to a control signal of the controller 200, and detects light transmitted through the specific gas to provide an electrical signal corresponding to the detected light amount. It provides to the control unit 200.
  • the gas detector 100 may include a first light source 110, a first light detector 130, a second light source 120, and a second light detector 140, and the first light source 110.
  • the second light source 120 emit light of a wavelength band absorbed by a specific gas to be measured or only light absorbed by the specific gas under the control of the controller 200, and the first photodetector 130.
  • the second photodetector 140 detect only light of a wavelength band absorbed by the specific gas or light absorbed by the specific gas and provide an electric signal corresponding to the detected light amount to the controller 200.
  • the electrical signals provided from the first photodetector 130 and the second photodetector 140 may be voltage or current, but in the embodiment of the present invention, for example, the voltages V1 and V2 are provided.
  • the voltages V1 and V2 are provided.
  • the light emitted from the first light source 110 reaches the first photodetector 130 after passing through the first light path 150 and the light emitted from the second light source 120 passes through the second light path. Pass 160 to reach the second photodetector 140.
  • the light emitted from the first light source 110 does not reach the second photodetector 140, and the light emitted from the second light source 120 does not reach the first photodetector 130.
  • the optical path 150 and the second optical path 160 are parallel to each other and are formed to be spaced apart by a predetermined distance ⁇ L.
  • the first light path 150 and the second light path 160 are formed perpendicular to the moving direction of the gas.
  • the controller 200 controls the operation of the gas detector 100, calculates a concentration and a flow rate of a specific gas to be measured based on an electric signal (for example, a voltage) provided from the gas detector 100, thereby determining the specific gas. Calculate the emissions.
  • an electric signal for example, a voltage
  • control unit 200 controls the driving of the first light source 110 and the second light source 120 to emit light, and then provided from the first photodetector 130 and the second photodetector 140, respectively.
  • concentration of the specific gas to be measured is calculated based on the voltages V1 and V2.
  • the controller 200 may calculate concentrations corresponding to the voltages V1 and V2 using a via-lambert function.
  • controller 200 samples the voltages output from the first photodetector 130 and the second photodetector 140 at predetermined time intervals, respectively, from the first detector 130 and the second detector 140. The peak values of the provided voltages V1 and V2 and the time corresponding to the peak values of the voltages are measured, and the time difference ⁇ t between the peak values of the two voltages is obtained.
  • the controller 200 measures a first voltage peak value that is a peak value of the voltage output from the first photodetector.
  • the first voltage peak value is a maximum voltage value obtained by sampling a voltage at a predetermined time interval.
  • the controller 200 measures a first time point t1 which is a time point at which the first voltage peak value is measured.
  • the controller 200 may include a second peak value, which is a peak value of a voltage output from the second photodetector 140 when the indicating gas reaches the second optical path 160 through the first optical path 150.
  • the second time point t2 which is the time point of time is measured.
  • the controller 200 determines a separation distance ⁇ L between the first optical path 150 and the second optical path 160 previously input, and a time difference between the first time point t1 and the second time point t2. ⁇ t is used to calculate the moving speed of the indicating gas.
  • the control unit 200 calculates the emission per hour of the specific gas to be measured using the concentration of the specific gas, the moving speed of the indicating gas, and the cross-sectional area of the exhaust pipe from which the indicating gas is discharged as described above.
  • the controller 200 may store the calculated discharge amount of the specific gas in the storage unit 600 or display it through the input / output unit 400.
  • the reference discharge amount for the specific gas discharge when the reference discharge amount for the specific gas discharge is set in advance, when the discharge amount is larger than the reference discharge amount by comparing the calculated discharge amount with the reference discharge amount, a warning message, a warning sound or the like through the input / output unit 400. You can also output a warning light.
  • the single control unit 200 calculates the concentration and flow rate of the specific gas to be measured based on the voltage provided from the gas detection unit 100 and calculates the discharge amount of the specific gas based on the voltage.
  • the control unit 200 is composed of two, the first control unit controls the driving of the first light source 110 and the second light source 120, the second control unit is the first photodetector 130 And the concentration and flow rate of the specific gas based on the voltage output from the second photodetector 140.
  • each control unit 200 may be configured to share data and control signals with each other and interoperate with each other.
  • the gas disturbance unit 300 may be configured as a command gas supply device, and emit a command gas based on a control signal of the controller 200.
  • the gas disturbance unit 300 may emit in the form of a pulse of a small amount of the indicator gas, in this case, the amount of the indicator gas in one release may be set differently according to the gas measurement environment.
  • the gas disturbance unit 300 may further include a gas guide 171 that is formed in the inlet and outlet with respect to the flow direction of the gas to guide the flow of the gas to facilitate the gas measurement.
  • the gas guide 171 may be formed, for example, in a cylindrical shape (or pipe shape) having a longitudinal direction in the flow direction of the gas, and the discharge speed of the gas discharged from the chimney is the same inside and outside the gas guide 171.
  • the cross section may be formed to be the same from the inlet to the outlet when cutting in a direction perpendicular to the flow direction of the gas.
  • the gas guide 171 is not limited in material and shape, but should be formed so that no leakage occurs until gas is introduced into the inlet of the gas guide 171 and discharged to the outlet.
  • the gas disturbance unit 300 may be configured to generate vortices in the gas flow using a chopper or the like instead of being configured to inject the indicating gas as described above.
  • the input / output unit 400 may include an input unit and an output unit, the input unit may include a touch pad or a keypad, and the output unit may include a display element, a warning light, a speaker, and the like.
  • the input / output unit 400 may display a user interface for setting a condition for measuring a gas emission amount under the control of the controller 200, and provide a signal corresponding to the values set through the user's operation to the controller 200. do.
  • the input / output unit 400 may display a user interface for setting a gas emission measurement cycle, an alarm condition, an alarm method, a type of gas for which emission is to be measured, and the data corresponding to the content set by the user. May be provided to the controller 200.
  • the communication unit 500 may be configured as a wired or wireless interface, and converts a gas measurement value or an event signal related to gas measurement according to a predetermined communication standard based on the control of the control unit 200 and transmits the measured signal to a predetermined destination.
  • the communication unit 500 processes a control signal or data provided from an external device according to a communication standard and provides the same to the control unit 200.
  • the storage unit 600 may be configured as a nonvolatile memory, and stores a program and related data executed by the control unit 200 to measure gas emissions. In addition, the storage unit 600 may store the gas emissions calculated according to the control of the controller 200 for a preset period.
  • FIG. 8 is a flowchart illustrating a gas emission measuring method according to an embodiment of the present invention, and is assumed to be performed by the gas emission measuring apparatus shown in FIGS. 6 and 7.
  • the controller 200 controls the driving of the first light source 110 and the second light source 120 to emit light, and then the voltage output from the first photodetector 130.
  • the concentration is calculated (step 820).
  • control unit 200 detects a peak value (first peak value) of the voltage output from the first photodetector 130 as the indicating gas crosses the first optical path 150, and the first peak value.
  • the time point (first time) of is measured (step 840).
  • controller 200 may determine a peak value (second peak) of the voltage output from the second photodetector 140 as the indicating gas crosses the second optical path 160 through the first optical path 150. Value) and the time point (second time) of the second peak value is measured (step 850).
  • the controller 200 specifies the difference based on the difference value ⁇ t between the first time and the second time obtained by performing the steps 840 and 850 and the separation distance ⁇ L between the first light path and the second light.
  • the flow rate of the gas is calculated (step 860).
  • the controller 200 calculates the hourly emissions of the specific gas using the concentration of the specific gas calculated in step 820, the flow rate of the specific gas calculated in step 860, and the cross-sectional area of the outlet through which the indicated gas is discharged (step 870). ).
  • step 830 of FIG. 8 when a specific gas to be measured and a different type of indicating gas to be measured in step 830 of FIG. 8 are applied, the relationship between the diffusion rate of the specific gas and the diffusion rate of the indicating gas after performing step 860 using a gaseous equation The process of calculating the velocity of the specific gas may be additionally performed.
  • the gas emission measuring apparatus and the method according to an embodiment of the present invention may be applied to, for example, a chimney tele-monitoring system (TMS) or a vehicle exhaust gas measuring apparatus.
  • TMS chimney tele-monitoring system
  • vehicle exhaust gas measuring apparatus for example, a chimney tele-monitoring system (TMS) or a vehicle exhaust gas measuring apparatus.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

Disclosed are a device for measuring a gas discharge amount which can simultaneously measure the flow rate and the concentration of a specific gas by a single device, and a method thereof. The device for measuring a gas discharge amount comprises: a gas detection section which emits light of a wavelength absorbed by a specific gas to be measured, from a mixture gas in which at least one gas is mixed, and detects the emitted light so as to provide a detection signal corresponding to the detected light intensity; a gas agitation section for agitating the flow of the mixture gas so as to measure the flow rate of the specific gas; and a controller which agitates the flow of the mixture gas by controlling the operation of the gas agitation section after calculating the concentration of the specific gas based on a first detection signal provided from the gas detection section, and calculates the discharge amount of the specific gas based on the calculated concentration and the flow rate of the specific gas, wherein the flow rate of the specific gas is calculated based on a second detection signal provided from the gas detection section. Therefore, the device for measuring a gas discharge amount can be simply manufactured and the convenience of carrying and measuring can be improved.

Description

가스 배출량 측정 장치 및 그 방법Gas emission measuring device and method
본 발명은 가스의 배출량 측정에 관한 것으로, 더욱 상세하게는 하나의 장치를 이용하여 혼합가스 중 특정 가스의 가스 유량 및 가스 농도를 측정할 수 있는 가스 배출량 측정 장치 및 그 방법에 관한 것이다.The present invention relates to a gas emission measurement, and more particularly, to a gas emission measurement apparatus and method for measuring the gas flow rate and gas concentration of a particular gas in a mixed gas using one device.
일반적으로 굴뚝 등에서 배출되는 가스의 유량 측정은 가스 유속을 측정하여 가스의 단위 시간당 이동 거리를 측정하고 유속을 측정한 지점에서의 흐름 단면적(cross section)을 곱하여 측정한다.In general, the flow rate measurement of the gas discharged from the chimney, etc. is measured by measuring the gas flow rate to measure the distance traveled per unit time of the gas and multiply the cross section at the point where the flow rate is measured.
또한, 여러 종류의 가스가 혼재하여 흐르는 경우 특정 가스만의 배출량을 측정하기 위해서는 먼저 배출되는 전체 가스의 유량을 측정하고, 전체 가스 중에서 배출량을 측정하고자 하는 특정 가스의 농도를 측정하여 상기 특정 가스의 배출량을 산출한다. 여기서, 특정 가스의 농도는 전체 가스의 부피에 대한 특정 가스의 부피의 비를 구하여 측정할 수 있다.In addition, in order to measure the emission of only a specific gas when several kinds of gases are mixed, the flow rate of the total gas discharged is first measured, and then the concentration of the specific gas to be measured is measured by measuring the concentration of the specific gas. Calculate the emissions. Here, the concentration of the specific gas can be measured by obtaining the ratio of the volume of the specific gas to the volume of the entire gas.
또한, 가스의 농도를 측정하는 방법의 하나로, 소정 가스가 특정 파장의 광을 흡수하는 특성을 이용하는 비분산 적외선 방법이 사용되고 있다. In addition, as one of the methods for measuring the concentration of gas, a non-dispersive infrared method using a characteristic in which a predetermined gas absorbs light of a specific wavelength is used.
도 1은 가스 분자의 광 흡수 스펙트럼을 도시한 것으로, 예를 들어 이산화탄소는 4.26㎛의 파장의 광을 흡수하고, 메탄은 3.3㎛ 파장의 광을 흡수하는 특성을 가진다.1 shows a light absorption spectrum of gas molecules, for example, carbon dioxide absorbs light having a wavelength of 4.26 μm, and methane has light absorbing light having a wavelength of 3.3 μm.
비분산 적외선 방법은 도 1에 도시한 바와 같이 각 가스 분자가 농도에 비례하여 고유 파장의 광을 흡수한다는 특성을 이용하여 농도를 측정하는 방법으로, 비분산 적외선 방법을 이용하여 가스 농도를 측정하기 위해서는 농도를 측정하고자 하는 가스가 흡수하는 파장대의 광을 방출하는 광원 및 상기 광원에서 광출된 광을 검출하는 광 검출기가 요구된다. 또한, 광원에서 방출된 광이 광 검출기에 도달하는 경로를 광 경로라 하는데, 가스 분자가 광 경로상에 위치하면 방출된 광의 일부가 가스 분자의 의해 흡수되므로 광 검출기를 통해 검출되는 광량은 작아지게 되고, 흡수되는 광량은 가스의 농도에 비례하게 된다. 비분산 적외선 방법을 이용하여 가스의 농도를 측정하는 방법은 측정 신뢰성이 높은 장점이 있다.As shown in FIG. 1, the non-dispersive infrared method measures concentration using a characteristic that each gas molecule absorbs light having a specific wavelength in proportion to the concentration. For this purpose, a light source for emitting light in a wavelength band absorbed by a gas to be measured and a light detector for detecting light emitted from the light source are required. In addition, the path from which the light emitted from the light source reaches the photo detector is called an optical path. When gas molecules are positioned on the optical path, part of the emitted light is absorbed by the gas molecules, so that the amount of light detected through the photo detector is reduced. The amount of light absorbed becomes proportional to the concentration of the gas. The method of measuring the concentration of gas using a non-dispersive infrared method has an advantage of high measurement reliability.
그러나, 종래에는 상술한 바와 같이 가스 유량 측정 기술과 가스 농도 측정 기술을 독립적으로 적용하여 혼합 가스 중에서 특정 가스의 배출량을 측정하였고, 이를 위해 가스 유량계 및 가스 농도 측정기가 독립적으로 이용되었다. 따라서, 가스 배출량을 측정하기 위해 복수의 장비가 필요하고, 측정자가 각각의 장비를 이용하여 가스 유량 및 가스 농도를 각각 별도로 측정한 후 이에 기초하여 특정 가스의 배출량을 산출해야 하기 때문에 각각의 측정기를 독립적으로 구비해야 하므로 고비용이 소요되고 또한 각 측정기를 각각 사후 관리해야 하는 단점이 있다.However, conventionally, as described above, the gas flow rate measurement technique and the gas concentration measurement technique were independently applied to measure the emission of a specific gas in the mixed gas. For this purpose, a gas flow meter and a gas concentration meter were used independently. Therefore, a plurality of equipments are required to measure gas emissions, and each measuring instrument needs to measure gas flow rate and gas concentration separately using the respective equipment, and then calculate emissions of a specific gas based thereon. Since it must be provided separately, it requires a high cost and has a disadvantage that each meter must be managed after each one.
상기한 단점을 극복하기 위한 본 발명의 목적은 여러 종류의 가스가 혼재하여 배출되는 환경에서 하나의 장치로 특정 가스의 유량 및 농도를 동시에 측정할 수 있는 가스 배출량 측정 장치를 제공하는 것이다.An object of the present invention for overcoming the above disadvantages is to provide a gas emission measuring apparatus that can measure the flow rate and concentration of a particular gas at the same time in a single device in an environment in which several types of gases are mixed and discharged.
또한, 본 발명의 다른 목적은 여러 종류의 가스가 혼재하여 배출되는 환경에서 하나의 장치로 특정 가스의 유량 및 농도를 동시에 측정할 수 있는 가스 배출량 측정 방법을 제공하는 것이다.In addition, another object of the present invention is to provide a gas emission measurement method that can measure the flow rate and concentration of a particular gas at the same time in a single device in an environment in which several types of gases are mixed.
본 발명의 기술적 과제들은 이상에서 언급한 기술적 과제로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다. Technical problems of the present invention are not limited to the technical problems mentioned above, and other technical problems not mentioned will be clearly understood by those skilled in the art from the following description.
상술한 본 발명의 목적을 달성하기 위한 본 발명의 일 측면에 따른 가스 배출량 측정 장치는, 적어도 하나의 가스가 혼재된 혼합가스 중 측정하고자 하는 특정 가스가 흡수하는 파장의 광을 방출하고, 상기 방출된 광을 검출하여 검출된 광량에 상응하는 검출신호를 제공하는 가스 검지부와, 상기 특정 가스의 유속을 측정하기 위해 상기 혼합가스의 흐름을 교란하는 가스 교란부 및 상기 가스 검지부로부터 제공된 제1 검출신호에 기초하여 상기 특정 가스의 농도를 산출한 후, 상기 가스 교란부의 구동을 제어하여 상기 혼합가스의 흐름을 교란하고 상기 가스 검지부로부터 제공된 제2 검출신호에 기초하여 상기 특정 가스의 유속을 산출한 후, 산출된 상기 특정 가스의 농도 및 유속에 기초하여 상기 특정가스의 배출량을 산출하는 제어부를 포함한다. Gas emission measuring apparatus according to an aspect of the present invention for achieving the above object of the present invention, emits light of a wavelength absorbed by a particular gas to be measured in the mixed gas mixed with at least one gas, the emission A gas detector which detects the light and provides a detection signal corresponding to the detected amount of light, a gas disturber which disturbs the flow of the mixed gas to measure the flow velocity of the specific gas, and a first detection signal provided by the gas detector After calculating the concentration of the specific gas based on the control method, controlling the driving of the gas disturbing unit to disturb the flow of the mixed gas, and calculating a flow rate of the specific gas based on the second detection signal provided from the gas detecting unit. And a control unit for calculating the discharge amount of the specific gas based on the calculated concentration and flow rate of the specific gas.
상기 가스 교란부는 상기 제어부의 제어에 상응하여 지시가스를 투입할 수 있다. The gas disturbance unit may input an instruction gas under the control of the controller.
상기 제어부는 상기 가스 검지부로부터 제1 검출신호로 전압을 제공받고, 비어-램버트 함수를 이용하여 전압을 상기 특정 가스의 농도로 변환할 수 있다.The controller may receive a voltage as a first detection signal from the gas detector and convert the voltage into a concentration of the specific gas by using a via-lambert function.
상기 가스 검지부는 상기 특정 가스가 흡수하는 파장의 광을 방출하는 제1 광원과, 상기 제1 광원에서 방출된 광을 검출하고 검출된 광량에 상응하는 제1 검출신호를 상기 제어부에 제공하는 제1 광검출기와, 상기 특정 가스가 흡수하는 파장의 광을 방출하는 제2 광원 및 상기 제2 광원에서 방출된 광을 검출하고 검출된 광량에 상응하는 제2 검출신호를 상기 제어부에 제공할 수 있다.The gas detector may include a first light source that emits light having a wavelength absorbed by the specific gas, and a first detection signal that detects light emitted from the first light source and provides a first detection signal corresponding to the detected light amount to the controller. The photodetector, a second light source emitting light having a wavelength absorbed by the specific gas, and light emitted from the second light source may be detected and a second detection signal corresponding to the detected light amount may be provided to the controller.
상기 제1 광원과 제1 광검출기 사이의 제1 광경로 및 상기 제2 광원과 제2 광검출기 사이의 제2 광경로는 소정 거리 이격되어 서로 평행하고, 상기 혼합가스의 흐름과 수직 방향이 될 수 있다.The first optical path between the first light source and the first photodetector and the second optical path between the second light source and the second photodetector may be spaced apart by a predetermined distance to be parallel to each other and to be perpendicular to the flow of the mixed gas. Can be.
상기 제어부는 상기 특정 가스의 농도를 산출한 후, 시간을 초기화하고 상기 가스 교란부를 제어하여 지시 가스를 투입하고 상기 제1 광검출기로부터 제공된 제1 전압의 피크값 및 상기 제1 전압의 피크 시점인 제1 시간을 검출한 후, 상기 지시가스의 흐름에 따라 상기 제2 광검출기로부터 제공된 제2 전압의 피크값 및 상기 제2 전압의 피크 시점인 제2 시간을 검출한 후, 상기 제1 시간 및 상기 제2 시간의 차이 및 상기 소정 거리를 이용하여 상기 특정 가스의 유속을 측정할 수 있다. The control unit calculates the concentration of the specific gas, initializes time, controls the gas disturbing unit, injects an indication gas, and is a peak value of a first voltage provided from the first photodetector and a peak time point of the first voltage. After detecting a first time, after detecting a peak time of a second voltage provided from the second photodetector and a second time point of the peak time of the second voltage according to the flow of the indicating gas, the first time and The flow rate of the specific gas may be measured using the difference between the second time and the predetermined distance.
또한, 본 발명의 다른 목적을 달성하기 위한 본 발명의 일 측면에 따른 가스 배출량 측정 방법은, 적어도 하나의 가스가 혼재된 혼합가스 중 특정 가스의 배출량을 측정하는 가스 배출량 측정 방법에 있어서, 상기 특정 가스가 흡수하는 파장의 광을 상기 혼합가스에 방출하고 방출된 광을 검출하여 상기 특정 가스의 농도를 산출하는 단계와, 상기 혼합가스의 흐름을 교란하기 위해 상기 혼합가스가 흐르는 배기관에 지시가스를 투입하는 단계와, 상기 지시가스의 흐름에 상응하여 검출되는 전압의 피크값 및 전압의 피크 시점에 기초하여 상기 특정 가스의 유속을 산출하는 단계 및 상기 산출된 농도 및 유속에 기초하여 상기 특정 가스의 배출량을 산출하는 단계를 포함한다.In addition, the gas emission measurement method according to an aspect of the present invention for achieving another object of the present invention, in the gas emission measurement method for measuring the emission of a specific gas of the mixed gas in which at least one gas is mixed, the specific Calculating the concentration of the specific gas by emitting light having a wavelength absorbed by the gas to the mixed gas and detecting the emitted light; and directing an indication gas to an exhaust pipe through which the mixed gas flows to disturb the flow of the mixed gas. Calculating a flow rate of the specific gas based on the step of inputting, a peak value of the voltage detected in correspondence with the flow of the indicating gas, and a peak time point of the voltage; and calculating the flow rate of the specific gas based on the calculated concentration and flow rate. Calculating the emissions.
상기 특정 가스의 농도를 산출하는 단계는, 상기 특정 가스가 흡수하는 파장의 광을 상기 혼합가스에 방출하는 단계와, 상기 방출된 광을 검출하고 검출된 광량에 상응하는 전압을 획득하는 단계 및 비어-램버트 함수를 이용하여 상기 전압을 상기 특정 가스의 농도로 변환하는 단계를 포함할 수 있다.The calculating of the concentration of the specific gas may include: emitting light having a wavelength absorbed by the specific gas to the mixed gas; detecting the emitted light and obtaining a voltage corresponding to the detected amount of light; and via Converting the voltage to a concentration of the particular gas using a Lambert function.
상기 혼합가스의 흐름을 교란하기 위해 지시가스를 투입하는 단계는, 시간을 초기화하는 단계를 포함할 수 있다.Injecting an indication gas to disturb the flow of the mixed gas may include initializing time.
상기 특정 가스의 유속을 산출하는 단계는 상기 지시가스가 제1 광경로를 흐름에 따라 제공되는 제1 전압의 피크값 및 상기 제1 전압의 피크 시점인 제1 시간을 측정하는 단계와, 상기 지시가스가 상기 제1 광경로와 소정 거리 이격된 제2 광경로를 흐름에 따라 제공되는 제2 전압의 피크값 및 상기 제2 전압의 피크 시점인 제2 시간을 측정하는 단계 및 상기 제1 시간 및 제2 시간의 차이와 상기 소정 거리를 이용하여 상기 특정 가스의 유속을 측정하는 단계를 포함할 수 있다.The calculating of the flow rate of the specific gas may include measuring a peak value of a first voltage provided as the indicator gas flows through a first optical path and a first time that is a peak time point of the first voltage, and the indication Measuring a peak time of the second voltage provided as the gas flows through the second light path spaced a predetermined distance from the first light path, and a second time which is a peak time point of the second voltage; The method may include measuring a flow rate of the specific gas by using a difference of a second time and the predetermined distance.
상기 가스 배출량 측정 방법은 상기 지시가스가 상기 특정 가스와 다른 종류의 가스인 경우에는 상기 특정 가스의 유속을 산출하는 단계의 수행 후에 상기 특정가스의 확산 속도와 상기 지시가스의 확산 속도간의 관계를 도출하고, 도출된 관계를 이용하여 상기 특정 가스의 유속을 산출하는 단계를 더 포함할 수 있다.The gas emission measuring method derives a relationship between the diffusion rate of the specific gas and the diffusion rate of the indication gas after the step of calculating the flow rate of the specific gas when the indication gas is a gas of a different type from the specific gas. The method may further include calculating a flow rate of the specific gas using the derived relationship.
상술한 바와 같은 가스 배출량 측정 장치 및 그 방법에 따르면, 측정하고자 하는 특정 가스가 흡수하는 파장의 광을 이용하여 특정 가스를 투과한 광량에 상응하는 전압을 검출한 후 비어-램버트 이론을 이용하여 특정 가스의 농도를 산출하고, 지시가스를 투입하고, 지시가스가 소정 거리 이격된 두 광경로를 가로지름에 따라 검출되는 전압의 피크값 및 시간에 기초하여 유속을 산출한다. 그리고, 산출된 농도 및 유속을 이용하여 특정 가스의 시간당 배출량을 산출한다.According to the gas emission measuring apparatus and the method as described above, by detecting the voltage corresponding to the amount of light transmitted through the specific gas by using the light of the wavelength absorbed by the specific gas to be measured and then using the Beer-Lambert theory The concentration of the gas is calculated, the indication gas is introduced, and the flow rate is calculated based on the peak value and time of the voltage detected as the indication gas traverses two optical paths spaced a predetermined distance apart. Then, the hourly emissions of a particular gas are calculated using the calculated concentrations and flow rates.
또한, 본 발명의 실시예에 따른 가스 배출량 측정 장치 및 방법은 가스 유량 측정기와 가스 농도 측정기를 각각 독립적인 특성을 유지한 상태에서 단순 결합하는 것이 아니라 하나의 측정 기술을 이용하여 가스의 유량과 농도를 동시에 측정하도록 하는 것이며 이로부터 하나의 장치가 가스의 유량과 가스의 농도를 동시에 측정하도록 하는 것이다.In addition, the gas emission measuring apparatus and method according to an embodiment of the present invention, rather than simply combining the gas flow meter and the gas concentration meter while maintaining independent characteristics, respectively, the flow rate and concentration of the gas using a single measurement technology It is to measure the flow rate of the gas and the concentration of gas at the same time.
따라서, 하나의 측정 장치만으로 특정 가스의 유량과 농도를 동시에 측정할 수 있고, 측정 장치를 간단하게 제조할 수 있으며, 휴대가 편리하고 가스 배출량 측정이 용이하며 유지관리 비용이 감소하는 효과가 있다. Therefore, the flow rate and concentration of a specific gas can be measured simultaneously with only one measuring device, the measuring device can be easily manufactured, and it is convenient to carry, easy to measure gas emissions, and the maintenance cost can be reduced.
본 발명의 실시예에 따른 가스 배출량 측정 장치 및 그 방법은 예를 들어, 굴뚝 TMS(Tele-Monitoring System) 또는 자동차 배기가스 측정 장치에 적용될 수 있다.The gas emission measuring apparatus and the method according to an embodiment of the present invention may be applied to, for example, a chimney tele-monitoring system (TMS) or a vehicle exhaust gas measuring apparatus.
도 1은 가스 분자의 광 흡수 스펙트럼을 도시한 것이다.1 shows the light absorption spectrum of gas molecules.
도 2는 굴뚝을 통해 배출되는 가스의 유량을 측정하는 방법을 설명하기 위한 개념도이다.2 is a conceptual view for explaining a method of measuring the flow rate of the gas discharged through the chimney.
도 3은 비어-램버트 이론을 설명하기 위한 개념도이다.3 is a conceptual diagram for explaining the beer-lambert theory.
도 4는 가스의 유속 측정을 설명하기 위한 개념도이다. 4 is a conceptual diagram for explaining a gas flow rate measurement.
도 5는 특정 가스의 농도 및 유량의 동시 측정 방법을 설명하기 위한 개념도이다.5 is a conceptual diagram for explaining a method of simultaneously measuring the concentration and the flow rate of a specific gas.
도 6은 본 발명의 일 실시예에 따른 가스 배출량 측정 장치의 구성을 나타내는 블록도이다.6 is a block diagram showing the configuration of a gas emission measuring apparatus according to an embodiment of the present invention.
도 7에 도시한 가스 배출량 측정 장치의 동작을 설명하기 위한 개념도이다.It is a conceptual diagram for demonstrating operation | movement of the gas emission measuring apparatus shown in FIG.
도 8은 본 발명의 일 실시예에 따른 가스 배출량 측정 방법을 나타내는 흐름도이다.8 is a flowchart illustrating a gas emission measuring method according to an exemplary embodiment of the present invention.
100 : 가스 검지부 110 : 제1 광원100 gas detection unit 110 first light source
120 : 제2 광원 130 : 제1 광검출기120: second light source 130: first photodetector
140 : 제2 광검출기 150 : 제1 광경로140: second photodetector 150: first optical path
160 : 제2 광경로 200 : 제어부160: second light path 200: control unit
300 : 가스 교란부 400 : 입출력부300: gas disturbance unit 400: input and output unit
500 : 통신부 600 : 저장부500: communication unit 600: storage unit
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세하게 설명하고자 한다.As the present invention allows for various changes and numerous embodiments, particular embodiments will be illustrated in the drawings and described in detail in the written description.
그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.However, this is not intended to limit the present invention to specific embodiments, it should be understood to include all modifications, equivalents, and substitutes included in the spirit and scope of the present invention.
제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다. 및/또는 이라는 용어는 복수의 관련된 기재된 항목들의 조합 또는 복수의 관련된 기재된 항목들 중의 어느 항목을 포함한다.Terms such as first and second may be used to describe various components, but the components should not be limited by the terms. The terms are used only for the purpose of distinguishing one component from another. For example, without departing from the scope of the present invention, the first component may be referred to as the second component, and similarly, the second component may also be referred to as the first component. The term and / or includes a combination of a plurality of related items or any item of a plurality of related items.
어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에는, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다. When a component is said to be "connected" or "connected" to another component, it may be directly connected to or connected to that other component, but it may be understood that another component may be present in the middle. Should be. On the other hand, when a component is said to be "directly connected" or "directly connected" to another component, it should be understood that there is no other component in between.
본 출원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.The terminology used herein is for the purpose of describing particular example embodiments only and is not intended to be limiting of the present invention. Singular expressions include plural expressions unless the context clearly indicates otherwise. In this application, the terms "comprise" or "have" are intended to indicate that there is a feature, number, step, operation, component, part, or combination thereof described in the specification, and one or more other features. It is to be understood that the present disclosure does not exclude the possibility of the presence or the addition of numbers, steps, operations, components, components, or combinations thereof.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가진 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.Unless defined otherwise, all terms used herein, including technical or scientific terms, have the same meaning as commonly understood by one of ordinary skill in the art. Terms such as those defined in the commonly used dictionaries should be construed as having meanings consistent with the meanings in the context of the related art and shall not be construed in ideal or excessively formal meanings unless expressly defined in this application. Do not.
이하, 첨부한 도면들을 참조하여, 본 발명의 바람직한 실시예를 보다 상세하게 설명하고자 한다. 본 발명을 설명함에 있어 전체적인 이해를 용이하게 하기 위하여 도면상의 동일한 구성요소에 대해서는 동일한 참조부호를 사용하고 동일한 구성요소에 대해서 중복된 설명은 생략한다.Hereinafter, with reference to the accompanying drawings, it will be described in detail a preferred embodiment of the present invention. In the following description of the present invention, the same reference numerals are used for the same elements in the drawings and redundant descriptions of the same elements will be omitted.
이하, 본 발명의 실시예에 따른 가스 배출량 측정 장치 및 방법의 기술 및 동작 원리에 대한 이해를 위해, 굴뚝에서 배출되는 다양한 종류의 가스 중 이산화탄소의 배출량을 측정하는 것을 예를 들어 본 발명의 실시예에 따른 가스 배출량 측정 장치 및 가스 유속 측정 방법에 적용되는 이론적 해석 방법을 설명한다.Hereinafter, in order to understand the technique and operating principle of the gas emission measuring apparatus and method according to an embodiment of the present invention, for example, measuring the emission of carbon dioxide in various types of gas discharged from the chimney The theoretical analysis method applied to the gas emission measurement device and the gas flow rate measurement method according to the present invention will be described.
1. 가스의 배출량 산출1. Calculation of gas emissions
화석 연료를 대기를 이용하여 연소시키면 연소 후 발생되는 가스는 이산화탄소와 수증기, 연소에 관여하지 않는 질소, 연소 후 잔량의 산소, 그리고 만일 연소가 고온에서 진행되었다면 일부 질소도 연소되어 질산화물, 불완전 연소라면 일산화탄소 등 다양한 종류의 가스가 굴뚝을 통해 배출된다. 상기한 바와 같이 배출되는 다양한 가스 중 이산화탄소의 배출량은 전체 가스의 배출량에서 이산화탄소가 차지하는 비율(또는 농도)를 측정함으로써 산출한다. If fossil fuels are burned using the atmosphere, the gases produced after combustion are carbon dioxide and water vapor, nitrogen not involved in combustion, residual oxygen after combustion, and if the combustion is carried out at high temperature, some nitrogen is also burned and nitrates, incomplete combustion. Various types of gases, such as carbon monoxide, are emitted through the chimneys. As described above, the emission of carbon dioxide among the various gases emitted is calculated by measuring the ratio (or concentration) of carbon dioxide in the total gas emissions.
도 2는 굴뚝을 통해 배출되는 가스의 유량을 측정하는 방법을 설명하기 위한 개념도이다.2 is a conceptual view for explaining a method of measuring the flow rate of the gas discharged through the chimney.
도 2를 참조하면, 단위 시간당 가스의 유량은 가스의 유속(v)을 측정한 후 굴뚝의 단면적(A)을 곱하여 측정할 수 있다. 여기서 굴뚝의 단면적(A)을 미리 알고 있는 경우에는 가스의 유속(v)을 측정하는 것으로 용이하게 가스의 유량을 측정할 수 있다.Referring to FIG. 2, the flow rate of gas per unit time may be measured by multiplying the cross-sectional area A of the chimney after measuring the flow rate v of the gas. If the cross-sectional area A of the chimney is known in advance, the flow rate of the gas can be easily measured by measuring the flow rate v of the gas.
또한, 다양한 종류의 가스가 혼재된 환경에서 이산화탄소의 배출량을 측정하는 방법은 전체 가스 유량 중 이산화탄소의 농도를 측정한 후 전체 가스 유량과 이산화탄소의 비율을 곱하여 산출할 수 있다.In addition, a method of measuring carbon dioxide emission in an environment in which various types of gases are mixed may be calculated by measuring the concentration of carbon dioxide in the total gas flow rate and then multiplying the total gas flow rate by the ratio of carbon dioxide.
즉, 시간 t 동안의 특정 가스의 배출량(C)은 상기 특정 가스의 농도(N)와 시간 t동안 이동한 거리(L) 및 가스가 배출되는 배기관의 단면적(A)을 곱하여 산출할 수 있다.That is, the discharge amount C of the specific gas during the time t may be calculated by multiplying the concentration N of the specific gas by the distance L traveled during the time t and the cross-sectional area A of the exhaust pipe from which the gas is discharged.
2. 비어-램버트(Beer-Lambert) 이론2. Beer-Lambert theory
비어-램버트 이론은 가스 분자가 특정 파장의 광을 흡수하는 특성에 대한 해석 이론으로, 가스 분자가 특정 파장의 광을 흡수하는 경우 가스 농도와 투과된 광량간의 상호 관계를 정의한다.Beer-Lambert theory is an analysis of the characteristics of gas molecules absorbing light of a certain wavelength, and defines the correlation between gas concentration and the amount of transmitted light when the gas molecules absorb light of a certain wavelength.
광원에서 방출된 광은 일정한 광 경로를 거쳐 광 검출기에 도달한다. 광 경로 상에 가스 분자가 위치하는 경우 광의 일부는 가스 분자에 흡수되고 일부가 투과되어 광 검출기에 도달하게 된다. 여기서, 가스 분자에 흡수되는 광량은 가스 농도에 비례하는데, 이는 가스 분자에 의해 흡수되지 않고 투과되는 광량은 가스 농도에 반비례함을 의미한다.Light emitted from the light source reaches a photo detector through a constant light path. When gas molecules are located on the optical path, some of the light is absorbed by the gas molecules and some is transmitted to reach the photo detector. Here, the amount of light absorbed by the gas molecules is proportional to the gas concentration, which means that the amount of light transmitted without being absorbed by the gas molecules is inversely proportional to the gas concentration.
도 3은 비어-램버트 이론을 설명하기 위한 개념도이다.3 is a conceptual diagram for explaining the beer-lambert theory.
도 3을 참조하면, 광 검출기는 검출된 광량에 상응하여 전압(V)을 출력하는데. 출력되는 전압(V)는 가스 농도(X)의 함수로 도출된다. 도 3에서 Vo는 가스의 농도가 0일 때의 전압을 의미하며, L은 광 경로의 길이를 의미하고, b는 가스 분자 1개의 광 흡수율을 나타내는 고유값이다.Referring to FIG. 3, the photo detector outputs a voltage V corresponding to the detected light amount. The output voltage V is derived as a function of the gas concentration X. In FIG. 3, Vo denotes a voltage when the gas concentration is 0, L denotes a length of an optical path, and b denotes an eigenvalue representing light absorption of one gas molecule.
일반적으로 광 검출기에 도달하는 광량과 광 검출기가 출력하는 전압은 선형적으로 비례한다. 따라서, 광 검출기에서 출력되는 전압(V)은 광 검출기에 도달하는 광량과 동등하다고 할 수 있다. In general, the amount of light reaching the photo detector is linearly proportional to the voltage output by the photo detector. Therefore, it can be said that the voltage V output from the photodetector is equal to the amount of light reaching the photodetector.
또한, 광원은 가스 분자가 흡수하는 파장을 방출하며 광 검출기는 해당 파장의 광만을 검출한다. 예를 들어, 이산화탄소를 검지하기 위해서는 광원은 4.26㎛의 파장의 광을 방출하고 메탄을 검지하는 경우 광원은 3.3㎛ 파장의 광을 방출하며, 광 검출기는 해당 파장을 가지는 광만을 검출한다. 따라서, 광 검출기의 검출 파장을 선택함으로써 검지하고자 하는 가스의 종류를 선택할 수 있다. 여기서, 광 검출기의 검출 파장은 해당 파장의 광만을 투과하는 광 필터를 적용함으로써 선택할 수 있다.In addition, the light source emits a wavelength absorbed by the gas molecules and the photodetector only detects light of that wavelength. For example, in order to detect carbon dioxide, the light source emits light having a wavelength of 4.26 μm, and when methane is detected, the light source emits light having a wavelength of 3.3 μm, and the light detector detects only light having the corresponding wavelength. Therefore, the kind of gas to be detected can be selected by selecting the detection wavelength of a photodetector. Here, the detection wavelength of the photodetector can be selected by applying an optical filter that transmits only light of the wavelength.
3. 가스 농도의 검지3. Detection of gas concentration
가스 농도의 검지는 비어-램버트 이론에 이용하여 산출할 수 있다. 도 3에서 광 검출기에 의해 출력되는 전압(V)은 가스 농도(X)의 함수이므로, 광 검출기에서 출력되는 전압(V)을 측정한 후, 출력 전압(V)의 역함수를 구함으로써 가스 농도를 산출할 수 있다. 여기서 가스 분자 1개의 광 흡수율 값인 b와 광 경로의 길이 L의 곱(즉, b×L)은 기준 농도를 이용하여 교정하는 과정에서 도출할 수 있다. Detection of gas concentration can be calculated using the Beer-Lambert theory. In FIG. 3, since the voltage V output by the photodetector is a function of the gas concentration X, the gas concentration is obtained by measuring the voltage V output from the photodetector and then obtaining the inverse function of the output voltage V. Can be calculated. Here, the product of the light absorptance value b of one gas molecule and the length L of the light path (that is, b × L) may be derived during the calibration using the reference concentration.
4. 가스 유량의 측정4. Measurement of gas flow rate
가스가 배출되는 배기관(예를 들면, 굴뚝)의 단면적을 알고 있을 경우 가스의 유량을 측정하는 것은 가스의 유속을 측정하는 것과 동등하다. 따라서, 이하에서는 가스의 유속 측정 방법을 설명하는 것으로 가스의 유량 측정 방법에 대한 설명을 대신한다.Knowing the cross-sectional area of the exhaust pipe (eg chimney) through which the gas is discharged, measuring the flow rate of the gas is equivalent to measuring the flow velocity of the gas. Therefore, hereinafter, a description will be given of a method of measuring a gas flow rate to replace the description of the method of measuring a gas flow rate.
도 4는 가스의 유속 측정을 설명하기 위한 개념도이다. 4 is a conceptual diagram for explaining a gas flow rate measurement.
도 4를 참조하면, 가스의 유속을 측정하기 위해서는 2쌍의 광원과 2쌍의 광 검출기가 사용되고, 상기 2쌍의 광원은 유속을 측정하고자 하는 가스 분자가 흡수하는 특정 파장의 광을 방출하도록 구성되거나, 상기 2쌍의 광 검출기는 유속을 측정하고자 하는 가스 분자가 흡수하는 특정 파장의 광을 검출하도록 구성된다.Referring to FIG. 4, two pairs of light sources and two pairs of light detectors are used to measure the flow rate of the gas, and the two pairs of light sources are configured to emit light of a specific wavelength absorbed by the gas molecules to measure the flow rate. Alternatively, the two pairs of photo detectors are configured to detect light of a particular wavelength absorbed by the gas molecules for which the flow rate is to be measured.
먼저, 제1 광원(110)에서 방출된 광은 제1 광경로(150)를 거쳐 제1 광검출기(130)에 도달하고, 제2 광원(120)에서 방출된 광은 제2 광경로(160)을 거쳐 제2 광검출기(140)에 도달한다. 여기서 제1 광 경로(150)와 제2 광 경로(160)는 서로 평행하고 거리 ΔL만큼 이격되어 위치한다. First, the light emitted from the first light source 110 reaches the first photodetector 130 via the first light path 150, and the light emitted from the second light source 120 passes through the second light path 160. And reaches the second photodetector 140. Here, the first optical path 150 and the second optical path 160 are parallel to each other and spaced apart by a distance ΔL.
지시가스는 유속을 측정하고자 하는 가스와 동종의 가스로 고농도의 가스가 사용되거나, 상기 유속을 측정하고자 하는 가스의 유속을 환산할 수 있는 다른 종의 가스가 사용될 수 있다. 지시가스로 다른 종의 가스가 사용되는 경우 유속을 측정하고자 하는 가스에 대해 농도는 0이다. 지시가스는 제1 광경로(150)와 제2 광경로(160)에 대해 수직으로 가로질러 이동한다.The indicator gas may be the same kind of gas as the gas to be measured, and a high concentration of gas may be used, or another kind of gas capable of converting the flow rate of the gas to be measured may be used. If other species of gas are used as the indicator gas, the concentration is zero for the gas whose flow rate is to be measured. The indicating gas moves vertically with respect to the first light path 150 and the second light path 160.
광 검출기(130, 140)에서 출력되는 전압은 오실로스코프와 같이 시간에 대한 전압의 변화량을 측정할 수 있는 측정 장치와 연결된다. 예를 들어, 제1 광검출기(130)는 오실로스코프의 제1 채널(CH01)과 연결되고 제2 광검출기(140)는 오실로스코프의 제2 채널(CH02)과 연결되어 제1 광검출기(130) 및 제2 광검출기(140)로부터 제공된 전압을 표시할 수 있다.The voltages output from the photo detectors 130 and 140 are connected to a measuring device capable of measuring an amount of change in voltage over time, such as an oscilloscope. For example, the first photodetector 130 is connected to the first channel CH01 of the oscilloscope and the second photodetector 140 is connected to the second channel CH02 of the oscilloscope to connect the first photodetector 130 and The voltage provided from the second photodetector 140 may be displayed.
상술한 바와 같은 측정 환경에서, 고농도의 지시가스가 제1 시간(t1)에 제1 광경로(150)를 지날 때 제1 광원(110)에서 방출되는 광을 흡수하므로 제1 광검출기(150)에서 출력되는 전압은 낮아지게 되고 이에 따라 도 4에 도시한 바와 같이 제1 채널(CH01)에서 제1 시간(t1) 대해 아래로 볼록한 형태의 전압 파형이 출력된다. 이어 지시가스가 제2 시간(t2)에 제2 광경로(160)를 통과할 때도 지시가스가 광을 흡수하므로 제2 광검출기(140)에서 출력되는 전압 역시 낮아지게 되어 제2 채널(CH02)도 제2 시간(t2)에서 아래로 볼록한 전압 파형이 출력된다.In the measurement environment as described above, the first photodetector 150 absorbs the light emitted from the first light source 110 when the high concentration of the indicating gas passes through the first light path 150 at the first time t1. As shown in FIG. 4, the voltage outputted from is lowered, thereby outputting a voltage waveform having a convex shape downward for the first time t1 in the first channel CH01. Subsequently, even when the indicator gas passes through the second optical path 160 at the second time t2, the indicator gas absorbs light, so that the voltage output from the second photodetector 140 is also lowered. The voltage waveform convex downward at the second time t2 is output.
따라서, 제1 채널(CH01)과 제2 채널(CH02)의 각 시간(t1 및 t2)에 대해 출력되는 전압의 최저점 사이의 간격인 Δt를 측정하고 속도의 정의(속도=ΔL/Δt)를 이용하면 지시가스의 이동 속도를 측정할 수 있다.Therefore, Δt, which is the interval between the lowest points of the output voltages for each time t1 and t2 of the first channel CH01 and the second channel CH02, is measured and the definition of speed (speed = ΔL / Δt) is used. In this case, the moving speed of the indicating gas can be measured.
5. 가스의 농도 및 유량의 동시 측정5. Simultaneous measurement of gas concentration and flow rate
도 4에 도시한 가스 유속 측정 방법에서 지시가스가 투입되지 않는 경우에는 도 3에 도시한 바와 같은 비어-램버트 이론에 기초하여 제1 광검출기 및 제2 광검출기에서 출력되는 전압은 측정하고자 하는 특정 가스의 농도로 환산될 수 있다.When no indication gas is input in the gas flow rate measuring method shown in FIG. 4, the voltage output from the first photodetector and the second photodetector based on the via-Lambert theory as shown in FIG. 3 is determined to be measured. It can be converted into the concentration of gas.
도 5는 특정 가스의 농도 및 유량의 동시 측정 방법을 설명하기 위한 개념도로서, 다양한 종류의 가스가 혼재되어 배출되는 상황에서 이산화탄소의 농도 및 유량을 동시에 측정하는 것을 예를 들어 설명한다.FIG. 5 is a conceptual view illustrating a method of simultaneously measuring concentration and flow rate of a specific gas, and for example, simultaneously measuring concentration and flow rate of carbon dioxide in a situation in which various types of gases are mixed and discharged.
도 5를 참조하면, 제1 광원(110)에서 방출된 광은 제1 광경로(150)를 거쳐 제1 광검출기(130)에 도달하고, 제2 광원(120)에서 방출된 광은 제2 광경로(160)를 거쳐 제2 광검출기(140)에 도달한다. 여기서, 제1 광경로(150) 및 제2 광경로(160)는 서로 평행하고, 가스의 배출 방향과 수직이며, 서로 ΔL만큼 이격되어 있다.Referring to FIG. 5, the light emitted from the first light source 110 reaches the first photodetector 130 via the first light path 150, and the light emitted from the second light source 120 receives the second light. The second photodetector 140 is reached via the optical path 160. Here, the first light path 150 and the second light path 160 are parallel to each other, perpendicular to the discharge direction of the gas, and spaced apart from each other by ΔL.
지시가스는 고농도의 이산화탄소로 굴뚝에서 배출되는 가스와 같은 방향으로 배출되고, 배출 속도 또한 동일한다. 지시가스가 제1 광경로(150) 및 제2 광경로(160)를 가로질러 지나가지 않는 경우, 제1 광검출기(130) 및 제2 광검출기(140)에서 각각 출력되는 전압 V1 및 V2는 굴뚝에서 배출되는 가스 중 이산화탄소의 농도를 의미한다. 즉, 제1 광검출기(130)에서 출력되는 전압(V1) 과 제2 광검출기(140)에서 출력되는 전압(V2)은 비어-램버트 함수를 이용하여 농도로 변환할 수 있다.The indicator gas is a high concentration of carbon dioxide and is discharged in the same direction as the gas emitted from the chimney, and the discharge rate is the same. When the indicating gas does not cross the first optical path 150 and the second optical path 160, the voltages V1 and V2 output from the first photodetector 130 and the second photodetector 140 are respectively. The concentration of carbon dioxide in the gas emitted from the chimney. That is, the voltage V1 output from the first photodetector 130 and the voltage V2 output from the second photodetector 140 may be converted into concentration using a via-Lambert function.
여기서, 지시가스를 투입하면 굴뚝 내부에 이산화탄소의 농도가 국지적으로 교란이 발생하며 지시가스가 제1 광경로(150)를 지나는 시점인 t1에서 도 5에 도시한 제1 채널(CH01)과 같은 농도 상승이 나타난다. 또한, 지시가스가 제2 광경로(160)를 통과하는 시점인 t2에서도 도 5에 도시한 제2 채널(CH02)과 같은 농도의 상승이 나타난다. Here, when the indicator gas is introduced, the concentration of carbon dioxide is locally disturbed in the chimney, and the same concentration as that of the first channel CH01 shown in FIG. 5 at t1 at which the indicator gas passes the first optical path 150. A rise appears. In addition, the same concentration as that of the second channel CH02 shown in FIG. 5 also occurs at t2, which is a point in time at which the indicating gas passes through the second optical path 160.
또한, 상술한 바와 같이 지시가스의 이동속도는 굴뚝 내부에서의 이산화탄소 이동속도와 동일하므로 지시가스의 이동속도는 상기 제1 시간(t1)과 상기 제2 시간(t2)의 차이인 Δt를 측정하고 v = ΔL/Δt로부터 산출할 수 있다. In addition, as described above, since the moving speed of the indicating gas is the same as the moving speed of carbon dioxide in the chimney, the moving speed of the indicating gas measures Δt, which is a difference between the first time t1 and the second time t2. It can calculate from v = ΔL / Δt.
상술한 바와 같이 지시가스를 투입하지 않은 상태에서 굴뚝에서 배출되는 이산화탄소의 농도를 측정하고, 지시가스를 투입하여 이산화탄소의 배출속도를 계산함으로써 이산화탄소의 배출량을 산출하게 된다.As described above, by measuring the concentration of carbon dioxide discharged from the chimney without inputting the indicator gas, and calculating the discharge rate of the carbon dioxide by inputting the indicator gas, carbon dioxide emission is calculated.
상기한 가스의 농도 및 유량의 동시 측정 방법은 이산화탄소의 배출량 측정에 한정되지 않으며 모든 가스의 배출량 측정에 적용될 수 있다. 또한, 지시가스를 측정하고자 하는 가스와 다은 종류 종류의 가스를 사용하는 경우에도 상술한 방법이 동일하게 적용된다. 다만, 측정하고자 하는 가스와 다른 종류의 지시가스를 사용하는 경우에는 가스의 분자량에 따라 확산 속도가 다르므로 이에 대한 보정이 필요하다. 예를 들어, 도 5에 도시한 방법에서 지시가스로 질소를 사용하는 경우 질소는 이산화탄소보다 가벼운 가스이므로 확산 속도가 동일한 온도에서 이산화탄소보다 빠르다. 여기서, 질소의 확산 속도와 이산화탄소 확산 속도 간의 관계는 기체상태 방정식에 의해 도출된다.The method of simultaneously measuring the concentration and flow rate of the gas is not limited to the measurement of the emission of carbon dioxide, and may be applied to the measurement of the emission of all gases. In addition, the above-described method is also applied to the case where a gas to be measured and a gas of a different kind are used. However, in the case of using the indicator gas of a different type from the gas to be measured, it is necessary to correct the diffusion rate depending on the molecular weight of the gas. For example, when nitrogen is used as the indicator gas in the method shown in FIG. 5, since nitrogen is lighter than carbon dioxide, the diffusion rate is faster than that of carbon dioxide at the same temperature. Here, the relationship between the diffusion rate of nitrogen and the carbon dioxide diffusion rate is derived by the gas state equation.
동일한 온도 상태(열적 평형 상태(thermal equilibrium))라면 엔트로피의 법칙에 의해 가스 분자가 갖는 에너지는 그 종류에 관계없이 동일하다. 이로부터 질소와 이산화탄소의 확산 속도 관계를 도출할 수 있다. 예를 들어, 질소가 갖는 에너지를 E1, 이산화탄소가 갖는 에너지를 E2, 질소의 확산 속도를 v1, 이산화탄소의 확산 속도를 v2, 질소의 분자량을 m1, 이산화탄소의 분자량을 m2라 하면, 열적 평형상태에서 질소의 에너지(E1)와 이산화탄소의 에너지(E2)는 동일하다(즉, E1=E2). 상기한 바와 같은 특성을 이용하여 수학식 1을 도출할 수 있다.If the temperature is the same (thermal equilibrium), according to the law of entropy, the energy of the gas molecules are the same regardless of their kind. From this, the relationship between the rate of diffusion of nitrogen and carbon dioxide can be derived. For example, the energy of nitrogen is E 1 , the energy of carbon dioxide is E 2 , the diffusion rate of nitrogen is v 1 , the diffusion rate of carbon dioxide is v 2 , the molecular weight of nitrogen is m 1 , and the molecular weight of carbon dioxide is m 2 . In other words, in thermal equilibrium, the energy of nitrogen (E 1 ) and that of carbon dioxide (E 2 ) are the same (ie, E 1 = E 2 ). Equation 1 may be derived using the above characteristics.
수학식 1
Figure PCTKR2011009436-appb-M000001
Equation 1
Figure PCTKR2011009436-appb-M000001
Figure PCTKR2011009436-appb-I000001
Figure PCTKR2011009436-appb-I000001
Figure PCTKR2011009436-appb-I000002
Figure PCTKR2011009436-appb-I000002
도 5에서 지시가스로 질소를 사용하는 경우 질소의 이동 속도(v1)를 측정하고 상기 수학식 1을 이용하여 이산화탄소의 이동속도(v2)를 산출할 수 있다. 즉, 질소의 분자량(m1)은 28이고, 이산화탄소의 분자량(m2)은 44이므로, 질소와 이산화탄소의 이동 속도는 수학식 2와 같은 관계를 가지게 된다.When using nitrogen as the indicator gas in FIG. 5, the moving speed (v 1 ) of nitrogen may be measured and the moving speed (v 2 ) of carbon dioxide may be calculated using Equation (1). That is, since the molecular weight (m 1 ) of nitrogen is 28 and the molecular weight (m 2 ) of carbon dioxide is 44, the moving speeds of nitrogen and carbon dioxide have a relationship as shown in Equation (2).
수학식 2
Figure PCTKR2011009436-appb-M000002
Equation 2
Figure PCTKR2011009436-appb-M000002
상기한 예와 같이 지시가스로 질소를 사용하는 경우에는 지시가스가 각 광경로(150 및 160)를 통과할 때 농도가 낮아져서 표시되는 농도 파형은 아래로 볼록한 형태를 가지게 된다.When nitrogen is used as the indicator gas as described above, when the indicator gas passes through each of the optical paths 150 and 160, the concentration waveform displayed as the concentration is lowered is convex downward.
도 6은 본 발명의 일 실시예에 따른 가스 배출량 측정 장치의 구성을 나타내는 블록도이고, 도 7에 도시한 가스 배출량 측정 장치의 동작을 설명하기 위한 개념도이다.FIG. 6 is a block diagram illustrating a configuration of a gas emission measuring apparatus according to an embodiment of the present invention, and is a conceptual diagram for describing an operation of the gas emission measuring apparatus illustrated in FIG. 7.
도 6 및 도 7을 참조하면, 가스 배출량 측정 장치는 가스 검지부(100), 제어부(200), 가스 교란부(300), 입출력부(400), 통신부(500) 및 저장부(600)를 포함할 수 있다.6 and 7, the gas emission measuring apparatus includes a gas detection unit 100, a control unit 200, a gas disturbance unit 300, an input / output unit 400, a communication unit 500, and a storage unit 600. can do.
가스 검지부(100)는 제어부(200)의 제어 신호에 상응하여 측정하고자 하는 특정 가스가 흡수하는 파장의 광을 방출하고, 상기 특정 가스를 투과한 광을 검출하여 검출된 광량에 상응하는 전기 신호를 제어부(200)에 제공한다.The gas detector 100 emits light having a wavelength absorbed by a specific gas to be measured in response to a control signal of the controller 200, and detects light transmitted through the specific gas to provide an electrical signal corresponding to the detected light amount. It provides to the control unit 200.
구체적으로, 가스 검지부(100)는 제1 광원(110), 제1 광검출기(130), 제2 광원(120) 및 제2 광검출기(140)를 포함할 수 있고, 상기 제1 광원(110) 및 제2 광원(120)은 제어부(200)의 제어에 상응하여 측정하고자 하는 특정 가스가 흡수하는 파장대의 광을 방출하거나 상기 특정 가스가 흡수하는 광만을 방출하며, 상기 제1 광검출기(130) 및 제2 광검출기(140)는 상기 특정가스가 흡수하는 파장대의 광 또는 상기 특정 가스가 흡수하는 광만을 검출하고 검출된 광량에 상응하는 전기 신호를 제어부(200)에 제공한다. 여기서, 제1 광검출기(130) 및 제2 광검출기(140)에서 제공되는 전기신호는 전압 또는 전류가 될 수 있으나, 본 발명의 실시예에서는 전압(V1 및 V2)을 제공하는 것으로 예를 들어 설명한다.Specifically, the gas detector 100 may include a first light source 110, a first light detector 130, a second light source 120, and a second light detector 140, and the first light source 110. ) And the second light source 120 emit light of a wavelength band absorbed by a specific gas to be measured or only light absorbed by the specific gas under the control of the controller 200, and the first photodetector 130. ) And the second photodetector 140 detect only light of a wavelength band absorbed by the specific gas or light absorbed by the specific gas and provide an electric signal corresponding to the detected light amount to the controller 200. Here, the electrical signals provided from the first photodetector 130 and the second photodetector 140 may be voltage or current, but in the embodiment of the present invention, for example, the voltages V1 and V2 are provided. Explain.
또한, 상기 제1 광원(110)에서 방출된 광은 제1 광경로(150)를 지나 상기 제1 광검출기(130)에 도달하며 상기 제2 광원(120)에서 방출된 광은 제2 광경로(160)를 지나 상기 제2 광검출기(140)에 도달한다. 여기서, 제1 광원(110)에서 방출된 광은 제2 광검출기(140)에 도달하지 않고, 제2 광원(120)에서 방출된 광은 제1 광검출기(130)에 도달하지 않도록 상기 제1 광경로(150) 및 상기 제2 광경로(160)는 서로 평행하고, 소정 거리(ΔL)만큼 이격되어 형성된다. 또한, 제1 광경로(150) 및 제2 광경로(160)는 가스의 이동 방향과 수직으로 형성된다.In addition, the light emitted from the first light source 110 reaches the first photodetector 130 after passing through the first light path 150 and the light emitted from the second light source 120 passes through the second light path. Pass 160 to reach the second photodetector 140. Here, the light emitted from the first light source 110 does not reach the second photodetector 140, and the light emitted from the second light source 120 does not reach the first photodetector 130. The optical path 150 and the second optical path 160 are parallel to each other and are formed to be spaced apart by a predetermined distance ΔL. In addition, the first light path 150 and the second light path 160 are formed perpendicular to the moving direction of the gas.
제어부(200)는 가스 검지부(100)의 동작을 제어하고, 가스 검지부(100)로부터 제공된 전기신호(예를 들면, 전압)에 기초하여 측정하고자 하는 특정 가스의 농도 및 유속을 산출하여 상기 특정가스의 배출량을 산출한다.The controller 200 controls the operation of the gas detector 100, calculates a concentration and a flow rate of a specific gas to be measured based on an electric signal (for example, a voltage) provided from the gas detector 100, thereby determining the specific gas. Calculate the emissions.
구체적으로, 제어부(200)는 제1 광원(110) 및 제2 광원(120)의 구동을 제어하여 광을 방출하도록 한 후 제1 광검출기(130) 및 제2 광검출기(140)로부터 각각 제공된 전압(V1 및 V2)에 기초하여 측정하고자 하는 특정 가스의 농도를 산출한다. 여기서, 제어부(200)는 비어-램버트 함수를 이용하여 상기 전압(V1 및 V2)에 대응되는 농도를 산출할 수 있다.Specifically, the control unit 200 controls the driving of the first light source 110 and the second light source 120 to emit light, and then provided from the first photodetector 130 and the second photodetector 140, respectively. The concentration of the specific gas to be measured is calculated based on the voltages V1 and V2. Herein, the controller 200 may calculate concentrations corresponding to the voltages V1 and V2 using a via-lambert function.
이후, 제어부(200)는 가스 교란부(300)의 구동을 제어하여 지시가스가 공급되도록 하고, 이와 동시에 시간을 리셋(t=0) 한다. 또한, 제어부(200)는 제1 광검출기(130) 및 제2 광검출기(140)로부터 출력되는 전압을 미리 설정된 일정 시간 간격으로 샘플링하여 제1 검출기(130) 및 제2 검출기(140)로부터 각각 제공되는 전압(V1 및 V2)의 피크값 및 상기 전압의 피크값에 대응되는 시간을 측정하고, 두 전압의 피크값 사이의 시간 차이(Δt)를 구한다.Thereafter, the control unit 200 controls the driving of the gas disturbance unit 300 to supply the indicating gas, and at the same time resets the time (t = 0). In addition, the controller 200 samples the voltages output from the first photodetector 130 and the second photodetector 140 at predetermined time intervals, respectively, from the first detector 130 and the second detector 140. The peak values of the provided voltages V1 and V2 and the time corresponding to the peak values of the voltages are measured, and the time difference Δt between the peak values of the two voltages is obtained.
구체적으로 제어부(200)는 지시가스가 제1 광경로(150)에 도달하면 제1 광검출기에서 출력되는 전압의 피크 값인 제1 전압피크값을 측정한다. 제1 전압피크값은 미리 설정된 일정 시간 간격으로 전압을 샘플링하여 획득한 최대 전압 값이다. 또한 제어부(200)는 제1 전압피크값이 측정되는 시점인 제1 시점(t1)을 측정한다. 여기서, 제1 시점(t1)은 지시가스가 공급된 시점 또는 시간이 리셋(즉, t=0)된 이후부터 상기 전압의 피크값이 측정된 시간까지의 경과 시간으로 측정될 수 있다.In detail, when the indicating gas reaches the first optical path 150, the controller 200 measures a first voltage peak value that is a peak value of the voltage output from the first photodetector. The first voltage peak value is a maximum voltage value obtained by sampling a voltage at a predetermined time interval. In addition, the controller 200 measures a first time point t1 which is a time point at which the first voltage peak value is measured. Here, the first time point t1 may be measured as an elapsed time from when the time point or time at which the instruction gas is supplied is reset (that is, t = 0) to the time when the peak value of the voltage is measured.
또한, 제어부(200)는 지시가스가 제1 광경로(150)를 지나 제2 광경로(160)에 도달하여 제2 광검출기(140)로부터 출력된 전압의 피크값인 제2 피크값 및 이 때의 시점인 제2 시점(t2)을 측정한다. 여기서, 제2 시점(t2)은 지시가스가 공급된 시점 또는 시간이 리셋(즉, t=0)된 이후부터 상기 전압의 제2 피크값이 측정된 시간까지의 경과 시간으로 측정될 수 있다.In addition, the controller 200 may include a second peak value, which is a peak value of a voltage output from the second photodetector 140 when the indicating gas reaches the second optical path 160 through the first optical path 150. The second time point t2 which is the time point of time is measured. Here, the second time point t2 may be measured as an elapsed time from when the time point or time at which the instruction gas is supplied is reset (that is, t = 0) to the time when the second peak value of the voltage is measured.
이후, 제어부(200)는 미리 입력된 제1 광경로(150) 및 제2 광경로(160) 사이의 이격거리(ΔL) 및 상기 제1 시점(t1) 및 제2 시점(t2)의 시간 차이(Δt)를 이용하여 지시가스의 이동 속도를 산출한다.Subsequently, the controller 200 determines a separation distance ΔL between the first optical path 150 and the second optical path 160 previously input, and a time difference between the first time point t1 and the second time point t2. Δt is used to calculate the moving speed of the indicating gas.
제어부(200)는 상술한 바와 같이 산출된 특정 가스의 농도, 지시가스의 이동속도 및 지시가스가 배출되는 배기관의 단면적을 이용하여 측정하고자 하는 특정 가스의 시간 당 배출량을 산출한다. 여기서, 제어부(200)는 산출된 상기 특정 가스의 배출량을 저장부(600)에 저장할 수도 있고, 입출력부(400)를 통해 표시할 수도 있다.The control unit 200 calculates the emission per hour of the specific gas to be measured using the concentration of the specific gas, the moving speed of the indicating gas, and the cross-sectional area of the exhaust pipe from which the indicating gas is discharged as described above. Here, the controller 200 may store the calculated discharge amount of the specific gas in the storage unit 600 or display it through the input / output unit 400.
또한, 상기 특정 가스의 배출량에 대한 기준배출량이 미리 설정되어 있는 경우에는 상기 산출된 배출량을 상기 기준배출량과 비교하여 상기 배출량이 기준배출량보다 더 큰 경우 입출력부(400)를 통해 경고 메시지, 경고음 또는 경고등을 출력할 수도 있다.In addition, when the reference discharge amount for the specific gas discharge is set in advance, when the discharge amount is larger than the reference discharge amount by comparing the calculated discharge amount with the reference discharge amount, a warning message, a warning sound or the like through the input / output unit 400. You can also output a warning light.
도 6에서는 단일의 제어부(200)가 가스 검지부(100)로부터 제공된 전압에 기초하여 측정하고자 하는 특정 가스의 농도 및 유속을 산출하고 이에 기초하여 상기 특정가스의 배출량을 산출하는 것으로 예를 들어 도시하였으나, 본 발명의 다른 실시예에서는 제어부(200)가 두 개로 구성되어 제1 제어부는 제1 광원(110) 및 제2 광원(120)의 구동을 제어하고, 제2 제어부는 제1 광검출기(130) 및 제2 광검출기(140)로부터 출력된 전압에 기초하여 특정 가스의 농도 및 유속을 산출하도록 구성될 수도 있다. 다만, 상술한 바와 같이 제어부(200)가 두 개로 구성되는 경우에는 각 제어부(200)는 서로 데이터 및 제어신호를 공유하고 상호 연동하도록 구성될 수 있다.In FIG. 6, for example, the single control unit 200 calculates the concentration and flow rate of the specific gas to be measured based on the voltage provided from the gas detection unit 100 and calculates the discharge amount of the specific gas based on the voltage. In another embodiment of the present invention, the control unit 200 is composed of two, the first control unit controls the driving of the first light source 110 and the second light source 120, the second control unit is the first photodetector 130 And the concentration and flow rate of the specific gas based on the voltage output from the second photodetector 140. However, as described above, when the control unit 200 is composed of two, each control unit 200 may be configured to share data and control signals with each other and interoperate with each other.
가스 교란부(300)는 지시가스 공급 장치로 구성될 수 있고, 제어부(200)의 제어신호에 기초하여 지시가스를 방출한다. 여기로 가스 교란부(300)는 소량의 지시가스의 펄스 형태로 방출할 수 있고, 이와 같은 경우 1회 방출시 지시가스의 양은 가스 측정 환경에 따라 다르게 설정될 수 있다.The gas disturbance unit 300 may be configured as a command gas supply device, and emit a command gas based on a control signal of the controller 200. Here, the gas disturbance unit 300 may emit in the form of a pulse of a small amount of the indicator gas, in this case, the amount of the indicator gas in one release may be set differently according to the gas measurement environment.
또한, 가스 교란부(300)는 가스의 흐름 방향에 대해 입구와 출구가 형성되어 가스의 흐름을 유도하여 가스 측정을 용이하게 하는 가스 가이드(171)를 더 포함할 수 있다. 가스 가이드(171)는 예를 들어 가스의 흐름 방향으로 길이 방향을 가지는 원통 형태(또는 파이프 형태)로 형성될 수 있고, 굴뚝 등에서 배출되는 가스의 배출 속도가 가스 가이드(171) 내부와 외부에서 동일하도록 하기 위해 가스의 흐름 방향과 수직인 방향으로 절단시 단면적(cross section)이 입구부터 출구까지 동일하도록 형성될 수 있다. 또한, 가스 가이드(171)는 재질과 형태에 제약은 없으나 가스가 가스 가이드(171)의 입구로 유입되어 출구로 배출될 때까지 누수가 발생되지 않도록 형성되어야 한다.In addition, the gas disturbance unit 300 may further include a gas guide 171 that is formed in the inlet and outlet with respect to the flow direction of the gas to guide the flow of the gas to facilitate the gas measurement. The gas guide 171 may be formed, for example, in a cylindrical shape (or pipe shape) having a longitudinal direction in the flow direction of the gas, and the discharge speed of the gas discharged from the chimney is the same inside and outside the gas guide 171. The cross section may be formed to be the same from the inlet to the outlet when cutting in a direction perpendicular to the flow direction of the gas. In addition, the gas guide 171 is not limited in material and shape, but should be formed so that no leakage occurs until gas is introduced into the inlet of the gas guide 171 and discharged to the outlet.
또는 가스 교란부(300)는 상술한 바와 같이 지시가스를 분사 하도록 구성되는 대신, 초퍼(chopper) 등을 이용하여 가스 흐름에서 와류를 발생시키도록 구성될 수도 있다.Alternatively, the gas disturbance unit 300 may be configured to generate vortices in the gas flow using a chopper or the like instead of being configured to inject the indicating gas as described above.
입출력부(400)는 입력부 및 출력부로 구성될 수 있고, 입력부는 터치패드 또는 키패드로 구성될 수 있고, 출력부는 디스플레이 소자, 경고등, 스피커 등을 포함할 수 있다.The input / output unit 400 may include an input unit and an output unit, the input unit may include a touch pad or a keypad, and the output unit may include a display element, a warning light, a speaker, and the like.
입출력부(400)는 제어부(200)의 제어에 상응하여 가스 배출량 측정을 위한 조건 설정을 위한 사용자 인터페이스를 표시할 수 있고, 사용자의 조작을 통해 설정된 값들에 상응하는 신호를 제어부(200)에 제공한다. 예를 들어 입출력부(400)는 가스 배출량 측정 주기, 알람 조건, 알람 방법, 배출량을 측정하고자 하는 가스의 종류 등을 설정하기 위한 사용자 인터페이스를 표시할 수 있고, 사용자가 설정한 내용에 상응하는 데이터를 제어부(200)에 제공할 수 있다.The input / output unit 400 may display a user interface for setting a condition for measuring a gas emission amount under the control of the controller 200, and provide a signal corresponding to the values set through the user's operation to the controller 200. do. For example, the input / output unit 400 may display a user interface for setting a gas emission measurement cycle, an alarm condition, an alarm method, a type of gas for which emission is to be measured, and the data corresponding to the content set by the user. May be provided to the controller 200.
통신부(500)는 유선 또는 무선 인터페이스로 구성될 수 있고, 제어부(200)의 제어에 기초하여 가스 측정값 또는 가스 측정과 관련된 이벤트 신호를 미리 정해진 통신 규격에 따라 변환한 후 정해진 목적지로 전송한다. 또한, 통신부(500)는 외부 장치로부터 제공된 제어신호 또는 데이터 등을 통신 규격에 따라 처리한 후 제어부(200)에 제공한다.The communication unit 500 may be configured as a wired or wireless interface, and converts a gas measurement value or an event signal related to gas measurement according to a predetermined communication standard based on the control of the control unit 200 and transmits the measured signal to a predetermined destination. In addition, the communication unit 500 processes a control signal or data provided from an external device according to a communication standard and provides the same to the control unit 200.
저장부(600)는 비휘발성 메모리로 구성될 수 있고, 가스 배출량 측정을 위해 제어부(200)가 수행하는 프로그램 및 관련 데이터가 저장된다. 또한, 저장부(600)는 제어부(200)의 제어에 상응하여 산출된 가스 배출량이 미리 설정된 기간 동안 저장될 수 있다.The storage unit 600 may be configured as a nonvolatile memory, and stores a program and related data executed by the control unit 200 to measure gas emissions. In addition, the storage unit 600 may store the gas emissions calculated according to the control of the controller 200 for a preset period.
도 8은 본 발명의 일 실시예에 따른 가스 배출량 측정 방법을 나타내는 흐름도로서, 도 6 및 도 7에 도시한 가스 배출량 측정 장치에 의해 수행되는 것으로 가정한다.FIG. 8 is a flowchart illustrating a gas emission measuring method according to an embodiment of the present invention, and is assumed to be performed by the gas emission measuring apparatus shown in FIGS. 6 and 7.
먼저, 특정 가스의 농도를 측정하기 위해 제어부(200)는 제1 광원(110) 및 제2 광원(120)의 구동을 제어하여 광을 방출하도록 한 후 제1 광검출기(130)로부터 출력된 전압(V1) 및/또는 제2 광검출기(140)로부터 출력된 전압(V2)를 획득하고(단계 810), 상술한 비어-램버트 함수를 이용하여 획득한 전압(V1 및/또는 V2)에 대응되는 농도를 산출한다(단계 820). First, in order to measure the concentration of a specific gas, the controller 200 controls the driving of the first light source 110 and the second light source 120 to emit light, and then the voltage output from the first photodetector 130. Obtains the voltage V2 output from the V1 and / or the second photodetector 140 (step 810), and corresponds to the voltages V1 and / or V2 obtained using the via-Lambert function described above. The concentration is calculated (step 820).
이후, 제어부(200)는 시간을 리셋(즉, t=0)하고, 가스 교란부(300)의 구동을 제어하여 지시가스가 투입되도록 한다(단계 830). Thereafter, the controller 200 resets the time (that is, t = 0) and controls the driving of the gas disturbance unit 300 so that the indication gas is input (step 830).
이후, 제어부(200)는 지시가스가 제1 광경로(150)를 가로지름에 따라 제1 광검출기(130)로부터 출력된 전압의 피크값(제1 피크값)을 검출하고, 제1 피크값의 시점(제1 시간)을 측정한다(단계 840).Thereafter, the control unit 200 detects a peak value (first peak value) of the voltage output from the first photodetector 130 as the indicating gas crosses the first optical path 150, and the first peak value. The time point (first time) of is measured (step 840).
또한, 제어부(200)는 지시가스가 상기 제1 광경로(150)를 지나 제2 광경로(160)를 가로지름에 따라 제2 광검출기(140)로부터 출력된 전압의 피크값(제2 피크값)을 검출하고, 제2 피크값의 시점(제2 시간)을 측정한다(단계 850).In addition, the controller 200 may determine a peak value (second peak) of the voltage output from the second photodetector 140 as the indicating gas crosses the second optical path 160 through the first optical path 150. Value) and the time point (second time) of the second peak value is measured (step 850).
이후, 제어부(200)는 단계 840 및 단계 850의 수행을 통해 획득한 제1 시간 및 제2 시간의 차이값(Δt)과 제1 광경로 및 제2 광경의 이격 거리 (ΔL) 에 기초하여 특정 가스의 유속을 산출한다(단계 860).Subsequently, the controller 200 specifies the difference based on the difference value Δt between the first time and the second time obtained by performing the steps 840 and 850 and the separation distance ΔL between the first light path and the second light. The flow rate of the gas is calculated (step 860).
그리고, 제어부(200)는 단계 820에서 산출한 특정 가스의 농도와 단계 860에서 산출한 특정가스의 유속 및 지시가스가 배출되는 배출구의 단면적을 이용하여 상기 특정 가스의 시간당 배출량을 산출한다(단계 870).Then, the controller 200 calculates the hourly emissions of the specific gas using the concentration of the specific gas calculated in step 820, the flow rate of the specific gas calculated in step 860, and the cross-sectional area of the outlet through which the indicated gas is discharged (step 870). ).
또한, 도 8의 단계 830에서 측정하고자 하는 특정 가스와 다른 종류의 지시가스를 투입하는 경우에는 기체상태 방정식을 이용하여 단계 860의 수행 후 상기 특정 가스의 확산속도와 상기 지시가스의 확산 속도 간의 관계를 도출하여 상기 특정 가스의 속도를 산출하는 과정이 추가적으로 수행될 수도 있다.In addition, when a specific gas to be measured and a different type of indicating gas to be measured in step 830 of FIG. 8 are applied, the relationship between the diffusion rate of the specific gas and the diffusion rate of the indicating gas after performing step 860 using a gaseous equation The process of calculating the velocity of the specific gas may be additionally performed.
이상 실시예를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허 청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.Although described with reference to the embodiments above, those skilled in the art will understand that the present invention can be variously modified and changed without departing from the spirit and scope of the invention as set forth in the claims below. Could be.
본 발명의 실시예에 따른 가스 배출량 측정 장치 및 그 방법은 예를 들어, 굴뚝 TMS(Tele-Monitoring System) 또는 자동차 배기가스 측정 장치에 적용될 수 있다.The gas emission measuring apparatus and the method according to an embodiment of the present invention may be applied to, for example, a chimney tele-monitoring system (TMS) or a vehicle exhaust gas measuring apparatus.

Claims (10)

  1. 적어도 하나의 가스가 혼재된 혼합가스 중 측정하고자 하는 특정 가스가 흡수하는 파장의 광을 방출하고, 상기 방출된 광을 검출하여 검출된 광량에 상응하는 검출신호를 제공하는 가스 검지부;A gas detector which emits light having a wavelength absorbed by a specific gas to be measured among at least one mixed gas mixture and detects the emitted light and provides a detection signal corresponding to the detected light amount;
    상기 특정 가스의 유속을 측정하기 위해 상기 혼합가스의 흐름을 교란하는 가스 교란부; 및A gas disturbance unit for disturbing the flow of the mixed gas to measure a flow velocity of the specific gas; And
    상기 가스 검지부로부터 제공된 제1 검출신호에 기초하여 상기 특정 가스의 농도를 산출한 후, 상기 가스 교란부의 구동을 제어하여 상기 혼합가스의 흐름을 교란하고 상기 가스 검지부로부터 제공된 제2 검출신호에 기초하여 상기 특정 가스의 유속을 산출한 후, 산출된 상기 특정 가스의 농도 및 유속에 기초하여 상기 특정가스의 배출량을 산출하는 제어부를 포함하는 가스 배출량 측정 장치.After calculating the concentration of the specific gas based on the first detection signal provided from the gas detection unit, the driving of the gas disturbance unit is controlled to disturb the flow of the mixed gas and based on the second detection signal provided from the gas detection unit. And calculating a flow rate of the specific gas, and calculating a discharge amount of the specific gas based on the calculated concentration and flow rate of the specific gas.
  2. 제1항에 있어서, 상기 가스 교란부는The method of claim 1, wherein the gas disturbance unit
    상기 제어부의 제어에 상응하여 지시가스를 투입하는 것을 특징으로 하는 가스 배출량 측정 장치.The gas emission measuring apparatus, characterized in that for inputting the indicating gas in accordance with the control of the controller.
  3. 제1항에 있어서, 상기 제어부는The method of claim 1, wherein the control unit
    상기 가스 검지부로부터 제1 검출신호로 전압을 제공받고, 비어-램버트 함수를 이용하여 전압을 상기 특정 가스의 농도로 변환하는 것을 특징으로 하는 가스 배출량 측정 장치.Receiving a voltage as the first detection signal from the gas detection unit, and converting the voltage into the concentration of the specific gas using a via-lambert function.
  4. 제1항에 있어서, 상기 가스 검지부는According to claim 1, wherein the gas detection unit
    상기 특정 가스가 흡수하는 파장의 광을 방출하는 제1 광원;A first light source emitting light of a wavelength absorbed by the specific gas;
    상기 제1 광원에서 방출된 광을 검출하고 검출된 광량에 상응하는 제1 검출신호를 상기 제어부에 제공하는 제1 광검출기;A first photodetector for detecting light emitted from the first light source and providing a first detection signal corresponding to the detected amount of light to the controller;
    상기 특정 가스가 흡수하는 파장의 광을 방출하는 제2 광원; 및A second light source emitting light of a wavelength absorbed by the specific gas; And
    상기 제2 광원에서 방출된 광을 검출하고 검출된 광량에 상응하는 제2 검출신호를 상기 제어부에 제공하는 제2 광검출기를 더 포함하되,A second photodetector for detecting the light emitted from the second light source and providing a second detection signal corresponding to the detected amount of light to the controller,
    상기 제1 광원과 제1 광검출기 사이의 제1 광경로 및 상기 제2 광원과 제2 광검출기 사이의 제2 광경로는 소정 거리 이격되어 서로 평행하고, 상기 혼합가스의 흐름과 수직 방향인 것을 특징으로 하는 가스 배출량 측정 장치.The first optical path between the first light source and the first photodetector and the second optical path between the second light source and the second photodetector are parallel to each other at a predetermined distance, and are parallel to the flow of the mixed gas. Gas emission measurement device characterized in that.
  5. 제4항에 있어서, 상기 제어부는The method of claim 4, wherein the control unit
    상기 특정 가스의 농도를 산출한 후, 시간을 초기화하고 상기 가스 교란부를 제어하여 지시 가스를 투입하고 상기 제1 광검출기로부터 제공된 제1 전압의 피크값 및 상기 제1 전압의 피크 시점인 제1 시간을 검출한 후, 상기 지시가스의 흐름에 따라 상기 제2 광검출기로부터 제공된 제2 전압의 피크값 및 상기 제2 전압의 피크 시점인 제2 시간을 검출한 후, 상기 제1 시간 및 상기 제2 시간의 차이 및 상기 소정 거리를 이용하여 상기 특정 가스의 유속을 측정하는 것을 특징으로 하는 가스 배출량 측정 장치.After calculating the concentration of the specific gas, the time is initialized and the gas disturbing unit is controlled to inject the indicated gas, and the first time is the peak value of the first voltage provided from the first photodetector and the peak time of the first voltage. After detecting the first time and the second time of the peak value of the second voltage and the peak value of the second voltage provided from the second photodetector in accordance with the flow of the indicating gas, the first time and the second And measuring the flow rate of the specific gas using a difference in time and the predetermined distance.
  6. 적어도 하나의 가스가 혼재된 혼합가스 중 특정 가스의 배출량을 측정하는 가스 배출량 측정 방법에 있어서,In the gas emission measuring method for measuring the emission of a specific gas of the mixed gas mixed with at least one gas,
    상기 특정 가스가 흡수하는 파장의 광을 상기 혼합가스에 방출하고 방출된 광을 검출하여 상기 특정 가스의 농도를 산출하는 단계;Calculating a concentration of the specific gas by emitting light having a wavelength absorbed by the specific gas to the mixed gas and detecting the emitted light;
    상기 혼합가스의 흐름을 교란하기 위해 상기 혼합가스가 흐르는 배기관에 지시가스를 투입하는 단계;Injecting an indication gas into an exhaust pipe through which the mixed gas flows in order to disturb the flow of the mixed gas;
    상기 지시가스의 흐름에 상응하여 검출되는 전압의 피크값 및 전압의 피크 시점에 기초하여 상기 특정 가스의 유속을 산출하는 단계; 및Calculating a flow rate of the specific gas based on a peak value of the voltage and a peak time point of the voltage detected corresponding to the flow of the indicating gas; And
    상기 산출된 농도 및 유속에 기초하여 상기 특정 가스의 배출량을 산출하는 단계를 포함하는 가스 배출량 측정 방법.And calculating a discharge amount of the specific gas based on the calculated concentration and flow rate.
  7. 제6항에 있어서, 상기 특정 가스의 농도를 산출하는 단계는The method of claim 6, wherein calculating the concentration of the specific gas comprises
    상기 특정 가스가 흡수하는 파장의 광을 상기 혼합가스에 방출하는 단계;Emitting light of a wavelength absorbed by the specific gas to the mixed gas;
    상기 방출된 광을 검출하고 검출된 광량에 상응하는 전압을 획득하는 단계; 및Detecting the emitted light and obtaining a voltage corresponding to the detected light amount; And
    비어-램버트 함수를 이용하여 상기 전압을 상기 특정 가스의 농도로 변환하는 단계를 포함하는 것을 특징으로 하는 가스 배출량 측정 방법.And converting the voltage to the concentration of the particular gas using a via-lambert function.
  8. 제6항에 있어서,The method of claim 6,
    상기 혼합가스의 흐름을 교란하기 위해 지시가스를 투입하는 단계는,Injecting an indication gas to disturb the flow of the mixed gas,
    시간을 초기화하는 단계를 포함하는 것을 특징으로 하는 가스 배출량 측정 방법.Gas emission measurement method comprising the step of initializing the time.
  9. 제6항에 있어서, 상기 특정 가스의 유속을 산출하는 단계는The method of claim 6, wherein calculating the flow rate of the specific gas
    상기 지시가스가 제1 광경로를 흐름에 따라 제공되는 제1 전압의 피크값 및 상기 제1 전압의 피크 시점인 제1 시간을 측정하는 단계;Measuring a peak value of a first voltage provided as the indicator gas flows through a first optical path and a first time that is a peak point of the first voltage;
    상기 지시가스가 상기 제1 광경로와 소정 거리 이격된 제2 광경로를 흐름에 따라 제공되는 제2 전압의 피크값 및 상기 제2 전압의 피크 시점인 제2 시간을 측정하는 단계; 및Measuring a peak time of a second voltage provided as the indication gas flows through a second light path spaced apart from the first light path by a predetermined distance, and a second time that is a peak time point of the second voltage; And
    상기 제1 시간 및 제2 시간의 차이와 상기 소정 거리를 이용하여 상기 특정 가스의 유속을 측정하는 단계를 포함하는 것을 특징으로 하는 가스 배출량 측정 방법.And measuring the flow rate of the specific gas using the difference between the first time and the second time and the predetermined distance.
  10. 제6항에 있어서, 상기 가스 배출량 측정 방법은The method of claim 6, wherein the gas emission measuring method is
    상기 지시가스가 상기 특정 가스와 다른 종류의 가스인 경우에는 When the indicating gas is a gas of a different type from the specific gas
    상기 특정 가스의 유속을 산출하는 단계의 수행 후에 상기 특정가스의 확산 속도와 상기 지시가스의 확산 속도간의 관계를 도출하고, 도출된 관계를 이용하여 상기 특정 가스의 유속을 산출하는 단계를 더 포함하는 것을 특징으로 하는 가스 배출량 측정 방법.After performing the step of calculating the flow rate of the specific gas, deriving a relationship between the diffusion rate of the specific gas and the diffusion rate of the indicating gas, and calculating the flow rate of the specific gas using the derived relationship; Gas emission measurement method, characterized in that.
PCT/KR2011/009436 2011-12-07 2011-12-07 Device for measuring gas discharge amount and method thereof WO2013085081A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2011/009436 WO2013085081A1 (en) 2011-12-07 2011-12-07 Device for measuring gas discharge amount and method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2011/009436 WO2013085081A1 (en) 2011-12-07 2011-12-07 Device for measuring gas discharge amount and method thereof

Publications (1)

Publication Number Publication Date
WO2013085081A1 true WO2013085081A1 (en) 2013-06-13

Family

ID=48574424

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/009436 WO2013085081A1 (en) 2011-12-07 2011-12-07 Device for measuring gas discharge amount and method thereof

Country Status (1)

Country Link
WO (1) WO2013085081A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111213037A (en) * 2017-09-21 2020-05-29 日本先锋公司 Optical measuring device, optical measuring method, computer program, and recording medium

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06300686A (en) * 1993-04-15 1994-10-28 Tokyo Gas Co Ltd Method and apparatus for simultaneously measuring concentration - flow velocity of gas
JPH0877408A (en) * 1994-09-03 1996-03-22 Horiba Ltd Method for measuring exhaust gas discharge amount
KR20090128403A (en) * 2007-03-07 2009-12-15 칼 짜이스 에스엠테 아게 Method for measuring degassing and euv-lithography device and measuring assembly

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06300686A (en) * 1993-04-15 1994-10-28 Tokyo Gas Co Ltd Method and apparatus for simultaneously measuring concentration - flow velocity of gas
JPH0877408A (en) * 1994-09-03 1996-03-22 Horiba Ltd Method for measuring exhaust gas discharge amount
KR20090128403A (en) * 2007-03-07 2009-12-15 칼 짜이스 에스엠테 아게 Method for measuring degassing and euv-lithography device and measuring assembly

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111213037A (en) * 2017-09-21 2020-05-29 日本先锋公司 Optical measuring device, optical measuring method, computer program, and recording medium
CN111213037B (en) * 2017-09-21 2021-11-12 日本先锋公司 Optical measuring device, optical measuring method, computer program, and recording medium

Similar Documents

Publication Publication Date Title
CN105572307A (en) Calibration tool for gas sensors and calibration method
US6780378B2 (en) Method for measuring concentrations of gases and vapors using controlled flames
DE69840166D1 (en) MAGNETICALLY SUPPORTED BINDING TEST USING A MAGNETISM REAGENT REAGENT
US4113434A (en) Method and apparatus for collectively sampling a plurality of gaseous phases in desired proportions for gas analysis or other purposes
US20040154379A1 (en) Method and device at testing for leaks and leakage finding
WO2012067281A1 (en) Gas flow meter and method for measuring velocity of gas
CN107389587A (en) The non-dispersive infrared gas sensor and its detection method of Monitoring lower-cut can be reduced
WO2017171331A1 (en) Calibration device and gas component analysis device having same
WO2013085081A1 (en) Device for measuring gas discharge amount and method thereof
WO2019039830A2 (en) Explosive detection system
WO2020162656A1 (en) Water quality measuring method
US11921036B2 (en) In situ apparatus for furnace off-gas constituent and flow velocity measurement
US3585845A (en) Gas leak detectors
CN104792664B (en) Determine the slidingtype device of oxygen exchange coefficient and diffusion coefficient
US4629335A (en) Indicator tube combined with a temperature gauge
KR101215853B1 (en) Apparatus for measuring emission of gas and method for the same
ATE139840T1 (en) GAS DETECTOR
ATE333100T1 (en) LOCATION OF FAULTS ON UNDERGROUND SUPPLY CABLES
James et al. Detecting shock arrival in expansion tubes and shock tunnels using high-frequency photodiodes
JPS6337243A (en) Chemiluminescent type detector
US20040042528A1 (en) Method and device for testing numerous different material samples
WO2018097458A1 (en) Optical analysis device using multi-light source structure and method therefor
JPH0827273B2 (en) Carbon measuring device
KR102265949B1 (en) apparatus for determination of dissolved gases in insulation oil of transformer using optical fiber
WO2023101192A1 (en) Method for measuring concentration of oh radical in reaction zone using laser absorption spectrometry

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11876994

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11876994

Country of ref document: EP

Kind code of ref document: A1