WO2013085042A1 - Fundus observation device - Google Patents

Fundus observation device Download PDF

Info

Publication number
WO2013085042A1
WO2013085042A1 PCT/JP2012/081816 JP2012081816W WO2013085042A1 WO 2013085042 A1 WO2013085042 A1 WO 2013085042A1 JP 2012081816 W JP2012081816 W JP 2012081816W WO 2013085042 A1 WO2013085042 A1 WO 2013085042A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
fundus
optical system
image
signal light
Prior art date
Application number
PCT/JP2012/081816
Other languages
French (fr)
Japanese (ja)
Inventor
林 健史
Original Assignee
株式会社トプコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社トプコン filed Critical 株式会社トプコン
Publication of WO2013085042A1 publication Critical patent/WO2013085042A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/4795Scattering, i.e. diffuse reflection spatially resolved investigating of object in scattering medium
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/12Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for looking at the eye fundus, e.g. ophthalmoscopes
    • A61B3/1225Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for looking at the eye fundus, e.g. ophthalmoscopes using coherent radiation

Definitions

  • the present invention relates to a fundus oculi observation device that acquires an image of the fundus oculi using optical coherence tomography (OCT).
  • OCT optical coherence tomography
  • OCT that forms an image representing the surface form and internal form of an object to be measured using a light beam from a laser light source or the like has attracted attention. Since OCT has no invasiveness to the human body like X-ray CT, it is expected to be applied particularly in the medical field and the biological field. For example, in the field of ophthalmology, an apparatus for forming an image of the fundus oculi or cornea has been put into practical use.
  • Patent Document 1 discloses an apparatus to which OCT is applied.
  • the measuring arm scans an object with a rotating turning mirror (galvanomirror)
  • a reference mirror is installed on the reference arm
  • the intensity of the interference light of the light beam from the measuring arm and the reference arm is dispersed at the exit.
  • An interferometer is provided for analysis by the instrument.
  • the reference arm is configured to change the phase of the reference light beam stepwise by a discontinuous value.
  • Patent Document 1 uses a so-called “Fourier Domain OCT (Fourier Domain OCT)” technique.
  • a low-coherence beam is irradiated onto the object to be measured, the reflected light and the reference light are superimposed to generate interference light, and the spectral intensity distribution of the interference light is acquired and subjected to Fourier transform.
  • the form of the object to be measured in the depth direction (z direction) is imaged.
  • This method is also called a spectral domain.
  • the apparatus described in Patent Document 1 includes a galvanometer mirror that scans a light beam (signal light), thereby forming an image of a desired measurement target region of the object to be measured.
  • This apparatus is configured to scan the light beam only in one direction (x direction) orthogonal to the z direction.
  • An image formed by this apparatus is a two-dimensional tomographic image in the depth direction (z direction) along the scanning direction (x direction) of the light beam.
  • a plurality of two-dimensional tomographic images in the horizontal direction are formed by scanning (scanning) the signal light in the horizontal direction (x direction) and the vertical direction (y direction), and based on the plurality of tomographic images.
  • a technique for acquiring and imaging three-dimensional tomographic information of a measurement range is disclosed.
  • this three-dimensional imaging for example, a method of displaying a plurality of tomographic images side by side in a vertical direction (referred to as stack data or the like), volume data (voxel data) based on the stack data is rendered, and a three-dimensional image is rendered. There is a method of forming.
  • Patent Documents 3 and 4 disclose other types of OCT apparatuses.
  • the wavelength of light irradiated to a measured object is scanned (wavelength sweep), and interference intensity obtained by superimposing reflected light of each wavelength and reference light is detected to detect spectral intensity distribution.
  • an OCT apparatus for imaging the form of an object to be measured by performing Fourier transform on the obtained image is called a swept source type.
  • the swept source type is a kind of Fourier domain type.
  • Patent Document 4 the traveling direction of light is obtained by irradiating the object to be measured with light having a predetermined beam diameter, and analyzing the component of interference light obtained by superimposing the reflected light and the reference light.
  • An OCT apparatus for forming an image of an object to be measured in a cross-section orthogonal to is described. Such an OCT apparatus is called a full-field type or an en-face type.
  • Patent Document 5 discloses a configuration in which OCT is applied to the ophthalmic field.
  • a fundus camera Prior to the application of OCT, a fundus camera, a slit lamp, or the like was used as an apparatus for observing the eye to be examined (see, for example, Patent Document 6 and Patent Document 7).
  • a fundus camera is a device that shoots the fundus by illuminating the subject's eye with illumination light and receiving the fundus reflection light.
  • a slit lamp is a device that acquires an image of a cross-section of the cornea by cutting off a light section of the cornea using slit light.
  • An apparatus using OCT has an advantage over a fundus camera or the like in that a high-definition image can be acquired, and further, a tomographic image or a three-dimensional image can be acquired.
  • an apparatus using OCT can be applied to observation of various parts of an eye to be examined and can acquire high-definition images, it has been applied to diagnosis of various ophthalmic diseases.
  • the fundus imaging optical path and the OCT are located behind the aperture mirror for fundus imaging (in the direction opposite to the eye to be examined).
  • the optical path for measurement is merged. That is, the signal light is irradiated to the eye to be examined through a hole formed in the aperture mirror, and the backscattered light of the signal light from the fundus is superimposed on the reference light through the same hole.
  • the optical system having such a configuration greatly restricts the expansion of a light beam (signal light) for OCT measurement. As a result, there arise problems that the resolution is limited and it is difficult to improve the interference intensity (improve the image quality).
  • the optical system having such a configuration since the scanning range of the signal light is limited to the size of the hole, there is a possibility that the signal light to be irradiated to the fundus periphery is kicked by the aperture mirror. In view of the influence of the focusing lens and the like, this problem is particularly remarkable in the eye to be examined having a strong refractive error.
  • An object of the present invention is to provide a novel configuration of an optical system of a fundus oculi observation device.
  • the invention according to claim 1 is directed to a first optical system that irradiates the fundus of the subject's eye with illumination light, guides the fundus reflection light of the illumination light to the imaging device, and a light source.
  • a second optical system that divides light into signal light and reference light, generates interference light by causing the signal light and the reference light to pass through the fundus of the eye to be examined, and detects the interference light;
  • a fundus oculi observation device that acquires a fundus image representing a surface form of the fundus oculi based on a detection result by the imaging device and acquires a tomographic image of the fundus oculi based on a detection result by the second optical system,
  • the first optical system includes a perforated mirror having a hole and an objective lens, irradiates the fundus with the illumination light reflected by the perforated mirror through the objective lens, and the objective The fundus reflection light that has passed through the lens is transmitted through the hole to the imaging device.
  • the second optical system includes a dichroic mirror that is disposed between the aperture mirror and the objective lens and branches the optical path of the signal light from the optical path of the first optical system, and the dichroic mirror Irradiating the fundus with the signal light via a mirror, and causing the signal light via the fundus and the objective lens to interfere with the reference light via the dichroic mirror.
  • the invention according to claim 2 is the fundus oculi observation device according to claim 1, wherein the dichroic mirror substantially transmits the illumination light and the fundus reflection light, and transmits the signal light.
  • the optical path of the signal light is branched from the optical path of the first optical system by being substantially reflected.
  • the invention according to claim 3 is the fundus oculi observation device according to claim 2, wherein the dichroic mirror transmits 95% or more of light having a wavelength of 400 nm to 770 nm and transmits light having a wavelength of 790 nm or more. It is configured to reflect 95% or more.
  • the invention according to claim 4 is the fundus oculi observation device according to any one of claims 1 to 3, wherein each of the first optical system and the second optical system is matched. A focusing lens is provided.
  • the fundus oculi observation device forms a tomographic image or a three-dimensional image of the fundus using OCT.
  • images acquired by OCT may be collectively referred to as OCT images.
  • a measurement operation for forming an OCT image may be referred to as OCT measurement.
  • a fundus oculi observation device that performs OCT measurement of the fundus by applying Fourier domain type OCT using the object to be measured (fundus) as an object to be measured
  • the fundus oculi observation device according to the embodiment can acquire both the fundus OCT image and the fundus oculi image using the spectral domain OCT technique, similarly to the device disclosed in Patent Document 5.
  • the configuration according to the present invention can be applied to a fundus oculi observation device using a type other than the spectral domain, for example, a swept source OCT technique.
  • an apparatus combining an OCT apparatus and a fundus camera will be described.
  • this embodiment may be applied to a fundus imaging apparatus other than a fundus camera, such as an SLO (Scanning Laser Ophthalmoscope), a slit lamp, an ophthalmic surgical microscope, and the like. It is also possible to combine an OCT apparatus having the configuration according to the above. In addition, the configuration according to this embodiment can be incorporated into a single OCT apparatus.
  • SLO Scnning Laser Ophthalmoscope
  • the fundus oculi observation device 1 includes a fundus camera unit 2, an OCT unit 100, and an arithmetic control unit 200.
  • the retinal camera unit 2 has almost the same optical system as a conventional retinal camera.
  • the OCT unit 100 is provided with an optical system for acquiring an OCT image of the fundus.
  • the arithmetic control unit 200 includes a computer that executes various arithmetic processes and control processes.
  • the fundus camera unit 2 shown in FIG. 1 is provided with an optical system for obtaining a two-dimensional image (fundus image) representing the surface form of the fundus oculi Ef of the eye E to be examined.
  • the fundus image includes an observation image and a captured image.
  • the observation image is a monochrome moving image formed at a predetermined frame rate using near infrared light, for example.
  • the captured image may be, for example, a color image obtained by flashing visible light, or a monochrome still image using near infrared light or visible light as illumination light.
  • the fundus camera unit 2 may be configured to be able to acquire images other than these, such as a fluorescein fluorescent image, an indocyanine green fluorescent image, a spontaneous fluorescent image, and the like.
  • the fundus camera unit 2 is provided with a chin rest and a forehead for supporting the subject's face. Further, the fundus camera unit 2 is provided with an illumination optical system 10 and a photographing optical system 30.
  • the illumination optical system 10 irradiates the fundus oculi Ef with illumination light.
  • the photographing optical system 30 guides the fundus reflection light of the illumination light to an imaging device (CCD image sensor (sometimes simply referred to as a CCD) 35, 38).
  • the imaging optical system 30 guides the signal light from the OCT unit 100 to the fundus oculi Ef and guides the signal light passing through the fundus oculi Ef to the OCT unit 100.
  • the observation light source 11 of the illumination optical system 10 is composed of, for example, a halogen lamp.
  • the light (observation illumination light) output from the observation light source 11 is reflected by the reflection mirror 12 having a curved reflection surface, passes through the condensing lens 13, passes through the visible cut filter 14, and is converted into near infrared light. Become. Further, the observation illumination light is once converged in the vicinity of the photographing light source 15, reflected by the mirror 16, and passes through the relay lenses 17 and 18, the diaphragm 19 and the relay lens 20. Then, the observation illumination light is reflected at the peripheral portion (region around the hole portion) of the aperture mirror 21, passes through the dichroic mirror 46, and is refracted by the objective lens 22 to illuminate the fundus oculi Ef.
  • An LED Light Emitting Diode
  • the fundus reflection light of the observation illumination light is refracted by the objective lens 22, passes through the dichroic mirror 46, passes through the hole formed in the central region of the perforated mirror 21, passes through the dichroic mirror 55, and is a focusing lens. It is reflected by the mirror 32 via 31. Further, the fundus reflection light passes through the half mirror 40, is reflected by the dichroic mirror 33, and forms an image on the light receiving surface of the CCD image sensor 35 by the condenser lens 34.
  • the CCD image sensor 35 detects fundus reflected light at a predetermined frame rate, for example. On the display device 3, an image (observation image) based on fundus reflection light detected by the CCD image sensor 35 is displayed. When the photographing optical system is focused on the anterior segment, an observation image of the anterior segment of the eye E is displayed.
  • the photographing light source 15 is constituted by, for example, a xenon lamp.
  • the light (imaging illumination light) output from the imaging light source 15 is applied to the fundus oculi Ef through the same path as the observation illumination light.
  • the fundus reflection light of the imaging illumination light is guided to the dichroic mirror 33 through the same path as that of the observation illumination light, passes through the dichroic mirror 33, is reflected by the mirror 36, and is reflected by the condenser lens 37 of the CCD image sensor 38.
  • An image is formed on the light receiving surface.
  • On the display device 3 an image (captured image) based on fundus reflection light detected by the CCD image sensor 38 is displayed.
  • the display device 3 that displays the observation image and the display device 3 that displays the captured image may be the same or different.
  • an infrared captured image is displayed. It is also possible to use an LED as a photographing light source.
  • the LCD (Liquid Crystal Display) 39 displays a fixation target and an eyesight measurement index.
  • the fixation target is an index for fixing the eye E to be examined, and is used at the time of fundus photographing or OCT measurement.
  • a part of the light output from the LCD 39 is reflected by the half mirror 40, reflected by the mirror 32, passes through the focusing lens 31 and the dichroic mirror 55, passes through the hole of the perforated mirror 21, and is dichroic.
  • the light passes through the mirror 46, is refracted by the objective lens 22, and is projected onto the fundus oculi Ef.
  • the fixation position of the eye E can be changed by changing the display position of the fixation target on the screen of the LCD 39.
  • As the fixation position of the eye E for example, a position for acquiring an image centered on the macular portion of the fundus oculi Ef, or a position for acquiring an image centered on the optic disc as in the case of a conventional fundus camera And a position for acquiring an image centered on the fundus center between the macula and the optic disc. It is also possible to arbitrarily change the display position of the fixation target.
  • the fundus camera unit 2 is provided with an alignment optical system 50 and a focus optical system 60 as in the conventional fundus camera.
  • the alignment optical system 50 generates an index (alignment index) for performing alignment (alignment) of the apparatus optical system with respect to the eye E.
  • the focus optical system 60 generates an index (split index) for focusing on the fundus oculi Ef.
  • the light (alignment light) output from the LED 51 of the alignment optical system 50 is reflected by the dichroic mirror 55 via the apertures 52 and 53 and the relay lens 54, passes through the hole of the perforated mirror 21, and reaches the dichroic mirror 46. And is projected onto the cornea of the eye E by the objective lens 22.
  • the corneal reflection light of the alignment light passes through the objective lens 22, the dichroic mirror 46 and the hole, part of which passes through the dichroic mirror 55, passes through the focusing lens 31, is reflected by the mirror 32, and is half mirror 40 is reflected by the dichroic mirror 33 and projected onto the light-receiving surface of the CCD image sensor 35 by the condenser lens 34.
  • the light reception image (alignment index) by the CCD image sensor 35 is displayed on the display device 3 together with the observation image.
  • the user performs alignment by performing the same operation as that of a conventional fundus camera. Further, the arithmetic control unit 200 may perform alignment by analyzing the position of the alignment index and moving the optical system (auto-alignment function).
  • the reflecting surface of the reflecting rod 67 is obliquely provided on the optical path of the illumination optical system 10.
  • the light (focus light) output from the LED 61 of the focus optical system 60 passes through the relay lens 62, is separated into two light beams by the split indicator plate 63, passes through the two-hole aperture 64, and is reflected by the mirror 65, The light is focused on the reflecting surface of the reflecting bar 67 by the condenser lens 66 and reflected. Further, the focus light passes through the relay lens 20, is reflected by the perforated mirror 21, passes through the dichroic mirror 46, is refracted by the objective lens 22, and is projected onto the fundus oculi Ef.
  • the fundus reflection light of the focus light is detected by the CCD image sensor 35 through the same path as the corneal reflection light of the alignment light.
  • a light reception image (split index) by the CCD image sensor 35 is displayed on the display device 3 together with the observation image.
  • the arithmetic and control unit 200 analyzes the position of the split index and moves the focusing lens 31 and the focus optical system 60 to perform focusing as in the conventional case (autofocus function). Alternatively, focusing may be performed manually while visually checking the split indicator.
  • the dichroic mirror 46 is provided at a position between the perforated mirror 21 and the objective lens 22, and branches the optical path for OCT measurement from the optical path for fundus imaging.
  • the dichroic mirror 46 substantially transmits the fundus photographing light and substantially reflects the light in the wavelength band used for OCT measurement. “Substantially” indicates that it is not necessary to transmit or reflect all the light in the wavelength band, and an error that does not affect fundus imaging or OCT measurement is allowed.
  • the transmission / reflection characteristics of the dichroic mirror 46 are set according to the wavelength of the fundus photographing light used by the fundus oculi observation device 1 and the wavelength of the OCT measurement light (signal light LS).
  • the dichroic mirror 46 is configured to transmit 95% or more of light having a wavelength of 400 nm to 770 nm used for fundus photography and to reflect 95% or more of light having a wavelength of 790 nm or more used for OCT measurement.
  • the characteristics of the dichroic mirror 46 are not limited to this numerical example.
  • a collimator lens unit 40 In this optical path for OCT measurement, a collimator lens unit 40, an optical path length changing unit 41, a galvano scanner 42, a focusing lens 43, a mirror 44, and a relay lens 45 are provided in this order from the OCT unit 100 side. It has been.
  • the optical path length changing unit 41 is movable in the direction of the arrow shown in FIG. 1, and changes the optical path length of the optical path for OCT measurement. This change in the optical path length is used for correcting the optical path length according to the axial length of the eye E or adjusting the interference state.
  • the optical path length changing unit 41 includes, for example, a corner cube and a mechanism for moving the corner cube.
  • the galvano scanner 42 changes the traveling direction of light (signal light LS) passing through the optical path for OCT measurement. Thereby, the fundus oculi Ef can be scanned with the signal light LS.
  • the galvano scanner 42 includes, for example, a galvano mirror that scans the signal light LS in the x direction, a galvano mirror that scans in the y direction, and a mechanism that drives these independently. Thereby, the signal light LS can be scanned in an arbitrary direction on the xy plane.
  • the OCT unit 100 is provided with an optical system for acquiring an OCT image of the fundus oculi Ef.
  • This optical system has the same configuration as a conventional spectral domain type OCT apparatus. That is, this optical system divides low-coherence light into reference light and signal light, and generates interference light by causing interference between the signal light passing through the fundus oculi Ef and the reference light passing through the reference optical path. It is configured to detect spectral components. This detection result (detection signal) is sent to the arithmetic control unit 200.
  • a wavelength swept light source is provided instead of a light source that outputs a low coherence light source, and an optical member that spectrally decomposes interference light is not provided.
  • a known technique according to the type of optical coherence tomography can be arbitrarily applied.
  • the light source unit 101 outputs a broadband low-coherence light L0.
  • the low coherence light L0 includes, for example, a near-infrared wavelength band (about 800 nm to 900 nm) and has a temporal coherence length of about several tens of micrometers. Note that near-infrared light having a wavelength band invisible to the human eye, for example, a center wavelength of about 1040 to 1060 nm, may be used as the low-coherence light L0.
  • the light source unit 101 includes a super luminescent diode (Super Luminescent Diode: SLD), an LED, and an optical output device such as an SOA (Semiconductor Optical Amplifier).
  • SLD Super Luminescent Diode
  • LED an LED
  • SOA semiconductor Optical Amplifier
  • the low coherence light L0 output from the light source unit 101 is guided to the fiber coupler 103 by the optical fiber 102, and is divided into the signal light LS and the reference light LR.
  • the reference light LR is guided by the optical fiber 104 and reaches an optical attenuator (attenuator) 105.
  • the optical attenuator 105 automatically adjusts the amount of the reference light LR guided to the optical fiber 104 under the control of the arithmetic control unit 200 using a known technique.
  • the reference light LR whose light amount has been adjusted by the optical attenuator 105 is guided by the optical fiber 104 and reaches the polarization adjuster (polarization controller) 106.
  • the polarization adjuster 106 is, for example, a device that adjusts the polarization state of the reference light LR guided in the optical fiber 104 by applying a stress from the outside to the optical fiber 104 in a loop shape.
  • the configuration of the polarization adjuster 106 is not limited to this, and any known technique can be used.
  • the reference light LR whose polarization state is adjusted by the polarization adjuster 106 reaches the fiber coupler 109.
  • the signal light LS generated by the fiber coupler 103 is guided by the optical fiber 107 and converted into a parallel light beam by the collimator lens unit 105. Further, the signal light LS reaches the dichroic mirror 46 via the optical path length changing unit 41, the galvano scanner 42, the focusing lens 43, the mirror 44, and the relay lens 45. Then, the signal light LS is reflected by the dichroic mirror 46, refracted by the objective lens 11, and irradiated onto the fundus oculi Ef. The signal light LS is scattered (including reflection) at various depth positions of the fundus oculi Ef. The backscattered light of the signal light LS from the fundus oculi Ef travels in the same direction as the forward path in the reverse direction, is guided to the fiber coupler 103, and reaches the fiber coupler 109 via the optical fiber 108.
  • the fiber coupler 109 causes the backscattered light of the signal light LS to interfere with the reference light LR that has passed through the fiber coupler 104.
  • the interference light LC generated thereby is guided by the optical fiber 110 and emitted from the emission end 111. Further, the interference light LC is converted into a parallel light beam by the collimator lens 112, dispersed (spectral decomposition) by the diffraction grating 113, condensed by the condenser lens 114, and projected onto the light receiving surface of the CCD image sensor 115.
  • the diffraction grating 118 shown in FIG. 2 is a transmission type, but other types of spectroscopic elements such as a reflection type diffraction grating can also be used.
  • the CCD image sensor 115 is a line sensor, for example, and detects each spectral component of the split interference light LC and converts it into electric charges.
  • the CCD image sensor 115 accumulates this electric charge, generates a detection signal, and sends it to the arithmetic control unit 200.
  • a Michelson type interferometer is used, but any type of interferometer such as a Mach-Zehnder type can be appropriately used.
  • any type of interferometer such as a Mach-Zehnder type can be appropriately used.
  • another form of image sensor for example, a CMOS (Complementary Metal Oxide Semiconductor) image sensor or the like can be used.
  • CMOS Complementary Metal Oxide Semiconductor
  • the OCT unit 100 is further provided with an optical fiber 120, a polarizing plate 122, and a detection element 123.
  • One end of the optical fiber 120 is connected to the fiber coupler 109.
  • the polarizing plate 122 is provided at the subsequent stage of the emission end 121 at the other end of the optical fiber 120.
  • the polarizing plate 122 is a polarizer that transmits only light polarized in a specific direction.
  • the polarizing plate 122 rotates upon receiving a driving force from the actuator 122A. Thereby, the polarization direction of the transmitted light changes.
  • the detection element 123 detects light transmitted through the polarizing plate 122.
  • the configuration of the arithmetic control unit 200 will be described.
  • the arithmetic control unit 200 analyzes the detection signal input from the CCD image sensor 115 and forms an OCT image of the fundus oculi Ef.
  • the arithmetic processing for this is the same as that of a conventional spectral domain type OCT apparatus.
  • the arithmetic control unit 200 controls each part of the fundus camera unit 2, the display device 3, and the OCT unit 100. For example, the arithmetic control unit 200 displays an OCT image of the fundus oculi Ef on the display device 3.
  • the arithmetic control unit 200 controls the operation of the observation light source 11, the imaging light source 15 and the LEDs 51 and 61, the operation control of the LCD 39, the movement control of the focusing lenses 31 and 43, and the reflector 67. Movement control, movement control of the focus optical system 60, movement control of the optical path length changing unit 41, operation control of the galvano scanner 42, and the like are performed.
  • the arithmetic control unit 200 controls the operation of the light source unit 101, the operation control of the optical attenuator 105, the operation control of the polarization adjuster 106, the operation control of the CCD image sensor 115, and the polarizing plate 122. Operation control of the (actuator 122A) is performed.
  • the arithmetic control unit 200 includes, for example, a microprocessor, a RAM, a ROM, a hard disk drive, a communication interface, and the like, as in a conventional computer.
  • a computer program for controlling the fundus oculi observation device 1 is stored in a storage device such as a hard disk drive.
  • the arithmetic control unit 200 may include various circuit boards, for example, a circuit board for forming an OCT image.
  • the arithmetic control unit 200 may include an operation device (input device) such as a keyboard and a mouse, and a display device such as an LCD.
  • the fundus camera unit 2, the display device 3, the OCT unit 100, and the calculation control unit 200 may be configured integrally (that is, in a single housing) or separated into two or more cases. It may be.
  • Control system The configuration of the control system of the fundus oculi observation device 1 will be described with reference to FIG.
  • the control system of the fundus oculi observation device 1 is configured around the control unit 210.
  • the control unit 210 includes, for example, the aforementioned microprocessor, RAM, ROM, hard disk drive, communication interface, and the like.
  • the control unit 210 is provided with a main control unit 211 and a storage unit 212.
  • the main control unit 211 performs the various controls described above.
  • the main control unit 211 controls the focusing drive unit 31A, the optical path length changing unit 41 and the galvano scanner 42 of the fundus camera unit 2, and further the light source unit 101, the optical attenuator 105 and the polarization adjuster 106 of the OCT unit 100. To do.
  • the focusing drive unit 31A moves the focusing lens 31 in the optical axis direction. Thereby, the focus position of the photographic optical system 30 is changed.
  • the main control unit 211 can also move an optical system provided in the fundus camera unit 2 in a three-dimensional manner by controlling an optical system drive unit (not shown). This control is used in alignment and tracking. Tracking is to move the apparatus optical system in accordance with the eye movement of the eye E. When tracking is performed, alignment and focusing are performed in advance. Tracking is a function of maintaining a suitable positional relationship in which the alignment and focus are achieved by causing the position of the apparatus optical system to follow the eye movement.
  • the main control unit 211 performs a process of writing data to the storage unit 212 and a process of reading data from the storage unit 212.
  • the storage unit 212 stores various data. Examples of the data stored in the storage unit 212 include OCT image image data, fundus image data, and examined eye information.
  • the eye information includes information about the subject such as patient ID and name, and information about the eye such as left / right eye identification information.
  • the storage unit 212 stores various programs and data for operating the fundus oculi observation device 1.
  • the image forming unit 220 forms tomographic image data of the fundus oculi Ef based on the detection signal from the CCD image sensor 115.
  • This process includes processes such as noise removal (noise reduction), filter processing, FFT (Fast Fourier Transform), and the like, as in the conventional spectral domain type optical coherence tomography.
  • the image forming unit 220 executes a known process corresponding to the type.
  • the image forming unit 220 includes, for example, the circuit board described above. In this specification, “image data” and “image” based thereon may be identified.
  • the image processing unit 230 performs various types of image processing and analysis processing on the image formed by the image forming unit 220. For example, the image processing unit 230 executes various correction processes such as image brightness correction and dispersion correction. The image processing unit 230 performs various types of image processing and analysis processing on the image (fundus image, anterior eye image, etc.) obtained by the fundus camera unit 2.
  • the image processing unit 230 executes known image processing such as interpolation processing for interpolating pixels between tomographic images to form image data of a three-dimensional image of the fundus oculi Ef.
  • image data of a three-dimensional image means image data in which pixel positions are defined by a three-dimensional coordinate system.
  • image data of a three-dimensional image there is image data composed of voxels arranged three-dimensionally. This image data is called volume data or voxel data.
  • the image processing unit 230 When displaying an image based on volume data, the image processing unit 230 performs a rendering process (such as volume rendering or MIP (Maximum Intensity Projection)) on the volume data, and views the image from a specific line-of-sight direction.
  • Image data of a pseudo three-dimensional image is formed. This pseudo three-dimensional image is displayed on a display device such as the display unit 240A.
  • stack data of a plurality of tomographic images is image data of a three-dimensional image.
  • the stack data is image data obtained by three-dimensionally arranging a plurality of tomographic images obtained along a plurality of scanning lines based on the positional relationship of the scanning lines. That is, stack data is image data obtained by expressing a plurality of tomographic images originally defined by individual two-dimensional coordinate systems by one three-dimensional coordinate system (that is, by embedding them in one three-dimensional space). is there.
  • the image processing unit 230 that functions as described above includes, for example, the aforementioned microprocessor, RAM, ROM, hard disk drive, circuit board, and the like.
  • a storage device such as a hard disk drive, a computer program for causing the microprocessor to execute the above functions is stored in advance.
  • the user interface 240 includes a display unit 240A and an operation unit 240B.
  • the display unit 240A includes the display device of the arithmetic control unit 200 and the display device 3 described above.
  • the operation unit 240B includes the operation device of the arithmetic control unit 200 described above.
  • the operation unit 240B may include various buttons and keys provided on the housing of the fundus oculi observation device 1 or outside.
  • the fundus camera unit 2 has a housing similar to that of a conventional fundus camera
  • the operation unit 240B may include a joystick, an operation panel, or the like provided on the housing.
  • the display unit 240 ⁇ / b> A may include various display devices such as a touch panel monitor provided in the housing of the fundus camera unit 2.
  • the display unit 240A and the operation unit 240B do not need to be configured as individual devices.
  • a device in which a display function and an operation function are integrated such as a touch panel monitor, can be used.
  • the operation unit 240B includes the touch panel display and a computer program.
  • the operation content for the operation unit 240B is input to the control unit 210 as an electrical signal. Further, operations and information input may be performed using a graphic user interface (GUI) displayed on the display unit 240A and the operation unit 240B.
  • GUI graphic user interface
  • Examples of the scanning mode of the signal light LS by the fundus oculi observation device 1 include a horizontal scan, a vertical scan, a cross scan, a radiation scan, a circle scan, a concentric scan, and a spiral (vortex) scan. These scanning modes are selectively used as appropriate in consideration of the observation site of the fundus, the analysis target (such as retinal thickness), the time required for scanning, the precision of scanning, and the like.
  • the horizontal scan is to scan the signal light LS in the horizontal direction (x direction).
  • the horizontal scan also includes an aspect in which the signal light LS is scanned along a plurality of horizontal scanning lines arranged in the vertical direction (y direction). In this aspect, it is possible to arbitrarily set the scanning line interval. Further, the above-described three-dimensional image can be formed by sufficiently narrowing the interval between adjacent scanning lines (three-dimensional scanning). The same applies to the vertical scan.
  • the cross scan scans the signal light LS along a cross-shaped trajectory composed of two linear trajectories (straight trajectories) orthogonal to each other.
  • the signal light LS is scanned along a radial trajectory composed of a plurality of linear trajectories arranged at a predetermined angle.
  • the cross scan is an example of a radiation scan.
  • the circle scan scans the signal light LS along a circular locus.
  • the signal light LS is scanned along a plurality of circular trajectories arranged concentrically around a predetermined center position.
  • a circle scan is an example of a concentric scan.
  • the signal light LS is scanned along a spiral (spiral) trajectory while gradually reducing (or increasing) the radius of rotation.
  • the galvano scanner 42 is configured to scan the signal light LS in directions orthogonal to each other, the signal light LS can be scanned independently in the x direction and the y direction, respectively. Further, by simultaneously controlling the directions of the two galvanometer mirrors included in the galvano scanner 42, the signal light LS can be scanned along an arbitrary locus on the xy plane. Thereby, various scanning modes as described above can be realized.
  • a tomographic image on a plane stretched by the direction along the scanning line (scanning locus) and the fundus depth direction (z direction) can be acquired.
  • the above-described three-dimensional image can be acquired particularly when the scanning line interval is narrow.
  • the region on the fundus oculi Ef to be scanned with the signal light LS as described above, that is, the region on the fundus oculi Ef to be subjected to OCT measurement is referred to as a scanning region.
  • the scanning area in the three-dimensional scan is a rectangular area in which a plurality of horizontal scans are arranged.
  • the scanning area in the concentric scan is a disk-shaped area surrounded by the locus of the circular scan with the maximum diameter.
  • the scanning area in the radial scan is a disk-shaped (or polygonal) area connecting both end positions of each scan line.
  • FIG. 4 shows an example of the operation of the fundus oculi observation device 1.
  • a near-infrared moving image of the fundus oculi Ef is acquired by continuously illuminating the fundus oculi Ef with illumination light from the observation light source 11 (which becomes near-infrared light by the visible cut filter 14). This near-infrared moving image is obtained in real time until the continuous illumination ends.
  • the control unit 210 projects the alignment index by the alignment optical system 50 and the split index by the focus optical system 60 onto the eye E.
  • the control unit 210 or the user performs alignment using the alignment index, and further performs focusing using the split index.
  • the control unit 210 controls the galvano scanner 42 to block the optical path (signal optical path) of the signal light LS.
  • Blocking the signal light path means preventing the signal light LS (its backscattered light) from reaching the detection element 123.
  • the signal light path between the eye E and the fiber coupler 109 may be blocked.
  • a method for blocking the signal optical path there is a method in which the orientation of at least one of the two galvanometer mirrors constituting the galvano scanner 42 is largely changed from the neutral position. It is also possible to block the signal light path by providing a shutter in the signal light path.
  • control unit 210 controls the light source unit 101 to output the low coherence light L0. Since the signal light path is blocked, the detection element 123 detects the reference light LR that has passed through the optical fiber 104.
  • the controller 210 changes the polarization state of the reference light LR that passes through the polarizing plate 122 by controlling the actuator 122A to rotate the polarizing plate 122.
  • the detection element 123 detects the reference light LR in a polarization state corresponding to the rotation position of the polarizing plate 122. Accordingly, the detection element 123 detects the reference light LR in the polarization state with respect to each of the plurality of rotation positions of the polarizing plate 122.
  • the detection result corresponding to each rotational position is sent to the control unit 210 as an electrical signal.
  • the control unit 210 obtains the detection intensity of the reference light LR based on each detection result. This detected intensity is, for example, the signal intensity of the electrical signal.
  • control unit 210 since the control unit 210 rotates the polarizing plate 122, the control unit 210 recognizes the rotational position of the polarizing plate 122 at each detection timing by the detection element 123.
  • the controller 210 associates the detected intensity of the reference light LR with the rotational position of the polarizing plate 122.
  • the rotation position of the polarizing plate 122 is, for example, a rotation angle with respect to a reference position in rotation.
  • the control unit 210 stores the associated detected intensity and rotational position in the storage unit 212.
  • the detection of the intensity of the reference light LR at a plurality of rotation positions may be performed while continuously rotating the polarizing plate 122 or may be performed while rotating it intermittently.
  • the controller 210 selects a predetermined one from the detected intensities of the reference light LR acquired in step 5.
  • the selection target includes the maximum value of these detection intensities. This maximum value corresponds to the polarization state of the reference light LR. Note that instead of the maximum value (or together with the maximum value), another value of the detection intensity may be selected. Another example is a minimum value. Even when a value other than the maximum value is selected, it is possible to adjust the polarization state in the same manner as described later for the maximum value.
  • control unit 210 releases the blocking of the signal light path.
  • the control unit 210 returns the galvano mirror whose direction has been changed in step 3 to the neutral position.
  • the control unit 210 switches the shutter from the closed state to the open state.
  • the control unit 210 blocks the optical path (reference optical path) of the reference light LR.
  • the optical path is blocked at any position of the optical fiber 104.
  • the control unit 210 controls the optical attenuator 105 so that the intensity of the reference light LR passing therethrough becomes zero. Thereby, only the signal light LS (its backscattered light) is projected onto the detection element 123.
  • the control unit 210 obtains a predetermined value (maximum value, minimum value, etc.) of the detected intensity of the signal light LS and the rotational position of the polarizing plate 122. This information corresponds to the polarization state of the signal light LS.
  • the control unit 210 adjusts the polarization state of the reference light LR based on the polarization state of the reference light LR identified in Step 6 and the polarization state of the signal light LS identified in Step 8.
  • This process includes a process of determining the setting state of the polarization adjuster 106 and a process of controlling the polarization adjuster 106 based on the determination result.
  • the setting state of the polarization adjuster 106 that realizes the polarization state of the reference light LR that maximizes the intensity of the interference light LC is obtained.
  • the polarization states of the reference light LR and the signal light LS may be matched.
  • the coincidence of the polarization states includes matching the polarization directions (polarization angles) of both lights. In addition to this, it is desirable to obtain the matching deflection direction so that the intensities of both lights are as large as possible.
  • the control unit 210 puts the polarization controller 106 into this setting state.
  • the polarization state of the reference light LR is not immediately changed by this adjustment.
  • the “adjustment of” includes such a case (for example, a case where the polarization state of the reference light LR passing through the reference optical path is changed after the blocking state is released).
  • the control unit 210 releases the blocking of the reference optical path.
  • both the backscattered light of the signal light LS from the fundus oculi Ef and the reference light LR reach the fiber coupler 109 to generate interference light LC
  • the CCD image sensor 115 detects the spectral component.
  • the control unit 210 controls the galvano scanner 42 to scan the fundus oculi Ef with the signal light LS.
  • the CCD image sensor 115 detects the spectral component of the interference light LC corresponding to each scan position. Based on these detection results, the image forming unit 220 forms a tomographic image of the fundus oculi Ef corresponding to this scan pattern.
  • the fundus oculi observation device 1 has a first optical system for fundus imaging and a second optical system for OCT measurement.
  • the first optical system includes an illumination optical system 10 that irradiates the fundus oculi Ef of the eye E to be examined and an imaging optical system 30 that guides the fundus reflection light of the illumination light to the imaging devices (CCD image sensors 35 and 38).
  • the second optical system divides the light L0 from the light source unit 101 into the signal light LS and the reference light LR, and causes the signal light LS passing through the fundus oculi Ef to interfere with the reference light LR to generate interference light LC. To detect.
  • the fundus oculi observation device 1 acquires a fundus image representing the surface form of the fundus oculi Ef based on the detection results of the CCD image sensors 35 and 38, and obtains a tomographic image of the fundus oculi Ef based on the detection result of the second optical system. get.
  • the first optical system for photographing the fundus includes a perforated mirror 21 having a hole and an objective lens 22.
  • the first optical system irradiates the fundus oculi Ef with the illumination light reflected by the aperture mirror 21 via the objective lens 22, and the fundus reflection light of the illumination light via the objective lens 22 is the aperture mirror. It is configured to lead to the CCD image sensors 35 and 38 through 21 holes.
  • the second optical system for OCT measurement includes a dichroic mirror 46 that branches the optical path of the signal light LS from the optical path of the first optical system.
  • the dichroic mirror 46 is disposed between the perforated mirror 21 and the objective lens. Then, the second optical system irradiates the fundus oculi Ef with the signal light LS via the dichroic mirror 46 via the objective lens 22 and the dichroic mirror 46 with the signal light LS via the fundus oculi Ef and the objective lens 22. Via the reference light LR.
  • the dichroic mirror 46 substantially transmits the fundus photographing illumination light and its fundus reflection light, and substantially reflects the signal light LS, whereby the optical path of the signal light LS from the optical path of the first optical system. May be configured to be branched.
  • the dichroic mirror 46 is configured to transmit 95% or more of light with a wavelength of 400 nm to 770 nm used for fundus photography and reflect 95% or more of light with a wavelength of 790 nm or more used for OCT measurement. It's okay.
  • the signal light LS can be transmitted and received without passing through the hole of the aperture mirror 21. That is, the signal light is applied to the fundus oculi Ef without passing through the hole formed in the aperture mirror 21, and the backscattered light of the signal light LS from the fundus Ef passes through the aperture of the aperture mirror 21. Without being superimposed on the reference light LR. Therefore, the size of the hole portion of the perforated mirror 21 does not limit the expansion of the signal light LS, and conventional problems such as resolution limitation and interference intensity (image quality) limitation are solved.
  • the scanning range of the signal light LS is not limited by the size of the hole portion of the perforated mirror 21. Therefore, the conventional problem that the signal light LS to be irradiated to the fundus periphery is kicked by the perforated mirror 21 can be solved. This is the same even when the degree of refractive error of the eye E is strong.
  • the fundus oculi observation device 1 includes a focusing lens 31 for fundus imaging and a focusing lens 43 for OCT measurement.
  • a conventional fundus oculi observation device as disclosed in Patent Document 5 Japanese Patent Laid-Open No. 2008-73099
  • the wavelength of light for fundus imaging visible light, etc.
  • the optimal focus position for fundus imaging and the OCT measurement The optimum focus position does not exactly match. Therefore, according to the conventional fundus oculi observation device, if the focusing lens is set to the optimum focus position for fundus photography, OCT measurement cannot be performed in the optimum focus state, and conversely, the optimum focus position for OCT measurement is obtained.
  • fundus photography could not be performed in an optimal focus state.
  • this embodiment is considered effective when fundus imaging and OCT measurement are performed in parallel.
  • Modification 1 In order to obtain an accurate image using OCT, it is necessary to match the polarization states of the reference light and the signal light. Factors that change the polarization state include the environment (temperature, humidity, etc.) and displacement of the device structure due to transportation, and the polarization characteristics of the object to be measured itself (eye polarization characteristics in ophthalmology).
  • a fixed polarization adjuster (polarization controller) is provided in the optical path to adjust the polarization state and maintain the polarization state, or a wave plate is provided in the optical path as appropriate.
  • the polarization state was adjusted by rotating.
  • the conventional polarization adjustment was performed so that the intensity of the interference light detection result (interference signal) was monitored and maximized, but there are other factors that change the intensity of the interference signal besides the polarization state. To do. For example, the intensity of the interference signal is also changed by the state of alignment, the amount of light used for measurement, the vignetting of light, and the change of the signal according to the depth position. Therefore, it is difficult to optimize the polarization state with reference to the intensity of the interference signal.
  • the fundus oculi observation device 1 generates the interference light LC by superimposing the signal light LS passing through the object to be measured (fundus Ef) on the reference light LR, and generates an image of the fundus oculi Ef based on the detection result of the interference light. It functions as an OCT apparatus to be formed.
  • the fundus oculi observation device 1 includes a detection unit, an adjustment unit, and a formation unit.
  • the detection unit detects the polarization state of the reference light LR and the polarization state of the signal light LS.
  • the detection unit includes a polarizing plate 122, an actuator 122 ⁇ / b> A, a detection element 123, and a control unit 210.
  • the polarizing plate 122 is provided after the fiber coupler 109 (superimposing member) that superimposes the signal light LS on the reference light LR.
  • the actuator 122A is a mechanism that rotates the polarizing plate.
  • the detection element 123 detects light that has passed through the polarizing plate.
  • the controller 210 associates the intensity of the reference light LR detected by the detection element 123 with the rotational position of the polarizing plate 122.
  • the adjusting unit adjusts the polarization state of the reference light LR based on the detection result of the polarization state of the reference light LR.
  • the adjustment unit includes the control unit 210 and the polarization adjuster 106.
  • the polarization adjuster 106 is an example of a mechanism that changes the polarization state. Based on the detection result of the polarization state of the reference light LR and the signal light LS, the control unit 210 determines the setting state of the polarization adjuster 106 that maximizes the intensity of the reference light LR, and the polarization is determined based on the determination result. By controlling the adjuster 106, the polarization state of the reference light LR is adjusted.
  • the forming unit forms an image of the fundus oculi Ef based on the detection result of the interference light LC obtained by superimposing the reference light LR and the signal light LS after the polarization state of the reference light LR is adjusted.
  • Such a fundus oculi observation device 1 can actually detect the polarization state of the reference light LR and the signal light LS, and adjust the intensity of the interference light LC based on the detection result. Accordingly, it is possible to match the polarization states of the reference light LR and the signal light LS at the present time.
  • the intensity of the reference light LR and the signal light LS accompanying the change in the polarization state is monitored, and the intensity of the interference light LC Is optimized, that is, the polarization states of the reference light LR and the signal light LS are matched, so that the polarization state can be optimized.
  • the polarization adjustment between the reference light LR and the signal light LS in the OCT measurement can be suitably performed.
  • the fundus oculi observation device 1 has a first blocking mechanism (galvano scanner 42) that blocks the signal light path.
  • the detection unit detects the polarization state of the reference light LR in a state where the signal light path is blocked.
  • the galvano scanner 42 is a scanning unit that scans the signal light LS.
  • the fundus oculi observation device 1 has a second blocking mechanism (light attenuator 105) that blocks the reference optical path.
  • the adjustment unit adjusts the polarization state in a state where the reference optical path is blocked.
  • the adjustment unit adjusts the polarization state of the signal light by performing the same processing as in the above embodiment based on the detection results of the polarization states of the signal light and the reference light. I do.
  • the adjustment unit includes, for example, a control unit and a polarization adjuster provided in the signal optical path.
  • the polarization adjuster is an example of a “mechanism for changing the polarization state”.
  • the control unit determines a setting state of the polarization adjuster that maximizes the intensity of the interference light based on the detection result of the polarization state of the signal light and the reference light, and controls the polarization adjuster based on the determination result. As a result, the polarization state of the signal light is adjusted.
  • the forming unit forms a fundus image based on the detection result of the interference light obtained by superimposing the signal light and the reference light after the polarization state of the signal light is adjusted.
  • the polarization states of the signal light and the reference light are actually measured, and the intensity of the interference light is adjusted based on the measurement results (that is, the polarization states of the signal light and the reference light are matched) )It can be performed. Therefore, it is possible to match the polarization states of the reference light and the signal light at the present time.
  • the conventional technology that monitors the intensity of interference light that is affected by various factors other than the polarization state, it is configured to monitor the intensity of the signal light and the reference light accompanying the change in the polarization state. It is possible to optimize the polarization state.
  • Such a fundus oculi observation device can suitably adjust the polarization between the reference light and the signal light in OCT measurement.
  • this fundus oculi observation device has a first blocking mechanism (for example, an optical attenuator, such as a shutter) that blocks the reference optical path.
  • the detection unit detects the polarization state of the signal light in a state where the reference optical path is blocked.
  • this fundus oculi observation device has a second blocking mechanism (for example, a galvano scanner, which may be a shutter or the like) that blocks the signal light path.
  • the adjustment unit adjusts the polarization state in a state where the signal optical path is blocked.
  • Modification 3 In Modified Examples 3 to 5, an example in which the polarization state is detected and adjusted in response to a predetermined trigger will be described.
  • the fundus oculi observation device has, for example, a determination unit in addition to the configuration of the above embodiment.
  • the determination unit acquires information related to the image quality of the image formed by the forming unit and determines the image quality.
  • the determination unit is provided in the control unit 210 or the image processing unit 230. “Information relating to image quality” means arbitrary information that affects image quality, and is appropriately determined according to the image quality determination method.
  • the image quality determination process is performed using any known technique. As an example, there is a method of obtaining the image quality by analyzing the image itself formed by the forming unit. It is also possible to detect signal light and / or interference light, acquire the intensity of the detected signal as “information on image quality”, and perform threshold processing on the signal intensity to determine the image quality. . Note that the image quality determination processing is not limited to these.
  • the detection unit and adjustment unit according to this modification operate based on the image quality determination result.
  • the detection unit and the adjustment unit are configured to operate only when a determination result that the image quality is bad is obtained.
  • the polarization state is detected and adjusted after completion of alignment and focusing.
  • the polarization state may be detected and / or adjusted in parallel with the alignment.
  • This timing control is performed by the control unit 210. According to this modification, the inspection time can be shortened.
  • the “alignment unit” includes the alignment optical system 50.
  • the alignment unit includes the alignment optical system 50 and the control unit 210.
  • the alignment part is comprised including the alignment optical system 50, the control part 210, and the user interface 240.
  • the detection unit and the adjustment unit are configured to operate in response to a predetermined operation (input of an instruction for operating the detection unit and the adjustment unit) using the operation unit 240B. It is also possible. That is, it can be configured to detect and adjust the polarization state in response to a user instruction. According to this modification, the user can adjust the polarization state at a desired timing.
  • the optical path length difference between the optical path of the signal light LS and the optical path of the reference light LR is changed by changing the position of the optical path length changing unit 41, but this optical path length difference is changed.
  • the method is not limited to this.
  • it is possible to change the optical path length difference by disposing a reflection mirror (reference mirror) in the optical path of the reference light and moving the reference mirror in the traveling direction of the reference light to change the optical path length of the reference light.
  • the optical path length difference may be changed by moving the fundus camera unit 2 or the OCT unit 100 with respect to the eye E to change the optical path length of the signal light LS.
  • the optical path length difference can be changed by moving the measured object in the depth direction (z direction).
  • the computer program for realizing the above embodiment can be stored in any recording medium readable by the computer.
  • this recording medium for example, a semiconductor memory, an optical disk, a magneto-optical disk (CD-ROM / DVD-RAM / DVD-ROM / MO, etc.), a magnetic storage medium (hard disk / floppy (registered trademark) disk / ZIP, etc.), etc. Can be used.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Optics & Photonics (AREA)
  • Biophysics (AREA)
  • Ophthalmology & Optometry (AREA)
  • Analytical Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Eye Examination Apparatus (AREA)

Abstract

Provided is a novel optical system configuration for a fundus observation device. In an embodiment, a fundus observation device has a first optical system for guiding fundus-reflected light of illuminated light to an imaging device, and a second optical system for detecting interference light from interference between reference light and signal light passing through the fundus, and acquires a fundus image using the first optical system and acquires a tomographic image using the second optical system. The first optical system includes an open-hole mirror and an objective lens, and irradiates the fundus via the objective lens with illuminating light reflected by the open-hole mirror and guides fundus-reflected light passing through the objective lens to the imaging device via a hole of the open-hole mirror. The second optical system includes a dichroic mirror for diverting the light path of the signal light from the light path of the first optical system, the dichroic mirror being arranged between an open-hole mirror and an objective lens, and the second optical system irradiates the fundus via the objective lens with the signal light passing through the dichroic mirror and causes the signal light passing through the fundus and the objective lens to interfere with the reference light via the dichroic mirror.

Description

眼底観察装置Fundus observation device
 この発明は、光コヒーレンストモグラフィ(Optical Coherence Tomography:OCT)を用いて眼底の画像を取得する眼底観察装置に関する。 The present invention relates to a fundus oculi observation device that acquires an image of the fundus oculi using optical coherence tomography (OCT).
 近年、レーザ光源等からの光ビームを用いて被測定物体の表面形態や内部形態を表す画像を形成するOCTが注目を集めている。OCTは、X線CTのような人体に対する侵襲性を持たないことから、特に医療分野や生物学分野における応用の展開が期待されている。たとえば眼科分野においては、眼底や角膜等の画像を形成する装置が実用化されている。 In recent years, OCT that forms an image representing the surface form and internal form of an object to be measured using a light beam from a laser light source or the like has attracted attention. Since OCT has no invasiveness to the human body like X-ray CT, it is expected to be applied particularly in the medical field and the biological field. For example, in the field of ophthalmology, an apparatus for forming an image of the fundus oculi or cornea has been put into practical use.
 特許文献1にはOCTを適用した装置が開示されている。この装置は、測定腕が回転式転向鏡(ガルバノミラー)により物体を走査し、参照腕に参照ミラーが設置されており、その出口に計測腕および参照腕からの光束の干渉光の強度を分光器で分析する干渉器が設けられている。更に、参照腕は、参照光光束位相を不連続な値で段階的に変えるように構成されている。 Patent Document 1 discloses an apparatus to which OCT is applied. In this device, the measuring arm scans an object with a rotating turning mirror (galvanomirror), a reference mirror is installed on the reference arm, and the intensity of the interference light of the light beam from the measuring arm and the reference arm is dispersed at the exit. An interferometer is provided for analysis by the instrument. Further, the reference arm is configured to change the phase of the reference light beam stepwise by a discontinuous value.
 特許文献1の装置は、いわゆる「フーリエドメインOCT(Fourier Domain OCT)」の手法を用いるものである。すなわち、被測定物体に対して低コヒーレンス光のビームを照射し、その反射光と参照光とを重ね合わせて干渉光を生成し、この干渉光のスペクトル強度分布を取得してフーリエ変換を施すことにより被測定物体の深度方向(z方向)の形態を画像化するものである。なお、この手法は、特にスペクトラルドメイン(Spectral Domain)とも呼ばれる。 The apparatus of Patent Document 1 uses a so-called “Fourier Domain OCT (Fourier Domain OCT)” technique. In other words, a low-coherence beam is irradiated onto the object to be measured, the reflected light and the reference light are superimposed to generate interference light, and the spectral intensity distribution of the interference light is acquired and subjected to Fourier transform. Thus, the form of the object to be measured in the depth direction (z direction) is imaged. This method is also called a spectral domain.
 更に、特許文献1に記載の装置は、光ビーム(信号光)を走査するガルバノミラーを備え、それにより被測定物体の所望の測定対象領域の画像を形成するようになっている。この装置は、z方向に直交する1方向(x方向)にのみ光ビームを走査するように構成されている。この装置により形成される画像は、光ビームの走査方向(x方向)に沿った深度方向(z方向)の2次元断層像となる。 Furthermore, the apparatus described in Patent Document 1 includes a galvanometer mirror that scans a light beam (signal light), thereby forming an image of a desired measurement target region of the object to be measured. This apparatus is configured to scan the light beam only in one direction (x direction) orthogonal to the z direction. An image formed by this apparatus is a two-dimensional tomographic image in the depth direction (z direction) along the scanning direction (x direction) of the light beam.
 特許文献2には、信号光を水平方向(x方向)および垂直方向(y方向)に走査(スキャン)することにより水平方向の2次元断層像を複数形成し、これら複数の断層像に基づいて測定範囲の3次元の断層情報を取得して画像化する技術が開示されている。この3次元画像化としては、たとえば、複数の断層像を垂直方向に並べて表示させる方法や(スタックデータなどと呼ばれる)、スタックデータに基づくボリュームデータ(ボクセルデータ)にレンダリング処理を施して3次元画像を形成する方法などがある。 In Patent Document 2, a plurality of two-dimensional tomographic images in the horizontal direction are formed by scanning (scanning) the signal light in the horizontal direction (x direction) and the vertical direction (y direction), and based on the plurality of tomographic images. A technique for acquiring and imaging three-dimensional tomographic information of a measurement range is disclosed. As this three-dimensional imaging, for example, a method of displaying a plurality of tomographic images side by side in a vertical direction (referred to as stack data or the like), volume data (voxel data) based on the stack data is rendered, and a three-dimensional image is rendered. There is a method of forming.
 特許文献3、4には、他のタイプのOCT装置が開示されている。特許文献3には、被測定物体に照射される光の波長を走査(波長掃引)し、各波長の光の反射光と参照光とを重ね合わせて得られる干渉光を検出してスペクトル強度分布を取得し、それに対してフーリエ変換を施すことにより被測定物体の形態を画像化するOCT装置が記載されている。このようなOCT装置は、スウェプトソース(Swept Source)タイプなどと呼ばれる。スウェプトソースタイプはフーリエドメインタイプの一種である。 Patent Documents 3 and 4 disclose other types of OCT apparatuses. In Patent Document 3, the wavelength of light irradiated to a measured object is scanned (wavelength sweep), and interference intensity obtained by superimposing reflected light of each wavelength and reference light is detected to detect spectral intensity distribution. And an OCT apparatus for imaging the form of an object to be measured by performing Fourier transform on the obtained image. Such an OCT apparatus is called a swept source type. The swept source type is a kind of Fourier domain type.
 また、特許文献4には、所定のビーム径を有する光を被測定物体に照射し、その反射光と参照光とを重ね合わせて得られる干渉光の成分を解析することにより、光の進行方向に直交する断面における被測定物体の画像を形成するOCT装置が記載されている。このようなOCT装置は、フルフィールド(full-field)タイプ、或いはインファス(en-face)タイプなどと呼ばれる。 In Patent Document 4, the traveling direction of light is obtained by irradiating the object to be measured with light having a predetermined beam diameter, and analyzing the component of interference light obtained by superimposing the reflected light and the reference light. An OCT apparatus for forming an image of an object to be measured in a cross-section orthogonal to is described. Such an OCT apparatus is called a full-field type or an en-face type.
 特許文献5には、OCTを眼科分野に適用した構成が開示されている。なお、OCTが応用される以前には、被検眼を観察するための装置として眼底カメラやスリットランプなどが使用されていた(たとえば特許文献6、特許文献7を参照)。眼底カメラは被検眼に照明光を照射し、その眼底反射光を受光することで眼底を撮影する装置である。スリットランプは、スリット光を用いて角膜の光切片を切り取ることにより角膜の断面の画像を取得する装置である。 Patent Document 5 discloses a configuration in which OCT is applied to the ophthalmic field. Prior to the application of OCT, a fundus camera, a slit lamp, or the like was used as an apparatus for observing the eye to be examined (see, for example, Patent Document 6 and Patent Document 7). A fundus camera is a device that shoots the fundus by illuminating the subject's eye with illumination light and receiving the fundus reflection light. A slit lamp is a device that acquires an image of a cross-section of the cornea by cutting off a light section of the cornea using slit light.
 OCTを用いた装置は、高精細の画像を取得できる点、更には断層像や3次元画像を取得できる点などにおいて、眼底カメラ等に対して優位性を持つ。 An apparatus using OCT has an advantage over a fundus camera or the like in that a high-definition image can be acquired, and further, a tomographic image or a three-dimensional image can be acquired.
 このように、OCTを用いた装置は被検眼の様々な部位の観察に適用可能であり、また高精細な画像を取得できることから、様々な眼科疾患の診断への応用がなされてきている。 Thus, since an apparatus using OCT can be applied to observation of various parts of an eye to be examined and can acquire high-definition images, it has been applied to diagnosis of various ophthalmic diseases.
特開平11-325849号公報Japanese Patent Laid-Open No. 11-325849 特開2002-139421号公報JP 2002-139421 A 特開2007-24677号公報JP 2007-24677 A 特開2006-153838号公報JP 2006-153838 A 特開2008-73099公報JP 2008-73099 A 特開平9-276232号公報JP-A-9-276232 特開2008-259544号公報JP 2008-259544 A 米国特許第7400410号公報US Pat. No. 7,400,410
 従来の眼底観察装置においては、たとえば特許文献5に開示されているように、眼底撮影用の孔開きミラーよりも後方(被検眼とは反対の方向)の位置において、眼底撮影用の光路とOCT計測用の光路とが合流されている。すなわち、信号光は、孔開きミラーに形成された孔部を介して被検眼に照射され、かつ、眼底による信号光の後方散乱光は、同じ孔部を介して参照光と重畳される。このような構成の光学系は、OCT計測用の光束(信号光)の拡大に大きな制限を与える。それにより、分解能が制限される、干渉強度の向上(画質の向上)を図りにくい、といった問題が生じる。 In the conventional fundus oculi observation device, for example, as disclosed in Patent Document 5, the fundus imaging optical path and the OCT are located behind the aperture mirror for fundus imaging (in the direction opposite to the eye to be examined). The optical path for measurement is merged. That is, the signal light is irradiated to the eye to be examined through a hole formed in the aperture mirror, and the backscattered light of the signal light from the fundus is superimposed on the reference light through the same hole. The optical system having such a configuration greatly restricts the expansion of a light beam (signal light) for OCT measurement. As a result, there arise problems that the resolution is limited and it is difficult to improve the interference intensity (improve the image quality).
 更に、このような構成の光学系によれば、信号光の走査範囲が孔部のサイズに制限されるので、眼底周辺部に照射されるべき信号光が孔開きミラーにより蹴られるおそれがある。合焦レンズの影響等を鑑みると、特に屈折異常の強い被検眼においてこの問題は顕著である。 Furthermore, according to the optical system having such a configuration, since the scanning range of the signal light is limited to the size of the hole, there is a possibility that the signal light to be irradiated to the fundus periphery is kicked by the aperture mirror. In view of the influence of the focusing lens and the like, this problem is particularly remarkable in the eye to be examined having a strong refractive error.
 この発明の目的は、眼底観察装置の光学系の新規な構成を提供することにある。 An object of the present invention is to provide a novel configuration of an optical system of a fundus oculi observation device.
 上記目的を達成するために、請求項1に記載の発明は、被検眼の眼底に照明光を照射し、前記照明光の眼底反射光を撮像装置に導く第1の光学系と、光源からの光を信号光と参照光とに分割し、被検眼の眼底を経由した前記信号光と前記参照光とを干渉させて干渉光を生成し、この干渉光を検出する第2の光学系とを有し、前記撮像装置による検出結果に基づいて眼底の表面形態を表す眼底像を取得し、前記第2の光学系による検出結果に基づいて眼底の断層像を取得する眼底観察装置であって、前記第1の光学系は、孔部を有する孔開きミラーと、対物レンズとを含み、前記孔開きミラーにより反射された前記照明光を前記対物レンズを介して眼底に照射し、かつ、前記対物レンズを経由した前記眼底反射光を前記孔部を介して前記撮像装置に導き、前記第2の光学系は、前記孔開きミラーと前記対物レンズとの間に配置され、前記第1の光学系の光路から前記信号光の光路を分岐させるダイクロイックミラーを含み、前記ダイクロイックミラーを経由した前記信号光を前記対物レンズを介して眼底に照射し、かつ、当該眼底および前記対物レンズを経由した前記信号光を前記ダイクロイックミラーを介して前記参照光と干渉させることを特徴とする。
 また、請求項2に記載の発明は、請求項1に記載の眼底観察装置であって、前記ダイクロイックミラーは、前記照明光および前記眼底反射光を実質的に透過させ、かつ、前記信号光を実質的に反射することにより、前記第1の光学系の光路から前記信号光の光路を分岐させることを特徴とする。
 また、請求項3に記載の発明は、請求項2に記載の眼底観察装置であって、前記ダイクロイックミラーは、波長400nm~770nmの光を95%以上透過させ、かつ、波長790nm以上の光を95%以上反射するように構成されることを特徴とする。
 また、請求項4に記載の発明は、請求項1~請求項3のいずれか一項に記載の眼底観察装置であって、前記第1の光学系および前記第2の光学系のそれぞれに合焦レンズが設けられていることを特徴とする。
In order to achieve the above object, the invention according to claim 1 is directed to a first optical system that irradiates the fundus of the subject's eye with illumination light, guides the fundus reflection light of the illumination light to the imaging device, and a light source. A second optical system that divides light into signal light and reference light, generates interference light by causing the signal light and the reference light to pass through the fundus of the eye to be examined, and detects the interference light; A fundus oculi observation device that acquires a fundus image representing a surface form of the fundus oculi based on a detection result by the imaging device and acquires a tomographic image of the fundus oculi based on a detection result by the second optical system, The first optical system includes a perforated mirror having a hole and an objective lens, irradiates the fundus with the illumination light reflected by the perforated mirror through the objective lens, and the objective The fundus reflection light that has passed through the lens is transmitted through the hole to the imaging device. The second optical system includes a dichroic mirror that is disposed between the aperture mirror and the objective lens and branches the optical path of the signal light from the optical path of the first optical system, and the dichroic mirror Irradiating the fundus with the signal light via a mirror, and causing the signal light via the fundus and the objective lens to interfere with the reference light via the dichroic mirror. To do.
The invention according to claim 2 is the fundus oculi observation device according to claim 1, wherein the dichroic mirror substantially transmits the illumination light and the fundus reflection light, and transmits the signal light. The optical path of the signal light is branched from the optical path of the first optical system by being substantially reflected.
The invention according to claim 3 is the fundus oculi observation device according to claim 2, wherein the dichroic mirror transmits 95% or more of light having a wavelength of 400 nm to 770 nm and transmits light having a wavelength of 790 nm or more. It is configured to reflect 95% or more.
The invention according to claim 4 is the fundus oculi observation device according to any one of claims 1 to 3, wherein each of the first optical system and the second optical system is matched. A focusing lens is provided.
 この発明によれば、新規な構成の光学系を有する眼底観察装置を提供することが可能である。 According to the present invention, it is possible to provide a fundus oculi observation device having an optical system having a novel configuration.
実施形態に係る眼底観察装置の構成の一例を表す概略図である。It is a schematic diagram showing an example of composition of a fundus oculi observation device concerning an embodiment. 実施形態に係る眼底観察装置の構成の一例を表す概略図である。It is a schematic diagram showing an example of composition of a fundus oculi observation device concerning an embodiment. 実施形態に係る眼底観察装置の構成の一例を表す概略ブロック図である。It is a schematic block diagram showing an example of composition of a fundus oculi observation device concerning an embodiment. 実施形態に係る眼底観察装置の動作例を表すフローチャートである。It is a flowchart showing the operation example of the fundus oculi observation device concerning an embodiment.
 この発明に係る眼底観察装置の実施形態の一例について、図面を参照しながら詳細に説明する。この発明に係る眼底観察装置は、OCTを用いて眼底の断層像や3次元画像を形成する。この明細書では、OCTによって取得される画像をOCT画像と総称することがある。また、OCT画像を形成するための計測動作をOCT計測と呼ぶことがある。なお、この明細書に記載された文献の記載内容を、以下の実施形態の内容として適宜援用することが可能である。 An example of an embodiment of a fundus oculi observation device according to the present invention will be described in detail with reference to the drawings. The fundus oculi observation device according to the present invention forms a tomographic image or a three-dimensional image of the fundus using OCT. In this specification, images acquired by OCT may be collectively referred to as OCT images. In addition, a measurement operation for forming an OCT image may be referred to as OCT measurement. In addition, it is possible to use suitably the description content of the literature described in this specification as the content of the following embodiment.
 以下の実施形態では、被測定物体は被検眼(眼底)とし、フーリエドメインタイプのOCTを適用して眼底のOCT計測を行う眼底観察装置について説明する。特に、実施形態に係る眼底観察装置は、特許文献5に開示された装置と同様に、スペクトラルドメインOCTの手法を用いて眼底のOCT画像および眼底像の双方を取得可能である。なお、スペクトラルドメイン以外のタイプ、たとえばスウェプトソースOCTの手法を用いる眼底観察装置に対して、この発明に係る構成を適用することも可能である。また、この実施形態ではOCT装置と眼底カメラとを組み合わせた装置について説明するが、眼底カメラ以外の眼底撮影装置、たとえばSLO(Scanning Laser Ophthalmoscope)、スリットランプ、眼科手術用顕微鏡などに、この実施形態に係る構成を有するOCT装置を組み合わせることも可能である。また、この実施形態に係る構成を、単体のOCT装置に組み込むことも可能である。 In the following embodiment, a fundus oculi observation device that performs OCT measurement of the fundus by applying Fourier domain type OCT using the object to be measured (fundus) as an object to be measured will be described. In particular, the fundus oculi observation device according to the embodiment can acquire both the fundus OCT image and the fundus oculi image using the spectral domain OCT technique, similarly to the device disclosed in Patent Document 5. The configuration according to the present invention can be applied to a fundus oculi observation device using a type other than the spectral domain, for example, a swept source OCT technique. In this embodiment, an apparatus combining an OCT apparatus and a fundus camera will be described. However, this embodiment may be applied to a fundus imaging apparatus other than a fundus camera, such as an SLO (Scanning Laser Ophthalmoscope), a slit lamp, an ophthalmic surgical microscope, and the like. It is also possible to combine an OCT apparatus having the configuration according to the above. In addition, the configuration according to this embodiment can be incorporated into a single OCT apparatus.
[構成]
 図1および図2に示すように、眼底観察装置1は、眼底カメラユニット2、OCTユニット100および演算制御ユニット200を含んで構成される。眼底カメラユニット2は、従来の眼底カメラとほぼ同様の光学系を有する。OCTユニット100には、眼底のOCT画像を取得するための光学系が設けられている。演算制御ユニット200は、各種の演算処理や制御処理等を実行するコンピュータを具備している。
[Constitution]
As shown in FIGS. 1 and 2, the fundus oculi observation device 1 includes a fundus camera unit 2, an OCT unit 100, and an arithmetic control unit 200. The retinal camera unit 2 has almost the same optical system as a conventional retinal camera. The OCT unit 100 is provided with an optical system for acquiring an OCT image of the fundus. The arithmetic control unit 200 includes a computer that executes various arithmetic processes and control processes.
〔眼底カメラユニット〕
 図1に示す眼底カメラユニット2には、被検眼Eの眼底Efの表面形態を表す2次元画像(眼底像)を取得するための光学系が設けられている。眼底像には、観察画像や撮影画像などが含まれる。観察画像は、たとえば、近赤外光を用いて所定のフレームレートで形成されるモノクロの動画像である。撮影画像は、たとえば、可視光をフラッシュ発光して得られるカラー画像、または近赤外光若しくは可視光を照明光として用いたモノクロの静止画像であってもよい。眼底カメラユニット2は、これら以外の画像、たとえばフルオレセイン蛍光画像やインドシアニングリーン蛍光画像や自発蛍光画像などを取得可能に構成されていてもよい。
[Fundus camera unit]
The fundus camera unit 2 shown in FIG. 1 is provided with an optical system for obtaining a two-dimensional image (fundus image) representing the surface form of the fundus oculi Ef of the eye E to be examined. The fundus image includes an observation image and a captured image. The observation image is a monochrome moving image formed at a predetermined frame rate using near infrared light, for example. The captured image may be, for example, a color image obtained by flashing visible light, or a monochrome still image using near infrared light or visible light as illumination light. The fundus camera unit 2 may be configured to be able to acquire images other than these, such as a fluorescein fluorescent image, an indocyanine green fluorescent image, a spontaneous fluorescent image, and the like.
 眼底カメラユニット2には、被検者の顔を支持するための顎受けや額当てが設けられている。更に、眼底カメラユニット2には、照明光学系10と撮影光学系30が設けられている。照明光学系10は眼底Efに照明光を照射する。撮影光学系30は、この照明光の眼底反射光を撮像装置(CCDイメージセンサ(単にCCDと呼ぶことがある)35、38。)に導く。また、撮影光学系30は、OCTユニット100からの信号光を眼底Efに導くとともに、眼底Efを経由した信号光をOCTユニット100に導く。 The fundus camera unit 2 is provided with a chin rest and a forehead for supporting the subject's face. Further, the fundus camera unit 2 is provided with an illumination optical system 10 and a photographing optical system 30. The illumination optical system 10 irradiates the fundus oculi Ef with illumination light. The photographing optical system 30 guides the fundus reflection light of the illumination light to an imaging device (CCD image sensor (sometimes simply referred to as a CCD) 35, 38). The imaging optical system 30 guides the signal light from the OCT unit 100 to the fundus oculi Ef and guides the signal light passing through the fundus oculi Ef to the OCT unit 100.
 照明光学系10の観察光源11は、たとえばハロゲンランプにより構成される。観察光源11から出力された光(観察照明光)は、曲面状の反射面を有する反射ミラー12により反射され、集光レンズ13を経由し、可視カットフィルタ14を透過して近赤外光となる。更に、観察照明光は、撮影光源15の近傍にて一旦集束し、ミラー16により反射され、リレーレンズ17、18、絞り19およびリレーレンズ20を経由する。そして、観察照明光は、孔開きミラー21の周辺部(孔部の周囲の領域)にて反射され、ダイクロイックミラー46を透過し、対物レンズ22により屈折されて眼底Efを照明する。なお、観察光源としてLED(Light Emitting Diode)を用いることも可能である。 The observation light source 11 of the illumination optical system 10 is composed of, for example, a halogen lamp. The light (observation illumination light) output from the observation light source 11 is reflected by the reflection mirror 12 having a curved reflection surface, passes through the condensing lens 13, passes through the visible cut filter 14, and is converted into near infrared light. Become. Further, the observation illumination light is once converged in the vicinity of the photographing light source 15, reflected by the mirror 16, and passes through the relay lenses 17 and 18, the diaphragm 19 and the relay lens 20. Then, the observation illumination light is reflected at the peripheral portion (region around the hole portion) of the aperture mirror 21, passes through the dichroic mirror 46, and is refracted by the objective lens 22 to illuminate the fundus oculi Ef. An LED (Light Emitting Diode) can also be used as the observation light source.
 観察照明光の眼底反射光は、対物レンズ22により屈折され、ダイクロイックミラー46を透過し、孔開きミラー21の中心領域に形成された孔部を通過し、ダイクロイックミラー55を透過し、合焦レンズ31を経由し、ミラー32により反射される。更に、この眼底反射光は、ハーフミラー40を透過し、ダイクロイックミラー33により反射され、集光レンズ34によりCCDイメージセンサ35の受光面に結像される。CCDイメージセンサ35は、たとえば所定のフレームレートで眼底反射光を検出する。表示装置3には、CCDイメージセンサ35により検出された眼底反射光に基づく画像(観察画像)が表示される。なお、撮影光学系のピントが前眼部に合わせられている場合、被検眼Eの前眼部の観察画像が表示される。 The fundus reflection light of the observation illumination light is refracted by the objective lens 22, passes through the dichroic mirror 46, passes through the hole formed in the central region of the perforated mirror 21, passes through the dichroic mirror 55, and is a focusing lens. It is reflected by the mirror 32 via 31. Further, the fundus reflection light passes through the half mirror 40, is reflected by the dichroic mirror 33, and forms an image on the light receiving surface of the CCD image sensor 35 by the condenser lens 34. The CCD image sensor 35 detects fundus reflected light at a predetermined frame rate, for example. On the display device 3, an image (observation image) based on fundus reflection light detected by the CCD image sensor 35 is displayed. When the photographing optical system is focused on the anterior segment, an observation image of the anterior segment of the eye E is displayed.
 撮影光源15は、たとえばキセノンランプにより構成される。撮影光源15から出力された光(撮影照明光)は、観察照明光と同様の経路を通って眼底Efに照射される。撮影照明光の眼底反射光は、観察照明光のそれと同様の経路を通ってダイクロイックミラー33まで導かれ、ダイクロイックミラー33を透過し、ミラー36により反射され、集光レンズ37によりCCDイメージセンサ38の受光面に結像される。表示装置3には、CCDイメージセンサ38により検出された眼底反射光に基づく画像(撮影画像)が表示される。なお、観察画像を表示する表示装置3と撮影画像を表示する表示装置3は、同一のものであってもよいし、異なるものであってもよい。また、被検眼Eを赤外光で照明して同様の撮影を行う場合には、赤外の撮影画像が表示される。また、撮影光源としてLEDを用いることも可能である。 The photographing light source 15 is constituted by, for example, a xenon lamp. The light (imaging illumination light) output from the imaging light source 15 is applied to the fundus oculi Ef through the same path as the observation illumination light. The fundus reflection light of the imaging illumination light is guided to the dichroic mirror 33 through the same path as that of the observation illumination light, passes through the dichroic mirror 33, is reflected by the mirror 36, and is reflected by the condenser lens 37 of the CCD image sensor 38. An image is formed on the light receiving surface. On the display device 3, an image (captured image) based on fundus reflection light detected by the CCD image sensor 38 is displayed. Note that the display device 3 that displays the observation image and the display device 3 that displays the captured image may be the same or different. In addition, when similar imaging is performed by illuminating the eye E with infrared light, an infrared captured image is displayed. It is also possible to use an LED as a photographing light source.
 LCD(Liquid Crystal Display)39は、固視標や視力測定用指標を表示する。固視標は被検眼Eを固視させるための指標であり、眼底撮影時やOCT計測時などに使用される。 The LCD (Liquid Crystal Display) 39 displays a fixation target and an eyesight measurement index. The fixation target is an index for fixing the eye E to be examined, and is used at the time of fundus photographing or OCT measurement.
 LCD39から出力された光は、その一部がハーフミラー40にて反射され、ミラー32に反射され、合焦レンズ31およびダイクロイックミラー55を経由し、孔開きミラー21の孔部を通過し、ダイクロイックミラー46を透過し、対物レンズ22により屈折されて眼底Efに投影される。 A part of the light output from the LCD 39 is reflected by the half mirror 40, reflected by the mirror 32, passes through the focusing lens 31 and the dichroic mirror 55, passes through the hole of the perforated mirror 21, and is dichroic. The light passes through the mirror 46, is refracted by the objective lens 22, and is projected onto the fundus oculi Ef.
 LCD39の画面上における固視標の表示位置を変更することにより、被検眼Eの固視位置を変更できる。被検眼Eの固視位置としては、たとえば従来の眼底カメラと同様に、眼底Efの黄斑部を中心とする画像を取得するための位置や、視神経乳頭を中心とする画像を取得するための位置や、黄斑部と視神経乳頭との間の眼底中心を中心とする画像を取得するための位置などがある。また、固視標の表示位置を任意に変更することも可能である。 The fixation position of the eye E can be changed by changing the display position of the fixation target on the screen of the LCD 39. As the fixation position of the eye E, for example, a position for acquiring an image centered on the macular portion of the fundus oculi Ef, or a position for acquiring an image centered on the optic disc as in the case of a conventional fundus camera And a position for acquiring an image centered on the fundus center between the macula and the optic disc. It is also possible to arbitrarily change the display position of the fixation target.
 更に、眼底カメラユニット2には、従来の眼底カメラと同様にアライメント光学系50とフォーカス光学系60が設けられている。アライメント光学系50は、被検眼Eに対する装置光学系の位置合わせ(アライメント)を行うための指標(アライメント指標)を生成する。フォーカス光学系60は、眼底Efに対してフォーカス(ピント)を合わせるための指標(スプリット指標)を生成する。 Furthermore, the fundus camera unit 2 is provided with an alignment optical system 50 and a focus optical system 60 as in the conventional fundus camera. The alignment optical system 50 generates an index (alignment index) for performing alignment (alignment) of the apparatus optical system with respect to the eye E. The focus optical system 60 generates an index (split index) for focusing on the fundus oculi Ef.
 アライメント光学系50のLED51から出力された光(アライメント光)は、絞り52、53およびリレーレンズ54を経由してダイクロイックミラー55により反射され、孔開きミラー21の孔部を通過し、ダイクロイックミラー46を透過し、対物レンズ22により被検眼Eの角膜に投影される。 The light (alignment light) output from the LED 51 of the alignment optical system 50 is reflected by the dichroic mirror 55 via the apertures 52 and 53 and the relay lens 54, passes through the hole of the perforated mirror 21, and reaches the dichroic mirror 46. And is projected onto the cornea of the eye E by the objective lens 22.
 アライメント光の角膜反射光は、対物レンズ22、ダイクロイックミラー46および上記孔部を経由し、その一部がダイクロイックミラー55を透過し、合焦レンズ31を通過し、ミラー32により反射され、ハーフミラー40を透過し、ダイクロイックミラー33に反射され、集光レンズ34によりCCDイメージセンサ35の受光面に投影される。CCDイメージセンサ35による受光像(アライメント指標)は、観察画像とともに表示装置3に表示される。ユーザは、従来の眼底カメラと同様の操作を行ってアライメントを実施する。また、演算制御ユニット200がアライメント指標の位置を解析して光学系を移動させることによりアライメントを行ってもよい(オートアライメント機能)。 The corneal reflection light of the alignment light passes through the objective lens 22, the dichroic mirror 46 and the hole, part of which passes through the dichroic mirror 55, passes through the focusing lens 31, is reflected by the mirror 32, and is half mirror 40 is reflected by the dichroic mirror 33 and projected onto the light-receiving surface of the CCD image sensor 35 by the condenser lens 34. The light reception image (alignment index) by the CCD image sensor 35 is displayed on the display device 3 together with the observation image. The user performs alignment by performing the same operation as that of a conventional fundus camera. Further, the arithmetic control unit 200 may perform alignment by analyzing the position of the alignment index and moving the optical system (auto-alignment function).
 フォーカス調整を行う際には、照明光学系10の光路上に反射棒67の反射面が斜設される。フォーカス光学系60のLED61から出力された光(フォーカス光)は、リレーレンズ62を通過し、スプリット指標板63により2つの光束に分離され、二孔絞り64を通過し、ミラー65に反射され、集光レンズ66により反射棒67の反射面に一旦結像されて反射される。更に、フォーカス光は、リレーレンズ20を経由し、孔開きミラー21に反射され、ダイクロイックミラー46を透過し、対物レンズ22により屈折されて眼底Efに投影される。 When performing the focus adjustment, the reflecting surface of the reflecting rod 67 is obliquely provided on the optical path of the illumination optical system 10. The light (focus light) output from the LED 61 of the focus optical system 60 passes through the relay lens 62, is separated into two light beams by the split indicator plate 63, passes through the two-hole aperture 64, and is reflected by the mirror 65, The light is focused on the reflecting surface of the reflecting bar 67 by the condenser lens 66 and reflected. Further, the focus light passes through the relay lens 20, is reflected by the perforated mirror 21, passes through the dichroic mirror 46, is refracted by the objective lens 22, and is projected onto the fundus oculi Ef.
 フォーカス光の眼底反射光は、アライメント光の角膜反射光と同様の経路を通ってCCDイメージセンサ35により検出される。CCDイメージセンサ35による受光像(スプリット指標)は、観察画像とともに表示装置3に表示される。演算制御ユニット200は、従来と同様に、スプリット指標の位置を解析して合焦レンズ31およびフォーカス光学系60を移動させてピント合わせを行う(オートフォーカス機能)。また、スプリット指標を視認しつつ手動でピント合わせを行ってもよい。 The fundus reflection light of the focus light is detected by the CCD image sensor 35 through the same path as the corneal reflection light of the alignment light. A light reception image (split index) by the CCD image sensor 35 is displayed on the display device 3 together with the observation image. The arithmetic and control unit 200 analyzes the position of the split index and moves the focusing lens 31 and the focus optical system 60 to perform focusing as in the conventional case (autofocus function). Alternatively, focusing may be performed manually while visually checking the split indicator.
 ダイクロイックミラー46は、孔開きミラー21と対物レンズ22との間の位置に設けられ、眼底撮影用の光路からOCT計測用の光路を分岐させている。ダイクロイックミラー46は、眼底撮影用の光を実質的に透過させ、かつ、OCT計測に用いられる波長帯の光を実質的に反射する。「実質的に」とは、その波長帯の光の全てを透過または反射させる必要はなく、眼底撮影やOCT計測に影響を与えない程度の誤差は許容することを示す。ダイクロイックミラー46の透過/反射特性は、眼底観察装置1により使用される眼底撮影用の光の波長とOCT計測用の光(信号光LS)の波長とに応じて設定される。たとえば、ダイクロイックミラー46は、眼底撮影に用いられる波長400nm~770nmの光を95%以上透過させ、かつ、OCT計測に用いられる波長790nm以上の光を95%以上反射するように構成される。なお、ダイクロイックミラー46の特性はこの数値例に限定されるものではない。 The dichroic mirror 46 is provided at a position between the perforated mirror 21 and the objective lens 22, and branches the optical path for OCT measurement from the optical path for fundus imaging. The dichroic mirror 46 substantially transmits the fundus photographing light and substantially reflects the light in the wavelength band used for OCT measurement. “Substantially” indicates that it is not necessary to transmit or reflect all the light in the wavelength band, and an error that does not affect fundus imaging or OCT measurement is allowed. The transmission / reflection characteristics of the dichroic mirror 46 are set according to the wavelength of the fundus photographing light used by the fundus oculi observation device 1 and the wavelength of the OCT measurement light (signal light LS). For example, the dichroic mirror 46 is configured to transmit 95% or more of light having a wavelength of 400 nm to 770 nm used for fundus photography and to reflect 95% or more of light having a wavelength of 790 nm or more used for OCT measurement. The characteristics of the dichroic mirror 46 are not limited to this numerical example.
 このOCT計測用の光路には、OCTユニット100側から順に、コリメータレンズユニット40と、光路長変更部41と、ガルバノスキャナ42と、合焦レンズ43と、ミラー44と、リレーレンズ45とが設けられている。 In this optical path for OCT measurement, a collimator lens unit 40, an optical path length changing unit 41, a galvano scanner 42, a focusing lens 43, a mirror 44, and a relay lens 45 are provided in this order from the OCT unit 100 side. It has been.
 光路長変更部41は、図1に示す矢印の方向に移動可能とされ、OCT計測用の光路の光路長を変更する。この光路長の変更は、被検眼Eの眼軸長に応じた光路長の補正や、干渉状態の調整などに利用される。光路長変更部41は、たとえばコーナーキューブと、これを移動する機構とを含んで構成される。 The optical path length changing unit 41 is movable in the direction of the arrow shown in FIG. 1, and changes the optical path length of the optical path for OCT measurement. This change in the optical path length is used for correcting the optical path length according to the axial length of the eye E or adjusting the interference state. The optical path length changing unit 41 includes, for example, a corner cube and a mechanism for moving the corner cube.
 ガルバノスキャナ42は、OCT計測用の光路を通過する光(信号光LS)の進行方向を変更する。それにより、眼底Efを信号光LSで走査することができる。ガルバノスキャナ42は、たとえば、信号光LSをx方向に走査するガルバノミラーと、y方向に走査するガルバノミラーと、これらを独立に駆動する機構とを含んで構成される。それにより、信号光LSをxy平面上の任意の方向に走査することができる。 The galvano scanner 42 changes the traveling direction of light (signal light LS) passing through the optical path for OCT measurement. Thereby, the fundus oculi Ef can be scanned with the signal light LS. The galvano scanner 42 includes, for example, a galvano mirror that scans the signal light LS in the x direction, a galvano mirror that scans in the y direction, and a mechanism that drives these independently. Thereby, the signal light LS can be scanned in an arbitrary direction on the xy plane.
〔OCTユニット〕
 図2を参照しつつOCTユニット100の構成の一例を説明する。OCTユニット100には、眼底EfのOCT画像を取得するための光学系が設けられている。この光学系は、従来のスペクトラルドメインタイプのOCT装置と同様の構成を有する。すなわち、この光学系は、低コヒーレンス光を参照光と信号光に分割し、眼底Efを経由した信号光と参照光路を経由した参照光とを干渉させて干渉光を生成し、この干渉光のスペクトル成分を検出するように構成されている。この検出結果(検出信号)は演算制御ユニット200に送られる。
[OCT unit]
An example of the configuration of the OCT unit 100 will be described with reference to FIG. The OCT unit 100 is provided with an optical system for acquiring an OCT image of the fundus oculi Ef. This optical system has the same configuration as a conventional spectral domain type OCT apparatus. That is, this optical system divides low-coherence light into reference light and signal light, and generates interference light by causing interference between the signal light passing through the fundus oculi Ef and the reference light passing through the reference optical path. It is configured to detect spectral components. This detection result (detection signal) is sent to the arithmetic control unit 200.
 なお、スウェプトソースタイプのOCT装置の場合には、低コヒーレンス光源を出力する光源の代わりに波長掃引光源が設けられるとともに、干渉光をスペクトル分解する光学部材が設けられない。一般に、OCTユニット100の構成については、光コヒーレンストモグラフィのタイプに応じた公知の技術を任意に適用することができる。 In the case of a swept source type OCT apparatus, a wavelength swept light source is provided instead of a light source that outputs a low coherence light source, and an optical member that spectrally decomposes interference light is not provided. In general, for the configuration of the OCT unit 100, a known technique according to the type of optical coherence tomography can be arbitrarily applied.
 光源ユニット101は広帯域の低コヒーレンス光L0を出力する。低コヒーレンス光L0は、たとえば、近赤外領域の波長帯(約800nm~900nm程度)を含み、数十マイクロメートル程度の時間的コヒーレンス長を有する。なお、人眼では視認できない波長帯、たとえば1040~1060nm程度の中心波長を有する近赤外光を低コヒーレンス光L0として用いてもよい。 The light source unit 101 outputs a broadband low-coherence light L0. The low coherence light L0 includes, for example, a near-infrared wavelength band (about 800 nm to 900 nm) and has a temporal coherence length of about several tens of micrometers. Note that near-infrared light having a wavelength band invisible to the human eye, for example, a center wavelength of about 1040 to 1060 nm, may be used as the low-coherence light L0.
 光源ユニット101は、スーパールミネセントダイオード(Super Luminescent Diode:SLD)や、LEDや、SOA(Semiconductor Optical Amplifier)等の光出力デバイスを含んで構成される。 The light source unit 101 includes a super luminescent diode (Super Luminescent Diode: SLD), an LED, and an optical output device such as an SOA (Semiconductor Optical Amplifier).
 光源ユニット101から出力された低コヒーレンス光L0は、光ファイバ102によりファイバカプラ103に導かれて信号光LSと参照光LRに分割される。 The low coherence light L0 output from the light source unit 101 is guided to the fiber coupler 103 by the optical fiber 102, and is divided into the signal light LS and the reference light LR.
 参照光LRは、光ファイバ104により導かれて光減衰器(アッテネータ)105に到達する。光減衰器105は、公知の技術を用いて、演算制御ユニット200の制御の下、光ファイバ104に導かれる参照光LRの光量を自動で調整する。光減衰器105により光量が調整された参照光LRは、光ファイバ104により導かれて偏波調整器(偏波コントローラ)106に到達する。偏波調整器106は、たとえば、ループ状にされた光ファイバ104に対して外部から応力を与えることで、光ファイバ104内を導かれる参照光LRの偏光状態を調整する装置である。なお、偏波調整器106の構成はこれに限定されるものではなく、任意の公知技術を用いることが可能である。偏波調整器106により偏光状態が調整された参照光LRは、ファイバカプラ109に到達する。 The reference light LR is guided by the optical fiber 104 and reaches an optical attenuator (attenuator) 105. The optical attenuator 105 automatically adjusts the amount of the reference light LR guided to the optical fiber 104 under the control of the arithmetic control unit 200 using a known technique. The reference light LR whose light amount has been adjusted by the optical attenuator 105 is guided by the optical fiber 104 and reaches the polarization adjuster (polarization controller) 106. The polarization adjuster 106 is, for example, a device that adjusts the polarization state of the reference light LR guided in the optical fiber 104 by applying a stress from the outside to the optical fiber 104 in a loop shape. The configuration of the polarization adjuster 106 is not limited to this, and any known technique can be used. The reference light LR whose polarization state is adjusted by the polarization adjuster 106 reaches the fiber coupler 109.
 ファイバカプラ103により生成された信号光LSは、光ファイバ107により導かれ、コリメータレンズユニット105により平行光束とされる。更に、信号光LSは、光路長変更部41、ガルバノスキャナ42、合焦レンズ43、ミラー44、およびリレーレンズ45を経由してダイクロイックミラー46に到達する。そして、信号光LSは、ダイクロイックミラー46により反射され、対物レンズ11により屈折されて眼底Efに照射される。信号光LSは、眼底Efの様々な深さ位置において散乱(反射を含む)される。眼底Efによる信号光LSの後方散乱光は、往路と同じ経路を逆向きに進行してファイバカプラ103に導かれ、光ファイバ108を経由してファイバカプラ109に到達する。 The signal light LS generated by the fiber coupler 103 is guided by the optical fiber 107 and converted into a parallel light beam by the collimator lens unit 105. Further, the signal light LS reaches the dichroic mirror 46 via the optical path length changing unit 41, the galvano scanner 42, the focusing lens 43, the mirror 44, and the relay lens 45. Then, the signal light LS is reflected by the dichroic mirror 46, refracted by the objective lens 11, and irradiated onto the fundus oculi Ef. The signal light LS is scattered (including reflection) at various depth positions of the fundus oculi Ef. The backscattered light of the signal light LS from the fundus oculi Ef travels in the same direction as the forward path in the reverse direction, is guided to the fiber coupler 103, and reaches the fiber coupler 109 via the optical fiber 108.
 ファイバカプラ109は、信号光LSの後方散乱光と、ファイバカプラ104を経由した参照光LRとを干渉させる。これにより生成された干渉光LCは、光ファイバ110により導かれて出射端111から出射される。更に、干渉光LCは、コリメータレンズ112により平行光束とされ、回折格子113により分光(スペクトル分解)され、集光レンズ114により集光されてCCDイメージセンサ115の受光面に投影される。なお、図2に示す回折格子118は透過型であるが、たとえば反射型の回折格子など、他の形態の分光素子を用いることも可能である。 The fiber coupler 109 causes the backscattered light of the signal light LS to interfere with the reference light LR that has passed through the fiber coupler 104. The interference light LC generated thereby is guided by the optical fiber 110 and emitted from the emission end 111. Further, the interference light LC is converted into a parallel light beam by the collimator lens 112, dispersed (spectral decomposition) by the diffraction grating 113, condensed by the condenser lens 114, and projected onto the light receiving surface of the CCD image sensor 115. The diffraction grating 118 shown in FIG. 2 is a transmission type, but other types of spectroscopic elements such as a reflection type diffraction grating can also be used.
 CCDイメージセンサ115は、たとえばラインセンサであり、分光された干渉光LCの各スペクトル成分を検出して電荷に変換する。CCDイメージセンサ115は、この電荷を蓄積して検出信号を生成し、これを演算制御ユニット200に送る。 The CCD image sensor 115 is a line sensor, for example, and detects each spectral component of the split interference light LC and converts it into electric charges. The CCD image sensor 115 accumulates this electric charge, generates a detection signal, and sends it to the arithmetic control unit 200.
 この実施形態ではマイケルソン型の干渉計を採用しているが、たとえばマッハツェンダー型など任意のタイプの干渉計を適宜に採用することが可能である。また、CCDイメージセンサに代えて、他の形態のイメージセンサ、たとえばCMOS(Complementary Metal Oxide Semiconductor)イメージセンサなどを用いることが可能である。 In this embodiment, a Michelson type interferometer is used, but any type of interferometer such as a Mach-Zehnder type can be appropriately used. Further, in place of the CCD image sensor, another form of image sensor, for example, a CMOS (Complementary Metal Oxide Semiconductor) image sensor or the like can be used.
 OCTユニット100には、更に、光ファイバ120と、偏光板122と、検出素子123とが設けられている。光ファイバ120の一端はファイバカプラ109に接続されている。偏光板122は、光ファイバ120の他端の出射端121の後段に設けられている。偏光板122は特定方向に偏光した光のみを透過させる偏光子である。偏光板122は、アクチュエータ122Aによる駆動力を受けて回転する。それにより、透過させる光の偏光方向が変化する。検出素子123は、偏光板122を透過した光を検出する。 The OCT unit 100 is further provided with an optical fiber 120, a polarizing plate 122, and a detection element 123. One end of the optical fiber 120 is connected to the fiber coupler 109. The polarizing plate 122 is provided at the subsequent stage of the emission end 121 at the other end of the optical fiber 120. The polarizing plate 122 is a polarizer that transmits only light polarized in a specific direction. The polarizing plate 122 rotates upon receiving a driving force from the actuator 122A. Thereby, the polarization direction of the transmitted light changes. The detection element 123 detects light transmitted through the polarizing plate 122.
〔演算制御ユニット〕
 演算制御ユニット200の構成について説明する。演算制御ユニット200は、CCDイメージセンサ115から入力される検出信号を解析して眼底EfのOCT画像を形成する。そのための演算処理は、従来のスペクトラルドメインタイプのOCT装置と同様である。
[Calculation control unit]
The configuration of the arithmetic control unit 200 will be described. The arithmetic control unit 200 analyzes the detection signal input from the CCD image sensor 115 and forms an OCT image of the fundus oculi Ef. The arithmetic processing for this is the same as that of a conventional spectral domain type OCT apparatus.
 また、演算制御ユニット200は、眼底カメラユニット2、表示装置3およびOCTユニット100の各部を制御する。たとえば演算制御ユニット200は、眼底EfのOCT画像を表示装置3に表示させる。 The arithmetic control unit 200 controls each part of the fundus camera unit 2, the display device 3, and the OCT unit 100. For example, the arithmetic control unit 200 displays an OCT image of the fundus oculi Ef on the display device 3.
 また、眼底カメラユニット2の制御として、演算制御ユニット200は、観察光源11、撮影光源15およびLED51、61の動作制御、LCD39の動作制御、合焦レンズ31、43の移動制御、反射棒67の移動制御、フォーカス光学系60の移動制御、光路長変更部41の移動制御、ガルバノスキャナ42の動作制御などを行う。 As the control of the fundus camera unit 2, the arithmetic control unit 200 controls the operation of the observation light source 11, the imaging light source 15 and the LEDs 51 and 61, the operation control of the LCD 39, the movement control of the focusing lenses 31 and 43, and the reflector 67. Movement control, movement control of the focus optical system 60, movement control of the optical path length changing unit 41, operation control of the galvano scanner 42, and the like are performed.
 また、OCTユニット100の制御として、演算制御ユニット200は、光源ユニット101の動作制御、光減衰器105の動作制御、偏波調整器106の動作制御、CCDイメージセンサ115の動作制御、偏光板122(アクチュエータ122A)の動作制御などを行う。 As the control of the OCT unit 100, the arithmetic control unit 200 controls the operation of the light source unit 101, the operation control of the optical attenuator 105, the operation control of the polarization adjuster 106, the operation control of the CCD image sensor 115, and the polarizing plate 122. Operation control of the (actuator 122A) is performed.
 演算制御ユニット200は、たとえば、従来のコンピュータと同様に、マイクロプロセッサ、RAM、ROM、ハードディスクドライブ、通信インターフェイスなどを含んで構成される。ハードディスクドライブ等の記憶装置には、眼底観察装置1を制御するためのコンピュータプログラムが記憶されている。演算制御ユニット200は、各種の回路基板、たとえばOCT画像を形成するための回路基板を備えていてもよい。また、演算制御ユニット200は、キーボードやマウス等の操作デバイス(入力デバイス)や、LCD等の表示デバイスを備えていてもよい。 The arithmetic control unit 200 includes, for example, a microprocessor, a RAM, a ROM, a hard disk drive, a communication interface, and the like, as in a conventional computer. A computer program for controlling the fundus oculi observation device 1 is stored in a storage device such as a hard disk drive. The arithmetic control unit 200 may include various circuit boards, for example, a circuit board for forming an OCT image. The arithmetic control unit 200 may include an operation device (input device) such as a keyboard and a mouse, and a display device such as an LCD.
 眼底カメラユニット2、表示装置3、OCTユニット100および演算制御ユニット200は、一体的に(つまり単一の筺体内に)構成されていてもよいし、2つ以上の筐体に別れて構成されていてもよい。 The fundus camera unit 2, the display device 3, the OCT unit 100, and the calculation control unit 200 may be configured integrally (that is, in a single housing) or separated into two or more cases. It may be.
〔制御系〕
 眼底観察装置1の制御系の構成について図3を参照しつつ説明する。
[Control system]
The configuration of the control system of the fundus oculi observation device 1 will be described with reference to FIG.
(制御部)
 眼底観察装置1の制御系は、制御部210を中心に構成される。制御部210は、たとえば、前述のマイクロプロセッサ、RAM、ROM、ハードディスクドライブ、通信インターフェイス等を含んで構成される。制御部210には、主制御部211と記憶部212が設けられている。
(Control part)
The control system of the fundus oculi observation device 1 is configured around the control unit 210. The control unit 210 includes, for example, the aforementioned microprocessor, RAM, ROM, hard disk drive, communication interface, and the like. The control unit 210 is provided with a main control unit 211 and a storage unit 212.
(主制御部)
 主制御部211は前述の各種制御を行う。特に、主制御部211は、眼底カメラユニット2の合焦駆動部31A、光路長変更部41およびガルバノスキャナ42、更にOCTユニット100の光源ユニット101、光減衰器105および偏波調整器106を制御する。
(Main control unit)
The main control unit 211 performs the various controls described above. In particular, the main control unit 211 controls the focusing drive unit 31A, the optical path length changing unit 41 and the galvano scanner 42 of the fundus camera unit 2, and further the light source unit 101, the optical attenuator 105 and the polarization adjuster 106 of the OCT unit 100. To do.
 合焦駆動部31Aは、合焦レンズ31を光軸方向に移動させる。それにより、撮影光学系30の合焦位置が変更される。なお、主制御部211は、図示しない光学系駆動部を制御して、眼底カメラユニット2に設けられた光学系を3次元的に移動させることもできる。この制御は、アライメントやトラッキングにおいて用いられる。トラッキングとは、被検眼Eの眼球運動に合わせて装置光学系を移動させるものである。トラッキングを行う場合には、事前にアライメントとピント合わせが実行される。トラッキングは、装置光学系の位置を眼球運動に追従させることにより、アライメントとピントが合った好適な位置関係を維持する機能である。 The focusing drive unit 31A moves the focusing lens 31 in the optical axis direction. Thereby, the focus position of the photographic optical system 30 is changed. The main control unit 211 can also move an optical system provided in the fundus camera unit 2 in a three-dimensional manner by controlling an optical system drive unit (not shown). This control is used in alignment and tracking. Tracking is to move the apparatus optical system in accordance with the eye movement of the eye E. When tracking is performed, alignment and focusing are performed in advance. Tracking is a function of maintaining a suitable positional relationship in which the alignment and focus are achieved by causing the position of the apparatus optical system to follow the eye movement.
 また、主制御部211は、記憶部212にデータを書き込む処理や、記憶部212からデータを読み出す処理を行う。 Further, the main control unit 211 performs a process of writing data to the storage unit 212 and a process of reading data from the storage unit 212.
(記憶部)
 記憶部212は、各種のデータを記憶する。記憶部212に記憶されるデータとしては、たとえば、OCT画像の画像データ、眼底像の画像データ、被検眼情報などがある。被検眼情報は、患者IDや氏名などの被検者に関する情報や、左眼/右眼の識別情報などの被検眼に関する情報を含む。また、記憶部212には、眼底観察装置1を動作させるための各種プログラムやデータが記憶されている。
(Memory part)
The storage unit 212 stores various data. Examples of the data stored in the storage unit 212 include OCT image image data, fundus image data, and examined eye information. The eye information includes information about the subject such as patient ID and name, and information about the eye such as left / right eye identification information. The storage unit 212 stores various programs and data for operating the fundus oculi observation device 1.
(画像形成部)
 画像形成部220は、CCDイメージセンサ115からの検出信号に基づいて、眼底Efの断層像の画像データを形成する。この処理には、従来のスペクトラルドメインタイプの光コヒーレンストモグラフィと同様に、ノイズ除去(ノイズ低減)、フィルタ処理、FFT(Fast Fourier Transform)などの処理が含まれている。他のタイプのOCT装置の場合、画像形成部220は、そのタイプに応じた公知の処理を実行する。
(Image forming part)
The image forming unit 220 forms tomographic image data of the fundus oculi Ef based on the detection signal from the CCD image sensor 115. This process includes processes such as noise removal (noise reduction), filter processing, FFT (Fast Fourier Transform), and the like, as in the conventional spectral domain type optical coherence tomography. In the case of another type of OCT apparatus, the image forming unit 220 executes a known process corresponding to the type.
 画像形成部220は、たとえば、前述の回路基板を含んで構成される。なお、この明細書では、「画像データ」と、それに基づく「画像」とを同一視することがある。 The image forming unit 220 includes, for example, the circuit board described above. In this specification, “image data” and “image” based thereon may be identified.
(画像処理部)
 画像処理部230は、画像形成部220により形成された画像に対して各種の画像処理や解析処理を施す。たとえば、画像処理部230は、画像の輝度補正や分散補正等の各種補正処理を実行する。また、画像処理部230は、眼底カメラユニット2により得られた画像(眼底像、前眼部像等)に対して各種の画像処理や解析処理を施す。
(Image processing unit)
The image processing unit 230 performs various types of image processing and analysis processing on the image formed by the image forming unit 220. For example, the image processing unit 230 executes various correction processes such as image brightness correction and dispersion correction. The image processing unit 230 performs various types of image processing and analysis processing on the image (fundus image, anterior eye image, etc.) obtained by the fundus camera unit 2.
 画像処理部230は、断層像の間の画素を補間する補間処理などの公知の画像処理を実行して、眼底Efの3次元画像の画像データを形成する。なお、3次元画像の画像データとは、3次元座標系により画素の位置が定義された画像データを意味する。3次元画像の画像データとしては、3次元的に配列されたボクセルからなる画像データがある。この画像データは、ボリュームデータ或いはボクセルデータなどと呼ばれる。ボリュームデータに基づく画像を表示させる場合、画像処理部230は、このボリュームデータに対してレンダリング処理(ボリュームレンダリングやMIP(Maximum Intensity Projection:最大値投影)など)を施して、特定の視線方向から見たときの擬似的な3次元画像の画像データを形成する。表示部240A等の表示デバイスには、この擬似的な3次元画像が表示される。 The image processing unit 230 executes known image processing such as interpolation processing for interpolating pixels between tomographic images to form image data of a three-dimensional image of the fundus oculi Ef. Note that the image data of a three-dimensional image means image data in which pixel positions are defined by a three-dimensional coordinate system. As image data of a three-dimensional image, there is image data composed of voxels arranged three-dimensionally. This image data is called volume data or voxel data. When displaying an image based on volume data, the image processing unit 230 performs a rendering process (such as volume rendering or MIP (Maximum Intensity Projection)) on the volume data, and views the image from a specific line-of-sight direction. Image data of a pseudo three-dimensional image is formed. This pseudo three-dimensional image is displayed on a display device such as the display unit 240A.
 また、3次元画像の画像データとして、複数の断層像のスタックデータを形成することも可能である。スタックデータは、複数の走査線に沿って得られた複数の断層像を、走査線の位置関係に基づいて3次元的に配列させることで得られる画像データである。すなわち、スタックデータは、元々個別の2次元座標系により定義されていた複数の断層像を、1つの3次元座標系により表現する(つまり1つの3次元空間に埋め込む)ことにより得られる画像データである。 It is also possible to form stack data of a plurality of tomographic images as image data of a three-dimensional image. The stack data is image data obtained by three-dimensionally arranging a plurality of tomographic images obtained along a plurality of scanning lines based on the positional relationship of the scanning lines. That is, stack data is image data obtained by expressing a plurality of tomographic images originally defined by individual two-dimensional coordinate systems by one three-dimensional coordinate system (that is, by embedding them in one three-dimensional space). is there.
 以上のように機能する画像処理部230は、たとえば、前述のマイクロプロセッサ、RAM、ROM、ハードディスクドライブ、回路基板等を含んで構成される。ハードディスクドライブ等の記憶装置には、上記機能をマイクロプロセッサに実行させるコンピュータプログラムが予め格納されている。 The image processing unit 230 that functions as described above includes, for example, the aforementioned microprocessor, RAM, ROM, hard disk drive, circuit board, and the like. In a storage device such as a hard disk drive, a computer program for causing the microprocessor to execute the above functions is stored in advance.
(ユーザインターフェイス)
 ユーザインターフェイス240には、表示部240Aと操作部240Bとが含まれる。表示部240Aは、前述した演算制御ユニット200の表示デバイスや表示装置3を含んで構成される。操作部240Bは、前述した演算制御ユニット200の操作デバイスを含んで構成される。操作部240Bには、眼底観察装置1の筐体や外部に設けられた各種のボタンやキーが含まれていてもよい。たとえば眼底カメラユニット2が従来の眼底カメラと同様の筺体を有する場合、操作部240Bは、この筺体に設けられたジョイスティックや操作パネル等を含んでいてもよい。また、表示部240Aは、眼底カメラユニット2の筺体に設けられたタッチパネルモニタなどの各種表示デバイスを含んでいてもよい。
(User interface)
The user interface 240 includes a display unit 240A and an operation unit 240B. The display unit 240A includes the display device of the arithmetic control unit 200 and the display device 3 described above. The operation unit 240B includes the operation device of the arithmetic control unit 200 described above. The operation unit 240B may include various buttons and keys provided on the housing of the fundus oculi observation device 1 or outside. For example, when the fundus camera unit 2 has a housing similar to that of a conventional fundus camera, the operation unit 240B may include a joystick, an operation panel, or the like provided on the housing. The display unit 240 </ b> A may include various display devices such as a touch panel monitor provided in the housing of the fundus camera unit 2.
 なお、表示部240Aと操作部240Bは、それぞれ個別のデバイスとして構成される必要はない。たとえばタッチパネルモニタのように、表示機能と操作機能とが一体化されたデバイスを用いることも可能である。その場合、操作部240Bは、このタッチパネルディスプレイとコンピュータプログラムとを含んで構成される。操作部240Bに対する操作内容は、電気信号として制御部210に入力される。また、表示部240Aに表示されたグラフィックユーザインターフェイス(GUI)と、操作部240Bとを用いて、操作や情報入力を行うようにしてもよい。 Note that the display unit 240A and the operation unit 240B do not need to be configured as individual devices. For example, a device in which a display function and an operation function are integrated, such as a touch panel monitor, can be used. In that case, the operation unit 240B includes the touch panel display and a computer program. The operation content for the operation unit 240B is input to the control unit 210 as an electrical signal. Further, operations and information input may be performed using a graphic user interface (GUI) displayed on the display unit 240A and the operation unit 240B.
〔信号光の走査およびOCT画像について〕
 ここで、信号光LSの走査およびOCT画像について説明しておく。
[Signal light scanning and OCT images]
Here, the scanning of the signal light LS and the OCT image will be described.
 眼底観察装置1による信号光LSの走査態様としては、たとえば、水平スキャン、垂直スキャン、十字スキャン、放射スキャン、円スキャン、同心円スキャン、螺旋(渦巻)スキャンなどがある。これらの走査態様は、眼底の観察部位、解析対象(網膜厚など)、走査に要する時間、走査の精密さなどを考慮して適宜に選択的に使用される。 Examples of the scanning mode of the signal light LS by the fundus oculi observation device 1 include a horizontal scan, a vertical scan, a cross scan, a radiation scan, a circle scan, a concentric scan, and a spiral (vortex) scan. These scanning modes are selectively used as appropriate in consideration of the observation site of the fundus, the analysis target (such as retinal thickness), the time required for scanning, the precision of scanning, and the like.
 水平スキャンは、信号光LSを水平方向(x方向)に走査させるものである。水平スキャンには、垂直方向(y方向)に配列された複数の水平方向に延びる走査線に沿って信号光LSを走査させる態様も含まれる。この態様においては、走査線の間隔を任意に設定することが可能である。また、隣接する走査線の間隔を十分に狭くすることにより、前述の3次元画像を形成することができる(3次元スキャン)。垂直スキャンについても同様である。 The horizontal scan is to scan the signal light LS in the horizontal direction (x direction). The horizontal scan also includes an aspect in which the signal light LS is scanned along a plurality of horizontal scanning lines arranged in the vertical direction (y direction). In this aspect, it is possible to arbitrarily set the scanning line interval. Further, the above-described three-dimensional image can be formed by sufficiently narrowing the interval between adjacent scanning lines (three-dimensional scanning). The same applies to the vertical scan.
 十字スキャンは、互いに直交する2本の直線状の軌跡(直線軌跡)からなる十字型の軌跡に沿って信号光LSを走査するものである。放射スキャンは、所定の角度を介して配列された複数の直線軌跡からなる放射状の軌跡に沿って信号光LSを走査するものである。なお、十字スキャンは放射スキャンの一例である。 The cross scan scans the signal light LS along a cross-shaped trajectory composed of two linear trajectories (straight trajectories) orthogonal to each other. In the radiation scan, the signal light LS is scanned along a radial trajectory composed of a plurality of linear trajectories arranged at a predetermined angle. The cross scan is an example of a radiation scan.
 円スキャンは、円形状の軌跡に沿って信号光LSを走査させるものである。同心円スキャンは、所定の中心位置の周りに同心円状に配列された複数の円形状の軌跡に沿って信号光LSを走査させるものである。円スキャンは同心円スキャンの一例である。螺旋スキャンは、回転半径を次第に小さく(または大きく)させながら螺旋状(渦巻状)の軌跡に沿って信号光LSを走査するものである。 The circle scan scans the signal light LS along a circular locus. In the concentric scan, the signal light LS is scanned along a plurality of circular trajectories arranged concentrically around a predetermined center position. A circle scan is an example of a concentric scan. In the helical scan, the signal light LS is scanned along a spiral (spiral) trajectory while gradually reducing (or increasing) the radius of rotation.
 ガルバノスキャナ42は、互いに直交する方向に信号光LSを走査するように構成されているので、信号光LSをx方向およびy方向にそれぞれ独立に走査できる。更に、ガルバノスキャナ42に含まれる2つのガルバノミラーの向きを同時に制御することで、xy面上の任意の軌跡に沿って信号光LSを走査することが可能である。それにより、上記のような各種の走査態様を実現できる。 Since the galvano scanner 42 is configured to scan the signal light LS in directions orthogonal to each other, the signal light LS can be scanned independently in the x direction and the y direction, respectively. Further, by simultaneously controlling the directions of the two galvanometer mirrors included in the galvano scanner 42, the signal light LS can be scanned along an arbitrary locus on the xy plane. Thereby, various scanning modes as described above can be realized.
 上記のような態様で信号光LSを走査することにより、走査線(走査軌跡)に沿う方向と眼底深度方向(z方向)とにより張られる面における断層像を取得することができる。また、特に走査線の間隔が狭い場合には、前述の3次元画像を取得することができる。 By scanning the signal light LS in the above-described manner, a tomographic image on a plane stretched by the direction along the scanning line (scanning locus) and the fundus depth direction (z direction) can be acquired. In addition, the above-described three-dimensional image can be acquired particularly when the scanning line interval is narrow.
 上記のような信号光LSの走査対象となる眼底Ef上の領域、つまりOCT計測の対象となる眼底Ef上の領域を走査領域と呼ぶ。3次元スキャンにおける走査領域は、複数の水平スキャンが配列された矩形の領域である。また、同心円スキャンにおける走査領域は、最大径の円スキャンの軌跡により囲まれる円盤状の領域である。また、放射スキャンにおける走査領域は、各スキャンラインの両端位置を結んだ円盤状(或いは多角形状)の領域である。 The region on the fundus oculi Ef to be scanned with the signal light LS as described above, that is, the region on the fundus oculi Ef to be subjected to OCT measurement is referred to as a scanning region. The scanning area in the three-dimensional scan is a rectangular area in which a plurality of horizontal scans are arranged. The scanning area in the concentric scan is a disk-shaped area surrounded by the locus of the circular scan with the maximum diameter. In addition, the scanning area in the radial scan is a disk-shaped (or polygonal) area connecting both end positions of each scan line.
[動作]
 眼底観察装置1の動作について説明する。図4は、眼底観察装置1の動作の一例を表す。
[Operation]
The operation of the fundus oculi observation device 1 will be described. FIG. 4 shows an example of the operation of the fundus oculi observation device 1.
(S1:アライメント・ピント合わせ)
 まず、観察光源11からの照明光(可視カットフィルタ14により近赤外光となる)で眼底Efを連続照明することにより、眼底Efの近赤外動画像を取得する。この近赤外動画像は、連続照明が終了するまでリアルタイムで得られる。また、制御部210は、アライメント光学系50によるアライメント指標と、フォーカス光学系60によるスプリット指標とを被検眼Eに投影させる。制御部210またはユーザは、アライメント指標を用いてアライメントを行い、更に、スプリット指標を用いてピント合わせを行う。
(S1: Alignment / Focus)
First, a near-infrared moving image of the fundus oculi Ef is acquired by continuously illuminating the fundus oculi Ef with illumination light from the observation light source 11 (which becomes near-infrared light by the visible cut filter 14). This near-infrared moving image is obtained in real time until the continuous illumination ends. Further, the control unit 210 projects the alignment index by the alignment optical system 50 and the split index by the focus optical system 60 onto the eye E. The control unit 210 or the user performs alignment using the alignment index, and further performs focusing using the split index.
(S2:偏光状態の調整処理を開始する)
 アライメントとピント合わせの終了を受けて、制御部210は、眼底観察装置1に偏光状態の調整処理を開始させる。
(S2: The polarization state adjustment process is started)
Upon completion of alignment and focusing, the control unit 210 causes the fundus oculi observation device 1 to start polarization state adjustment processing.
(S3:信号光路を遮断する)
 偏光状態の調整処理において、まず制御部210は、ガルバノスキャナ42を制御して、信号光LSの光路(信号光路)を遮断する。信号光路を遮断するとは、信号光LS(の後方散乱光)が検出素子123に到達しないようにすることを意味する。この実施形態では、被検眼Eとファイバカプラ109との間の信号光路を遮断すればよい。信号光路を遮断する方法の例として、ガルバノスキャナ42を構成する2つのガルバノミラーの少なくとも一方の向きを、ニュートラル位置から大きく変化させる方法がある。また、信号光路にシャッタを設けて信号光路を遮断することも可能である。
(S3: block the signal light path)
In the adjustment process of the polarization state, first, the control unit 210 controls the galvano scanner 42 to block the optical path (signal optical path) of the signal light LS. Blocking the signal light path means preventing the signal light LS (its backscattered light) from reaching the detection element 123. In this embodiment, the signal light path between the eye E and the fiber coupler 109 may be blocked. As an example of a method for blocking the signal optical path, there is a method in which the orientation of at least one of the two galvanometer mirrors constituting the galvano scanner 42 is largely changed from the neutral position. It is also possible to block the signal light path by providing a shutter in the signal light path.
(S4:OCT計測用の光を出力する)
 次に、制御部210は、光源ユニット101を制御して低コヒーレンス光L0を出力させる。信号光路は遮断されているので、検出素子123は、光ファイバ104を経由した参照光LRを検出する。
(S4: Output light for OCT measurement)
Next, the control unit 210 controls the light source unit 101 to output the low coherence light L0. Since the signal light path is blocked, the detection element 123 detects the reference light LR that has passed through the optical fiber 104.
(S5:参照光の偏光状態を検出する)
 制御部210は、アクチュエータ122Aを制御して偏光板122を回転させることで、偏光板122を通過する参照光LRの偏光状態を変化させる。検出素子123は、偏光板122の回転位置に応じた偏光状態の参照光LRを検出する。それにより、検出素子123は、偏光板122の複数の回転位置のそれぞれに対する偏光状態の参照光LRを検出する。各回転位置に対応する検出結果は、電気信号として制御部210に送られる。制御部210は、各検出結果に基づいて、当該参照光LRの検出強度を求める。この検出強度は、たとえば上記電気信号の信号強度である。
(S5: The polarization state of the reference light is detected)
The controller 210 changes the polarization state of the reference light LR that passes through the polarizing plate 122 by controlling the actuator 122A to rotate the polarizing plate 122. The detection element 123 detects the reference light LR in a polarization state corresponding to the rotation position of the polarizing plate 122. Accordingly, the detection element 123 detects the reference light LR in the polarization state with respect to each of the plurality of rotation positions of the polarizing plate 122. The detection result corresponding to each rotational position is sent to the control unit 210 as an electrical signal. The control unit 210 obtains the detection intensity of the reference light LR based on each detection result. This detected intensity is, for example, the signal intensity of the electrical signal.
 一方、制御部210は、偏光板122を回転させているので、検出素子123による各検出タイミングにおける偏光板122の回転位置を認識している。制御部210は、参照光LRの検出強度と、偏光板122の回転位置とを対応付ける。なお、偏光板122の回転位置は、たとえば、回転における基準位置に対する回転角度である。制御部210は、対応付けた検出強度と回転位置を記憶部212に記憶する。 On the other hand, since the control unit 210 rotates the polarizing plate 122, the control unit 210 recognizes the rotational position of the polarizing plate 122 at each detection timing by the detection element 123. The controller 210 associates the detected intensity of the reference light LR with the rotational position of the polarizing plate 122. The rotation position of the polarizing plate 122 is, for example, a rotation angle with respect to a reference position in rotation. The control unit 210 stores the associated detected intensity and rotational position in the storage unit 212.
 ここで、複数の回転位置における参照光LRの強度の検出は、偏光板122を連続的に回転させながら行なってもよいし、断続的に回転させながら行なってもよい。 Here, the detection of the intensity of the reference light LR at a plurality of rotation positions may be performed while continuously rotating the polarizing plate 122 or may be performed while rotating it intermittently.
(S6:参照光の偏光状態を特定する)
 制御部210は、ステップ5で取得された参照光LRの検出強度のうちから所定のものを選択する。この選択対象としては、これら検出強度の最大値がある。この最大値が参照光LRの偏光状態に相当する。なお、最大値の代わりに(または最大値とともに)、検出強度の他の値を選択するようにしてもよい。他の値の例として最小値がある。最大値以外の値を選択した場合でも、最大値に対する後述の処理と同様にして偏光状態の調整を行うことが可能である。
(S6: Specify the polarization state of the reference light)
The controller 210 selects a predetermined one from the detected intensities of the reference light LR acquired in step 5. The selection target includes the maximum value of these detection intensities. This maximum value corresponds to the polarization state of the reference light LR. Note that instead of the maximum value (or together with the maximum value), another value of the detection intensity may be selected. Another example is a minimum value. Even when a value other than the maximum value is selected, it is possible to adjust the polarization state in the same manner as described later for the maximum value.
(S7:信号光路の遮断を解除する)
 次に、制御部210は、信号光路の遮断を解除する。ガルバノスキャナ42を用いる場合、制御部210は、たとえば、ステップ3で向きを変化させたガルバノミラーをニュートラル位置に戻す。また、シャッタを用いる場合、制御部210は、シャッタを閉状態から開状態に切り替える。
(S7: Release the blocking of the signal light path)
Next, the control unit 210 releases the blocking of the signal light path. When using the galvano scanner 42, for example, the control unit 210 returns the galvano mirror whose direction has been changed in step 3 to the neutral position. When using a shutter, the control unit 210 switches the shutter from the closed state to the open state.
(S8:参照光路を遮断して信号光の偏光状態を検出する)
 続いて、制御部210は、参照光LRの光路(参照光路)を遮断する。この実施形態では、光ファイバ104のいずれかの位置において光路を遮断する。一例として、制御部210は、光減衰器105を制御して、これを通過する参照光LRの強度をゼロにする。それにより、検出素子123には、信号光LS(の後方散乱光)のみが投射される。制御部210は、参照光LRの場合と同様に、信号光LSの検出強度の所定の値(最大値、最小値等)と偏光板122の回転位置とを求める。この情報が信号光LSの偏光状態に相当する。
(S8: The reference light path is blocked and the polarization state of the signal light is detected)
Subsequently, the control unit 210 blocks the optical path (reference optical path) of the reference light LR. In this embodiment, the optical path is blocked at any position of the optical fiber 104. As an example, the control unit 210 controls the optical attenuator 105 so that the intensity of the reference light LR passing therethrough becomes zero. Thereby, only the signal light LS (its backscattered light) is projected onto the detection element 123. As in the case of the reference light LR, the control unit 210 obtains a predetermined value (maximum value, minimum value, etc.) of the detected intensity of the signal light LS and the rotational position of the polarizing plate 122. This information corresponds to the polarization state of the signal light LS.
(S9:偏光状態を調整する)
 次に、制御部210は、ステップ6で特定された参照光LRの偏光状態と、ステップ8で特定された信号光LSの偏光状態とに基づいて、参照光LRの偏光状態を調整する。この処理は、偏波調整器106の設定状態を決定する処理と、この決定結果に基づいて偏波調整器106を制御する処理とを含む。
(S9: Adjust polarization state)
Next, the control unit 210 adjusts the polarization state of the reference light LR based on the polarization state of the reference light LR identified in Step 6 and the polarization state of the signal light LS identified in Step 8. This process includes a process of determining the setting state of the polarization adjuster 106 and a process of controlling the polarization adjuster 106 based on the determination result.
 前者の処理では、たとえば、干渉光LCの強度が最大になるような参照光LRの偏光状態を実現する偏波調整器106の設定状態が求められる。干渉光LCの強度を最大にするには、参照光LRと信号光LSの相互の偏光状態を一致させればよい。この偏光状態の一致は、双方の光の偏向方向(偏光角度)を一致させることを含む。これに加えて、双方の光の強度が出来るだけ大きくなるように、その一致させる偏向方向を求めることが望ましい。このとき、ステップ6および10において複数の選択肢から選択された偏光状態だけでなく、これら選択肢(つまり偏光板の122の回転位置に応じた検出強度の分布情報)を考慮するようにしてもよい。更に、偏光板122の回転位置と偏波調整器106の設定状態とを関連付けた関連情報を事前に取得して記憶部212に記憶しておき、所望の回転角度に関連付けられた設定状態を関連情報から取得するように構成することが望ましい。 In the former process, for example, the setting state of the polarization adjuster 106 that realizes the polarization state of the reference light LR that maximizes the intensity of the interference light LC is obtained. In order to maximize the intensity of the interference light LC, the polarization states of the reference light LR and the signal light LS may be matched. The coincidence of the polarization states includes matching the polarization directions (polarization angles) of both lights. In addition to this, it is desirable to obtain the matching deflection direction so that the intensities of both lights are as large as possible. At this time, not only the polarization state selected from a plurality of options in Steps 6 and 10, but also these options (that is, distribution information of detected intensity according to the rotational position of the polarizing plate 122) may be considered. Further, related information relating the rotation position of the polarizing plate 122 and the setting state of the polarization adjuster 106 is acquired in advance and stored in the storage unit 212, and the setting state associated with the desired rotation angle is related. It is desirable to be configured to obtain from information.
 偏波調整器106の設定状態が決定されると、制御部210は、偏波調整器106をこの設定状態にする。なお、この実施形態では参照光路を遮蔽して偏光状態の調整を行っているので、この調整によって参照光LRの偏光状態が直ちに変更されるものではないが、ここで言う「参照光の偏光状態の調整」には、このような場合(たとえば、遮断状態を解除した後に参照光路を通過する参照光LRの偏光状態が変更される場合)も含まれるものとする。 When the setting state of the polarization controller 106 is determined, the control unit 210 puts the polarization controller 106 into this setting state. In this embodiment, since the polarization state is adjusted by shielding the reference optical path, the polarization state of the reference light LR is not immediately changed by this adjustment. The “adjustment of” includes such a case (for example, a case where the polarization state of the reference light LR passing through the reference optical path is changed after the blocking state is released).
(S10:参照光路の遮断を解除してOCT計測を行う)
 続いて、制御部210は、参照光路の遮断を解除する。それにより、眼底Efによる信号光LSの後方散乱光と、参照光LRの双方がファイバカプラ109に到達して干渉光LCが発生し、そのスペクトル成分をCCDイメージセンサ115が検出する。制御部210は、ガルバノスキャナ42を制御して眼底Efを信号光LSでスキャンさせる。CCDイメージセンサ115は、各スキャン位置に対応する干渉光LCのスペクトル成分を検出する。画像形成部220は、これら検出結果に基づいて、このスキャンパターンに対応する眼底Efの断層像を形成する。
(S10: Release the blocking of the reference optical path and perform OCT measurement)
Subsequently, the control unit 210 releases the blocking of the reference optical path. As a result, both the backscattered light of the signal light LS from the fundus oculi Ef and the reference light LR reach the fiber coupler 109 to generate interference light LC, and the CCD image sensor 115 detects the spectral component. The control unit 210 controls the galvano scanner 42 to scan the fundus oculi Ef with the signal light LS. The CCD image sensor 115 detects the spectral component of the interference light LC corresponding to each scan position. Based on these detection results, the image forming unit 220 forms a tomographic image of the fundus oculi Ef corresponding to this scan pattern.
[効果]
 眼底観察装置1の効果について説明する。
[effect]
The effect of the fundus oculi observation device 1 will be described.
 眼底観察装置1は、眼底撮影用の第1の光学系と、OCT計測用の第2の光学系とを有する。第1の光学系は、被検眼Eの眼底Efに照明光を照射する照明光学系10と、照明光の眼底反射光を撮像装置(CCDイメージセンサ35、38)に導く撮影光学系30とを含む。第2の光学系は、光源ユニット101からの光L0を信号光LSと参照光LRとに分割し、眼底Efを経由した信号光LSを参照光LRと干渉させて干渉光LCを生成して検出する。眼底観察装置1は、CCDイメージセンサ35、38による検出結果に基づいて眼底Efの表面形態を表す眼底像を取得し、かつ、第2の光学系による検出結果に基づいて眼底Efの断層像を取得する。 The fundus oculi observation device 1 has a first optical system for fundus imaging and a second optical system for OCT measurement. The first optical system includes an illumination optical system 10 that irradiates the fundus oculi Ef of the eye E to be examined and an imaging optical system 30 that guides the fundus reflection light of the illumination light to the imaging devices (CCD image sensors 35 and 38). Including. The second optical system divides the light L0 from the light source unit 101 into the signal light LS and the reference light LR, and causes the signal light LS passing through the fundus oculi Ef to interfere with the reference light LR to generate interference light LC. To detect. The fundus oculi observation device 1 acquires a fundus image representing the surface form of the fundus oculi Ef based on the detection results of the CCD image sensors 35 and 38, and obtains a tomographic image of the fundus oculi Ef based on the detection result of the second optical system. get.
 更に、眼底撮影用の第1の光学系は、孔部を有する孔開きミラー21と、対物レンズ22とを含む。そして、第1の光学系は、孔開きミラー21により反射された照明光を対物レンズ22を介して眼底Efに照射し、かつ、対物レンズ22を経由した照明光の眼底反射光を孔開きミラー21の孔部を介してCCDイメージセンサ35、38に導くように構成されている。 Further, the first optical system for photographing the fundus includes a perforated mirror 21 having a hole and an objective lens 22. The first optical system irradiates the fundus oculi Ef with the illumination light reflected by the aperture mirror 21 via the objective lens 22, and the fundus reflection light of the illumination light via the objective lens 22 is the aperture mirror. It is configured to lead to the CCD image sensors 35 and 38 through 21 holes.
 また、OCT計測用の第2の光学系は、第1の光学系の光路から信号光LSの光路を分岐させるダイクロイックミラー46を含む。ダイクロイックミラー46は、孔開きミラー21と対物レンズとの間に配置されている。そして、第2の光学系は、ダイクロイックミラー46を経由した信号光LSを対物レンズ22を介して眼底Efに照射し、かつ、眼底Efおよび対物レンズ22を経由した信号光LSをダイクロイックミラー46を介して参照光LRと干渉させるように構成されている。 Also, the second optical system for OCT measurement includes a dichroic mirror 46 that branches the optical path of the signal light LS from the optical path of the first optical system. The dichroic mirror 46 is disposed between the perforated mirror 21 and the objective lens. Then, the second optical system irradiates the fundus oculi Ef with the signal light LS via the dichroic mirror 46 via the objective lens 22 and the dichroic mirror 46 with the signal light LS via the fundus oculi Ef and the objective lens 22. Via the reference light LR.
ダイクロイックミラー46は、眼底撮影用の照明光およびその眼底反射光を実質的に透過させ、かつ、信号光LSを実質的に反射することにより、第1の光学系の光路から信号光LSの光路を分岐させるように構成されていてもよい。具体例として、ダイクロイックミラー46は、眼底撮影に用いられる波長400nm~770nmの光を95%以上透過させ、かつ、OCT計測に用いられる波長790nm以上の光を95%以上反射するように構成されていてよい。 The dichroic mirror 46 substantially transmits the fundus photographing illumination light and its fundus reflection light, and substantially reflects the signal light LS, whereby the optical path of the signal light LS from the optical path of the first optical system. May be configured to be branched. As a specific example, the dichroic mirror 46 is configured to transmit 95% or more of light with a wavelength of 400 nm to 770 nm used for fundus photography and reflect 95% or more of light with a wavelength of 790 nm or more used for OCT measurement. It's okay.
 このような構成の光学系が適用された眼底観察装置1によれば、孔開きミラー21の孔部を経由することなく信号光LSの送受を行うことが可能である。すなわち、信号光は、孔開きミラー21に形成された孔部を介することなく眼底Efに照射され、かつ、眼底Efによる信号光LSの後方散乱光は、孔開きミラー21の孔部を介することなく参照光LRと重畳される。したがって、孔開きミラー21の孔部のサイズが信号光LSの拡大に制限を与えることがなく、それによる分解能の制限や干渉強度(画質)の制限といった従来の問題が解消される。 According to the fundus oculi observation device 1 to which the optical system having such a configuration is applied, the signal light LS can be transmitted and received without passing through the hole of the aperture mirror 21. That is, the signal light is applied to the fundus oculi Ef without passing through the hole formed in the aperture mirror 21, and the backscattered light of the signal light LS from the fundus Ef passes through the aperture of the aperture mirror 21. Without being superimposed on the reference light LR. Therefore, the size of the hole portion of the perforated mirror 21 does not limit the expansion of the signal light LS, and conventional problems such as resolution limitation and interference intensity (image quality) limitation are solved.
 更に、眼底観察装置1によれば、信号光LSの走査範囲が孔開きミラー21の孔部のサイズに制限されることがない。よって、眼底周辺部に照射されるべき信号光LSが孔開きミラー21により蹴られるという従来の問題を解消することができる。これは、被検眼Eの屈折異常の度合いが強い場合であっても同様である。 Furthermore, according to the fundus oculi observation device 1, the scanning range of the signal light LS is not limited by the size of the hole portion of the perforated mirror 21. Therefore, the conventional problem that the signal light LS to be irradiated to the fundus periphery is kicked by the perforated mirror 21 can be solved. This is the same even when the degree of refractive error of the eye E is strong.
 また、眼底観察装置1においては、第1の光学系および第2の光学系のそれぞれに合焦レンズが設けられている。すなわち、眼底観察装置1は、眼底撮影用の合焦レンズ31と、OCT計測用の合焦レンズ43とを備えている。 In the fundus oculi observation device 1, a focusing lens is provided in each of the first optical system and the second optical system. That is, the fundus oculi observation device 1 includes a focusing lens 31 for fundus imaging and a focusing lens 43 for OCT measurement.
 なお、特許文献5(特開2008-73099公報)に示すような従来の眼底観察装置では、眼底撮影とOCT計測で同じ合焦レンズを共有している。眼底撮影用の光の波長(可視光等)と、OCT計測用の光の波長(近赤外光等)とが異なっていることを考慮すると、眼底撮影におけるフォーカスの最適位置と、OCT計測におけるフォーカスの最適位置は、厳密には一致しない。よって、従来の眼底観察装置によれば、眼底撮影に最適なフォーカス位置に合焦レンズを合わせるとOCT計測を最適なフォーカス状態で行うことができず、逆に、OCT計測に最適なフォーカス位置に合焦レンズを合わせると眼底撮影を最適なフォーカス状態で行うことができなかった。 Note that a conventional fundus oculi observation device as disclosed in Patent Document 5 (Japanese Patent Laid-Open No. 2008-73099) shares the same focusing lens for fundus imaging and OCT measurement. Considering that the wavelength of light for fundus imaging (visible light, etc.) is different from the wavelength of light for OCT measurement (near infrared light, etc.), the optimal focus position for fundus imaging and the OCT measurement The optimum focus position does not exactly match. Therefore, according to the conventional fundus oculi observation device, if the focusing lens is set to the optimum focus position for fundus photography, OCT measurement cannot be performed in the optimum focus state, and conversely, the optimum focus position for OCT measurement is obtained. When the focusing lens was combined, fundus photography could not be performed in an optimal focus state.
 それに対し、この実施形態のように眼底撮影用の合焦レンズ31とOCT計測用の合焦レンズ43を別々に設けることで、眼底撮影とOCT計測の双方を最適なフォーカス状態で行うことが可能である。特に眼底撮影とOCT計測を並行して行う場合において、この実施形態は有効と考えられる。 On the other hand, by providing separately the focusing lens 31 for fundus imaging and the focusing lens 43 for OCT measurement as in this embodiment, it is possible to perform both fundus imaging and OCT measurement in an optimal focus state. It is. In particular, this embodiment is considered effective when fundus imaging and OCT measurement are performed in parallel.
[変形例]
 以上に説明した構成は、この発明を好適に実施するための一例に過ぎない。よって、この発明の要旨の範囲内における任意の変形(省略、置換、付加等)を適宜に施すことが可能である。
[Modification]
The configuration described above is merely an example for favorably implementing the present invention. Therefore, arbitrary modifications (omitted, replacement, addition, etc.) within the scope of the present invention can be made as appropriate.
(変形例1)
 OCTを用いて正確な画像を得るには、参照光と信号光との偏光状態を合わせる必要がある。偏光状態を変化させる要因としては、環境(温度、湿度等)や輸送による装置構造のズレや、被測定物体自体の偏光特性(眼科では眼の偏光特性)がある。
(Modification 1)
In order to obtain an accurate image using OCT, it is necessary to match the polarization states of the reference light and the signal light. Factors that change the polarization state include the environment (temperature, humidity, etc.) and displacement of the device structure due to transportation, and the polarization characteristics of the object to be measured itself (eye polarization characteristics in ophthalmology).
 従来の装置では、光路に固定式の偏波調整器(偏波コントローラ)を設けて偏光状態を調整してその偏光状態を維持するように工夫したり、光路に波長板を設けてこれを適宜回転させることにより偏光状態を調整したりしていた。 In conventional devices, a fixed polarization adjuster (polarization controller) is provided in the optical path to adjust the polarization state and maintain the polarization state, or a wave plate is provided in the optical path as appropriate. The polarization state was adjusted by rotating.
 しかしながら、偏光状態の変化の仕方は多種多様であり、その時々によって異なるので、参照光と信号光の偏光状態を常に完全に一致させることは極めて困難である。 However, there are various ways of changing the polarization state, and since it varies from time to time, it is extremely difficult to always match the polarization state of the reference light and the signal light completely.
 また、従来の偏光調整は、干渉光の検出結果(干渉信号)の強度を監視し、これが最大になるように実施されていたが、干渉信号の強度を変化させる要因は偏光状態以外にも存在する。たとえば、アライメントの状態、計測に用いられる光の光量、光のケラレ、深さ位置に応じた信号の変化なども、干渉信号の強度を変化させる。したがって、干渉信号の強度を参照して偏光状態を最適化することは困難であった。 In addition, the conventional polarization adjustment was performed so that the intensity of the interference light detection result (interference signal) was monitored and maximized, but there are other factors that change the intensity of the interference signal besides the polarization state. To do. For example, the intensity of the interference signal is also changed by the state of alignment, the amount of light used for measurement, the vignetting of light, and the change of the signal according to the depth position. Therefore, it is difficult to optimize the polarization state with reference to the intensity of the interference signal.
 上記実施形態は、このような問題を解決するための一例となる。すなわち、眼底観察装置1は、被測定物体(眼底Ef)を経由した信号光LSを参照光LRに重畳させて干渉光LCを生成し、この干渉光の検出結果に基づいて眼底Efの画像を形成するOCT装置として機能する。眼底観察装置1は、検出部と、調整部と、形成部とを有する。 The above embodiment is an example for solving such a problem. That is, the fundus oculi observation device 1 generates the interference light LC by superimposing the signal light LS passing through the object to be measured (fundus Ef) on the reference light LR, and generates an image of the fundus oculi Ef based on the detection result of the interference light. It functions as an OCT apparatus to be formed. The fundus oculi observation device 1 includes a detection unit, an adjustment unit, and a formation unit.
 検出部は、参照光LRの偏光状態と信号光LSの偏光状態とを検出する。検出部は、偏光板122と、アクチュエータ122Aと、検出素子123と、制御部210とを含んで構成される。偏光板122は、信号光LSを参照光LRに重畳させるファイバカプラ109(重畳部材)の後段に設けられている。アクチュエータ122Aは、偏光板を回転させる機構である。検出素子123は、偏光板を通過した光を検出する。制御部210は、検出素子123により検出される参照光LRの強度と偏光板122の回転位置とを対応付ける。 The detection unit detects the polarization state of the reference light LR and the polarization state of the signal light LS. The detection unit includes a polarizing plate 122, an actuator 122 </ b> A, a detection element 123, and a control unit 210. The polarizing plate 122 is provided after the fiber coupler 109 (superimposing member) that superimposes the signal light LS on the reference light LR. The actuator 122A is a mechanism that rotates the polarizing plate. The detection element 123 detects light that has passed through the polarizing plate. The controller 210 associates the intensity of the reference light LR detected by the detection element 123 with the rotational position of the polarizing plate 122.
 調整部は、参照光LRの偏光状態の検出結果に基づいて、参照光LRの偏光状態を調整する。調整部は、制御部210と偏波調整器106とを含んで構成される。偏波調整器106は、偏光状態を変化させる機構の一例である。制御部210は、参照光LRおよび信号光LSの偏光状態の検出結果に基づいて、参照光LRの強度を最大にする偏波調整器106の設定状態を決定し、この決定結果に基づき偏波調整器106を制御することにより、参照光LRの偏光状態の調整を行う。 The adjusting unit adjusts the polarization state of the reference light LR based on the detection result of the polarization state of the reference light LR. The adjustment unit includes the control unit 210 and the polarization adjuster 106. The polarization adjuster 106 is an example of a mechanism that changes the polarization state. Based on the detection result of the polarization state of the reference light LR and the signal light LS, the control unit 210 determines the setting state of the polarization adjuster 106 that maximizes the intensity of the reference light LR, and the polarization is determined based on the determination result. By controlling the adjuster 106, the polarization state of the reference light LR is adjusted.
 形成部は、参照光LRの偏光状態が調整された後の参照光LRと信号光LSとを重畳させて得られる干渉光LCの検出結果に基づいて、眼底Efの画像を形成する。 The forming unit forms an image of the fundus oculi Ef based on the detection result of the interference light LC obtained by superimposing the reference light LR and the signal light LS after the polarization state of the reference light LR is adjusted.
 このような眼底観察装置1によれば、参照光LRおよび信号光LSの偏光状態を実際に検出し、その検出結果に基づいて干渉光LCの強度の調整を行うことができる。したがって、現時点における参照光LRと信号光LSの偏光状態を一致させることが可能である。 Such a fundus oculi observation device 1 can actually detect the polarization state of the reference light LR and the signal light LS, and adjust the intensity of the interference light LC based on the detection result. Accordingly, it is possible to match the polarization states of the reference light LR and the signal light LS at the present time.
 また、偏光状態以外の様々な要因の影響を受ける干渉光の強度を監視する従来の技術と異なり、偏光状態の変化に伴う参照光LRおよび信号光LSの強度を監視し、干渉光LCの強度を最大化するように、つまり参照光LRと信号光LSの偏光状態を一致させるように構成されているので、偏光状態の最適化を図ることが可能である。 Further, unlike the conventional technique that monitors the intensity of interference light that is affected by various factors other than the polarization state, the intensity of the reference light LR and the signal light LS accompanying the change in the polarization state is monitored, and the intensity of the interference light LC Is optimized, that is, the polarization states of the reference light LR and the signal light LS are matched, so that the polarization state can be optimized.
 このように、眼底観察装置1によれば、OCT計測における参照光LRと信号光LSとの間の偏光調整を好適に行うことができる。 Thus, according to the fundus oculi observation device 1, the polarization adjustment between the reference light LR and the signal light LS in the OCT measurement can be suitably performed.
 また、眼底観察装置1は、信号光路を遮断する第1の遮断機構(ガルバノスキャナ42)を有する。検出部は、信号光路が遮断された状態で参照光LRの偏光状態の検出を行う。なお、ガルバノスキャナ42は信号光LSを走査する走査部である。このような構成により、被測定物体を信号光LSでスキャンするタイプの眼底観察装置において、新規なハードウェアを追加することなく、参照光LRの偏光状態の検出を実現することが可能である。なお、前述のシャッタのように、他の形態からなる第1の遮断機構を用いて、参照光LRの偏光状態の検出を実現するようにしてもよい。 Also, the fundus oculi observation device 1 has a first blocking mechanism (galvano scanner 42) that blocks the signal light path. The detection unit detects the polarization state of the reference light LR in a state where the signal light path is blocked. The galvano scanner 42 is a scanning unit that scans the signal light LS. With such a configuration, it is possible to detect the polarization state of the reference light LR in a fundus oculi observation device of the type that scans the object to be measured with the signal light LS without adding new hardware. Note that the detection of the polarization state of the reference light LR may be realized using a first blocking mechanism of another form, such as the shutter described above.
 また、眼底観察装置1は、参照光路を遮断する第2の遮断機構(光減衰器105)を有する。調整部は、参照光路が遮断された状態で偏光状態の調整を行う。このような構成により、光減衰器105を有するタイプの眼底観察装置において、新規なハードウェアを追加することなく、参照光LRの偏光状態の調整を好適に行うことが可能である。なお、シャッタのような他の形態からなる第2の遮断機構を用いてもよい。 Also, the fundus oculi observation device 1 has a second blocking mechanism (light attenuator 105) that blocks the reference optical path. The adjustment unit adjusts the polarization state in a state where the reference optical path is blocked. With such a configuration, in the fundus oculi observation device of the type having the optical attenuator 105, it is possible to suitably adjust the polarization state of the reference light LR without adding new hardware. In addition, you may use the 2nd interruption | blocking mechanism which consists of other forms like a shutter.
(変形例2)
 上記実施形態や変形例1では、参照光の偏光状態を調整しているが、信号光の偏光状態を調整するようにしてもよい。そのように構成された眼底観察装置において、調整部は、信号光および参照光のそれぞれの偏光状態の検出結果に基づいて上記実施形態と同様の処理を行うことで、信号光の偏光状態の調整を行う。調整部は、たとえば、制御部と、信号光路に設けられた偏波調整器とを含んで構成される。偏波調整器は、「偏光状態を変化させる機構」の一例である。制御部は、信号光および参照光の偏光状態の検出結果に基づいて、干渉光の強度を最大にする偏波調整器の設定状態を決定し、この決定結果に基づき偏波調整器を制御することにより、信号光の偏光状態を調整する。
(Modification 2)
In the embodiment and the first modification, the polarization state of the reference light is adjusted. However, the polarization state of the signal light may be adjusted. In the fundus oculi observation device configured as described above, the adjustment unit adjusts the polarization state of the signal light by performing the same processing as in the above embodiment based on the detection results of the polarization states of the signal light and the reference light. I do. The adjustment unit includes, for example, a control unit and a polarization adjuster provided in the signal optical path. The polarization adjuster is an example of a “mechanism for changing the polarization state”. The control unit determines a setting state of the polarization adjuster that maximizes the intensity of the interference light based on the detection result of the polarization state of the signal light and the reference light, and controls the polarization adjuster based on the determination result. As a result, the polarization state of the signal light is adjusted.
 形成部は、信号光の偏光状態が調整された後の信号光と参照光とを重畳させて得られる干渉光の検出結果に基づいて、眼底の画像を形成する。 The forming unit forms a fundus image based on the detection result of the interference light obtained by superimposing the signal light and the reference light after the polarization state of the signal light is adjusted.
 このような眼底観察装置によれば、信号光および参照光の偏光状態を実際に測定し、その測定結果に基づいて干渉光の強度の調整(つまり信号光と参照光の偏光状態を一致させること)を行うことができる。したがって、現時点における参照光と信号光の偏光状態を一致させることが可能である。 According to such a fundus oculi observation device, the polarization states of the signal light and the reference light are actually measured, and the intensity of the interference light is adjusted based on the measurement results (that is, the polarization states of the signal light and the reference light are matched) )It can be performed. Therefore, it is possible to match the polarization states of the reference light and the signal light at the present time.
 また、偏光状態以外の様々な要因の影響を受ける干渉光の強度を監視する従来の技術と異なり、偏光状態の変化に伴う信号光および参照光の強度を監視するように構成されているので、偏光状態の最適化を図ることが可能である。 Also, unlike the conventional technology that monitors the intensity of interference light that is affected by various factors other than the polarization state, it is configured to monitor the intensity of the signal light and the reference light accompanying the change in the polarization state. It is possible to optimize the polarization state.
 このような眼底観察装置によれば、OCT計測における参照光と信号光との間の偏光調整を好適に行うことが可能である。 Such a fundus oculi observation device can suitably adjust the polarization between the reference light and the signal light in OCT measurement.
 また、この眼底観察装置は、参照光路を遮断する第1の遮断機構(たとえば光減衰器。シャッタ等でもよい。)を有する。検出部は、参照光路が遮断された状態で信号光の偏光状態の検出を行う。第1の遮断機構として光減衰器を用いることにより、光減衰器を有するタイプの眼底観察装置において、新規なハードウェアを追加することなく、信号光の偏光状態の検出を実現することが可能である。 Also, this fundus oculi observation device has a first blocking mechanism (for example, an optical attenuator, such as a shutter) that blocks the reference optical path. The detection unit detects the polarization state of the signal light in a state where the reference optical path is blocked. By using the optical attenuator as the first blocking mechanism, it is possible to realize the detection of the polarization state of the signal light in the fundus observation device of the type having the optical attenuator without adding new hardware. is there.
 また、この眼底観察装置は、信号光路を遮断する第2の遮断機構(たとえばガルバノスキャナ。シャッタ等でもよい。)を有する。調整部は、信号光路が遮断された状態で偏光状態の調整を行う。このような構成により、走査部(ガルバノスキャナ)を有するタイプの眼底観察装置において、新規なハードウェアを追加することなく、信号光の偏光状態の調整を好適に行うことが可能である。 Also, this fundus oculi observation device has a second blocking mechanism (for example, a galvano scanner, which may be a shutter or the like) that blocks the signal light path. The adjustment unit adjusts the polarization state in a state where the signal optical path is blocked. With such a configuration, in the fundus oculi observation device of the type having a scanning unit (galvano scanner), it is possible to suitably adjust the polarization state of the signal light without adding new hardware.
 上記のように信号光および参照光の一方について偏光状態の調整を行う代わりに、双方の偏光状態を調整するように構成することも可能である。すなわち、偏光状態の調整は、信号光と参照光の偏光状態を一致させるように実行されればよいので、双方の光の偏光状態を変化させつつこれを実現するようにすればよい。この場合の調整処理は、上記実施形態は上記変形例と同様である。 Instead of adjusting the polarization state of one of the signal light and the reference light as described above, it is possible to adjust both polarization states. That is, the adjustment of the polarization state only needs to be performed so that the polarization states of the signal light and the reference light coincide with each other. Therefore, this may be realized while changing the polarization states of both lights. The adjustment process in this case is the same as that of the above modification in the above embodiment.
(変形例3)
 変形例3~5では、所定のトリガに対応して偏光状態の検出や調整を行う例について説明する。
(Modification 3)
In Modified Examples 3 to 5, an example in which the polarization state is detected and adjusted in response to a predetermined trigger will be described.
 この変形例に係る眼底観察装置は、たとえば上記実施形態の構成に加えて判定部を有する。判定部は、形成部により形成される画像の画質に関する情報を取得してその画質を判定する。上記の実施形態(図3)において、判定部は制御部210または画像処理部230に設けられる。「画質に関する情報」は、画質に影響を与える任意の情報を意味し、画質の判定方法に応じて適宜に決定される。 The fundus oculi observation device according to this modification has, for example, a determination unit in addition to the configuration of the above embodiment. The determination unit acquires information related to the image quality of the image formed by the forming unit and determines the image quality. In the above embodiment (FIG. 3), the determination unit is provided in the control unit 210 or the image processing unit 230. “Information relating to image quality” means arbitrary information that affects image quality, and is appropriately determined according to the image quality determination method.
 画質判定処理は、任意の公知技術を利用して行われる。一例として、形成部により形成された画像自体を解析して画質を求める方法がある。また、信号光および/または干渉光を検出し、その検出信号の強度を「画質に関する情報」として取得し、この信号強度に対して閾値処理を行なうなどして画質を判定することも可能である。なお、画質の判定処理はこれらに限定されるものではない。 The image quality determination process is performed using any known technique. As an example, there is a method of obtaining the image quality by analyzing the image itself formed by the forming unit. It is also possible to detect signal light and / or interference light, acquire the intensity of the detected signal as “information on image quality”, and perform threshold processing on the signal intensity to determine the image quality. . Note that the image quality determination processing is not limited to these.
 この変形例に係る検出部および調整部は、画質の判定結果に基づいて動作する。特に、検出部および調整部は、画質が悪いとの判定結果が得られたときにのみ動作するように構成される。 The detection unit and adjustment unit according to this modification operate based on the image quality determination result. In particular, the detection unit and the adjustment unit are configured to operate only when a determination result that the image quality is bad is obtained.
 このような変形例によれば、偏光状態の調整が必要なタイミングでこれを実行することが可能である。 According to such a modification, it is possible to execute this at a timing that requires adjustment of the polarization state.
(変形例4)
 上記実施形態では、アライメントおよびピント合わせの終了後に偏光状態の検出および調整を行なっているが、アライメントと並行して偏光状態の検出および/または調整を行うようにしてもよい。このタイミング制御は制御部210により行われる。この変形例によれば、検査時間の短縮を図ることができる。
(Modification 4)
In the above embodiment, the polarization state is detected and adjusted after completion of alignment and focusing. However, the polarization state may be detected and / or adjusted in parallel with the alignment. This timing control is performed by the control unit 210. According to this modification, the inspection time can be shortened.
 「アライメント部」は、アライメント光学系50を含んで構成される。アライメントを自動で行う場合、アライメント部は、アライメント光学系50と制御部210とを含んで構成される。また、アライメントを手動で行う場合、アライメント部は、アライメント光学系50と制御部210とユーザインターフェイス240とを含んで構成される。 The “alignment unit” includes the alignment optical system 50. When alignment is performed automatically, the alignment unit includes the alignment optical system 50 and the control unit 210. Moreover, when performing alignment manually, the alignment part is comprised including the alignment optical system 50, the control part 210, and the user interface 240. FIG.
(変形例5)
 上記実施形態において、操作部240Bを用いて所定の操作(検出部および調整部を動作させるための指示の入力)が行われたことに対応して検出部および調整部を動作させるように構成することも可能である。つまり、ユーザの指示に対応して偏光状態の検出および調整を実行するように構成することが可能である。この変形例によれば、ユーザは所望のタイミングで偏光状態の調整を行うことができる。
(Modification 5)
In the above embodiment, the detection unit and the adjustment unit are configured to operate in response to a predetermined operation (input of an instruction for operating the detection unit and the adjustment unit) using the operation unit 240B. It is also possible. That is, it can be configured to detect and adjust the polarization state in response to a user instruction. According to this modification, the user can adjust the polarization state at a desired timing.
(その他の変形例)
 上記の実施形態においては、光路長変更部41の位置を変更することにより、信号光LSの光路と参照光LRの光路との光路長差を変更しているが、この光路長差を変更する手法はこれに限定されるものではない。たとえば、参照光の光路に反射ミラー(参照ミラー)を配置し、この参照ミラーを参照光の進行方向に移動させて参照光の光路長を変更することによって、当該光路長差を変更することが可能である。また、被検眼Eに対して眼底カメラユニット2やOCTユニット100を移動させて信号光LSの光路長を変更することにより当該光路長差を変更するようにしてもよい。また、特に被測定物体が生体部位でない場合などには、被測定物体を深度方向(z方向)に移動させることにより光路長差を変更することも可能である。
(Other variations)
In the above embodiment, the optical path length difference between the optical path of the signal light LS and the optical path of the reference light LR is changed by changing the position of the optical path length changing unit 41, but this optical path length difference is changed. The method is not limited to this. For example, it is possible to change the optical path length difference by disposing a reflection mirror (reference mirror) in the optical path of the reference light and moving the reference mirror in the traveling direction of the reference light to change the optical path length of the reference light. Is possible. Further, the optical path length difference may be changed by moving the fundus camera unit 2 or the OCT unit 100 with respect to the eye E to change the optical path length of the signal light LS. In particular, when the measured object is not a living body part, the optical path length difference can be changed by moving the measured object in the depth direction (z direction).
 上記の実施形態を実現するためのコンピュータプログラムを、コンピュータによって読み取り可能な任意の記録媒体に記憶させることができる。この記録媒体としては、たとえば、半導体メモリ、光ディスク、光磁気ディスク(CD-ROM/DVD-RAM/DVD-ROM/MO等)、磁気記憶媒体(ハードディスク/フロッピー(登録商標)ディスク/ZIP等)などを用いることが可能である。 The computer program for realizing the above embodiment can be stored in any recording medium readable by the computer. As this recording medium, for example, a semiconductor memory, an optical disk, a magneto-optical disk (CD-ROM / DVD-RAM / DVD-ROM / MO, etc.), a magnetic storage medium (hard disk / floppy (registered trademark) disk / ZIP, etc.), etc. Can be used.
 また、インターネットやLAN等のネットワークを通じてこのプログラムを送受信することも可能である。 It is also possible to send and receive this program through a network such as the Internet or a LAN.
1 眼底観察装置
2 眼底カメラユニット
10 照明光学系
30 撮影光学系
31 合焦レンズ
31A 合焦駆動部
41 光路長変更部
42 ガルバノスキャナ
50 アライメント光学系
60 フォーカス光学系
100 OCTユニット
101 光源ユニット
105 光減衰器
106 偏波調整器
115 CCDイメージセンサ
122 偏光板
122A アクチュエータ
123 検出素子
200 演算制御ユニット
210 制御部
211 主制御部
212 記憶部
220 画像形成部
230 画像処理部
240A 表示部
240B 操作部
E 被検眼
Ef 眼底
LS 信号光
LR 参照光
LC 干渉光
DESCRIPTION OF SYMBOLS 1 Fundus observation apparatus 2 Fundus camera unit 10 Illumination optical system 30 Shooting optical system 31 Focusing lens 31A Focusing drive part 41 Optical path length change part 42 Galvano scanner 50 Alignment optical system 60 Focus optical system 100 OCT unit 101 Light source unit 105 Light attenuation Device 106 polarization adjustment device 115 CCD image sensor 122 polarizing plate 122A actuator 123 detection element 200 arithmetic control unit 210 control unit 211 main control unit 212 storage unit 220 image forming unit 230 image processing unit 240A display unit 240B operation unit E eye Ef to be examined Fundus LS Signal light LR Reference light LC Interference light

Claims (4)

  1.  被検眼の眼底に照明光を照射し、前記照明光の眼底反射光を撮像装置に導く第1の光学系と、
     光源からの光を信号光と参照光とに分割し、被検眼の眼底を経由した前記信号光と前記参照光とを干渉させて干渉光を生成し、この干渉光を検出する第2の光学系と
     を有し、
     前記撮像装置による検出結果に基づいて眼底の表面形態を表す眼底像を取得し、前記第2の光学系による検出結果に基づいて眼底の断層像を取得する眼底観察装置であって、
     前記第1の光学系は、
     孔部を有する孔開きミラーと、
     対物レンズと
     を含み、
     前記孔開きミラーにより反射された前記照明光を前記対物レンズを介して眼底に照射し、かつ、前記対物レンズを経由した前記眼底反射光を前記孔部を介して前記撮像装置に導き、
     前記第2の光学系は、
     前記孔開きミラーと前記対物レンズとの間に配置され、前記第1の光学系の光路から前記信号光の光路を分岐させるダイクロイックミラーを含み、
     前記ダイクロイックミラーを経由した前記信号光を前記対物レンズを介して眼底に照射し、かつ、当該眼底および前記対物レンズを経由した前記信号光を前記ダイクロイックミラーを介して前記参照光と干渉させる
     ことを特徴とする眼底観察装置。
    A first optical system that irradiates the fundus of the subject's eye with illumination light and guides fundus reflection light of the illumination light to an imaging device;
    A second optical system that divides light from a light source into signal light and reference light, causes the signal light and the reference light that have passed through the fundus of the eye to be inspected to generate interference light, and detects the interference light Have a system and
    A fundus oculi observation device that acquires a fundus image representing a surface form of the fundus oculi based on a detection result by the imaging device, and acquires a tomographic image of the fundus oculi based on a detection result by the second optical system,
    The first optical system includes:
    A perforated mirror having a hole,
    Including an objective lens and
    Irradiating the fundus through the objective lens with the illumination light reflected by the aperture mirror, and guiding the fundus reflected light through the objective lens to the imaging device through the hole,
    The second optical system includes:
    A dichroic mirror that is disposed between the aperture mirror and the objective lens and branches the optical path of the signal light from the optical path of the first optical system;
    Irradiating the fundus with the signal light via the dichroic mirror through the objective lens, and causing the signal light via the fundus and the objective lens to interfere with the reference light through the dichroic mirror. A fundus observation device.
  2.  前記ダイクロイックミラーは、前記照明光および前記眼底反射光を実質的に透過させ、かつ、前記信号光を実質的に反射することにより、前記第1の光学系の光路から前記信号光の光路を分岐させる
     ことを特徴とする請求項1に記載の眼底観察装置。
    The dichroic mirror branches the optical path of the signal light from the optical path of the first optical system by substantially transmitting the illumination light and the fundus reflected light and substantially reflecting the signal light. The fundus oculi observation device according to claim 1, wherein:
  3.  前記ダイクロイックミラーは、波長400nm~770nmの光を95%以上透過させ、かつ、波長790nm以上の光を95%以上反射するように構成される
     ことを特徴とする請求項2に記載の眼底観察装置。
    3. The fundus oculi observation device according to claim 2, wherein the dichroic mirror is configured to transmit 95% or more of light having a wavelength of 400 nm to 770 nm and reflect 95% or more of light having a wavelength of 790 nm or more. .
  4.  前記第1の光学系および前記第2の光学系のそれぞれに合焦レンズが設けられている
     ことを特徴とする請求項1~請求項3のいずれか一項に記載の眼底観察装置。
    The fundus oculi observation device according to any one of claims 1 to 3, wherein a focusing lens is provided in each of the first optical system and the second optical system.
PCT/JP2012/081816 2011-12-09 2012-12-07 Fundus observation device WO2013085042A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-270271 2011-12-09
JP2011270271 2011-12-09

Publications (1)

Publication Number Publication Date
WO2013085042A1 true WO2013085042A1 (en) 2013-06-13

Family

ID=48574393

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/081816 WO2013085042A1 (en) 2011-12-09 2012-12-07 Fundus observation device

Country Status (2)

Country Link
JP (1) JPWO2013085042A1 (en)
WO (1) WO2013085042A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013208394A (en) * 2012-03-30 2013-10-10 Canon Inc Optical coherence tomographic imaging apparatus and method thereof
WO2014203901A1 (en) * 2013-06-19 2014-12-24 株式会社トプコン Ophthalmological imaging device and ophthalmological image display device
JP2016198214A (en) * 2015-04-08 2016-12-01 株式会社トプコン Ocular fundus imaging method and ocular fundus imaging device
JP2017159089A (en) * 2017-05-10 2017-09-14 キヤノン株式会社 Fundus imaging apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111035361B (en) * 2019-12-28 2022-06-21 重庆贝奥新视野医疗设备有限公司 Fundus camera imaging and illuminating system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008073099A (en) * 2006-09-19 2008-04-03 Topcon Corp Fundus observation apparatus, fundus image display device, and fundus observation program
JP2010227610A (en) * 2010-06-18 2010-10-14 Nidek Co Ltd Ophthalmologic imaging apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008073099A (en) * 2006-09-19 2008-04-03 Topcon Corp Fundus observation apparatus, fundus image display device, and fundus observation program
JP2010227610A (en) * 2010-06-18 2010-10-14 Nidek Co Ltd Ophthalmologic imaging apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013208394A (en) * 2012-03-30 2013-10-10 Canon Inc Optical coherence tomographic imaging apparatus and method thereof
WO2014203901A1 (en) * 2013-06-19 2014-12-24 株式会社トプコン Ophthalmological imaging device and ophthalmological image display device
JP6046250B2 (en) * 2013-06-19 2016-12-14 株式会社トプコン Ophthalmic photographing apparatus and ophthalmic image display apparatus
JPWO2014203901A1 (en) * 2013-06-19 2017-02-23 株式会社トプコン Ophthalmic photographing apparatus and ophthalmic image display apparatus
JP2016198214A (en) * 2015-04-08 2016-12-01 株式会社トプコン Ocular fundus imaging method and ocular fundus imaging device
JP2017159089A (en) * 2017-05-10 2017-09-14 キヤノン株式会社 Fundus imaging apparatus

Also Published As

Publication number Publication date
JPWO2013085042A1 (en) 2015-04-27

Similar Documents

Publication Publication Date Title
JP5867719B2 (en) Optical image measuring device
JP6080128B2 (en) Ophthalmic photographing apparatus and optical unit that can be attached to the same
JP6045895B2 (en) Ophthalmic observation device
JP5543171B2 (en) Optical image measuring device
JP5415902B2 (en) Ophthalmic observation device
WO2016027589A1 (en) Ophthalmological imaging device and control method therefor
WO2017135016A1 (en) Ophthalmological device and ophthalmological inspection system
WO2013187146A1 (en) Ophthalmologic photographing device and ophthalmologic image processing device
JP5390371B2 (en) Optical image measuring device and optical attenuator
JP5513101B2 (en) Optical image measuring device
JP5378157B2 (en) Ophthalmic observation device
WO2013085042A1 (en) Fundus observation device
JP5956518B2 (en) Ophthalmic analysis device and ophthalmic imaging device
JP2015093128A (en) Ophthalmological observation device
US10045691B2 (en) Ophthalmologic observation apparatus using optical coherence tomography
JP6378795B2 (en) Ophthalmic imaging equipment
JP6159454B2 (en) Ophthalmic observation device
JP5919175B2 (en) Optical image measuring device
JP2016182525A (en) Ophthalmology imaging apparatus
JP6452977B2 (en) Ophthalmic imaging apparatus and control method thereof
WO2010113459A1 (en) Ophthalmological observation device
JP6374549B2 (en) Ophthalmology analyzer
JP6021289B2 (en) Blood flow information generation device, blood flow information generation method, and program
WO2016039188A1 (en) Ocular fundus analyzing device and ocular fundus observation device
JP2022071191A (en) Ophthalmologic apparatus and control method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12855057

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013548317

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12855057

Country of ref document: EP

Kind code of ref document: A1