WO2013084718A1 - Display with outer surfacing member, and anti-newton ring sheet - Google Patents

Display with outer surfacing member, and anti-newton ring sheet Download PDF

Info

Publication number
WO2013084718A1
WO2013084718A1 PCT/JP2012/080192 JP2012080192W WO2013084718A1 WO 2013084718 A1 WO2013084718 A1 WO 2013084718A1 JP 2012080192 W JP2012080192 W JP 2012080192W WO 2013084718 A1 WO2013084718 A1 WO 2013084718A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
display
newton ring
less
prevention sheet
Prior art date
Application number
PCT/JP2012/080192
Other languages
French (fr)
Japanese (ja)
Inventor
京春 金
亮平 早川
和洋 野澤
好央 岡本
益生 小山
Original Assignee
株式会社きもと
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社きもと filed Critical 株式会社きもと
Priority to JP2013548173A priority Critical patent/JP6087292B2/en
Priority to KR1020147016951A priority patent/KR101949554B1/en
Priority to CN201280059146.2A priority patent/CN103959361A/en
Publication of WO2013084718A1 publication Critical patent/WO2013084718A1/en

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/35Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being liquid crystals
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/313Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being gas discharge devices
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/021Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures
    • G02B5/0226Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures having particles on the surface
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0273Diffusing elements; Afocal elements characterized by the use
    • G02B5/0278Diffusing elements; Afocal elements characterized by the use used in transmission
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0273Diffusing elements; Afocal elements characterized by the use
    • G02B5/0294Diffusing elements; Afocal elements characterized by the use adapted to provide an additional optical effect, e.g. anti-reflection or filter

Definitions

  • the present invention relates to a display with a surface member in which the surface member is disposed on the display, and a Newton ring prevention sheet used therefor.
  • Patent Document 1 forms a plurality of protrusions formed mainly by particles in an uneven layer. As a result, even if a part of the surface member is bent, the distance between the uneven layer and the image display device is maintained at a certain level or more by the plurality of convex portions, thereby preventing Newton's ring.
  • the display with a surface member of the present invention is formed by disposing a surface member at an interval on the display, and the surface member has an uneven layer containing particles and a binder resin on the surface facing the display.
  • the Newton ring prevention sheet of this invention has an uneven
  • the particles have an anisotropy with an aspect ratio of 1.2 or more and 2.0 or less, and the particles are aligned along the direction in which the major axis direction intersects the thickness direction of the uneven layer. Is present in the concavo-convex layer.
  • the present invention includes the following aspects.
  • the display with a surface member and the Newton ring prevention sheet of the present invention can use particles having a curved surface portion on the surface, and the curved surface portion is elliptical.
  • the content of particles in the uneven layer can be 0.5 parts by weight or more and 5.0 parts by weight or less with respect to 100 parts by weight of the binder resin. .
  • particles having an average particle diameter of 0.5 ⁇ m or more and 8.0 ⁇ m or less can be used.
  • the display with a surface member and the Newton ring prevention sheet of the present invention have a thickness of 0.1 ⁇ m or more and 3.0 ⁇ m or less, and unevenness of 0.2 to 0.8 times the average particle diameter of contained particles. Layers can be used.
  • the “average particle size” is calculated by converting the particle volume measured by the Coulter counter method into a sphere.
  • an uneven layer having a difference in refractive index between the binder resin portion and the particle portion within 0.2 can be used.
  • a touch panel or a protective plate can be used as the surface member.
  • the Newton ring-preventing sheet of the present invention can be used in a direction in which a concavo-convex layer is arranged on the surface of the surface member arranged on the display at an interval so as to face the display.
  • the display with a surface member of the present invention configured by disposing a surface member with a space on the display has a concavo-convex layer containing particles having a special shape and a binder resin on the surface of the surface member facing the display. For this reason, even if a part of surface member bends, the space
  • the display with a surface member of the present invention can satisfy both Newton ring prevention and sparkle prevention simultaneously.
  • the Newton ring prevention sheet of the present invention has an uneven layer containing special particles and a binder resin. For this reason, when the Newton ring prevention sheet of the present invention is used in a direction in which the uneven layer is disposed on the surface of the surface member that is arranged on the display at a distance from the surface, a part of the surface member is Even if it bends, the same effect as described above can be obtained. That is, the Newton ring preventing sheet of the present invention can simultaneously satisfy both the Newton ring preventing property and the sparkle preventing property, like the display with the surface member.
  • FIG. 1 is a cross-sectional view showing an example of a display with a surface member of the present invention.
  • FIG. 2 is a cross-sectional view showing another example of the display with a surface member of the present invention.
  • FIG. 3A and FIG. 3B are diagrams for explaining the difference in the degree of occurrence of sparkle due to the difference in particles.
  • the displays 4 and 4 a with a surface member of this example are configured by disposing a surface member on the display 1 with a space.
  • Examples of the display 1 include a liquid crystal display device, a CRT display device, a plasma display device, and an EL display device.
  • the surface member of this example is not particularly limited in its structure.
  • corrugated layer 21 directly formed in the surface of the member main body 2 may be sufficient. Further, for example, as shown in FIG. 2, sticking in which the transparent base material 32 side of the Newton ring prevention sheet 3 having the uneven layer 31 on the transparent base material 32 is bonded to the surface of the member body 2 through the adhesive layer 33.
  • It may be a structure. That is, in this example, as a surface member, the laminated body (FIG. 1) of the member main body 2 and the uneven
  • surface member it shall mean either these laminated bodies and a bonding body.
  • the transparent substrate 32 examples include polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polycarbonate, polyethylene, polypropylene, polystyrene, triacetyl cellulose, and acrylic.
  • a polyethylene terephthalate film that has been stretched, in particular biaxially stretched, is preferred because of its excellent mechanical strength and dimensional stability.
  • the thickness of the transparent substrate 32 is generally 25 to 500 ⁇ m, preferably 50 to 200 ⁇ m.
  • the surface member of this example is fixed facing the display 1 with a double-sided tape or adhesive around the uneven layer 21, 31 side. do it.
  • the distance between the surface member and the display 1 is usually about 50 ⁇ m to 5 mm, although it depends on the size of the display 1 and the type of the member body 2 constituting the surface member.
  • the member main body 2 of this example a protective plate, a touch panel, or the like can be given.
  • those having flexibility are such that the distance between the member main body 2 and the display 1 is partially narrowed when touched with a finger, and light interference fringes due to a thin layer of air sandwiched between them. (Newton ring) is likely to occur. For this reason, this invention exhibits a remarkable effect with respect to the member main body 2 of the type which has flexibility especially.
  • the protective plate as an example can be constituted by a transparent resin plate represented by an acrylic resin plate, for example.
  • the thickness of the protective plate is usually about 0.1 to 2.0 mm.
  • the method of the touch panel as an example is not particularly limited, and can be configured by, for example, a resistive touch panel, a capacitive touch panel, or the like.
  • These touch panels are shifting from glass substrates to plastic substrates due to the demand for weight reduction. For this reason, recent touch panels belong to a flexible type member. Therefore, it is easy to bend at the time of operation, and when this is used for the member main body 2, it is easy to produce a Newton ring between the display 1.
  • the resistive film type touch panel as an example includes, for example, an upper electrode having a transparent conductive layer on one surface of a transparent substrate and a lower electrode having a transparent conductive layer on one surface of the transparent substrate.
  • the transparent conductive layers of the lower electrode are opposed to each other, and a spacer is interposed therebetween.
  • the uneven layer 21 may be directly formed on the transparent substrate of the lower electrode for such a resistive touch panel.
  • the transparent base material 32 side of the Newton ring prevention sheet 3 can also be bonded together and formed in the transparent substrate of a lower electrode.
  • the capacitive touch panel as an example includes, for example, a plurality of sensor traces of a transparent resistor formed in a first dimension, a plurality of sensor traces of a transparent resistor formed in a second dimension, and a gap therebetween.
  • a transparent insulating material that is formed is provided as a basic configuration.
  • the uneven layer 21 may be directly formed on the transparent resistor of one dimension with respect to such a capacitive touch panel.
  • the Newton ring prevention sheet 3 can be formed by sticking the transparent base material 32 side onto a one-dimensional transparent resistor or insulator layer.
  • the uneven layers 21 and 31 of this example contain particles having a special shape and a binder resin.
  • the particles contained in the uneven layers 21 and 31 are not particularly limited as long as the aspect ratio thereof is 1.2 or more and 2.0 or less, preferably 1.8 or less.
  • rugby ball shape, mushroom shape, flat shape, oval shape, spheroid shape and the like can be mentioned.
  • the particles used in this example include not only primary particles but also aggregates (secondary particles) of several particles. Therefore, the range of the aspect ratio is based on primary particles or secondary particles.
  • trade name “Techpolymer” (Sekisui Chemicals Co., Ltd.) exists.
  • anisotropic means that the particles are not isotropic but physically oriented, that is, the particles used in this example have an aspect ratio in the above predetermined range. Yes. “Aspect ratio” means the ratio of the length and width of a circumscribed rectangle (the smallest rectangle when a particle figure is surrounded by a rectangle), and this value can be measured by, for example, a particle size distribution image analyzer.
  • the surface layers of this example including the uneven layers 21 and 31 are arranged on the display 1 with an interval by including the irregularly shaped layers 21 and 31 by containing particles of special shapes, and thereafter Even if the surface member is touched and, as a result, the distance between the member main body 2 constituting the surface member and the display 1 becomes narrow, it is possible to satisfy both the prevention of Newton ring and the prevention of sparkle.
  • the light generated from the display 1 is normally refracted when passing through a convex portion centered on particles.
  • a nearly spherical particle corresponding to a comparative example of the present invention
  • the angular distribution of the light refracted by the convex portion becomes wide.
  • particles having an aspect ratio of 1.2 or more corresponding to the embodiment of the present invention
  • the angular distribution of light refracted by the convex portion becomes narrow as shown in FIG. This difference is influenced by the difference in the slope of the convex portion due to the aspect ratio.
  • “Sparkle” is a phenomenon in which a pixel is disturbed due to light being refracted at a convex portion.
  • the aspect ratio is 1.2 or more, the angle distribution of the refracted light can be narrowed, so that the disturbance of the pixel can be reduced. It is thought that it is possible (it can make it hard to produce a sparkle).
  • Newton's ring prevention property is an effect obtained by forming a convex portion with particles and maintaining a distance from the opposing surface. For this reason, particles having an aspect ratio of 1.2 or more also have this effect. However, when the aspect ratio exceeds 2.0, the distance from the facing surface cannot be sufficiently maintained depending on the orientation of the particles, and Newton's ring prevention property becomes insufficient. Therefore, in this example, the upper limit of the aspect ratio is 2.0. Note that the upper limit of the aspect ratio is preferably 1.8 from the viewpoint of obtaining a relatively sufficient Newton ring prevention property.
  • the particles used in this example particles made of any of inorganic (inorganic particles) and organic (resin particles) can be used.
  • the resin particles are preferable in that the difference in refractive index from the binder resin can be easily reduced, thereby making it possible to easily prevent the whitishness and sparkle of the coating films (uneven layers 21 and 31).
  • the inorganic particles include silica, alumina, talc, clay, calcium carbonate, magnesium carbonate, barium sulfate, aluminum hydroxide, titanium dioxide, and zirconium oxide.
  • the resin particles include acrylic resin particles, silicone resin particles, nylon resin particles, styrene resin particles, polyethylene resin particles, benzoguanamine resin particles, and urethane resin particles.
  • the particles used in this example have an average particle size of preferably 0.5 ⁇ m or more, more preferably 0.8 ⁇ m or more, further preferably 1.5 ⁇ m or more, particularly preferably 2.0 ⁇ m or more, and most preferably 2.5 ⁇ m or more. It is.
  • the average particle diameter is preferably 8.0 ⁇ m or less, more preferably 5.0 ⁇ m or less, further preferably 4.0 ⁇ m or less, particularly preferably 3.0 ⁇ m or less, and most preferably 2.7 ⁇ m or less.
  • the “average particle size” is calculated by converting the particle volume measured by the Coulter counter method into a sphere. Therefore, in the specially shaped particles used in this example, the value on the long diameter side is larger than the value on the average particle diameter, and the value on the short diameter side is smaller than the average particle diameter.
  • the particles used in this example preferably include a curved surface portion on the surface, and the curved surface portion is preferably elliptical.
  • the curved surface portion is preferably elliptical.
  • the angle distribution of the light refracted by the convex portion can be narrowed and sparkle is less likely to occur than when the curved surface portion is a perfect circle.
  • the content of the particles used in this example is preferably 0.5 parts by weight or more, more preferably 1.0 parts by weight or more, preferably 5.0 parts by weight or less, with respect to 100 parts by weight of the binder resin. More preferably, it is 4.0 weight part or less, More preferably, it is 3.0 weight part or less, Most preferably, it is 2.5 weight part or less.
  • polyester resins acrylic resins, acrylic urethane resins, polyester acrylate resins, polyurethane acrylate resins, epoxy acrylate resins, urethane resins, epoxy resins, polycarbonate resins, cellulose resins, acetals Resin, vinyl resin, polyethylene resin, polystyrene resin, polypropylene resin, polyamide resin, polyimide resin, melamine resin, phenolic resin, silicone resin, fluorine resin, thermoplastic resin, heat Examples thereof include curable resins and ionizing radiation curable resins. Among these, ionizing radiation curable resins having excellent surface hardness are preferable.
  • the concavo-convex layers 21 and 31 of this example may further contain additives such as a leveling agent, an ultraviolet absorber, and an antioxidant.
  • a binder resin is dissolved and a coating liquid containing appropriate components is applied to the surface of the member body 2 or the transparent substrate 32, and then dried. And removing the solvent to form a resin film.
  • the particles having the special shape described above may be applied by being dispersed in a resin coating solution.
  • a resin coating liquid different from the binder resin coating liquid may be prepared, and this coating liquid may be applied to the surface of the member body 2 or the transparent substrate 32.
  • the solvent used in the coating liquid may be any solvent as long as it can be used as a coating liquid for coating, and any solvent can be used.
  • any method for coating the surface of the member main body 2 or the transparent substrate 32 with a coating liquid can be used.
  • one or more coating liquids containing binder resin and particles which are selected so that the difference in refractive index between the binder resin portion and the particle portion in the concavo-convex layers 21 and 31 is within 0.2, are used.
  • the concavo-convex layers 21 and 31 are preferably coated. Irregular layers 21 and 31 formed after such a coating liquid is applied to the member body 2 or the transparent substrate 32 and dried, or irregular layers 21 and 31 formed after the coating liquid is applied and dried and then irradiated with ionizing radiation, In FIG. 31, when the difference in refractive index between the binder resin portion and the particle portion is within 0.2, the present inventors have confirmed that it is easy to prevent both the whiteness of the coating film and the sparkle. .
  • arbitrary methods can be used as a method of hardening the resin at the time of using ionizing radiation curable resin for binder resin.
  • a light source such as a high pressure mercury lamp, a low pressure mercury lamp, an ultrahigh pressure mercury lamp, a metal halide lamp, a carbon arc, or a xenon arc can be used.
  • the particles used in this example are arranged along the direction in which the major axis direction intersects (preferably orthogonally) the thickness direction of the uneven layers 21 and 31. It is preferable. Due to the peculiarity of the particle shape used in this example, after a while after the coating liquid is applied, it tries to become mechanically more stable, and the major axis direction intersects the thickness direction of the uneven layers 21 and 31. It remains on the surface of the member main body 2 or the transparent substrate 32 along the direction. By arranging the particles in the concavo-convex layers 21 and 31 in this way, Newton's ring can be prevented, and as shown in FIG.
  • the angular distribution of the light refracted by the convex portion becomes narrower.
  • pixel disturbance can be suppressed and sparkle can be prevented. That is, it is possible to achieve both prevention of occurrence of both Newton ring and sparkle events.
  • the thickness of the concavo-convex layers 21 and 31 is preferably 0.1 ⁇ m or more, more preferably 0.5 ⁇ m or more, further preferably 0.8 ⁇ m or more, and particularly preferably 1. It is 0 ⁇ m or more, preferably 3.0 ⁇ m or less, more preferably 2.5 ⁇ m or less, further preferably 2.2 ⁇ m or less, and particularly preferably 1.8 ⁇ m or less. In particular, from the viewpoint of preventing the occurrence of Newton rings, it is preferably 0.8 times or less, more preferably 0.6 times or less, and even more preferably 0.5 times, based on the average particle diameter of the particles. The following.
  • the thickness of the concavo-convex layers 21 and 31 is preferably 0.2 times or more, more preferably 0.3 times or more, and further preferably more than 0.4 times the average particle diameter of the above particles (more than 0.4 times). ) Is preferable in that it is easy to prevent the particles from falling off the uneven layers 21 and 31.
  • the surface member (member main body 2 + uneven layer 21 or member main body 2+ adhesive layer 33 + Newton ring prevention sheet 3) is arranged on the display 1 with a space therebetween.
  • the display with the surface member 4, 4 a has the uneven layers 21, 31 of this example on the surface of the surface member facing the display 1. For this reason, even if a part of surface member bends, the space
  • the irregular layers 21 and 31 are formed by containing specially shaped particles, the angular distribution of the refracted light when passing through the convex portion centered on the particles can be narrowed.
  • the display 4 and 4a with the surface member of this example can satisfy the Newton ring prevention property and the sparkle prevention property at the same time.
  • Example 1 On one side of a 125 ⁇ m thick transparent polyester film (Cosmo Shine A4350: Toyobo Co., Ltd.), a coating liquid a having the following formulation was applied, dried, and irradiated with ultraviolet rays to form a concavo-convex layer having a thickness of 1.2 ⁇ m. A Newton ring prevention sheet was obtained. The difference in refractive index between the ionizing radiation curable resin and the particles blended in the coating solution of this example was within 0.2.
  • Example 2 A Newton ring prevention sheet of this example was obtained in the same manner as in Example 1 except that the acrylic resin particles of the coating liquid a were changed to the following. The difference in refractive index between the ionizing radiation curable resin and the particles blended in the coating solution of this example was within 0.2. ⁇ Acrylic resin particles (Techpolymer 69BT: Sekisui Plastics, Mushroom) (Average particle size: 2.53 ⁇ m, refractive index: 1.49, aspect ratio: about 1.2 to 1.6) (The mushroom umbrella is an elliptical curved surface)
  • Example 3 A Newton ring prevention sheet of this example was obtained in the same manner as in Example 1 except that the acrylic resin particles of the coating liquid a were changed to the following. The difference in refractive index between the ionizing radiation curable resin and the particles blended in the coating solution of this example was within 0.2. ⁇ Acrylic resin particles (Techpolymer 68BT: Sekisui Plastics, hemisphere) (Average particle diameter: 2.67 ⁇ m, refractive index: 1.49, aspect ratio 2.0) (Circular curved surface)
  • Example 4 A Newton ring prevention sheet of this example was obtained in the same manner as in Example 1 except that the acrylic resin particles of the coating liquid a were changed to the following.
  • the difference in refractive index between the ionizing radiation curable resin and the particles blended in the coating solution of this example exceeded 0.2.
  • ⁇ Inorganic particles (silica) (Rugby ball shape) (Average particle size: 2.65 ⁇ m, refractive index: 1.46, aspect ratio: about 1.4 to 1.8) (Designed to have an elliptical curved surface.)
  • Example 2 A Newton ring prevention sheet of this example was obtained in the same manner as in Example 1 except that the acrylic resin particles of the coating liquid a were changed to the following. ⁇ Acrylic-silicone hybrid resin particles (Silcurusta MK03: Nikko Rika Co., Ltd.) (Average particle diameter: 3.0 ⁇ m, aspect ratio 1.0)
  • Example 3 A Newton ring prevention sheet of this example was obtained in the same manner as in Example 1 except that the acrylic resin particles of the coating liquid a were changed to the following. ⁇ Acrylic resin particles (rugby ball shape) (Average particle diameter: 2.14 ⁇ m, refractive index: 1.49, aspect ratio 3.0) (Designed to have an elliptical curved surface.)
  • Example 4 since the concavo-convex layer contained particles having an aspect ratio in the range of the present invention, it was possible to sufficiently suppress sparkle while having Newton ring prevention properties. In particular, those in Examples 1 and 2 were particularly excellent in suppressing sparkle because the particles contained in the concavo-convex layer included a curved surface portion on the surface and the portion was elliptical. In Example 4, particles having an aspect ratio within the range of the present invention and having a curved surface portion on the surface and designed to have an elliptical shape were used, but the particle material was inorganic (silica). For this reason, the difference in refractive index from the resin exceeded 0.2, and the occurrence of a slight sparkle was confirmed, but it was determined that there was no problem in practical use.
  • Comparative Examples 1 and 2 since the aspect ratio of the particles in the concavo-convex layer was 1.0 (less than the lower limit of the range of the present invention), although it has Newton ring prevention properties, it can suppress sparkle. There wasn't. In Comparative Example 3, since the aspect ratio of the particles in the concavo-convex layer was 3.0 (exceeding the upper limit of the range of the present invention), the sparkle could be suppressed, but the Newton ring prevention property could not be exhibited. .
  • Example 5 This example is the same as Example 1 except that the content of acrylic resin particles in coating liquid a (content in terms of weight relative to 100 parts by weight of solid content of ionizing radiation curable resin) is changed to 5.5 parts by weight. Newton ring prevention sheet was obtained. In the same manner as described above, a display with a surface member was manufactured. Next, the above evaluation was performed. As a result, in this example, particles having an aspect ratio within the scope of the present invention and including a curved surface portion on the surface and an elliptical shape of the portion were used, but the particle content tends to be too much. Therefore, the transparency was slightly deteriorated and the occurrence of sparkle was confirmed slightly, but it was judged that there was no problem in practical use.
  • Example 6 This example was the same as Example 1 except that the content of acrylic resin particles in coating solution a (content in terms of weight relative to 100 parts by weight of solid content of ionizing radiation-curable resin) was changed to 0.4 parts by weight. Newton ring prevention sheet was obtained. In the same manner as described above, a display with a surface member was manufactured. Next, the above evaluation was performed. As a result, in the present example, particles having an aspect ratio within the scope of the present invention and a curved surface portion on the surface and designed in an elliptical shape were used, but the content of the particles tended to be small. Although the sparkle could be suppressed, the occurrence of a Newton ring was confirmed slightly. However, it was judged that there was no problem with this level of occurrence.
  • Example 7 Prepare acrylic resin particles to be blended in coating solution a with an average particle size of 0.3 ⁇ m and a refractive index of 1.49 (with an aspect ratio in the range of 1.2 to 2.0).
  • a Newton ring prevention sheet of this example was obtained in the same manner as in Example 1 except that.
  • a display with a surface member was manufactured.
  • the above evaluation was performed.
  • the aspect ratio was within the range of the present invention, since the particle diameter tended to be small, the sparkle could be suppressed, but the occurrence of Newton's ring was confirmed slightly. . However, it was judged that there was no problem with this level of occurrence.
  • Example 8 Prepare acrylic resin particles to be blended in coating solution a with an average particle diameter of 8.5 ⁇ m and a refractive index of 1.49 (however, the aspect ratio is in the range of 1.2 to 2.0).
  • a Newton ring prevention sheet of this example was obtained in the same manner as in Example 1 except that.
  • a display with a surface member was manufactured.
  • the above evaluation was performed.
  • the aspect ratio of this example was within the range of the present invention, but the particle size tended to be large, so the generation of Newton rings could be suppressed, but the occurrence of sparkle was confirmed slightly. did it. However, it was judged that there was no problem with this level of occurrence.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Laminated Bodies (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

[Problem] To provide a technology that simultaneously prevents Newton rings and sparkling. [Solution] Outer surfacing members are arranged at an interval on a display (1). Said outer surfacing members comprises an uneven layer (21) that contains particles and a binder resin on the surface opposite the display (1). The particles have anisotropy with the aspect ratios of 1.2 to 2.0. A display (4) with the outer surfacing members has the particles that exist in the uneven layer (21) with the longitudinal direction intersecting with thickness direction of the uneven layer (21).

Description

表面部材付きディスプレイ及びニュートンリング防止シートDisplay with surface member and Newton ring prevention sheet
 本発明は、表面部材をディスプレイ上に配置した表面部材付きディスプレイと、これに用いるニュートンリング防止シートとに関する。 The present invention relates to a display with a surface member in which the surface member is disposed on the display, and a Newton ring prevention sheet used therefor.
 透明フィルム上に硬化皮膜からなる凹凸層を形成した干渉縞解消(ニュートンリング防止)シートをアクリル板などに貼合して得られる板状物品(表面部材)を、画像表示装置(プラズマ表示装置又は液晶表示装置など)の前面に間隔をあけ、かつ凹凸層を対向させた状態で配置する技術(エアギャップタイプ)が知られている(特許文献1)。 A plate-like article (surface member) obtained by laminating an interference fringe elimination (Newton ring prevention) sheet in which a concavo-convex layer made of a cured film is formed on a transparent film to an acrylic plate or the like, an image display device (plasma display device or A technique (air gap type) is known in which a gap is formed on the front surface of a liquid crystal display device or the like and an uneven layer is opposed (Patent Document 1).
特開平10-282312号公報JP-A-10-283122
 特許文献1の技術は、凹凸層中に、粒子が中心となって形成される凸部を複数形成する。その結果、表面部材の一部が撓んでも、複数形成した凸部によって凹凸層と画像表示装置の間隔を一定以上に保ち、これによってニュートンリングを防止するものである。 The technique of Patent Document 1 forms a plurality of protrusions formed mainly by particles in an uneven layer. As a result, even if a part of the surface member is bent, the distance between the uneven layer and the image display device is maintained at a certain level or more by the plurality of convex portions, thereby preventing Newton's ring.
 しかし、特許文献1技術の凹凸層では、前記凸部のレンズ作用によりRGBの発光点が拡大強調されるという、いわゆるスパークルが発生してしまい、視認性が十分でなかった。 However, in the concavo-convex layer of the technique of Patent Document 1, a so-called sparkle occurs in which the RGB emission points are enlarged and emphasized by the lens action of the convex portion, and the visibility is not sufficient.
 本発明の一側面では、ニュートンリング防止性とスパークル防止性の両特性を同時に満足することができる技術を提供する。 In one aspect of the present invention, there is provided a technology that can satisfy both the Newton ring prevention property and the sparkle prevention property at the same time.
 本発明の表面部材付きディスプレイは、ディスプレイ上に間隔をあけて表面部材を配置してなり、該表面部材は前記ディスプレイと対向する面に、粒子とバインダー樹脂を含有する凹凸層を有する。本発明のニュートンリング防止シートは、粒子とバインダー樹脂を含有する凹凸層を有する。 The display with a surface member of the present invention is formed by disposing a surface member at an interval on the display, and the surface member has an uneven layer containing particles and a binder resin on the surface facing the display. The Newton ring prevention sheet of this invention has an uneven | corrugated layer containing particle | grains and binder resin.
 そして両発明における、前記粒子は、そのアスペクト比が1.2以上2.0以下の異方性を有するものであり、長軸方向が前記凹凸層の厚み方向と交差する方向に沿って前記粒子を前記凹凸層内に存在させたことを特徴とする。 In both the inventions, the particles have an anisotropy with an aspect ratio of 1.2 or more and 2.0 or less, and the particles are aligned along the direction in which the major axis direction intersects the thickness direction of the uneven layer. Is present in the concavo-convex layer.
 本発明は、以下の態様を含む。
 本発明の表面部材付きディスプレイ及びニュートンリング防止シートは、表面に曲面部分を含み、該曲面部分が楕円形状である粒子を用いることができる。
 本発明の表面部材付きディスプレイ及びニュートンリング防止シートは、凹凸層中での粒子の含有量を、バインダー樹脂100重量部に対して0.5重量部以上5.0重量部以下とすることができる。
The present invention includes the following aspects.
The display with a surface member and the Newton ring prevention sheet of the present invention can use particles having a curved surface portion on the surface, and the curved surface portion is elliptical.
In the display with a surface member and the Newton ring prevention sheet of the present invention, the content of particles in the uneven layer can be 0.5 parts by weight or more and 5.0 parts by weight or less with respect to 100 parts by weight of the binder resin. .
 本発明の表面部材付きディスプレイ及びニュートンリング防止シートは、平均粒子径が0.5μm以上8.0μm以下の粒子を用いることができる。
 本発明の表面部材付きディスプレイ及びニュートンリング防止シートは、厚みが0.1μm以上3.0μm以下であって、かつ含有される粒子の平均粒子径の0.2倍以上0.8倍以下の凹凸層を用いることができる。
 なお、「平均粒子径」とは、コールターカウンター法で測定される粒子体積を球に換算して算出したものとする。
In the display with a surface member and the Newton ring prevention sheet of the present invention, particles having an average particle diameter of 0.5 μm or more and 8.0 μm or less can be used.
The display with a surface member and the Newton ring prevention sheet of the present invention have a thickness of 0.1 μm or more and 3.0 μm or less, and unevenness of 0.2 to 0.8 times the average particle diameter of contained particles. Layers can be used.
The “average particle size” is calculated by converting the particle volume measured by the Coulter counter method into a sphere.
 本発明の表面部材付きディスプレイ及びニュートンリング防止シートは、バインダー樹脂部分と粒子部分の屈折率の差が0.2以内の凹凸層を用いることができる。
 本発明の表面部材付きディスプレイは、表面部材としてタッチパネル又は保護板を用いることができる。
In the display with a surface member and the Newton ring prevention sheet of the present invention, an uneven layer having a difference in refractive index between the binder resin portion and the particle portion within 0.2 can be used.
In the display with a surface member of the present invention, a touch panel or a protective plate can be used as the surface member.
 本発明のニュートンリング防止シートは、ディスプレイ上に間隔をあけて配置される表面部材の、前記ディスプレイと対向する面に凹凸層が配置される向きで使用することができる。 The Newton ring-preventing sheet of the present invention can be used in a direction in which a concavo-convex layer is arranged on the surface of the surface member arranged on the display at an interval so as to face the display.
 ディスプレイ上に間隔をあけて表面部材を配置して構成される本発明の表面部材付きディスプレイは、表面部材のディスプレイと対向する面に、特殊形状の粒子とバインダー樹脂を含有する凹凸層を有する。このため、表面部材の一部が撓んでも凹凸層とディスプレイの間隔を一定以上に保ち、これによってニュートンリングを防止する。これに加え、特殊形状の粒子を含有させて凹凸層を構成しているので、粒子を中心とする凸部を通過する際の屈折光の角度分布を狭くできる。その結果、屈折光の角度分布が広くなることによって発生する画素の乱れ、つまりスパークルの発生防止にも寄与する。
 つまり本発明の表面部材付きディスプレイは、ニュートンリング防止性とスパークル防止性とを同時に満足することができる。
The display with a surface member of the present invention configured by disposing a surface member with a space on the display has a concavo-convex layer containing particles having a special shape and a binder resin on the surface of the surface member facing the display. For this reason, even if a part of surface member bends, the space | interval of an uneven | corrugated layer and a display is kept more than fixed, and this prevents a Newton ring. In addition, since the irregular layer is formed by containing specially shaped particles, the angular distribution of the refracted light when passing through the convex portion centered on the particles can be narrowed. As a result, it contributes to prevention of pixel disturbance, that is, occurrence of sparkle, which occurs due to the wide angular distribution of refracted light.
That is, the display with a surface member of the present invention can satisfy both Newton ring prevention and sparkle prevention simultaneously.
 本発明のニュートンリング防止シートは、特殊粒子とバインダー樹脂を含有する凹凸層を有する。このため、本発明のニュートンリング防止シートを、ディスプレイ上に間隔をあけて配置される表面部材のディスプレイと対向する面に凹凸層が配置される向きで使用した場合に、表面部材の一部が撓んでも、上記同様の効果を奏することができる。つまり本発明のニュートンリング防止シートも、上記表面部材付きディスプレイと同様、ニュートンリング防止性とスパークル防止性とを同時に満足することができる。 The Newton ring prevention sheet of the present invention has an uneven layer containing special particles and a binder resin. For this reason, when the Newton ring prevention sheet of the present invention is used in a direction in which the uneven layer is disposed on the surface of the surface member that is arranged on the display at a distance from the surface, a part of the surface member is Even if it bends, the same effect as described above can be obtained. That is, the Newton ring preventing sheet of the present invention can simultaneously satisfy both the Newton ring preventing property and the sparkle preventing property, like the display with the surface member.
図1は本発明の表面部材付きディスプレイの一例を示す断面図である。FIG. 1 is a cross-sectional view showing an example of a display with a surface member of the present invention. 図2は本発明の表面部材付きディスプレイの他の例を示す断面図である。FIG. 2 is a cross-sectional view showing another example of the display with a surface member of the present invention. 図3(a)及び図3(b)は粒子の違いによるスパークル発生の程度の違いを説明するための図である。FIG. 3A and FIG. 3B are diagrams for explaining the difference in the degree of occurrence of sparkle due to the difference in particles.
 4,4a…表面部材付きディスプレイ、1…ディスプレイ、2…部材本体(表面部材)、21…凹凸層(表面部材)、3…ニュートンリング防止シート、31…凹凸層、32…透明基材、33…接着層。 4, 4a ... Display with surface member, 1 ... Display, 2 ... Member body (surface member), 21 ... Uneven layer (surface member), 3 ... Newton ring prevention sheet, 31 ... Uneven layer, 32 ... Transparent substrate, 33 ... adhesive layer.
 図1及び図2に示すように、本例の表面部材付きディスプレイ4,4aは、ディスプレイ1上に間隔をあけて表面部材を配置することにより構成されている。ディスプレイ1としては、例えば、液晶表示装置、CRT表示装置、プラズマ表示装置、EL表示装置などが挙げられる。 As shown in FIG. 1 and FIG. 2, the displays 4 and 4 a with a surface member of this example are configured by disposing a surface member on the display 1 with a space. Examples of the display 1 include a liquid crystal display device, a CRT display device, a plasma display device, and an EL display device.
 本例の表面部材は、その構造に特別な限定はない。例えば図1に示すように、部材本体2の表面に直接形成された凹凸層21を有する積層構造でもよい。また例えば図2に示すように、透明基材32上に凹凸層31を有するニュートンリング防止シート3の透明基材32側を、接着層33を介して部材本体2の表面に貼り合わせた貼着構造であってもよい。つまり本例では、表面部材として、部材本体2及び凹凸層21の積層体(図1)と、部材本体2、接着層33及びニュートンリング防止シート3の貼合体(図2)とを例示する。以下、「表面部材」と言った場合、これら積層体及び貼合体のいずれかを意味するものとする。 The surface member of this example is not particularly limited in its structure. For example, as shown in FIG. 1, the laminated structure which has the uneven | corrugated layer 21 directly formed in the surface of the member main body 2 may be sufficient. Further, for example, as shown in FIG. 2, sticking in which the transparent base material 32 side of the Newton ring prevention sheet 3 having the uneven layer 31 on the transparent base material 32 is bonded to the surface of the member body 2 through the adhesive layer 33. It may be a structure. That is, in this example, as a surface member, the laminated body (FIG. 1) of the member main body 2 and the uneven | corrugated layer 21 and the bonding body (FIG. 2) of the member main body 2, the contact bonding layer 33, and the Newton ring prevention sheet 3 are illustrated. Hereinafter, when it says "surface member", it shall mean either these laminated bodies and a bonding body.
 透明基材32としては、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリカーボネート、ポリエチレン、ポリプロピレン、ポリスチレン、トリアセチルセルロース、アクリルなどが挙げられる。これらの中でも、延伸加工、特に二軸延伸加工されたポリエチレンテレフタレートフィルムが、機械的強度や寸法安定性に優れる点で好ましい。また、透明基材32の表面にコロナ放電処理を施したり、易接着層を設けることによって凹凸層31との接着性を向上させたものを用いてもよい。透明基材32の厚みとしては、一般には25~500μmであり、好ましくは50~200μmである。 Examples of the transparent substrate 32 include polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polycarbonate, polyethylene, polypropylene, polystyrene, triacetyl cellulose, and acrylic. Among these, a polyethylene terephthalate film that has been stretched, in particular biaxially stretched, is preferred because of its excellent mechanical strength and dimensional stability. Moreover, you may use what improved the adhesiveness with the uneven | corrugated layer 31 by giving a corona discharge process to the surface of the transparent base material 32, or providing an easily bonding layer. The thickness of the transparent substrate 32 is generally 25 to 500 μm, preferably 50 to 200 μm.
 本例の表面部材をディスプレイ1上に間隔をあけて配置するには、例えば、表面部材の凹凸層21,31側周囲に両面テープや接着剤を介在させた状態でディスプレイ1と対向させて固定すればよい。表面部材とディスプレイ1の間隔は、ディスプレイ1の大きさや表面部材を構成する部材本体2の種類にもよるが、通常は50μm~5mm程度である。 In order to dispose the surface member of this example on the display 1 with a space, for example, the surface member is fixed facing the display 1 with a double-sided tape or adhesive around the uneven layer 21, 31 side. do it. The distance between the surface member and the display 1 is usually about 50 μm to 5 mm, although it depends on the size of the display 1 and the type of the member body 2 constituting the surface member.
 本例の部材本体2としては、保護板やタッチパネルなどが挙げられる。部材本体2の中でも可撓性を有するものは、指で触れた際などに部材本体2とディスプレイ1との間隔が部分的に狭くなり、間に挟まれた空気の薄層による光の干渉縞(ニュートンリング)が発生しやすい。このため本発明は、特に可撓性を有するタイプの部材本体2に対して顕著な効果を発揮する。 As the member main body 2 of this example, a protective plate, a touch panel, or the like can be given. Among the member main bodies 2, those having flexibility are such that the distance between the member main body 2 and the display 1 is partially narrowed when touched with a finger, and light interference fringes due to a thin layer of air sandwiched between them. (Newton ring) is likely to occur. For this reason, this invention exhibits a remarkable effect with respect to the member main body 2 of the type which has flexibility especially.
 一例としての保護板は、例えばアクリル樹脂板に代表される透明樹脂板などで構成することができる。保護板の厚みは、通常0.1~2.0mm程度である。 The protective plate as an example can be constituted by a transparent resin plate represented by an acrylic resin plate, for example. The thickness of the protective plate is usually about 0.1 to 2.0 mm.
 一例としてのタッチパネルの方式は特に限定されず、例えば、抵抗膜式タッチパネル、静電容量式タッチパネルなどで構成することができる。これらタッチパネルは、軽量化の要請からガラス基板からプラスチック基板に移行しつつある。このため、近年のタッチパネルは可撓性タイプの部材に属する。したがって操作時に撓みやすく、これを部材本体2に用いた場合、ディスプレイ1との間でニュートンリングを生じやすい。以上のことから、部材本体2としてタッチパネルを用い、その下部であるディスプレイ1の表示面側に、図1に示す凹凸層21を積層し、あるいは図2に示すように接着層33を介してニュートンリング防止シート3を下向き(凹凸層31がディスプレイ1の表示面側に対向する向き)で配置することは、タッチパネル操作時に発生しうるニュートンリングの防止に極めて有効である。 The method of the touch panel as an example is not particularly limited, and can be configured by, for example, a resistive touch panel, a capacitive touch panel, or the like. These touch panels are shifting from glass substrates to plastic substrates due to the demand for weight reduction. For this reason, recent touch panels belong to a flexible type member. Therefore, it is easy to bend at the time of operation, and when this is used for the member main body 2, it is easy to produce a Newton ring between the display 1. FIG. From the above, a touch panel is used as the member body 2, and the uneven layer 21 shown in FIG. 1 is laminated on the display surface side of the display 1 which is the lower part thereof, or Newton is provided via the adhesive layer 33 as shown in FIG. Arranging the ring prevention sheet 3 downward (direction in which the uneven layer 31 faces the display surface side of the display 1) is extremely effective in preventing Newton rings that may occur during touch panel operation.
 一例としての抵抗膜式タッチパネルは、例えば、透明基板の一方の面に透明導電層を有する上部電極と、透明基板の一方の面に透明導電層を有する下部電極とを有し、これら上部電極及び下部電極の両透明導電層同士を対向させ、かつ間にスペーサーを介在させて構成される。本例では、このような抵抗膜式タッチパネルに対し、凹凸層21を下部電極の透明基板に直接形成してもよい。あるいは、ニュートンリング防止シート3の透明基材32側を下部電極の透明基板に貼り合わせて形成することもできる。 The resistive film type touch panel as an example includes, for example, an upper electrode having a transparent conductive layer on one surface of a transparent substrate and a lower electrode having a transparent conductive layer on one surface of the transparent substrate. The transparent conductive layers of the lower electrode are opposed to each other, and a spacer is interposed therebetween. In this example, the uneven layer 21 may be directly formed on the transparent substrate of the lower electrode for such a resistive touch panel. Or the transparent base material 32 side of the Newton ring prevention sheet 3 can also be bonded together and formed in the transparent substrate of a lower electrode.
 一例としての静電容量式タッチパネルは、例えば、第一の次元に形成された透明抵抗体の複数のセンサートレースと、第二の次元に形成された透明抵抗体の複数のセンサートレースと、その間に形成されている透明な絶縁材料とを基本構成として備える。また両透明抵抗体のうち少なくともいずれかの透明抵抗体上には、絶縁体層を有することが好ましい。本例では、このような静電容量式タッチパネルに対し、凹凸層21を一方の次元の透明抵抗体上に直接形成してもよい。あるいは、凹凸層21を一方の次元の透明抵抗体上の絶縁体層上に直接形成してもよい。あるいは、ニュートンリング防止シート3の透明基材32側を一方の次元の透明抵抗体上や絶縁体層上に貼り合わせて形成することもできる。 The capacitive touch panel as an example includes, for example, a plurality of sensor traces of a transparent resistor formed in a first dimension, a plurality of sensor traces of a transparent resistor formed in a second dimension, and a gap therebetween. A transparent insulating material that is formed is provided as a basic configuration. Moreover, it is preferable to have an insulator layer on at least one of the transparent resistors. In this example, the uneven layer 21 may be directly formed on the transparent resistor of one dimension with respect to such a capacitive touch panel. Or you may form the uneven | corrugated layer 21 directly on the insulator layer on the transparent resistor of one dimension. Alternatively, the Newton ring prevention sheet 3 can be formed by sticking the transparent base material 32 side onto a one-dimensional transparent resistor or insulator layer.
 本例の凹凸層21,31は、特殊形状の粒子とバインダー樹脂を含有する。
 凹凸層21,31に含有させる粒子は、そのアスペクト比が1.2以上で、かつ2.0以下、好ましくは1.8以下の異方性を有するものであれば特に制限はない。例えば、ラグビーボール状、マッシュルーム(きのこ)状、扁平状、小判状、回転楕円体状などが挙げられる。本例で用いる粒子には、一次粒子のみならず、幾つかの粒子の凝集体(二次粒子)も含まれる。したがって上記アスペクト比の範囲は一次粒子または二次粒子をベースとする。
 特殊形状の粒子に該当する市販品としては、例えば、商品名「テクポリマー」(積水化成品工業社)などが存在する。
The uneven layers 21 and 31 of this example contain particles having a special shape and a binder resin.
The particles contained in the uneven layers 21 and 31 are not particularly limited as long as the aspect ratio thereof is 1.2 or more and 2.0 or less, preferably 1.8 or less. For example, rugby ball shape, mushroom shape, flat shape, oval shape, spheroid shape and the like can be mentioned. The particles used in this example include not only primary particles but also aggregates (secondary particles) of several particles. Therefore, the range of the aspect ratio is based on primary particles or secondary particles.
As a commercial item corresponding to the specially shaped particles, for example, trade name “Techpolymer” (Sekisui Chemicals Co., Ltd.) exists.
 なお、「異方性」とは、等方的ではなく粒子が物理的に方向性を有するという意味であり、つまり、本例で用いる粒子が上記所定範囲のアスペクト比になることを意味している。「アスペクト比」とは、外接長方形(粒子図形を長方形で囲んだときの最小長方形)の長さと幅の比を意味し、この値は例えば粒度分布画像解析装置などで測定することができる。 The term “anisotropic” means that the particles are not isotropic but physically oriented, that is, the particles used in this example have an aspect ratio in the above predetermined range. Yes. “Aspect ratio” means the ratio of the length and width of a circumscribed rectangle (the smallest rectangle when a particle figure is surrounded by a rectangle), and this value can be measured by, for example, a particle size distribution image analyzer.
 本例では、特殊形状の粒子を含有させて凹凸層21,31を構成することで、この凹凸層21,31を含む本例の表面部材をディスプレイ1上に間隔をあけて配置し、その後に表面部材に触れ、その結果、表面部材を構成する部材本体2とディスプレイ1の間隔が狭くなっても、ニュートンリングの発生防止とスパークルの発生防止を同時に満足することができる。 In this example, the surface layers of this example including the uneven layers 21 and 31 are arranged on the display 1 with an interval by including the irregularly shaped layers 21 and 31 by containing particles of special shapes, and thereafter Even if the surface member is touched and, as a result, the distance between the member main body 2 constituting the surface member and the display 1 becomes narrow, it is possible to satisfy both the prevention of Newton ring and the prevention of sparkle.
 このように特殊形状の粒子を凹凸層21,31中に含有させた場合にニュートンリングとスパークルの両事象の発生を防止できる理由は次のように考えられる。 The reason why both the Newton ring and sparkle events can be prevented when the specially shaped particles are contained in the concavo-convex layers 21 and 31 is as follows.
 ディスプレイ1から発生する光は、通常、粒子を中心とする凸部を通過する際に屈折する。ここで、アスペクト比が1.2未満の球形に近い粒子(本発明の比較例相当)を利用した場合、図3(a)に示すように、凸部で屈折した光の角度分布は広くなる。一方、アスペクト比が1.2以上の粒子(本発明の実施例相当)を利用した場合、図3(b)に示すように、凸部で屈折した光の角度分布は狭くなる。この差はアスペクト比に起因する凸部の傾斜の違いが影響している。「スパークル」は凸部で光が屈折することにより生じる画素が乱れる現象であるが、アスペクト比が1.2以上の場合、屈折光の角度分布を狭くできるため、画素の乱れを少なくすることができる(スパークルを生じにくくすることができる)と考えられる。 The light generated from the display 1 is normally refracted when passing through a convex portion centered on particles. Here, when a nearly spherical particle (corresponding to a comparative example of the present invention) having an aspect ratio of less than 1.2 is used, as shown in FIG. 3A, the angular distribution of the light refracted by the convex portion becomes wide. . On the other hand, when particles having an aspect ratio of 1.2 or more (corresponding to the embodiment of the present invention) are used, the angular distribution of light refracted by the convex portion becomes narrow as shown in FIG. This difference is influenced by the difference in the slope of the convex portion due to the aspect ratio. “Sparkle” is a phenomenon in which a pixel is disturbed due to light being refracted at a convex portion. However, when the aspect ratio is 1.2 or more, the angle distribution of the refracted light can be narrowed, so that the disturbance of the pixel can be reduced. It is thought that it is possible (it can make it hard to produce a sparkle).
 一方、ニュートンリング防止性は、粒子により凸部を形成して、対向する面との間隔を保つことにより得られる効果である。このため、アスペクト比が1.2以上の粒子も当該効果を有している。ただし、アスペクト比が2.0を超える場合、粒子の向きによっては対向する面との間隔を十分保つことができず、ニュートンリング防止性が不十分になる。このため本例ではアスペクト比の上限を2.0としている。なお、比較的十分なニュートンリング防止性を得る観点から、アスペクト比の上限を1.8とすることが好ましい。 On the other hand, Newton's ring prevention property is an effect obtained by forming a convex portion with particles and maintaining a distance from the opposing surface. For this reason, particles having an aspect ratio of 1.2 or more also have this effect. However, when the aspect ratio exceeds 2.0, the distance from the facing surface cannot be sufficiently maintained depending on the orientation of the particles, and Newton's ring prevention property becomes insufficient. Therefore, in this example, the upper limit of the aspect ratio is 2.0. Note that the upper limit of the aspect ratio is preferably 1.8 from the viewpoint of obtaining a relatively sufficient Newton ring prevention property.
 本例で用いる粒子は、無機系(無機粒子)、有機系(樹脂粒子)のいずれの材質で構成されたものも使用可能である。とりわけ樹脂粒子は、バインダー樹脂との屈折率差を小さくしやすく、それによって塗膜(凹凸層21,31)の白っぽさやスパークルを防止しやすくできる点で好適である。無機粒子としては、シリカ、アルミナ、タルク、クレイ、炭酸カルシウム、炭酸マグネシウム、硫酸バリウム、水酸化アルミニウム、二酸化チタン、酸化ジルコニウムなどが挙げられる。樹脂粒子としては、アクリル系樹脂粒子、シリコーン系樹脂粒子、ナイロン系樹脂粒子、スチレン系樹脂粒子、ポリエチレン系樹脂粒子、ベンゾグアナミン系樹脂粒子、ウレタン系樹脂粒子などが挙げられる。 As the particles used in this example, particles made of any of inorganic (inorganic particles) and organic (resin particles) can be used. In particular, the resin particles are preferable in that the difference in refractive index from the binder resin can be easily reduced, thereby making it possible to easily prevent the whitishness and sparkle of the coating films (uneven layers 21 and 31). Examples of the inorganic particles include silica, alumina, talc, clay, calcium carbonate, magnesium carbonate, barium sulfate, aluminum hydroxide, titanium dioxide, and zirconium oxide. Examples of the resin particles include acrylic resin particles, silicone resin particles, nylon resin particles, styrene resin particles, polyethylene resin particles, benzoguanamine resin particles, and urethane resin particles.
 本例で用いる粒子は、平均粒子径が、好ましくは0.5μm以上、より好ましくは0.8μm以上、さらに好ましくは1.5μm以上、特に好ましくは2.0μm以上、最も好ましくは2.5μm以上である。特殊形状(上記アスペクト比の範囲)であって平均粒子径が0.5μm以上の粒子を用いることで、凹凸層21,31にニュートンリングの防止作用を発現させやすい。平均粒子径は、好ましくは8.0μm以下、より好ましくは5.0μm以下、さらに好ましくは4.0μm以下、特に好ましくは3.0μm以下、最も好ましくは2.7μm以下である。特殊形状であって平均粒子径が8.0μm以下の粒子を用いることで、凹凸層21,31にスパークルの防止作用を発現させやすい。なお、「平均粒子径」とは、コールターカウンター法で測定される粒子体積を球に換算して算出したものとする。そのため、本例で用いる特殊形状の粒子は、長径側の値が平均粒子径の値より大きくなり、短径側が平均粒子径より小さくなる。 The particles used in this example have an average particle size of preferably 0.5 μm or more, more preferably 0.8 μm or more, further preferably 1.5 μm or more, particularly preferably 2.0 μm or more, and most preferably 2.5 μm or more. It is. By using particles having a special shape (range of the above aspect ratio) and an average particle diameter of 0.5 μm or more, it is easy to cause the uneven layers 21 and 31 to exhibit a Newton ring prevention effect. The average particle diameter is preferably 8.0 μm or less, more preferably 5.0 μm or less, further preferably 4.0 μm or less, particularly preferably 3.0 μm or less, and most preferably 2.7 μm or less. By using particles having a special shape and an average particle diameter of 8.0 μm or less, it is easy to cause the uneven layers 21 and 31 to exhibit a sparkle-preventing action. The “average particle size” is calculated by converting the particle volume measured by the Coulter counter method into a sphere. Therefore, in the specially shaped particles used in this example, the value on the long diameter side is larger than the value on the average particle diameter, and the value on the short diameter side is smaller than the average particle diameter.
 本例で用いる粒子は、その表面に曲面部分を含み、該曲面部分が楕円形状であることが好ましい。粒子の表面に曲面部分を含むことにより、凹凸層21,31に対向する部材本体2への傷つきを防止しやすくできる。また、曲面部分が楕円形状であると、曲面部分が真円形状である場合に比べて、凸部で屈折した光の角度分布を狭くして、スパークルを生じづらくすることができる。 The particles used in this example preferably include a curved surface portion on the surface, and the curved surface portion is preferably elliptical. By including a curved surface portion on the surface of the particle, it is possible to easily prevent damage to the member main body 2 facing the uneven layers 21 and 31. In addition, when the curved surface portion is elliptical, the angle distribution of the light refracted by the convex portion can be narrowed and sparkle is less likely to occur than when the curved surface portion is a perfect circle.
 なお、「粒子表面に曲面部分を含む」とは、粒子表面の少なくとも一部が曲面であれば良いことを意味する。粒子の表面に平坦部分を有していても、他に曲面部分を有していれば良い。 It should be noted that “the particle surface includes a curved surface portion” means that at least a part of the particle surface may be a curved surface. Even if it has a flat portion on the surface of the particles, it may have another curved portion.
 本例で用いる粒子の含有量は、バインダー樹脂100重量部に対して、好ましくは0.5重量部以上、より好ましくは1.0重量部以上であって、好ましくは5.0重量部以下、より好ましくは4.0重量部以下、さらに好ましくは3.0重量部以下、特に好ましくは2.5重量部以下とする。凹凸層21,31中の含有量を5.0重量部以下とすることによりスパークル防止性および透明性を良好にしやすくでき、含有量を0.5重量部以上とすることによりニュートンリングの発生を防止しやすくできる。 The content of the particles used in this example is preferably 0.5 parts by weight or more, more preferably 1.0 parts by weight or more, preferably 5.0 parts by weight or less, with respect to 100 parts by weight of the binder resin. More preferably, it is 4.0 weight part or less, More preferably, it is 3.0 weight part or less, Most preferably, it is 2.5 weight part or less. By making the content in the concavo-convex layers 21 and 31 5.0 parts by weight or less, it is easy to improve the sparkle prevention and transparency, and by making the content 0.5 parts by weight or more, Newton rings are generated. Easy to prevent.
 バインダー樹脂としては、ポリエステル系樹脂、アクリル系樹脂、アクリルウレタン系樹脂、ポリエステルアクリレート系樹脂、ポリウレタンアクリレート系樹脂、エポキシアクリレート系樹脂、ウレタン系樹脂、エポキシ系樹脂、ポリカーボネート系樹脂、セルロース系樹脂、アセタール系樹脂、ビニル系樹脂、ポリエチレン系樹脂、ポリスチレン系樹脂、ポリプロピレン系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、メラミン系樹脂、フェノール系樹脂、シリコーン系樹脂、フッ素系樹脂などの、熱可塑性樹脂、熱硬化性樹脂、電離放射線硬化性樹脂などが挙げられる。これらの中でも、表面硬度に優れる電離放射線硬化型樹脂が好ましい。 As binder resins, polyester resins, acrylic resins, acrylic urethane resins, polyester acrylate resins, polyurethane acrylate resins, epoxy acrylate resins, urethane resins, epoxy resins, polycarbonate resins, cellulose resins, acetals Resin, vinyl resin, polyethylene resin, polystyrene resin, polypropylene resin, polyamide resin, polyimide resin, melamine resin, phenolic resin, silicone resin, fluorine resin, thermoplastic resin, heat Examples thereof include curable resins and ionizing radiation curable resins. Among these, ionizing radiation curable resins having excellent surface hardness are preferable.
 本例の凹凸層21,31には、さらに、レベリング剤、紫外線吸収剤、酸化防止剤などの添加剤が配合してあってもよい。 The concavo-convex layers 21 and 31 of this example may further contain additives such as a leveling agent, an ultraviolet absorber, and an antioxidant.
 本例の凹凸層21,31を形成するには、例えば、バインダー樹脂が溶解され、適宜の成分が配合された塗工液を部材本体2や透明基材32の表面に塗布した後、乾燥などで溶媒を除去し、樹脂を塗膜化させることにより行う。その際、上述した特殊形状の粒子は、樹脂の塗工液に分散されて塗工されてもよい。あるいはバインダー樹脂の塗工液とは異なる樹脂の塗工液を準備し、この塗工液を部材本体2や透明基材32の表面に塗布してもよい。塗工液に用いる溶媒としては、コーティング用の塗工液として使用できるものであればよく、任意のものを用いることができる。
 凹凸層21,31の塗工方法としては、塗工液により部材本体2や透明基材32の表面をコーティングするための任意の方法を用いることができ、例えば、バーコータ、ダイコータ、ブレードコータ、スピンコータ、ロールコータ、グラビアコータ、フローコータ、スプレー、スクリーン印刷等を用いた方法が挙げられる。
In order to form the concavo-convex layers 21 and 31 of this example, for example, a binder resin is dissolved and a coating liquid containing appropriate components is applied to the surface of the member body 2 or the transparent substrate 32, and then dried. And removing the solvent to form a resin film. At that time, the particles having the special shape described above may be applied by being dispersed in a resin coating solution. Alternatively, a resin coating liquid different from the binder resin coating liquid may be prepared, and this coating liquid may be applied to the surface of the member body 2 or the transparent substrate 32. The solvent used in the coating liquid may be any solvent as long as it can be used as a coating liquid for coating, and any solvent can be used.
As a method for coating the concavo-convex layers 21, 31, any method for coating the surface of the member main body 2 or the transparent substrate 32 with a coating liquid can be used. For example, a bar coater, a die coater, a blade coater, a spin coater , Roll coater, gravure coater, flow coater, spray, screen printing and the like.
 本例では、凹凸層21,31中でのバインダー樹脂部分と粒子部分の屈折率の差が0.2以内となるように採択したバインダー樹脂と粒子を含む1つ以上の塗工液を用いて、凹凸層21,31を塗膜化することが好ましい。
 こうした塗布液を部材本体2あるいは透明基材32に塗布し乾燥した後に形成される凹凸層21,31、あるいは塗布液を塗布し乾燥してから電離放射線を照射した後に形成される凹凸層21,31において、バインダー樹脂部分と粒子部分との屈折率の差が0.2以内である場合、塗膜の白っぽさやスパークルの両不都合を防止しやすくできる点が本発明者らにより確認された。
 なお、バインダー樹脂に電離放射線硬化型樹脂を用いた場合の、その樹脂を硬化させる方法としては、任意の方法を用いることができる。中でも紫外線を照射して硬化させ塗膜化させるのが好ましく、その場合、高圧水銀灯、低圧水銀灯、超高圧水銀灯、メタルハライドランプ、カーボンアーク、キセノンアーク等の光源を利用することができる。
In this example, one or more coating liquids containing binder resin and particles, which are selected so that the difference in refractive index between the binder resin portion and the particle portion in the concavo-convex layers 21 and 31 is within 0.2, are used. The concavo-convex layers 21 and 31 are preferably coated.
Irregular layers 21 and 31 formed after such a coating liquid is applied to the member body 2 or the transparent substrate 32 and dried, or irregular layers 21 and 31 formed after the coating liquid is applied and dried and then irradiated with ionizing radiation, In FIG. 31, when the difference in refractive index between the binder resin portion and the particle portion is within 0.2, the present inventors have confirmed that it is easy to prevent both the whiteness of the coating film and the sparkle. .
In addition, arbitrary methods can be used as a method of hardening the resin at the time of using ionizing radiation curable resin for binder resin. Among them, it is preferable to cure by UV irradiation to form a coating film. In that case, a light source such as a high pressure mercury lamp, a low pressure mercury lamp, an ultrahigh pressure mercury lamp, a metal halide lamp, a carbon arc, or a xenon arc can be used.
 以上の方法で形成される凹凸層21,31の内部において、本例で用いる粒子は、その長軸方向が凹凸層21,31の厚み方向と交差(好ましくは直交)する方向に沿って配置されることが好ましい。本例で用いる粒子形状の特殊性から、塗工液が塗布されて暫くしたら、自らが力学的により安定な状態になろうとし、その長軸方向が凹凸層21,31の厚み方向と交差する方向に沿って部材本体2又は透明基材32の表面に残る。凹凸層21,31内で粒子がこのように配置されることで、ニュートンリング発生を防止できるとともに、図3(b)に示すように、凸部で屈折した光の角度分布は狭くなり、その結果、画素の乱れを抑え、スパークルの防止に寄与することができる。すなわち、ニュートンリングとスパークルの両事象の発生防止を両立することができる。 In the uneven layers 21 and 31 formed by the above method, the particles used in this example are arranged along the direction in which the major axis direction intersects (preferably orthogonally) the thickness direction of the uneven layers 21 and 31. It is preferable. Due to the peculiarity of the particle shape used in this example, after a while after the coating liquid is applied, it tries to become mechanically more stable, and the major axis direction intersects the thickness direction of the uneven layers 21 and 31. It remains on the surface of the member main body 2 or the transparent substrate 32 along the direction. By arranging the particles in the concavo-convex layers 21 and 31 in this way, Newton's ring can be prevented, and as shown in FIG. 3B, the angular distribution of the light refracted by the convex portion becomes narrower. As a result, pixel disturbance can be suppressed and sparkle can be prevented. That is, it is possible to achieve both prevention of occurrence of both Newton ring and sparkle events.
 凹凸層21,31の厚み(粒子を除くバインダー樹脂のみからなる部分の厚み)は、好ましくは0.1μm以上、より好ましくは0.5μm以上、さらに好ましくは0.8μm以上、特に好ましくは1.0μm以上であって、好ましくは3.0μm以下、より好ましくは2.5μm以下、さらに好ましくは2.2μm以下、特に好ましくは1.8μm以下とされる。特にニュートンリングの発生を防止する観点からは、上記粒子の平均粒子径を基準に、その0.8倍以下であることが好ましく、より好ましくは0.6倍以下、さらに好ましくは0.5倍以下とする。なお凹凸層21,31の厚みを上記粒子の平均粒子径の好ましくは0.2倍以上、より好ましくは0.3倍以上、さらに好ましくは0.4倍を超えるように(0.4倍超)に設計した場合、凹凸層21,31からの粒子の脱落を防止しやすくできる点で好適である。 The thickness of the concavo-convex layers 21 and 31 (thickness of the portion consisting only of the binder resin excluding the particles) is preferably 0.1 μm or more, more preferably 0.5 μm or more, further preferably 0.8 μm or more, and particularly preferably 1. It is 0 μm or more, preferably 3.0 μm or less, more preferably 2.5 μm or less, further preferably 2.2 μm or less, and particularly preferably 1.8 μm or less. In particular, from the viewpoint of preventing the occurrence of Newton rings, it is preferably 0.8 times or less, more preferably 0.6 times or less, and even more preferably 0.5 times, based on the average particle diameter of the particles. The following. The thickness of the concavo-convex layers 21 and 31 is preferably 0.2 times or more, more preferably 0.3 times or more, and further preferably more than 0.4 times the average particle diameter of the above particles (more than 0.4 times). ) Is preferable in that it is easy to prevent the particles from falling off the uneven layers 21 and 31.
 以上説明してきたように、本例によれば、ディスプレイ1上に間隔をあけて表面部材(部材本体2+凹凸層21、又は、部材本体2+接着層33+ニュートンリング防止シート3)を配置して構成される表面部材付きディスプレイ4,4aは、表面部材のディスプレイ1と対向する面に本例の凹凸層21,31を有する。このため、表面部材の一部が撓んでも凹凸層21,31とディスプレイ1の間隔が一定以上に保持され、これによりニュートンリングを防止する。これに加え、特殊形状の粒子を含有させて凹凸層21,31を構成しているので、粒子を中心とする凸部を通過する際の屈折光の角度分布を狭くできる。その結果、屈折光の角度分布が広くなることによって発生する画素の乱れ(スパークル)の発生防止にも寄与する。すなわち本例の表面部材付きディスプレイ4,4aは、ニュートンリング防止性とスパークル防止性とを同時に満足することができる。 As described above, according to this example, the surface member (member main body 2 + uneven layer 21 or member main body 2+ adhesive layer 33 + Newton ring prevention sheet 3) is arranged on the display 1 with a space therebetween. The display with the surface member 4, 4 a has the uneven layers 21, 31 of this example on the surface of the surface member facing the display 1. For this reason, even if a part of surface member bends, the space | interval of the uneven | corrugated layers 21 and 31 and the display 1 is hold | maintained more than fixed, thereby preventing a Newton ring. In addition, since the irregular layers 21 and 31 are formed by containing specially shaped particles, the angular distribution of the refracted light when passing through the convex portion centered on the particles can be narrowed. As a result, it contributes to preventing the occurrence of pixel disturbance (sparkle) that occurs due to the wide angular distribution of refracted light. That is, the display 4 and 4a with the surface member of this example can satisfy the Newton ring prevention property and the sparkle prevention property at the same time.
 以下、本発明の実施形態をより具体化した実施例を挙げ、さらに詳細に説明する。なお、本実施例において「部」、「%」は、特に示さない限り重量基準である。 Hereinafter, more detailed description will be given by giving more specific examples of the embodiment of the present invention. In this example, “parts” and “%” are based on weight unless otherwise specified.
[実施例1]
 厚み125μmの透明ポリエステルフィルム(コスモシャインA4350:東洋紡績社)の一方の面に、下記処方の塗布液aを塗布、乾燥、紫外線照射し、厚み1.2μmの凹凸層を形成し、本例のニュートンリング防止シートを得た。なお、本例の塗布液に配合した電離放射線硬化型樹脂と粒子の屈折率差は0.2以内であった。
[Example 1]
On one side of a 125 μm thick transparent polyester film (Cosmo Shine A4350: Toyobo Co., Ltd.), a coating liquid a having the following formulation was applied, dried, and irradiated with ultraviolet rays to form a concavo-convex layer having a thickness of 1.2 μm. A Newton ring prevention sheet was obtained. The difference in refractive index between the ionizing radiation curable resin and the particles blended in the coating solution of this example was within 0.2.
<塗布液a>
・電離放射線硬化型樹脂(固形分80%)      42部
(ユニディック17-813:DIC社)
・光重合開始剤                1.34部
(イルガキュア651:チバ・ジャパン社)
・アクリル樹脂粒子              0.67部
(テクポリマー67BT:積水化成品工業社、ラグビーボール状)
(平均粒子径:2.64μm、屈折率:1.49、アスペクト比1.2~1.8)
(楕円状の曲面部)
・希釈溶剤                   245部
<Coating liquid a>
・ Ionizing radiation curable resin (solid content 80%) 42 parts (Unidic 17-813: DIC Corporation)
-Photopolymerization initiator 1.34 parts (Irgacure 651: Ciba Japan)
・ Acrylic resin particles 0.67 parts (Techpolymer 67BT: Sekisui Plastics, Rugby Ball)
(Average particle diameter: 2.64 μm, refractive index: 1.49, aspect ratio: 1.2 to 1.8)
(Oval curved surface)
・ 245 parts diluted solvent
[実施例2]
 塗布液aのアクリル樹脂粒子を下記のものに変更した以外は、実施例1と同様にして本例のニュートンリング防止シートを得た。なお、本例の塗布液に配合した電離放射線硬化型樹脂と粒子の屈折率差は0.2以内であった。
・アクリル樹脂粒子
(テクポリマー69BT:積水化成品工業社、マッシュルーム状)
(平均粒子径:2.53μm、屈折率:1.49、アスペクト比:約1.2~1.6)
(マッシュルームの傘部分は楕円状の曲面部)
[Example 2]
A Newton ring prevention sheet of this example was obtained in the same manner as in Example 1 except that the acrylic resin particles of the coating liquid a were changed to the following. The difference in refractive index between the ionizing radiation curable resin and the particles blended in the coating solution of this example was within 0.2.
・ Acrylic resin particles (Techpolymer 69BT: Sekisui Plastics, Mushroom)
(Average particle size: 2.53 μm, refractive index: 1.49, aspect ratio: about 1.2 to 1.6)
(The mushroom umbrella is an elliptical curved surface)
[実施例3]
 塗布液aのアクリル樹脂粒子を下記のものに変更した以外は、実施例1と同様にして本例のニュートンリング防止シートを得た。なお、本例の塗布液に配合した電離放射線硬化型樹脂と粒子の屈折率差は0.2以内であった。
・アクリル樹脂粒子
(テクポリマー68BT:積水化成品工業社、半球状)
(平均粒子径:2.67μm、屈折率:1.49、アスペクト比2.0)
(真円状の曲面部)
[Example 3]
A Newton ring prevention sheet of this example was obtained in the same manner as in Example 1 except that the acrylic resin particles of the coating liquid a were changed to the following. The difference in refractive index between the ionizing radiation curable resin and the particles blended in the coating solution of this example was within 0.2.
・ Acrylic resin particles (Techpolymer 68BT: Sekisui Plastics, hemisphere)
(Average particle diameter: 2.67 μm, refractive index: 1.49, aspect ratio 2.0)
(Circular curved surface)
[実施例4]
 塗布液aのアクリル樹脂粒子を下記のものに変更した以外は、実施例1と同様にして本例のニュートンリング防止シートを得た。なお、本例の塗布液に配合した電離放射線硬化型樹脂と粒子の屈折率差は0.2を超えた。
・無機粒子(シリカ)
(ラグビーボール状)
(平均粒子径:2.65μm、屈折率:1.46、アスペクト比:約1.4~1.8)
(楕円状の曲面部となるように設計した。)
[Example 4]
A Newton ring prevention sheet of this example was obtained in the same manner as in Example 1 except that the acrylic resin particles of the coating liquid a were changed to the following. The difference in refractive index between the ionizing radiation curable resin and the particles blended in the coating solution of this example exceeded 0.2.
・ Inorganic particles (silica)
(Rugby ball shape)
(Average particle size: 2.65 μm, refractive index: 1.46, aspect ratio: about 1.4 to 1.8)
(Designed to have an elliptical curved surface.)
[比較例1]
 塗布液aのアクリル樹脂粒子を下記のものに変更した以外は、実施例1と同様にして本例のニュートンリング防止シートを得た。
・アクリル樹脂粒子
(MX-300:綜研化学工業社、真球状)
(平均粒子径:3.0μm、屈折率:1.49、アスペクト比1.0)
[Comparative Example 1]
A Newton ring prevention sheet of this example was obtained in the same manner as in Example 1 except that the acrylic resin particles of the coating liquid a were changed to the following.
・ Acrylic resin particles (MX-300: Soken Chemical Industry Co., Ltd., spherical)
(Average particle diameter: 3.0 μm, refractive index: 1.49, aspect ratio 1.0)
[比較例2]
 塗布液aのアクリル樹脂粒子を下記のものに変更した以外は、実施例1と同様にして本例のニュートンリング防止シートを得た。
・アクリル-シリコーンハイブリッド樹脂粒子
(Silcurusta MK03:日興リカ社、金平糖状)
(平均粒子径:3.0μm、アスペクト比1.0)
[Comparative Example 2]
A Newton ring prevention sheet of this example was obtained in the same manner as in Example 1 except that the acrylic resin particles of the coating liquid a were changed to the following.
・ Acrylic-silicone hybrid resin particles (Silcurusta MK03: Nikko Rika Co., Ltd.)
(Average particle diameter: 3.0 μm, aspect ratio 1.0)
[比較例3]
 塗布液aのアクリル樹脂粒子を下記のものに変更した以外は、実施例1と同様にして本例のニュートンリング防止シートを得た。
・アクリル樹脂粒子
(ラグビーボール状)
(平均粒子径:2.14μm、屈折率:1.49、アスペクト比3.0)
(楕円状の曲面部となるように設計した。)
[Comparative Example 3]
A Newton ring prevention sheet of this example was obtained in the same manner as in Example 1 except that the acrylic resin particles of the coating liquid a were changed to the following.
・ Acrylic resin particles (rugby ball shape)
(Average particle diameter: 2.14 μm, refractive index: 1.49, aspect ratio 3.0)
(Designed to have an elliptical curved surface.)
[表面部材付きディスプレイの製作]
 各例により得られたニュートンリング防止シートを、市販の接着剤(OCA:Optical Clear Adhesive)を介して静電容量式タッチパネルの背面にそれぞれ貼り合わせた。次に、液晶ディスプレイ上に、0.3mmのギャップを介在させた状態で、凹凸層が対向するようにして静電容量式タッチパネルを設置して、各例の表面部材付きディスプレイを得た。
[Production of display with surface members]
The Newton ring prevention sheet obtained in each example was bonded to the back surface of the capacitive touch panel via a commercially available adhesive (OCA: Optical Clear Adhesive). Next, a capacitive touch panel was installed on the liquid crystal display with a gap of 0.3 mm so that the concavo-convex layers were opposed to each other to obtain a display with a surface member of each example.
[評 価]
 各例により得られた、表面部材付きディスプレイまたはニュートンリング防止シートについて、以下の評価を行った。結果を表1に示す。
[Evaluation]
The following evaluation was performed about the display with a surface member or the Newton ring prevention sheet obtained by each example. The results are shown in Table 1.
1.ニュートンリング
 表面部材付きディスプレイのタッチパネル表面を指で軽く触れた際のニュートンリングの発生状態を目視で観察した。その結果、ニュートンリングが見えなかったものを「○」、ニュートンリングが見えたものを「×」とした。
1. Newton ring The appearance of Newton's ring when the touch panel surface of the display with a surface member was lightly touched with a finger was visually observed. As a result, the case where the Newton ring was not visible was indicated as “◯”, and the case where the Newton ring was visible as “x”.
2.スパークル
 表面部材付きディスプレイの液晶表示画面を全面グリーン表示にして、スパークルの発生状態を目視で観察した。その結果、スパークルが見えなかったものを「○」、スパークルがわずかに見えたが支障なかったものを「△」、スパークルが激しく見えたものを「×」とした。
2. Sparkle The liquid crystal display screen of the display with a surface member was displayed in green on the entire surface, and the occurrence of sparkle was visually observed. As a result, “◯” indicates that the sparkle was not visible, “△” indicates that the sparkle was slightly visible but did not hinder, and “x” indicates that the sparkle appeared intense.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 実施例1~4のものは、アスペクト比が本発明範囲内の粒子を凹凸層に含有させたことから、ニュートンリング防止性を有しつつスパークルを十分に抑えることができた。特に実施例1,2のものは、凹凸層に含有させた粒子が表面に曲面部分を含み、当該部分が楕円形状であったことから、スパークルの抑制に特に優れるものであった。なお、実施例4のものは、アスペクト比が本発明範囲内で、かつ表面に曲面部分を含み、当該部分を楕円形状に設計した粒子を用いたが、粒子材質が無機系(シリカ)であったために、樹脂との屈折率差が0.2を超え、僅かにスパークルの発生が確認できたが、実用に支障はないと判断された。
 なお、電子顕微鏡(SEM)を用いて凹凸層内の粒子の存在状態を観察したところ、実施例1~4のものは、粒子の長軸方向が凹凸層の厚み方向と直交する方向(つまりフィルム面と平行な方向)に沿った配置で粒子が凹凸層内に存在していることが確認できた。
In Examples 1 to 4, since the concavo-convex layer contained particles having an aspect ratio in the range of the present invention, it was possible to sufficiently suppress sparkle while having Newton ring prevention properties. In particular, those in Examples 1 and 2 were particularly excellent in suppressing sparkle because the particles contained in the concavo-convex layer included a curved surface portion on the surface and the portion was elliptical. In Example 4, particles having an aspect ratio within the range of the present invention and having a curved surface portion on the surface and designed to have an elliptical shape were used, but the particle material was inorganic (silica). For this reason, the difference in refractive index from the resin exceeded 0.2, and the occurrence of a slight sparkle was confirmed, but it was determined that there was no problem in practical use.
When the presence state of the particles in the concavo-convex layer was observed using an electron microscope (SEM), in Examples 1 to 4, the major axis direction of the particles was perpendicular to the thickness direction of the concavo-convex layer (that is, a film It was confirmed that the particles were present in the concavo-convex layer in an arrangement along the direction parallel to the surface.
 一方、比較例1,2のものは、凹凸層中の粒子のアスペクト比が1.0(本発明範囲の下限値未満)であったため、ニュートンリング防止性を有するものの、スパークルを抑えることはできなかった。比較例3のものは、凹凸層中の粒子のアスペクト比が3.0(本発明範囲の上限値超)であったため、スパークルを抑えることはできたが、ニュートンリング防止性を発揮できなかった。 On the other hand, in Comparative Examples 1 and 2, since the aspect ratio of the particles in the concavo-convex layer was 1.0 (less than the lower limit of the range of the present invention), although it has Newton ring prevention properties, it can suppress sparkle. There wasn't. In Comparative Example 3, since the aspect ratio of the particles in the concavo-convex layer was 3.0 (exceeding the upper limit of the range of the present invention), the sparkle could be suppressed, but the Newton ring prevention property could not be exhibited. .
[実施例5]
 塗布液aのアクリル樹脂粒子の含有量(電離放射線硬化型樹脂の固形分100重量部に対する重量換算の含有量)を5.5重量部に変更した以外は、実施例1と同様にして本例のニュートンリング防止シートを得た。また上記同様に、表面部材付きディスプレイを製作した。次に、上記評価を行った。その結果、本例のものは、アスペクト比が本発明範囲内で、かつ表面に曲面部分を含み、当該部分を楕円形状に設計した粒子を用いたが、粒子の含有量が多すぎる傾向にあったため、僅かに透明性が劣化し、かつ僅かにスパークルの発生が確認できたが、実用に支障はないと判断された。
[Example 5]
This example is the same as Example 1 except that the content of acrylic resin particles in coating liquid a (content in terms of weight relative to 100 parts by weight of solid content of ionizing radiation curable resin) is changed to 5.5 parts by weight. Newton ring prevention sheet was obtained. In the same manner as described above, a display with a surface member was manufactured. Next, the above evaluation was performed. As a result, in this example, particles having an aspect ratio within the scope of the present invention and including a curved surface portion on the surface and an elliptical shape of the portion were used, but the particle content tends to be too much. Therefore, the transparency was slightly deteriorated and the occurrence of sparkle was confirmed slightly, but it was judged that there was no problem in practical use.
[実施例6]
 塗布液aのアクリル樹脂粒子の含有量(電離放射線硬化型樹脂の固形分100重量部に対する重量換算の含有量)を0.4重量部に変更した以外は、実施例1と同様にして本例のニュートンリング防止シートを得た。また上記同様に、表面部材付きディスプレイを製作した。次に、上記評価を行った。その結果、本例のものは、アスペクト比が本発明範囲内で、かつ表面に曲面部分を含み、当該部分を楕円形状に設計した粒子を用いたが、粒子の含有量が少ない傾向にあったため、スパークルを抑えることはできたが、僅かにニュートンリングの発生が確認できた。しかしながらこの程度の発生に支障はないと判断された。
[Example 6]
This example was the same as Example 1 except that the content of acrylic resin particles in coating solution a (content in terms of weight relative to 100 parts by weight of solid content of ionizing radiation-curable resin) was changed to 0.4 parts by weight. Newton ring prevention sheet was obtained. In the same manner as described above, a display with a surface member was manufactured. Next, the above evaluation was performed. As a result, in the present example, particles having an aspect ratio within the scope of the present invention and a curved surface portion on the surface and designed in an elliptical shape were used, but the content of the particles tended to be small. Although the sparkle could be suppressed, the occurrence of a Newton ring was confirmed slightly. However, it was judged that there was no problem with this level of occurrence.
[実施例7]
 塗布液aに配合するアクリル樹脂粒子として、平均粒子径が0.3μmで屈折率が1.49のもの(ただしアスペクト比は1.2~2.0の範囲内)を準備し、これを用いた以外は、実施例1と同様にして本例のニュートンリング防止シートを得た。また上記同様に、表面部材付きディスプレイを製作した。次に、上記評価を行った。その結果、本例のものは、アスペクト比が本発明範囲内であったが、粒子粒径が小さい傾向にあったため、スパークルを抑えることはできたが、僅かにニュートンリングの発生が確認できた。しかしながらこの程度の発生に支障はないと判断された。
[Example 7]
Prepare acrylic resin particles to be blended in coating solution a with an average particle size of 0.3 μm and a refractive index of 1.49 (with an aspect ratio in the range of 1.2 to 2.0). A Newton ring prevention sheet of this example was obtained in the same manner as in Example 1 except that. In the same manner as described above, a display with a surface member was manufactured. Next, the above evaluation was performed. As a result, in this example, although the aspect ratio was within the range of the present invention, since the particle diameter tended to be small, the sparkle could be suppressed, but the occurrence of Newton's ring was confirmed slightly. . However, it was judged that there was no problem with this level of occurrence.
[実施例8]
 塗布液aに配合するアクリル樹脂粒子として、平均粒子径が8.5μmで屈折率が1.49のもの(ただしアスペクト比は1.2~2.0の範囲内)を準備し、これを用いた以外は、実施例1と同様にして本例のニュートンリング防止シートを得た。また上記同様に、表面部材付きディスプレイを製作した。次に、上記評価を行った。その結果、本例のものは、アスペクト比が本発明範囲内であったが、粒子粒径が大きい傾向にあったため、ニュートンリングの発生を抑えることはできたが、僅かにスパークルの発生が確認できた。しかしながらこの程度の発生に支障はないと判断された。
[Example 8]
Prepare acrylic resin particles to be blended in coating solution a with an average particle diameter of 8.5 μm and a refractive index of 1.49 (however, the aspect ratio is in the range of 1.2 to 2.0). A Newton ring prevention sheet of this example was obtained in the same manner as in Example 1 except that. In the same manner as described above, a display with a surface member was manufactured. Next, the above evaluation was performed. As a result, the aspect ratio of this example was within the range of the present invention, but the particle size tended to be large, so the generation of Newton rings could be suppressed, but the occurrence of sparkle was confirmed slightly. did it. However, it was judged that there was no problem with this level of occurrence.

Claims (14)

  1.  ディスプレイ上に間隔をあけて表面部材を配置した表面部材付きディスプレイにおいて、前記表面部材は、前記ディスプレイと対向する面に、粒子とバインダー樹脂を含有する凹凸層を有し、
     前記粒子は、そのアスペクト比が1.2以上2.0以下の異方性を有するものであり、
     長軸方向が前記凹凸層の厚み方向と交差する方向に沿って前記粒子を前記凹凸層内に存在させたことを特徴とする表面部材付きディスプレイ。
    In the display with the surface member in which the surface member is arranged on the display at an interval, the surface member has a concavo-convex layer containing particles and a binder resin on the surface facing the display,
    The particles have an anisotropy with an aspect ratio of 1.2 or more and 2.0 or less,
    A display with a surface member, wherein the particles are present in the concavo-convex layer along a direction in which a major axis direction intersects a thickness direction of the concavo-convex layer.
  2.  請求項1記載のディスプレイにおいて、粒子は、その表面に曲面部分を含み、該曲面部分が楕円形状であることを特徴とする表面部材付きディスプレイ。 The display according to claim 1, wherein the particle includes a curved surface portion on a surface thereof, and the curved surface portion has an elliptical shape.
  3.  請求項1又は2記載のディスプレイにおいて、凹凸層中での粒子の含有量は、バインダー樹脂100重量部に対して、0.5重量部以上5.0重量部以下である表面部材付きディスプレイ。 3. The display with a surface member according to claim 1, wherein the content of the particles in the uneven layer is 0.5 parts by weight or more and 5.0 parts by weight or less with respect to 100 parts by weight of the binder resin.
  4.  請求項1~3の何れかに記載のディスプレイにおいて、粒子は、その平均粒子径が0.5μm以上8.0μm以下である表面部材付きディスプレイ。 4. The display according to claim 1, wherein the particles have an average particle diameter of 0.5 μm or more and 8.0 μm or less.
  5.  請求項4記載のディスプレイにおいて、凹凸層は、その厚みが0.1μm以上3.0μm以下であって、かつ含有される粒子の平均粒子径の0.2倍以上0.8倍以下である表面部材付きディスプレイ。 5. The display according to claim 4, wherein the uneven layer has a thickness of 0.1 μm or more and 3.0 μm or less, and 0.2 to 0.8 times the average particle diameter of the contained particles. Display with members.
  6.  請求項1~5の何れかに記載のディスプレイにおいて、凹凸層でのバインダー樹脂部分と粒子部分の屈折率の差が0.2以内である表面部材付きディスプレイ。 The display according to any one of claims 1 to 5, wherein the difference in refractive index between the binder resin portion and the particle portion in the concavo-convex layer is 0.2 or less.
  7.  請求項1~6の何れかに記載のディスプレイにおいて、表面部材がタッチパネル又は保護板であることを特徴とする表面部材付きディスプレイ。 7. The display according to claim 1, wherein the surface member is a touch panel or a protective plate.
  8.  粒子とバインダー樹脂を含有する凹凸層を有するニュートンリング防止シートにおいて、
     前記粒子は、そのアスペクト比が1.2以上2.0以下の異方性を有するものであり、
     長軸方向が前記凹凸層の厚み方向と交差する方向に沿って前記粒子を前記凹凸層内に存在させたことを特徴とするニュートンリング防止シート。
    In the Newton ring prevention sheet having an uneven layer containing particles and a binder resin,
    The particles have an anisotropy with an aspect ratio of 1.2 or more and 2.0 or less,
    The Newton ring prevention sheet, wherein the particles are present in the concavo-convex layer along a direction in which a major axis direction intersects a thickness direction of the concavo-convex layer.
  9.  請求項8記載のニュートンリング防止シートにおいて、粒子は、その表面に曲面部分を含み、該曲面部分が楕円形状であることを特徴とするニュートンリング防止シート。 9. The Newton ring prevention sheet according to claim 8, wherein the particles include a curved surface portion on a surface thereof, and the curved surface portion has an elliptical shape.
  10.  請求項8又は9記載のニュートンリング防止シートにおいて、凹凸層中での粒子の含有量は、バインダー樹脂100重量部に対して、0.5重量部以上5.0重量部以下であるニュートンリング防止シート。 The Newton ring prevention sheet of Claim 8 or 9 WHEREIN: Content of the particle | grains in an uneven | corrugated layer is 0.5 weight part or more and 5.0 weight part or less with respect to 100 weight part of binder resins. Sheet.
  11.  請求項8~10の何れかに記載のニュートンリング防止シートにおいて、粒子は、その平均粒子径が0.5μm以上8.0μm以下であるニュートンリング防止シート。 11. The Newton ring prevention sheet according to claim 8, wherein the particles have an average particle diameter of 0.5 μm or more and 8.0 μm or less.
  12.  請求項11記載のニュートンリング防止シートにおいて、凹凸層は、その厚みが0.1μm以上3.0μm以下であって、かつ含有される粒子の平均粒子径の0.2倍以上0.8倍以下であるニュートンリング防止シート。 In the Newton ring prevention sheet of Claim 11, the uneven | corrugated layer is 0.1 micrometer or more and 3.0 micrometers or less, and is 0.2 times or more and 0.8 times or less of the average particle diameter of the particle | grains contained. Newton ring prevention sheet.
  13.  請求項8~12の何れかに記載のニュートンリング防止シートにおいて、凹凸層でのバインダー樹脂部分と粒子部分の屈折率の差が0.2以内であるニュートンリング防止シート。 The Newton ring prevention sheet according to any one of claims 8 to 12, wherein the refractive index difference between the binder resin part and the particle part in the uneven layer is within 0.2.
  14.  請求項8~13の何れかに記載のニュートンリング防止シートにおいて、ディスプレイ上に間隔をあけて配置される表面部材の、前記ディスプレイと対向する面に凹凸層が配置される向きで使用されるニュートンリング防止シート。 The Newton ring prevention sheet according to any one of claims 8 to 13, wherein the Newton ring is used in a direction in which a concavo-convex layer is disposed on a surface of the surface member disposed at an interval on the display so as to face the display. Ring prevention sheet.
PCT/JP2012/080192 2011-12-06 2012-11-21 Display with outer surfacing member, and anti-newton ring sheet WO2013084718A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013548173A JP6087292B2 (en) 2011-12-06 2012-11-21 Display with surface member and Newton ring prevention sheet
KR1020147016951A KR101949554B1 (en) 2011-12-06 2012-11-21 Display with outer surfacing member, and anti-newton ring sheet
CN201280059146.2A CN103959361A (en) 2011-12-06 2012-11-21 Display with outer surfacing member, and anti-newton ring sheet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-266404 2011-12-06
JP2011266404 2011-12-06

Publications (1)

Publication Number Publication Date
WO2013084718A1 true WO2013084718A1 (en) 2013-06-13

Family

ID=48574096

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/080192 WO2013084718A1 (en) 2011-12-06 2012-11-21 Display with outer surfacing member, and anti-newton ring sheet

Country Status (5)

Country Link
JP (1) JP6087292B2 (en)
KR (1) KR101949554B1 (en)
CN (1) CN103959361A (en)
TW (1) TWI601638B (en)
WO (1) WO2013084718A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023008363A1 (en) * 2021-07-29 2023-02-02 パナソニックIpマネジメント株式会社 Reaction curable composition

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106569629B (en) * 2016-08-31 2019-06-04 黄石瑞视光电技术股份有限公司 The touch screen attaching process for inhibiting Newton's ring to generate
JP7296196B2 (en) * 2018-06-01 2023-06-22 株式会社ダイセル Anti-Newton ring film and its manufacturing method and use

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005262442A (en) * 2004-02-18 2005-09-29 Kimoto & Co Ltd Newton ring preventing sheet and touch panel using it
JP2007047621A (en) * 2005-08-12 2007-02-22 Hitachi Ltd Display device and apparatus including same
JP2008129509A (en) * 2006-11-24 2008-06-05 Sumitomo Osaka Cement Co Ltd Anti-glare member and image display device provided with the same
JP2009080256A (en) * 2007-09-26 2009-04-16 Dainippon Printing Co Ltd Antiglare film
JP2009109683A (en) * 2007-10-30 2009-05-21 Tsujiden Co Ltd Antiglare and anti-newton film
JP2009115882A (en) * 2007-11-02 2009-05-28 Toray Ind Inc Filter for plasma display panel
JP2010237340A (en) * 2009-03-30 2010-10-21 Fujifilm Corp Light-transmitting substrate, production method thereof, optical film, polarizing plate and image display

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10282312A (en) 1997-04-10 1998-10-23 Nippon Kayaku Co Ltd Interference fringes elimination sheet
EP1214613A1 (en) * 1999-09-20 2002-06-19 3M Innovative Properties Company Optical films having at least one particle-containing layer
CN1918005B (en) * 2004-02-18 2010-12-08 木本股份有限公司 Newton ring preventing sheet and touch panel using it
JP4448350B2 (en) * 2004-02-18 2010-04-07 株式会社きもと Newton ring prevention sheet and touch panel using the same
JP4500159B2 (en) * 2004-12-22 2010-07-14 日東電工株式会社 Transparent conductive laminate and touch panel provided with the same
KR100954309B1 (en) * 2005-09-12 2010-04-21 닛토덴코 가부시키가이샤 Transparent conductive film, electrode sheet for use in touch panel, and touch panel
JP4753764B2 (en) * 2006-03-29 2011-08-24 株式会社きもと Touch panel
WO2009075218A1 (en) * 2007-12-12 2009-06-18 Kimoto Co., Ltd. Newton ring preventing sheet and touch panel using the same
JP2010078889A (en) * 2008-09-25 2010-04-08 Panasonic Electric Works Co Ltd Optical film and method of manufacturing the same
JP5262609B2 (en) * 2008-11-17 2013-08-14 大日本印刷株式会社 Manufacturing method of optical sheet

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005262442A (en) * 2004-02-18 2005-09-29 Kimoto & Co Ltd Newton ring preventing sheet and touch panel using it
JP2007047621A (en) * 2005-08-12 2007-02-22 Hitachi Ltd Display device and apparatus including same
JP2008129509A (en) * 2006-11-24 2008-06-05 Sumitomo Osaka Cement Co Ltd Anti-glare member and image display device provided with the same
JP2009080256A (en) * 2007-09-26 2009-04-16 Dainippon Printing Co Ltd Antiglare film
JP2009109683A (en) * 2007-10-30 2009-05-21 Tsujiden Co Ltd Antiglare and anti-newton film
JP2009115882A (en) * 2007-11-02 2009-05-28 Toray Ind Inc Filter for plasma display panel
JP2010237340A (en) * 2009-03-30 2010-10-21 Fujifilm Corp Light-transmitting substrate, production method thereof, optical film, polarizing plate and image display

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023008363A1 (en) * 2021-07-29 2023-02-02 パナソニックIpマネジメント株式会社 Reaction curable composition

Also Published As

Publication number Publication date
CN103959361A (en) 2014-07-30
JPWO2013084718A1 (en) 2015-04-27
JP6087292B2 (en) 2017-03-01
KR101949554B1 (en) 2019-02-18
KR20140099502A (en) 2014-08-12
TW201323209A (en) 2013-06-16
TWI601638B (en) 2017-10-11

Similar Documents

Publication Publication Date Title
US10908711B2 (en) Writing sheet for touch panel pen, touch panel, touch panel system, display device, and method for selecting writing sheet for touch panel pen
JP6717317B2 (en) Optical sheet, polarizing plate, method of selecting optical sheet, method of manufacturing optical sheet, and display device
TWI570611B (en) Electrostatic capacitive touch panel and anti-glare film
JP6279280B2 (en) Transparent conductive film and use thereof
TWI571651B (en) Anti - glare film and display device
JP4448350B2 (en) Newton ring prevention sheet and touch panel using the same
JP6498857B2 (en) Display element front film and display element with surface member
JP2007196421A (en) Glare-proof material and display
KR20150106345A (en) Touch panel, display device, optical sheet, method for selecting optical sheet, and method for manufacturing optical sheet
JP6790524B2 (en) How to select a writing sheet for a touch panel pen, a touch panel, a display device, and a writing sheet for a touch panel pen
TWI787634B (en) Writing sheet for touch panel pen, touch panel, touch panel system and display device, and selection method for writing sheet for touch panel pen
JP6087292B2 (en) Display with surface member and Newton ring prevention sheet
JP2007265100A (en) Touch panel
TWI768722B (en) Touch panel, display device, optical sheet, and screening method of optical sheet
JP2011186888A (en) Hard coat substrate for touch panel and touch panel using the same
US20120028000A1 (en) Anti-newton ring sheet, and touch panel using the same
JP4520758B2 (en) Newton ring prevention sheet and touch panel using the same
JP6205224B2 (en) Base substrate sheet and capacitive touch panel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12856230

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013548173

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147016951

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 12856230

Country of ref document: EP

Kind code of ref document: A1