WO2013084710A1 - Illumination control system, transportable terminal instrument, program, and illumination device - Google Patents

Illumination control system, transportable terminal instrument, program, and illumination device Download PDF

Info

Publication number
WO2013084710A1
WO2013084710A1 PCT/JP2012/080028 JP2012080028W WO2013084710A1 WO 2013084710 A1 WO2013084710 A1 WO 2013084710A1 JP 2012080028 W JP2012080028 W JP 2012080028W WO 2013084710 A1 WO2013084710 A1 WO 2013084710A1
Authority
WO
WIPO (PCT)
Prior art keywords
illumination
light
control system
unit
adjustment
Prior art date
Application number
PCT/JP2012/080028
Other languages
French (fr)
Japanese (ja)
Inventor
勇太 山野井
武大 八代
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Publication of WO2013084710A1 publication Critical patent/WO2013084710A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • H05B47/105Controlling the light source in response to determined parameters
    • H05B47/11Controlling the light source in response to determined parameters by determining the brightness or colour temperature of ambient light
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/40Control techniques providing energy savings, e.g. smart controller or presence detection

Definitions

  • the present invention relates to a technique for controlling the lighting state of an illumination light source.
  • a technique is known in which a light sensor detects light from an illumination light source and controls the lighting state of the illumination light source based on the detection result of the light sensor.
  • Patent Document 1 discloses that an optical sensor portion that detects the light amount and light color of illumination is fixedly installed at a predetermined position, and the output of the illumination is adjusted according to the detected light amount and light color. Has been.
  • Patent Document 2 and Patent Document 3 disclose a portable remote control transmitter provided with an optical sensor portion for detecting the amount and color of illumination. Light reception at the optical sensor portion is performed in a state where the remote control transmission unit is disposed at a position where adjustment of the light amount and light color is desired, and the light amount and light color at the position are set to desired values based on the light reception result. As described above, the adjustment signal is transmitted from the remote control transmission unit to the light source unit.
  • JP 60-124398 A Japanese Patent Laid-Open No. 05-021168 JP 2009-289477 A
  • the light sensor can adjust the light amount and the light color regardless of whether the light sensor is attached to a portable device such as a remote controller. It had to be always placed in the desired position. For this reason, the operation
  • the present invention has been made in view of the above-described problems, and a technique capable of controlling a light source so as to adjust the light environment at the position without necessarily arranging the optical sensor at a position where adjustment of the light environment is desired.
  • the purpose is to provide.
  • a 1st aspect is an illumination control system which has an illumination adjustment part which adjusts the output of the said light source based on the measured value of the optical sensor which measures the light environment obtained by the illumination from the light source which can adjust a light emission state
  • the illumination adjustment unit includes an illumination condition storage unit that stores illumination conditions as information indicating location dependence of the light environment generated by illumination from the light source, and an optical sensor position storage unit that stores an arrangement position of the optical sensor.
  • An adjustment position storage unit that stores the adjustment position of the light environment, and obtains a correlation between the light environment of the light sensor arrangement position and the light environment of the adjustment position based on the illumination condition, and the correlation and the An output adjustment unit that adjusts the output of the light source so that the light environment at the adjustment position becomes a target value based on the measurement value of the optical sensor.
  • the second aspect is an illumination control system according to the first aspect, and further includes the optical sensor.
  • the third aspect is the illumination control system according to the second aspect, and further includes an illumination condition acquisition unit that variably acquires the illumination condition stored in the illumination condition storage unit.
  • the fourth aspect is an illumination control system according to the second aspect or the third aspect, and further includes a position information acquisition unit that acquires position information regarding each of the optical sensor arrangement position and the adjustment position.
  • a 5th aspect is an illumination control system which concerns on a 4th aspect, Comprising: The said optical sensor and the said positional information acquisition part are provided in the portable terminal device which can transmit a predetermined
  • a sixth aspect is an illumination control system according to the fifth aspect, wherein the position information acquisition unit includes a position measurement unit that measures the position information.
  • a seventh aspect is the illumination control system according to any one of the first to sixth aspects, further comprising a light environment target value acquisition unit that acquires a target value of the light environment at the adjustment position. .
  • An eighth aspect is a portable terminal device that is provided separately from an illumination adjustment unit that adjusts a light emission state of a light source, and is used for an instruction to the illumination adjustment unit.
  • a position information acquisition unit that acquires position information; and a transmission unit that transmits a measurement value of the light environment measured by the optical sensor and the position information acquired by the position information acquisition unit to the illumination adjustment unit.
  • a ninth aspect is a program, which is installed in a computer and executed, whereby the computer is used as a lighting adjustment unit in the lighting control system according to any one of the first to seventh aspects. It is made to function.
  • a tenth aspect is an illumination device, and includes a light source capable of adjusting a light emission state, and the illumination control system according to any one of the first to seventh aspects.
  • the optical sensor even if the optical sensor is not installed at a position where the adjustment of the light environment is desired, it can be controlled so that the value of the light environment at the position becomes the target value.
  • FIG. 1 is a perspective view of a lighting control system according to the first embodiment.
  • FIG. 2 is a block diagram illustrating a functional configuration of the illumination control system according to the first embodiment.
  • FIG. 3 is a plan view showing an example of illumination conditions.
  • FIG. 4 is a plan view showing another example of illumination conditions.
  • FIG. 5 is a diagram illustrating an example of a numerical table.
  • FIG. 6 is a block diagram of the illumination adjustment unit and the operation display unit.
  • FIG. 7 is a flowchart showing the flow of processing.
  • FIG. 8 is a perspective view of a lighting control system according to the second embodiment.
  • FIG. 9 is a block diagram illustrating a functional configuration of a lighting control system according to the second embodiment.
  • FIG. 10 is a block diagram illustrating a functional configuration of a lighting control system according to the third embodiment.
  • FIG. 1 shows an illumination system LS configured using an illumination control system 10.
  • FIG. 2 is a block diagram functionally showing each part of the lighting control system 10.
  • the illumination system LS includes an illumination control system 10 that performs illumination control of the light source 100 capable of dimming and toning.
  • the light source 100 and the illumination adjustment unit 110 which is an element of the illumination control system 10 are structurally integrated into the illumination unit 11, but functionally, the light source 100 is the illumination control system. 10 control objects, not the elements of the lighting control system 10 itself. Therefore, a configuration including the light source 100 and the illumination control system 10 is referred to as an illumination device.
  • the illumination control system 10 adjusts the output of the light source 100 in the illumination unit 11 and the illumination adjustment unit 110 that adjusts the output of the light source 100 based on the measurement value of the optical sensor 12 that measures the light environment obtained by the light source 100. And an operation display unit 13 for inputting conditions to be used.
  • FIG. 1A shows a case where the illumination system LS is employed in a predetermined space 150 such as a room.
  • the optical sensor 12 and the operation display unit 13 are fixedly installed on the wall surface of the room, and the illumination unit 11 is provided on the ceiling of the room.
  • FIG. 1B shows a case where the illumination system LS is employed in a task lamp 250 such as a desk lamp.
  • the illumination unit 11 is provided at the tip of the leg part 210 extending from the base part 220, and the optical sensor 12 and the operation display part 13 are fixedly installed on a part of the base part 220.
  • the lighting state of the light source 100 included in the illumination unit 11 is controlled based on a detection signal from the optical sensor 12.
  • a desired light environment is obtained at a position where adjustment of the light environment is desired (hereinafter referred to as an adjustment position 3).
  • the adjustment position 3 is a position different from the position where the optical sensor 12 is arranged (hereinafter, sometimes referred to as the optical sensor arrangement position 2).
  • the illumination unit 11 is a part in which the light source 100 and the illumination adjustment unit 110 that adjusts the output of the light source 100 are configured as one illumination fixture.
  • the light source 100 can adopt various forms such as an incandescent bulb, a fluorescent lamp, or an LED (Light Emitting Diode), and has a predetermined color temperature and light color.
  • the light emission state of the light source 100 is variable depending on the magnitude of voltage or current applied to the light source 100. Further, when the light source 100 is a set of LEDs, for example, the light emission state is variable by adjusting the number of the plurality of LEDs to be lit.
  • a predetermined light distribution 300 representing a light environment for each position from the light source 100 is obtained.
  • the index that defines the light environment include light illuminance and correlated color temperature.
  • FIG. 3 schematically shows an example of a light distribution 300 by the light source 100 in a plan view.
  • FIG. 3A shows a plan view of the light distribution 300 when the illumination system LS is installed in a room.
  • FIG. 3B shows a plan view of the light distribution 300 when the illumination system LS is employed in the task lamp 250.
  • the dotted line range shown in FIG. 3 represents the arrangement position of the light source 100.
  • a single circle represents the optical sensor placement position 2 and a double circle represents the adjustment position 3.
  • Such a light distribution 300 is defined according to the performance of the light source 100.
  • the light distribution 300 corresponds to the illumination condition in this embodiment.
  • Such an illumination condition is generally defined as information indicating the location dependence of the light environment caused by illumination from the light source, that is, the light environment depending on the location.
  • the light environment value in the light distribution 300 shows a maximum value in a predetermined three-dimensional range in the vicinity of the light source 100 and attenuates from the range toward the outside. That is, the light environment value varies depending on the relative position (spatial place) from the light source 100. Therefore, the color temperature and the light color value obtained at the adjustment position 3 and the optical sensor placement position 2 are different.
  • the distribution state of the light distribution 300 has regularity, if the light environment value at one position is found, the light environment value at the other position is the regularity of the light distribution 300, that is, a plurality of positions. It can be calculated in accordance with the correlation of the light environment.
  • the correlation coefficient d is previously determined by a test at the manufacturer of the illumination system LS. Calculated. Then, based on the measured value of the optical sensor 12 and the correlation coefficient d, the light environment value at the adjustment position 3 is calculated.
  • each of the light environment values in the light distribution 300 has a non-linear correlation according to the intensity change of the light source 100
  • the adjustment position 3 and the optical sensor are changed while changing the illumination intensity in the test at the manufacturer.
  • the measurement of the light environment value at the arrangement position 2 is repeated.
  • the relationship between the light environment values measured at the adjustment position 3 and the optical sensor placement position 2 is specified as a set of numerical values or a function.
  • a numerical value table 400 shown in FIG. 5, for example, created using such a numerical value set or function is stored in advance, and the correlation of the light environment at each of a plurality of positions based on the numerical value table 400 is, for example, the correlation coefficient d. Identified as In the numerical value table 400 shown in FIG.
  • the photosensor arrangement position 2 is xi and the adjustment position 3 is yj, and the correlation coefficient d (dij) between these positions is shown. Has been. Based on the correlation coefficient d (dij) and the measured value of the optical sensor 12, the light environment at the adjustment position 3 is estimated.
  • L (yj) dij ⁇ L (xi) (1)
  • L (yj) light environment value at position yj
  • L (xi) Light environment value at position xi, It is shown in the relationship.
  • the subscripts i and j are indicators for distinguishing spatial locations.
  • L information indicating the place dependency of the light environment value L, that is, what kind of light environment depending on the place corresponds to the “lighting condition”. Further, when two specific positions xi and yj are specified, one specific relationship between L (xi) and L (yj) obtained from the “illumination condition” is “light” in the arrangement state. Corresponds to “correlation between environments”.
  • the lighting condition may be determined in advance through a test at the manufacturer of the lighting system LS as described above, but is determined by measuring an illuminance distribution or the like when the lighting system LS is installed in a room or the like. May be. In particular, in a relatively small room or the like, there is also an influence due to light reflection from the wall surface of the room. Therefore, if the illumination condition is determined based on illuminance measurement at the installation destination, a more accurate illumination condition can be obtained.
  • the illumination adjustment unit 110 is configured by a microcomputer or the like, and performs arithmetic processing based on a signal from the optical sensor 12 or the operation display unit 13 to adjust the output of the light source 100.
  • the photosensor 12 is a device that detects the light environment at the arrangement position (photosensor arrangement position 2), that is, the illuminance and the correlated color temperature.
  • the optical sensor 12 for example, a photomultiplier tube, a photodiode, a photoresistor or the like can be employed. Such an optical sensor 12 is installed in a range where the light from the light source 100 is irradiated and where there is no fear of being blocked.
  • the operation display unit 13 includes a display unit 95 and an operation unit 96.
  • the display unit 95 and the operation unit 96 will be described in detail later.
  • the operation unit 96 and the display unit 95 can be easily operated by the user and can be easily viewed. Installed in position.
  • the operation unit 96 and the display unit 95 are installed in a part of the task lamp 250.
  • the operation display unit 13 does not necessarily have to be fixedly installed. This will be described in detail later.
  • FIG. 6 is a block diagram illustrating the hardware configuration of the illumination adjustment unit 110 and the operation display unit 13.
  • the illumination adjustment unit 110 includes a CPU 91, a ROM 92, a memory 93, a media drive 94, and the like. These hardware components are configured to be electrically connected by a bus line 97 together with the display unit 95 and the operation unit 96 that constitute the operation display unit 13.
  • the CPU 91 controls each part of the hardware based on a program (or a program read by the media drive) P stored in the ROM 92, and realizes the function of the illumination adjustment unit 110.
  • the ROM 92 is a read-only storage device that stores a program P and data necessary for controlling the illumination adjustment unit 110 in advance.
  • the memory 93 is a storage device that can be read and written, and temporarily stores data generated during arithmetic processing by the CPU 91.
  • the memory 93 is configured by SRAM, DRAM or the like.
  • the media drive 94 is a functional unit that reads information stored therein from a recording medium (more specifically, a card-type portable semiconductor memory or the like) M.
  • the display unit 95 includes a display such as a color LCD and variably displays various data and operation states.
  • the operation unit 96 is an input device composed of a plurality of input buttons, and accepts user operations such as input of commands and various data. The user operation received by the operation unit 96 is input to the CPU 91 as a signal.
  • the illumination adjustment unit 110 includes an illumination condition storage unit 112, an adjustment position storage unit 113, an optical sensor position storage unit 114, an optical environment target value storage unit 115, and an output adjustment unit 116.
  • the operation display unit 13 includes an illumination condition acquisition unit 131 and a position information acquisition unit 132. The functions of these units are realized by reading out the program P stored in advance in the ROM 92 or the program P recorded in the recording medium M by the media drive 94 and executing it in the CPU 91.
  • the functional configuration of the illumination adjustment unit 110 will be described.
  • the illumination condition storage unit 112 is a part that stores the illumination conditions acquired by the illumination condition acquisition unit 131 described later.
  • the illumination condition is appropriately read from the illumination condition storage unit 112 and transmitted to the output adjustment unit 116.
  • each of a plurality of patterns of illumination conditions corresponding to the plurality of output values of the light source 100 is stored in the illumination condition storage unit 112. It is stored as a plurality of numerical tables. That is, not only in the case of the light distribution 300 shown in FIG. 3, but also based on the light distribution such as the light distributions 300b and 300c shown in FIGS. The table is stored. Then, a numerical table corresponding to the output (light intensity) of the light source 100 at that time is selected and referred to from among a plurality of numerical tables.
  • the illumination corresponding to the actual output is interpolated or extrapolated. It may be a form in which the conditions are specified.
  • a function expressing the illumination condition that is, the location dependence of the light environment value
  • a mathematical expression including a position variable and a variable corresponding to the output of the light source 100, and the output value of the light source 100 at that time is stored.
  • the parameter value corresponding to is substituted into the conditional expression, and the illumination condition, that is, the location dependence of the light environment value may be specified.
  • the adjustment position storage unit 113 is a part in which position information regarding the adjustment position 3 is stored. This position information is acquired by the position information acquisition unit 132.
  • the optical sensor position storage unit 114 is a part in which position information regarding the optical sensor arrangement position 2 is stored. Information regarding the arrangement position of the optical sensor 12 is acquired by the position information acquisition unit 132.
  • the light environment target value storage unit 115 is a part in which a light environment value desired at the adjustment position 3 is stored. A signal related to the light environment serving as a target value is read from the light environment target value storage unit 115 and used for comparison with a measured value detected by the light sensor 12 through conversion described later.
  • the output adjustment unit 116 is a part where the output of the light source 100 is adjusted.
  • the output adjustment unit 116 is electrically connected to the light source 100, the optical sensor 12, the illumination condition storage unit 112, the adjustment position storage unit 113, the optical sensor position storage unit 114, and the light environment target value storage unit 115.
  • the output adjustment unit 116 receives signals related to the illumination condition, the adjustment position 3, the optical sensor arrangement position 2, and the target value of the light environment from each element.
  • the target value is converted into a value at the photosensor arrangement position 2 based on the correlation between the light environment value at the adjustment position 3 and the light environment value at the photosensor arrangement position 2, and the measured value detected by the photosensor 12 Used for comparison with.
  • the output of the light source 100 is adjusted according to such a comparison result, and a desired light environment is realized at the adjustment position 3.
  • the illumination condition acquisition unit 131 is a part that acquires the illumination condition of the light source 100 from another computer or the like via a network at a factory shipment stage, for example. Information related to the illumination condition corresponding to the light source 100 to be used is downloaded, and the illumination condition is acquired. The acquired illumination condition is stored in the illumination condition storage unit 112. As described above, the illumination conditions are determined by the installation operator performing actual measurements such as the location dependence of the illuminance in the room where the illumination system LS is installed, and the illumination conditions are given to the illumination condition acquisition unit 131. May be.
  • the illumination condition acquisition part 131 is provided in the illumination part 11, and the form by which an illumination condition is acquired in response to operation in the operation display part 13 may be sufficient. Further, the lighting condition is not limited to the network, and may be in a form acquired through a portable storage medium or directly input from a computer.
  • the illumination condition can be variably acquired by the illumination condition acquisition unit 131, even when the light source is changed, the adjustment of the light environment at the adjustment position 3 is performed based on the illumination condition obtained by the changed light source. Is possible.
  • the illumination condition acquisition part 131 does not necessarily need to be installed.
  • the illumination condition stored in advance in the illumination condition storage unit 112 as a default value is used for the adjustment process in the output adjustment unit 116.
  • the position information acquisition unit 132 is a part from which position information regarding the optical sensor arrangement position 2 and the adjustment position 3 is variably acquired. Specifically, the position information acquisition unit 132 includes a display unit 95 and an operation unit 96, for example.
  • the display unit 95 schematically shows a range in which the light source 100 emits light.
  • a predetermined space 150 such as a room
  • a schematic diagram of the space 150 in a preset plan view is visually shown on the display unit 95.
  • the schematic diagram of the space 150 is divided into a plurality of partial areas.
  • a predetermined partial area specifically, a position where the light source 100 is installed, a position corresponding to the photosensor arrangement position 2 and the adjustment position 3 is selected from the plurality of partial areas via the operation unit 96.
  • a distance from the installation position of the light source 100 to the optical sensor arrangement position 2 and a distance from the installation position of the light source 100 to the adjustment position 3 are set and input. These distances may be measured visually.
  • the height of the selected partial area is selected from the three setting values via the operation unit 96, for example.
  • the three set values are, for example, values of height assuming the floor surface in the room, the surface of the table, and the surface of the table.
  • the adjustment position 3 is stored in the adjustment position storage unit 113, and the photosensor arrangement position 2 is stored in the photosensor position storage unit 114.
  • the relative positional relationship between the light source 100 and the photosensor arrangement position 2 in the predetermined space and the relative positional relationship between the light source 100 and the adjustment position 3 are specified.
  • a plurality of partial areas are set as areas assuming a front area of the desk surface on which the task lamp 250 is installed, a central area of the desk surface, a back area of the desk surface, and the like.
  • the height is selected from, for example, two setting values assuming the upper surface and the floor surface of the desk.
  • position information regarding each of the optical sensor arrangement position 2 and the adjustment position 3 is variably acquired by the position information acquisition unit 132, so that even if the optical sensor arrangement position 2 or the adjustment position 3 is changed, the change is made.
  • the output of the light source can be adjusted based on the position information reflecting the position.
  • the position information acquisition unit 132 is not necessarily provided.
  • position information related to the adjustment position 3 stored in advance in the adjustment position storage unit 113 as a default value and position information related to the photosensor arrangement position 2 stored in the photosensor position storage unit 114 as a default value in advance.
  • the optical sensor placement position 2 is fixed to the end of the desk surface, and the adjustment position 3 is the central part of the desk surface or the front side thereof. It is thought that there are many cases. Therefore, even if such default values are used, practicality is not impaired.
  • the operation display unit 13 may not be installed.
  • FIG. 7 shows a flowchart showing the flow of processing in the present embodiment. The flow of processing will be described based on this flowchart.
  • the illumination condition acquisition unit 131 acquires the illumination condition of the light source 100 (step S1). Then, the illumination condition storage unit 112 stores the illumination condition acquired by the illumination condition acquisition unit 131. As described above, this step S1 may be performed before shipment from the factory, or may be performed at the installation destination of the illumination system LS.
  • the position information related to the adjustment position 3 acquired by the position information acquisition unit 132 is stored in the adjustment position storage unit 113 (step S2). This is executed based on an operation input (selection input) by a user or the like. Further, the position information related to the photosensor arrangement position 2 acquired by the position information acquisition unit 132 is stored in the photosensor position storage unit 114 (step S3). Note that the order of step 2 and step 3 may be reversed. Further, when the adjustment position 3 and the optical sensor arrangement position 2 are already stored in the adjustment position storage unit 113 and the optical sensor position storage unit 114, these steps are omitted.
  • Information related to the illumination condition of the light source 100 is transmitted from the illumination condition storage unit 112 to the output adjustment unit 116.
  • position information regarding the optical sensor arrangement position 2 and the adjustment position 3 is transmitted from the optical sensor position storage unit 114 and the adjustment position storage unit 113 to the output adjustment unit 116, respectively.
  • the value of the light environment at the photosensor arrangement position 2 and the adjustment position 3, that is, the correlation between the illuminance or the correlated color temperature is calculated based on the illumination condition, and stored in the output adjustment unit 116 as the correlation coefficient d. (Step S4).
  • the illumination condition storage unit 112 when a plurality of illumination conditions corresponding to the output of the light source 100 are stored in the illumination condition storage unit 112, one illumination condition selected from them is read from the illumination condition storage unit 112 and output.
  • the adjustment unit 116 is given. Note that immediately after the lighting system LS is turned on, standard illumination conditions designated in advance as default values are read out.
  • the light environment value serving as the target value is read from the light environment target value storage unit 115 and set in the output adjustment unit 116 (step S5).
  • the target value of the light environment may be a default value or may be variable by a user operation. A mode in which the target value is variable will be described later as another embodiment.
  • the light environment value at the light sensor arrangement position 2 is measured by the light sensor 12 (step S6).
  • a detection signal of the optical sensor 12 is transmitted to the output adjustment unit 116.
  • the output adjustment unit 116 converts the measurement value of the light environment at the optical sensor arrangement position 2 into the measurement value at the adjustment position 3 using the correlation coefficient d (step S7). That is, the measurement value of the light environment at the adjustment position 3 is calculated as a converted value.
  • the converted value is compared with the target value stored in the light environment target value storage unit 115, and it is determined whether or not the difference between the converted value and the target value is zero (step S8).
  • the series of processing ends when the converted value of the light environment matches the target value, or when the difference falls within a predetermined allowable range. That is, the target light environment is realized at the adjustment position 3.
  • step S6 the measurement by the optical sensor 12 in step S6 is periodically performed at predetermined time intervals. And step S8 is performed anew through step S7.
  • the output adjustment unit 116 transmits a signal to the light source 100 so that the difference becomes zero, and the output of the light source 100 Is adjusted (step S9). That is, feedback control is performed.
  • the illumination condition is reset (step S10). That is, after the feedback control is performed, there is a possibility that the light intensity of the light source 100 before that is changed, so that one illumination condition corresponding to the latest situation of the light intensity of the light source 100 is the illumination condition. It is selected and read out from a plurality of illumination conditions stored in the storage unit 112 and used for control. For this purpose, when each feedback control converges, information on the light intensity of the light source 100 at that time is stored in the output adjustment unit 116 or the illumination condition storage unit 112. Specifically, the value of the signal given from the output adjustment unit 116 to the light source 100 when each feedback control converges is converted into an output value of the light source 100 and stored.
  • the target value at the adjustment position 3 stored in the optical environment target value storage unit 115 is converted into the target value at the optical sensor arrangement position 2 based on the correlation coefficient d. It may be a control form that adjusts the difference from the measured value.
  • the light sensor 12 is adjusted at the adjustment position 3 in a state where the light sensor 12 is installed at a position different from the position where adjustment of the light environment is desired. Is possible. For this reason, a desired light environment is realizable in a desired position, without a user's action being restrict
  • the illumination control system 10 includes the illumination condition acquisition unit 131, for example, when the light source 100 has an illumination condition different from the installation stage due to aging or replacement of the light source 100, it is appropriate each time. Various lighting conditions can be obtained. For this reason, the output of the light source 100 can be adjusted based on accurate illumination conditions.
  • the illumination control system 10 includes the position information acquisition unit 132, the position information of the optical sensor arrangement position 2 or the adjustment position 3 can be updated. For this reason, even in a situation where the optical sensor arrangement position 2 or the adjustment position 3 must be changed, the output of the light source 100 can be adjusted based on appropriate position information corresponding to the changed position.
  • the optical sensor 12 was fixedly installed, it is not restricted to such a form.
  • the optical sensor 12 may be in a movable and portable form.
  • 8A and 8B show an illumination system LSb using the illumination control system 10b when the optical sensor 12 is mounted on the remote controller 30.
  • the remote controller 30 is provided separately from the illumination unit 11, particularly the illumination adjustment unit 110, and is used for instructions to the illumination adjustment unit 110.
  • the arrangement position of the optical sensor 12 can be freely changed according to the movement of the remote controller 30.
  • the remote controller 30 corresponds to a portable terminal device.
  • the optical sensor 12 is not limited to the remote controller 30 and may be mounted on, for example, a smartphone.
  • FIG. 9 shows a block diagram of the illumination control system 10b according to the present embodiment.
  • Such a remote controller 30 is provided with a position information acquisition unit 132 together with the optical sensor 12.
  • a predetermined signal from the optical sensor 12 or the position information acquisition unit 132 is sent to the illumination unit side communication unit 118 of the illumination unit 11 via the terminal side communication unit 31, and from the illumination unit side communication unit 118 to the illumination unit 11. Sent to each part.
  • the position information acquisition unit 132 is configured in the same manner as in the first embodiment, that is, the operation unit 96 and the display unit 95.
  • the terminal side communication unit 31 corresponds to the transmission unit in the present invention.
  • the remote controller 30 includes the position information acquisition unit 132, the user can set position information regarding the optical sensor arrangement position 2 and the adjustment position 3 at an arbitrary position, which facilitates operation input.
  • optical sensor 12 is installed in the remote controller 30, it is possible to measure the light environment at an arbitrary position while moving the remote controller 30.
  • the user moves while holding the remote controller 30 to measure the light environment by the optical sensor 12 and to acquire the position information by the position information acquisition unit 132, so that the illumination condition can be measured. is there. For this reason, it is possible to set the illumination conditions stored in the illumination condition storage unit 112 after performing measurement based on the light source 100 that is actually placed in the installation environment.
  • the position information acquisition unit 132 may include a position measurement unit that can automatically measure position information.
  • a radio range finder, an infrared range finder, an ultrasonic range finder, an indoor GPS, or the like is employed in the position information acquisition unit 132, whereby an input to the operation display unit 13 by a user operation is performed. Instead, the position information is automatically updated.
  • the position of the light source 100 is set and input in advance.
  • the adjustment position 3 is obtained when the user arranges the remote controller 30 at a position where the adjustment of the light environment is actually desired and operates in advance, and the position information acquisition unit 132 obtains the position information at the position. Is set.
  • the adjustment position 3 can be updated by the user performing a similar operation.
  • the optical sensor arrangement position 2 can be constantly updated by the position information acquisition unit 132.
  • the measurement of the light environment for each position is performed.
  • a value is determined. Accordingly, since the position of the light source 100 is automatically recognized (estimated by calculation) based on the spatial distribution of the intensity of the measurement value, the light source 100 and the optical sensor arrangement are not manually input without setting the installation position of the light source 100.
  • the relative positional relationship with position 2 can be set automatically.
  • the photosensor arrangement position 2 can be freely changed, and the correlation coefficient d is reset every time the photosensor arrangement position 2 is changed.
  • the optical sensor 12 and the position information acquisition unit 132 are mounted on a portable terminal device such as the remote controller 30.
  • the optical sensor arrangement position 2 can be freely changed by moving the variable terminal device, and the user can easily change the setting of the position information in the illumination adjustment unit 110 at an easy-to-operate position. it can.
  • the illumination conditions obtained by the light source 100 in the actual usage environment can be measured by moving the remote controller 30. Therefore, the illumination condition can be updated even after the light source 100 is installed, and an accurate illumination condition can be obtained even if the light source 100 deteriorates over time.
  • the position information acquisition unit 132 can also acquire position information by automatic measurement, the user can easily acquire the position information without performing an input operation, and the convenience for the user is improved.
  • the illumination unit 11 shown in FIG. 9 includes a light source 100, an output adjustment unit 116, and an illumination-side communication unit 118.
  • Other components that is, an illumination condition storage unit 112, an adjustment position storage unit 113, light
  • the remote controller 30 may include the sensor position storage unit 114, the light environment target value storage unit 115, and the like.
  • the illumination control system 10b can be realized by using the remote controller 30 including other components, that is, the portable terminal device according to the present embodiment, for an existing illumination light source capable of changing output and communicating. It is.
  • the light environment target value stored in the light environment target value storage unit 115 has not been updated once set, but is not limited to such a form.
  • the target value of the light environment may be in an updatable form.
  • FIG. 10 shows a block diagram of a lighting system LSc using the lighting control system 10c according to the present embodiment.
  • the light environment target value acquisition unit 133 is provided in the operation display unit 13, and the light environment target value can be acquired via the light environment target value acquisition unit 133.
  • the target value of the light environment can be updated, for example, when the user inputs it via the operation unit 96 and the display unit 95.
  • the target value of the light environment can be set to an appropriate value according to the situation such as season, time, weather, and temperature. it can.
  • the target value is an alternative selection or operation input value from a plurality of selection values
  • a relatively high target value is set for reading and the like, and a relatively low value for watching TV
  • Various illumination adjustments are possible by making the target value variable, such as setting the target value.
  • the optical sensor 12 can be moved as in the second embodiment.
  • the control loop acts to reduce the output of the light source 100.
  • the optical sensor 12 In order to cope with such a situation, when the optical sensor is fixedly installed, it is preferable to install the optical sensor 12 at a position where the influence of external light is small.
  • the target value is made variable as in the third embodiment, even if the influence of external light appears, it can be dealt with by changing the target value higher.
  • the optical sensor is portable as in the second embodiment, sometimes the optical sensor is moved to a place where the external light does not hit, thereby affecting the influence of such external light. It becomes possible to suppress.
  • the illumination control system according to the present invention can be applied even when the light source is installed at a plurality of places.

Landscapes

  • Circuit Arrangement For Electric Light Sources In General (AREA)

Abstract

An illumination control system (10) comprises a light sensor (12) for measuring a light environment obtained by a light source (100) in which the light-emitting state can be adjusted, and an illumination adjustor (110) for adjusting the output of the light source (100) on the basis of a measurement value of the light sensor (12). Based on illumination conditions, the illumination adjustor (110) determines the correlation to the light environment of both a light sensor placement position (2), and an adjustment position (3) equivalent to a desired position for adjusting the light environment, and the illumination adjustor (110) comprises an output adjuster (116) for adjusting the output of the light source (100) so that the light environment in the adjustment position (3) reaches a target value on the basis of the correlations and the measurement value of the light sensor (12). A technique is thereby provided whereby the light sensor (12) does not need to be disposed in a desired position for adjusting the light environment, and the light source can be controlled so as to adjust the light environment in this position.

Description

照明制御システム、可搬型端末機器、プログラム及び照明装置Lighting control system, portable terminal device, program, and lighting device
 本発明は、照明光源の点灯状態を制御する技術に関する。 The present invention relates to a technique for controlling the lighting state of an illumination light source.
 光センサが照明光源からの光を検出し、光センサの検出結果に基づいて、照明光源の点灯状態を制御する技術が知られている。 A technique is known in which a light sensor detects light from an illumination light source and controls the lighting state of the illumination light source based on the detection result of the light sensor.
 例えば、特許文献1には、照明の光量及び光色を検出する光センサ部分が所定の位置に固定設置され、検出された光量及び光色に応じて、照明の出力が調整されることが開示されている。 For example, Patent Document 1 discloses that an optical sensor portion that detects the light amount and light color of illumination is fixedly installed at a predetermined position, and the output of the illumination is adjusted according to the detected light amount and light color. Has been.
 また、特許文献2及び特許文献3には、照明の光量及び光色を検出する光センサ部分が設けられた、可搬性を有するリモコン送信部が開示されている。リモコン送信部が光量及び光色の調整が所望される位置に配置された状態で光センサ部分での受光が行われ、その受光結果に基づいて当該位置における光量及び光色を所望の値とするように、リモコン送信部から光源部に調整信号が送信される。 Also, Patent Document 2 and Patent Document 3 disclose a portable remote control transmitter provided with an optical sensor portion for detecting the amount and color of illumination. Light reception at the optical sensor portion is performed in a state where the remote control transmission unit is disposed at a position where adjustment of the light amount and light color is desired, and the light amount and light color at the position are set to desired values based on the light reception result. As described above, the adjustment signal is transmitted from the remote control transmission unit to the light source unit.
特開昭60-124398号公報JP 60-124398 A 特開平05-021168号公報Japanese Patent Laid-Open No. 05-021168 特開2009-289477号公報JP 2009-289477 A
 しかしながら、上記特許文献1~3に記載された照明システムでは、光センサがリモートコントローラのような可搬性を有する機器に取り付けられているか否かに関わらず、光センサは光量及び光色の調整が所望される位置に常時配置されなければならなかった。このため、当該位置における、光センサによる測定を妨げるような作業は制限されてしまい、使用者の利便性が損なわれるという問題があった。 However, in the illumination systems described in Patent Documents 1 to 3, the light sensor can adjust the light amount and the light color regardless of whether the light sensor is attached to a portable device such as a remote controller. It had to be always placed in the desired position. For this reason, the operation | work which interferes with the measurement by the optical sensor in the said position will be restrict | limited, and there existed a problem that a user's convenience was impaired.
 本発明は、上記課題に鑑みなされたものであり、光センサが光環境の調整が所望される位置に必ずしも配置されることなく、当該位置における光環境を調整するように光源を制御可能な技術を提供することを目的とする。 The present invention has been made in view of the above-described problems, and a technique capable of controlling a light source so as to adjust the light environment at the position without necessarily arranging the optical sensor at a position where adjustment of the light environment is desired. The purpose is to provide.
 第1の態様は、発光状態を調整可能な光源からの照明によって得られる光環境を測定する光センサの測定値に基づいて前記光源の出力を調整する照明調整部を有する照明制御システムであって、前記照明調整部は、前記光源からの照明によって生じる光環境の場所依存性を示す情報としての照明条件を記憶する照明条件記憶部と、前記光センサの配置位置を記憶する光センサ位置記憶部と、光環境の調整位置を記憶する調整位置記憶部と、前記照明条件に基づいて前記光センサ配置位置の光環境と前記調整位置の光環境との相関関係を求めるとともに、前記相関関係と前記光センサの測定値とに基づいて、前記調整位置における光環境が目標値になるように前記光源の出力を調整する出力調整部と、を備える。 A 1st aspect is an illumination control system which has an illumination adjustment part which adjusts the output of the said light source based on the measured value of the optical sensor which measures the light environment obtained by the illumination from the light source which can adjust a light emission state, The illumination adjustment unit includes an illumination condition storage unit that stores illumination conditions as information indicating location dependence of the light environment generated by illumination from the light source, and an optical sensor position storage unit that stores an arrangement position of the optical sensor. An adjustment position storage unit that stores the adjustment position of the light environment, and obtains a correlation between the light environment of the light sensor arrangement position and the light environment of the adjustment position based on the illumination condition, and the correlation and the An output adjustment unit that adjusts the output of the light source so that the light environment at the adjustment position becomes a target value based on the measurement value of the optical sensor.
 第2の態様は、第1の態様に係る照明制御システムであって、前記光センサをさらに有する。 The second aspect is an illumination control system according to the first aspect, and further includes the optical sensor.
 第3の態様は、第2の態様に係る照明制御システムであって、前記照明条件記憶部で記憶される前記照明条件を可変に取得する照明条件取得部をさらに備える。 The third aspect is the illumination control system according to the second aspect, and further includes an illumination condition acquisition unit that variably acquires the illumination condition stored in the illumination condition storage unit.
 第4の態様は、第2の態様又は第3の態様に係る照明制御システムであって、前記光センサ配置位置及び前記調整位置それぞれに関する位置情報を取得する位置情報取得部をさらに備える。 The fourth aspect is an illumination control system according to the second aspect or the third aspect, and further includes a position information acquisition unit that acquires position information regarding each of the optical sensor arrangement position and the adjustment position.
 第5の態様は、第4の態様に係る照明制御システムであって、前記光センサと前記位置情報取得部とが、前記照明部に所定の信号を送信可能な可搬型端末機器に設けられている。 A 5th aspect is an illumination control system which concerns on a 4th aspect, Comprising: The said optical sensor and the said positional information acquisition part are provided in the portable terminal device which can transmit a predetermined | prescribed signal to the said illumination part. Yes.
 第6の態様は、第5の態様に係る照明制御システムであって、前記位置情報取得部は前記位置情報を計測する位置計測部を備える。 A sixth aspect is an illumination control system according to the fifth aspect, wherein the position information acquisition unit includes a position measurement unit that measures the position information.
 第7の態様は、第1の態様ないし第6の態様のいずれか一つに係る照明制御システムであって、前記調整位置における光環境の目標値を取得する光環境目標値取得部をさらに備える。 A seventh aspect is the illumination control system according to any one of the first to sixth aspects, further comprising a light environment target value acquisition unit that acquires a target value of the light environment at the adjustment position. .
 第8の態様は、光源の発光状態を調整する照明調整部とは分離されて設けられ、前記照明調整部への指示に用いられる可搬型端末機器であって、光センサと、前記光センサの位置情報を取得する位置情報取得部と、前記光センサによって測定される光環境の測定値と前記位置情報取得部によって取得される前記位置情報とを前記照明調整部に送信する送信部と、を備える。 An eighth aspect is a portable terminal device that is provided separately from an illumination adjustment unit that adjusts a light emission state of a light source, and is used for an instruction to the illumination adjustment unit. A position information acquisition unit that acquires position information; and a transmission unit that transmits a measurement value of the light environment measured by the optical sensor and the position information acquired by the position information acquisition unit to the illumination adjustment unit. Prepare.
 第9の態様は、プログラムであって、コンピュータにインストールされて実行されることにより、前記コンピュータを、第1の態様ないし第7の態様のいずれか一つに係る照明制御システムにおける照明調整部として機能させることを特徴とする。 A ninth aspect is a program, which is installed in a computer and executed, whereby the computer is used as a lighting adjustment unit in the lighting control system according to any one of the first to seventh aspects. It is made to function.
 第10の態様は、照明装置であって、発光状態を調整可能な光源と、第1の態様ないし第7の態様のいずれか一つに記載の照明制御システムを備える。 A tenth aspect is an illumination device, and includes a light source capable of adjusting a light emission state, and the illumination control system according to any one of the first to seventh aspects.
 この発明の態様によれば、光センサが光環境の調整が所望される位置に設置されなくても、当該位置における光環境の値が目標値になるように制御可能とすることができる。 According to this aspect of the present invention, even if the optical sensor is not installed at a position where the adjustment of the light environment is desired, it can be controlled so that the value of the light environment at the position becomes the target value.
図1は第1の実施形態における照明制御システムの斜視図である。FIG. 1 is a perspective view of a lighting control system according to the first embodiment. 図2は第1の実施形態における照明制御システムの機能的構成を表すブロック図である。FIG. 2 is a block diagram illustrating a functional configuration of the illumination control system according to the first embodiment. 図3は照明条件の一例を示す平面図である。FIG. 3 is a plan view showing an example of illumination conditions. 図4は照明条件の他の例を示す平面図である。FIG. 4 is a plan view showing another example of illumination conditions. 図5は数値テーブルの一例を示す図である。FIG. 5 is a diagram illustrating an example of a numerical table. 図6は照明調整部及び操作表示部のブロック図である。FIG. 6 is a block diagram of the illumination adjustment unit and the operation display unit. 図7は処理の流れを示すフローチャートである。FIG. 7 is a flowchart showing the flow of processing. 図8は第2の実施形態における照明制御システムの斜視図である。FIG. 8 is a perspective view of a lighting control system according to the second embodiment. 図9は第2の実施形態における照明制御システムの機能的構成を表すブロック図である。FIG. 9 is a block diagram illustrating a functional configuration of a lighting control system according to the second embodiment. 図10は第3の実施形態における照明制御システムの機能的構成を表すブロック図である。FIG. 10 is a block diagram illustrating a functional configuration of a lighting control system according to the third embodiment.
 以下、添付の図面を参照しながら実施形態について説明する。以下の実施形態は、本発明を具体化した一例であり、本発明の技術的範囲を限定する事例ではない。 Hereinafter, embodiments will be described with reference to the accompanying drawings. The following embodiment is an example embodying the present invention, and is not an example of limiting the technical scope of the present invention.
 <1.第1の実施形態>
 <1-1.照明制御システムの構成>
 はじめに、本実施形態に係る照明制御システム10について説明する。図1には、照明制御システム10を用いて構成した照明システムLSが示されている。また、図2には、照明制御システム10の各部分を機能的に表すブロック図が示されている。
<1. First Embodiment>
<1-1. Configuration of lighting control system>
First, the illumination control system 10 according to the present embodiment will be described. FIG. 1 shows an illumination system LS configured using an illumination control system 10. FIG. 2 is a block diagram functionally showing each part of the lighting control system 10.
 この照明システムLSは、調光調色可能な光源100の照明制御を行う照明制御システム10を備えている。この構成例では、光源100と、照明制御システム10の要素である照明調整部110とが構造的に一体化されて照明部11とされているが、機能的には、光源100は照明制御システム10の制御対象物であり、照明制御システム10そのものの要素ではない。したがって、光源100と、照明制御システム10とを備える構成を照明装置と称する。 The illumination system LS includes an illumination control system 10 that performs illumination control of the light source 100 capable of dimming and toning. In this configuration example, the light source 100 and the illumination adjustment unit 110, which is an element of the illumination control system 10, are structurally integrated into the illumination unit 11, but functionally, the light source 100 is the illumination control system. 10 control objects, not the elements of the lighting control system 10 itself. Therefore, a configuration including the light source 100 and the illumination control system 10 is referred to as an illumination device.
 照明制御システム10は、光源100によって得られる光環境を測定する光センサ12の測定値をもとに光源100の出力の調整を行う照明調整部110と、照明部11における光源100の出力調整に使用される条件の入力が行われる操作表示部13と、を主に備える。 The illumination control system 10 adjusts the output of the light source 100 in the illumination unit 11 and the illumination adjustment unit 110 that adjusts the output of the light source 100 based on the measurement value of the optical sensor 12 that measures the light environment obtained by the light source 100. And an operation display unit 13 for inputting conditions to be used.
 具体的に、図1(a)には、部屋などの所定の空間150に照明システムLSが採用された場合が示されている。光センサ12及び操作表示部13が部屋の壁面に固定設置されており、照明部11が部屋の天井に設けられている。また、図1(b)には、照明システムLSが、電気スタンドのようなタスクランプ250に採用された場合が示されている。図1(b)では、台部220から延び出た脚部210の先端に照明部11が設けられており、光センサ12及び操作表示部13が台部220の一部分に固定設置されている。 Specifically, FIG. 1A shows a case where the illumination system LS is employed in a predetermined space 150 such as a room. The optical sensor 12 and the operation display unit 13 are fixedly installed on the wall surface of the room, and the illumination unit 11 is provided on the ceiling of the room. FIG. 1B shows a case where the illumination system LS is employed in a task lamp 250 such as a desk lamp. In FIG. 1B, the illumination unit 11 is provided at the tip of the leg part 210 extending from the base part 220, and the optical sensor 12 and the operation display part 13 are fixedly installed on a part of the base part 220.
 この照明部11が備える光源100の点灯状態は、光センサ12における検出信号に基づいて制御される。これによって、所望の光環境が、光環境の調整が所望される位置(以下において、調整位置3と称する。)において得られる。ここでは、調整位置3は、光センサ12が配置された位置(以下において、光センサ配置位置2と称する場合がある。)とは異なる位置である。 The lighting state of the light source 100 included in the illumination unit 11 is controlled based on a detection signal from the optical sensor 12. Thus, a desired light environment is obtained at a position where adjustment of the light environment is desired (hereinafter referred to as an adjustment position 3). Here, the adjustment position 3 is a position different from the position where the optical sensor 12 is arranged (hereinafter, sometimes referred to as the optical sensor arrangement position 2).
 具体的に、光源100及び照明制御システム10を構成する各要素について説明する。 Specifically, each element constituting the light source 100 and the illumination control system 10 will be described.
 照明部11は、光源100と光源100の出力調整を行う照明調整部110とを一つの照明器具として構成した部分である。 The illumination unit 11 is a part in which the light source 100 and the illumination adjustment unit 110 that adjusts the output of the light source 100 are configured as one illumination fixture.
 光源100は、例えば、白熱電球、蛍光灯又はLED(Light Emitting Diode)など、種々の形態を採用可能であり、所定の色温度及び光色を有する。光源100が白熱電球、又は蛍光灯の場合には、光源100に印加される電圧、又は電流の大きさによって、光源100の発光状態が可変である。また、光源100が、例えばLEDの集合の場合には、それら複数のLEDの点灯する数が調節されることによって、その発光状態は可変である。 The light source 100 can adopt various forms such as an incandescent bulb, a fluorescent lamp, or an LED (Light Emitting Diode), and has a predetermined color temperature and light color. When the light source 100 is an incandescent bulb or a fluorescent lamp, the light emission state of the light source 100 is variable depending on the magnitude of voltage or current applied to the light source 100. Further, when the light source 100 is a set of LEDs, for example, the light emission state is variable by adjusting the number of the plurality of LEDs to be lit.
 このような光源100が発光することによって、光源100からの位置毎の光環境を表す所定の配光分布300が得られる。光環境を規定する指標には、例えば光の照度及び相関色温度などが挙げられる。 When the light source 100 emits light, a predetermined light distribution 300 representing a light environment for each position from the light source 100 is obtained. Examples of the index that defines the light environment include light illuminance and correlated color temperature.
 図3には、光源100による配光分布300の一例が概略的に平面図で示されている。具体的に、図3(a)には、照明システムLSが部屋に設置された場合の配光分布300の平面図が示されている。また、図3(b)には、照明システムLSがタスクランプ250に採用された場合の配光分布300の平面図が示されている。なお、図3に示される点線範囲が光源100の配置位置を表している。また、一重丸が光センサ配置位置2を表しており、二重丸が調整位置3を表している。このような配光分布300が光源100の性能に応じて規定される。 FIG. 3 schematically shows an example of a light distribution 300 by the light source 100 in a plan view. Specifically, FIG. 3A shows a plan view of the light distribution 300 when the illumination system LS is installed in a room. FIG. 3B shows a plan view of the light distribution 300 when the illumination system LS is employed in the task lamp 250. The dotted line range shown in FIG. 3 represents the arrangement position of the light source 100. A single circle represents the optical sensor placement position 2 and a double circle represents the adjustment position 3. Such a light distribution 300 is defined according to the performance of the light source 100.
 配光分布300が本実施形態における照明条件に相当する。このような照明条件は、一般には、光源からの照明によって生じる光環境の場所依存性、すなわち場所によってどのような光環境となるかを示す情報として規定される。 The light distribution 300 corresponds to the illumination condition in this embodiment. Such an illumination condition is generally defined as information indicating the location dependence of the light environment caused by illumination from the light source, that is, the light environment depending on the location.
 配光分布300における光環境値、即ち色温度及び光色の値は、光源100の近傍付近における所定の3次元的な範囲で最大値を示し、当該範囲から外方に向かうにつれて減衰する。つまり、光環境値は、光源100からの相対的な位置(空間的な場所)に応じて異なる。従って、調整位置3と光センサ配置位置2とで得られる色温度及び光色の値は異なる。ただし、配光分布300の分布状態は規則性を有するため、一方の位置における光環境値が判明すれば、他方の位置における光環境値は、配光分布300が有する規則性、即ち複数の位置での光環境の相関関係に則って、算出可能である。 The light environment value in the light distribution 300, that is, the color temperature and the light color value, shows a maximum value in a predetermined three-dimensional range in the vicinity of the light source 100 and attenuates from the range toward the outside. That is, the light environment value varies depending on the relative position (spatial place) from the light source 100. Therefore, the color temperature and the light color value obtained at the adjustment position 3 and the optical sensor placement position 2 are different. However, since the distribution state of the light distribution 300 has regularity, if the light environment value at one position is found, the light environment value at the other position is the regularity of the light distribution 300, that is, a plurality of positions. It can be calculated in accordance with the correlation of the light environment.
 より具体的に、配光分布300における光環境値それぞれが、光源100の強度変化に応じて、線形な相関関係を有する場合には、照明システムLSの製造元での試験によって予め相関係数dが算出される。そして、光センサ12の測定値と相関係数dとに基づいて、調整位置3における光環境値が算出される。 More specifically, when each of the light environment values in the light distribution 300 has a linear correlation according to the intensity change of the light source 100, the correlation coefficient d is previously determined by a test at the manufacturer of the illumination system LS. Calculated. Then, based on the measured value of the optical sensor 12 and the correlation coefficient d, the light environment value at the adjustment position 3 is calculated.
 また、配光分布300における光環境値それぞれが、光源100の強度変化に応じて、非線形な相関関係を有する場合には、製造元での試験において照明強度を変化させつつ、調整位置3と光センサ配置位置2とにおける光環境値の測定が繰り返される。そして、これら調整位置3と光センサ配置位置2とで測定された光環境値の関係が数値の組あるいは関数として特定される。このような数値の組あるいは関数を用いて作成された、例えば図5に示される数値テーブル400が予め記憶され、それに基づいて複数の位置のそれぞれにおける光環境の相関関係が、例えば相関係数dとして特定される。図5に示される数値テーブル400では、例えば、配光分布300のうち、光センサ配置位置2をxi、調整位置3をyjとして、これらの位置の相互間における相関係数d(dij)が示されている。この相関係数d(dij)と光センサ12の測定値とに基づいて、調整位置3における光環境が推定される。 Further, when each of the light environment values in the light distribution 300 has a non-linear correlation according to the intensity change of the light source 100, the adjustment position 3 and the optical sensor are changed while changing the illumination intensity in the test at the manufacturer. The measurement of the light environment value at the arrangement position 2 is repeated. Then, the relationship between the light environment values measured at the adjustment position 3 and the optical sensor placement position 2 is specified as a set of numerical values or a function. A numerical value table 400 shown in FIG. 5, for example, created using such a numerical value set or function is stored in advance, and the correlation of the light environment at each of a plurality of positions based on the numerical value table 400 is, for example, the correlation coefficient d. Identified as In the numerical value table 400 shown in FIG. 5, for example, in the light distribution 300, the photosensor arrangement position 2 is xi and the adjustment position 3 is yj, and the correlation coefficient d (dij) between these positions is shown. Has been. Based on the correlation coefficient d (dij) and the measured value of the optical sensor 12, the light environment at the adjustment position 3 is estimated.
 このような関係を数式で表現すれば、
  L (yj) =dij・L (xi)  ・・・・(式1)
  L (yj) : 位置yjにおける光環境値、
  L (xi) : 位置xiにおける光環境値、
という関係で示される。なお、添字i、jは、空間的な場所を区別する指標である。
If such a relationship is expressed by a mathematical formula,
L (yj) = dij · L (xi) (1)
L (yj): light environment value at position yj
L (xi): Light environment value at position xi,
It is shown in the relationship. The subscripts i and j are indicators for distinguishing spatial locations.
 一般に、光環境値Lの場所依存性、すなわち場所によってどのような光環境となるかを示す情報が「照明条件」に相当する。また、具体的に2つの位置xi,yjが特定されたときに「照明条件」から得られるL(xi)とL(yj)との具体的な1つの関係が、その配置状態での「光環境相互の相関関係」に相当する。 Generally, information indicating the place dependency of the light environment value L, that is, what kind of light environment depending on the place corresponds to the “lighting condition”. Further, when two specific positions xi and yj are specified, one specific relationship between L (xi) and L (yj) obtained from the “illumination condition” is “light” in the arrangement state. Corresponds to “correlation between environments”.
 照明条件は、上記のように照明システムLSの製造元での試験を通じてあらかじめ決定されておいてもよいが、照明システムLSが部屋などに設置される際に照度分布などが測定されることで決定されてもよい。特に、比較的狭い部屋などでは、部屋の壁面からの光反射による影響もあるため、設置先での照度測定に基づいて照明条件が決定されれば、より正確な照明条件が得られる。 The lighting condition may be determined in advance through a test at the manufacturer of the lighting system LS as described above, but is determined by measuring an illuminance distribution or the like when the lighting system LS is installed in a room or the like. May be. In particular, in a relatively small room or the like, there is also an influence due to light reflection from the wall surface of the room. Therefore, if the illumination condition is determined based on illuminance measurement at the installation destination, a more accurate illumination condition can be obtained.
 照明調整部110は、マイクロコンピュータ等で構成されており、光センサ12又は操作表示部13からの信号に基づいて演算処理を行い、光源100の出力を調整する。 The illumination adjustment unit 110 is configured by a microcomputer or the like, and performs arithmetic processing based on a signal from the optical sensor 12 or the operation display unit 13 to adjust the output of the light source 100.
 光センサ12は、その配置位置(光センサ配置位置2)における光環境、即ち、照度及び相関色温度を検出するデバイスである。光センサ12には、例えば光電子増倍管、フォトダイオード、フォトレジスタなどが採用可能である。このような光センサ12が、光源100からの光が照射される範囲で、かつ遮光される恐れのない位置に設置される。 The photosensor 12 is a device that detects the light environment at the arrangement position (photosensor arrangement position 2), that is, the illuminance and the correlated color temperature. As the optical sensor 12, for example, a photomultiplier tube, a photodiode, a photoresistor or the like can be employed. Such an optical sensor 12 is installed in a range where the light from the light source 100 is irradiated and where there is no fear of being blocked.
 操作表示部13は、表示部95と操作部96とを備える。表示部95と操作部96とについては後に詳述する。 The operation display unit 13 includes a display unit 95 and an operation unit 96. The display unit 95 and the operation unit 96 will be described in detail later.
 例えば、照明システムLSが図1(a)に示されるような部屋に設けられる場合には、操作部96及び表示部95は、使用者が容易に操作可能であり、かつ表示を見やすい壁面などの位置に設置される。照明システムLSが図1(b)に示されるようなタスクランプ250に採用される場合には、タスクランプ250の一部にこれらの操作部96及び表示部95が設置される。なお、操作表示部13は、必ずしも固定設置されていなくても構わない。これについては後に詳述する。 For example, when the lighting system LS is provided in a room as shown in FIG. 1 (a), the operation unit 96 and the display unit 95 can be easily operated by the user and can be easily viewed. Installed in position. When the illumination system LS is employed in a task lamp 250 as shown in FIG. 1B, the operation unit 96 and the display unit 95 are installed in a part of the task lamp 250. The operation display unit 13 does not necessarily have to be fixedly installed. This will be described in detail later.
 図6には、照明調整部110及び操作表示部13のハードウェア構成がブロック図で示されている。 FIG. 6 is a block diagram illustrating the hardware configuration of the illumination adjustment unit 110 and the operation display unit 13.
 照明調整部110は、CPU91、ROM92、メモリ93及びメディアドライブ94等で構成されている。これらのハードウェアは、操作表示部13を構成する表示部95及び操作部96とともに、それぞれバスライン97によって電気的に接続された構成となっている。 The illumination adjustment unit 110 includes a CPU 91, a ROM 92, a memory 93, a media drive 94, and the like. These hardware components are configured to be electrically connected by a bus line 97 together with the display unit 95 and the operation unit 96 that constitute the operation display unit 13.
 CPU91は、ROM92に記憶されたプログラム(または、メディアドライブによって読み込まれたプログラム)Pに基づいて、上記ハードウェア各部を制御し、照明調整部110の機能を実現する。 The CPU 91 controls each part of the hardware based on a program (or a program read by the media drive) P stored in the ROM 92, and realizes the function of the illumination adjustment unit 110.
 ROM92は、照明調整部110の制御に必要なプログラムP及びデータを予め格納した読み出し専用の記憶装置である。 The ROM 92 is a read-only storage device that stores a program P and data necessary for controlling the illumination adjustment unit 110 in advance.
 メモリ93は、読み出しと書き込みとが可能な記憶装置であり、CPU91による演算処理の際に発生するデータなどを一時的に記憶する。メモリ93は、SRAM、DRAMなどで構成される。 The memory 93 is a storage device that can be read and written, and temporarily stores data generated during arithmetic processing by the CPU 91. The memory 93 is configured by SRAM, DRAM or the like.
 メディアドライブ94は、記録媒体(より具体的には、カード型の可搬性半導体メモリなど)Mからその中に記憶されている情報を読み出す機能部である。 The media drive 94 is a functional unit that reads information stored therein from a recording medium (more specifically, a card-type portable semiconductor memory or the like) M.
 表示部95は、カラーLCDのようなディスプレイ等を備え、各種のデータや動作状態を可変表示する。また、操作部96は、複数の入力ボタンによって構成された入力デバイスであり、コマンドや各種データの入力といったユーザ操作を受け付ける。操作部96が受けたユーザ操作は信号としてCPU91に入力される。 The display unit 95 includes a display such as a color LCD and variably displays various data and operation states. The operation unit 96 is an input device composed of a plurality of input buttons, and accepts user operations such as input of commands and various data. The user operation received by the operation unit 96 is input to the CPU 91 as a signal.
 ここで、図2に示されている照明調整部110及び操作表示部13の機能的構成について説明する。 Here, functional configurations of the illumination adjustment unit 110 and the operation display unit 13 illustrated in FIG. 2 will be described.
 照明調整部110は、照明条件記憶部112、調整位置記憶部113、光センサ位置記憶部114、光環境目標値記憶部115、及び出力調整部116を備える。また、操作表示部13は、照明条件取得部131及び位置情報取得部132を備える。これらの各部の機能は、ROM92に予め格納されたプログラムP、あるいはメディアドライブ94によって記録媒体Mに記録されているプログラムPが読み出され、CPU91において実行されることによって実現する。 The illumination adjustment unit 110 includes an illumination condition storage unit 112, an adjustment position storage unit 113, an optical sensor position storage unit 114, an optical environment target value storage unit 115, and an output adjustment unit 116. The operation display unit 13 includes an illumination condition acquisition unit 131 and a position information acquisition unit 132. The functions of these units are realized by reading out the program P stored in advance in the ROM 92 or the program P recorded in the recording medium M by the media drive 94 and executing it in the CPU 91.
 照明調整部110の機能的構成について説明する。 The functional configuration of the illumination adjustment unit 110 will be described.
 照明条件記憶部112は、後述する照明条件取得部131で取得された照明条件を記憶する部分である。照明条件は、照明条件記憶部112から適宜読み出されて、出力調整部116に送信される。光源100の発光による光環境値の場所依存性が光源100の出力変化によって非線形に変化する場合には、光源100の複数の出力値に対応した複数パターンの照明条件各々が照明条件記憶部112に複数の数値テーブルとして記憶されている。すなわち、図3に示される配光分布300の場合だけではなく、例えば、図4(a),(b)に示される配光分布300b,300cのような配光分布に基づいて、複数の数値テーブルが記憶されている。そして、複数の数値テーブルの中から、そのときの光源100の出力(光強度)に応じた数値テーブルが選択及び参照される。 The illumination condition storage unit 112 is a part that stores the illumination conditions acquired by the illumination condition acquisition unit 131 described later. The illumination condition is appropriately read from the illumination condition storage unit 112 and transmitted to the output adjustment unit 116. When the location dependence of the light environment value due to the light emission of the light source 100 changes nonlinearly due to the output change of the light source 100, each of a plurality of patterns of illumination conditions corresponding to the plurality of output values of the light source 100 is stored in the illumination condition storage unit 112. It is stored as a plurality of numerical tables. That is, not only in the case of the light distribution 300 shown in FIG. 3, but also based on the light distribution such as the light distributions 300b and 300c shown in FIGS. The table is stored. Then, a numerical table corresponding to the output (light intensity) of the light source 100 at that time is selected and referred to from among a plurality of numerical tables.
 なお、光源100の異なる出力に応じて数組程度の照明条件が記憶された状態で、実際の出力が特定された場合には、それらを補間あるいは外挿して、当該実際の出力に対応した照明条件が特定される形態であってもよい。 In addition, when an actual output is specified in a state where several sets of illumination conditions are stored according to different outputs of the light source 100, the illumination corresponding to the actual output is interpolated or extrapolated. It may be a form in which the conditions are specified.
 また、位置変数と光源100の出力に対応する変数とを含む数式(条件式)で照明条件、即ち光環境値の場所依存性が表現された関数が記憶され、そのときの光源100の出力値に対応したパラメータ値がその条件式に代入されて照明条件、即ち光環境値の場所依存性が特定される形態であってもよい。 In addition, a function expressing the illumination condition, that is, the location dependence of the light environment value, is stored as a mathematical expression (conditional expression) including a position variable and a variable corresponding to the output of the light source 100, and the output value of the light source 100 at that time is stored. The parameter value corresponding to is substituted into the conditional expression, and the illumination condition, that is, the location dependence of the light environment value may be specified.
 図2の説明に戻って、調整位置記憶部113は、調整位置3に関する位置情報が記憶される部分である。この位置情報は、位置情報取得部132によって取得される。 Returning to the description of FIG. 2, the adjustment position storage unit 113 is a part in which position information regarding the adjustment position 3 is stored. This position information is acquired by the position information acquisition unit 132.
 光センサ位置記憶部114は、光センサ配置位置2に関する位置情報が記憶される部分である。光センサ12の配置位置に関する情報は位置情報取得部132によって取得される。 The optical sensor position storage unit 114 is a part in which position information regarding the optical sensor arrangement position 2 is stored. Information regarding the arrangement position of the optical sensor 12 is acquired by the position information acquisition unit 132.
 光環境目標値記憶部115は、調整位置3で所望される光環境値が記憶される部分である。この光環境目標値記憶部115から目標値となる光環境に関する信号が読み出され、後述する換算を経て、光センサ12が検出した測定値との比較に使用される。 The light environment target value storage unit 115 is a part in which a light environment value desired at the adjustment position 3 is stored. A signal related to the light environment serving as a target value is read from the light environment target value storage unit 115 and used for comparison with a measured value detected by the light sensor 12 through conversion described later.
 出力調整部116は、光源100の出力が調整される部分である。出力調整部116は、光源100、光センサ12、照明条件記憶部112、調整位置記憶部113、光センサ位置記憶部114及び光環境目標値記憶部115と電気的に接続されている。出力調整部116は、各要素から照明条件、調整位置3、光センサ配置位置2及び光環境の目標値に関する信号を受信する。 The output adjustment unit 116 is a part where the output of the light source 100 is adjusted. The output adjustment unit 116 is electrically connected to the light source 100, the optical sensor 12, the illumination condition storage unit 112, the adjustment position storage unit 113, the optical sensor position storage unit 114, and the light environment target value storage unit 115. The output adjustment unit 116 receives signals related to the illumination condition, the adjustment position 3, the optical sensor arrangement position 2, and the target value of the light environment from each element.
 目標値は、調整位置3での光環境値と光センサ配置位置2での光環境値との相関関係に基づいて光センサ配置位置2での値に換算され、光センサ12が検出した測定値との比較に使用される。 The target value is converted into a value at the photosensor arrangement position 2 based on the correlation between the light environment value at the adjustment position 3 and the light environment value at the photosensor arrangement position 2, and the measured value detected by the photosensor 12 Used for comparison with.
 そしてこのような比較結果に応じて光源100の出力が調整され、調整位置3において所望の光環境が実現する。 Then, the output of the light source 100 is adjusted according to such a comparison result, and a desired light environment is realized at the adjustment position 3.
 ここで、操作表示部13の機能的構成について説明する。 Here, the functional configuration of the operation display unit 13 will be described.
 照明条件取得部131は、例えば工場出荷段階で他のコンピュータ等からネットワークを介して光源100の照明条件を取得する部分である。使用される光源100に応じた照明条件に関する情報がダウンロードされ、照明条件の取得が行われる。取得された照明条件は照明条件記憶部112で記憶される。既述したように、照明条件は照明システムLSの設置先の部屋などで設置作業者が照度の場所依存性などの実測を行うことによって決定され、それを照明条件取得部131に与える形態であってもよい。 The illumination condition acquisition unit 131 is a part that acquires the illumination condition of the light source 100 from another computer or the like via a network at a factory shipment stage, for example. Information related to the illumination condition corresponding to the light source 100 to be used is downloaded, and the illumination condition is acquired. The acquired illumination condition is stored in the illumination condition storage unit 112. As described above, the illumination conditions are determined by the installation operator performing actual measurements such as the location dependence of the illuminance in the room where the illumination system LS is installed, and the illumination conditions are given to the illumination condition acquisition unit 131. May be.
 なお、照明条件取得部131は照明部11に設けられており、操作表示部13における操作に応答して照明条件の取得が行われる形態であってもよい。さらに、照明条件は、ネットワークに限らず、例えば可搬型記憶媒体を介して取得される形態、又はコンピュータから直接入力される形態であってもよい。 In addition, the illumination condition acquisition part 131 is provided in the illumination part 11, and the form by which an illumination condition is acquired in response to operation in the operation display part 13 may be sufficient. Further, the lighting condition is not limited to the network, and may be in a form acquired through a portable storage medium or directly input from a computer.
 以上のように、照明条件が照明条件取得部131で可変に取得できることにより、光源が変更された場合においても、変更後の光源によって得られる照明条件に基づいて、調整位置3における光環境の調整が可能である。 As described above, since the illumination condition can be variably acquired by the illumination condition acquisition unit 131, even when the light source is changed, the adjustment of the light environment at the adjustment position 3 is performed based on the illumination condition obtained by the changed light source. Is possible.
 なお、照明条件取得部131は必ずしも設置されていなくても構わない。この場合、予めデフォルト値として照明条件記憶部112に記憶されている照明条件が、出力調整部116での調整処理に使用される。 In addition, the illumination condition acquisition part 131 does not necessarily need to be installed. In this case, the illumination condition stored in advance in the illumination condition storage unit 112 as a default value is used for the adjustment process in the output adjustment unit 116.
 位置情報取得部132は、光センサ配置位置2及び調整位置3に関する位置情報が可変に取得される部分である。具体的に、位置情報取得部132は、例えば表示部95及び操作部96で構成されている。 The position information acquisition unit 132 is a part from which position information regarding the optical sensor arrangement position 2 and the adjustment position 3 is variably acquired. Specifically, the position information acquisition unit 132 includes a display unit 95 and an operation unit 96, for example.
 ここで、位置情報の取得について説明する。例えば、光源100が光を照射する範囲が表示部95に概略的に示される。具体的には、照明制御システム10が部屋などの所定の空間150に設置された場合には、予め設定された平面視における空間150の概略図が表示部95に視覚的に示される。この空間150の概略図は複数の部分領域に分割されている。複数の部分領域の中から所定の部分領域、具体的には、光源100が設置される位置、光センサ配置位置2及び調整位置3に相当する位置が操作部96を介して選択される。さらに、光源100の設置位置から光センサ配置位置2までの距離と、光源100の設置位置から調整位置3までの距離とが設定入力される。なお、これらの距離は目視による計測で構わない。 Here, the acquisition of location information will be described. For example, the display unit 95 schematically shows a range in which the light source 100 emits light. Specifically, when the illumination control system 10 is installed in a predetermined space 150 such as a room, a schematic diagram of the space 150 in a preset plan view is visually shown on the display unit 95. The schematic diagram of the space 150 is divided into a plurality of partial areas. A predetermined partial area, specifically, a position where the light source 100 is installed, a position corresponding to the photosensor arrangement position 2 and the adjustment position 3 is selected from the plurality of partial areas via the operation unit 96. Further, a distance from the installation position of the light source 100 to the optical sensor arrangement position 2 and a distance from the installation position of the light source 100 to the adjustment position 3 are set and input. These distances may be measured visually.
 続いて、選択された部分領域の高さが、例えば、3通りの設定値から操作部96を介して選択される。ここで、3通りの設定値は、例えば、部屋における床面、座卓の表面及びテーブルの表面をそれぞれ想定した高さの値となっている。 Subsequently, the height of the selected partial area is selected from the three setting values via the operation unit 96, for example. Here, the three set values are, for example, values of height assuming the floor surface in the room, the surface of the table, and the surface of the table.
 このようにして、調整位置3が調整位置記憶部113に記憶されるとともに、光センサ配置位置2が光センサ位置記憶部114に記憶される。これによって、所定の空間における光源100と光センサ配置位置2との相対的な位置関係及び光源100と調整位置3との相対的な位置関係が特定される。 In this way, the adjustment position 3 is stored in the adjustment position storage unit 113, and the photosensor arrangement position 2 is stored in the photosensor position storage unit 114. As a result, the relative positional relationship between the light source 100 and the photosensor arrangement position 2 in the predetermined space and the relative positional relationship between the light source 100 and the adjustment position 3 are specified.
 また、照明システムLSがタスクランプ250に採用される場合においても同様の処理及び操作が行われる。この場合には、複数の部分領域が、タスクランプ250が設置されるデスク表面の手前領域、デスク表面の中央領域及びデスク表面の奥の領域などを想定した領域として、設定されている。また、高さは、例えば、デスクの上面と床面とを想定した2通りの設定値から選択される。 Also, when the lighting system LS is employed in the task lamp 250, the same processing and operation are performed. In this case, a plurality of partial areas are set as areas assuming a front area of the desk surface on which the task lamp 250 is installed, a central area of the desk surface, a back area of the desk surface, and the like. The height is selected from, for example, two setting values assuming the upper surface and the floor surface of the desk.
 以上のように、光センサ配置位置2及び調整位置3それぞれに関する位置情報が位置情報取得部132で可変に取得されることにより、光センサ配置位置2、又は調整位置3が変更されても、変更位置が反映された位置情報に基づいて、光源の出力を調整することができる。 As described above, position information regarding each of the optical sensor arrangement position 2 and the adjustment position 3 is variably acquired by the position information acquisition unit 132, so that even if the optical sensor arrangement position 2 or the adjustment position 3 is changed, the change is made. The output of the light source can be adjusted based on the position information reflecting the position.
 なお、位置情報取得部132は、必ずしも設けられていなくても構わない。この場合、予めデフォルト値として調整位置記憶部113に記憶されている調整位置3に関する位置情報と、予めデフォルト値として光センサ位置記憶部114に記憶されている光センサ配置位置2に関する位置情報とが、出力調整部116での調整処理に使用される。特に、図1(b)のようなタスクランプ250の場合には、光センサ配置位置2は机面の端部に固定され、調整位置3は机面の中央部ないしはそれよりも手前側であることが多いと考えられる。従って、そのようなデフォルト値を用いても実用性が損なわれることはない。 Note that the position information acquisition unit 132 is not necessarily provided. In this case, position information related to the adjustment position 3 stored in advance in the adjustment position storage unit 113 as a default value, and position information related to the photosensor arrangement position 2 stored in the photosensor position storage unit 114 as a default value in advance. , And used for adjustment processing in the output adjustment unit 116. In particular, in the case of the task lamp 250 as shown in FIG. 1B, the optical sensor placement position 2 is fixed to the end of the desk surface, and the adjustment position 3 is the central part of the desk surface or the front side thereof. It is thought that there are many cases. Therefore, even if such default values are used, practicality is not impaired.
 上述のように照明条件取得部131と位置情報取得部132とが設けられていない場合には、操作表示部13は設置されていなくてもよい。 If the illumination condition acquisition unit 131 and the position information acquisition unit 132 are not provided as described above, the operation display unit 13 may not be installed.
 <1-2.処理の流れ>
 図7には、本実施形態における処理の流れを表すフローチャートが示されている。このフローチャートに基づいて処理の流れを説明する。
<1-2. Flow of processing>
FIG. 7 shows a flowchart showing the flow of processing in the present embodiment. The flow of processing will be described based on this flowchart.
 はじめに、照明条件取得部131が光源100の照明条件を取得する(ステップS1)。そして、照明条件記憶部112が照明条件取得部131で取得された照明条件を記憶する。既述したように、このステップS1は、工場出荷前に行ってもよく、照明システムLSの設置先で行われてもよい。 First, the illumination condition acquisition unit 131 acquires the illumination condition of the light source 100 (step S1). Then, the illumination condition storage unit 112 stores the illumination condition acquired by the illumination condition acquisition unit 131. As described above, this step S1 may be performed before shipment from the factory, or may be performed at the installation destination of the illumination system LS.
 位置情報取得部132によって取得された調整位置3に関する位置情報は調整位置記憶部113に記憶される(ステップS2)。これは、使用者などの操作入力(選択入力)に基づいて実行される。また、位置情報取得部132によって取得された光センサ配置位置2に関する位置情報は光センサ位置記憶部114に記憶される(ステップS3)。なお、ステップ2とステップ3との順序は逆であっても構わない。また、調整位置3及び光センサ配置位置2がすでに調整位置記憶部113及び光センサ位置記憶部114に記憶されている場合には、これらの工程は省略される。 The position information related to the adjustment position 3 acquired by the position information acquisition unit 132 is stored in the adjustment position storage unit 113 (step S2). This is executed based on an operation input (selection input) by a user or the like. Further, the position information related to the photosensor arrangement position 2 acquired by the position information acquisition unit 132 is stored in the photosensor position storage unit 114 (step S3). Note that the order of step 2 and step 3 may be reversed. Further, when the adjustment position 3 and the optical sensor arrangement position 2 are already stored in the adjustment position storage unit 113 and the optical sensor position storage unit 114, these steps are omitted.
 光源100の照明条件に関する情報が照明条件記憶部112から出力調整部116に送信される。また、光センサ配置位置2及び調整位置3に関する位置情報が、光センサ位置記憶部114と調整位置記憶部113とからそれぞれ出力調整部116に送信される。そして、これらの光センサ配置位置2及び調整位置3における光環境の値、即ち、照度、又は相関色温度の相関関係が照明条件に基づいて算出され、相関係数dとして出力調整部116に記憶される(ステップS4)。 Information related to the illumination condition of the light source 100 is transmitted from the illumination condition storage unit 112 to the output adjustment unit 116. In addition, position information regarding the optical sensor arrangement position 2 and the adjustment position 3 is transmitted from the optical sensor position storage unit 114 and the adjustment position storage unit 113 to the output adjustment unit 116, respectively. Then, the value of the light environment at the photosensor arrangement position 2 and the adjustment position 3, that is, the correlation between the illuminance or the correlated color temperature is calculated based on the illumination condition, and stored in the output adjustment unit 116 as the correlation coefficient d. (Step S4).
 ここで、光源100の出力に応じた複数の照明条件が照明条件記憶部112に記憶されている場合には、その中から選択された1つの照明条件が照明条件記憶部112から読出され、出力調整部116に与えられる。なお、照明システムLSの電源がオンされた直後には、あらかじめデフォルト値として指定されている標準的な照明条件が読み出される。 Here, when a plurality of illumination conditions corresponding to the output of the light source 100 are stored in the illumination condition storage unit 112, one illumination condition selected from them is read from the illumination condition storage unit 112 and output. The adjustment unit 116 is given. Note that immediately after the lighting system LS is turned on, standard illumination conditions designated in advance as default values are read out.
 続いて、目標値となる光環境値、即ち調整位置3にて所望される光環境値が、光環境目標値記憶部115から読み出され、出力調整部116において設定される(ステップS5)。この光環境の目標値はデフォルト値であってもよく、使用者の操作によって可変であってもよい。目標値を可変とする態様は別の実施形態として後述する。 Subsequently, the light environment value serving as the target value, that is, the light environment value desired at the adjustment position 3, is read from the light environment target value storage unit 115 and set in the output adjustment unit 116 (step S5). The target value of the light environment may be a default value or may be variable by a user operation. A mode in which the target value is variable will be described later as another embodiment.
 そして、光センサ配置位置2における光環境値が、光センサ12によって測定される(ステップS6)。光センサ12の検出信号は、出力調整部116に送信される。出力調整部116は、光センサ配置位置2での光環境の測定値を、相関係数dを用いて、調整位置3における測定値に換算する(ステップS7)。つまり、調整位置3における光環境の測定値が換算値として算出される。 Then, the light environment value at the light sensor arrangement position 2 is measured by the light sensor 12 (step S6). A detection signal of the optical sensor 12 is transmitted to the output adjustment unit 116. The output adjustment unit 116 converts the measurement value of the light environment at the optical sensor arrangement position 2 into the measurement value at the adjustment position 3 using the correlation coefficient d (step S7). That is, the measurement value of the light environment at the adjustment position 3 is calculated as a converted value.
 そして、換算値と光環境目標値記憶部115に記憶されている目標値との比較が行われ、換算値と目標値との差がゼロであるか否かが判断される(ステップS8)。光環境の換算値が目標値と一致した段階、又はその差が所定の許容範囲内に収まった段階で、一連の処理は終了する。つまり、調整位置3において目標の光環境が実現される。 Then, the converted value is compared with the target value stored in the light environment target value storage unit 115, and it is determined whether or not the difference between the converted value and the target value is zero (step S8). The series of processing ends when the converted value of the light environment matches the target value, or when the difference falls within a predetermined allowable range. That is, the target light environment is realized at the adjustment position 3.
 なお、ステップS6の光センサ12での計測は所定の時間間隔で周期的に行われる。そして、ステップS7を経て改めてステップS8が実行される。 Note that the measurement by the optical sensor 12 in step S6 is periodically performed at predetermined time intervals. And step S8 is performed anew through step S7.
 換算値と目標値との差がゼロではない場合、又は許容範囲外の場合には、この差がゼロになるように、出力調整部116は、光源100に信号を送信し、光源100の出力の調整を行う(ステップS9)。つまり、フィードバック制御が行われる。 When the difference between the converted value and the target value is not zero or outside the allowable range, the output adjustment unit 116 transmits a signal to the light source 100 so that the difference becomes zero, and the output of the light source 100 Is adjusted (step S9). That is, feedback control is performed.
 フィードバック制御が行われて光源100の出力が変化した際には、照明条件の再設定(ステップS10)が行われる。即ち、フィードバック制御が行われた後では、それ以前における光源100の光強度が変化している可能性があるため、光源100の光強度の最新の状況に応じた1つの照明条件が、照明条件記憶部112に記憶されている複数の照明条件の中から選択及び読出され、制御に使用される。この目的で、各回のフィードバック制御が収束した際には、そのときの光源100の光強度の情報が、出力調整部116または照明条件記憶部112に記憶される。具体的には、各回のフィードバック制御が収束した際に出力調整部116から光源100に与えている信号の値が光源100の出力値に換算され、記憶される。 When the feedback control is performed and the output of the light source 100 is changed, the illumination condition is reset (step S10). That is, after the feedback control is performed, there is a possibility that the light intensity of the light source 100 before that is changed, so that one illumination condition corresponding to the latest situation of the light intensity of the light source 100 is the illumination condition. It is selected and read out from a plurality of illumination conditions stored in the storage unit 112 and used for control. For this purpose, when each feedback control converges, information on the light intensity of the light source 100 at that time is stored in the output adjustment unit 116 or the illumination condition storage unit 112. Specifically, the value of the signal given from the output adjustment unit 116 to the light source 100 when each feedback control converges is converted into an output value of the light source 100 and stored.
 なお、光環境目標値記憶部115で記憶された、調整位置3における目標値が、相関係数dに基づいて、光センサ配置位置2における目標値に換算され、この換算値と光センサ12による測定値との差を調整する制御形態であってもよい。 The target value at the adjustment position 3 stored in the optical environment target value storage unit 115 is converted into the target value at the optical sensor arrangement position 2 based on the correlation coefficient d. It may be a control form that adjusts the difference from the measured value.
 以上のように、本実施形態に係る照明制御システム10では、光センサ12が、光環境の調整が所望される位置とは異なる位置に設置された状態で、調整位置3における光環境の調整を行うことが可能である。このため、光センサ12が設置されていることによって使用者の行動が制限されることなく、所望の光環境が所望の位置において実現可能である。 As described above, in the illumination control system 10 according to the present embodiment, the light sensor 12 is adjusted at the adjustment position 3 in a state where the light sensor 12 is installed at a position different from the position where adjustment of the light environment is desired. Is possible. For this reason, a desired light environment is realizable in a desired position, without a user's action being restrict | limited by installing the optical sensor 12. FIG.
 また、照明制御システム10が照明条件取得部131を備えることによって、例えば、経年劣化、又は光源100の交換により、光源100が設置段階とは異なる照明条件を有する場合であっても、その都度適切な照明条件を取得可能である。このため、正確な照明条件に基づいて、光源100の出力の調整が可能である。 In addition, since the illumination control system 10 includes the illumination condition acquisition unit 131, for example, when the light source 100 has an illumination condition different from the installation stage due to aging or replacement of the light source 100, it is appropriate each time. Various lighting conditions can be obtained. For this reason, the output of the light source 100 can be adjusted based on accurate illumination conditions.
 また、照明制御システム10が位置情報取得部132を備えることによって、光センサ配置位置2、又は調整位置3の位置情報は更新可能である。このため、光センサ配置位置2、又は調整位置3を変更しなければならない状況であっても、変更位置に応じた適切な位置情報に基づいて、光源100の出力の調整が可能である。 In addition, since the illumination control system 10 includes the position information acquisition unit 132, the position information of the optical sensor arrangement position 2 or the adjustment position 3 can be updated. For this reason, even in a situation where the optical sensor arrangement position 2 or the adjustment position 3 must be changed, the output of the light source 100 can be adjusted based on appropriate position information corresponding to the changed position.
 <2.第2の実施形態>
 上記第1の実施形態では、光センサ12は固定設置されていたが、このような形態に限られない。光センサ12は、移動自在の可搬性の形態であっても構わない。図8(a),(b)では、光センサ12がリモートコントローラ30に搭載されている場合の、照明制御システム10bを用いた照明システムLSbが示されている。このリモートコントローラ30は、照明部11、特に照明調整部110とは分離されて設けられ、照明調整部110への指示に用いられる。光センサ12はリモートコントローラ30の移動に応じて自在に配置位置を変更することが可能である。なお、本実施形態では、リモートコントローラ30が可搬型端末機器に相当する。光センサ12は、リモートコントローラ30に限られず、例えばスマートフォンなどに搭載されても構わない。
<2. Second Embodiment>
In the said 1st Embodiment, although the optical sensor 12 was fixedly installed, it is not restricted to such a form. The optical sensor 12 may be in a movable and portable form. 8A and 8B show an illumination system LSb using the illumination control system 10b when the optical sensor 12 is mounted on the remote controller 30. FIG. The remote controller 30 is provided separately from the illumination unit 11, particularly the illumination adjustment unit 110, and is used for instructions to the illumination adjustment unit 110. The arrangement position of the optical sensor 12 can be freely changed according to the movement of the remote controller 30. In the present embodiment, the remote controller 30 corresponds to a portable terminal device. The optical sensor 12 is not limited to the remote controller 30 and may be mounted on, for example, a smartphone.
 図9には、本実施形態に係る照明制御システム10bのブロック図が示されている。 FIG. 9 shows a block diagram of the illumination control system 10b according to the present embodiment.
 このようなリモートコントローラ30には、光センサ12とともに、位置情報取得部132も設けられている。光センサ12、又は位置情報取得部132からの所定の信号は、端末側通信部31を介して照明部11の照明部側通信部118に送られ、照明部側通信部118から照明部11の各部に送られる。なお、位置情報取得部132は、第1の実施形態と同様の形態、即ち操作部96及び表示部95で構成されている。また、端末側通信部31が本発明における送信部に相当する。 Such a remote controller 30 is provided with a position information acquisition unit 132 together with the optical sensor 12. A predetermined signal from the optical sensor 12 or the position information acquisition unit 132 is sent to the illumination unit side communication unit 118 of the illumination unit 11 via the terminal side communication unit 31, and from the illumination unit side communication unit 118 to the illumination unit 11. Sent to each part. The position information acquisition unit 132 is configured in the same manner as in the first embodiment, that is, the operation unit 96 and the display unit 95. The terminal side communication unit 31 corresponds to the transmission unit in the present invention.
 このように、リモートコントローラ30は位置情報取得部132を備えるため、使用者は任意の位置で、光センサ配置位置2及び調整位置3に関する位置情報を設定可能であり、操作入力を行いやすくなる。 As described above, since the remote controller 30 includes the position information acquisition unit 132, the user can set position information regarding the optical sensor arrangement position 2 and the adjustment position 3 at an arbitrary position, which facilitates operation input.
 また、光センサ12がリモートコントローラ30に設置されていることによって、リモートコントローラ30を移動させながら、任意の位置における光環境を測定することが可能である。 Further, since the optical sensor 12 is installed in the remote controller 30, it is possible to measure the light environment at an arbitrary position while moving the remote controller 30.
 また、使用者がリモートコントローラ30を保持しながら移動して、光センサ12による光環境の測定と、位置情報取得部132による位置情報の取得とが行われることにより、照明条件の測定が可能である。このため、照明条件記憶部112で記憶される照明条件を、実際に設置環境に置かれた状態の光源100に基づいて測定を行ったうえで設定することが可能である。 In addition, the user moves while holding the remote controller 30 to measure the light environment by the optical sensor 12 and to acquire the position information by the position information acquisition unit 132, so that the illumination condition can be measured. is there. For this reason, it is possible to set the illumination conditions stored in the illumination condition storage unit 112 after performing measurement based on the light source 100 that is actually placed in the installation environment.
 位置情報取得部132は、自動的に位置情報を計測可能な位置計測部を備える構成であってもよい。例えば、無線測距計、赤外線測距計、超音波測距計、又は室内GPSなどが位置情報取得部132に採用されることで、使用者の操作による操作表示部13への入力が行われることなく、位置情報は自動的に更新される。なお、この場合、光源100の位置は事前に設定入力されている。調整位置3は、事前に使用者がリモートコントローラ30を実際に光環境の調整が所望される位置に配置して操作を行うことにより、位置情報取得部132が当該位置における位置情報を得ることによって設定される。この調整位置3は、使用者が同様の操作を行うことで更新できる。また、光センサ配置位置2は、位置情報取得部132によって常時更新可能である。 The position information acquisition unit 132 may include a position measurement unit that can automatically measure position information. For example, a radio range finder, an infrared range finder, an ultrasonic range finder, an indoor GPS, or the like is employed in the position information acquisition unit 132, whereby an input to the operation display unit 13 by a user operation is performed. Instead, the position information is automatically updated. In this case, the position of the light source 100 is set and input in advance. The adjustment position 3 is obtained when the user arranges the remote controller 30 at a position where the adjustment of the light environment is actually desired and operates in advance, and the position information acquisition unit 132 obtains the position information at the position. Is set. The adjustment position 3 can be updated by the user performing a similar operation. In addition, the optical sensor arrangement position 2 can be constantly updated by the position information acquisition unit 132.
 例えば、使用者がリモートコントローラ30を保持しながら移動し、光センサ12による光環境の測定と、位置情報取得部132による位置情報の取得とが行われる場合には、位置毎の光環境の測定値が求められる。従って、測定値の強度の空間分布に基づいて光源100の位置は自動的に認識(演算で推定)されるため、光源100の設置位置の手動入力が行われることなく、光源100と光センサ配置位置2との相対的な位置関係は自動的に設定可能である。 For example, when the user moves while holding the remote controller 30 and the measurement of the light environment by the optical sensor 12 and the acquisition of the position information by the position information acquisition unit 132 are performed, the measurement of the light environment for each position is performed. A value is determined. Accordingly, since the position of the light source 100 is automatically recognized (estimated by calculation) based on the spatial distribution of the intensity of the measurement value, the light source 100 and the optical sensor arrangement are not manually input without setting the installation position of the light source 100. The relative positional relationship with position 2 can be set automatically.
 このように、光センサ配置位置2は、自在に変更可能であり、光センサ配置位置2が変更される都度、相関係数dの再設定が行われる。 Thus, the photosensor arrangement position 2 can be freely changed, and the correlation coefficient d is reset every time the photosensor arrangement position 2 is changed.
 以上のように、第2の実施形態に係る照明制御システム10bでは、光センサ12及び位置情報取得部132がリモートコントローラ30のような可搬型端末機器に搭載されている。このため、可変型端末機器を移動させることで光センサ配置位置2を自在に変更できるとともに、使用者は、操作しやすい位置で、照明調整部110における位置情報の設定変更を容易に行うことができる。 As described above, in the illumination control system 10 b according to the second embodiment, the optical sensor 12 and the position information acquisition unit 132 are mounted on a portable terminal device such as the remote controller 30. For this reason, the optical sensor arrangement position 2 can be freely changed by moving the variable terminal device, and the user can easily change the setting of the position information in the illumination adjustment unit 110 at an easy-to-operate position. it can.
 また、実際の使用環境に置かれた状態の光源100によって得られる照明条件がリモートコントローラ30を移動させることで測定可能である。従って、照明条件は、光源100の設置後であっても更新可能であり、光源100の経年劣化が生じても、正確な照明条件を得られる。 Moreover, the illumination conditions obtained by the light source 100 in the actual usage environment can be measured by moving the remote controller 30. Therefore, the illumination condition can be updated even after the light source 100 is installed, and an accurate illumination condition can be obtained even if the light source 100 deteriorates over time.
 また、位置情報取得部132は自動計測によって位置情報を取得することも可能であるため、使用者は入力操作をしなくても容易に位置情報を取得でき、使用者の利便性は向上する。 Further, since the position information acquisition unit 132 can also acquire position information by automatic measurement, the user can easily acquire the position information without performing an input operation, and the convenience for the user is improved.
 なお、図9に示される照明部11が、光源100、出力調整部116および照明側通信部118で構成されており、その他の構成要素、即ち照明条件記憶部112、調整位置記憶部113、光センサ位置記憶部114、及び光環境目標値記憶部115などがリモートコントローラ30に備わる形態であってもよい。この場合、その他の構成要素が備わるリモートコントローラ30、即ち本実施形態における可搬型端末機器が、出力の変更及び通信可能な既設の照明光源に対して、用いられることによって照明制御システム10bは実現可能である。 The illumination unit 11 shown in FIG. 9 includes a light source 100, an output adjustment unit 116, and an illumination-side communication unit 118. Other components, that is, an illumination condition storage unit 112, an adjustment position storage unit 113, light The remote controller 30 may include the sensor position storage unit 114, the light environment target value storage unit 115, and the like. In this case, the illumination control system 10b can be realized by using the remote controller 30 including other components, that is, the portable terminal device according to the present embodiment, for an existing illumination light source capable of changing output and communicating. It is.
 <3.第3の実施形態>
 上記実施形態では、光環境目標値記憶部115に記憶されている光環境の目標値は、一旦設定されると更新されることはなかったが、このような形態には限られない。光環境の目標値は更新可能な形態であっても構わない。
<3. Third Embodiment>
In the above embodiment, the light environment target value stored in the light environment target value storage unit 115 has not been updated once set, but is not limited to such a form. The target value of the light environment may be in an updatable form.
 図10には、本実施形態に係る照明制御システム10cを用いた照明システムLScのブロック図が示されている。図10に示されるように、光環境目標値取得部133が操作表示部13に設けられており、この光環境目標値取得部133を介して光環境の目標値を取得可能である。具体的には光環境の目標値は、例えば使用者が、操作部96及び表示部95を介して入力することにより、更新可能である。 FIG. 10 shows a block diagram of a lighting system LSc using the lighting control system 10c according to the present embodiment. As shown in FIG. 10, the light environment target value acquisition unit 133 is provided in the operation display unit 13, and the light environment target value can be acquired via the light environment target value acquisition unit 133. Specifically, the target value of the light environment can be updated, for example, when the user inputs it via the operation unit 96 and the display unit 95.
 使用者は、光環境の目標値を任意の値に変更可能であるため、例えば、季節、時間、天候及び気温などの状況に応じて、光環境の目標値を適切な値に設定することができる。 Since the user can change the target value of the light environment to an arbitrary value, for example, the target value of the light environment can be set to an appropriate value according to the situation such as season, time, weather, and temperature. it can.
 例えば、目標値が、複数の選択値からの択一的選択あるいは操作入力された値とする場合、読書などの際には比較的高い目標値が設定され、テレビ鑑賞の際には比較的低い目標値が設定されるなど、目標値を可変とすることによって多様な照明調整が可能である。 For example, when the target value is an alternative selection or operation input value from a plurality of selection values, a relatively high target value is set for reading and the like, and a relatively low value for watching TV Various illumination adjustments are possible by making the target value variable, such as setting the target value.
 この第3の実施形態においても、第2の実施形態のように光センサ12は移動可能な形態とすることができる。 Also in the third embodiment, the optical sensor 12 can be moved as in the second embodiment.
 日光などの外光が部屋の一部にだけ差し込んでおり、一方で部屋の奥は比較的暗い場合には、外光が当たる位置に光センサ12が配置されると、光センサは高い測定値を検出する。このため、制御ループは光源100の出力を低下させるように作用してしまう。 When external light such as sunlight is only inserted into a part of the room and the interior of the room is relatively dark, if the optical sensor 12 is arranged at a position where the external light hits, the optical sensor has a high measured value. Is detected. For this reason, the control loop acts to reduce the output of the light source 100.
 このような状況に対処するために、光センサが固定設置される場合には、外光の影響が少ない位置に光センサ12を設置することが好ましい。第3の実施形態のように目標値を可変とする場合には、仮に外光の影響が出ても、目標値を高く変更することによって対処可能である。また、第2の実施形態のように光センサを可搬とする場合には、そのときどきで、光センサが、外光が当たらない箇所に移動されることによって、そのような外光の影響を抑制することが可能となる。 In order to cope with such a situation, when the optical sensor is fixedly installed, it is preferable to install the optical sensor 12 at a position where the influence of external light is small. When the target value is made variable as in the third embodiment, even if the influence of external light appears, it can be dealt with by changing the target value higher. In addition, when the optical sensor is portable as in the second embodiment, sometimes the optical sensor is moved to a place where the external light does not hit, thereby affecting the influence of such external light. It becomes possible to suppress.
 以上、3つの実施形態では、光源が1箇所に設置されている例で説明したが、本発明に係る照明制御システムは、光源が複数箇所に設置されている場合においても適用が可能である。 As described above, in the three embodiments, the example in which the light source is installed at one place has been described. However, the illumination control system according to the present invention can be applied even when the light source is installed at a plurality of places.
 2 光センサ配置位置
 3 調整位置
 10,10b,10c 照明制御システム
 12 光センサ
 13 操作表示部
 30 リモートコントローラ
 110 照明調整部
 112 照明条件記憶部
 113 調整位置記憶部
 114 光センサ位置記憶部
 115 光環境目標値記憶部
 116 出力調整部
 131 照明条件取得部
 132 位置情報取得部
 LS,LSb,LSc 照明システム
2 Optical sensor arrangement position 3 Adjustment position 10, 10b, 10c Illumination control system 12 Optical sensor 13 Operation display unit 30 Remote controller 110 Illumination adjustment unit 112 Illumination condition storage unit 113 Adjustment position storage unit 114 Optical sensor position storage unit 115 Optical environment target Value storage unit 116 Output adjustment unit 131 Illumination condition acquisition unit 132 Position information acquisition unit LS, LSb, LSC Illumination system

Claims (10)

  1.  発光状態を調整可能な光源からの照明によって得られる光環境を測定する光センサの測定値に基づいて前記光源の出力を調整する照明調整部を有する照明制御システムであって、
     前記照明調整部は、
     前記光源からの照明によって生じる光環境の場所依存性を示す情報としての照明条件を記憶する照明条件記憶部と、
     前記光センサの配置位置を記憶する光センサ位置記憶部と、
     光環境の調整位置を記憶する調整位置記憶部と、
     前記照明条件に基づいて前記光センサ配置位置の光環境と前記調整位置の光環境との相関関係を求めるとともに、前記相関関係と前記光センサの測定値とに基づいて、前記調整位置における光環境が目標値になるように前記光源の出力を調整する出力調整部と、
    を備える照明制御システム。
    An illumination control system having an illumination adjustment unit that adjusts an output of the light source based on a measurement value of an optical sensor that measures an optical environment obtained by illumination from a light source capable of adjusting a light emission state,
    The illumination adjustment unit
    An illumination condition storage unit that stores illumination conditions as information indicating the location dependence of the light environment generated by illumination from the light source;
    An optical sensor position storage unit for storing an arrangement position of the optical sensor;
    An adjustment position storage unit for storing the adjustment position of the light environment;
    A correlation between the light environment at the optical sensor arrangement position and the light environment at the adjustment position is obtained based on the illumination condition, and the light environment at the adjustment position is determined based on the correlation and the measured value of the photosensor. An output adjustment unit for adjusting the output of the light source so that becomes a target value;
    A lighting control system comprising:
  2.  請求項1に記載の照明制御システムであって、
     前記光センサをさらに有する、照明制御システム。
    The lighting control system according to claim 1,
    An illumination control system further comprising the light sensor.
  3.  請求項2に記載の照明制御システムであって、
     前記照明条件記憶部で記憶される前記照明条件を取得する照明条件取得部をさらに備える、照明制御システム。
    The illumination control system according to claim 2,
    An illumination control system further comprising an illumination condition acquisition unit that acquires the illumination condition stored in the illumination condition storage unit.
  4.  請求項2又は3に記載の照明制御システムであって、
     前記光センサ配置位置及び前記調整位置それぞれに関する位置情報を取得する位置情報取得部をさらに備える、照明制御システム。
    The illumination control system according to claim 2 or 3,
    A lighting control system further comprising a position information acquisition unit that acquires position information regarding each of the optical sensor arrangement position and the adjustment position.
  5.  請求項4に記載の照明制御システムであって、
     前記光センサと前記位置情報取得部とが、前記照明部に所定の信号を送信可能な可搬型端末機器に設けられた照明制御システム。
    The lighting control system according to claim 4,
    The illumination control system provided in the portable terminal device with which the said optical sensor and the said positional information acquisition part can transmit a predetermined signal to the said illumination part.
  6.  請求項5に記載の照明制御システムであって、
     前記位置情報取得部は前記位置情報を計測する位置計測部を備える、照明制御システム。
    The lighting control system according to claim 5,
    The position information acquisition unit includes a position measurement unit that measures the position information.
  7.  請求項1ないし6のいずれか一つに記載の照明制御システムであって、
     前記調整位置における光環境の目標値を取得する光環境目標値取得部をさらに備える、照明制御システム。
    A lighting control system according to any one of claims 1 to 6,
    An illumination control system further comprising a light environment target value acquisition unit that acquires a target value of the light environment at the adjustment position.
  8.  光源の発光状態を調整する照明調整部とは分離されて設けられ、前記照明調整部への指示に用いられる可搬型端末機器であって、
     光センサと、
     前記光センサの位置情報を取得する位置情報取得部と、
     前記光センサによって測定される光環境の測定値と前記位置情報取得部によって取得される前記位置情報とを前記照明調整部に送信する送信部と、
    を備える、可搬型端末機器。
    A portable terminal device that is provided separately from the illumination adjustment unit that adjusts the light emission state of the light source and is used for instructions to the illumination adjustment unit,
    An optical sensor;
    A position information acquisition unit for acquiring position information of the optical sensor;
    A transmission unit that transmits the measurement value of the light environment measured by the optical sensor and the position information acquired by the position information acquisition unit to the illumination adjustment unit;
    A portable terminal device.
  9.  コンピュータにインストールされて実行されることにより、前記コンピュータを、請求項1ないし請求項7のいずれか一つに記載の照明制御システムにおける照明調整部として機能させることを特徴とするプログラム。 A program that, when installed in a computer and executed, causes the computer to function as an illumination adjustment unit in the illumination control system according to any one of claims 1 to 7.
  10.  発光状態を調整可能な光源と、請求項1ないし請求項7のいずれか一つに記載の照明制御システムとを備える照明装置。 A lighting device comprising: a light source capable of adjusting a light emission state; and the lighting control system according to any one of claims 1 to 7.
PCT/JP2012/080028 2011-12-08 2012-11-20 Illumination control system, transportable terminal instrument, program, and illumination device WO2013084710A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-268751 2011-12-08
JP2011268751 2011-12-08

Publications (1)

Publication Number Publication Date
WO2013084710A1 true WO2013084710A1 (en) 2013-06-13

Family

ID=48574088

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/080028 WO2013084710A1 (en) 2011-12-08 2012-11-20 Illumination control system, transportable terminal instrument, program, and illumination device

Country Status (1)

Country Link
WO (1) WO2013084710A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01157093A (en) * 1987-09-29 1989-06-20 Toshiba Electric Equip Corp Illumination control system
JP2002075664A (en) * 2000-08-24 2002-03-15 Matsushita Electric Works Ltd Light control system
JP2006302517A (en) * 2005-04-15 2006-11-02 Doshisha Illumination system and illumination control method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01157093A (en) * 1987-09-29 1989-06-20 Toshiba Electric Equip Corp Illumination control system
JP2002075664A (en) * 2000-08-24 2002-03-15 Matsushita Electric Works Ltd Light control system
JP2006302517A (en) * 2005-04-15 2006-11-02 Doshisha Illumination system and illumination control method

Similar Documents

Publication Publication Date Title
US9554446B2 (en) Calibration operation of a lighting device
JP6231132B2 (en) Lighting system and method for controlling light intensity and color temperature of light in a room
US8787765B2 (en) Methods for communication between a lighting node and a controller
CN104798442A (en) Lighting apparatus with brightness self-adjustment and self-adjusting method thereof
JP5406714B2 (en) Lamp holding device and system comprising a plurality of lamp holding devices and a wireless controller
US9883564B2 (en) Digital control for lighting fixtures
KR101530377B1 (en) System for controlling an lighting fixture
JP6258947B2 (en) Calibration of light sensor
US10616978B2 (en) Lighting arrangement, computer program product, mobile communication device and lighting system
JP2008204897A (en) Lighting control system
WO2013084710A1 (en) Illumination control system, transportable terminal instrument, program, and illumination device
US10887970B2 (en) Daylight harvesting to exceed artificial light maximum
JP5872304B2 (en) Lighting device
CN105307319A (en) Lighting device, lighting system and control method for the lighting device
US10585004B1 (en) Systems and methods for determining ambient temperature using lighting based sensors
JP5783268B2 (en) Lighting control system, lighting system, terminal operating device, and program
US20200323058A1 (en) Lighting system
CN113412590A (en) Environmental correction for temperature compensated wireless signal strength sensing
KR20110110383A (en) Lighting control device
JP2005135653A (en) Lighting system
JP2020009535A (en) Light controller, illumination system, and reference value setting method
KR20130059920A (en) Dimming system, dimming method and device in the system
JP2017058055A (en) Information processing device, information processing system and program
KR20110113724A (en) Apparatus and method for controlling light
JP2009231136A (en) Illumination control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12855892

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12855892

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP