WO2013084363A1 - Disk brake vibration estimation method and disk brake vibration estimation device - Google Patents

Disk brake vibration estimation method and disk brake vibration estimation device Download PDF

Info

Publication number
WO2013084363A1
WO2013084363A1 PCT/JP2011/078607 JP2011078607W WO2013084363A1 WO 2013084363 A1 WO2013084363 A1 WO 2013084363A1 JP 2011078607 W JP2011078607 W JP 2011078607W WO 2013084363 A1 WO2013084363 A1 WO 2013084363A1
Authority
WO
WIPO (PCT)
Prior art keywords
pad
vibration
disc brake
rotor
disk
Prior art date
Application number
PCT/JP2011/078607
Other languages
French (fr)
Japanese (ja)
Inventor
龍太郎 三住
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2011/078607 priority Critical patent/WO2013084363A1/en
Publication of WO2013084363A1 publication Critical patent/WO2013084363A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D65/00Parts or details
    • F16D65/0006Noise or vibration control

Definitions

  • the present invention relates to a disc brake vibration estimation method and a disc brake vibration estimation device.
  • the disc brake generates braking torque by bringing the pad into contact with the disc rotor rotating by the hydraulic pressure of the hydraulic cylinder.
  • vibration occurs when the pad comes into contact with the rotating disc rotor, and so-called brake noise occurs when the rotating disc rotor and the pad resonate.
  • the out-of-plane vibration mode is a mode in which the friction surface with which the pad of the disk rotor contacts swings in the same direction as the rotation axis.
  • the in-plane vibration mode is a mode in which the friction surface of the disk rotor vibrates in the circumferential direction of the disk rotor.
  • Patent Document 1 A technique for estimating brake squeal corresponding to only the out-of-plane vibration mode has been proposed. Further, a method for estimating the natural frequency of the disk rotor has been proposed by paying attention to the in-plane vibration mode (Patent Document 1).
  • the in-plane vibration mode is also one factor constituting the brake noise, it is desired to estimate the disc brake vibration in the in-plane vibration mode. Also, if the disc brake vibration in both out-of-plane vibration mode and in-plane vibration mode can be estimated, a disc brake model can be created and the brake squeal can be estimated by simulation. It is also possible to design a disc brake that suppresses brake noise.
  • the present invention has been made in view of the above, and an object of the present invention is to provide a disc brake vibration estimation method and a disc brake vibration estimation device capable of estimating the disc brake vibration in the in-plane direction.
  • the present invention estimates vibrations at the time of contact between the disk rotor and the pad of a disk brake that generates a braking force by bringing the pad into contact with a rotating disk rotor.
  • a disc brake vibration estimation method for obtaining at least an input physical quantity that is a physical quantity related to the disk rotor and the pad, at least the acquired input physical quantity, and an in-plane direction occurrence occurring in a circumferential direction of the disk rotor. And a procedure for estimating the vibration of the disc brake based on the vibration force.
  • the input physical quantity includes a physical quantity related to a hydraulic pressure receiving portion that receives a hydraulic pressure of a hydraulic cylinder that contacts the pad and contacts the pad rotor with the pad.
  • the procedure for estimating the vibration of the brake includes the acquired input physical quantity, load variation between at least the disk rotor and the pad and between the pad and the hydraulic pressure receiving portion, the disk rotor and the pad, Is preferably performed based on the frictional fluctuation between the two and the excitation force generated in the rotation direction of the disk rotor.
  • the present invention is a disc brake vibration estimation device for estimating a vibration at the time of contact between the disc rotor and the pad of a disc brake that generates a braking force by bringing a pad into contact with the rotating disc rotor,
  • the disk rotor the input physical quantity acquisition means for acquiring an input physical quantity that is a physical quantity related to the pad, the disk based on at least the acquired input physical quantity and an in-plane excitation force generated in the rotation direction of the disk rotor
  • vibration estimation means for estimating the vibration of the brake.
  • the disk brake vibration estimation method and the disk brake vibration estimation apparatus according to the present invention have an effect that the vibration of the disk brake can be estimated at least in the in-plane direction.
  • FIG. 1 is a diagram illustrating a configuration example of a disc brake vibration estimation apparatus that executes a disc brake vibration estimation method according to the present embodiment.
  • FIG. 2 is a diagram showing a flowchart of the disc brake estimation method according to the present embodiment.
  • FIG. 3 is a diagram illustrating a configuration example of a physical model of a disc brake used for disc brake vibration estimation.
  • FIG. 4 is a diagram showing the results of a physical model that does not consider the in-plane direction excitation force.
  • FIG. 5 is a diagram showing the results of a physical model that considers the in-plane direction excitation force.
  • FIG. 6 is a diagram showing a result of disc brake vibration estimation by the disc brake vibration estimation method according to the present embodiment.
  • FIG. 1 is a diagram illustrating a configuration example of a disc brake vibration estimation apparatus that executes a disc brake vibration estimation method according to the present embodiment.
  • the disc brake vibration estimation device 1 includes a processing unit 3 and a storage unit 2 which are processing means.
  • An input / output device 4 is connected to the disc brake vibration estimation device 1, and an input means 41 provided therein inputs an input physical quantity, commands to the storage unit 2 and the processing unit 3, for example, to the processing unit 3. It gives a command to execute the disc brake vibration estimation method.
  • input devices such as a keyboard, a mouse, and a microphone can be used as the input means 41.
  • the storage unit 2 stores a disc brake vibration estimation program in which the disc brake vibration estimation method according to the present embodiment for realizing the estimation of the vibration of the disc brake 100 is incorporated.
  • the storage unit 2 is a fixed disk device such as a hard disk device, a flexible disk, a magneto-optical disk device, or a nonvolatile memory such as a flash memory (a storage medium that can only be read such as a CD-ROM), , Storage means such as a volatile memory such as RAM (Random Access Memory), or a combination thereof.
  • the disc brake vibration estimation program is not necessarily limited to a single configuration, but cooperates with a program already stored in a computer system, for example, a separate program represented by an OS (Operating System). Then, the function may be achieved. Further, a disk brake vibration estimation program for realizing the function of the processing unit 3 shown in FIG. 1 is stored in a computer-readable recording medium, and the disk brake vibration estimation program recorded on the recording medium is read into a computer system. The disc brake vibration estimation method according to the present embodiment may be executed by executing.
  • the “computer system” here includes an OS and hardware such as peripheral devices.
  • the processing unit 3 includes a memory such as a RAM and a ROM, and a CPU (Central Processing Unit).
  • the processing unit 3 stores the disc brake vibration estimation program in the memory (not shown) of the processing unit 3 based on the input physical quantity input to the disc brake vibration estimation device 1 as described above. To perform the operation. Note that the processing unit 3 appropriately stores a numerical value in the middle of the calculation in the storage unit 2 and appropriately takes out the stored numerical value from the storage unit 2 and performs the calculation.
  • the processing unit 3 may be realized by dedicated hardware instead of the disc brake vibration estimation program.
  • the estimation result of the vibration of the disc brake 100 created by the calculation of the processing unit 3 is displayed by the display means 42 of the input / output device 4.
  • LCD Liquid Crystal Display
  • CRT Cathode Ray Tube
  • the vibration estimation result of the disc brake 100 can be output to a printer (not shown).
  • storage part 2 may be provided in the process part 3, and may be provided in another apparatus (for example, database server).
  • the structure which can access the disk-brake vibration estimation apparatus 1 by either a wired or wireless method from the terminal device which is provided with the input / output device 4 is not sufficient.
  • the processing unit 3 includes an input physical quantity acquisition unit 31 and a vibration estimation unit 32.
  • the input physical quantity acquisition unit 31 acquires the input physical quantity input by the input unit 41 or the input physical quantity already stored in the storage unit 2.
  • the input physical quantity is the hydraulic pressure receiving portion 103 (piston or cylinder claw) that receives the hydraulic pressure of the hydraulic cylinder 104 that makes contact with the disk rotor 101, the pad 102, and the pad 102, and makes the pad 102 contact the disk rotor 101.
  • the size, mass, moment of inertia, longitudinal elastic modulus, shear elastic modulus, etc. of each part are examples of each part.
  • the vibration estimation unit 32 acquires the input physical quantity, the in-plane direction vibration force generated in the circumferential direction (rotation direction) of the disk rotor 101, and the disk rotor 101 and the pad 102.
  • the vibration of the disc brake 100 is estimated based on the load variation, the load variation between the pad 102 and the hydraulic pressure receiving portion 103, and the friction variation between the disc rotor 101 and the pad 102.
  • the vibration estimation unit 32 estimates the vibration of the disc brake 100 based on the input physical quantity and the following mathematical formula 1.
  • the following numerical formula 1 is a term of a mass term, a rigidity term, a term of surface pressure variation, a term of frictional force variation, and a term of in-plane direction vibration force in order from the left.
  • the in-plane excitation force is the circumferential direction (rotation of the disk rotor) determined based on the contact rigidity in the in-plane direction between the disk rotor 101 and the pad 102 and the displacement of the disk rotor 101 and the pad 102.
  • Direction the circumferential direction (rotation of the disk rotor) determined based on the contact rigidity in the in-plane direction between the disk rotor 101 and the pad 102 and the displacement of the disk rotor 101 and the pad 102.
  • FIG. 2 is a diagram showing a flowchart of the disc brake vibration estimation method according to the present embodiment.
  • FIG. 3 is a diagram illustrating a configuration example of a physical model of a disc brake used for disc brake vibration estimation.
  • the input physical quantity acquisition unit 31 of the processing unit 3 acquires the input physical quantity (step ST1).
  • the vibration estimation unit 32 of the processing unit 3 estimates the vibration of the disc brake 100 based on the input physical quantity acquired by the input physical quantity acquisition unit 31 and the above mathematical formula 1 (step ST2).
  • the above formula 1 corresponds to the physical model of the disc brake 100 shown in FIG.
  • the physical model models the disc rotor 101, the pad 102, and the hydraulic pressure receiving portion 103, respectively, and the in-plane direction of the disc rotor 101, the pad 102, and the hydraulic pressure receiving portion 103 (X shown in the same figure).
  • Equation 1 the balance between the force and moment acting on the vibration system is defined by the following formulas 2 to 4 for the disk rotor 101, the following formulas 5 to 7 for the pad 102, and the following formulas 8 to 10 for the hydraulic pressure receiving portion 103. can do.
  • the external force (F, F ′) between the rotor and the pad acting on the vibration system can be defined by the following mathematical expressions 11 and 12.
  • the external force (P, P ′) between the pad and the receiving portion can be defined by the following mathematical formulas 13 and 14.
  • Equations 2 to 14 are as follows: Xr: in-plane displacement of the disk rotor 101 (displacement of the disk rotor 101 in the X direction), Xp: in-plane displacement of the pad 102 (pad 102 Xc: displacement in the X direction), Xc: in-plane displacement of the hydraulic pressure receiving portion 103 (displacement in the X direction of the hydraulic pressure receiving portion 103), Zr: out-of-plane displacement of the disc rotor 101 (displacement in the Z direction of the disc rotor 101) , Zp: out-of-plane displacement of the pad 102 (displacement of the pad 102 in the Z direction), Zc: out-of-plane displacement of the hydraulic pressure receiving portion 103 (displacement in the Z direction of the hydraulic pressure receiving portion 103), ⁇ r: deflection of the disc rotor 101 Angle (rotation angle of the disk rotor 101 in the XZ plane), ⁇ p: deflection of the disc rotor 101 Angle (
  • the rigidity is the rigidity of each part itself
  • the bending rigidity is the bending rigidity of each part itself
  • the contact rigidity is the rigidity (shear rigidity) at the contact surface between the parts
  • the longitudinal elastic modulus of each part It is obtained from the shear modulus.
  • FIG. 4 is a diagram showing the results of a physical model that does not consider the in-plane direction excitation force.
  • FIG. 5 is a diagram showing the results of a physical model that considers the in-plane direction excitation force. 4 and 5, the vertical axis represents frequency and the horizontal axis represents the friction coefficient.
  • FIG. 6 is a diagram showing a result of disc brake vibration estimation by the disc brake vibration estimation method according to the present embodiment.
  • the processing unit 3 has a peak of the vibration (frequency [KHz]) of the disc brake 100 in the out-of-plane direction, and the vibration of the disc brake 100 in the in-plane direction as shown in FIG. Display the peak.
  • the screen displayed on the display means 42 is not limited to the above-described FIG. 6, and only the vibration of the disc brake 100 in the in-plane direction may be displayed and corresponds to the vibration of the disc brake 100 in the in-plane direction.
  • the frequency value and peak size may be displayed numerically.
  • the in-plane direction and the out-of-plane direction are based on the input physical quantity, the load variation, the friction variation, and the in-plane direction excitation force. Therefore, it is possible to estimate the vibration of the disc brake 100 in a short time compared with the conventional method of estimating the vibration of the disc brake 100 in the in-plane direction by an experiment using an actual disc brake device.
  • the vibration of the disc brake 100 in the in-plane direction can be easily estimated. Therefore, for example, when a simulation using FEM (Finite Element Method) is performed to predict the performance of the disc brake 100, a disc brake model that approximates the actual disc brake 100 (see FIG. 3).
  • the disc brake vibration estimation method according to the present embodiment is used when predicting the vibration of the disc brake 100 when an external force is applied to the disc brake model and the pad model is brought into contact with the disc brake model. it can.
  • the disc brake vibration estimation method according to the present embodiment can also be used for the design method of the disc brake 100.
  • each component of the disc brake 100 that is, the disc rotor 101, the pad 102, the hydraulic pressure, is controlled so as to suppress the vibration of the disc brake 100 in the in-plane direction estimated by the disc brake vibration estimation method.
  • the receiving part 103 will be designed.
  • each part of the disc brake 100 is designed so as to be small.
  • the pad 102 is designed so that the shear stiffness of the contact surface of the pad 102 with respect to the disk rotor 101 is reduced.
  • the disk rotor 101 is designed so that the shear rigidity of the contact surface with the pad 102 of the disk rotor 101 is reduced.
  • the hydraulic pressure receiving of the pad 102 is performed for the purpose of reducing the displacement Zp in the Z direction due to the bending of the pad 102 (decreasing the bending displacement of the pad 102).
  • the pad 102 is designed for the purpose of reducing the bending angle ⁇ p of the pad 102 (decreasing the bending displacement of the pad 102), or designing the pad 102 so as to increase the sectional moment of inertia of the base material (not shown) that contacts the portion 103.
  • the pad 102 is designed so as to reduce the bending force
  • the disc rotor 101 is designed so that the in-plane displacement Xr of the disc rotor 101 becomes small.
  • the constraint condition is that the term of the in-plane direction excitation force in the above Equation 1 is a predetermined value or less.
  • the disc brake 100 is automatically designed.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Braking Arrangements (AREA)

Abstract

A disk brake vibration estimation method for estimating vibration at the time of contact between a disk rotor of a disk brake that generates braking force and a pad by bringing the pad into contact with the rotating disk rotor comprises: acquiring input physical quantities that are physical quantities relating to the disk rotor and the pad (step ST1); estimating the vibration of the disk brake on the basis of the acquired input physical quantities, load variations between the disk rotor and the pad and between the pad and a fluid pressure receiving part, a friction variation between the disk rotor and the pad, and in-plane direction vibratory force generated in the circumferential direction of the disk rotor (step ST2); and displaying the result of the estimation (step ST3). The vibration of the disk brake in an in-plane direction can be estimated.

Description

ディスクブレーキ振動推定方法およびディスクブレーキ振動推定装置Disc brake vibration estimation method and disc brake vibration estimation device
 本発明は、ディスクブレーキ振動推定方法およびディスクブレーキ振動推定装置に関する。 The present invention relates to a disc brake vibration estimation method and a disc brake vibration estimation device.
 ディスクブレーキは、液圧シリンダの液圧によりパッドを回転するディスクロータに接触させて、制動トルクを発生する。ディスクブレーキでは、回転するディスクロータにパッドが接触することで振動が発生し、回転するディスクロータとパッドが共振することでいわゆるブレーキ鳴きが発生する。ここで、ブレーキ鳴きの振動モードとして、面外振動モードと面内振動モードとがある。面外振動モードは、ディスクロータのパッドが接触する摩擦面が回転軸と同じ方向に振幅するモードである。面内振動モードは、ディスクロータの摩擦面がディスクロータの周方向に振動するモードである。 The disc brake generates braking torque by bringing the pad into contact with the disc rotor rotating by the hydraulic pressure of the hydraulic cylinder. In the disc brake, vibration occurs when the pad comes into contact with the rotating disc rotor, and so-called brake noise occurs when the rotating disc rotor and the pad resonate. Here, there are an out-of-plane vibration mode and an in-plane vibration mode as vibration modes of brake squeal. The out-of-plane vibration mode is a mode in which the friction surface with which the pad of the disk rotor contacts swings in the same direction as the rotation axis. The in-plane vibration mode is a mode in which the friction surface of the disk rotor vibrates in the circumferential direction of the disk rotor.
 面外振動モードのみに対応するブレーキ鳴きを推定する技術は、従来から提案されている。また、面内振動モードに着目して、ディスクロータの固有振動数を推定する方法も提案されている(特許文献1)。 A technique for estimating brake squeal corresponding to only the out-of-plane vibration mode has been proposed. Further, a method for estimating the natural frequency of the disk rotor has been proposed by paying attention to the in-plane vibration mode (Patent Document 1).
特開2004-19715号公報JP 2004-19715 A
 上述のように、面内振動モードもブレーキ鳴きを構成する1つの要因であるため、面内振動モードにおけるディスクブレーキの振動を推定することが要望されている。また、面外振動モードおよび面内振動モードの両方の振動モードにおけるディスクブレーキの振動を推定することができれば、ディスクブレーキのモデルを作成して、シミュレーションによりブレーキ鳴きの推定を行うことができるので、ブレーキ鳴きを抑制したディスクブレーキを設計することも可能となる。 As described above, since the in-plane vibration mode is also one factor constituting the brake noise, it is desired to estimate the disc brake vibration in the in-plane vibration mode. Also, if the disc brake vibration in both out-of-plane vibration mode and in-plane vibration mode can be estimated, a disc brake model can be created and the brake squeal can be estimated by simulation. It is also possible to design a disc brake that suppresses brake noise.
 本発明は、上記に鑑みてなされたものであって、面内方向におけるディスクブレーキの振動を推定することができるディスクブレーキ振動推定方法およびディスクブレーキ振動推定装置を提供することを目的とする。 The present invention has been made in view of the above, and an object of the present invention is to provide a disc brake vibration estimation method and a disc brake vibration estimation device capable of estimating the disc brake vibration in the in-plane direction.
 上述した課題を解決し、目的を達成するために、本発明は、回転するディスクロータにパッドを接触させることで制動力を発生するディスクブレーキの前記ディスクロータと前記パッドの接触時における振動を推定するディスクブレーキ振動推定方法であって、少なくとも前記ディスクロータ、前記パッドに関する物理量である入力物理量を取得する手順と、少なくとも前記取得した入力物理量と、前記ディスクロータの周方向に発生する面内方向起振力とに基づいて、前記ディスクブレーキの振動を推定する手順と、を含むことを特徴とする。 In order to solve the above-described problems and achieve the object, the present invention estimates vibrations at the time of contact between the disk rotor and the pad of a disk brake that generates a braking force by bringing the pad into contact with a rotating disk rotor. A disc brake vibration estimation method for obtaining at least an input physical quantity that is a physical quantity related to the disk rotor and the pad, at least the acquired input physical quantity, and an in-plane direction occurrence occurring in a circumferential direction of the disk rotor. And a procedure for estimating the vibration of the disc brake based on the vibration force.
 また、上記ディスクブレーキ振動推定方法において、前記入力物理量は、前記パッドと接触し、かつ前記ディスクロータに前記パッドを接触させる液圧シリンダの液圧を受ける液圧受け部に関する物理量も含み、前記ディスクブレーキの振動を推定する手順は、前記取得した入力物理量と、少なくとも前記ディスクロータと前記パッドとの間および前記パッドと前記液圧受け部との間の荷重変動と、前記ディスクロータと前記パッドとの間の摩擦変動と、前記ディスクロータの回転方向に発生する起振力とに基づいて行われることが好ましい。 Further, in the disk brake vibration estimation method, the input physical quantity includes a physical quantity related to a hydraulic pressure receiving portion that receives a hydraulic pressure of a hydraulic cylinder that contacts the pad and contacts the pad rotor with the pad. The procedure for estimating the vibration of the brake includes the acquired input physical quantity, load variation between at least the disk rotor and the pad and between the pad and the hydraulic pressure receiving portion, the disk rotor and the pad, Is preferably performed based on the frictional fluctuation between the two and the excitation force generated in the rotation direction of the disk rotor.
 また、本発明は、回転するディスクロータにパッドを接触させることで制動力を発生するディスクブレーキの前記ディスクロータと前記パッドの接触時における振動を推定するディスクブレーキ振動推定装置であって、少なくとも前記ディスクロータ、前記パッドに関する物理量である入力物理量を取得する入力物理量取得手段と、少なくとも前記取得した入力物理量と、前記ディスクロータの回転方向に発生する面内方向起振力とに基づいて、前記ディスクブレーキの振動を推定する振動推定手段と、備えることを特徴とする。 Further, the present invention is a disc brake vibration estimation device for estimating a vibration at the time of contact between the disc rotor and the pad of a disc brake that generates a braking force by bringing a pad into contact with the rotating disc rotor, The disk rotor, the input physical quantity acquisition means for acquiring an input physical quantity that is a physical quantity related to the pad, the disk based on at least the acquired input physical quantity and an in-plane excitation force generated in the rotation direction of the disk rotor And vibration estimation means for estimating the vibration of the brake.
 本発明にかかるディスクブレーキ振動推定方法およびディスクブレーキ振動推定装置は、少なくとも面内方向におけるディスクブレーキの振動を推定することができるという効果を奏する。 The disk brake vibration estimation method and the disk brake vibration estimation apparatus according to the present invention have an effect that the vibration of the disk brake can be estimated at least in the in-plane direction.
図1は、本実施形態に係るディスクブレーキ振動推定方法を実行するディスクブレーキ振動推定装置の構成例を示す図である。FIG. 1 is a diagram illustrating a configuration example of a disc brake vibration estimation apparatus that executes a disc brake vibration estimation method according to the present embodiment. 図2は、本実施形態に係るディスクブレーキ推定方法のフローチャートを示す図である。FIG. 2 is a diagram showing a flowchart of the disc brake estimation method according to the present embodiment. 図3は、ディスクブレーキ振動推定に用いるディスクブレーキの物理モデルの構成例を示す図である。FIG. 3 is a diagram illustrating a configuration example of a physical model of a disc brake used for disc brake vibration estimation. 図4は、面内方向起振力を考慮しない物理モデルの結果を示す図である。FIG. 4 is a diagram showing the results of a physical model that does not consider the in-plane direction excitation force. 図5は、面内方向起振力を考慮した物理モデルの結果を示す図である。FIG. 5 is a diagram showing the results of a physical model that considers the in-plane direction excitation force. 図6は、本実施形態に係るディスクブレーキ振動推定方法によるディスクブレーキの振動推定結果を示す図である。FIG. 6 is a diagram showing a result of disc brake vibration estimation by the disc brake vibration estimation method according to the present embodiment.
 本発明を実施するための形態(実施形態)につき、図面を参照しつつ詳細に説明する。以下の実施形態に記載した内容により本発明が限定されるものではない。また、以下に記載した構成要素には、当業者が容易に想定できるもの、実質的に同一のものが含まれる。さらに、以下に記載した構成は適宜組み合わせることが可能である。また、本発明の要旨を逸脱しない範囲で構成の種々の省略、置換又は変更を行うことができる。 DETAILED DESCRIPTION OF EMBODIMENTS Embodiments (embodiments) for carrying out the present invention will be described in detail with reference to the drawings. The present invention is not limited by the contents described in the following embodiments. The constituent elements described below include those that can be easily assumed by those skilled in the art and those that are substantially the same. Furthermore, the structures described below can be combined as appropriate. Various omissions, substitutions, or changes in the configuration can be made without departing from the scope of the present invention.
 〔実施形態〕
 本実施形態に係るディスクブレーキ振動推定方法は、ブレーキ鳴きの振動モードである面外振動モードおよび面内振動モードの両方におけるディスクブレーキの振動、すなわちブレーキ鳴きをディスクブレーキ振動推定装置により推定するものである。図1は、本実施形態に係るディスクブレーキ振動推定方法を実行するディスクブレーキ振動推定装置の構成例を示す図である。
Embodiment
The disc brake vibration estimation method according to the present embodiment estimates the disc brake vibration in both the out-of-plane vibration mode and the in-plane vibration mode which are the vibration modes of the brake squeal, that is, the brake squeal using the disc brake vibration estimation device. is there. FIG. 1 is a diagram illustrating a configuration example of a disc brake vibration estimation apparatus that executes a disc brake vibration estimation method according to the present embodiment.
 ディスクブレーキ振動推定装置1は、処理手段である処理部3と記憶部2とを含んで構成されている。ディスクブレーキ振動推定装置1には、入出力装置4が接続されており、ここに備えられた入力手段41は、入力物理量の入力や、記憶部2および処理部3に指令、例えば処理部3にディスクブレーキ振動推定方法を実行させる指令などを与えるものである。ここで、入力手段41には、キーボード、マウス、マイク等の入力デバイスを使用することができる。 The disc brake vibration estimation device 1 includes a processing unit 3 and a storage unit 2 which are processing means. An input / output device 4 is connected to the disc brake vibration estimation device 1, and an input means 41 provided therein inputs an input physical quantity, commands to the storage unit 2 and the processing unit 3, for example, to the processing unit 3. It gives a command to execute the disc brake vibration estimation method. Here, input devices such as a keyboard, a mouse, and a microphone can be used as the input means 41.
 記憶部2には、ディスクブレーキ100の振動の推定を実現する本実施形態に係るディスクブレーキ振動推定方法が組み込まれたディスクブレーキ振動推定プログラムが格納されている。ここで、記憶部2は、ハードディスク装置等の固定ディスク装置、フレキシブルディスク、光磁気ディスク装置、またはフラッシュメモリ等の不揮発性のメモリ(CD-ROM等のような読み出しのみが可能な記憶媒体)や、RAM(Random Access Memory)のような揮発性のメモリ等のストレージ手段、あるいはこれらの組み合わせにより構成することができる。 The storage unit 2 stores a disc brake vibration estimation program in which the disc brake vibration estimation method according to the present embodiment for realizing the estimation of the vibration of the disc brake 100 is incorporated. Here, the storage unit 2 is a fixed disk device such as a hard disk device, a flexible disk, a magneto-optical disk device, or a nonvolatile memory such as a flash memory (a storage medium that can only be read such as a CD-ROM), , Storage means such as a volatile memory such as RAM (Random Access Memory), or a combination thereof.
 ここで、上記ディスクブレーキ振動推定プログラムは、必ずしも単一的に構成されるものに限られず、コンピュータシステムにすでに記憶されているプログラム、例えばOS(Operating System)に代表される別個のプログラムと協働してその機能を達成するものであっても良い。また、図1に示す処理部3の機能を実現するためのディスクブレーキ振動推定プログラムをコンピュータ読み取り可能な記録媒体に記憶して、この記録媒体に記録されたディスクブレーキ振動推定プログラムをコンピュータシステムに読み込ませ、実行することにより本実施形態に係るディスクブレーキ振動推定方法を実行しても良い。なお、ここでいう「コンピュータシステム」とは、OSや周辺機器などのハードウェアを含むものとする。 Here, the disc brake vibration estimation program is not necessarily limited to a single configuration, but cooperates with a program already stored in a computer system, for example, a separate program represented by an OS (Operating System). Then, the function may be achieved. Further, a disk brake vibration estimation program for realizing the function of the processing unit 3 shown in FIG. 1 is stored in a computer-readable recording medium, and the disk brake vibration estimation program recorded on the recording medium is read into a computer system. The disc brake vibration estimation method according to the present embodiment may be executed by executing. The “computer system” here includes an OS and hardware such as peripheral devices.
 処理部3は、RAM、ROM等のメモリとCPU(Central Processing Unit)とにより構成されている。ディスクブレーキ100の振動を推定する際には、上記のようにディスクブレーキ振動推定装置1に入力された入力物理量に基づいて、処理部3が上記ディスクブレーキ振動推定プログラムを処理部3の図示しないメモリに読み込んで演算を行う。なお、処理部3は、適宜演算途中の数値を記憶部2に格納し、格納した数値を適宜記憶部2から取り出して演算を行う。また、処理部3は、上記ディスクブレーキ振動推定プログラムの替わりに専用のハードウェアにより実現されるものであっても良い。処理部3が演算することで作成されたディスクブレーキ100の振動の推定結果などは、入出力装置4の表示手段42により表示される。ここで、表示手段42には、LCD(Liquid Crystal Display)やCRT(Cathode Ray Tube)等を使用することができる。また、ディスクブレーキ100の振動の推定結果などは、図示しないプリンタに出力することができる。また、記憶部2は、処理部3内に設けられていても良いし、他の装置(例えば、データベースサーバ)内に設けられていても良い。また、入出力装置4を備えた図示しない端末装置から、ディスクブレーキ振動推定装置1に有線、無線のいずれかの方法でアクセスすることができる構成であっても良い。 The processing unit 3 includes a memory such as a RAM and a ROM, and a CPU (Central Processing Unit). When estimating the vibration of the disc brake 100, the processing unit 3 stores the disc brake vibration estimation program in the memory (not shown) of the processing unit 3 based on the input physical quantity input to the disc brake vibration estimation device 1 as described above. To perform the operation. Note that the processing unit 3 appropriately stores a numerical value in the middle of the calculation in the storage unit 2 and appropriately takes out the stored numerical value from the storage unit 2 and performs the calculation. The processing unit 3 may be realized by dedicated hardware instead of the disc brake vibration estimation program. The estimation result of the vibration of the disc brake 100 created by the calculation of the processing unit 3 is displayed by the display means 42 of the input / output device 4. Here, LCD (Liquid Crystal Display), CRT (Cathode Ray Tube), etc. can be used for the display means 42. In addition, the vibration estimation result of the disc brake 100 can be output to a printer (not shown). Moreover, the memory | storage part 2 may be provided in the process part 3, and may be provided in another apparatus (for example, database server). Moreover, the structure which can access the disk-brake vibration estimation apparatus 1 by either a wired or wireless method from the terminal device which is provided with the input / output device 4 is not sufficient.
 処理部3は、入力物理量取得部31と、振動推定部32とを含んで構成されている。入力物理量取得部31は、入力手段41により入力された入力物理量あるいはすでに記憶部2に記憶されている入力物理量を取得するものである。ここで、入力物理量は、ディスクロータ101、パッド102、パッド102と接触し、かつディスクロータ101にパッド102を接触させる液圧シリンダ104の液圧を受ける液圧受け部103(ピストンやシリンダ爪)に関する情報、例えば、各部品の寸法、質量、慣性モーメント、縦弾性係数、せん断弾性係数などである。振動推定部32は、入力物理量を取得し、取得された入力物理量と、ディスクロータ101の周方向(回転方向)に発生する面内方向起振力と、ディスクロータ101とパッド102との間の荷重変動と、パッド102と液圧受け部103との間の荷重変動と、ディスクロータ101とパッド102との間の摩擦変動とに基づいてディスクブレーキ100の振動を推定する。本実施形態では、振動推定部32は、入力物理量と、下記の数式1とに基づいて、ディスクブレーキ100の振動を推定する。なお、下記の数式1は、左から順に質量項、剛性項、面圧変動の項、摩擦力変動の項、面内方向起振力の項である。ここで、面内方向起振力とは、ディスクロータ101とパッド102との間の面内方向における接触剛性、ディスクロータ101及びパッド102の変位に基づいて決定されるディスクロータの周方向(回転方向)に発生するバネ力である。 The processing unit 3 includes an input physical quantity acquisition unit 31 and a vibration estimation unit 32. The input physical quantity acquisition unit 31 acquires the input physical quantity input by the input unit 41 or the input physical quantity already stored in the storage unit 2. Here, the input physical quantity is the hydraulic pressure receiving portion 103 (piston or cylinder claw) that receives the hydraulic pressure of the hydraulic cylinder 104 that makes contact with the disk rotor 101, the pad 102, and the pad 102, and makes the pad 102 contact the disk rotor 101. For example, the size, mass, moment of inertia, longitudinal elastic modulus, shear elastic modulus, etc. of each part. The vibration estimation unit 32 acquires the input physical quantity, the in-plane direction vibration force generated in the circumferential direction (rotation direction) of the disk rotor 101, and the disk rotor 101 and the pad 102. The vibration of the disc brake 100 is estimated based on the load variation, the load variation between the pad 102 and the hydraulic pressure receiving portion 103, and the friction variation between the disc rotor 101 and the pad 102. In the present embodiment, the vibration estimation unit 32 estimates the vibration of the disc brake 100 based on the input physical quantity and the following mathematical formula 1. In addition, the following numerical formula 1 is a term of a mass term, a rigidity term, a term of surface pressure variation, a term of frictional force variation, and a term of in-plane direction vibration force in order from the left. Here, the in-plane excitation force is the circumferential direction (rotation of the disk rotor) determined based on the contact rigidity in the in-plane direction between the disk rotor 101 and the pad 102 and the displacement of the disk rotor 101 and the pad 102. Direction).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 次に、ディスクブレーキ振動推定方法について説明する。図2は、本実施形態に係るディスクブレーキ振動推定方法のフローチャートを示す図である。図3は、ディスクブレーキ振動推定に用いるディスクブレーキの物理モデルの構成例を示す図である。 Next, the disc brake vibration estimation method will be described. FIG. 2 is a diagram showing a flowchart of the disc brake vibration estimation method according to the present embodiment. FIG. 3 is a diagram illustrating a configuration example of a physical model of a disc brake used for disc brake vibration estimation.
 まず、本実施形態に係るディスクブレーキ振動推定方法は、図2に示すように、処理部3の入力物理量取得部31が入力物理量を取得する(ステップST1)。 First, in the disc brake vibration estimation method according to the present embodiment, as shown in FIG. 2, the input physical quantity acquisition unit 31 of the processing unit 3 acquires the input physical quantity (step ST1).
 次に、処理部3の振動推定部32は、入力物理量取得部31が取得した入力物理量と上記数式1に基づいてディスクブレーキ100の振動を推定する(ステップST2)。ここで、上記数式1は、図3に示すディスクブレーキ100の物理モデルに対応したものである。同図に示すように、物理モデルは、ディスクロータ101、パッド102、液圧受け部103をそれぞれモデル化し、ディスクロータ101、パッド102、液圧受け部103の面内方向(同図に示すX方向)および面外方向(同図に示すZ方向)における剛性、ディスクロータ101とパッド102との間(以下、単に「ロータ・パッド間」と称する)の面内方向および面外方向における接触剛性、パッド102と液圧受け部103との間(以下、単に「パッド・受け部間」と称する)の面外方向における接触剛性を係数としてもつものである。 Next, the vibration estimation unit 32 of the processing unit 3 estimates the vibration of the disc brake 100 based on the input physical quantity acquired by the input physical quantity acquisition unit 31 and the above mathematical formula 1 (step ST2). Here, the above formula 1 corresponds to the physical model of the disc brake 100 shown in FIG. As shown in the figure, the physical model models the disc rotor 101, the pad 102, and the hydraulic pressure receiving portion 103, respectively, and the in-plane direction of the disc rotor 101, the pad 102, and the hydraulic pressure receiving portion 103 (X shown in the same figure). Direction) and out-of-plane direction (Z direction shown in the figure), contact rigidity in the in-plane direction and out-of-plane direction between the disk rotor 101 and the pad 102 (hereinafter simply referred to as “between the rotor and the pad”). The contact stiffness in the out-of-plane direction between the pad 102 and the hydraulic pressure receiving portion 103 (hereinafter simply referred to as “between the pad and the receiving portion”) is used as a coefficient.
 次に、上記数式1の導き方について説明する。まず、振動系に作用する力とモーメントとの釣り合いは、ディスクロータ101において下記の数式2~4、パッド102において下記の数式5~7、液圧受け部103において下記の数式8~10で規定することができる。また、振動系に作用するロータ・パッド間の外力(F、F’)は、下記の数式11,12で規定することができる。さらに、パッド・受け部間の外力(P、P’)は、下記の数式13,14で規定することができる。 Next, how to derive Equation 1 will be described. First, the balance between the force and moment acting on the vibration system is defined by the following formulas 2 to 4 for the disk rotor 101, the following formulas 5 to 7 for the pad 102, and the following formulas 8 to 10 for the hydraulic pressure receiving portion 103. can do. Further, the external force (F, F ′) between the rotor and the pad acting on the vibration system can be defined by the following mathematical expressions 11 and 12. Further, the external force (P, P ′) between the pad and the receiving portion can be defined by the following mathematical formulas 13 and 14.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000014
 ここで、上記数式2~14における係数は、図3に示すように、Xr:ディスクロータ101の面内変位(ディスクロータ101のX方向における変位)、Xp:パッド102の面内変位(パッド102のX方向における変位)、Xc:液圧受け部103の面内変位(液圧受け部103のX方向における変位)、Zr:ディスクロータ101の面外変位(ディスクロータ101のZ方向における変位)、Zp:パッド102の面外変位(パッド102のZ方向における変位)、Zc:液圧受け部103の面外変位(液圧受け部103のZ方向における変位)、θr:ディスクロータ101のたわみ角(ディスクロータ101のXZ平面における回転角)、θp:パッド102のたわみ角(パッド102のXZ平面における回転角)、θc:液圧受け部103のたわみ角(液圧受け部103のXZ平面における回転角)、Mr:ディスクロータ101の質量、Mp:パッド102の質量、Mc:液圧受け部103の質量、Ir:ディスクロータ101の慣性モーメント、Ip:パッド102の慣性モーメント、Ic:液圧受け部103の慣性モーメント、a:ディスクロータ101とパッド102との面圧中心基準からのパッド102に対して液圧受け部103が接触する位置までの距離、2b:液圧受け部103の厚み(液圧受け部103におけるZ方向の幅)、2c:パッド102の厚み(パッド102のZ方向における幅)、2d:ディスクロータ101の厚み(ディスクロータ101のZ方向における幅)、2l:パッド102の長さ(パッド102のX方向における幅)、N:静的荷重、F:ロータ・パッド間の面圧変動(同図に示すZ方向における力の変動)、F’:ロータ・パッド間の面圧変動によって発生する摩擦力変動、μ:ロータ・パッド間の摩擦係数、P:パッド・受け部間の面圧変動(同図に示すZ方向における力の変動)、P’:パッド・受け部間の面圧変動によって発生する摩擦力変動、μ’:パッド・受け部間の摩擦係数、Krx:ディスクロータ101の面内方向における剛性、Krz:ディスクロータ101の面外方向における剛性、Krθ:ディスクロータ101の曲げ剛性、Kpx:パッド102の面内方向における剛性、Kpz:パッド102の面外方向における剛性、Kpθ:パッド102の曲げ剛性、Kcx:液圧受け部103の面内方向における剛性、Kcz:液圧受け部103の面外方向における剛性、Kcθ:液圧受け部103の曲げ剛性、Kpr:ロータ・パッド間の面外方向における接触剛性、K’pr:ロータ・パッド間の面内方向における接触剛性、Kcp:パッド・受け部間の面外方向における接触剛性、Kt:パッド102を保持するマウティング105の面内方向における接触剛性である。ここで、剛性は各部品自体の剛性であり、曲げ剛性は各部品自体の曲げ剛性であり、接触剛性は部品どうしの接触面での剛性(せん断剛性)であり、それぞれ各部品の縦弾性係数、せん断弾性係数などにより求められるものである。 Here, as shown in FIG. 3, the coefficients in Equations 2 to 14 are as follows: Xr: in-plane displacement of the disk rotor 101 (displacement of the disk rotor 101 in the X direction), Xp: in-plane displacement of the pad 102 (pad 102 Xc: displacement in the X direction), Xc: in-plane displacement of the hydraulic pressure receiving portion 103 (displacement in the X direction of the hydraulic pressure receiving portion 103), Zr: out-of-plane displacement of the disc rotor 101 (displacement in the Z direction of the disc rotor 101) , Zp: out-of-plane displacement of the pad 102 (displacement of the pad 102 in the Z direction), Zc: out-of-plane displacement of the hydraulic pressure receiving portion 103 (displacement in the Z direction of the hydraulic pressure receiving portion 103), θr: deflection of the disc rotor 101 Angle (rotation angle of the disk rotor 101 in the XZ plane), θp: deflection angle of the pad 102 (rotation angle of the pad 102 in the XZ plane), θc: liquid Deflection angle of the receiving portion 103 (rotation angle of the hydraulic pressure receiving portion 103 in the XZ plane), Mr: mass of the disc rotor 101, Mp: mass of the pad 102, Mc: mass of the hydraulic pressure receiving portion 103, Ir: disc rotor 101 Moment of inertia, Ip: moment of inertia of the pad 102, Ic: moment of inertia of the hydraulic pressure receiving portion 103, a: the hydraulic pressure receiving portion 103 with respect to the pad 102 from the surface pressure center reference between the disk rotor 101 and the pad 102. Distance to the contact position, 2b: thickness of the hydraulic pressure receiving portion 103 (width in the Z direction in the hydraulic pressure receiving portion 103), 2c: thickness of the pad 102 (width in the Z direction of the pad 102), 2d: disk rotor 101 (The width of the disk rotor 101 in the Z direction), 2l: the length of the pad 102 (the width of the pad 102 in the X direction), : Static load, F: Fluctuation of surface pressure between rotor and pad (fluctuation of force in Z direction shown in the figure), F ′: Friction force fluctuation generated by fluctuation of surface pressure between rotor and pad, μ: Rotor Friction coefficient between pads, P: variation in surface pressure between pad and receiving portion (force variation in the Z direction shown in the figure), P ′: variation in frictional force caused by variation in surface pressure between pad and receiving portion, μ ': Friction coefficient between pad and receiving part, Krx: rigidity in the in-plane direction of the disk rotor 101, Krz: rigidity in the out-of-plane direction of the disk rotor 101, Krθ: bending rigidity of the disk rotor 101, Kpx: surface of the pad 102 Rigidity in the inward direction, Kpz: Stiffness in the out-of-plane direction of the pad 102, Kpθ: Bending rigidity of the pad 102, Kcx: Rigidity in the in-plane direction of the hydraulic pressure receiving part 103, Kcz: Hydraulic pressure receiving part 10 , Kcθ: contact rigidity in the out-of-plane direction between the rotor and pad, K′pr: contact rigidity in the in-plane direction between the rotor and pad, Kcp: Contact stiffness between the pad and the receiving portion in the out-of-plane direction, Kt: Contact stiffness in the in-plane direction of the mounting 105 that holds the pad 102. Here, the rigidity is the rigidity of each part itself, the bending rigidity is the bending rigidity of each part itself, the contact rigidity is the rigidity (shear rigidity) at the contact surface between the parts, and the longitudinal elastic modulus of each part. It is obtained from the shear modulus.
 次に、上記数式11~14を数式2~10に代入し、F、F’、P、P’を変換して、下記の数式15~23を得る。 Next, the above formulas 11 to 14 are substituted into the formulas 2 to 10, and F, F ', P, and P' are converted to obtain the following formulas 15 to 23.
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000017
Figure JPOXMLDOC01-appb-M000017
Figure JPOXMLDOC01-appb-M000018
Figure JPOXMLDOC01-appb-M000018
Figure JPOXMLDOC01-appb-M000019
Figure JPOXMLDOC01-appb-M000019
Figure JPOXMLDOC01-appb-M000020
Figure JPOXMLDOC01-appb-M000020
Figure JPOXMLDOC01-appb-M000021
Figure JPOXMLDOC01-appb-M000021
Figure JPOXMLDOC01-appb-M000022
Figure JPOXMLDOC01-appb-M000022
Figure JPOXMLDOC01-appb-M000023
Figure JPOXMLDOC01-appb-M000023
 上記数式15~23をマトリクスで表現すると、上記数式1のように、質量項および剛性項と、面圧変動の項、摩擦力変動の項およびディスクロータ101の周方向(回転方向)に発生するバネ力、すなわち面内方向起振力の項との釣り合い式となる。ここで、[M]、[U]、[K]、[Kcpr]、[μKcpr]、[K’cpr]は、それぞれ下記の数式24~29となる。 When the above formulas 15 to 23 are expressed in a matrix, as in the above formula 1, the mass term and the stiffness term, the surface pressure fluctuation term, the friction force fluctuation term, and the circumferential direction (rotation direction) of the disk rotor 101 are generated. This is a balance formula with the term of spring force, that is, in-plane direction vibration force. Here, [M], [U], [K], [Kcpr], [μKcpr], and [K′cpr] are expressed by the following equations 24 to 29, respectively.
Figure JPOXMLDOC01-appb-M000024
Figure JPOXMLDOC01-appb-M000024
Figure JPOXMLDOC01-appb-M000025
Figure JPOXMLDOC01-appb-M000025
Figure JPOXMLDOC01-appb-M000026
Figure JPOXMLDOC01-appb-M000026
Figure JPOXMLDOC01-appb-M000027
Figure JPOXMLDOC01-appb-M000027
Figure JPOXMLDOC01-appb-M000028
Figure JPOXMLDOC01-appb-M000028
Figure JPOXMLDOC01-appb-M000029
Figure JPOXMLDOC01-appb-M000029
 上記数式1が面内振動モードにおいて不安定、すなわち面内振動モードにおけるディスクブレーキ100の振動を推定できるかを確認した。図4は、面内方向起振力を考慮しない物理モデルの結果を示す図である。図5は、面内方向起振力を考慮した物理モデルの結果を示す図である。図4、図5においては、ともに縦軸が周波数、横軸が摩擦係数である。図4は、K’cpr=0として数値解析を行った結果である。図5は、K’cpr=0.2×Kcprとして数値解析を行った結果である。図4、図5において、線が安定領域と不安定領域との境界であり、ハッチングされている部分が不安定な領域である。図4に示すように、面内方向起振力を考慮しない物理モデルに基づいて数値解析を行った結果、面内振動モードにおいて安定、すなわち面内方向におけるディスクブレーキ100の振動が発生しない(面内方向のブレーキ鳴きが発生しない)。一方、図5に示すように、面内方向起振力を考慮した物理モデルに基づいて数値解析を行った結果、面内振動モードにおいて不安定、すなわち面内方向におけるディスクブレーキ100の振動が発生する(面内方向のブレーキ鳴きが発生する)領域が存在した。 It was confirmed that the above formula 1 is unstable in the in-plane vibration mode, that is, whether the vibration of the disc brake 100 in the in-plane vibration mode can be estimated. FIG. 4 is a diagram showing the results of a physical model that does not consider the in-plane direction excitation force. FIG. 5 is a diagram showing the results of a physical model that considers the in-plane direction excitation force. 4 and 5, the vertical axis represents frequency and the horizontal axis represents the friction coefficient. FIG. 4 shows the results of numerical analysis with K′cpr = 0. FIG. 5 shows the result of numerical analysis with K′cpr = 0.2 × Kcpr. 4 and 5, the line is the boundary between the stable region and the unstable region, and the hatched portion is the unstable region. As shown in FIG. 4, as a result of numerical analysis based on a physical model that does not consider the in-plane direction excitation force, stable in the in-plane vibration mode, that is, no vibration of the disc brake 100 occurs in the in-plane direction (surface Inward brake squeal does not occur). On the other hand, as shown in FIG. 5, as a result of numerical analysis based on a physical model that takes into account the in-plane direction excitation force, the in-plane vibration mode is unstable, that is, the disc brake 100 vibrates in the in-plane direction. There was a region where the brake squeal occurred in the in-plane direction.
 次に、処理部3は、推定結果を表示手段42に表示する(ステップST3)。ここでは、処理部3は、上記振動推定部32より推定された面内方向におけるディスクブレーキ100の振動をオペレータが認識できるように、表示手段42に画面を表示させる。図6は、本実施形態に係るディスクブレーキ振動推定方法によるディスクブレーキの振動推定結果を示す図である。処理部3は、例えば図6に示すように、面外方向におけるディスクブレーキ100の振動(周波数〔KHz〕)のピークとともに、同図Aに示すように、面内方向におけるディスクブレーキ100の振動のピークを表示する。なお、表示手段42に表示する画面は、上記図6に限定されるものではなく、面内方向におけるディスクブレーキ100の振動のみを表示してもよく、面内方向におけるディスクブレーキ100の振動に対応する周波数の値やピークの大きさを数値で表示しても良い。 Next, the processing unit 3 displays the estimation result on the display means 42 (step ST3). Here, the processing unit 3 displays a screen on the display unit 42 so that the operator can recognize the vibration of the disc brake 100 in the in-plane direction estimated by the vibration estimation unit 32. FIG. 6 is a diagram showing a result of disc brake vibration estimation by the disc brake vibration estimation method according to the present embodiment. For example, as shown in FIG. 6, the processing unit 3 has a peak of the vibration (frequency [KHz]) of the disc brake 100 in the out-of-plane direction, and the vibration of the disc brake 100 in the in-plane direction as shown in FIG. Display the peak. Note that the screen displayed on the display means 42 is not limited to the above-described FIG. 6, and only the vibration of the disc brake 100 in the in-plane direction may be displayed and corresponds to the vibration of the disc brake 100 in the in-plane direction. The frequency value and peak size may be displayed numerically.
 以上のように、本実施形態に係るディスクブレーキ振動推定方法によれば、入力物理量と、荷重変動と、摩擦変動と、面内方向起振力とに基づいて、面内方向および面外方向のけるディスクブレーキ100の振動を推定することができるので、従来のように、実際のディスクブレーキ装置を用いた実験により面内方向におけるディスクブレーキ100の振動を推定する方法と比較して、短時間で容易に面内方向におけるディスクブレーキ100の振動を推定することができる。従って、例えばディスクブレーキ100の性能の予測を行うために、FEM(Finite Element Method:有限要素法)を用いたシミュレーションを行う場合に、実際のディスクブレーキ100に近似したディスクブレーキモデル(図3参照)を作成し、このディスクブレーキモデルに外力を与え、パッドモデルをディスクブレーキモデルに接触させた場合におけるディスクブレーキ100の振動を予測する際に、本実施形態に係るディスクブレーキ振動推定方法を用いることができる。 As described above, according to the disc brake vibration estimation method according to the present embodiment, the in-plane direction and the out-of-plane direction are based on the input physical quantity, the load variation, the friction variation, and the in-plane direction excitation force. Therefore, it is possible to estimate the vibration of the disc brake 100 in a short time compared with the conventional method of estimating the vibration of the disc brake 100 in the in-plane direction by an experiment using an actual disc brake device. The vibration of the disc brake 100 in the in-plane direction can be easily estimated. Therefore, for example, when a simulation using FEM (Finite Element Method) is performed to predict the performance of the disc brake 100, a disc brake model that approximates the actual disc brake 100 (see FIG. 3). The disc brake vibration estimation method according to the present embodiment is used when predicting the vibration of the disc brake 100 when an external force is applied to the disc brake model and the pad model is brought into contact with the disc brake model. it can.
 なお、本実施形態に係るディスクブレーキ振動推定方法をディスクブレーキ100の設計方法に用いることもできる。ディスクブレーキ100の設計方法では、上記ディスクブレーキ振動推定方法において推定された面内方向におけるディスクブレーキ100の振動を抑制するように、ディスクブレーキ100の各部品、すなわちディスクロータ101、パッド102、液圧受け部103を設計することとなる。面内方向におけるディスクブレーキ100の振動、すなわち面内方向におけるブレーキ鳴きは、面内方向起振力が大きくなることで発生しやすくなることから、上記数式1における面内方向起振力の項が小さくなるように、上記ディスクブレーキ100の各部品を設計することがよい。具体的には、ロータ・パッド間の面内方向における接触剛性[K’cpr]を小さくすることを実現できるように、例えばパッド102のディスクロータ101に対する接触面のせん断剛性が小さくなるようにパッド102を設計したり、ディスクロータ101のパッド102に対する接触面のせん断剛性が小さくなるようにディスクロータ101を設計する。あるいは、変位[U]を小さくすることを実現できるように、例えば、パッド102の曲げによるZ方向の変位Zpを小さく(パッド102の曲げ変位を小さく)することを目的としてパッド102の液圧受け部103と接触する図示しない母材の断面2次モーメントが大きくなるようにパッド102を設計したり、パッド102のたわみ角θpを小さく(パッド102の曲げ変位を小さく)することを目的としてパッド102を曲げる力が小さくなるようにパッド102を設計したり、ディスクロータ101の面内変位Xrが小さくなるようにディスクロータ101を設計する。ディスクブレーキ100を自動設計するディスクブレーキ自動設計装置を用いて、ディスクブレーキ100の設計を行う場合は、上記数式1における面内方向起振力の項が所定値以下とすることを拘束条件として、自動的にディスクブレーキ100の設計を行うこととなる。 It should be noted that the disc brake vibration estimation method according to the present embodiment can also be used for the design method of the disc brake 100. In the design method of the disc brake 100, each component of the disc brake 100, that is, the disc rotor 101, the pad 102, the hydraulic pressure, is controlled so as to suppress the vibration of the disc brake 100 in the in-plane direction estimated by the disc brake vibration estimation method. The receiving part 103 will be designed. Since the vibration of the disc brake 100 in the in-plane direction, that is, the brake squeal in the in-plane direction, is likely to occur when the in-plane direction excitation force is increased, the term of the in-plane direction excitation force in the above-described Equation 1 is It is preferable to design each part of the disc brake 100 so as to be small. Specifically, in order to reduce the contact stiffness [K′cpr] in the in-plane direction between the rotor and the pad, for example, the pad 102 is designed so that the shear stiffness of the contact surface of the pad 102 with respect to the disk rotor 101 is reduced. The disk rotor 101 is designed so that the shear rigidity of the contact surface with the pad 102 of the disk rotor 101 is reduced. Alternatively, in order to reduce the displacement [U], for example, the hydraulic pressure receiving of the pad 102 is performed for the purpose of reducing the displacement Zp in the Z direction due to the bending of the pad 102 (decreasing the bending displacement of the pad 102). The pad 102 is designed for the purpose of reducing the bending angle θp of the pad 102 (decreasing the bending displacement of the pad 102), or designing the pad 102 so as to increase the sectional moment of inertia of the base material (not shown) that contacts the portion 103. The pad 102 is designed so as to reduce the bending force, and the disc rotor 101 is designed so that the in-plane displacement Xr of the disc rotor 101 becomes small. When designing the disc brake 100 using a disc brake automatic design device that automatically designs the disc brake 100, the constraint condition is that the term of the in-plane direction excitation force in the above Equation 1 is a predetermined value or less. The disc brake 100 is automatically designed.
 1 ディスクブレーキ振動推定装置
 2 記憶部
 3 処理部
 31 入力物理量取得部
 32 振動推定部
 4 入出力装置
DESCRIPTION OF SYMBOLS 1 Disc brake vibration estimation apparatus 2 Memory | storage part 3 Processing part 31 Input physical-quantity acquisition part 32 Vibration estimation part 4 Input / output device

Claims (3)

  1.  回転するディスクロータにパッドを接触させることで制動力を発生するディスクブレーキの前記ディスクロータと前記パッドの接触時における振動を推定するディスクブレーキ振動推定方法であって、
     少なくとも前記ディスクロータ、前記パッドに関する物理量である入力物理量を取得する手順と、
     少なくとも前記取得した入力物理量と、前記ディスクロータの周方向に発生する面内方向起振力とに基づいて、前記ディスクブレーキの振動を推定する手順と、
     を含むことを特徴とするディスクブレーキ振動推定方法。
    A disc brake vibration estimation method for estimating a vibration at the time of contact between the disc rotor and the pad of a disc brake that generates a braking force by bringing a pad into contact with a rotating disc rotor,
    A procedure for obtaining an input physical quantity that is a physical quantity related to at least the disk rotor and the pad;
    A procedure for estimating vibration of the disc brake based on at least the acquired input physical quantity and an in-plane direction vibration force generated in a circumferential direction of the disc rotor;
    Including a disc brake vibration estimation method.
  2.  前記入力物理量は、前記パッドと接触し、かつ前記ディスクロータに前記パッドを接触させる液圧シリンダの液圧を受ける液圧受け部に関する物理量も含み、
     前記ディスクブレーキの振動を推定する手順は、前記取得した入力物理量と、少なくとも前記ディスクロータと前記パッドとの間および前記パッドと前記液圧受け部との間の荷重変動と、前記ディスクロータと前記パッドとの間の摩擦変動と、前記ディスクロータの回転方向に発生する起振力とに基づいて行われる
     ことを特徴とする請求項1に記載のディスクブレーキ振動推定方法。
    The input physical quantity includes a physical quantity related to a hydraulic pressure receiving portion that receives a hydraulic pressure of a hydraulic cylinder that contacts the pad and contacts the pad to the disk rotor;
    The procedure for estimating the vibration of the disc brake includes the acquired input physical quantity, a load variation between at least the disc rotor and the pad and between the pad and the hydraulic pressure receiving portion, the disc rotor, and the The disc brake vibration estimation method according to claim 1, wherein the disc brake vibration estimation method is performed based on a frictional fluctuation with a pad and a vibration force generated in a rotation direction of the disc rotor.
  3.  回転するディスクロータにパッドを接触させることで制動力を発生するディスクブレーキの前記ディスクロータと前記パッドの接触時における振動を推定するディスクブレーキ振動推定装置であって、
     少なくとも前記ディスクロータ、前記パッドに関する物理量である入力物理量を取得する入力物理量取得手段と、
     少なくとも前記取得した入力物理量と、前記ディスクロータの回転方向に発生する面内方向起振力とに基づいて、前記ディスクブレーキの振動を推定する振動推定手段と、
     備えることを特徴とするディスクブレーキ振動推定装置。
    A disk brake vibration estimation device that estimates vibrations at the time of contact between the disk rotor and the pad of a disk brake that generates a braking force by bringing a pad into contact with a rotating disk rotor,
    Input physical quantity acquisition means for acquiring an input physical quantity that is a physical quantity related to at least the disk rotor and the pad;
    Vibration estimation means for estimating vibration of the disk brake based on at least the acquired input physical quantity and an in-plane direction vibration force generated in the rotation direction of the disk rotor;
    A disc brake vibration estimation device comprising:
PCT/JP2011/078607 2011-12-09 2011-12-09 Disk brake vibration estimation method and disk brake vibration estimation device WO2013084363A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/078607 WO2013084363A1 (en) 2011-12-09 2011-12-09 Disk brake vibration estimation method and disk brake vibration estimation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/078607 WO2013084363A1 (en) 2011-12-09 2011-12-09 Disk brake vibration estimation method and disk brake vibration estimation device

Publications (1)

Publication Number Publication Date
WO2013084363A1 true WO2013084363A1 (en) 2013-06-13

Family

ID=48573760

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/078607 WO2013084363A1 (en) 2011-12-09 2011-12-09 Disk brake vibration estimation method and disk brake vibration estimation device

Country Status (1)

Country Link
WO (1) WO2013084363A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014080261A3 (en) * 2012-11-20 2014-07-17 Toyota Jidosha Kabushiki Kaisha Disc brake vibration estimation method and disc brake vibration estimation device
WO2015121728A2 (en) 2014-02-12 2015-08-20 Toyota Jidosha Kabushiki Kaisha Disc brake vibration estimating device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000337411A (en) * 1999-05-31 2000-12-05 Nissan Motor Co Ltd Drum brake device
JP2004070397A (en) * 2002-08-01 2004-03-04 Toyota Central Res & Dev Lab Inc Method of identifying inter-component boundary condition of object to be analyzed

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000337411A (en) * 1999-05-31 2000-12-05 Nissan Motor Co Ltd Drum brake device
JP2004070397A (en) * 2002-08-01 2004-03-04 Toyota Central Res & Dev Lab Inc Method of identifying inter-component boundary condition of object to be analyzed

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
MOTOHIRO TANIMOTO ET AL.: "Brake Pad to Kaiten Disc-kei ni Okeru Nijigen Masatsu Shindo no Simulation", PROCEEDINGS OF JAST TRIBOLOGY CONFERENCE, 16 April 2004 (2004-04-16), TOKYO, pages 321 - 322 *
TAKASHI MAEDA ET AL.: "A Study of Friction Modeling for Friction-induced vibration Simulation (2nd report)", PREPRINTS OF MEETING ON AUTOMOTIVE ENGINEERS, NO.113-08 (2008 NEN SHUKI TAIKAI), 22 October 2008 (2008-10-22), pages 21 - 24 *
TSUTOMU TAMURA ET AL.: "Modeling of Squeal Noise Generation in Disk Brake", THE JAPAN SOCIETY OF MECHANICAL ENGINEERS KOEN RONBUNSHU, NO.034-1 (KANSAI SHIBU DAI 78 KI TEIJI SOKAI KOENKAI), 22 March 2003 (2003-03-22), pages 11-49 - 11-50 *
YOICHI KUMEMURA ET AL.: "Analysis for Reducing Low Frequency Squeal of Disc Brake", PREPRINTS OF MEETING ON AUTOMOTIVE ENGINEERS, NO.92-02, 2002 NEN SHUKI TAIKAI, 26 November 2002 (2002-11-26), pages 9 - 12 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014080261A3 (en) * 2012-11-20 2014-07-17 Toyota Jidosha Kabushiki Kaisha Disc brake vibration estimation method and disc brake vibration estimation device
US9739323B2 (en) 2012-11-20 2017-08-22 Toyota Jidosha Kabushiki Kaisha Disc brake vibration estimation method and disc brake vibration estimation device
WO2015121728A2 (en) 2014-02-12 2015-08-20 Toyota Jidosha Kabushiki Kaisha Disc brake vibration estimating device
JP2015152056A (en) * 2014-02-12 2015-08-24 トヨタ自動車株式会社 Disc brake vibration estimation device
WO2015121728A3 (en) * 2014-02-12 2015-12-17 Toyota Jidosha Kabushiki Kaisha Disc brake vibration estimating device

Similar Documents

Publication Publication Date Title
Liu et al. Analysis of disc brake squeal using the complex eigenvalue method
US9739323B2 (en) Disc brake vibration estimation method and disc brake vibration estimation device
Coudeyras et al. A new treatment for predicting the self-excited vibrations of nonlinear systems with frictional interfaces: The constrained harmonic balance method, with application to disc brake squeal
US20210279383A1 (en) Analysis method and apparatus for optimizing vibration performance of automotive body
JP6208699B2 (en) Servo controller that measures the lubrication characteristics of the machine by experimental mode analysis
Ghazaly et al. Understanding mode-coupling mechanism of brake squeal using finite element analysis
WO2013084363A1 (en) Disk brake vibration estimation method and disk brake vibration estimation device
US8175855B2 (en) Predictive system and method for the design of mechanical resonant devices
Zhang et al. Piezoelectric parametric effects on wave vibration and contact mechanics of traveling wave ultrasonic motor
JP5203851B2 (en) Rigidity evaluation support device, rigidity evaluation support method and program
JP2018179923A (en) Vibration analysis system and vibration analysis method
US20130173241A1 (en) Method, Apparatus and Computer Program Product for the Finite Element Analysis of Frequency Dependent Behavior of Nonlinear Materials and Contacts
Stallaert et al. Application of dither control for automotive wiper squeal
JP5920373B2 (en) Disc brake vibration estimation device
JP6408564B2 (en) Active vibration damping device and design method
Rijnen et al. A numerical and experimental study on viscoelastic damping of a 3D structure
Oberst et al. A critical review of brake squeal and its treatment in practice
Hochlenert et al. How do nonlinearities influence brake squeal?
JP2004045294A (en) Determination system and program for risk of damaging structure
JP7318103B2 (en) Method and apparatus for estimating active electromagnetic forces in electro-electric machines
Nicklas Development of multi-body model to simulate creep groan in ADAMS
Abu-Bakar et al. Suppression of drum brake squeal through structural modifications using finite element method
Tozkoparan Development of acoustic simulation method for brake squeal based on experiments in the test bench
CN114818409A (en) Rigidity simulation method and device for overall modal analysis of permanent magnet synchronous motor
Koganezawa Analysis of spring-back deformation of head-mounting-block after ball-swaging in hard disk drives

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11876917

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11876917

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP