WO2013081375A1 - Battery module and bus bar applied to battery module - Google Patents

Battery module and bus bar applied to battery module Download PDF

Info

Publication number
WO2013081375A1
WO2013081375A1 PCT/KR2012/010182 KR2012010182W WO2013081375A1 WO 2013081375 A1 WO2013081375 A1 WO 2013081375A1 KR 2012010182 W KR2012010182 W KR 2012010182W WO 2013081375 A1 WO2013081375 A1 WO 2013081375A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal plate
metal
bridge
battery module
bus bar
Prior art date
Application number
PCT/KR2012/010182
Other languages
French (fr)
Korean (ko)
Inventor
최준석
이진규
노태환
최승돈
김성태
김태혁
양정훈
장민철
신인철
강달모
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201280015204.1A priority Critical patent/CN103460447B/en
Priority to JP2013558802A priority patent/JP6270123B2/en
Priority to EP12854353.5A priority patent/EP2662913B1/en
Publication of WO2013081375A1 publication Critical patent/WO2013081375A1/en
Priority to US13/959,381 priority patent/US9577240B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/574Devices or arrangements for the interruption of current
    • H01M50/581Devices or arrangements for the interruption of current in response to temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/296Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by terminals of battery packs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/503Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the shape of the interconnectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/507Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing comprising an arrangement of two or more busbars within a container structure, e.g. busbar modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/521Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the material
    • H01M50/522Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • H01M50/548Terminals characterised by the disposition of the terminals on the cells on opposite sides of the cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/552Terminals characterised by their shape
    • H01M50/553Terminals adapted for prismatic, pouch or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/574Devices or arrangements for the interruption of current
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/647Prismatic or flat cells, e.g. pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • H01M10/6557Solid parts with flow channel passages or pipes for heat exchange arranged between the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • H01M2200/10Temperature sensitive devices
    • H01M2200/103Fuse
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/211Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for pouch cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a battery module with improved safety during a short circuit and a bus bar applied thereto.
  • the present invention relates to a battery module and a bus bar having improved structure to prevent explosion or ignition caused by an increase in temperature inside a battery due to a short circuit. .
  • rechargeable batteries can be recharged by active development of high-tech fields such as digital cameras, cellular phones, laptop computers, power tools, electric bicycles, electric vehicles, hybrid vehicles, and large-capacity power storage devices. Research is ongoing.
  • lithium secondary batteries have a higher energy density per unit weight and can be rapidly charged compared to other secondary batteries such as lead-acid batteries, nickel-cadmium batteries, nickel-hydrogen batteries, and nickel-zinc batteries, thereby increasing their use actively. It's going on.
  • Lithium secondary battery is used as a power source for portable electronic devices with an operating voltage of 3.6V or more, or by connecting a plurality of batteries in series or in parallel to high power electric vehicles, hybrid vehicles, power tools, electric bicycles, power storage devices, UPS, etc. Used.
  • Lithium secondary batteries have a three times higher operating voltage than nickel-cadmium batteries or nickel-metal hydride batteries, and are also rapidly being used because of their excellent energy density per unit weight.
  • the lithium secondary battery may be classified into a lithium ion battery using a liquid electrolyte and a lithium ion polymer battery using a polymer solid electrolyte according to the type of electrolyte.
  • Lithium ion polymer batteries can be classified into fully solid lithium ion polymer batteries containing no electrolyte solution and lithium ion polymer batteries using gel polymer electrolyte containing electrolyte solution, depending on the type of polymer solid electrolyte.
  • a cylindrical or rectangular metal can is used as a container by welding sealing. Since the can-type secondary battery using such a metal can as a container has a fixed shape, there is a disadvantage in restricting the design of an electric product using the same as a power source, and it is difficult to reduce the volume. Therefore, a pouch type secondary battery using an electrode assembly and an electrolyte in a pouch packaging material made of a film and sealing it has been developed and used.
  • the lithium secondary battery is one of the important problems to ensure safety because there is a risk of explosion when overheating.
  • Overheating of the lithium secondary battery is caused by a variety of causes, one of which is the case in which overcurrent flows beyond the limit through the lithium secondary battery.
  • the lithium secondary battery When the overcurrent flows, the lithium secondary battery generates heat by Joule heat, so the internal temperature of the battery increases rapidly. The rapid rise in temperature also causes decomposition reactions of the electrolyte, causing thermal running, which eventually leads to battery explosion.
  • the overcurrent is a rush current due to a breakdown of the insulation between the positive electrode and the negative electrode due to a sharp metal object penetrating the lithium secondary battery, the contraction of the separator interposed between the positive electrode and the negative electrode, or an abnormality in the charging circuit or load connected to the outside. Occurs when is applied to a battery.
  • a lithium secondary battery is used in combination with a protection circuit to protect the battery from an abnormal situation such as the occurrence of an overcurrent.
  • the protection circuit includes a fuse device irreversibly disconnecting a line through which charge or discharge current flows when an overcurrent occurs. It is common to include.
  • FIG. 1 is a circuit diagram illustrating an arrangement structure and an operation mechanism of a fuse device among components of a protection circuit coupled to a battery module including a lithium secondary battery.
  • the protection circuit operates the fuse device 10 when the overcurrent occurs by monitoring the fuse device 10, the sense resistor 20 for overcurrent sensing, and the overcurrent to protect the battery module when the overcurrent occurs.
  • the microcontroller 30 and the switch 40 for switching the flow of the operating current to the fuse element 10.
  • the fuse element 10 is installed on a main line connected to the outermost terminal of the battery module.
  • the main line is the wiring through which the charging or discharging current flows.
  • the fuse element 10 is shown installed in a high potential line Pack +.
  • the fuse element 10 is a three-terminal element component, and two terminals are connected to a main line through which charging or discharging current flows, and one terminal is connected to the switch 40.
  • the inside includes a fuse 11 connected in series with a main line and having a fusion at a specific temperature, and a resistor 12 for applying heat to the fuse 11.
  • the microcontroller 30 periodically detects a voltage across the sense resistor 20 to monitor whether overcurrent occurs, and turns on the switch 40 when it is determined that overcurrent has occurred. Then, the current flowing in the main line is bypassed to the fuse element 10 and applied to the resistor 12. Accordingly, the joule heat generated from the resistor 12 is conducted to the fuse 11 to raise the temperature of the fuse 11, and when the temperature of the fuse 11 rises to the melting temperature, the fuse 11 is fused to form a main heat. The track is irreversibly disconnected. If the main line is disconnected, the overcurrent no longer flows, thus eliminating the problem caused by the overcurrent.
  • the above-described prior art has various problems. That is, when a failure occurs in the microcontroller 30, the switch 40 is not turned on even in a situation in which an overcurrent occurs. In this case, since the current does not flow into the resistor 12 of the fuse element 10, there is a problem that the fuse element 10 does not operate. In addition, a space for disposing the fuse element 10 in the protection circuit is required separately, and a program algorithm for controlling the operation of the fuse element 10 must be loaded in the microcontroller 30. Therefore, there is a disadvantage in that the space efficiency of the protection circuit is lowered and the load of the microcontroller 30 is increased.
  • the present invention was conceived in consideration of the prior art as described above, by configuring a bus bar connecting between the cell and the external terminal in a double structure, when the temperature rises due to abnormal phenomenon during use of the battery module is easily broken bus bar By providing a battery module and a bus bar that can be applied to ensure the safety of the use.
  • Battery module for achieving the above technical problem, at least one unit cell; A case accommodating the unit cell; A bus bar electrically connected to the unit cell, wherein the bus bar comprises: a first metal plate; A second metal plate positioned to be spaced apart from the first metal plate; And a metal bridge connecting between the first metal plate and the second metal plate and having a melting point lower than that of the metal plate.
  • the metal bridge may include tin (Sn) and copper (Cu) as main components.
  • the content of tin is 80 to 98wt%, the content of copper is preferably in the range of 2 to 20wt%.
  • the metal bridge may further include at least one additional metal selected from nickel (Ni), zinc (Zn), and silver (Ag), in which case the content of the additional metal is preferably 0.01 to 10 wt%. Do.
  • the metal bridge is preferably formed to have a melting point of 150 to 300 °C.
  • the first metal plate and the second metal plate may be located on the same plane with a predetermined gap.
  • the metal bridge may be joined to the first metal plate and the second metal plate on either or both sides of the first metal plate and the second metal plate.
  • the first metal plate and the second metal plate has a receiving groove formed on at least one of the upper surface or the lower surface of each one end facing each other, the metal bridge and the groove It has a corresponding size and shape, can be accommodated in the space formed by the interlocking of the groove and bonded to the first metal plate and the second metal plate.
  • the first metal plate and the second metal plate has a first bent portion and a second bent portion formed on each side end facing each other, the metal bridge is the first bent portion And it is accommodated in the space formed by the interlocking of the second bent portion can be bonded to the first metal plate and the second metal plate.
  • the first metal plate and the second metal plate has a receiving groove formed in a predetermined depth from the surface facing each other, the metal bridge, one side and the other side is inserted into the receiving groove, respectively Can be joined with the metal plate.
  • the metal bridge may be directly interposed between the surface where the first metal plate and the second metal plate are opposed to each other and bonded to the first metal plate and the second metal plate.
  • the opposite surface may have an inclined surface tapered in the metal soldering bridge direction.
  • one side of each of the first metal plate and the second metal plate is positioned so that at least a portion overlaps to face each other, the metal bridge is interposed in the facing area and the first metal plate and It can be joined with the second metal plate.
  • one side of each of the first metal plate and the second metal plate is at least partially overlapping each other and positioned to face each other, the metal bridge is one side and the other side facing each other of the circumference of the facing area Can be formed on.
  • one side of each of the first metal plate and the second metal plate is positioned so that at least a portion thereof overlaps to face each other, and the metal bridge may be formed in the entire circumference of the facing area.
  • the rivet may further include a rivet for fixing between the first metal plate and the metal bridge and between the second metal plate and the metal bridge.
  • the first metal plate and the second metal plate may have a tapered shape so that one side facing each other becomes narrow toward the end.
  • the battery module may further include an external terminal installed at one side of the case, and the bus bar may be installed to connect between the unit cell and the external terminal.
  • a battery module including: at least one unit cell including a positive lead and a negative lead; A case accommodating the unit cell; A first bus bar connected to the anode lead; And a second bus bar connected to the cathode lead, wherein the second bus bar comprises: a first metal plate; A second metal plate positioned to be spaced apart from the first metal plate; And a metal bridge connecting between the first metal plate and the second metal plate and having a melting point lower than that of the metal plate.
  • the bus bar according to the present invention for achieving the technical problem is a bus bar applied to the battery module, the first metal plate; A second metal plate positioned to be spaced apart from the first metal plate; And a metal bridge connecting between the first metal plate and the second metal plate and having a melting point lower than that of the metal plate.
  • the bus bar is quickly broken, thereby bringing an effect of securing safety in using the battery module.
  • FIG. 1 is a circuit diagram illustrating an arrangement structure and an operation mechanism of a fuse device among components of a protection circuit coupled to a battery module.
  • FIG. 2 is an exploded perspective view of a battery module according to a preferred embodiment of the present invention.
  • FIG. 3 is a perspective view illustrating a state in which a battery cell and a bus bar constituting a battery module according to an exemplary embodiment of the present invention are combined.
  • Figure 4a is a complete perspective view of a battery module according to a preferred embodiment of the present invention.
  • FIG. 4B is a front view of the battery module shown in FIG. 4A.
  • 5 to 9C are perspective views of part A of FIG. 4B, and are partial perspective views illustrating various forms of a bus bar according to an exemplary embodiment of the present invention.
  • FIG. 10 is a partial perspective view showing the shape of a bus bar according to another embodiment of the present invention.
  • FIG. 11 is a partial perspective view showing the shape of a bus bar according to another embodiment of the present invention.
  • FIG. 12 is a graph showing the results of a short circuit test for the battery module according to the present invention.
  • the battery module 1 includes a battery cell 100, a bus bar 200, a case 300, an external terminal 311, and a voltage sensor 321. .
  • the battery cell 100 is formed by stacking unit modules 100A, 100B, 100C, and 100D including at least one unit cell 110A and 110B and a cell cover 120 surrounding the unit cells 110A and 110B. do.
  • the unit cells 110A and 110B are connected to the electrode assembly (not shown) accommodated in the packaging material and the uncoated parts of the first and second electrode plates of the electrode assembly, respectively, and are drawn out in one direction and the other direction of the packaging material, respectively.
  • the first and second electrode plates are a positive electrode plate and a negative electrode plate
  • the first and second electrode leads 111 and 112 are respectively the positive lead and the negative electrode leads 111 and 112. Let's explain.
  • the cathode plate is made of aluminum (Al), and the anode plate is generally made of copper (Cu). Therefore, in view of minimizing weldability and electrical resistance between the electrode plates and the electrode leads 111 and 112, the anode lead 111 is made of the same aluminum (Al) material as the anode plate, and the cathode lead 112 is the same copper as the cathode plate. It is preferable that the material is made of (Cu) material or nickel (Ni) coated copper (Cu) material.
  • the connection between the unit cells 110A and 100B and the connection between the unit modules 100A to 100D may be performed according to the purpose of the battery. Although it may be connected in series or in parallel, in the present invention will be described taking the case of a serial connection as an example. That is, in the present invention, the unit cells 110A and 100B are connected to each other by coupling the anode lead 111 of one unit cell 110A and the cathode lead 112 of the adjacent unit cell 110B to each other.
  • the anode lead 111 of the unit cell 110A located at the outermost side of the rear part (R direction) and the cathode lead 112 of the unit cell 110B located at the outermost part of the front part (F direction) will be described later. It is coupled with the bus bar 200 to be.
  • the number of the unit cells (110A, 110B) and the unit modules (100A ⁇ 100D) in the present invention only shows a case where there are two unit cells (110A, 110B), the unit modules (100A ⁇ 100D) is four Although only the stacked case is shown, this is merely an example and thus it is not limited to the number of the unit cells (110A, 110B) and the unit module (100A ⁇ 100D).
  • the bus bar 200 is the positive lead 111 of the unit cell 110A positioned at the outermost rear portion R of the battery cell 100 and the negative lead of the unit cell 110B positioned at the outermost portion of the front portion F. As coupled to 112, it includes a metal bridge 230 connecting the first metal plate 210, the second metal plate 220, and the metal plates 210, 220.
  • the bus bars 200 attached to the positive lead 111 and the negative lead 112 may be formed of different materials of the metal plates 210 and 220. That is, the metal plates 210 and 220 of the bus bar 200 attached to the positive electrode lead 111 are made of the same aluminum material as the positive electrode lead 111 and the metal plate of the bus bar 200 attached to the negative electrode lead 112.
  • the 210 and 220 are preferably made of the same copper or nickel coated copper material as the cathode lead 112. However, since the configuration except for the material is the same, the present invention will be described based on the bus bar 200 attached to the anode lead 111.
  • the first metal plate 210 and the second metal plate 220 are made of a thin plate metal.
  • the first metal plate 210 has a lead coupling portion 211 formed at one side thereof bent in a substantially '-' shape.
  • the lead coupling portion 211 is coupled to one end of each of the electrode leads 111 and 112 by welding.
  • the second metal plate 220 is positioned to be spaced apart from the first metal plate 220 by a predetermined distance, and the external terminal 311 may be inserted into an end opposite to the side where the first metal plate 210 is located.
  • the terminal groove 220a is formed.
  • the metal bridge 230 connects the metal plates 210 and 220, and various embodiments of the concrete connection structure will be described later in detail with reference to FIGS. 5 to 11, and only roles and properties thereof will be described herein. Let's explain.
  • the metal bridge 230 melts when the battery module 1 is overheated, thereby releasing an electrical connection between the first metal plate 210 and the second metal plate 220.
  • the metal bridge 230 includes tin (Sn) and copper (Cu) as a main component, and is made of a lead-free alloy material containing no lead (Pb), which is harmless to the environment and human body, and is approximately 150 to 300 ° C.
  • Pb lead-free alloy material containing no lead
  • Melting point range of the metal bridge 230 is the maximum voltage and current conditions that the bus bar 200 must withstand, the level of overcurrent to be blocked using the bus bar 200, the electrical properties required for the bus bar 200 It is determined in consideration of (resistance) and / or mechanical properties (tensile strength).
  • the melting point of the metal bridge 230 is lower than 150 ° C., the bus bar 200 may be broken even in a current caused by the normal operation of the battery module 1.
  • the melting point of the metal bridge 230 is higher than 300 °C there is a problem that the blocking of the overcurrent is not effective.
  • the content of tin and copper included in the metal bridge 230 is appropriately adjusted according to the melting point of the metal bridge 230, the electrical and / or physical properties to be applied to the metal bridge 230 or the bus bar 200. This is possible.
  • Tin among the components of the metal bridge 230 affects the melting point and the tensile strength characteristics of the metal bridge 230.
  • the content of tin is controlled in the range of 80 wt% or more, preferably 85 to 98 wt% so that the metal bridge 230 has a melting point of 150 to 300 ° C. and has good tensile strength.
  • the wt% is the same as a unit based on the total weight of the material constituting the metal bridge 230.
  • copper affects the electrical conductivity, melting point, and tensile strength of the bus bar 200, and in view of the function of copper, the copper content is preferably in the range of 2 to 20 wt%. Preferably in the range of 4-15 wt%.
  • the metal bridge 230 By adjusting the content of tin and copper as described above, not only can the good tensile strength characteristics of the metal bridge 230 be obtained, but also the increase in resistance by the metal bridge 230 can be suppressed to a few percent or less, and the metal It is possible to adjust the melting point of the bridge 230 in the range of 150 to 300 ° C.
  • the metal bridge 230 may further include any one or more metals selected from nickel (Ni), zinc (Zn), and silver (Ag) to improve electrical and / or mechanical properties.
  • the amount of the additional metal may be adjusted according to the electrical and / or mechanical properties to be applied to the metal bridge 230, and may be adjusted in the range of 0.01 to 10 wt%.
  • the structure of the bus bar 200 is applied to both the anode lead 111 and the cathode lead 112 is illustrated, but it is also possible to apply to any one of the leads.
  • the structure of the bus bar 200 is applied to only one of the leads, it is generally applied only to the cathode lead 112 having a larger heat generation amount, and that the structure of the general bus bar is applied to the anode lead 111. desirable.
  • the case 300 accommodates the battery cell 100 and includes a lower case 310 and an upper case 320.
  • the lower case 310 is formed in an upwardly open structure to surround portions of both sides and a lower surface of the battery cell 100, and includes a pair of slits 310a.
  • the slit 310a is formed at a position corresponding to the lead coupling portion 211 of the bus bar 200 on one side of the lower case 310 so that the lead when the battery cell 100 is inserted into the lower case 310. It provides a space in which the coupling portion 211 can be accommodated. Therefore, the battery cell 100 and the bus bar 200 are positioned inside and outside the lower case 310, respectively, while maintaining an electrical connection therebetween.
  • an external terminal 311 formed to protrude outwardly of the lower case 310 is provided at a position corresponding to the terminal groove 220a of the bus bar 200 among one side of the lower case 310.
  • the external terminal 311 is formed in a size and shape corresponding to the terminal groove 220a of the bus bar 200 so that the external terminal 311 is connected to the bus bar when the battery cell 100 is accommodated in the lower case 310. It provides a space that can be inserted into the 200, and serves to electrically connect the external device (not shown) and the battery cell 100.
  • the external terminal 311 and the bus bar 200 may be coupled by welding.
  • the upper case 320 is formed in a downwardly open structure to surround both sides of the battery cell 100 inserted into the lower case 310, that is, a part of the surface from which the electrode leads 111 and 112 are drawn out, and an upper surface thereof. It may be coupled to the lower case 310 by bolt coupling.
  • the upper case 320 has a sensor coupling portion (320a) formed to be inserted into the voltage sensor 321 on both sides.
  • the voltage sensor 321 is electrically connected to the battery cell 100 in the voltage sensor coupling unit 320a to sense the voltage of the battery cell 100.
  • the battery module 1 is applied to the bus bar 200 having a dual structure connecting the metal plates 210 and 220 with the metal bridge 230. Therefore, when the overcurrent occurs, the battery module 1 may ensure the safety in use by quickly breaking the bus bar 200.
  • the battery module 1 is applied to the bus bar 200, which is a component installed outside the case, so that the battery module 1 is ignited as compared to the case where it is applied to a component adjacent to an electrode assembly (not shown) such as the leads 111 and 112. And further reduce the risk of explosion.
  • bus bar 200a according to the exemplary embodiment of the present invention will be described with reference to FIGS. 5 to 9C.
  • bus bar 200a illustrate various forms of the bus bar 200a according to an embodiment of the present invention, wherein the bus bar 200a has a metal bridge 230 coupled to the metal plates 210 and 220 by welding. Is formed. That is, the metal bridge 230 serves as a soldering bridge connecting the metal plates 210 and 220 to each other.
  • the first metal plate 210 and the second metal plate 220 are positioned on the same plane with a predetermined gap therebetween, and the metal bridge 230 is formed on the upper surfaces of the metal plates 210 and 220.
  • the metal bridge 230 may be formed on the lower surface.
  • the metal bridge 230 may be formed on both the upper and lower surfaces of the metal plates 210 and 220, and in this case, the metal bridges 210 and 220 may have an effect of strengthening the mutual bonding force. Can be.
  • the first metal plate 210 and the second metal plate 220 are disposed on the same plane with a predetermined gap therebetween, and receive the receiving groove RG1 formed on an upper surface of one end portion facing each other. Equipped.
  • the metal bridge 230 has a size and shape corresponding to the receiving groove RG2, is accommodated in the space formed by the interlocking of the receiving groove RG1 is bonded to the metal plates (210, 220).
  • the accommodating groove RG1 is formed on the upper surfaces of the metal plates 210 and 220 is illustrated.
  • the receiving groove RG1 may be formed on the lower surface or on both the upper and lower surfaces.
  • the first metal plate 210 and the second metal plate 220 may be disposed on the same plane with a predetermined gap therebetween, and may be formed with first bent portions 210 formed at one end portions facing each other. ') And the second bent portion 220'.
  • the metal bridge 230 is accommodated in the space formed by the interlocking of the first bent portion 210 'and the second bent portion 220' is bonded to the metal plates (210, 220).
  • the first metal plate 210 and the second metal plate 220 are disposed on the same plane with a predetermined gap therebetween, and receive a receiving groove RG2 formed at a predetermined depth from surfaces facing each other. Equipped. On the other hand, one side and the other side of the metal bridge 230 is inserted into the receiving groove RG2 and bonded to the metal plates 210 and 220.
  • 7A, 7B, and 7C have a larger bonding area between the metal plates 210 and 220 and the metal bridges 230 than the structures shown in FIGS. 5 and 6, thereby increasing the bonding force between the metal plates 210 and 220.
  • the effect of strengthening the effect of reducing the contact resistance can also be brought.
  • the first metal plate 210 and the second metal plate 220 are disposed on the same plane with a predetermined gap therebetween, and the metal bridge 230 may have the metal plates 210 and 220 facing each other. It is directly interposed between the surfaces where it is in contact with the metal plates (210, 220).
  • the structure shown in FIG. 8B differs from the structure shown in FIG. 8A in that the opposing surfaces of the metal plates 210 and 220 have an inclined surface tapered in the metal bridge direction. In this case, as the contact area between the metal plates 210 and 220 and the metal bridge 230 becomes wider, not only the effect of strengthening the bonding force between the metal plates 210 and 220 but also the effect of reducing the contact resistance is also obtained.
  • each of the first metal plate 210 and the second metal plate 220 may be overlapped to face each other, and the metal bridge 230 may be interposed in the entire facing area. It is bonded to the metal plates 210 and 220.
  • the metal bridge 230 is formed only on one side and the other side of the periphery of the region in which the metal plates 210 and 220 face each other. In this case, when the overcurrent occurs in the battery module 1, it is possible to expect the effect that the bus bar 200a can be quickly broken.
  • the metal bridge 230 may be formed in the entire circumference of the facing area, of course. In this case, a faster breaking effect can be expected for the overcurrent compared to the structure shown in FIG. 9A, and a better bonding force between the metal plates 210 and 220 can be expected as compared to the structure shown in FIGS. 9B and 9C. .
  • bus bar 200b according to another embodiment of the present invention will be described with reference to FIG. 10.
  • the bus bar 200b illustrated in FIG. 10 differs from the bus bar 200a illustrated in FIG. 5 in that a rivet 240 is further formed between the metal plates 210 and 220 and the metal bridge 230.
  • the rivet 240 increases the bonding force between the metal plates 210 and 220 and the metal bridge 230.
  • FIG. 10 only the case where the rivet 240 is additionally applied to the bus bar 200a illustrated in FIG. 5 is further illustrated.
  • the present invention is not limited thereto, and the present invention may be applied to the structures illustrated in FIGS. 6 to 7C. It is.
  • bus bar 200c according to another embodiment of the present invention will be described with reference to FIG. 11.
  • the bus bar 200c shown in FIG. 11 has tapered portions N1 and N2 formed so that opposite sides of the metal plates 210 and 220 are narrowed toward the ends, compared to the bus bar 200a shown in FIG. 5. different.
  • the electrical resistance at the tapered portions N1 and N2 is increased, thereby generating more heat when an overcurrent occurs, thereby causing the bus bar 200c to Rapid breakage is possible.
  • the present invention is not limited thereto, and the tapered portion may also be used in the structures shown in FIGS. 6 to 9C.
  • the (N1, N2) structure can be applied.
  • the bus bar 200a shown in FIG. 11 is combined with a structure that widens the contact area between the metal plates 210 and 220 and the metal bridge 230 as shown in FIGS. 7A to 7C, While the rapid breaking of 200c) is possible, not only the bonding force between the metal plates 210 and 220 is excellent, but also the contact resistance is low.
  • the short circuit experiment was performed on the battery module 1 to which the bus bar 200a having the form shown in FIG. 8A was applied, and the conditions were as follows:
  • Output voltage of battery module 64.5V (15 unit cells with 4.3V output voltage connected in series)
  • the voltage of the battery module 1 measured between the external terminals 311 was maintained at about 65V for about 50 seconds and then dropped to 0V. That is, at about 50 seconds after the start of the experiment, the bus bar was broken by the short circuit current, and the temperature measured in the unit cell was kept constant at about 23 ° C. during the short circuit experiment.
  • the bus bar 200a applied to the battery module 1 according to the present invention can secure safety on the use of a secondary battery by quickly cutting off a short circuit current before the temperature of the unit cell increases substantially in the event of a short circuit. It can be seen.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

The present invention provides a battery module, which can ensure the safety of use of the invention by breaking a bus bar if an overcurrent flows in the battery module due to an abnormal operation of a protection circuit. The battery module according to the present invention comprises: at least one unit cell; a case which accommodates the unit cell therein; and a bus bar which is electrically connected to the unit cell, wherein the bus bar comprises: a first metal plate; a second metal plate which is positioned to be spaced from the first metal plate; and a metal bridge which connects the first metal plate with the second metal plate, and has a lower melting point than the metal plates.

Description

배터리 모듈 및 배터리 모듈에 적용되는 버스 바Bus Bar Applied to Battery Module and Battery Module
본 발명은 단락 시 안전성이 향상된 배터리 모듈 및 이에 적용되는 버스 바에 관한 것으로서, 단락에 의한 전지 내부의 온도 상승에 따른 폭발 또는 발화를 예방할 수 있도록 구조가 개선된 배터리 모듈 및 이에 적용되는 버스 바에 관한 것이다.The present invention relates to a battery module with improved safety during a short circuit and a bus bar applied thereto. The present invention relates to a battery module and a bus bar having improved structure to prevent explosion or ignition caused by an increase in temperature inside a battery due to a short circuit. .
본 출원은 2011년 11월 28일에 출원된 한국특허출원 제10-2011-0125225호에 기초한 우선권 주장을 하며, 해당 출원의 명세서 및 도면에 개시된 모든 내용은 본 출원에 원용된다.This application claims the priority based on Korean Patent Application No. 10-2011-0125225, filed November 28, 2011, and all the contents disclosed in the specification and drawings of the application are incorporated in this application.
또한, 본 출원은 2012년 11월 28일에 출원된 한국특허출원 제10-2012-0135793호에 기초한 우선권을 주장하며, 해당 출원의 명세서 및 도면에 개시된 모든 내용은 본 출원에 원용된다.In addition, this application claims the priority based on Korea Patent Application No. 10-2012-0135793 filed on November 28, 2012, all the contents disclosed in the specification and drawings of the application is incorporated in this application.
비디오 카메라, 휴대용 전화, 휴대용 PC 등의 휴대용 전기 제품 사용이 활성화됨에 따라 그 구동 전원으로서 주로 사용되는 이차전지에 대한 중요성이 증가되고 있다.As the use of portable electric products such as video cameras, portable telephones, and portable PCs is activated, the importance of secondary batteries mainly used as driving power thereof is increasing.
통상적으로 충전이 불가능한 일차전지와는 달리 충전 및 방전이 가능한 이차전지는 디지털 카메라, 셀룰러 폰, 랩탑 컴퓨터, 파워 툴, 전기 자전거, 전기 자동차, 하이브리드 자동차, 대용량 전력 저장 장치 등 첨단 분야의 개발로 활발한 연구가 진행 중이다.Unlike primary batteries that are not normally rechargeable, rechargeable batteries can be recharged by active development of high-tech fields such as digital cameras, cellular phones, laptop computers, power tools, electric bicycles, electric vehicles, hybrid vehicles, and large-capacity power storage devices. Research is ongoing.
특히, 리튬 이차전지는 기존의 납 축전지, 니켈-카드뮴 전지, 니켈-수소 전지, 니켈-아연전지 등 다른 이차전지와 비교하여 단위 중량 당 에너지 밀도가 높고 급속 충전이 가능하므로 사용의 증가가 활발하게 진행되고 있다.In particular, lithium secondary batteries have a higher energy density per unit weight and can be rapidly charged compared to other secondary batteries such as lead-acid batteries, nickel-cadmium batteries, nickel-hydrogen batteries, and nickel-zinc batteries, thereby increasing their use actively. It's going on.
리튬 이차전지는 작동 전압이 3.6V 이상으로 휴대용 전자 기기의 전원으로 사용되거나, 다수의 전지를 직렬 또는 병렬로 연결하여 고출력의 전기자동차, 하이브리드 자동차, 파워툴, 전기 자전거, 전력저장장치, UPS 등에 사용된다. Lithium secondary battery is used as a power source for portable electronic devices with an operating voltage of 3.6V or more, or by connecting a plurality of batteries in series or in parallel to high power electric vehicles, hybrid vehicles, power tools, electric bicycles, power storage devices, UPS, etc. Used.
리튬 이차전지는 니켈-카드뮴 전지나 니켈-메탈 하이드라이드 전지에 비하여 작동 전압이 3배가 높고, 단위 중량당 에너지 밀도의 특성도 우수하여 급속도로 사용되고 있는 추세이다.Lithium secondary batteries have a three times higher operating voltage than nickel-cadmium batteries or nickel-metal hydride batteries, and are also rapidly being used because of their excellent energy density per unit weight.
리튬 이차전지는 전해질 종류에 따라 액체 전해질을 사용하는 리튬 이온전지와 고분자 고체 전해질을 사용하는 리튬 이온 폴리머 전지로 구분할 수 있다. 그리고, 리튬 이온 폴리머 전지는 고분자 고체 전해질의 종류에 따라 전해액이 전혀 함유되어 있지 않은 완전 고체형 리튬 이온 폴리머 전지와 전해액을 함유하고 있는 겔형 고분자 전해질을 사용하는 리튬 이온 폴리머 전지로 나눌 수 있다.The lithium secondary battery may be classified into a lithium ion battery using a liquid electrolyte and a lithium ion polymer battery using a polymer solid electrolyte according to the type of electrolyte. Lithium ion polymer batteries can be classified into fully solid lithium ion polymer batteries containing no electrolyte solution and lithium ion polymer batteries using gel polymer electrolyte containing electrolyte solution, depending on the type of polymer solid electrolyte.
액체 전해질을 사용하는 리튬 이온전지의 경우 대개 원통이나 각형의 금속 캔을 용기로 하여 용접 밀봉시킨 형태로 사용된다. 이런 금속 캔을 용기로 사용하는 캔형 이차전지는 형태가 고정되므로 이를 전원으로 사용하는 전기 제품의 디자인을 제약하는 단점이 있고, 부피를 줄이는 데 어려움이 있다. 따라서, 전극 조립체와 전해질을 필름으로 만든 파우치 포장재에 넣고 밀봉하여 사용하는 파우치형 이차전지가 개발되어 사용되고 있다.In the case of a lithium ion battery using a liquid electrolyte, a cylindrical or rectangular metal can is used as a container by welding sealing. Since the can-type secondary battery using such a metal can as a container has a fixed shape, there is a disadvantage in restricting the design of an electric product using the same as a power source, and it is difficult to reduce the volume. Therefore, a pouch type secondary battery using an electrode assembly and an electrolyte in a pouch packaging material made of a film and sealing it has been developed and used.
그런데, 리튬 이차전지는 과열이 될 경우 폭발 위험성이 있어서 안전성을 확보하는 것이 중요한 과제 중의 하나이다. 리튬 이차전지의 과열은 여러 가지 원인에서 발생되는데, 그 중 하나가 리튬 이차전지를 통해 한계 이상의 과전류가 흐르는 경우를 들 수 있다. 과전류가 흐르면 리튬 이차전지가 주울열에 의해 발열을 하므로 전지의 내부 온도가 급속하게 상승한다. 또한 온도의 급속한 상승은 전해액의 분해 반응을 야기하여 열폭주 현상(thermal running)을 일으킴으로써 결국에는 전지의 폭발까지 이어지게 된다. 과전류는 뾰족한 금속 물체가 리튬 이차전지를 관통하거나 양극과 음극 사이에 개재된 분리막의 수축에 의해 양극과 음극 사이의 절연이 파괴되거나 외부에 연결된 충전 회로나 부하의 이상으로 인해 돌입전류(rush current)가 전지에 인가되는 경우 등에 발생된다.However, the lithium secondary battery is one of the important problems to ensure safety because there is a risk of explosion when overheating. Overheating of the lithium secondary battery is caused by a variety of causes, one of which is the case in which overcurrent flows beyond the limit through the lithium secondary battery. When the overcurrent flows, the lithium secondary battery generates heat by Joule heat, so the internal temperature of the battery increases rapidly. The rapid rise in temperature also causes decomposition reactions of the electrolyte, causing thermal running, which eventually leads to battery explosion. The overcurrent is a rush current due to a breakdown of the insulation between the positive electrode and the negative electrode due to a sharp metal object penetrating the lithium secondary battery, the contraction of the separator interposed between the positive electrode and the negative electrode, or an abnormality in the charging circuit or load connected to the outside. Occurs when is applied to a battery.
따라서 리튬 이차전지는 과전류의 발생과 같은 이상 상황으로부터 전지를 보호하기 위해 보호회로와 결합되어 사용되며, 상기 보호회로에는 과전류가 발생되었을 때 충전 또는 방전전류가 흐르는 선로를 비가역적으로 단선시키는 퓨즈 소자가 포함되는 것이 일반적이다. Therefore, a lithium secondary battery is used in combination with a protection circuit to protect the battery from an abnormal situation such as the occurrence of an overcurrent. The protection circuit includes a fuse device irreversibly disconnecting a line through which charge or discharge current flows when an overcurrent occurs. It is common to include.
도 1은 리튬 이차전지를 포함하는 배터리 모듈과 결합되는 보호회로의 구성 중 퓨즈 소자의 배치 구조와 동작 메커니즘을 설명하기 위한 회로도이다.1 is a circuit diagram illustrating an arrangement structure and an operation mechanism of a fuse device among components of a protection circuit coupled to a battery module including a lithium secondary battery.
도면에 도시된 바와 같이, 보호회로는 과전류 발생 시 배터리 모듈을 보호하기 위해 퓨즈 소자(10), 과전류 센싱을 위한 센스 저항(20), 과전류 발생을 모니터하여 과전류 발생 시 퓨즈 소자(10)를 동작시키는 마이크로 컨트롤러(30) 및 상기 퓨즈 소자(10)에 동작 전류의 유입을 스위칭하는 스위치(40)를 포함한다.As shown in the figure, the protection circuit operates the fuse device 10 when the overcurrent occurs by monitoring the fuse device 10, the sense resistor 20 for overcurrent sensing, and the overcurrent to protect the battery module when the overcurrent occurs. The microcontroller 30 and the switch 40 for switching the flow of the operating current to the fuse element 10.
퓨즈 소자(10)는 배터리 모듈의 최 외측 단자에 연결된 주 선로에 설치된다. 주 선로는 충전 전류 또는 방전 전류가 흐르는 배선을 말한다. 도면에는, 퓨즈 소자(10)가 고전위 선로(Pack+)에 설치된 것으로 도시되어 있다. The fuse element 10 is installed on a main line connected to the outermost terminal of the battery module. The main line is the wiring through which the charging or discharging current flows. In the figure, the fuse element 10 is shown installed in a high potential line Pack +.
퓨즈 소자(10)는 3단자 소자 부품으로 2개의 단자는 충전 또는 방전 전류가 흐르는 주 선로에, 1개의 단자는 스위치(40)와 접속된다. 그리고 내부에는 주 선로와 직렬 연결되며 특정 온도에서 융단이 이루어지는 퓨즈(11)와, 상기 퓨즈(11)에 열을 인가하는 저항(12)이 포함되어 있다.The fuse element 10 is a three-terminal element component, and two terminals are connected to a main line through which charging or discharging current flows, and one terminal is connected to the switch 40. The inside includes a fuse 11 connected in series with a main line and having a fusion at a specific temperature, and a resistor 12 for applying heat to the fuse 11.
상기 마이크로 컨트롤러(30)는 센스 저항(20) 양단의 전압을 주기적으로 검출하여 과전류 발생 여부를 모니터하며, 과전류가 발생된 것으로 판단되면 스위치(40)를 턴 온 시킨다. 그러면 주 선로에 흐르는 전류가 퓨즈 소자(10) 측으로 바이패스되어 저항(12)에 인가된다. 이에 따라, 저항(12)에서 발생된 주울열이 퓨즈(11)에 전도되어 퓨즈(11)의 온도를 상승시키며, 퓨즈(11)의 온도가 융단 온도까지 오르게 되면 퓨즈(11)가 융단 됨으로써 주 선로가 비가역적으로 단선된다. 주 선로가 단선되면 과전류가 더 이상 흐르지 않게 되므로 과전류로부터 비롯되는 문제를 해소할 수 있다.The microcontroller 30 periodically detects a voltage across the sense resistor 20 to monitor whether overcurrent occurs, and turns on the switch 40 when it is determined that overcurrent has occurred. Then, the current flowing in the main line is bypassed to the fuse element 10 and applied to the resistor 12. Accordingly, the joule heat generated from the resistor 12 is conducted to the fuse 11 to raise the temperature of the fuse 11, and when the temperature of the fuse 11 rises to the melting temperature, the fuse 11 is fused to form a main heat. The track is irreversibly disconnected. If the main line is disconnected, the overcurrent no longer flows, thus eliminating the problem caused by the overcurrent.
그런데, 위와 같은 종래 기술은 여러 가지 문제점을 안고 있다. 즉, 마이크로 컨트롤러(30)에서 고장이 생기면 과전류가 발생된 상황에서도 스위치(40)가 턴 온 되지 않는다. 이런 경우 퓨즈 소자(10)의 저항(12)으로 전류가 유입되지 않으므로 퓨즈 소자(10)가 동작을 하지 않는 문제가 있다. 또한 보호회로 내에 퓨즈 소자(10)의 배치를 위한 공간이 별도로 필요하고 퓨즈 소자(10)의 동작 제어를 위한 프로그램 알고리즘이 마이크로 컨트롤러(30)에 반드시 적재되어야 한다. 따라서 보호회로의 공간 효율성이 저하되고 마이크로 컨트롤러(30)의 부하를 증가시키는 단점이 있다.However, the above-described prior art has various problems. That is, when a failure occurs in the microcontroller 30, the switch 40 is not turned on even in a situation in which an overcurrent occurs. In this case, since the current does not flow into the resistor 12 of the fuse element 10, there is a problem that the fuse element 10 does not operate. In addition, a space for disposing the fuse element 10 in the protection circuit is required separately, and a program algorithm for controlling the operation of the fuse element 10 must be loaded in the microcontroller 30. Therefore, there is a disadvantage in that the space efficiency of the protection circuit is lowered and the load of the microcontroller 30 is increased.
본 발명은 상기와 같은 종래 기술을 고려하여 창안된 것으로서, 셀과 외부 단자 사이를 연결하는 버스 바를 이중 구조로 구성하여, 배터리 모듈의 사용 중 이상 현상 발생으로 온도가 상승할 경우 버스 바가 용이하게 파단 되도록 함으로써 사용상의 안전성을 확보할 수 있는 배터리 모듈 및 이에 적용되는 버스 바를 제공하는 데 있다.The present invention was conceived in consideration of the prior art as described above, by configuring a bus bar connecting between the cell and the external terminal in a double structure, when the temperature rises due to abnormal phenomenon during use of the battery module is easily broken bus bar By providing a battery module and a bus bar that can be applied to ensure the safety of the use.
상기 기술적 과제를 달성하기 위한 본 발명에 따른 배터리 모듈은, 적어도 하나의 단위 셀; 상기 단위 셀을 수용하는 케이스; 상기 단위 셀과 전기적으로 연결되는 버스 바를 포함하며, 상기 버스 바는 제1 금속 플레이트; 상기 제1 금속 플레이트와 이격되도록 위치하는 제2 금속 플레이트; 및 상기 제1 금속 플레이트 및 제2 금속 플레이트 사이를 연결하며 상기 금속 플레이트보다 낮은 용융점을 갖는 금속 브릿지를 포함할 수 있다.Battery module according to the present invention for achieving the above technical problem, at least one unit cell; A case accommodating the unit cell; A bus bar electrically connected to the unit cell, wherein the bus bar comprises: a first metal plate; A second metal plate positioned to be spaced apart from the first metal plate; And a metal bridge connecting between the first metal plate and the second metal plate and having a melting point lower than that of the metal plate.
바람직하게, 상기 금속 브릿지는 주석(Sn)과 구리(Cu)를 주성분으로 포함할 수 있다.Preferably, the metal bridge may include tin (Sn) and copper (Cu) as main components.
상기 주석의 함량은 80 내지 98wt% 이며, 상기 구리의 함량은 2 내지 20wt% 범위인 것이 바람직하다.The content of tin is 80 to 98wt%, the content of copper is preferably in the range of 2 to 20wt%.
선택적으로, 상기 금속 브릿지는 니켈(Ni), 아연(Zn) 및 은(Ag) 중에서 선택된 적어도 하나 이상의 추가 금속을 더 포함할 수 있으며, 이 경우 상기 추가 금속의 함량은 0.01 내지 10wt% 인 것이 바람직하다.Optionally, the metal bridge may further include at least one additional metal selected from nickel (Ni), zinc (Zn), and silver (Ag), in which case the content of the additional metal is preferably 0.01 to 10 wt%. Do.
상기 금속 브릿지는 150 내지 300℃의 용융점을 갖도록 형성되는 것이 바람직하다.The metal bridge is preferably formed to have a melting point of 150 to 300 ℃.
바람직하게, 상기 제1 금속 플레이트와 상기 제2 금속 플레이트는 일정 간극을 두고 동일 평면 상에 위치할 수 있다.Preferably, the first metal plate and the second metal plate may be located on the same plane with a predetermined gap.
본 발명의 일 측면에 따르면, 상기 금속 브릿지는 상기 제1 금속 플레이트 및 제2 금속 플레이트의 어느 한쪽 면 또는 양쪽 면 상에서 상기 제1 금속 플레이트 및 제2 금속 플레이트와 접합될 수 있다.According to an aspect of the present invention, the metal bridge may be joined to the first metal plate and the second metal plate on either or both sides of the first metal plate and the second metal plate.
본 발명의 다른 측면에 따르면, 상기 제1 금속 플레이트 및 제2 금속 플레이트는 서로 대향하는 각각의 일측 단부의 상면 또는 하면 중 적어도 하나의 면에 형성된 수용 홈을 구비하며, 상기 금속 브릿지는 상기 홈과 대응되는 크기 및 형상을 갖고, 상기 홈의 상호 교합에 의해 형성되는 공간에 수용되어 상기 제1 금속 플레이트 및 제2 금속 플레이트와 접합될 수 있다.According to another aspect of the invention, the first metal plate and the second metal plate has a receiving groove formed on at least one of the upper surface or the lower surface of each one end facing each other, the metal bridge and the groove It has a corresponding size and shape, can be accommodated in the space formed by the interlocking of the groove and bonded to the first metal plate and the second metal plate.
본 발명의 또 다른 측면에 따르면, 상기 제1 금속 플레이트 및 제2 금속 플레이트는 서로 대향하는 각각의 일측 단부에 형성된 제1 절곡부 및 제2 절곡부를 구비하며, 상기 금속 브릿지는 상기 제1 절곡부 및 제2 절곡부의 상호 교합에 의해 형성되는 공간에 수용되어 상기 제1 금속 플레이트 및 제2 금속 플레이트와 접합될 수 있다.According to another aspect of the invention, the first metal plate and the second metal plate has a first bent portion and a second bent portion formed on each side end facing each other, the metal bridge is the first bent portion And it is accommodated in the space formed by the interlocking of the second bent portion can be bonded to the first metal plate and the second metal plate.
본 발명의 또 다른 측면에 따르면, 상기 제1 금속 플레이트 및 제2 금속 플레이트는 서로 대향하는 표면으로부터 일정 깊이로 형성된 수용 홈을 구비하며, 상기 금속 브릿지는 일측 및 타측 면이 각각 상기 수용 홈에 삽입되어 금속 플레이트와 접합될 수 있다.According to another aspect of the invention, the first metal plate and the second metal plate has a receiving groove formed in a predetermined depth from the surface facing each other, the metal bridge, one side and the other side is inserted into the receiving groove, respectively Can be joined with the metal plate.
본 발명의 또 다른 측면에 따르면, 상기 금속 브릿지는 상기 제1 금속 플레이트 및 제2 금속 플레이트가 서로 대향하고 있는 표면 사이에 직접 개재되어 상기 제1 금속 플레이트 및 제2 금속 플레이트와 접합될 수 있다.According to another aspect of the present invention, the metal bridge may be directly interposed between the surface where the first metal plate and the second metal plate are opposed to each other and bonded to the first metal plate and the second metal plate.
상기 대향 표면은 상기 금속 솔더링 브릿지 방향으로 테이퍼(Taper)진 경사면 형태를 가질 수 있다.The opposite surface may have an inclined surface tapered in the metal soldering bridge direction.
본 발명의 또 다른 측면에 따르면, 상기 제1 금속 플레이트 및 제2 금속 플레이트 각각의 일측은 적어도 일부가 겹쳐져 서로 마주보도록 위치하며, 상기 금속 브릿지는 상기 마주보는 영역 내에 개재되어 상기 제1 금속 플레이트 및 제2 금속 플레이트와 접합될 수 있다.According to another aspect of the present invention, one side of each of the first metal plate and the second metal plate is positioned so that at least a portion overlaps to face each other, the metal bridge is interposed in the facing area and the first metal plate and It can be joined with the second metal plate.
본 발명의 또 다른 측면에 따르면, 상기 제1 금속 플레이트 및 제2 금속 플레이트 각각의 일측은 적어도 일부가 겹쳐져 서로 마주보도록 위치하며, 상기 금속 브릿지는 상기 마주보는 영역의 둘레 중 서로 마주보는 일측 및 타측에 형성될 수 있다.According to another aspect of the present invention, one side of each of the first metal plate and the second metal plate is at least partially overlapping each other and positioned to face each other, the metal bridge is one side and the other side facing each other of the circumference of the facing area Can be formed on.
바람직하게, 상기 제1 금속 플레이트 및 제2 금속 플레이트 각각의 일측은 적어도 일부가 겹쳐져 서로 마주보도록 위치하며, 상기 금속 브릿지는 상기 마주보는 영역의 둘레 전체에 형성될 수 있다.Preferably, one side of each of the first metal plate and the second metal plate is positioned so that at least a portion thereof overlaps to face each other, and the metal bridge may be formed in the entire circumference of the facing area.
바람직하게, 상기 제1 금속 플레이트와 상기 금속 브릿지 사이 및 상기 제2 금속 플레이트와 상기 금속 브릿지 사이를 고정시키는 리벳을 더 포함할 수 있다.The rivet may further include a rivet for fixing between the first metal plate and the metal bridge and between the second metal plate and the metal bridge.
바람직하게, 상기 제1 금속 플레이트 및 제2 금속 플레이트는 서로 대향하는 일측이 끝단을 향해 좁아지도록 테이퍼진 형상을 가질 수 있다.Preferably, the first metal plate and the second metal plate may have a tapered shape so that one side facing each other becomes narrow toward the end.
한편, 상기 배터리 모듈은 상기 케이스의 일측에 설치되는 외부 단자를 더 포함하며, 상기 버스 바는 상기 단위 셀과 상기 외부 단자 사이를 연결하도록 설치될 수 있다.The battery module may further include an external terminal installed at one side of the case, and the bus bar may be installed to connect between the unit cell and the external terminal.
상기 기술적 과제를 달성하기 위한 본 발명에 따른 배터리 모듈은, 양극 리드 및 음극 리드를 포함하는 적어도 하나의 단위 셀; 상기 단위 셀을 수용하는 케이스; 상기 양극 리드와 연결되는 제1 버스 바; 및 상기 음극 리드와 연결되는 제2 버스 바를 포함하며, 상기 제2 버스 바는, 제1 금속 플레이트; 상기 제1 금속 플레이트와 이격되도록 위치하는 제2 금속 플레이트; 및 상기 제1 금속 플레이트 및 제2 금속 플레이트 사이를 연결하며 상기 금속 플레이트보다 낮은 용융점을 갖는 금속 브릿지를 포함할 수 있다.According to an aspect of the present invention, there is provided a battery module including: at least one unit cell including a positive lead and a negative lead; A case accommodating the unit cell; A first bus bar connected to the anode lead; And a second bus bar connected to the cathode lead, wherein the second bus bar comprises: a first metal plate; A second metal plate positioned to be spaced apart from the first metal plate; And a metal bridge connecting between the first metal plate and the second metal plate and having a melting point lower than that of the metal plate.
한편, 상기 기술적 과제를 달성하기 위한 본 발명에 따른 버스 바는 배터리 모듈에 적용되는 버스 바로서, 제1 금속 플레이트; 상기 제1 금속 플레이트와 이격되도록 위치하는 제2 금속 플레이트; 및 상기 제1 금속 플레이트 및 제2 금속 플레이트 사이를 연결하며, 상기 금속 플레이트보다 낮은 용융점을 갖는 금속 브릿지를 포함할 수 있다.On the other hand, the bus bar according to the present invention for achieving the technical problem is a bus bar applied to the battery module, the first metal plate; A second metal plate positioned to be spaced apart from the first metal plate; And a metal bridge connecting between the first metal plate and the second metal plate and having a melting point lower than that of the metal plate.
본 발명에 따르면, 보호회로가 정상 작동하지 않아 배터리 모듈에 과전류가 흐르는 경우 버스 바가 신속히 파단 됨으로써 배터리 모듈 사용상의 안전성을 확보할 수 있는 효과를 가져온다.According to the present invention, when the overload current flows to the battery module because the protection circuit does not operate normally, the bus bar is quickly broken, thereby bringing an effect of securing safety in using the battery module.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 실시예를 예시하는 것이며, 후술되는 발명의 상세한 설명과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니 된다. The following drawings attached to this specification are illustrative of the preferred embodiments of the present invention, and together with the detailed description of the invention to serve to further understand the technical spirit of the present invention, the present invention is a matter described in such drawings It should not be construed as limited to.
도 1은 배터리 모듈과 결합되는 보호회로의 구성 중 퓨즈 소자의 배치 구조와 동작 메커니즘을 설명하기 위한 회로도이다.1 is a circuit diagram illustrating an arrangement structure and an operation mechanism of a fuse device among components of a protection circuit coupled to a battery module.
도 2는 본 발명의 바람직한 실시예에 따른 배터리 모듈의 분해 사시도이다.2 is an exploded perspective view of a battery module according to a preferred embodiment of the present invention.
도 3은 본 발명의 바람직한 실시예에 따른 배터리 모듈을 구성하는 배터리 셀 및 버스 바가 결합된 모습을 나타내는 사시도이다.3 is a perspective view illustrating a state in which a battery cell and a bus bar constituting a battery module according to an exemplary embodiment of the present invention are combined.
도 4a는 본 발명의 바람직한 실시예에 따른 배터리 모듈의 완성 사시도이다.Figure 4a is a complete perspective view of a battery module according to a preferred embodiment of the present invention.
도 4b는 도 4a에 나타난 배터리 모듈의 정면도이다.4B is a front view of the battery module shown in FIG. 4A.
도 5 내지 도 9c는 도 4b 중 A부분에 대한 사시도로서, 본 발명의 실시예에 따른 버스 바의 다양한 형태를 나타내는 부분 사시도이다.5 to 9C are perspective views of part A of FIG. 4B, and are partial perspective views illustrating various forms of a bus bar according to an exemplary embodiment of the present invention.
도 10은 본 발명의 다른 실시예에 따른 버스 바의 형태를 나타내는 부분 사시도이다.10 is a partial perspective view showing the shape of a bus bar according to another embodiment of the present invention.
도 11은 본 발명의 또 다른 실시예에 따른 버스 바의 형태를 보여주는 부분 사시도이다.11 is a partial perspective view showing the shape of a bus bar according to another embodiment of the present invention.
도 12는 본 발명에 따른 배터리 모듈에 대한 단락 실험 결과를 나타내는 그래프이다.12 is a graph showing the results of a short circuit test for the battery module according to the present invention.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. 따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일부 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. Prior to this, terms or words used in the present specification and claims should not be construed as being limited to the common or dictionary meanings, and the inventors should properly explain the concept of terms in order to best explain their own invention. Based on the principle that can be defined, it should be interpreted as meaning and concept corresponding to the technical idea of the present invention. Therefore, the embodiments described in the specification and the drawings shown in the drawings are only some of the most preferred embodiments of the present invention and do not represent all of the technical spirit of the present invention, various modifications that can be replaced at the time of the present application It should be understood that there may be equivalents and variations.
먼저, 도 2 내지 도 4b를 참조하여 본 발명에 따른 배터리 모듈의 전체 구성을 설명하기로 한다. First, the overall configuration of the battery module according to the present invention will be described with reference to FIGS. 2 to 4B.
도 2 내지 도 4b를 참조하면, 본 발명에 따른 배터리 모듈(1)은 배터리 셀(100), 버스 바(200), 케이스(300), 외부 단자(311) 및 전압 센서(321)를 포함한다.2 to 4B, the battery module 1 according to the present invention includes a battery cell 100, a bus bar 200, a case 300, an external terminal 311, and a voltage sensor 321. .
상기 배터리 셀(100)은 적어도 하나의 단위 셀(110A,110B) 및 단위 셀(110A,110B)을 감싸는 셀 커버(120)로 구성되는 단위 모듈(100A,100B,100C,100D)을 적층함으로써 형성된다. The battery cell 100 is formed by stacking unit modules 100A, 100B, 100C, and 100D including at least one unit cell 110A and 110B and a cell cover 120 surrounding the unit cells 110A and 110B. do.
상기 단위 셀(110A,110B)은 외장재에 수용된 전극 조립체(미도시) 및 상기 전극 조립체의 제1, 제2 전극판의 무지부와 각각 연결되어 외장재의 일측 및 타측 방향으로 각각 인출되는 제1 전극 리드(111) 및 제2 전극 리드(112)를 포함한다. 본 발명에서는 상기 제1, 제2 전극판이 각각 양극판 및 음극판인 경우를 예로 들어 설명하기로 하며, 이에 따라 제1, 제2 전극 리드(111,112)는 각각 양극 리드 및 음극 리드(111,112)인 경우로 설명하기로 한다.The unit cells 110A and 110B are connected to the electrode assembly (not shown) accommodated in the packaging material and the uncoated parts of the first and second electrode plates of the electrode assembly, respectively, and are drawn out in one direction and the other direction of the packaging material, respectively. And a lead 111 and a second electrode lead 112. In the present invention, a case in which the first and second electrode plates are a positive electrode plate and a negative electrode plate will be described as an example. Accordingly, the first and second electrode leads 111 and 112 are respectively the positive lead and the negative electrode leads 111 and 112. Let's explain.
상기 양극판은 알루미늄(Al) 재질이고, 음극판은 구리(Cu) 재질로 이루어짐이 일반적이다. 따라서, 상기 전극판과 전극 리드(111,112) 사이의 용접성 및 전기 저항 최소화의 측면에서 상기 양극 리드(111)는 양극판과 동일한 알루미늄(Al) 재질로 이루어지며, 음극 리드(112)는 음극판과 동일한 구리(Cu) 재질 또는 니켈(Ni)이 코팅된 구리(Cu) 재질로 이루어지는 것이 바람직하다.The cathode plate is made of aluminum (Al), and the anode plate is generally made of copper (Cu). Therefore, in view of minimizing weldability and electrical resistance between the electrode plates and the electrode leads 111 and 112, the anode lead 111 is made of the same aluminum (Al) material as the anode plate, and the cathode lead 112 is the same copper as the cathode plate. It is preferable that the material is made of (Cu) material or nickel (Ni) coated copper (Cu) material.
상기 단위 셀(110A,110B) 및 단위 모듈(100A~100D)이 복수개인 경우에 있어서, 단위 셀(110A,100B) 상호간의 연결 및 단위 모듈(100A~100D) 상호간의 연결은 배터리의 용도에 따라 직렬 또는 병렬로 연결이 가능하나, 본 발명에서는 직렬 연결인 경우를 예로 들어 설명하기로 한다. 즉, 본 발명에서 상기 단위 셀(110A,100B) 상호간의 연결은 하나의 단위 셀(110A)의 양극 리드(111)와 인접한 단위 셀(110B)의 음극 리드(112)가 서로 결합됨으로써 이루어진다. 이 경우, 후면부(R 방향) 최 외측에 위치하는 단위 셀(110A)의 양극 리드(111)와 전면부(F 방향) 최 외측에 위치하는 단위 셀(110B)의 음극 리드(112)는 각각 후술할 버스 바(200)와 결합된다.In the case where the unit cells 110A and 110B and the unit modules 100A to 100D are plural, the connection between the unit cells 110A and 100B and the connection between the unit modules 100A to 100D may be performed according to the purpose of the battery. Although it may be connected in series or in parallel, in the present invention will be described taking the case of a serial connection as an example. That is, in the present invention, the unit cells 110A and 100B are connected to each other by coupling the anode lead 111 of one unit cell 110A and the cathode lead 112 of the adjacent unit cell 110B to each other. In this case, the anode lead 111 of the unit cell 110A located at the outermost side of the rear part (R direction) and the cathode lead 112 of the unit cell 110B located at the outermost part of the front part (F direction) will be described later. It is coupled with the bus bar 200 to be.
한편, 상기 단위 셀(110A,110B) 및 단위 모듈(100A~100D)의 개수에 있어서도 본 발명에서는 단위 셀(110A,110B)이 두 개인 경우만을 도시하고 있으며, 단위 모듈(100A~100D)이 네 개 적층된 경우만을 도시하고 있으나, 이는 예시적인 것에 불과하며 이로써 단위 셀(110A,110B) 및 단위 모듈(100A~100D)의 개수를 한정하는 것은 아님을 밝혀둔다. On the other hand, the number of the unit cells (110A, 110B) and the unit modules (100A ~ 100D) in the present invention only shows a case where there are two unit cells (110A, 110B), the unit modules (100A ~ 100D) is four Although only the stacked case is shown, this is merely an example and thus it is not limited to the number of the unit cells (110A, 110B) and the unit module (100A ~ 100D).
상기 버스 바(200)는 배터리 셀(100)의 후면부(R) 최외곽에 위치한 단위 셀(110A)의 양극 리드(111) 및 전면부(F) 최외곽에 위치한 단위 셀(110B)의 음극 리드(112)에 결합되는 것으로서, 제1 금속 플레이트(210), 제2 금속 플레이트(220) 및 금속 플레이트(210,220) 사이를 연결하는 금속 브릿지(230)를 포함한다. The bus bar 200 is the positive lead 111 of the unit cell 110A positioned at the outermost rear portion R of the battery cell 100 and the negative lead of the unit cell 110B positioned at the outermost portion of the front portion F. As coupled to 112, it includes a metal bridge 230 connecting the first metal plate 210, the second metal plate 220, and the metal plates 210, 220.
상기 양극 리드(111) 및 음극 리드(112) 각각에 부착되는 버스 바(200)는 금속 플레이트(210,220)의 재질이 서로 다르게 형성될 수 있다. 즉, 상기 양극 리드(111)에 부착되는 버스 바(200)의 금속 플레이트(210,220)는 양극 리드(111)와 동일한 알루미늄 재질이며, 음극 리드(112)에 부착되는 버스 바(200)의 금속 플레이트(210,220)는 음극 리드(112)와 동일한 구리 또는 니켈이 코팅된 구리 재질임이 바람직하다. 그러나, 재질을 제외한 구성은 동일하므로 본 발명에서는 양극 리드(111)에 부착된 버스 바(200)를 중심으로 설명하기로 한다.The bus bars 200 attached to the positive lead 111 and the negative lead 112 may be formed of different materials of the metal plates 210 and 220. That is, the metal plates 210 and 220 of the bus bar 200 attached to the positive electrode lead 111 are made of the same aluminum material as the positive electrode lead 111 and the metal plate of the bus bar 200 attached to the negative electrode lead 112. The 210 and 220 are preferably made of the same copper or nickel coated copper material as the cathode lead 112. However, since the configuration except for the material is the same, the present invention will be described based on the bus bar 200 attached to the anode lead 111.
상기 제1 금속 플레이트(210) 및 제2 금속 플레이트(220)는 얇은 판상의 금속으로 이루어진다. 상기 제1 금속 플레이트(210)는 그 일측이 대략 'ㄱ'자 형태로 절곡되어 형성된 리드 결합부(211)를 구비한다. 상기 리드 결합부(211)는 전극 리드(111,112) 각각의 일측 단부와 용접에 의해 결합된다. 상기 제2 금속 플레이트(220)는 제1 금속 플레이트(220)와 일정 거리만큼 이격되어 위치하며, 제1 금속 플레이트(210)가 위치하는 쪽의 반대편 단부에 외부 단자(311)가 삽입될 수 있도록 형성된 단자 홈(220a)을 구비한다. The first metal plate 210 and the second metal plate 220 are made of a thin plate metal. The first metal plate 210 has a lead coupling portion 211 formed at one side thereof bent in a substantially '-' shape. The lead coupling portion 211 is coupled to one end of each of the electrode leads 111 and 112 by welding. The second metal plate 220 is positioned to be spaced apart from the first metal plate 220 by a predetermined distance, and the external terminal 311 may be inserted into an end opposite to the side where the first metal plate 210 is located. The terminal groove 220a is formed.
상기 금속 브릿지(230)는 상기 금속 플레이트(210,220) 사이를 연결하는 것으로서, 구체적인 연결 구조에 대한 다양한 실시예에 대해서는 도 5 내지 도 11을 참조하여 상세히 후술하기로 하며, 여기서는 그 역할 및 성질에 대해서만 설명하기로 한다.The metal bridge 230 connects the metal plates 210 and 220, and various embodiments of the concrete connection structure will be described later in detail with reference to FIGS. 5 to 11, and only roles and properties thereof will be described herein. Let's explain.
상기 금속 브릿지(230)는 배터리 모듈(1)이 과열된 경우에 용융되어 제1 금속 플레이트(210)와 제2 금속 플레이트(220) 사이의 전기적 연결을 해제하는 역할을 한다. 바람직하게, 상기 금속 브릿지(230)는 주석(Sn)과 구리(Cu)를 주성분으로 포함하고, 환경과 인체에 무해한 납(Pb)을 포함하지 않는 무연 합금 물질로 이루어지며, 대략 150 내지 300℃의 용융점을 갖는다. 이러한 용융점 범위는 리드(111,112) 및/또는 금속 플레이트(210,220)를 구성하는 알루미늄, 구리 또는 니켈이 코팅된 구리 중 선택된 어느 하나의 금속의 용융점과 비교하여 더 낮은 것에 해당하므로 과전류의 신속한 차단이 가능하다.The metal bridge 230 melts when the battery module 1 is overheated, thereby releasing an electrical connection between the first metal plate 210 and the second metal plate 220. Preferably, the metal bridge 230 includes tin (Sn) and copper (Cu) as a main component, and is made of a lead-free alloy material containing no lead (Pb), which is harmless to the environment and human body, and is approximately 150 to 300 ° C. Has a melting point of. This melting point range is lower than the melting point of any one metal selected from aluminum, copper, or nickel-coated copper constituting the leads 111 and 112 and / or the metal plates 210 and 220, so that overcurrent can be quickly blocked. Do.
상기 금속 브릿지(230)의 용융점 범위는 버스 바(200)가 견뎌야 하는 최대 전압 및 최대 전류 조건, 버스 바(200)를 사용하여 차단하고자 하는 과전류의 레벨, 버스 바(200)에 요구되는 전기적 물성(저항) 및/또는 기계적 물성(인장 강도)을 고려하여 정한 것이다. 상기 금속 브릿지(230)의 용융점이 150℃ 보다 낮으면 배터리 모듈(1)의 정상적인 작동에 의한 전류에도 버스 바(200)가 파단될 수 있다. 또한, 상기 금속 브릿지(230)의 용융점이 300℃ 보다 높으면 과전류의 차단이 효과적으로 이루어지지 않는다는 문제점이 있다.Melting point range of the metal bridge 230 is the maximum voltage and current conditions that the bus bar 200 must withstand, the level of overcurrent to be blocked using the bus bar 200, the electrical properties required for the bus bar 200 It is determined in consideration of (resistance) and / or mechanical properties (tensile strength). When the melting point of the metal bridge 230 is lower than 150 ° C., the bus bar 200 may be broken even in a current caused by the normal operation of the battery module 1. In addition, when the melting point of the metal bridge 230 is higher than 300 ℃ there is a problem that the blocking of the overcurrent is not effective.
상기 금속 브릿지(230)에 포함된 주석과 구리의 함량은 금속 브릿지(230)의 용융점, 금속 브릿지(230)나 버스 바(200)에 부여하고자 하는 전기적 물성 및/또는 물리적 물성에 따라서 적절하게 조절이 가능하다. The content of tin and copper included in the metal bridge 230 is appropriately adjusted according to the melting point of the metal bridge 230, the electrical and / or physical properties to be applied to the metal bridge 230 or the bus bar 200. This is possible.
상기 금속 브릿지(230)의 구성 성분 중 주석은 금속 브릿지(230)의 용융점과 인장강도 특성에 영향을 미친다. 상기 금속 브릿지(230)가 150 내지 300℃의 용융점을 가지면서도 양호한 인장강도 특성을 갖도록 주석의 함량은 80wt% 이상, 바람직하게는 85 내지 98wt%의 범위에서 조절한다. 여기서, 상기 wt%는 금속 브릿지(230)를 구성하는 물질의 전체 중량을 기준으로 한 단위로서 이하 동일하다. Tin among the components of the metal bridge 230 affects the melting point and the tensile strength characteristics of the metal bridge 230. The content of tin is controlled in the range of 80 wt% or more, preferably 85 to 98 wt% so that the metal bridge 230 has a melting point of 150 to 300 ° C. and has good tensile strength. Here, the wt% is the same as a unit based on the total weight of the material constituting the metal bridge 230.
상기 금속 브릿지(230)의 구성 성분 중 구리는 버스 바(200)의 전기 전도도, 용융점 및 인장 강도 등에 영향을 미치며, 이러한 구리의 기능을 감안하여 구리의 함량은 2 내지 20wt%의 범위에서, 바람직하게는 4 내지 15wt% 범위에서 조절한다. Among the components of the metal bridge 230, copper affects the electrical conductivity, melting point, and tensile strength of the bus bar 200, and in view of the function of copper, the copper content is preferably in the range of 2 to 20 wt%. Preferably in the range of 4-15 wt%.
상기와 같이 주석과 구리의 함량을 조절함으로써 금속 브릿지(230)의 양호한 인장강도 특성을 얻을 수 있을 뿐만 아니라, 금속 브릿지(230)에 의한 저항의 증가를 수% 이하로 낮게 억제할 수 있고, 금속 브릿지(230)의 용융점을 150 내지 300℃ 범위에서 조절하는 것이 가능하게 된다.By adjusting the content of tin and copper as described above, not only can the good tensile strength characteristics of the metal bridge 230 be obtained, but also the increase in resistance by the metal bridge 230 can be suppressed to a few percent or less, and the metal It is possible to adjust the melting point of the bridge 230 in the range of 150 to 300 ° C.
선택적으로, 상기 금속 브릿지(230)는 전기적 물성 및/또는 기계적 물성을 향상시키기 위해 니켈(Ni), 아연(Zn) 및 은(Ag) 중 선택된 어느 하나 이상의 금속을 더 포함할 수 있다. 상기 추가 금속의 함량은 금속 브릿지(230)에 부여하고자 하는 전기적 물성 및/또는 기계적 물성에 따라서 조절 가능하며, 0.01 내지 10wt% 범위에서 조절한다.Optionally, the metal bridge 230 may further include any one or more metals selected from nickel (Ni), zinc (Zn), and silver (Ag) to improve electrical and / or mechanical properties. The amount of the additional metal may be adjusted according to the electrical and / or mechanical properties to be applied to the metal bridge 230, and may be adjusted in the range of 0.01 to 10 wt%.
한편, 본 발명의 도면에서는 상기 버스 바(200)의 구조가 양극 리드(111) 및 음극 리드(112) 모두에 적용된 경우만을 도시하고 있으나, 어느 하나의 리드에만 적용되는 경우도 가능함은 물론이다. 또한, 상기 버스 바(200)의 구조가 어느 하나의 리드에만 적용되는 경우, 일반적으로 발열량이 더 큰 음극 리드(112)에만 적용되고, 양극 리드(111)에는 일반적인 버스 바의 구조가 적용되는 것이 바람직하다.Meanwhile, in the drawings of the present invention, only the case where the structure of the bus bar 200 is applied to both the anode lead 111 and the cathode lead 112 is illustrated, but it is also possible to apply to any one of the leads. In addition, when the structure of the bus bar 200 is applied to only one of the leads, it is generally applied only to the cathode lead 112 having a larger heat generation amount, and that the structure of the general bus bar is applied to the anode lead 111. desirable.
상기 케이스(300)는 배터리 셀(100)을 수용하며, 하부 케이스(310) 및 상부 케이스(320)을 포함한다. The case 300 accommodates the battery cell 100 and includes a lower case 310 and an upper case 320.
상기 하부 케이스(310)는 상향 개방 구조로 형성되어 배터리 셀(100)의 양 측면의 일부 및 하면을 감싸도록 형성되며, 한 쌍의 슬릿(310a) 을 구비한다. 상기 슬릿(310a)은 하부 케이스(310)의 일측 면 중 버스 바(200)의 리드 결합부(211)와 대응되는 위치에 형성되어 배터리 셀(100)이 하부 케이스(310) 내에 삽입될 때 리드 결합부(211)가 수용될 수 있는 공간을 제공한다. 따라서, 배터리 셀(100)과 버스 바(200)는 상호간에 전기적 연결 상태를 유지하면서 하부 케이스(310)의 내측과 외측에 각각 위치하게 된다. The lower case 310 is formed in an upwardly open structure to surround portions of both sides and a lower surface of the battery cell 100, and includes a pair of slits 310a. The slit 310a is formed at a position corresponding to the lead coupling portion 211 of the bus bar 200 on one side of the lower case 310 so that the lead when the battery cell 100 is inserted into the lower case 310. It provides a space in which the coupling portion 211 can be accommodated. Therefore, the battery cell 100 and the bus bar 200 are positioned inside and outside the lower case 310, respectively, while maintaining an electrical connection therebetween.
한편, 상기 하부 케이스(310)의 일측 면 중 버스 바(200)의 단자 홈(220a)과 대응되는 위치에는 하부 케이스(310)의 외측 방향으로 돌출되도록 형성된 외부 단자(311)가 구비된다. 상기 외부 단자(311)는 버스 바(200)의 단자 홈(220a)과 대응되는 크기 및 형상으로 형성되어 배터리 셀(100)이 하부 케이스(310)에 수용될 때 외부 단자(311)가 버스 바(200)에 삽입될 수 있는 공간을 제공하며, 외부 기기(미도시)와 배터리 셀(100)을 전기적으로 연결해주는 역할을 한다. 상기 외부 단자(311)와 버스 바(200) 사이의 접촉 저항을 최소화 한다는 측면에서, 외부 단자(311)와 버스 바(200) 사이는 용접에 의해 결합될 수도 있다.Meanwhile, an external terminal 311 formed to protrude outwardly of the lower case 310 is provided at a position corresponding to the terminal groove 220a of the bus bar 200 among one side of the lower case 310. The external terminal 311 is formed in a size and shape corresponding to the terminal groove 220a of the bus bar 200 so that the external terminal 311 is connected to the bus bar when the battery cell 100 is accommodated in the lower case 310. It provides a space that can be inserted into the 200, and serves to electrically connect the external device (not shown) and the battery cell 100. In terms of minimizing contact resistance between the external terminal 311 and the bus bar 200, the external terminal 311 and the bus bar 200 may be coupled by welding.
상기 상부 케이스(320)는 하향 개방구조로 형성되어 하부 케이스(310)에 삽입된 배터리 셀(100)의 양 측면, 즉 전극 리드(111,112)가 인출되는 면의 일부 및 상면을 감싸도록 형성되며, 볼트 결합에 의해 하부 케이스(310)와 결합될 수 있다. The upper case 320 is formed in a downwardly open structure to surround both sides of the battery cell 100 inserted into the lower case 310, that is, a part of the surface from which the electrode leads 111 and 112 are drawn out, and an upper surface thereof. It may be coupled to the lower case 310 by bolt coupling.
한편, 상기 상부 케이스(320)는 양 측면에 전압 센서(321)가 삽입될 수 있도록 형성된 센서 결합부(320a)를 구비한다. 상기 전압 센서(321)는 전압 센서 결합부(320a) 내에서 배터리 셀(100)과 전기적으로 연결됨으로써 배터리 셀(100)의 전압을 센싱한다.On the other hand, the upper case 320 has a sensor coupling portion (320a) formed to be inserted into the voltage sensor 321 on both sides. The voltage sensor 321 is electrically connected to the battery cell 100 in the voltage sensor coupling unit 320a to sense the voltage of the battery cell 100.
상술한 바와 같이, 본 발명에 따른 배터리 모듈(1)에는 금속 플레이트(210,220) 사이를 금속 브릿지(230)로 연결한 이중 구조의 버스 바(200)가 적용된다. 따라서, 상기 배터리 모듈(1)은 과전류가 발생한 경우 버스 바(200)가 신속히 파단됨으로써 사용상의 안전성을 확보할 수 있다. 특히, 상기 배터리 모듈(1)은 전류 차단 수단을 케이스 외측에 설치되는 부품인 버스 바(200)에 적용함으로써 리드(111,112)와 같이 전극 조립체(미도시)에 인접한 부품에 적용한 경우와 비교할 때 발화 및 폭발의 위험성을 더욱 줄여주는 효과를 갖는다.As described above, the battery module 1 according to the present invention is applied to the bus bar 200 having a dual structure connecting the metal plates 210 and 220 with the metal bridge 230. Therefore, when the overcurrent occurs, the battery module 1 may ensure the safety in use by quickly breaking the bus bar 200. In particular, the battery module 1 is applied to the bus bar 200, which is a component installed outside the case, so that the battery module 1 is ignited as compared to the case where it is applied to a component adjacent to an electrode assembly (not shown) such as the leads 111 and 112. And further reduce the risk of explosion.
다음은, 도 5 내지 도 11을 참조하여 상기 금속 플레이트(210,220)와 금속 브릿지(230) 사이의 결합 형태에 따른 다양한 실시예에 대해서 설명하기로 한다. Next, various embodiments according to the coupling form between the metal plates 210 and 220 and the metal bridge 230 will be described with reference to FIGS. 5 through 11.
먼저, 도 5 내지 도 9c를 참조하여 본 발명의 실시예에 따른 버스 바(200a)의 구조를 설명하기로 한다. First, the structure of the bus bar 200a according to the exemplary embodiment of the present invention will be described with reference to FIGS. 5 to 9C.
도 5 내지 도 10은 본 발명의 일 실시예에 따른 버스 바(200a)의 다양한 형태를 나타내는 것으로서, 상기 버스 바(200a)는 금속 브릿지(230)가 금속 플레이트(210,220)에 용접에 의해 결합됨으로써 형성된다. 즉, 상기 금속 브릿지(230)는 금속 플레이트(210,220) 상호간을 연결해주는 솔더링 브릿지의 역할을 하는 것이다.5 to 10 illustrate various forms of the bus bar 200a according to an embodiment of the present invention, wherein the bus bar 200a has a metal bridge 230 coupled to the metal plates 210 and 220 by welding. Is formed. That is, the metal bridge 230 serves as a soldering bridge connecting the metal plates 210 and 220 to each other.
도 5를 참조하면, 상기 제1 금속 플레이트(210)와 제2 금속 플레이트(220)가 서로 일정 간극을 두고 동일 평면 상에 위치하며, 금속 브릿지(230)는 금속 플레이트(210,220)의 상면에 형성되어 금속 플레이트(210,220)와 접합된다. 도 5에서는 상기 금속 브릿지(230)가 금속 플레이트(210,220)의 상면에 형성된 경우만을 도시하고 있으나, 하면에 형성되는 것도 가능함은 물론이다. 아울러, 도 6에 도시된 바와 같이 상기 금속 브릿지(230)가 금속 플레이트(210,220)의 상면 및 하면 모두에 형성되는 경우도 가능하며, 이 경우 금속 플레이트(210,220) 상호간의 결합력을 강화하는 효과를 가질 수 있다.Referring to FIG. 5, the first metal plate 210 and the second metal plate 220 are positioned on the same plane with a predetermined gap therebetween, and the metal bridge 230 is formed on the upper surfaces of the metal plates 210 and 220. To be bonded to the metal plates 210 and 220. In FIG. 5, only the case where the metal bridge 230 is formed on the upper surfaces of the metal plates 210 and 220 is illustrated. However, the metal bridge 230 may be formed on the lower surface. In addition, as shown in FIG. 6, the metal bridge 230 may be formed on both the upper and lower surfaces of the metal plates 210 and 220, and in this case, the metal bridges 210 and 220 may have an effect of strengthening the mutual bonding force. Can be.
도 7a를 참조하면, 상기 제1 금속 플레이트(210) 및 제2 금속 플레이트(220)는 서로 일정 간극을 두고 동일 평면 상에 위치하며, 서로 대향하는 일측 단부의 상면에 형성된 수용 홈(RG1)을 구비한다. 한편, 상기 금속 브릿지(230)는 상기 수용 홈(RG2)과 대응되는 크기 및 형상을 가지며, 수용 홈(RG1)의 상호 교합에 의해 형성되는 공간에 수용되어 금속 플레이트(210,220)와 접합된다. 도 7a에서는 상기 수용 홈(RG1)이 금속 플레이트(210,220)의 상면에 형성된 경우만을 도시하고 있으나, 하면에 형성되거나 상면 및 하면 모두에 형성되는 경우 역시 가능함은 물론이다. Referring to FIG. 7A, the first metal plate 210 and the second metal plate 220 are disposed on the same plane with a predetermined gap therebetween, and receive the receiving groove RG1 formed on an upper surface of one end portion facing each other. Equipped. On the other hand, the metal bridge 230 has a size and shape corresponding to the receiving groove RG2, is accommodated in the space formed by the interlocking of the receiving groove RG1 is bonded to the metal plates (210, 220). In FIG. 7A, only the case where the accommodating groove RG1 is formed on the upper surfaces of the metal plates 210 and 220 is illustrated. However, the receiving groove RG1 may be formed on the lower surface or on both the upper and lower surfaces.
도 7b를 참조하면, 상기 제1 금속 플레이트(210) 및 제2 금속 플레이트(220)는 서로 일정 간극을 두고 동일 평면 상에 위치하며, 서로 대향하는 각각의 일측 단부에 형성된 제1 절곡부(210') 및 제2 절곡부(220')를 구비한다. 한편, 상기 금속 브릿지(230)는 제1 절곡부(210') 및 제2 절곡부(220')의 상호 교합에 의해 형성되는 공간에 수용되어 금속 플레이트(210,220)와 접합된다. Referring to FIG. 7B, the first metal plate 210 and the second metal plate 220 may be disposed on the same plane with a predetermined gap therebetween, and may be formed with first bent portions 210 formed at one end portions facing each other. ') And the second bent portion 220'. On the other hand, the metal bridge 230 is accommodated in the space formed by the interlocking of the first bent portion 210 'and the second bent portion 220' is bonded to the metal plates (210, 220).
도 7c를 참조하면, 상기 제1 금속 플레이트(210) 및 제2 금속 플레이트(220)는 서로 일정 간극을 두고 동일 평면 상에 위치하며, 서로 대향하는 표면으로부터 일정 깊이로 형성된 수용 홈(RG2)을 구비한다. 한편, 상기 금속 브릿지(230)는 일측 및 타측 면이 수용 홈(RG2)에 삽입되어 금속 플레이트(210,220)에 접합된다.Referring to FIG. 7C, the first metal plate 210 and the second metal plate 220 are disposed on the same plane with a predetermined gap therebetween, and receive a receiving groove RG2 formed at a predetermined depth from surfaces facing each other. Equipped. On the other hand, one side and the other side of the metal bridge 230 is inserted into the receiving groove RG2 and bonded to the metal plates 210 and 220.
도 7a, 도 7b 및 도 7c에 나타난 구조는 도 5 및 도 6에 나타난 구조와 비교할 때, 금속 플레이트(210,220)와 금속 브릿지(230) 사이의 접촉 면적이 넓어짐으로써 금속 플레이트(210,220) 상호간의 결합력을 강화하는 효과를 가져올 뿐만 아니라, 접촉 저항을 감소시키는 효과 역시 가져올 수 있다.7A, 7B, and 7C have a larger bonding area between the metal plates 210 and 220 and the metal bridges 230 than the structures shown in FIGS. 5 and 6, thereby increasing the bonding force between the metal plates 210 and 220. In addition to the effect of strengthening the effect of reducing the contact resistance can also be brought.
도 8a를 참조하면, 상기 제1 금속 플레이트(210) 및 제2 금속 플레이트(220)는 서로 일정 간극을 두고 동일 평면 상에 위치하며, 금속 브릿지(230)는 금속 플레이트(210,220)가 서로 대향하고 있는 표면 사이에 직접 개재되어 금속 플레이트(210,220)와 접합된다.Referring to FIG. 8A, the first metal plate 210 and the second metal plate 220 are disposed on the same plane with a predetermined gap therebetween, and the metal bridge 230 may have the metal plates 210 and 220 facing each other. It is directly interposed between the surfaces where it is in contact with the metal plates (210, 220).
도 8b에 나타난 구조는 도 8a에 나타난 구조와 비교할 때, 금속 플레이트(210,220)의 서로 대향하고 있는 표면이 금속 브릿지 방향으로 테이퍼(Taper)진 경사면 형태를 갖는다는 점이 다르다. 이 경우, 금속 플레이트(210,220)와 금속 브릿지(230) 사이의 접촉 면적이 더 넓어짐으로써 금속 플레이트(210,220) 상호간의 결합력을 강화하는 효과를 가져올 뿐만 아니라, 접촉 저항의 감소 효과 역시 갖는다.The structure shown in FIG. 8B differs from the structure shown in FIG. 8A in that the opposing surfaces of the metal plates 210 and 220 have an inclined surface tapered in the metal bridge direction. In this case, as the contact area between the metal plates 210 and 220 and the metal bridge 230 becomes wider, not only the effect of strengthening the bonding force between the metal plates 210 and 220 but also the effect of reducing the contact resistance is also obtained.
도 9a를 참조하면, 상기 제1 금속 플레이트(210) 및 제2 금속 플레이트(220) 각각의 일측은 적어도 일부가 겹쳐져 서로 마주보도록 위치하며, 금속 브릿지(230)는 상기 마주보는 영역 전체에 개재되어 금속 플레이트(210,220)와 접합된다. Referring to FIG. 9A, at least one side of each of the first metal plate 210 and the second metal plate 220 may be overlapped to face each other, and the metal bridge 230 may be interposed in the entire facing area. It is bonded to the metal plates 210 and 220.
도 9b 및 도 9c에 나타난 구조는 도9a에 나타난 구조와 비교할 때, 금속 플레이트(210,220) 사이에 개재된 금속 브릿지(230)의 형성 면적이 다르다. 즉, 상기 금속 브릿지(230)는 금속 플레이트(210,220)가 서로 마주보는 영역의 둘레 중 서로 마주보는 일측 및 타측에만 형성되어 있다. 이 경우, 배터리 모듈(1)에 과전류 발생시 버스 바(200a)의 신속한 파단이 가능한 효과를 기대할 수 있다. 한편, 도면에 도시되지는 않았으나, 상기 마주보는 영역의 둘레 전체에 금속 브릿지(230)가 형성되는 경우도 가능함은 물론이다. 이 경우, 도 9a에 나타난 구조와 비교하여 과전류에 대해 더 신속한 파단 효과를 기대할 수 있으며, 도 9b 및 도 9c에 나타난 구조와 비교하여 금속 플레이트(210,220) 사이의 결합력이 더 우수한 효과를 기대할 수 있다.9b and 9c have a different formation area of the metal bridge 230 interposed between the metal plates 210 and 220 when compared with the structure shown in FIG. 9a. That is, the metal bridge 230 is formed only on one side and the other side of the periphery of the region in which the metal plates 210 and 220 face each other. In this case, when the overcurrent occurs in the battery module 1, it is possible to expect the effect that the bus bar 200a can be quickly broken. Although not shown in the drawings, the metal bridge 230 may be formed in the entire circumference of the facing area, of course. In this case, a faster breaking effect can be expected for the overcurrent compared to the structure shown in FIG. 9A, and a better bonding force between the metal plates 210 and 220 can be expected as compared to the structure shown in FIGS. 9B and 9C. .
다음은, 도 10을 참조하여 본 발명의 다른 실시예에 따른 버스 바(200b)를 설명하기로 한다. Next, a bus bar 200b according to another embodiment of the present invention will be described with reference to FIG. 10.
도 10에 나타난 버스 바(200b)는 도 5에 나타난 버스 바(200a)와 비교하여 금속 플레이트(210,220)와 금속 브릿지(230) 사이에 리벳(240)이 추가적으로 더 형성된 점이 다르다. 상기 리벳(240)은 금속 플레이트(210,220)와 금속 브릿지(230) 사이의 결합력을 높여주는 역할을 한다. The bus bar 200b illustrated in FIG. 10 differs from the bus bar 200a illustrated in FIG. 5 in that a rivet 240 is further formed between the metal plates 210 and 220 and the metal bridge 230. The rivet 240 increases the bonding force between the metal plates 210 and 220 and the metal bridge 230.
한편, 도 10에서는 도 5에 나타난 버스 바(200a)에 리벳(240)이 추가적으로 더 적용된 경우만을 도시하고 있으나, 본 발명은 이에 한정되지 않으며, 도 6 내지 7c에 나타난 구조에도 적용될 수 있음은 자명한 것이다. Meanwhile, in FIG. 10, only the case where the rivet 240 is additionally applied to the bus bar 200a illustrated in FIG. 5 is further illustrated. However, the present invention is not limited thereto, and the present invention may be applied to the structures illustrated in FIGS. 6 to 7C. It is.
다음은, 도 11을 참조하여 본 발명의 또 다른 실시예에 따른 버스 바(200c)를 설명하기로 한다.Next, a bus bar 200c according to another embodiment of the present invention will be described with reference to FIG. 11.
도 11에 나타난 버스 바(200c)는 도 5에 나타난 버스 바(200a)와 비교하여 금속 플레이트(210,220)의 서로 대향하는 일측이 끝단을 향해 좁아지도록 형성된 테이퍼부(N1,N2)를 갖는다는 점이 다르다. 이 경우, 도 5에 나타난 버스 바(200a)와 비교하여 상기 테이퍼부(N1,N2)에서의 전기 저항이 높아짐으로써, 과전류의 발생시 더 많은 열이 발생하게 되고, 이로 인해 버스 바(200c)의 신속한 파단이 가능하게 된다.The bus bar 200c shown in FIG. 11 has tapered portions N1 and N2 formed so that opposite sides of the metal plates 210 and 220 are narrowed toward the ends, compared to the bus bar 200a shown in FIG. 5. different. In this case, as compared with the bus bar 200a shown in FIG. 5, the electrical resistance at the tapered portions N1 and N2 is increased, thereby generating more heat when an overcurrent occurs, thereby causing the bus bar 200c to Rapid breakage is possible.
한편, 도 11에서는 도 5에 나타난 버스 바(200a)에 테이퍼부(N1,N2)가 추가적으로 형성된 경우만을 도시하고 있으나, 본 발명은 이에 한정되지 않으며, 도 6 내지 도 9c에 나타난 구조에도 테이퍼부(N1,N2) 구조가 적용될 수 있음은 자명한 것이다. 특히, 도 11에 나타난 버스 바(200a) 구조에 도 7a 내지 7c에 나타난 구조와 같이 금속 플레이트(210,220)와 금속 브릿지(230) 사이의 접촉 면적을 넓혀주는 구조를 결합하는 경우 과전류 발생시 버스 바(200c)의 신속한 파단이 가능하면서도, 금속 플레이트(210,220) 사이의 결합력이 우수할 뿐만 아니라, 접촉 저항도 낮게 형성되는 효과를 가질 수 있다.11 illustrates only a case in which the tapered portions N1 and N2 are additionally formed in the bus bar 200a illustrated in FIG. 5, the present invention is not limited thereto, and the tapered portion may also be used in the structures shown in FIGS. 6 to 9C. Obviously, the (N1, N2) structure can be applied. In particular, when the bus bar 200a shown in FIG. 11 is combined with a structure that widens the contact area between the metal plates 210 and 220 and the metal bridge 230 as shown in FIGS. 7A to 7C, While the rapid breaking of 200c) is possible, not only the bonding force between the metal plates 210 and 220 is excellent, but also the contact resistance is low.
다음은, 도 12를 참조하여, 상기 버스 바(200a)가 적용된 배터리 모듈(1)에 대한 단락 실험 과정 및 실험의 결과를 설명하기로 한다.Next, referring to FIG. 12, a short-circuit test process and results of an experiment on the battery module 1 to which the bus bar 200a is applied will be described.
단락 실험은 도 8a에 도시된 형태를 갖는 버스 바(200a)가 적용된 배터리 모듈(1)에 대해서 실시되었으며, 다음과 같은 조건으로 진행되었다:The short circuit experiment was performed on the battery module 1 to which the bus bar 200a having the form shown in FIG. 8A was applied, and the conditions were as follows:
- 배터리 모듈의 출력 전압: 64.5V(4.3V의 출력 전압을 갖는 단위 셀 15개를 직렬 연결함)Output voltage of battery module: 64.5V (15 unit cells with 4.3V output voltage connected in series)
- 외부 단자 사이의 저항 값: 5mΩResistance value between external terminals: 5 mΩ
- 배터리 모듈의 SOC(state of charge): 100%SOC (state of charge) of battery module: 100%
상기와 같은 조건으로 실험을 진행한 결과, 도 12에 나타나는 바와 같이, 외부 단자(311) 사이에서 측정되는 배터리 모듈(1)의 전압은 약 50초 동안 대략 65V를 유지하다가 0V로 떨어졌다. 즉, 실험 시작 후 대략 50초가 경과한 시점에 단락 전류에 의한 버스 바의 파단이 이루어졌는데, 이 때 단위 셀에서 측정된 온도는 단락 실험이 진행되는 동안 대략 23℃ 정도로 일정하게 유지되었다.As a result of the experiment under the above conditions, as shown in FIG. 12, the voltage of the battery module 1 measured between the external terminals 311 was maintained at about 65V for about 50 seconds and then dropped to 0V. That is, at about 50 seconds after the start of the experiment, the bus bar was broken by the short circuit current, and the temperature measured in the unit cell was kept constant at about 23 ° C. during the short circuit experiment.
이로써, 본 발명에 따른 배터리 모듈(1)에 적용된 버스 바(200a)는 단락의 발생 시에 단위 셀의 온도가 실질적을 상승하기 전에 단락 전류를 신속히 차단함으로써 이차전지 사용상의 안전성을 확보할 수 있음을 알 수 있다.As a result, the bus bar 200a applied to the battery module 1 according to the present invention can secure safety on the use of a secondary battery by quickly cutting off a short circuit current before the temperature of the unit cell increases substantially in the event of a short circuit. It can be seen.
이상에서 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술사상과 아래에 기재될 특허청구범위의 균등범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.Although the present invention has been described above by means of limited embodiments and drawings, the present invention is not limited thereto and will be described below by the person skilled in the art to which the present invention pertains. Of course, various modifications and variations are possible within the scope of the claims.

Claims (21)

  1. 적어도 하나의 단위 셀;At least one unit cell;
    상기 단위 셀을 수용하는 케이스;A case accommodating the unit cell;
    상기 단위 셀과 전기적으로 연결되는 버스 바를 포함하며,A bus bar electrically connected to the unit cell;
    상기 버스 바는,The bus bar,
    제1 금속 플레이트;A first metal plate;
    상기 제1 금속 플레이트와 이격되도록 위치하는 제2 금속 플레이트; 및 A second metal plate positioned to be spaced apart from the first metal plate; And
    상기 제1 금속 플레이트 및 제2 금속 플레이트 사이를 연결하며 상기 금속 플레이트보다 낮은 용융점을 갖는 금속 브릿지를 포함하는 것을 특징으로 하는 배터리 모듈.And a metal bridge connecting between the first metal plate and the second metal plate and having a lower melting point than the metal plate.
  2. 제1항에 있어서,The method of claim 1,
    상기 금속 브릿지는 주석(Sn)과 구리(Cu)를 주성분으로 포함하는 무연 합금인 것을 특징으로 하는 배터리 모듈.The metal bridge is a battery module, characterized in that the lead-free alloy containing tin (Sn) and copper (Cu) as a main component.
  3. 제2항에 있어서,The method of claim 2,
    상기 주석의 함량은 80 내지 98wt% 이며,The tin content is 80 to 98wt%,
    상기 구리의 함량은 2 내지 20wt% 인 것을 특징으로 하는 배터리 모듈.The copper content is a battery module, characterized in that 2 to 20wt%.
  4. 제3항에 있어서,The method of claim 3,
    상기 금속 브릿지는 니켈(Ni), 아연(Zn) 및 은(Ag) 중에서 선택된 적어도 하나 이상의 추가 금속을 더 포함하는 것을 특징으로 하는 배터리 모듈.The metal bridge further comprises at least one additional metal selected from nickel (Ni), zinc (Zn) and silver (Ag).
  5. 제4항에 있어서,The method of claim 4, wherein
    상기 추가 금속의 함량은 0.01 내지 10wt% 인 것을 특징으로 하는 배터리 모듈.The content of the additional metal battery module, characterized in that 0.01 to 10wt%.
  6. 제1항에 있어서,The method of claim 1,
    상기 금속 브릿지는 150 내지 300℃의 용융점을 갖는 것을 특징으로 하는 배터리 모듈.The metal bridge has a melting point of 150 to 300 ℃ battery module, characterized in that.
  7. 제1항에 있어서,The method of claim 1,
    상기 제1 금속 플레이트와 상기 제2 금속 플레이트는 일정 간극을 두고 동일 평면 상에 위치하는 것을 특징으로 하는 배터리 모듈.The first metal plate and the second metal plate is a battery module, characterized in that located on the same plane with a predetermined gap.
  8. 제7항에 있어서,The method of claim 7, wherein
    상기 금속 브릿지는 상기 제1 금속 플레이트 및 제2 금속 플레이트의 어느 한쪽 면 또는 양쪽 면 상에서 상기 제1 금속 플레이트 및 제2 금속 플레이트와 접합된 것을 특징으로 하는 배터리 모듈.And the metal bridge is joined to the first metal plate and the second metal plate on either or both sides of the first metal plate and the second metal plate.
  9. 제7항에 있어서,The method of claim 7, wherein
    상기 제1 금속 플레이트 및 제2 금속 플레이트는 서로 대향하는 각각의 일측 단부의 상면 또는 하면 중 적어도 하나의 면에 형성된 수용 홈을 구비하며,The first metal plate and the second metal plate have accommodation grooves formed in at least one of the upper surface or the lower surface of each one end portion facing each other,
    상기 금속 브릿지는 상기 홈과 대응되는 크기 및 형상을 갖고, 상기 홈의 상호 교합에 의해 형성되는 공간에 수용되어 상기 제1 금속 플레이트 및 제2 금속 플레이트와 접합되는 것을 특징으로 하는 배터리 모듈.The metal bridge has a size and shape corresponding to that of the groove, and is accommodated in a space formed by the interlocking of the grooves to be bonded to the first metal plate and the second metal plate.
  10. 제7항에 있어서,The method of claim 7, wherein
    상기 제1 금속 플레이트 및 제2 금속 플레이트는 서로 대향하는 각각의 일측 단부에 형성된 제1 절곡부 및 제2 절곡부를 구비하며,The first metal plate and the second metal plate have a first bent portion and a second bent portion formed at one end of each of which face each other,
    상기 금속 브릿지는 상기 제1 절곡부 및 제2 절곡부의 상호 교합에 의해 형성되는 공간에 수용되어 상기 제1 금속 플레이트 및 제2 금속 플레이트와 접합되는 것을 특징으로 하는 배터리 모듈.And the metal bridge is accommodated in a space formed by the interlocking of the first bent portion and the second bent portion and bonded to the first metal plate and the second metal plate.
  11. 제7항에 있어서,The method of claim 7, wherein
    상기 제1 금속 플레이트 및 제2 금속 플레이트는 서로 대향하는 표면으로부터 일정 깊이로 형성된 수용 홈을 구비하며,The first metal plate and the second metal plate has a receiving groove formed to a certain depth from the surface facing each other,
    상기 금속 브릿지는 일측 및 타측 면이 각각 상기 수용 홈에 삽입되어 금속 플레이트와 접합되는 것을 특징으로 하는 배터리 모듈.The metal bridge is a battery module, characterized in that one side and the other side is respectively inserted into the receiving groove and bonded to the metal plate.
  12. 제7항에 있어서,The method of claim 7, wherein
    상기 금속 브릿지는 상기 제1 금속 플레이트 및 제2 금속 플레이트가 서로 대향하고 있는 표면 사이에 직접 개재되어 상기 제1 금속 플레이트 및 제2 금속 플레이트와 접합되는 것을 특징으로 하는 배터리 모듈.And the metal bridge is directly interposed between surfaces where the first metal plate and the second metal plate are opposed to each other and bonded to the first metal plate and the second metal plate.
  13. 제12항에 있어서,The method of claim 12,
    상기 대향 표면은 상기 금속 솔더링 브릿지 방향으로 테이퍼(Taper)진 경사면 형태를 갖는 것을 특징으로 하는 배터리 모듈.And the opposing surface has an inclined surface shape tapered in the metal soldering bridge direction.
  14. 제1항에 있어서,The method of claim 1,
    상기 제1 금속 플레이트 및 제2 금속 플레이트 각각의 일측은 적어도 일부가 겹쳐져 서로 마주보도록 위치하며,One side of each of the first metal plate and the second metal plate is positioned so that at least a portion thereof overlaps to face each other,
    상기 금속 브릿지는 상기 마주보는 영역 내에 개재되어 상기 제1 금속 플레이트 및 제2 금속 플레이트와 접합되는 것을 특징으로 하는 배터리 모듈.And the metal bridge is interposed in the facing area and bonded to the first metal plate and the second metal plate.
  15. 제1항에 있어서,The method of claim 1,
    상기 제1 금속 플레이트 및 제2 금속 플레이트 각각의 일측은 적어도 일부가 겹쳐져 서로 마주보도록 위치하며,One side of each of the first metal plate and the second metal plate is positioned so that at least a portion thereof overlaps to face each other,
    상기 금속 브릿지는 상기 마주보는 영역의 둘레 중 서로 마주보는 일측 및 타측에 형성된 것을 특징으로 하는 배터리 모듈.The metal bridge is a battery module, characterized in that formed on one side and the other side facing each other of the circumference of the facing area.
  16. 제1항에 있어서,The method of claim 1,
    상기 제1 금속 플레이트 및 제2 금속 플레이트 각각의 일측은 적어도 일부가 겹쳐져 서로 마주보도록 위치하며,One side of each of the first metal plate and the second metal plate is positioned so that at least a portion thereof overlaps to face each other,
    상기 금속 브릿지는 상기 마주보는 영역의 둘레 전체에 형성된 것을 특징으로 하는 배터리 모듈.And the metal bridge is formed over the entire circumference of the facing area.
  17. 제1항에 있어서,The method of claim 1,
    상기 제1 금속 플레이트와 상기 금속 브릿지 사이 및 상기 제2 금속 플레이트와 상기 금속 브릿지 사이를 고정시키는 리벳을 더 포함하는 것을 특징으로 하는 배터리 모듈.The battery module further comprises a rivet for fixing between the first metal plate and the metal bridge and between the second metal plate and the metal bridge.
  18. 제1항에 있어서,The method of claim 1,
    상기 제1 금속 플레이트 및 제2 금속 플레이트는 서로 대향하는 일측이 끝단을 향해 좁아지도록 테이퍼진 형상을 갖는 것을 특징으로 하는 배터리 모듈.The first metal plate and the second metal plate is a battery module, characterized in that the one side facing each other has a tapered shape to narrow toward the end.
  19. 제1항에 있어서,The method of claim 1,
    상기 케이스의 일측에 설치되는 외부 단자를 더 포함하며,Further comprising an external terminal installed on one side of the case,
    상기 버스 바는 상기 단위 셀과 상기 외부 단자 사이를 연결하는 것을 특징으로 하는 배터리 모듈.The bus bar connects the unit cell and the external terminal.
  20. 양극 리드 및 음극 리드를 포함하는 적어도 하나의 단위 셀;At least one unit cell including a positive lead and a negative lead;
    상기 단위 셀을 수용하는 케이스;A case accommodating the unit cell;
    상기 양극 리드와 연결되는 제1 버스 바; 및A first bus bar connected to the anode lead; And
    상기 음극 리드와 연결되는 제2 버스 바를 포함하며,A second bus bar connected to the cathode lead,
    상기 제2 버스 바는,The second bus bar,
    제1 금속 플레이트;A first metal plate;
    상기 제1 금속 플레이트와 이격되도록 위치하는 제2 금속 플레이트; 및 A second metal plate positioned to be spaced apart from the first metal plate; And
    상기 제1 금속 플레이트 및 제2 금속 플레이트 사이를 연결하며 상기 금속 플레이트보다 낮은 용융점을 갖는 금속 브릿지를 포함하는 것을 특징으로 하는 배터리 모듈.And a metal bridge connecting between the first metal plate and the second metal plate and having a lower melting point than the metal plate.
  21. 배터리 모듈에 적용되는 버스 바로서,As a bus applied to the battery module,
    제1 금속 플레이트;A first metal plate;
    상기 제1 금속 플레이트와 이격되도록 위치하는 제2 금속 플레이트; 및 A second metal plate positioned to be spaced apart from the first metal plate; And
    상기 제1 금속 플레이트 및 제2 금속 플레이트 사이를 연결하며, 상기 금속 플레이트보다 낮은 용융점을 갖는 금속 브릿지를 포함하는 것을 특징으로 하는 버스 바.And a metal bridge connecting the first metal plate and the second metal plate, the metal bridge having a lower melting point than the metal plate.
PCT/KR2012/010182 2011-11-28 2012-11-28 Battery module and bus bar applied to battery module WO2013081375A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201280015204.1A CN103460447B (en) 2011-11-28 2012-11-28 Battery module and the busbar being applied to battery module
JP2013558802A JP6270123B2 (en) 2011-11-28 2012-11-28 Battery module and bus bar applied to battery module
EP12854353.5A EP2662913B1 (en) 2011-11-28 2012-11-28 Battery module and bus bar applied to battery module
US13/959,381 US9577240B2 (en) 2011-11-28 2013-08-05 Battery module and bus bar applied to battery module

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20110125225 2011-11-28
KR10-2011-0125225 2011-11-28
KR1020120135793A KR101433199B1 (en) 2011-11-28 2012-11-28 Battery module and Busbar applied for battery module
KR10-2012-0135793 2012-11-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/959,381 Continuation US9577240B2 (en) 2011-11-28 2013-08-05 Battery module and bus bar applied to battery module

Publications (1)

Publication Number Publication Date
WO2013081375A1 true WO2013081375A1 (en) 2013-06-06

Family

ID=48858257

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/010182 WO2013081375A1 (en) 2011-11-28 2012-11-28 Battery module and bus bar applied to battery module

Country Status (6)

Country Link
US (1) US9577240B2 (en)
EP (1) EP2662913B1 (en)
JP (1) JP6270123B2 (en)
KR (1) KR101433199B1 (en)
CN (1) CN103460447B (en)
WO (1) WO2013081375A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105027326A (en) * 2013-09-26 2015-11-04 株式会社Lg化学 Secondary battery and electrode lead assembly applied thereto

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103797618B (en) * 2011-09-16 2017-05-03 株式会社Lg 化学 Component for secondary battery and manufacturing method thereof, and secondary battery and multi-battery apparatus manufactured by using the component
EP2698847B1 (en) * 2012-01-03 2020-03-04 LG Chem, Ltd. Battery pack and connecting bar applied thereto
WO2013168923A1 (en) * 2012-05-08 2013-11-14 주식회사 엘지화학 Electrode lead and secondary battery including same
KR101401477B1 (en) * 2012-08-02 2014-05-29 주식회사 엘지화학 Connecting element for secondary battery, Battery module and Battery pack comprising the same
US10218027B2 (en) 2013-11-11 2019-02-26 A123 Systems, LLC Vehicle starter battery
KR101754609B1 (en) 2013-11-20 2017-07-06 삼성에스디아이 주식회사 Rechargeable battery having fuse
KR101551000B1 (en) * 2013-12-12 2015-09-07 현대자동차주식회사 High voltage battery system for electric vehicle
KR101558694B1 (en) 2013-12-18 2015-10-07 현대자동차주식회사 High voltage battery for vehicle
US10342401B2 (en) 2014-11-26 2019-07-09 Techtronic Industries Co. Ltd. Battery pack
KR102415749B1 (en) * 2015-08-05 2022-07-01 삼성에스디아이 주식회사 Flexible battery
KR102016716B1 (en) * 2015-10-30 2019-09-02 주식회사 엘지화학 Battery Pack
US10032583B2 (en) * 2016-02-17 2018-07-24 Dexerials Corporation Protective circuit substrate
KR101956028B1 (en) 2016-05-18 2019-03-08 현대자동차 주식회사 Bus plate unit
US10333129B2 (en) 2017-01-26 2019-06-25 Te Connectivity Corporation Buss bar assembly for a battery system
KR102201344B1 (en) * 2017-05-26 2021-01-08 주식회사 엘지화학 Battery module, battery pack including the same, and vehicle including the same
KR102209773B1 (en) * 2017-05-29 2021-01-28 주식회사 엘지화학 Battery Module
KR102148993B1 (en) * 2017-06-13 2020-08-27 주식회사 엘지화학 Battery module
KR102163656B1 (en) * 2017-06-27 2020-10-08 주식회사 엘지화학 Battery module, battery pack including the same, and vehicle including the same
CN110731023A (en) * 2017-06-27 2020-01-24 松下知识产权经营株式会社 Bus bar and battery laminate
KR102201342B1 (en) 2017-07-06 2021-01-08 주식회사 엘지화학 Battery module, battery pack including the same, and vehicle including the same
US10569634B2 (en) * 2017-08-18 2020-02-25 GM Global Technology Operations LLC Multi-functional cooling channel and busbar for battery cell pack
JP2019067678A (en) * 2017-10-03 2019-04-25 カルソニックカンセイ株式会社 Battery pack
KR102350459B1 (en) 2017-12-07 2022-01-11 주식회사 엘지에너지솔루션 Cylindrical secondary battery module
US10644282B2 (en) 2018-01-23 2020-05-05 Nio Usa, Inc. Staggered battery cell array with two-dimensional inline terminal edges
KR102382386B1 (en) * 2018-02-09 2022-04-01 주식회사 엘지에너지솔루션 Bus Bar Having Current Interruption Part and Battery Module Having the Same
US10784486B2 (en) 2018-02-20 2020-09-22 Nio Usa, Inc. Uniform current density tapered busbar
WO2019164974A1 (en) * 2018-02-20 2019-08-29 Nio Usa, Inc. Uniform current density tapered busbar
US10741808B2 (en) 2018-03-15 2020-08-11 Nio Usa, Inc. Unified battery module with integrated battery cell structural support
US10741889B2 (en) 2018-03-22 2020-08-11 Nio Usa, Inc. Multiple-zone thermocouple battery module temperature monitoring system
US10892465B2 (en) 2018-03-22 2021-01-12 Nio Usa, Inc. Battery cell cover including terminal short isolation feature
US10707471B2 (en) 2018-03-22 2020-07-07 Nio Usa, Inc. Single side cell-to-cell battery module interconnection
KR102450418B1 (en) * 2018-12-07 2022-09-30 주식회사 엘지에너지솔루션 Battery module with improved safety, battery pack comprising the battery module and vehicle comprising the same
KR20210121786A (en) * 2020-03-31 2021-10-08 주식회사 엘지에너지솔루션 High Voltage Busbar Having Dissimilar Metals and Manufacturing Method Thereof
WO2021196169A1 (en) * 2020-04-03 2021-10-07 宁德时代新能源科技股份有限公司 Battery module, battery pack, and apparatus using battery as power source
KR20220011430A (en) * 2020-07-21 2022-01-28 주식회사 엘지에너지솔루션 Battery module and battery pack including the same
CN111785885B (en) * 2020-07-23 2022-07-19 中创新航科技股份有限公司 Battery pack and electric device
KR20220041470A (en) * 2020-09-25 2022-04-01 현대자동차주식회사 Battery module and battery pack comprising the same
US11850956B2 (en) 2021-05-14 2023-12-26 Deere & Company Battery arrangement of a compact electric tractor
CN115764176A (en) * 2022-11-30 2023-03-07 厦门海辰储能科技股份有限公司 Current collecting unit, battery module and electric equipment

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030025077A (en) * 2001-09-19 2003-03-28 삼성에스디아이 주식회사 Thermal fuse for secondary cell
KR20060073455A (en) * 2004-12-24 2006-06-28 주식회사 엘지화학 Sensing board assembly for secondary battery module
KR20080042961A (en) * 2006-11-13 2008-05-16 주식회사 엘지화학 Secondary battery of improved safety
KR20080100980A (en) * 2007-05-15 2008-11-21 주식회사 엘지화학 Electrode tab or lead wire having electrical resistivity controlled
KR20110109769A (en) * 2010-03-30 2011-10-06 에스비리모티브 주식회사 Rechargeable battery

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4396787B2 (en) * 1998-06-11 2010-01-13 内橋エステック株式会社 Thin temperature fuse and method of manufacturing thin temperature fuse
JP2001256937A (en) * 2000-03-14 2001-09-21 Matsushita Electric Ind Co Ltd Compound battery and battery pack
JP3761846B2 (en) * 2002-07-11 2006-03-29 内橋エステック株式会社 Alloy type thermal fuse and wire for thermal fuse element
KR100561308B1 (en) * 2004-05-31 2006-03-15 삼성에스디아이 주식회사 Secondary Battery
US20060127754A1 (en) * 2004-12-14 2006-06-15 Toyota Jidosha Kabushiki Kaisha. Battery pack
JP2009503768A (en) * 2005-07-22 2009-01-29 リッテルフューズ,インコーポレイティド Electrical device with integral fused conductor
JP2007035280A (en) * 2005-07-22 2007-02-08 Uchihashi Estec Co Ltd Laser welding method of copper lead wire and fuse element
TWM327596U (en) * 2007-02-14 2008-02-21 sheng-zhong Chen Battery device and protection circuit/electronic device thereof
DE102007014334A1 (en) * 2007-03-26 2008-10-02 Robert Bosch Gmbh Fusible alloy element, thermal fuse with a fusible alloy element and method for producing a thermal fuse
KR100878285B1 (en) * 2007-06-05 2009-01-12 삼성에스디아이 주식회사 Battery pack
US8193770B2 (en) 2007-12-25 2012-06-05 BYD Co. Ltd Battery system for a vehicle having an over-current/over-temperature protective feature
JP5321783B2 (en) * 2008-03-04 2013-10-23 株式会社東芝 Nonaqueous electrolyte secondary battery and battery pack
WO2009154855A2 (en) * 2008-04-14 2009-12-23 A123 Systms, Inc. Flexible voltage nested battery module design
US9413031B2 (en) * 2009-03-24 2016-08-09 Lenovo (Singapore) Pte. Ltd. Apparatus and system for an internal fuse in a battery cell
EP2409312B1 (en) * 2009-05-21 2014-10-01 BYD Company Limited Current fuse device and battery assembly comprising the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030025077A (en) * 2001-09-19 2003-03-28 삼성에스디아이 주식회사 Thermal fuse for secondary cell
KR20060073455A (en) * 2004-12-24 2006-06-28 주식회사 엘지화학 Sensing board assembly for secondary battery module
KR20080042961A (en) * 2006-11-13 2008-05-16 주식회사 엘지화학 Secondary battery of improved safety
KR20080100980A (en) * 2007-05-15 2008-11-21 주식회사 엘지화학 Electrode tab or lead wire having electrical resistivity controlled
KR20110109769A (en) * 2010-03-30 2011-10-06 에스비리모티브 주식회사 Rechargeable battery

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2662913A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105027326A (en) * 2013-09-26 2015-11-04 株式会社Lg化学 Secondary battery and electrode lead assembly applied thereto
EP2950371A4 (en) * 2013-09-26 2016-09-28 Lg Chemical Ltd Secondary battery and electrode lead assembly applied thereto
US10026949B2 (en) 2013-09-26 2018-07-17 Lg Chem, Ltd. Secondary battery and electrode lead assembly applied thereto

Also Published As

Publication number Publication date
EP2662913A4 (en) 2015-04-15
JP6270123B2 (en) 2018-01-31
CN103460447A (en) 2013-12-18
EP2662913B1 (en) 2016-04-20
US20130323549A1 (en) 2013-12-05
US9577240B2 (en) 2017-02-21
KR101433199B1 (en) 2014-08-26
KR20130059301A (en) 2013-06-05
JP2014512071A (en) 2014-05-19
CN103460447B (en) 2016-06-15
EP2662913A1 (en) 2013-11-13

Similar Documents

Publication Publication Date Title
WO2013081375A1 (en) Battery module and bus bar applied to battery module
WO2013103244A1 (en) Battery pack and connecting bar applied to same
WO2015046878A1 (en) Secondary battery and electrode lead assembly applied thereto
WO2014185662A1 (en) Overcurrent blocking apparatus and secondary battery system including same
WO2012173451A2 (en) Soldering connector, and batter module and battery pack including same
WO2014189220A1 (en) Connecting part for secondary battery and secondary battery comprising same
WO2014021519A1 (en) Secondary-battery connecting part, and battery module and battery pack including same
WO2013157722A1 (en) Secondary battery, secondary battery component, and method for manufacturing secondary battery
WO2012173435A2 (en) Part for secondary battery, method for manufacturing same, and secondary battery and multi-battery system manufactured using the part
WO2019050152A1 (en) Battery module having structure breaking connector by using venting gas
KR101812273B1 (en) Battery module including bus bar for cutting off current flowing
KR101614434B1 (en) Battery cell with improved safety
WO2018230797A1 (en) Battery module and battery pack having improved safety
WO2013039298A1 (en) Secondary battery component, manufacturing method thereof, secondary battery manufactured using component, and assembled secondary battery device
WO2019045238A1 (en) Battery module provided with connector breaking device
WO2013168923A1 (en) Electrode lead and secondary battery including same
WO2018199425A1 (en) Battery cell having improved stability
KR20140064093A (en) Battery module with improved safety and bus bar applied for the same
KR20150062694A (en) Element for secondary battery and Secondary battery comprising the same
KR20140110190A (en) Safety kit for secondary battery and Secondary battery comprising the same
KR20140011206A (en) Connecting element for secondary battery, battery module and battery pack comprising the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12854353

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012854353

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2013558802

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE