WO2013081218A2 - Bragg peak-based particle-induced radiation therapy - Google Patents

Bragg peak-based particle-induced radiation therapy Download PDF

Info

Publication number
WO2013081218A2
WO2013081218A2 PCT/KR2011/009283 KR2011009283W WO2013081218A2 WO 2013081218 A2 WO2013081218 A2 WO 2013081218A2 KR 2011009283 W KR2011009283 W KR 2011009283W WO 2013081218 A2 WO2013081218 A2 WO 2013081218A2
Authority
WO
WIPO (PCT)
Prior art keywords
particle
tumor
dose
radiation
proton
Prior art date
Application number
PCT/KR2011/009283
Other languages
French (fr)
Korean (ko)
Inventor
김종기
Original Assignee
Kim Jong Ki
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kim Jong Ki filed Critical Kim Jong Ki
Priority to PCT/KR2011/009283 priority Critical patent/WO2013081218A2/en
Publication of WO2013081218A2 publication Critical patent/WO2013081218A2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N2005/1085X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy characterised by the type of particles applied to the patient
    • A61N2005/1087Ions; Protons

Definitions

  • the present invention relates to Bragg peak-based particle-guided radiation therapy, which utilizes metal nanoparticles (MMP) to produce particle induced radiation generated from direct coulomb collisions of outer electrons and protons or heavy ion beams of metal nanoparticles.
  • MMP metal nanoparticles
  • Particle-guided radiation therapy characterized in that the treatment of tumors and inflammatory diseases using the PIR) effect.
  • Proton or heavy ion therapy is a method of necrosis of a lesion at a specific position by using a Bragg peak (Pragg-Peak) phenomenon that when the proton or heavy ion beam is incident on the human body to emit energy only at a specific depth depending on the energy intensity of the beam.
  • a Bragg peak Pragg-Peak
  • protons or heavy ions are safer and more effective because they can concentrate energy that kills cells in the target lesion tissue and cause less damage to surrounding healthy tissue.
  • the Spread Out Bragg Peak (SOBP) method which is a combination of several single Bragg peaks, accumulates the proton beam dose evenly on the tumor site.
  • SOBP Spread Out Bragg Peak
  • the entrance part to which the beam is incident is exposed to a dose close to 50% or more of the Bragg peak dose depending on the tumor size, and thus, the advantage of the entrance dose is lost compared to the existing X-ray radiotherapy. Therefore, it is necessary to use a fractionation method in which beam doses are distributed through scanning in various directions or doses are divided by time intervals.
  • Non-Patent Document 1 Pradhan AK, Nahar SN, Montenegro M., Yu Y., Zhang HL, Sur C., Mrozik M. and Pitzer RM Resonant X-ray Enhancement of the Auger Effect in High- Z Atoms, Molecules, and Nanoparticles: Potential Biomedical Applications. J. Phys. Chem. A 113 , pp. 12356-2363 (2009).
  • Non-Patent Document 2 Use of gold nanoparticles to improve Heinfeld JF, Statkin DN and Smilowtz HM radiotherapy. Phys Med Biol 49 , pp. 309-315 (2004).
  • the present invention activates MNP through multiple coulomb collisions by transmitting or absorbing a single or spread out Braggpeak proton beam in a tumor in which MNP is selectively accumulated to generate PIR doses only at the tumor site.
  • Particle Induced Radiation such as Auger Electron Beam, Ionization Electron, Particle Induced X-ray (PIXE), Gamma Ray, etc. is a BP-based particle-induced radiotherapy that greatly increases the treatment dose and preserves surrounding normal tissue. The purpose is to provide.
  • the present invention uses the metal nanoparticles (MMP) to generate a PIR generated from direct coulomb collision of the outer electrons and proton beams of the metal nanoparticles to treat tumors, and thus, spread-out bragg peak (SOBP) and TPBP ( Transmitting-pristine-Bragg-peak) We provide radiation therapy using proton beam and coulomb nano-radiator effect.
  • MMP metal nanoparticles
  • MMPs metal nanoparticles
  • the metal nanoparticles are activated by high energy proton beams, induced by inner shell ionization and subsequent de-excitation processes, which result in local X-ray, ⁇ -ray, optoelectronic and Auger electrons.
  • MMP metal nanoparticles
  • PIXE particle-induced X-ray radiation
  • thermal energy by various physical activation methods such as X-rays, ion beams, RF magnetic fields, and NIR light.
  • the absorbed and transmissive Braggpeak proton beam and Coulomb nano-radiator effect are characterized in that the proton beam energy is 40-250 MeV, and Bragg-peak is placed or completely transmitted 14 mm-28 cm from the point of incidence. To provide a radiation therapy using.
  • the TPBP-based particle-induced radiotherapy of the present invention activates nanometal particles in tumor tissues at a plateau dose of a single Braggpeak proton beam exposed to normal tissues, thereby generating PIR doses locally.
  • the therapeutic effect is induced only in the distribution area. Therefore, in the case of invasive tumors in which tumor cells are infiltrated into normal tissues and metastasis cancers spreading in organs, only metal tumor particles accumulate in tumor cells and induce selective necrosis by PIR induced by TPBP-proton beam.
  • SOBP-based particle-guided radiotherapy of the present invention combines the SOBP dose evenly distributed in the tumor tissue and the particle-induced radiation induced by the activation of the nano-metal particles in the tumor tissue to generate a therapeutic effect, so that the previous proton or There is an advantage in greatly reducing the number of fractional treatment while significantly increasing the heavy ion treatment effect.
  • FIG. 1A shows the radiation of the TPBP proton beam of the present invention.
  • 1B illustrates one embodiment of a proton beam and a Bragg peak of the present invention.
  • Figure 2 shows the radiation of the SOBP proton beam of the present invention.
  • FIG. 3 shows a dose-tissue depth curve of a 40 MeV proton beam.
  • 4A depicts the therapeutic effect of TPBP-PIRT analyzed by tumor volume reduction analysis.
  • 4B depicts the therapeutic effect of SOBP-PIRT analyzed by tumor volume reduction analysis.
  • Figure 6 illustrates the effect of tumor treatment on a group of mice receiving several proton beam incident doses for a given MNP dose.
  • MMPs Metal nanoparticles
  • PIR particle induced radiation effects
  • the use of this phenomenon in radiation therapy for the treatment of tumors regulates the Bragg peaks to be evenly distributed in the tissue where the solid cancer is located in solid cancers, and in protons or in the case of metastatic cancers locally invasive to invasive tumors or surrounding organs.
  • the energy of the heavy ion beam is increased so that the Bragg peak penetrates the whole human body including the tumor tissue and lies outside the human body, thereby inducing particle-induced radiation from the nanometal, thereby increasing the therapeutic dose in each tumor tissue. .
  • Bragg-peak (BP) -based particle guided radiation therapy (PIRT) of the present invention uses metal nanoparticles (MMP) to overcome the PIR effects resulting from direct coulomb collisions of outer electrons and proton or heavy ion beams of metal nanoparticles.
  • MMP metal nanoparticles
  • Tumor treatment is characterized by using the generated ion beam and the Coulomb nano-radiator effect.
  • the coulomb nanoradiator effect is that when the metal element is in the form of nanoparticles, in the case of 13-14 nm, hundreds or thousands of gold or iron elements are clustered to form atomic-molecular clusters, and the incident energy of a high energy ion beam (proton or heavy ion)
  • the release of electrons induced through coulomb collisions and the emission of continuous Auger electrons and specific electron orbital X-rays amplify particle induced radiation caused by successive reactivation of neighboring atoms.
  • MMPs metal nanoparticles
  • the metal nanoparticles are activated with high energy proton beams, resulting in local X-rays, ⁇ -rays, optoelectronics and Auger by particle induced atomic shell ionization and subsequent de-excitation processes. Characterized in that to generate the electrons.
  • the metal nanoparticles may be generated by a variety of physical activation methods, such as X-rays, ion beams, RF magnetic fields and NIR light, to generate Auger electrons, particle-induced X-ray radiation (PIXE) or thermal energy, Proton beam energy of 40 MeV or more, Bragg-peak (Bragg-peak) can be placed at 14mm-30cm in the case of SOBP from the entry point of the human skin or completely penetrate the human tissue in the TPBP beam.
  • physical activation methods such as X-rays, ion beams, RF magnetic fields and NIR light, to generate Auger electrons, particle-induced X-ray radiation (PIXE) or thermal energy, Proton beam energy of 40 MeV or more, Bragg-peak (Bragg-peak) can be placed at 14mm-30cm in the case of SOBP from the entry point of the human skin or completely penetrate the human tissue in the TPBP beam.
  • the Bragg peak is a spread-out Bragg peak (SOBP) for solid cancer having a large size according to the shape of the tumor and the location of the tumor, and for a relatively small solid cancer (less than 2 cm).
  • SOBP spread-out Bragg peak
  • APBP invasive tumors spreading in normal tissues
  • TPBP transmissive single BP
  • PIR particle-induced radiation
  • the proton or medium particle beam energy is 40 MeV or more, the dose is 1 Gy or more at the Bragg-peak position, and the dose rate ranges from low dose rate (30 Gy / hr) and high dose rate (2000 Gy / hr). It is selected according to the characteristics of the treatment patient and characterized by inducing particle-induced radiation by entering a single dose or fractionation.
  • the metallic nanoparticles are metallic elements such as gold (Au), iron (Fe), indium (In), gadolinium (Gd), and platinum (Pt). Nanoparticles consisting of pure metal elements or oxides of 90 nm in size and between 1-100 nm in size, which react with proton beams or heavy ion particles to produce particle induced radiation (PIR). It is done.
  • the proton or medium particle beam is a method in which the beam intensity is modulated by dividing a single Bragg peak or a Spread-out Bragg peak (SOBP) into a single port or several directions.
  • SOBP Spread-out Bragg peak
  • PIR particle induced radiation
  • the metallic nanoparticles are metal nanoparticles to which specific tumor tissues are added with target or pharmacokinetic surface modification formulas and react with proton beams or heavy ion particles (PIR; particle induced radiation). It characterized in that to generate.
  • Auger electrons, particle induced X-rays (PIXE), or thermal energy can be generated from metal nanoparticles (MNP) by various physical activation methods such as X-rays, ion beams, RF magnetic fields, and NIR light. Can be. In view of the much higher energy absorption on the target tissue, all these physically active methods are likely to have therapeutic effects on tumor tissue, but the main advantage of proton or heavy ion beam radiation is compared with high energy X-rays, neutron beams and RF magnetic fields. Therefore, the Bragg Peak effect delivers energy to target tissue sites in the body in a relatively accurate manner and safely.
  • PIR particle induced radiation
  • various secondary radiations including PIXE X-ray emission, optoelectronics, Auger electrons, and gamma rays, react with cabinet electron ionization or nuclear reaction of nanoparticle atoms.
  • Can be generated through It is also characterized by the generation of therapeutically effective particle-induced radiation doses at much lower levels of metal nanoparticles (30-80 ⁇ g / g tissue) than other physical energy activation methods currently under development.
  • the present invention is a new concept of radiation therapy for inducing PIR from MNP by radiation of heavy ion or proton beam, and after delivery of MNP to tumor tissue, PIR is generated in target tumor tissue according to ion beam radiation, thereby causing a therapeutic effect.
  • Roles and effects such as internal emitters are used in therapy.
  • by injecting at 100 Gy single dose on the basis of Bragg peak dose a cure effect by SOBP or TPBP proton beam particle-induced radiation was obtained. Regrowth was observed.
  • low-dose fractional therapy should be performed for the safety of normal tissues.
  • the incident dose per fraction can be selected between 2-50 Gy in SOBP or TPBP beam method depending on the size and location of the tumor.
  • TPBP permeable single Bragg peak
  • TPBP-based particle induced radiation therapy can be applied.
  • the main idea of particle guided radiation therapy is to generate PIR effects resulting from direct Coulomb collisions of the outer electrons of the metal nanoparticles with the proton beam, which has a powerful therapeutic effect. Because the position and shape of the BP can be controlled by the depth of tissue and the relative magnitude of the proton beam energy, the PIR and BP effects can be combined or separated as described in Table 1.
  • 1A is a schematic diagram of the TPBP-PIRT experiment outline, where the proton beam energy after the aluminum window was determined to be 40 MeV in the spectrometer. The sample was 2.06 m away from the beam source. Only the tumor site was exposed to the proton beam; Peripheral normal tissue was shielded using a series of acrylate blocks with variable diameters placed inside the beam spectrometer to match tumor size.
  • FIG. 1B was radiated by a TPBP proton beam generated 14 mm from the point where the Bragg peak enters the tissue in tumor model mice.
  • Proton beam radiation in the animal model was investigated according to experimental equipment as shown in FIG. 1A.
  • the proton beam energy in the spectrometer was determined as 40 MeV.
  • the BP could be placed 14mm from the point of incidence as shown in FIG. 1B.
  • the total tissue including the tumor through which the proton beam passed was less than 7-8 mm, so most of the sample tissue could be exposed to the stagnant dose of the TPBP proton beam. It could occur in vitro through the leg tissue.
  • the location of BP was determined by measuring tissue depth-dose distributions using water phantom and waterproof Markus ion chamber detectors.
  • the charge accumulated on the detector was recorded during the movement of the detector by 1 m and represented as the tissue depth-dose distribution curve of FIG. 2.
  • Dose measurements of the actual sample position and BP are based on two range shifts and GAFCHROMIC It was determined by measuring the radiation exposure dose using an MD-55 radiopigmentation film. If the radiation dose was 100-300 Gy at the BP position, the stagnant dose at the tumor position was typically measured by 23-75 Gy.
  • FIG. 2 is a schematic diagram of the SOBP-PIRT experiment summary, where the proton beam energy after the aluminum window was determined to be 40 MeV in the spectrometer.
  • Animal model samples were 2.06 meters from the beam source. Only the tumor site was exposed to the proton beam; Peripheral normal tissue was shielded using a series of acrylate blocks with variable diameters placed inside the beam spectrometer to match tumor size.
  • the dose shift device (range shift) was used to distribute the dose evenly by placing 10-13 single Bragg peaks in order throughout the tumor tissue, depending on the size of the tumor.
  • the presence of MNP in tissue located in the proton beam path can reduce the radiation dose at the exit of tissue penetration due to its interaction including absorption and scattering.
  • a series of cylindrical tissue phantoms containing various concentrations of MNP was used to measure this effect, and the GAFCHROMIC attached to the bottom of the cylindrical phantom
  • the proton beam transmitted through the MD-55 radiopigment film was measured and the value was read with a micro densitometer.
  • Table 2 showed a proportional decrease in the transmitted dose of the proton beam as the concentration of MNP in the phantom increased relative to the control phantom without MNP.
  • the depth-to-dose distribution for the permeable single Bragg peak (TPBP) of FIG. 3 was measured using a water phantom and a waterproof Markus ion chamber detector.
  • the stagnant dose of TPBP was 7-8 mm with samples placed from the point of incidence, about 23-25% of the peak value.
  • the tumor reduction analysis of the PIRT effect is described as follows.
  • Tumor reduction analysis of FIG. 4A shows that tumor cure groups (AuNP 300 mg-50Gy FeO NP 300mg-75Gy, FeO NP 100mg-75Gy) and partial response groups (RO-25Gy, RO-50Gy) compared to the untreated control group. , RO-75Gy, RO-75Gy, AuNP 100mg-50Gy, FeO NP 100mg-50Gy). Differential tumor size growth rates were observed between the two experimental groups 10-15 days after treatment.
  • FIG. 4A The therapeutic effect of TPBP-PIRT by tumor volume reduction analysis is shown in FIG. 4A. All of the radiotherapy groups showed delayed tumor growth initially, given retention of 25-75 Gy, followed by regrowth compared to the untreated control, the majority of whom died within 2-4 weeks after treatment. In contrast, tumor cure (CTR) was observed in the MNP-accepted radiotherapy group depending on dose within 13-30 days after treatment.
  • CTR tumor cure
  • FIG. 5 shows cure in the experimental group receiving a higher 300 mg / kg MNP dose compared to the experimental group receiving 100 mg / kg in a constant stagnant dose of TPBP, tumor volume reduction analysis for 46 Gy.
  • the experimental group receiving 300 mg / kg MNP showed cure in contrast to the 100 mg / kg MNP receiving experimental group showing re-growth after partial treatment response.
  • Tumor growth patterns of the experimental groups that receive several radiation doses for a given MNP dose are shown in FIGS. 6A and 6B.
  • Figure 6 shows the tumor volume reduction analysis for a constant MNP dose, 100mg / kg (A) and 300mg / kg (B), the cure was observed in the experimental group receiving the radiation dose of 69Gy and 46Gy.
  • the tumor cure and long-term treatment efficacy of PIRT is described as follows.
  • Rat populations where cure was observed were counted for each experimental group and summarized in Table 4. Cures were observed differently depending on radiation dose and nanoparticle dose. In the radiotherapy group, 80% cure rate was observed at 92 Gy treatment and 100% cure at 115 Gy treatment. In 100 or 300 mg / kg MNP acceptance groups, the cure rate increased with stagnation dose. Gold nanoparticle acceptance test group showed somewhat higher cure rate in the mice treated with Au and Fe NP. Almost 100% cure rate was observed in the 46 Gy stationary dose and 300 mg / kg MNP acceptance group.
  • the tumor absorption of MNP is described as follows.
  • transient tissue concentration of MNP after intravenous injection was measured by ICP-MS method. Fast excretion in blood and special tumor uptake was observed for AuNPs compared to FeO NPs.
  • the tumor concentration of the nanoparticles was 137.4 ⁇ 50.2 ⁇ g Au / g tissue and 56.6 ⁇ 18.2 ⁇ g Fe / g tissue for gold and iron, respectively, while the concentration in the surrounding normal muscle tissue was 19.5 ⁇ g Au / g and 21.1 ⁇ g Fe / g for gold and iron, respectively.
  • Tumor-to-muscle MNP ratios reached 7.0 and 2.7 for gold and iron, respectively, at 15 minutes post injection, and increased to 59.7 and 6.9 for gold and iron, respectively, after 24 hours.
  • Muscle tissue was excreted 24 hours after injection and had almost no gold, whereas iron nanoparticles remained 82% of iron concentration in tissue after 15 minutes.
  • FeNP tumor accumulation increased by 300% as the injection dose increased threefold, and the percentage of tissue nanoparticle concentrations compared to the MNP injection dose was similar at 100 mg / kg and 300 mg / kg doses. Less than 1% of the cells accumulated in the tumor tissue some time after injection.
  • Gold and iron nanoparticles are used in the present invention.
  • Ligand-coated gold nanoparticles (AuL-NP) with an average diameter of 14 nm were used. Average particle size, size distribution and morphology of FeNPs were investigated using transmission electron microscopy (TEM). The Fe-NP particles were spherical with a diameter of 10.6 nm and a standard deviation of 0.8 nm. Fe-NP was measured to have a diameter of 13-15 nm after coating with alginate.
  • SOBP spread-out Bragg peak
  • the main advantage of particle-guided radiation therapy is that the proton beam is radiated to the MNP accumulated in the tumor to generate particle-induced radiation dose (PIR) at the tumor site, activating the MNP in multiple coulomb collisions.
  • the tumor dose is greatly increased while maintaining the tissue dose.
  • the proton beam is radiated in SOBP form, the dose is evenly distributed in the tumor, and the PIR is further induced in response to the MNP in the tumor tissue, resulting in a dose increase, thereby increasing the tumor treatment dose.
  • the proton beam is radiated into a single transmission beam, the role of the proton beam activates the MNP mainly without increasing the introduction dose.
  • the specificity of treatment of TPBP-PIRT is determined by the specific site radiation including the proton beam tumor and the tumor selectivity of MNP.
  • Particle-guided radiotherapy cures occurred almost 20-30 days after treatment, with no statistically significant difference between the groups of mice.
  • the cure rate was distributed from 0 to 50%.
  • the negative TVGR was negative, the treated rat group showed a tumor-cure response.
  • PIR mainly consists of PIXE X-rays and ionized electrons, high-LET Auger electrons, and in part consists of incidental ⁇ -ray generation when incident at relatively high proton beam energy (> 100 MeV). Therefore, the therapeutic properties of PIRT are very different from other existing radiation therapies. Collision with high-energy protons results in internal electron ionization through the Coulomb interaction between the incident protons and the orbital electrons providing sufficient energy to ionize the internal electrons. Following ionization of the inner electrons is followed by a deexcitation where the outer electrons transition to a lower energy level to fill the empty energy level.
  • the emission of X-ray radiation or Auger electrons corresponding to the difference between the two outer electron energies is competitively induced from the outer electron orbit.
  • the two empty spaces caused by the outer electron orbit transition can be filled with different electrons, and the Auger electron transition step can be generated continuously.
  • the energy distribution of the Auger electrons emitted from the Auger electron transition step is determined by the cabinet electron transition probability and the energy difference, and is emitted from FeNP or AuNP upon proton exposure and may have an energy range of eV-keV. Therefore, their diffusion distances in aqueous solutions range from several nanometers for low energy electrons ( ⁇ 100 Ev) to several micrometers for high energy electrons (> 10 keV).
  • the energy of X-ray radiation depends on the atomic Z-value of the MNP.
  • the coulomb collision between the high energy positron and the metal nanoparticles can induce the Auger electron emission step more efficiently due to the relatively large impact area.
  • thousands of atoms occupy only 14 nm-diameter space, while thousands of separated atomic samples can be distributed in much larger spaces of 10 6 nm 3 and more at 1 mM concentration.
  • the typical energy of the incident protons is much larger than the electron energy of the K-shell, multiple outer shells of the incident protons are caused by multiple coulomb collisions with atoms within the nanoparticles as well as atoms of the surrounding nanoparticles without losing much kinetic energy. It is anticipated that electron ionization may be induced.
  • nanoparticles can continuously emit Auger electrons, protons, and other secondary electrons while being irradiated with a proton beam. This effect has been experimentally named the nanoradiator effect.
  • MNP injection dose, particle size, Z-value, and pharmacokinetics and target equations can tune the radiation dose treatment efficiency as well as the physicochemical properties of MNP, including biodistribution.
  • the cure rate was observed more frequently with increasing radiation dose or injection dose of MNP.
  • BP energy and BP mode (Table 1) should be selected according to the location of the target tumor in the human body as part of the treatment plan. Stagnant doses of 16-56 Gy of proton beams can damage healthy tissue, so instead of a single dose, radiation doses of TPBP-PIRT are reduced to less than 10 Gy, as with conventional radiation therapy. Can be fractionated.
  • the BP should have at least 150 MeV based on the tissue penetration depth-dose curves of a typical proton beam so that BP completely penetrates the entire brain without interruption. Since the stagnant dose also increases by 40% of the BP when the proton beam reaches 250 MeV, it is necessary to devise BP energy and dose that is appropriate for the target location.
  • Ligand-coated gold nanoparticles were prepared by directly adding an aqueous solution of ligand (L) to a citrate-coated gold nanoparticle solution.
  • Diethylenetriamine- N, N, N, N, N It was prepared directly from the reaction of pentaacetic acid (DTPA) -bis (anhydride) (1.13 g, 3.18 mmol).
  • Gold Nanoparticles with Citrate Coated 12nm Diameter HAuCl 4 To Prepared in advance by reducing with sodium citrate. Briefly, HAuCl in water (1 L) 4.3 H 2 Boil continuously with O (0.33 g, 1 mmol) under vigorous stirring, quickly add sodium citrate (1.14 g, 3.88 mmol) to the stirred solution to change the color of the solution from yellow to purple, and add 10 The solution was stirred for an additional 10 minutes after further boiling to remove the heating lid. Ligand (L; 150 mg) was added to 100 mL solution and the final mixture was stirred for 20 hours.
  • Fe NPs Alginate-coated superferromagnetic nanoparticles (Fe NPs), as reported in previous papers, are synthesized by applying ultrasound to iron containing and iron salt solutions. Briefly, FeCl 2 4H 2 O (1.72 g) and FeCl 3 6H 2 O (4.70 g) (8.65 mmol Fe 2+ /17.30 mmol Fe 3+ ) are dissolved in 80 ml of distilled water, and the black magnetic oxide precipitate is argon. Obtained by heating the solution to 80 ° C. under atmosphere, the pH was increased to 10 by the addition of 28-30% ammonium hydroxide to water and the mixed iron solution exposed to 20kHz ultrasound at an output of 140W for 1 hour.
  • TEM transmission electron microscopy
  • Proton beam irradiation was performed as follows in the animal model by BP mode.
  • Proton beam irradiation in the animal model was irradiated according to the experimental apparatus as shown in FIG. 1.
  • a tumor model was constructed on the side of the rat's leg, and in TPBP mode particle guided radiation therapy, a model was created on the leg of the mouse.
  • the mice were injected with gold or iron nanoparticles at 100-300 mg / kg body weight.
  • Five radiation single treatment groups were prepared as controls. Mice were anesthetized by intraperitoneal injection of 20 mg / kg ketamine and 18.4 mg / kg xylazine.
  • Fifty microliters of MNP saline solution was injected into the tail vein of the animal 24 hours before proton beam irradiation.
  • mice were injected in SOBP or TPBP mode at the LEPT proton beam line of the Korea Cancer Center Hospital (Seoul, Korea), 2.06 m away from the proton beam source, with a BP dose or BP at a dose rate of 0.51 to 0.67 Gy / s for the sample.
  • Coulomb collisions with nanoparticles were induced during delivery of stagnant doses of about 23% of the dose.
  • a single BP dose of 80 Gy in SOBP and three stagnant doses in TPBP (16 Gy, 36 Gy and 55 Gy) were entered into the group of mice receiving nanoparticles, whereas in the SOBP control group, 80 Gy and 16, 36 in the TPBP control group Doses of 55, 74 and 92 Gy were incident. Only the tumor part was exposed to the proton beam and the surrounding normal tissue was shielded using a series of acrylate blocks with varying diameters placed on a beam spectrometer to match the tumor size.
  • TPBP mode the proton beam will penetrate the lesion according to the minimum stagnation dose of the sample's depth-dose curve along the radiation path comprising the tumor and normal tissue. This is, by arranging the two energy conversion range and GAFCHROMIC ⁇ c MD-55 radiation to the sample before and after the dye film was found to be up to BP dosimetry. Stagnant dose of tumor tissue was also measured from each BP dose in the manner described above.
  • Tumor size was measured with a vernier caliper. Tumor shape was estimated to be almost ellipsoid. The magnitude is given by Tumor size after treatment was measured daily, as calculated according to or as part of the tumor growth response analysis following proton beam incidence, until complete cure was observed.
  • the differential distribution of mean TVGR among the individual groups was compared using the Kruskal-Wallis test. For P values less than 0.05 for the control group, different experimental groups were compared with the control for each mode using the Student's t -test. Differences were considered statistically significant at P ⁇ 0.05.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Description

브래그 피크 기반 입자 유도 방사선 치료요법Bragg peak-based particle-guided radiotherapy
본 발명은 브래그 피크 기반 입자 유도 방사선 치료요법에 관한 것으로서, 금속 나노 입자(MMP)를 사용하여 금속 나노 입자의 외곽 전자와 양성자 또는 중이온 빔의 직접적인 쿨롱 충돌(Coulomb collision)로부터 발생되는 입자유도방사선(PIR) 효과를 이용하여 종양 및 염증성질환 치료를 하는 것을 특징으로 하는 입자 유도 방사선 치료요법이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to Bragg peak-based particle-guided radiation therapy, which utilizes metal nanoparticles (MMP) to produce particle induced radiation generated from direct coulomb collisions of outer electrons and protons or heavy ion beams of metal nanoparticles. Particle-guided radiation therapy characterized in that the treatment of tumors and inflammatory diseases using the PIR) effect.
양성자 또는 중이온 치료법은 양성자 또는 중이온 빔을 인체에 입사하면 빔의 에너지 세기에 따라 특정한 깊이에서만 에너지를 방출하는 브래그 피크(Bragg-Peak) 현상을 이용하여 특정 위치의 병소조직을 괴사시키는 치료법이다.Proton or heavy ion therapy is a method of necrosis of a lesion at a specific position by using a Bragg peak (Pragg-Peak) phenomenon that when the proton or heavy ion beam is incident on the human body to emit energy only at a specific depth depending on the energy intensity of the beam.
방사선 치료에 사용되던 기존의 X-선과 비교하여 양성자 또는 중이온은 세포를 사멸할 수 있는 에너지를 목표 병소조직에 집중할 수 있고, 주변의 건강한 조직에 피해를 덜 입히기 때문에 보다 안전하며 효과적이다.Compared to conventional X-rays used for radiotherapy, protons or heavy ions are safer and more effective because they can concentrate energy that kills cells in the target lesion tissue and cause less damage to surrounding healthy tissue.
그러나, 상기의 양성자 또는 중이온 치료법은 특정 위치의 병소조직만을 괴사시키므로 종양의 경계가 확실한 고형암 치료에는 효과적이지만, 주변조직에 침윤 및 다중으로 전이되어 병소 조직의 경계가 확정되지 않은 종양에서는 적용할 수 없었다.However, the above proton or heavy ion treatment necrosis only the lesion tissue at a specific position, so it is effective in treating solid cancer with a definite tumor boundary. There was no.
또한 종양의 크기가 큰 경우 단일 브래그 피크로는 치료를 효과적으로 할 수 없기 때문에 여러 개의 단일 브래그 피크의 조합으로 구성된 Spread Out Bragg Peak(SOBP)법을 이용하여 종양부위에 고르게 양성자빔 선량을 축적시키는 방법을 사용한다. 그러나 이 때문에 빔이 입사되는 도입부에는 종양사이즈에 따라 브래그 피크 선량의 50% 이상의 값에 가까운 선량에 노출되므로 기존 X-선 방사선 치료법대비 입사선량(Entrance Dose)에 대한 장점이 소실된다. 따라서 실질적으로 여러 방향에서 스캔을 통하여 빔선량을 분산시키거나 시간 간격을 두고 선량을 나누어 분획치료하는(fractionation) 방법을 사용해야만 한다.In addition, a single Bragg peak cannot be effectively treated when the tumor is large. Therefore, the Spread Out Bragg Peak (SOBP) method, which is a combination of several single Bragg peaks, accumulates the proton beam dose evenly on the tumor site. Use However, because of this, the entrance part to which the beam is incident is exposed to a dose close to 50% or more of the Bragg peak dose depending on the tumor size, and thus, the advantage of the entrance dose is lost compared to the existing X-ray radiotherapy. Therefore, it is necessary to use a fractionation method in which beam doses are distributed through scanning in various directions or doses are divided by time intervals.
[선행기술문헌][Preceding technical literature]
[비특허문헌][Non-Patent Documents]
(비특허문헌 1) Pradhan A.K., Nahar S.N., Montenegro M., Yu Y., Zhang H. L., Sur C., Mrozik M. and Pitzer R.M. Resonant X-ray Enhancement of the Auger Effect in High-Z Atoms, Molecules, and Nanoparticles: Potential Biomedical Applications. J. Phys. Chem. A 113, 12356~2363쪽 (2009). (Non-Patent Document 1) Pradhan AK, Nahar SN, Montenegro M., Yu Y., Zhang HL, Sur C., Mrozik M. and Pitzer RM Resonant X-ray Enhancement of the Auger Effect in High- Z Atoms, Molecules, and Nanoparticles: Potential Biomedical Applications. J. Phys. Chem. A 113 , pp. 12356-2363 (2009).
(비특허문헌 2) Heinfeld J.F., Statkin D.N. and Smilowtz H.M. 방사선 치료를 향상시키기 위한 금 나노 입자의 사용. Phys Med Biol 49, 309-315쪽 (2004). (Non-Patent Document 2) Use of gold nanoparticles to improve Heinfeld JF, Statkin DN and Smilowtz HM radiotherapy. Phys Med Biol 49 , pp. 309-315 (2004).
본 발명은 상기와 같은 문제점을 해결하기 위하여, 종양 부위에서만 PIR 선량을 생성하도록 MNP가 선택축적된 종양에서 단일 또는 spread out 브래그피크 양성자 빔을 투과 또는 흡수시켜 다중 쿨롱 충돌을 통하여 MNP를 활성화하고, Auger전자선, 이온화전자, 입자유도 X-선(PIXE), 감마선등의 입자유도방사선(Particle Induced Radiation) 발생으로 병소 치료선량을 크게 증가시키고 주변정상 조직을 보전하는 BP-기반 입자 유도 방사선 치료요법을 제공하는 데 그 목적이 있다.In order to solve the above problems, the present invention activates MNP through multiple coulomb collisions by transmitting or absorbing a single or spread out Braggpeak proton beam in a tumor in which MNP is selectively accumulated to generate PIR doses only at the tumor site. Particle Induced Radiation such as Auger Electron Beam, Ionization Electron, Particle Induced X-ray (PIXE), Gamma Ray, etc. is a BP-based particle-induced radiotherapy that greatly increases the treatment dose and preserves surrounding normal tissue. The purpose is to provide.
본 발명은 금속 나노 입자(MMP)를 사용하여 금속 나노 입자의 외곽 전자와 양성자 빔의 직접적인 쿨롱 충돌로부터 발생되는 PIR을 생성하여 종양 치료를 하는 것을 특징으로 SOBP(Spread-out Bragg peak) 및 TPBP(Transmitting-pristine-Bragg-peak) 양성자 빔 및 쿨롱 나노라디에이터 효과를 이용한 방사선 치료요법을 제공하고자 한다.The present invention uses the metal nanoparticles (MMP) to generate a PIR generated from direct coulomb collision of the outer electrons and proton beams of the metal nanoparticles to treat tumors, and thus, spread-out bragg peak (SOBP) and TPBP ( Transmitting-pristine-Bragg-peak) We provide radiation therapy using proton beam and coulomb nano-radiator effect.
또한, 상기 금속 나노 입자(MMP)는 고 에너지 양성자 빔으로 활성화되어 유도된 원자 안쪽 껍질(inner shell) 이온화 및 후속되는 탈여기 과정에 의해 , 국소적 X-선, γ-선, 광전자 및 오제 전자를 생성하도록 하는 것을 특징으로 하는 브래그피크 양성자 빔 및 쿨롱 나노라디에이터 효과를 이용한 방사선 치료요법을 제공하고자 한다.In addition, the metal nanoparticles (MMPs) are activated by high energy proton beams, induced by inner shell ionization and subsequent de-excitation processes, which result in local X-ray, γ-ray, optoelectronic and Auger electrons. To provide a radiotherapy using the BraggPick proton beam and Coulomb nano-radiator effect, characterized in that to produce a.
또한, 상기 금속 나노 입자(MMP)는 X-선, 이온 빔, RF 자기장 및 NIR 광등의 다양한 물리 활성화 방법에 의하여 오제 전자, 입자 유도 X-선 방사(PIXE) 또는 열 에너지를, 생성하는 것을 특징으로 하며, 양성자 또는 중이온 빔 과 쿨롱 나노라디에이터 효과를 이용한 방사선 치료요법을 제공하고자 한다.In addition, the metal nanoparticles (MMP) generates Auger electrons, particle-induced X-ray radiation (PIXE), or thermal energy by various physical activation methods such as X-rays, ion beams, RF magnetic fields, and NIR light. To provide a radiation therapy using proton or heavy ion beam and Coulomb nano-radiator effect.
또한, 양성자 빔 에너지는 40-250 MeV, 브래그피크(Bragg-peak)는 입사점으로 부터 14 mm-28 cm에 배치되거나 완전히 투과하는 것을 특징으로 하는 흡수 및 투과형 브래그피크양성자 빔 및 쿨롱 나노라디에이터 효과를 이용한 방사선 치료요법을 제공하고자 한다.In addition, the absorbed and transmissive Braggpeak proton beam and Coulomb nano-radiator effect are characterized in that the proton beam energy is 40-250 MeV, and Bragg-peak is placed or completely transmitted 14 mm-28 cm from the point of incidence. To provide a radiation therapy using.
본 발명의 TPBP-기반 입자 유도 방사선 치료요법은 정상조직에 노출되는 단일 브래그피크 양성자빔의 정체기 선량(plateau dose)으로 종양조직내의 나노금속입자를 활성화시켜 PIR 선량을 국소적으로 생성되므로 나노금속 입자가 분포하는 부위에서만 치료효과가 유발되는 매우 유용한 효과가 있다. 따라서 종양세포가 정상조직내에 침윤되어 있는 침윤성종양 및 장기에 퍼진 전이암 경우 금속나노입자가 종양세포에 축적된 뒤 TPBP-양성자빔으로 유발된 PIR에 의해 종양세포만 선택적괴사를 유도할 수 있다.The TPBP-based particle-induced radiotherapy of the present invention activates nanometal particles in tumor tissues at a plateau dose of a single Braggpeak proton beam exposed to normal tissues, thereby generating PIR doses locally. There is a very useful effect that the therapeutic effect is induced only in the distribution area. Therefore, in the case of invasive tumors in which tumor cells are infiltrated into normal tissues and metastasis cancers spreading in organs, only metal tumor particles accumulate in tumor cells and induce selective necrosis by PIR induced by TPBP-proton beam.
본 발명의 SOBP-기반 입자유도 방사선치료요법은 종양조직내에 고르게 분포하는 SOBP 선량과 이로부터 종양조직내 나노금속입자의 활성화에 따라 유발되는 입자유도방사선이 결합되어 치료효과를 발생시키므로 종전의 양성자 또는 중이온 치료효과를 획기적으로 증가시키면서 분획치료의 횟수를 크게 경감시키는 장점이 있다.SOBP-based particle-guided radiotherapy of the present invention combines the SOBP dose evenly distributed in the tumor tissue and the particle-induced radiation induced by the activation of the nano-metal particles in the tumor tissue to generate a therapeutic effect, so that the previous proton or There is an advantage in greatly reducing the number of fractional treatment while significantly increasing the heavy ion treatment effect.
본 명세서에서 첨부되는 다음의 도면들은 본 발명의 바람직한 실시 예를 예시하는 것이며, 발명의 상세한 설명과 함께 본 발명의 기술개념을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 첨부한 도면에 기재된 사항에만 한정되어서 해석되어서는 아니 된다.The following drawings, which are attached in this specification, illustrate exemplary embodiments of the present invention, and together with the detailed description thereof, serve to further understand the technical concept of the present invention. It should not be construed as limited.
도 1a는 본 발명의 TPBP 양성자 빔의 방사를 도시한 도.1A shows the radiation of the TPBP proton beam of the present invention.
도 1b는 본 발명의 양성자 빔과 브래그피크의 일실시예를 도시한 도.1B illustrates one embodiment of a proton beam and a Bragg peak of the present invention.
도 2는 본 발명의 SOBP 양성자 빔의 방사를 도시한 도.Figure 2 shows the radiation of the SOBP proton beam of the present invention.
도 3는 40 MeV 양성자빔의 선량-조직투과깊이 곡선을 도시한 도.3 shows a dose-tissue depth curve of a 40 MeV proton beam.
도 4a는 종양부피 감소 분석에 의해서 분석된 TPBP-PIRT의 치료 효과를 도시한 도.4A depicts the therapeutic effect of TPBP-PIRT analyzed by tumor volume reduction analysis.
도 4b는 종양부피 감소 분석에 의해서 분석된 SOBP-PIRT의 치료 효과를 도시한 도.4B depicts the therapeutic effect of SOBP-PIRT analyzed by tumor volume reduction analysis.
도 5는 주어진 양성자빔 입사선량에 대해서, MNP 투여농도에 대한 치료 효과의 의존성을 도시한 도.5 shows the dependence of the therapeutic effect on the concentration of MNP administered on a given proton beam incident dose.
도 6은 주어진 MNP 투여농도에 대해서 여러 양성자빔 입사선량을 수용하는 실험쥐 그룹들의 종양 치료효과를 도시한 도.Figure 6 illustrates the effect of tumor treatment on a group of mice receiving several proton beam incident doses for a given MNP dose.
도 7은 약물 동력학 ICP 데이터를 도시한 도.7 shows pharmacokinetic ICP data.
아래에서 본 발명은 첨부된 도면에 제시된 실시 예를 참조하여 상세하게 설명이 되지만 제시된 실시 예는 본 발명의 명확한 이해를 위한 예시적인 것으로 본 발명은 이에 제한되지 않는다. In the following the present invention will be described in detail with reference to the embodiments shown in the accompanying drawings, but the embodiments presented are exemplary for a clear understanding of the present invention is not limited thereto.
이하 바람직한 실시예에 따라 본 발명의 기술적 구성을 상세히 설명하면 다음과 같다. Hereinafter, the technical configuration of the present invention according to a preferred embodiment in detail.
금속 나노 입자(MMP)는, 고 에너지 양성자 빔으로 활성화될 때 입자 유도된 원자 내각전자(inner shell) 이온화 및 후속되는 탈여기 과정에 의해 국소적 X-선, γ-선, 광전자 및 오제(Auger electron) 전자 등의 입자 유도방사선 효과(PIR)를 생성할 수 있다.Metal nanoparticles (MMPs), when activated with high energy proton beams, are localized X-rays, γ-rays, photoelectrons and Augers by particle induced atomic shell ionization and subsequent de-excitation processes. particle induced radiation effects (PIR), such as electrons.
종양 치료를 위한 방사선 요법에서 이러한 현상을 이용하는 것은, 고형암의 경우 브래그 피크가 고형암이 위치한 조직내에 방사선 선량이 고르게 분포하도록 조절하고, 침윤성 종양이나 주변 장기에 국소적으로 침윤된 전이암의 경우 양성자 또는 중이온 빔의 에너지를 크게하여 브래그 피크가 종양조직을 포함하는 인체전체를 투과하여 인체외부에 놓이게 함으로써 나노금속으로부터 입자유도방사선을 유발함으로써 각 각 종양조직내 치료선량을 증강시키는 방법으로 적용시킬 수 있다. The use of this phenomenon in radiation therapy for the treatment of tumors regulates the Bragg peaks to be evenly distributed in the tissue where the solid cancer is located in solid cancers, and in protons or in the case of metastatic cancers locally invasive to invasive tumors or surrounding organs. The energy of the heavy ion beam is increased so that the Bragg peak penetrates the whole human body including the tumor tissue and lies outside the human body, thereby inducing particle-induced radiation from the nanometal, thereby increasing the therapeutic dose in each tumor tissue. .
SOBP-PIRT 또는 TPBP-PIRT의 치료를 위한 가능성은 금이나 철 나노입자로 검사된 바 있으며, 실험쥐 옆구리 또는 다리에 생성된 CT-26 종양 모델로 100-300mg Kg-1의 양을 정맥 주사하였다. 종양 성장을 분석한 결과, MNP(p<0.001)가 주어지지 않은 그룹의 실험쥐와 비교해서, PIR-기반 나노방사효과에 의해서 완전히 종양이 치료된 것을 보여주었다. 이러한 TPBP-기반 PIRT는 치료가 불확실한 침윤성 전이 암 또는 널리 퍼진 염증 질환을 처치하기 위한 새로운 형태의 방사선 요법으로서 제시되었고, SOBP-기반 PIRT는 고형암에서 종양선량을 증가시킴으로써 필요 치료선량의 감소와 분획치료 횟수를 크게 감소시키는 양성자 또는 중이온 치료법으로서 제시되었다.The potential for the treatment of SOBP-PIRT or TPBP-PIRT has been tested with gold or iron nanoparticles, and intravenously injected with 100-300 mg Kg- 1 in a CT-26 tumor model generated in the flanks or legs of rats. . Analysis of tumor growth showed that tumors were completely cured by PIR-based nanoradioactive effects compared to mice in the group without MNP ( p <0.001). These TPBP-based PIRTs have been proposed as a new form of radiation therapy to treat invasive metastatic cancers or widespread inflammatory diseases that are uncertain about treatment. It has been suggested as a proton or heavy ion therapy which greatly reduces the number of times.
본 발명의 BP(Bragg-peak)-기반 입자 유도 방사선 치료요법(PIRT)은 금속 나노 입자(MMP)를 사용하여 금속 나노 입자의 외곽 전자와 양성자 또는 중이온 빔의 직접적인 쿨롱 충돌로부터 발생되는 PIR 효과를 생성하는 이온 빔 및 쿨롱 나노라디에이터 효과를 이용하여 종양 치료를 하는 것을 특징으로 한다.Bragg-peak (BP) -based particle guided radiation therapy (PIRT) of the present invention uses metal nanoparticles (MMP) to overcome the PIR effects resulting from direct coulomb collisions of outer electrons and proton or heavy ion beams of metal nanoparticles. Tumor treatment is characterized by using the generated ion beam and the Coulomb nano-radiator effect.
쿨롱 나노라디에이터효과는 금속원소가 나노입자의 형태를 가질 때 13-14 nm의 경우 금 또는 철 원소가 수백-수천개 밀집되어 원자-분자 클러스터를 이루며, 고에너지 이온빔(양성자 또는 중이온)의 입사로 쿨롱 충돌을 통하여 유발된 전자의 이탈과, 연속된 오제전자 및 특정 전자궤도 X-선의 방출이 이웃하는 원자를 연속적으로 재활성화 시킴으로써 유발되는 입자유도방사선이 증폭되는 현상을 특징으로한다.The coulomb nanoradiator effect is that when the metal element is in the form of nanoparticles, in the case of 13-14 nm, hundreds or thousands of gold or iron elements are clustered to form atomic-molecular clusters, and the incident energy of a high energy ion beam (proton or heavy ion) The release of electrons induced through coulomb collisions and the emission of continuous Auger electrons and specific electron orbital X-rays amplify particle induced radiation caused by successive reactivation of neighboring atoms.
또한, 상기 금속 나노 입자(MMP)는 고 에너지 양성자 빔으로 활성화되어, 입자 유도된 원자 내각전자(inner shell) 이온화 및 후속되는 탈여기 과정에 의해 국소적 X-선, γ-선, 광전자 및 오제 전자를 생성하도록 하는 것을 특징으로 한다.In addition, the metal nanoparticles (MMPs) are activated with high energy proton beams, resulting in local X-rays, γ-rays, optoelectronics and Auger by particle induced atomic shell ionization and subsequent de-excitation processes. Characterized in that to generate the electrons.
또한, 상기 금속 나노 입자(MMP)는 X-선, 이온 빔, RF 자기장 및 NIR 광등 다양한 물리 활성화 방법에 의하여 오제 전자, 입자 유도 X-선 방사(PIXE) 또는 열 에너지를 생성하도록 할 수 있으며, 양성자 빔 에너지는 40MeV 이상, 브래그피크(Bragg-peak)는 인체스킨의 입사점으로 부터 SOBP 경우 14mm-30cm에 배치되거나 TPBP 빔에서는 완전히 인체조직을 투과하도록 할 수 있다.In addition, the metal nanoparticles (MMP) may be generated by a variety of physical activation methods, such as X-rays, ion beams, RF magnetic fields and NIR light, to generate Auger electrons, particle-induced X-ray radiation (PIXE) or thermal energy, Proton beam energy of 40 MeV or more, Bragg-peak (Bragg-peak) can be placed at 14mm-30cm in the case of SOBP from the entry point of the human skin or completely penetrate the human tissue in the TPBP beam.
또한, 상기 브래그 피크는 치료종양의 모양과 생체내 위치에 따라 크기가 큰 고형암일 경우 펼쳐진 브래그 피크(SOBP; spread-out Bragg peak), 비교적크기가 작은 고형암의 경우(2 cm 미만) 흡수형 단일 BP (APBP), 정상조직에 퍼져있는 침윤성 종양의 경우 투과형 단일 BP (TPBP)등으로 양성자 또는 중입자 빔의 입사방식을 변환하여 종양조직에 입사시키고 수용된 나노금속입자와 반응하여 입자유도방사선(PIR; particle induced radiation)을 생성하도록 하는 것을 특징으로 한다.In addition, the Bragg peak is a spread-out Bragg peak (SOBP) for solid cancer having a large size according to the shape of the tumor and the location of the tumor, and for a relatively small solid cancer (less than 2 cm). BP (APBP), invasive tumors spreading in normal tissues, transmissive single BP (TPBP), etc. are converted into a proton or medium particle beam incident to the tumor tissue and reacted with the received nano-metal particles, particle-induced radiation (PIR; particle induced radiation).
또한, 제 1항 내지 제 3항 중 어느 한 항에 있어서,Furthermore, according to any one of claims 1 to 3,
양성자 또는 중입자 빔 에너지는 40MeV 이상, 브래그 피크(Bragg-peak)위치에서 선량은 1 Gy 이상으로, 선량율 (dose rate)은 저선량율 (30 Gy/hr) 및 고선량율 (2000 Gy/hr)에 범위로 치료환자의 특성에 따라 선택하고 단일 선량(single dose) 또는 분획(fractination) 입사하여 입자유도방사선을 유발하는 것을 특징으로 한다.The proton or medium particle beam energy is 40 MeV or more, the dose is 1 Gy or more at the Bragg-peak position, and the dose rate ranges from low dose rate (30 Gy / hr) and high dose rate (2000 Gy / hr). It is selected according to the characteristics of the treatment patient and characterized by inducing particle-induced radiation by entering a single dose or fractionation.
또한, 상기 금속 나노 입자(MNP; Metallic nanoparticles)는 금(Au), 철(Fe), 인디움(In), 가도리늄(Gd), 백금(Pt)등의 금속원소로서 Z값이 26 이상-90 사이의 순수 금속원소이거나 이들의 산화물로된 나노입자로서 사이즈가 1-100 nm 사이의 나노입자로서 양성자 빔 또는 중이온 입자와 반응하여 입자유도방사선(PIR; particle induced radiation)을 생성하도록 하는 것을 특징으로 한다.In addition, the metallic nanoparticles (MNP) are metallic elements such as gold (Au), iron (Fe), indium (In), gadolinium (Gd), and platinum (Pt). Nanoparticles consisting of pure metal elements or oxides of 90 nm in size and between 1-100 nm in size, which react with proton beams or heavy ion particles to produce particle induced radiation (PIR). It is done.
또한, 상기 양성자 또는 중입자 빔은 단일 브래그 피크(Bragg-peak) 또는 펼쳐진 브래그 피크(SOBP; spread-out Bragg peak)를 단일 방향(port) 또는 여러 방향으로 나누어 빔세기가 변조된 (intensity modulated)방식으로 종양조직에 입사시킴으로써 금속나노입자와 반응하여 입자유도방사선(PIR; particle induced radiation)을 생성하도록 하는 것을 특징으로 한다.In addition, the proton or medium particle beam is a method in which the beam intensity is modulated by dividing a single Bragg peak or a Spread-out Bragg peak (SOBP) into a single port or several directions. By reacting with the metal nanoparticles by incident on the tumor tissue to generate particle induced radiation (PIR).
또한, 상기 금속 나노 입자(MNP; Metallic nanoparticles)는 특정 종양조직을 표적 또는 약물동력학적 표면개질 수식이 첨가된 금속나노입자로서 양성자 빔 또는 중이온 입자와 반응하여 입자유도방사선(PIR; particle induced radiation)을 생성하도록 하는 것을 특징으로 한다.In addition, the metallic nanoparticles (MNP) are metal nanoparticles to which specific tumor tissues are added with target or pharmacokinetic surface modification formulas and react with proton beams or heavy ion particles (PIR; particle induced radiation). It characterized in that to generate.
오제 전자(Auger electrons), 입자 유도 X-선(PIXE) 또는 열 에너지는, X-선, 이온 빔, RF 자기장 및 NIR 광과 같은 다양한 물리 활성화 방법에 의해서 금속 나노입자(MNP)로 부터 발생될 수 있다. 표적 조직상에서 훨씬 많은 에너지 흡수율을 보이는 것에 비추어서 이 모든 물리적 활성 방법들은 종양 조직에 치료 효과를 가질 가능성이 있으나 양성자 또는 중이온 빔 방사선이 갖는 주요 잇점은 고 에너지 X-선, 중성자 빔 및 RF 자기장과 비교해서 브래그피크 효과로 인하여 비교적 정확한 방식으로 그리고 안전하게 인체 내 표적조직 부위에 에너지를 전달하는 것이다. 고 에너지 양성자 빔이 금속 나노 입자와 충돌할 때, PIXE X-선 방출, 광전자, 오제 전자 및 감마선을 포함하여 입자 유도 방사선 (PIR)이라고 하는 다양한 이차 방사선이 내각전자 이온화 또는 나노 입자 원자의 핵 반응을 통해서 발생될 수 있다. 또한 현재 개발중인 다른 물리적 에너지 활성법에 비해 훨씬 적은 양의 조직내 금속나노입자 농도로써(30-80 μg/g tissue) 치료유효 입자유도 방사선 선량의 발생작용이 특징이다.Auger electrons, particle induced X-rays (PIXE), or thermal energy can be generated from metal nanoparticles (MNP) by various physical activation methods such as X-rays, ion beams, RF magnetic fields, and NIR light. Can be. In view of the much higher energy absorption on the target tissue, all these physically active methods are likely to have therapeutic effects on tumor tissue, but the main advantage of proton or heavy ion beam radiation is compared with high energy X-rays, neutron beams and RF magnetic fields. Therefore, the Bragg Peak effect delivers energy to target tissue sites in the body in a relatively accurate manner and safely. When a high-energy proton beam collides with metal nanoparticles, various secondary radiations called particle induced radiation (PIR), including PIXE X-ray emission, optoelectronics, Auger electrons, and gamma rays, react with cabinet electron ionization or nuclear reaction of nanoparticle atoms. Can be generated through It is also characterized by the generation of therapeutically effective particle-induced radiation doses at much lower levels of metal nanoparticles (30-80 μg / g tissue) than other physical energy activation methods currently under development.
본 발명은 중이온 또는 양성자 빔의 방사에 의해서 MNP로부터 PIR을 유도하기 위한 신개념의 방사선 요법으로서, 종양 조직에 MNP를 전달한 후에 이온빔 방사에 따라 표적종양조직에서 PIR이 생성되어 치료효과를 유발하므로 내부 방사기와(internal emitter) 같은 역할과 효과가 치료에 이용된다. 본 발명의 시행 예에서는 브래그 피크 선량기준으로 100 Gy단회 선량으로 입사시킴으로써 SOBP 또는 TPBP 양성자빔 입자유도방사선에 의한 완치효과를 얻었으나, 나노금속입자 없이 양성자빔만으로 치료한 대조군은 종양성장의 지연후 재성장이 관찰되었다. 그러나 실제 환자치료에서는 정상조직의 안전성을 위해서 저선량 분획치료를 수행하여야 한다. 이 때 분획당 입사선량은 종양의 크기와 분포하는 위치에 따라 SOBP 또는 TPBP빔방식에서 2-50 Gy 사이의 선량을 선택할 수 있다. The present invention is a new concept of radiation therapy for inducing PIR from MNP by radiation of heavy ion or proton beam, and after delivery of MNP to tumor tissue, PIR is generated in target tumor tissue according to ion beam radiation, thereby causing a therapeutic effect. Roles and effects such as internal emitters are used in therapy. In the embodiment of the present invention, by injecting at 100 Gy single dose on the basis of Bragg peak dose, a cure effect by SOBP or TPBP proton beam particle-induced radiation was obtained. Regrowth was observed. In practice, however, low-dose fractional therapy should be performed for the safety of normal tissues. At this time, the incident dose per fraction can be selected between 2-50 Gy in SOBP or TPBP beam method depending on the size and location of the tumor.
양성자 빔의 브래그피크(BP;Bragg-peak) 에너지가 충분히 커질 때 BP는 양성자 빔이 통과하는 조사된 인체 내에서 발생하지 않고 에너지 축적없이 완전히 투과되며 인체 외부에서 에너지 방출이 될 수 있다. 이를 본 발명에서 편의상 투과성 단일 브래그피크(TPBP)라고 부른다. 이 경우 브래그피크의 조직투과깊이-선량 곡선특성에 의해 빔 경로에 있는 정상조직과 종양조직이 최소 정체기선량에 노출되는 동안에 나노입자가 축적된 종양세포내에서 쿨롱 충돌에 따라 MNP를 활성화하고 PIR을 발생시킬 뿐이다. PIR 선량효과만으로 치료 효과를 상당히 갖는 경우에 독특한 치료특성을 가지며, 양성자 요법을 포함하는 현재의 방사선 요법이 적용되지 않는 침윤성 종양, 국소적으로 퍼진 전이성 암 또는 확산성 염증 질환에 대한 새로운 처치 방식으로서 TPBP-기반 입자 유도 방사선 요법(TPBP-PIRT)이 적용될 수 있다. When the Bragg-peak energy of the proton beam is large enough, the BP does not occur in the irradiated human body through which the proton beam passes and is completely transmitted without accumulating energy, and energy can be emitted from outside the human body. This is called permeable single Bragg peak (TPBP) for convenience in the present invention. In this case, BraggPeek's tissue permeation depth-dose curves enable MNPs to be activated by coulomb collisions in the tumor cells where nanoparticles accumulate during normal and tumor tissue exposures in the beam path. It just happens. As a novel treatment modality for invasive tumors, locally spreading metastatic cancer, or diffuse inflammatory disease, which has unique therapeutic properties when the PIR dose effect alone has a significant therapeutic effect and is not covered by current radiation therapy, including proton therapy. TPBP-based particle induced radiation therapy (TPBP-PIRT) can be applied.
BP-기반 양성자 빔 방사 및 PIR 선량 측정 결과에 대하여 설명하면 다음과 같다.The BP-based proton beam emission and PIR dose measurement results are described as follows.
입자유도방사선치료의 주요 아이디어는 금속 나노 입자의 외곽 전자와 양성자 빔의 직접적인 쿨롱 충돌로부터 발생되는 PIR 효과를 생성하는 것으로서, 강력한 치료 효과를 갖는다. 조직깊이 및 양성자 빔 에너지의 상대적인 크기에 따라 BP의 위치 와 모양의 조절이 가능하기 때문에 테이블 1에 기술된 바와 같이 PIR 및 BP 효과가 결합되거나 또는 분리되어 작용할 수 있다. The main idea of particle guided radiation therapy is to generate PIR effects resulting from direct Coulomb collisions of the outer electrons of the metal nanoparticles with the proton beam, which has a powerful therapeutic effect. Because the position and shape of the BP can be controlled by the depth of tissue and the relative magnitude of the proton beam energy, the PIR and BP effects can be combined or separated as described in Table 1.
<테이블 1><Table 1>
Figure PCTKR2011009283-appb-I000001
Figure PCTKR2011009283-appb-I000001
Figure PCTKR2011009283-appb-I000002
Figure PCTKR2011009283-appb-I000002
도 1a는 TPBP-PIRT 실험 개요의 개략적 도면으로, 알루미늄 윈도우 후의 양성자 빔 에너지는 분광기에서 40MeV로 결정되었다. 시료는 빔 소스로부터 2.06m 떨어졌다. 종양 부위만이 양성자 빔에 노출되었으며; 주변 정상 조직은 종양 크기에 맞는 빔 분광기 내측에 배치된 가변 직경을 갖는 일련의 아크릴레이트 블록을 이용하여 차폐되었다.1A is a schematic diagram of the TPBP-PIRT experiment outline, where the proton beam energy after the aluminum window was determined to be 40 MeV in the spectrometer. The sample was 2.06 m away from the beam source. Only the tumor site was exposed to the proton beam; Peripheral normal tissue was shielded using a series of acrylate blocks with variable diameters placed inside the beam spectrometer to match tumor size.
도 1b는 종양모델실험쥐에서 브래그 피크가 조직에 들어가는 지점으로부터 14 mm 에서 발생되는 TPBP 양성자 빔에 의해서 방사되었다.FIG. 1B was radiated by a TPBP proton beam generated 14 mm from the point where the Bragg peak enters the tissue in tumor model mice.
동물 모델에서 양성자 빔 방사는 도 1a에서 제시된 바와 같은 실험 장비에 따라 조사되었다. 분광기에서 양성자 빔 에너지는 40MeV로서 결정되었다. BP는 도 1b에 도시된 바와 같이 입사점으로 부터 14mm에 배치될 수 있었다. 종양이 직경 4-5mm까지 성장하였을 때, 양성자 빔이 통과하는 종양을 포함하는 전체 조직의 크기는 7-8mm보다 작았으므로 시료 조직의 대부분은 TPBP 양성자 빔의 정체기 선량에 노출될 수 있었으며, BP는 다리 조직을 통과한 체외부에서 발생될 수 있었다. BP의 위치는 워터 팬텀 및 방수 마르쿠스 이온 챔버 검출기를 이용하여 조직깊이-선량 분포를 측정함으로써 결정되었다. 검출기에 축적된 전하는 1m 만큼 검출기를 이동시키는 동안에 기록되었으며, 도 2의 조직깊이-선량 분포 곡선으로서 표시되었다. 실제 샘플 위치 및 BP의 선량 측정은 두 개의 선량범위 이동(range shift) 및 GAFCHROMIC  MD-55 방사선색소 필름을 이용하여 방사선노출선량을 측정함으로써 결정되었다. 방사선 선량이 BP 위치에서 100-300 Gy였다면, 종양 위치에서 정체기 선량은 전형적으로는 23-75 Gy 만큼 측정되었다.Proton beam radiation in the animal model was investigated according to experimental equipment as shown in FIG. 1A. The proton beam energy in the spectrometer was determined as 40 MeV. The BP could be placed 14mm from the point of incidence as shown in FIG. 1B. When the tumor grew to 4-5 mm in diameter, the total tissue including the tumor through which the proton beam passed was less than 7-8 mm, so most of the sample tissue could be exposed to the stagnant dose of the TPBP proton beam. It could occur in vitro through the leg tissue. The location of BP was determined by measuring tissue depth-dose distributions using water phantom and waterproof Markus ion chamber detectors. The charge accumulated on the detector was recorded during the movement of the detector by 1 m and represented as the tissue depth-dose distribution curve of FIG. 2. Dose measurements of the actual sample position and BP are based on two range shifts and GAFCHROMIC   It was determined by measuring the radiation exposure dose using an MD-55 radiopigmentation film. If the radiation dose was 100-300 Gy at the BP position, the stagnant dose at the tumor position was typically measured by 23-75 Gy.
도 2는 SOBP-PIRT 실험 개요의 개략적 도면으로, 알루미늄 윈도우 후의 양성자 빔 에너지는 분광기에서 40MeV로 결정되었다. 동물모델시료는 빔 소스로부터 2.06m 떨어졌다. 종양 부위만이 양성자 빔에 노출되었으며; 주변 정상 조직은 종양 크기에 맞는 빔 분광기 내측에 배치된 가변 직경을 갖는 일련의 아크릴레이트 블록을 이용하여 차폐되었다. 선량이동장치를(range shift) 이용하여 종양의 크기에 따라 10-13개의 단일 브래그피크가 종양조직전체에 순서대로 위치하도록 함으로써 선량이 고르게 분포하도록 하였다. FIG. 2 is a schematic diagram of the SOBP-PIRT experiment summary, where the proton beam energy after the aluminum window was determined to be 40 MeV in the spectrometer. Animal model samples were 2.06 meters from the beam source. Only the tumor site was exposed to the proton beam; Peripheral normal tissue was shielded using a series of acrylate blocks with variable diameters placed inside the beam spectrometer to match tumor size. The dose shift device (range shift) was used to distribute the dose evenly by placing 10-13 single Bragg peaks in order throughout the tumor tissue, depending on the size of the tumor.
이론적으로 양성자 빔 경로에 위치한 조직 내의 MNP의 존재는 흡수 및 산란을 포함하는 그 상호 작용으로 인해서 조직 침투의 출구에서 방사선 선량을 감소시킬 수 있다. 다양한 MNP의 농도를 포함하는 일련의 실린더형 조직 팬텀들은 이러한 효과를 측정하는데 사용되었으며, 실린더형 팬텀 바닥 부위에 부착된 GAFCHROMIC  MD-55 방사선색소 필름으로 투과된 양성자 빔을 측정하였으며, 마이크로 농도계로 값을 읽었다. 테이블 2에 요약된 데이터는 MNP를 포함하지 않는 대조군 팬텀에 대비해서 팬텀 내의 MNP의 농도가 증가함에 따라 양성자 빔의 투과된 선량이 비례하여 감소를 나타냈다. In theory, the presence of MNP in tissue located in the proton beam path can reduce the radiation dose at the exit of tissue penetration due to its interaction including absorption and scattering. A series of cylindrical tissue phantoms containing various concentrations of MNP was used to measure this effect, and the GAFCHROMIC attached to the bottom of the cylindrical phantom   The proton beam transmitted through the MD-55 radiopigment film was measured and the value was read with a micro densitometer. The data summarized in Table 2 showed a proportional decrease in the transmitted dose of the proton beam as the concentration of MNP in the phantom increased relative to the control phantom without MNP.
8.5-12.5% 감소는 나노 입자의 농도가 100㎍ Au/g 내지 2mg Au/g 범위에 있을 때 관찰되었다. 이러한 감쇄된 선량은 AuNP의 산란 또는 흡수로부터 투과 양성자빔 손실을 표시할 수도 있으며, 생체내의 실험에서는 MNP로부터 PIR의 생성에 부분적으로 기여할 수 있다.A 8.5-12.5% reduction was observed when the concentration of nanoparticles ranged from 100 μg Au / g to 2 mg Au / g. This attenuated dose may indicate transmission proton beam loss from scattering or absorption of AuNPs and may contribute in part to the generation of PIR from MNPs in in vivo experiments.
<테이블 2><Table 2>
[규칙 제91조에 의한 정정 25.02.2013] 
Figure WO-DOC-FIGURE-58
[Revisions under Rule 91 25.02.2013]
Figure WO-DOC-FIGURE-58
[규칙 제91조에 의한 정정 25.02.2013] 
Figure WO-DOC-FIGURE-59
[Revisions under Rule 91 25.02.2013]
Figure WO-DOC-FIGURE-59
도 3의 투과성 단일 브래그 피크(TPBP)를 위한 투과깊이-선량 분포는 물 팬텀 및 방수 마르쿠스 이온 챔버 검출기를 이용하여 측정되었다. TPBP의 정체기선량은 입사 지점으로부터 샘플이 배치된 7-8 mm로 피크 값의 23-25% 정도였다.The depth-to-dose distribution for the permeable single Bragg peak (TPBP) of FIG. 3 was measured using a water phantom and a waterproof Markus ion chamber detector. The stagnant dose of TPBP was 7-8 mm with samples placed from the point of incidence, about 23-25% of the peak value.
PIRT 효과의 종양 감소 분석에 대하여 설명하면 다음과 같다.The tumor reduction analysis of the PIRT effect is described as follows.
도 4a의 종양체적감소 분석 결과는 비처치 대조 그룹과 비교해서 종양완치 그룹들(AuNP 300mg-50Gy FeO NP 300mg-75Gy, FeO NP 100mg-75Gy) 및 부분 반응 그룹들(RO-25Gy, RO-50Gy, RO-75Gy, RO-75Gy, AuNP 100mg-50Gy, FeO NP 100mg-50Gy)을 나타낸다. 차등 종양 크기 성장 속도는 처치 후 10-15일 후에 두개의 실험군 사이에서 관찰되었다. Tumor reduction analysis of FIG. 4A shows that tumor cure groups (AuNP 300 mg-50Gy FeO NP 300mg-75Gy, FeO NP 100mg-75Gy) and partial response groups (RO-25Gy, RO-50Gy) compared to the untreated control group. , RO-75Gy, RO-75Gy, AuNP 100mg-50Gy, FeO NP 100mg-50Gy). Differential tumor size growth rates were observed between the two experimental groups 10-15 days after treatment.
종양체적감소 분석에 의한 TPBP-PIRT의 치료 효과는 도 4a에 제시되었다. 모든 방사선단일처리 군에서는 정체기산량이 25-75Gy로 주어질 때, 초기에 종양 성장의 지연반응을 보여주었으며, 이어서 치료후 2-4주 내에 대부분이 사망한 비처리 대조군과 비교해서 재성장이 관찰되었다. 대조적으로 종양완치(CTR)는, 치료 후 13-30일 내에 선량에 의존해서 MNP수용 방사선처리 실험군에서 관찰되었다. The therapeutic effect of TPBP-PIRT by tumor volume reduction analysis is shown in FIG. 4A. All of the radiotherapy groups showed delayed tumor growth initially, given retention of 25-75 Gy, followed by regrowth compared to the untreated control, the majority of whom died within 2-4 weeks after treatment. In contrast, tumor cure (CTR) was observed in the MNP-accepted radiotherapy group depending on dose within 13-30 days after treatment.
종양체적감소 분석에 의한 SOBP-PIRT의 치료 효과는 도 4b에 제시되었다.The therapeutic effect of SOBP-PIRT by tumor volume reduction analysis is shown in Figure 4b.
도 5는 TPBP의 일정한 정체기선량, 46 Gy에 대한 종양체적감소 분석으로 100mg/kg을 수용하는 실험군과 비교해서, 더 높은 300mg/kg MNP 투여량을 수용한 실험군에서 완치가 관찰되었다.FIG. 5 shows cure in the experimental group receiving a higher 300 mg / kg MNP dose compared to the experimental group receiving 100 mg / kg in a constant stagnant dose of TPBP, tumor volume reduction analysis for 46 Gy.
300 mg/kg MNP를 수용한 실험군은 부분치료 반응 후에 재-성장을 보이는 100mg/kg MNP 수용 실험군에 대조적으로 완치를 보였다. 일정한 MNP 투여량에 대해서 여러 방사선선량을 수용하는 실험군들의 종양 성장 양상은 도 6a와 도 6b에 도시되었다. The experimental group receiving 300 mg / kg MNP showed cure in contrast to the 100 mg / kg MNP receiving experimental group showing re-growth after partial treatment response. Tumor growth patterns of the experimental groups that receive several radiation doses for a given MNP dose are shown in FIGS. 6A and 6B.
도 6은 일정한 MNP 투여량, 100mg/kg(A) 및 300mg/kg(B)에 대한 종양체적감소분석결과로, 69Gy 및 46Gy의 방사선량을 수용한 실험군에서 완치가 관찰됨을 나타내었다.Figure 6 shows the tumor volume reduction analysis for a constant MNP dose, 100mg / kg (A) and 300mg / kg (B), the cure was observed in the experimental group receiving the radiation dose of 69Gy and 46Gy.
100 mg/kg MNP 투여량을 수용한 실험군에서는 69 Gy-TPBP로 조사된 실험군에서만 완치가 관찰되었다. 그러나, 300 mg/kg을 수용한 실험군에서는 46 또는 69 Gy-TPBP 선량에서 완치가 관찰되었다.In the experimental group receiving the 100 mg / kg MNP dose cure was observed only in the experimental group irradiated with 69 Gy-TPBP. However, cure was observed at the 46 or 69 Gy-TPBP dose in the experimental group receiving 300 mg / kg.
PIRT의 종양 완치 및 장기 치료 효능을 설명하면 다음과 같다.The tumor cure and long-term treatment efficacy of PIRT is described as follows.
완치가 관찰된 실험쥐 개체수는 각각의 실험 그룹에 대해서 계수되었으며 테이블 4에 요약되었다. 완치는 방사선량 및 나노입자 투여량에 따라 달리 관찰되었다. 방사선 단일처리 군에서는 92 Gy 처리시 80% 완치율이 관찰되었으며, 115 Gy 처리시 100 % 완치가 관찰되었다. 100 또는 300 mg/kg의 MNP 수용실험군에서 완치율은 정체기 선량에 따라 증가하였다. Au 및 Fe NP로 처치된 실험쥐 그룹에서 금나노입자 수용실험군이 다소 높은 완치율을 보였다. 46 Gy 정체기 방사선량과 300mg/kg MNP수용 실험군에서는 거의 100% 완치율이 관찰되었다.Rat populations where cure was observed were counted for each experimental group and summarized in Table 4. Cures were observed differently depending on radiation dose and nanoparticle dose. In the radiotherapy group, 80% cure rate was observed at 92 Gy treatment and 100% cure at 115 Gy treatment. In 100 or 300 mg / kg MNP acceptance groups, the cure rate increased with stagnation dose. Gold nanoparticle acceptance test group showed somewhat higher cure rate in the mice treated with Au and Fe NP. Almost 100% cure rate was observed in the 46 Gy stationary dose and 300 mg / kg MNP acceptance group.
<테이블 4><Table 4>
[규칙 제91조에 의한 정정 20.03.2012] 
Figure WO-DOC-TABLE-73
[Revisions under Rule 91 20.03.2012]
Figure WO-DOC-TABLE-73
[규칙 제91조에 의한 정정 20.03.2012] 
Figure WO-DOC-TABLE-74
[Revisions under Rule 91 20.03.2012]
Figure WO-DOC-TABLE-74
완치가된 실험쥐에서는 9개월-1년간의 추이기간동안 재발이 일어나지 않고 생존하였으며, 반면에 나노입자 수용없이 방사선 단일처리 대조군과 나노입자단일 처리 대조군은 모두 2-6주안에 죽었다. 방사선단일처리 군은 11 % 장기생존율을 보인 반면, 금 또는 철나노입자와 방사선을 수용한 실험군은 평균 64-100 % 1년 장기생존율이 관찰되었다.Cured rats survived without recurrence during the 9-month to 1-year transition period, whereas both radio- and nanoparticle-untreated controls died within 2-6 weeks without nanoparticle acceptance. The radiation alone treatment group showed 11% long-term survival rate, whereas the experimental group that received gold or iron nanoparticles and radiation showed 64-100% 1-year long-term survival rate.
MNP의 종양 흡수에 대해 설명하면 다음과 같다.The tumor absorption of MNP is described as follows.
ICP를 이용하여 Fe NP 및 Au NP의 정량적인 약물 동력학은, 나노 입자의 혈액 농도가 2분과 15분 사이에 50% 하강으로 감소하였으며, 15분과 48시간 사이에 나머지 50%의 감소가 느리게 이어졌음을 보여주었다.Quantitative pharmacokinetics of Fe NP and Au NP using ICP showed that the blood concentration of nanoparticles decreased to 50% drop between 2 and 15 minutes, and the remaining 50% decrease slowly between 15 and 48 hours. Showed.
약물 동력학 ICP 데이터는 도 6에 도시되었다. Pharmacokinetic ICP data is shown in FIG. 6.
도 6은 정맥 주사 후에 MNP의 일시적인 조직 농도가 ICP-MS 방법에 의해서 측정되었다. 혈액 및 특별 종양 흡수에서 빠른 배설이 FeO NP와 비교해서 AuNP에 대해서 관찰되었다.6, transient tissue concentration of MNP after intravenous injection was measured by ICP-MS method. Fast excretion in blood and special tumor uptake was observed for AuNPs compared to FeO NPs.
300 mg/kg의 도스로 주사하고 15분 후에 나노 입자의 종양 농도는 금과 철 각각에 대해서 137.4±50.2㎍ Au/g 조직 및 56.6±18.2㎍ Fe/g 조직인 한편, 주변 정상근육조직내 농도는 금과 철 각각에 대해서 19.5㎍ Au/g 및 21.1㎍ Fe/g 이었다. 종양 대 근육 MNP 비율은 15분 후 주사에서 금 및 철에 대해서 7.0 및 2.7에 각각 도달했으며, 24 시간 지나서는 각각 금 및 철에 대해서 59.7 및 6.9로 증가하였는데 이러한 나노입자의 종양조직 선택적 축적성은 양성자 빔을 조직에 투과시, 종양조직내 MNP의 선택적 활성화를 가능하게 한다. 근육조직에는 주사 후 24 시간에 배출되고 거의 금이 없었던 반면에, 철나노입자의 경우 15분째 조직내 잔재하는 철농도 값의 82%가 24 시간 뒤에도 그대로 잔존하였다. 정량적인 데이터에서 FeNP 종양 축적은 주사 도스가 3 배 증가함에 따라서 300% 만큼 증가하였고, MNP 주사투여량대비 조직내 나노입자농도의 백분율은 100mg/kg 및 300mg/kg 투여시 유사하였으며, 총 투여량의 1% 미만이 주사후 일정 시간뒤 종양조직에 축적되었다. After 15 minutes of injection with a dose of 300 mg / kg, the tumor concentration of the nanoparticles was 137.4 ± 50.2 μg Au / g tissue and 56.6 ± 18.2 μg Fe / g tissue for gold and iron, respectively, while the concentration in the surrounding normal muscle tissue was 19.5 μg Au / g and 21.1 μg Fe / g for gold and iron, respectively. Tumor-to-muscle MNP ratios reached 7.0 and 2.7 for gold and iron, respectively, at 15 minutes post injection, and increased to 59.7 and 6.9 for gold and iron, respectively, after 24 hours. Upon transmission of the beam through tissue, it enables selective activation of MNP in tumor tissue. Muscle tissue was excreted 24 hours after injection and had almost no gold, whereas iron nanoparticles remained 82% of iron concentration in tissue after 15 minutes. In quantitative data, FeNP tumor accumulation increased by 300% as the injection dose increased threefold, and the percentage of tissue nanoparticle concentrations compared to the MNP injection dose was similar at 100 mg / kg and 300 mg / kg doses. Less than 1% of the cells accumulated in the tumor tissue some time after injection.
합성된 금속 나노 입자의 크기에 대하여 설명하면 다음과 같다.Referring to the size of the synthesized metal nanoparticles are as follows.
금 및 철 나노 입자가 본 발명에서 사용된다. 평균 직경 14nm의 리간드-코팅된 금 나노 입자(AuL-NP)를 사용 하였다. FeNP의 평균 입자 크기, 크기 분포 및 형태는 투과 전자 현미경(TEM)를 이용하여 조사하였다. Fe-NP 입자들은 직경이 10.6nm이며 표준 편차가 0.8nm 형상의 구형이었다. Fe-NP는 알긴산염으로 코팅된 후에 13-15 nm의 직경을 갖는 것으로 측정되었다.Gold and iron nanoparticles are used in the present invention. Ligand-coated gold nanoparticles (AuL-NP) with an average diameter of 14 nm were used. Average particle size, size distribution and morphology of FeNPs were investigated using transmission electron microscopy (TEM). The Fe-NP particles were spherical with a diameter of 10.6 nm and a standard deviation of 0.8 nm. Fe-NP was measured to have a diameter of 13-15 nm after coating with alginate.
PT(Proton Therapy)에서 펼쳐진 브래그 피크(SOBP; spread-out Bragg peak ) 기술을 이용하는 것은 종양에 더 균일한 선량분포를 제공한다. 그러나, 또한 증가된 도입선량을 유발하여, 양성자치료가 X-선 방사선치료보다 더 낮은 출구선량을 가져올지라도 종래의 방사선 요법보다 주된 장점이 SOBP 사용으로 사라지게 된다.Using spread-out Bragg peak (SOBP) technology in Proton Therapy (PT) provides more uniform dose distribution in tumors. However, it also leads to increased introduction doses, so that even though proton therapy results in lower exit doses than X-ray radiation, the main advantage over conventional radiation therapy disappears with the use of SOBP.
대조적으로, 입자유도방사선치료(PIRT)의 주된 장점은 종양 부위에서 입자유도방사선량(PIR)을 생성하기 위해 종양에 축적된 MNP에 양성자빔을 방사시켜 다중 쿨롱 충돌로 MNP를 활성화시켜 주변의 건강한 조직의 선량을 그대로 유지한 채 종양선량을 크게 증대시키는 것이다. 이 때 양성자 빔을 SOBP 형태로 방사하면, 종양에 고르게 선량이 분포시킴과 동시에, 종양조직내 MNP와 반응하여 추가로 PIR이 유도되어 선량증강을 가져와 종양치료선량을 증가시키는 결과를 가져온다. 양성자 빔을 단일 투과빔으로 방사하면, 양성자 빔의 역할은 도입선량을 증가시키지 않고 주로 MNP를 활성화시킨다. 따라서 TPBP-PIRT의 치료 특이성은 양성자빔의 종양을 포함하는 특정지역 방사와 MNP의 종양선택성에 의해서 결정된다. 입자유도방사선치료루 완치는 실험쥐 그룹들 사이의 통계적으로 중요한 차이가 없이 대부분이 처치 후 20-30일에 발생하였다. 평균 TVGR10d-15d 이 양의 값일 때 완치율은 0 내지 50%로 분포하였으며 음의 값이 되면 처치된 실험쥐 그룹은 종양완치 반응을 나타내었다.In contrast, the main advantage of particle-guided radiation therapy (PIRT) is that the proton beam is radiated to the MNP accumulated in the tumor to generate particle-induced radiation dose (PIR) at the tumor site, activating the MNP in multiple coulomb collisions. The tumor dose is greatly increased while maintaining the tissue dose. At this time, when the proton beam is radiated in SOBP form, the dose is evenly distributed in the tumor, and the PIR is further induced in response to the MNP in the tumor tissue, resulting in a dose increase, thereby increasing the tumor treatment dose. When the proton beam is radiated into a single transmission beam, the role of the proton beam activates the MNP mainly without increasing the introduction dose. Therefore, the specificity of treatment of TPBP-PIRT is determined by the specific site radiation including the proton beam tumor and the tumor selectivity of MNP. Particle-guided radiotherapy cures occurred almost 20-30 days after treatment, with no statistically significant difference between the groups of mice. When the mean TVGR 10d-15d was positive, the cure rate was distributed from 0 to 50%. When the negative TVGR was negative, the treated rat group showed a tumor-cure response.
PIR은 주로 PIXE X-선 및 이온화 전자, 고-LET 오제 전자로 이루어지며, 부분적으로는 비교적 높은 양성자 빔 에너지로 입사하는 경우에(>100 MeV) 부수적인 γ-선 발생으로 이루어진다. 그러므로 PIRT의 치료 특성은 기존의 다른 방사선 요법들과 매우 다르다. 고 에너지 양성자와의 충돌은 내각전자를 이온화시키기는 데 충분한 에너지를 제공하는 입사 양성자 및 궤도 전자 사이의 쿨롱 상호작용을 통해서 내각전자 이온화를 발생한다. 내각전자의 이온화에 이어서, 빈 에너지 준위을 채우기 위해서 외각 전자가 더 낮은 에너지준위로 천이하는 탈여기가 뒤 따르게 된다. 그에 따라서 두 개의 외각전자에너지 차이에 해당하는 X-선 방사 또는 오제 전자의 배출이 경쟁적으로 외각전자궤도 로부터 유발된다. 외각전자궤도 천이로 유발되는 두 개의 빈 공간은 다른 전자로 채워질 수 있으며, 연속적으로 오제 전자천이계단이 발생될 수 있다. 오제 전자천이계단에서 방사되는 오제전자의 에너지 분포는 내각전자 천이 확률 및 에너지 차이에 의해 결정되며 양성자 피폭시 FeNP 또는 AuNP로부터 방사되며 eV-keV의 에너지 범위를 가질 수 있다. 그러므로, 수용액내에서 이들의 확산 거리는 낮은 에너지 전자(<100 Ev)에 대해서 수 나노 미터로부터 높은 에너지 전자(>10keV)에 대해서 수 마이크로미터 범위에 있다. X-선 방사의 에너지는 MNP의 원자 Z-값에 의존한다. 금의 L-라인 X-선(9-14keV) 및 철원소의 K-라인 X-선(7keV)는 모두 투과깊이가 짧아 1 cm 미만으로 감쇄하며 종양치료선량에 기여할 것이다. 그러므로 AuNP 또는 FeNP로 부터의 오제 전자 및 PIXE X-선은 대부분 종양 조직 내부에 국소화된다.PIR mainly consists of PIXE X-rays and ionized electrons, high-LET Auger electrons, and in part consists of incidental γ-ray generation when incident at relatively high proton beam energy (> 100 MeV). Therefore, the therapeutic properties of PIRT are very different from other existing radiation therapies. Collision with high-energy protons results in internal electron ionization through the Coulomb interaction between the incident protons and the orbital electrons providing sufficient energy to ionize the internal electrons. Following ionization of the inner electrons is followed by a deexcitation where the outer electrons transition to a lower energy level to fill the empty energy level. Accordingly, the emission of X-ray radiation or Auger electrons corresponding to the difference between the two outer electron energies is competitively induced from the outer electron orbit. The two empty spaces caused by the outer electron orbit transition can be filled with different electrons, and the Auger electron transition step can be generated continuously. The energy distribution of the Auger electrons emitted from the Auger electron transition step is determined by the cabinet electron transition probability and the energy difference, and is emitted from FeNP or AuNP upon proton exposure and may have an energy range of eV-keV. Therefore, their diffusion distances in aqueous solutions range from several nanometers for low energy electrons (<100 Ev) to several micrometers for high energy electrons (> 10 keV). The energy of X-ray radiation depends on the atomic Z-value of the MNP. Gold L-line X-rays (9-14 keV) and iron element K-line X-rays (7keV) both have short permeation depths that will attenuate less than 1 cm and contribute to tumor treatment dose. Therefore, Auger electrons and PIXE X-rays from AuNP or FeNP are mostly localized inside tumor tissue.
X-선 유도 오제전자방출 과정과 비교시, 높은 에너지 양전자와 금속 나노 입자 내부의 쿨롱 충돌은, 충돌단면적이 상대적으로 커서 더 효율적으로 오제 전자방출계단을 유도할 수 있다. 또한 나노입자에서는 수천개의 원자가 단지 14 nm-직경내 공간을 차지하는데반하에, 수천 개의 분리된 원자 시료는 1mM 농도에서 106 nm3 이상의 훨씬 더 큰 공간에 분포할 수 있다. 입사 양성자의 전형적인 에너지가 K-껍질의 전자에너지와 비교해서 훨씬 더 크므로 운동 에너지를 많이 잃지 않고도 주변 나노 입자의 원자는 물론이고 나노 입자 내부의 원자와 다중 쿨롱 충돌에 의해서 입사 양성자에 의한 다중 외각전자 이온화가 유발될수 있음이 예측된다. 따라서 나노 입자들은 양성자 빔으로 조사되는 동안에 오제 전자 및 양성자, 다른 이차 전자들을 연속적으로 방출할 수 있다. 이러한 효과는 실험적으로 나노라디에이터 효과로 명명되었다.Compared to the X-ray induced Auger electron emission process, the coulomb collision between the high energy positron and the metal nanoparticles can induce the Auger electron emission step more efficiently due to the relatively large impact area. Also, in nanoparticles, thousands of atoms occupy only 14 nm-diameter space, while thousands of separated atomic samples can be distributed in much larger spaces of 10 6 nm 3 and more at 1 mM concentration. Since the typical energy of the incident protons is much larger than the electron energy of the K-shell, multiple outer shells of the incident protons are caused by multiple coulomb collisions with atoms within the nanoparticles as well as atoms of the surrounding nanoparticles without losing much kinetic energy. It is anticipated that electron ionization may be induced. Thus, nanoparticles can continuously emit Auger electrons, protons, and other secondary electrons while being irradiated with a proton beam. This effect has been experimentally named the nanoradiator effect.
MNP 주사 투여량, 입자 크기, Z-값 및 약물 동력학 및 표적수식을 통하여 생체분포을 포함한 MNP의 물리화학적특성은 물론이고 방사선 선량 치료 효율을 조율할 수 있다. 완치율은 방사선 선량 또는 MNP의 주사 투여량의 증가에 따라 더 자주 관찰되었다. 또한 BP 에너지 및 BP 모드(테이블 1)는 치료 계획의 일부로 인체내의 표적 종양의 위치에 따라서 선택되어야 한다. 16-56 Gy의 정체기 선량의 양성자빔은 건강한 조직에 손상을 줄 수 있으므로 단일 선량 대신에 투과형 입자유도방사선치료(TPBP-PIRT)의 방사선선량은 기존 방사선 요법과 같이 10 Gy 미만의 감소된 선량으로 분획될 수 있다. 예로서 TPBP-PIRT로 표적 뇌 종양을 처치하기 위해서는, BP가 중단 없이 전체 뇌를 완전히 투과하도록 전형적인 양성자 빔의 조직투과깊이-선량 곡선에 기초하여 150 MeV 이상을 가져야 한다. 양성자 빔의 에너지가 250 MeV에 도달할 때 정체기선량 역시 BP의 40%만큼 증가하기 때문에, 표적 위치에 맞는 BP 에너지 및 선량을 고안할 필요가 있다.MNP injection dose, particle size, Z-value, and pharmacokinetics and target equations can tune the radiation dose treatment efficiency as well as the physicochemical properties of MNP, including biodistribution. The cure rate was observed more frequently with increasing radiation dose or injection dose of MNP. In addition, BP energy and BP mode (Table 1) should be selected according to the location of the target tumor in the human body as part of the treatment plan. Stagnant doses of 16-56 Gy of proton beams can damage healthy tissue, so instead of a single dose, radiation doses of TPBP-PIRT are reduced to less than 10 Gy, as with conventional radiation therapy. Can be fractionated. For example, to treat target brain tumors with TPBP-PIRT, the BP should have at least 150 MeV based on the tissue penetration depth-dose curves of a typical proton beam so that BP completely penetrates the entire brain without interruption. Since the stagnant dose also increases by 40% of the BP when the proton beam reaches 250 MeV, it is necessary to devise BP energy and dose that is appropriate for the target location.
광 활성화 치료법에서 X-선의 전형적인 에너지는 100 keV 미만인 반면에, 입자유도방사선치료에서 양성자빔 에너지는 100 MeV 이상으로 일정한 치료방사선선량 하에서 나노 라디에이터 효과에 의해서 오제 전자를 포함하는 더 많은 이차 방사선생성 수율이 예측된다.While the typical energy of X-rays in photoactivation therapy is less than 100 keV, the proton beam energy in particle guided radiation therapy is more than 100 MeV, resulting in more secondary radiation yields involving Auger electrons by nanoradiator effect under constant therapeutic radiation dose. Is expected.
금속 나노입자제조에 대하여 설명하면 다음과 같다.Referring to the production of metal nanoparticles are as follows.
리간드가 코팅된 금 나노입자(Au NP)는, 구연산염이 코팅된 금 나노입자 용액에 리간드(L)의 수용액을 직접 첨가하여 준비하였다. 리간드(L), 시스테인과 결합된 디에틸렌트리아민 펜타아세틱 산(DTPA) 쌍은 6 시간동안 80 ℃에서 DMF(20mL와 두 개의 균등한 L-시스테인 메틸 에스테르(1.09g, 6.37mmol)을 갖는 디에틸렌트리아민-N,N,N,N,N-펜타아세틱 산(DTPA)-비스(무수물)(1.13g, 3.18mmol)의 반응으로부터 직접 준비되었다. 구연산염이 코팅된 직경 12nm인 금 나노입자는 HAuCl4 소듐 구연산염으로 환원시켜 미리 제작하였다. 간략하게 설명하면, 물(1 L)에서 HAuCl4.3 H2O(0.33g, 1mmol)을 강렬하게 교반하면서 연속해서 끓이고, 교반된 용액에 소듐 구연산염(1.14g, 3.88mmol)을 빨리 첨가하여 용액의 색깔이 황색에서 자주색으로 변화를 가져오고, 이 용액을 10분간 더 끓여서 가열 덮개를 제거한 후에 용액은 추가로 10분간 교반하였다. 리간드(L; 150 mg)가 100 mL 용액에 첨가되며 최종 혼합물을 20 시간 동안 교반하였다. 여기에 동일량의 아세톤이 첨가되었으며 이 용액은 4 시간동안 더 교반한 후 원심분리법에 의해 금나노입자가 수집되었으며 물, 아세톤 및 에테르로 연속해서 세척되었다. 금 나노입자의 입자 크기 및 그 분산은 광산란 기술을 이용하여 측정되었다.Ligand-coated gold nanoparticles (Au NP) were prepared by directly adding an aqueous solution of ligand (L) to a citrate-coated gold nanoparticle solution. The diethylenetriamine pentaacetic acid (DTPA) pair bound to ligand (L), cysteine, had DMF (20 mL and two equivalent L-cysteine methyl esters (1.09 g, 6.37 mmol) at 80 ° C. for 6 hours. Diethylenetriamine-N, N, N, N, NIt was prepared directly from the reaction of pentaacetic acid (DTPA) -bis (anhydride) (1.13 g, 3.18 mmol). Gold Nanoparticles with Citrate Coated 12nm Diameter HAuCl4To Prepared in advance by reducing with sodium citrate. Briefly, HAuCl in water (1 L)4.3 H2Boil continuously with O (0.33 g, 1 mmol) under vigorous stirring, quickly add sodium citrate (1.14 g, 3.88 mmol) to the stirred solution to change the color of the solution from yellow to purple, and add 10 The solution was stirred for an additional 10 minutes after further boiling to remove the heating lid. Ligand (L; 150 mg) was added to 100 mL solution and the final mixture was stirred for 20 hours. An equal amount of acetone was added thereto and the solution was further stirred for 4 hours, after which gold nanoparticles were collected by centrifugation and washed successively with water, acetone and ether. Particle size and dispersion of gold nanoparticles were measured using light scattering techniques.
알긴산이 코팅된 초강자성 나노입자(Fe NP)은, 전 논문에 보고된 바와 같이, 철을 함유한 그리고 철 염용액에 초음파를 가함으로써 합성된다. 간략히 설명해서, FeCl24H2O(1.72 g) 및 FeCl36H2O(4.70 g) (8.65 mmol Fe2+/17.30 mmol Fe3+)가 80ml의 증류수에 용해하고, 흑 자성 산화물 석출물이 아르곤 분위기하에서 상기 용액을 80℃ 까지 가열함으로써 획득되었으며, 28-30%의 암모늄 수산화물을 물에 첨가함으로써 pH를 10까지 증가시키고, 1 시간 동안 140W의 출력으로 20kHz 초음파에 혼합된 철 용액을 노출시켰다. 알긴산염은 입자들을 분산시키기 위해서 나노 입자 표면을 코팅하는데 사용되었다. 간략하게, 2g의 자철석 나노 입자는, 연속 교반된 질소 가스 하에서 30분 동안 50W의 출력에 노출시키면서 상기 용액을 80℃로 가열함으로써 60ml의 염분 그리고 25ml의 알긴 산 용액에 분산되었다. 이 입자들은 강한 네오디늄 자석(자계 밀도: Br=11000 가우스)에 노출시키는 동안 염분으로 세척함으로써 정화되었다. 마지막으로, 25 mg/ml FeNP를 포함하는 자기유체가 획득되었다. 평균 입자 크기, 크기 분산 및 FeNP의 형태는 투과 전자 현미경(TEM)을 이용하여 검사되었다.Alginate-coated superferromagnetic nanoparticles (Fe NPs), as reported in previous papers, are synthesized by applying ultrasound to iron containing and iron salt solutions. Briefly, FeCl 2 4H 2 O (1.72 g) and FeCl 3 6H 2 O (4.70 g) (8.65 mmol Fe 2+ /17.30 mmol Fe 3+ ) are dissolved in 80 ml of distilled water, and the black magnetic oxide precipitate is argon. Obtained by heating the solution to 80 ° C. under atmosphere, the pH was increased to 10 by the addition of 28-30% ammonium hydroxide to water and the mixed iron solution exposed to 20kHz ultrasound at an output of 140W for 1 hour. Alginate was used to coat nanoparticle surfaces to disperse the particles. Briefly, 2 g of magnetite nanoparticles were dispersed in 60 ml of salt and 25 ml of alginic acid solution by heating the solution to 80 ° C. while exposing to a 50 W output for 30 minutes under continuous stirred nitrogen gas. These particles were clarified by washing with saline while exposed to strong neodymium magnets (magnetic density: Br = 11000 gauss). Finally, an autofluid containing 25 mg / ml FeNP was obtained. Average particle size, size dispersion and morphology of FeNPs were examined using transmission electron microscopy (TEM).
BP 모드에 의한 동물 모델에서 아래와 같이 양성자 빔 조사를 하였다.Proton beam irradiation was performed as follows in the animal model by BP mode.
동물 모델에서 양성자 빔 조사는 도 1에 제시된 바와 같은 실험 기구에 따라서 조사되었다. SOBP 모드 입자유도방사선치료법에서는 종양모델을 실험쥐의 다리 위 옆구리에 제작하고 TPBP 모드 입자유도방사선치료법에서는 실험쥐의 다리에 모델을 제작하였다. 실험쥐는, 100 내지 300 mg/kg 체중에서 금 또는 철 나노 입자가 주사되었다. 다섯 개의 방사선 단일 처리 그룹이 대조군으로 준비되었다. 실험쥐는 20mg/kg의 케타민 및 18.4 mg/kg의 자일라진을 복강 내로 주사하여 마취시켰다. MNP 염분 용액의 오십 마이크로리터가 양성자 빔 조사 24 시간 전에 동물의 꼬리 정맥에 주사되었다. 실험쥐는, 한국 암센터병원 (대한민국, 서울)의 LEPT 양성자 빔 라인에서 SOBP 또는 TPBP 모드로 입사되어, 양성자 빔 소스로부터 2.06 m 떨어져, 샘플에 대해서 0.51 내지 0.67 Gy/s의 선량율로 BP 선량 또는 BP선량의 약 23%인 정체기 선량을 전달하는 동안에 나노 입자와의 쿨롱 충돌을 유도하였다. SOBP에서는 단일 BP 선량 80 Gy, TPBP에서는 세 개의 정체기 선량(16 Gy, 36 Gy 및 55 Gy)이 나노입자를 수용하는 실험쥐 그룹에 입사된 반면,SOBP 대조군에서는 80 Gy, TPBP대조군에서는 16, 36, 55, 74, 92 Gy의 선량이 입사 되었다. 종양 부분만이 양성자 빔에 노출되었으며, 주변 정상 조직은 종양 크기에 맞는 빔 분광기에 배치된 가변 직경으로 일련의 아크릴레이트 블록을 이용하여 차폐하였다.Proton beam irradiation in the animal model was irradiated according to the experimental apparatus as shown in FIG. 1. In SOBP mode particle guided radiation therapy, a tumor model was constructed on the side of the rat's leg, and in TPBP mode particle guided radiation therapy, a model was created on the leg of the mouse. The mice were injected with gold or iron nanoparticles at 100-300 mg / kg body weight. Five radiation single treatment groups were prepared as controls. Mice were anesthetized by intraperitoneal injection of 20 mg / kg ketamine and 18.4 mg / kg xylazine. Fifty microliters of MNP saline solution was injected into the tail vein of the animal 24 hours before proton beam irradiation. The mice were injected in SOBP or TPBP mode at the LEPT proton beam line of the Korea Cancer Center Hospital (Seoul, Korea), 2.06 m away from the proton beam source, with a BP dose or BP at a dose rate of 0.51 to 0.67 Gy / s for the sample. Coulomb collisions with nanoparticles were induced during delivery of stagnant doses of about 23% of the dose. A single BP dose of 80 Gy in SOBP and three stagnant doses in TPBP (16 Gy, 36 Gy and 55 Gy) were entered into the group of mice receiving nanoparticles, whereas in the SOBP control group, 80 Gy and 16, 36 in the TPBP control group Doses of 55, 74 and 92 Gy were incident. Only the tumor part was exposed to the proton beam and the surrounding normal tissue was shielded using a series of acrylate blocks with varying diameters placed on a beam spectrometer to match the tumor size.
TPBP 모드에서 양성자 빔은 종양 및 정상 조직을 포함하는 방사 경로를 따라 시료의 투과깊이-선량 곡선의 최소 정체기 선량에 따라 병소를 관통할 것이다. 이것은, 시료전후에 두 개의 에너지범위변환 및 GAFCHROMIC¢c MD-55 방사선색소 필름을 배치함으로써 최대 BP 선량 측정으로 확인되었다. 종양 조직의 정체기선량 역시 전술된 바와 같은 방식으로 각각의 BP 선량으로 부터 측정되었다.In TPBP mode the proton beam will penetrate the lesion according to the minimum stagnation dose of the sample's depth-dose curve along the radiation path comprising the tumor and normal tissue. This is, by arranging the two energy conversion range and GAFCHROMIC ¢ c MD-55 radiation to the sample before and after the dye film was found to be up to BP dosimetry. Stagnant dose of tumor tissue was also measured from each BP dose in the manner described above.
종양 감소 분석 및 통계적 분석Tumor Reduction Analysis and Statistical Analysis
종양의 규격은 버어니어 캘리퍼로 측정되었다. 종양 형상은 거의 타원체로 추정되었다. 크기는 주어진 식
Figure PCTKR2011009283-appb-I000007
에 따라서 계산되었거나 또는 양성자빔 입사에 이은 종양 성장반응 분석의 일환으로, 처치 후의 종양 크기는 매일 측정되었는데, 완치가 관찰될 때 까지 측정되었다. 처치 후 10 내지 15일 동안 평균 종양 크기 성장 속도(TVGR)는 공식, TVGR = ([10d에서 종양 크기 15일째에서 종양 크기]/5 x 100)을 이용하여 각각의 그룹에 대해서 계산되었다. 개별 그룹 가운데 평균 TVGR의 차등 분포가 크루스칼-윌리스(Kruskal-Wallis) 검정법을 이용하여 비교되었다. 대조군에 대한 0.05 미만의 P값에 있어서, 각각 다른 실험군이 스튜던트 t-검사를 이용하여 각 모드별 대조군과 비교되었다. P<0.05에서 차이들은 통계적으로 유의하다고 고려되었다.
Tumor size was measured with a vernier caliper. Tumor shape was estimated to be almost ellipsoid. The magnitude is given by
Figure PCTKR2011009283-appb-I000007
Tumor size after treatment was measured daily, as calculated according to or as part of the tumor growth response analysis following proton beam incidence, until complete cure was observed. Mean tumor size growth rate (TVGR) for 10-15 days after treatment was calculated for each group using the formula, TVGR = ([tumor size at day 15 of tumor size at 10d] / 5 × 100). The differential distribution of mean TVGR among the individual groups was compared using the Kruskal-Wallis test. For P values less than 0.05 for the control group, different experimental groups were compared with the control for each mode using the Student's t -test. Differences were considered statistically significant at P <0.05.
이상 본 발명의 일실시예를 설명하였으나 본 발명의 기술적 사상이 상기 실시예에 한정되는 것은 아니며, 본 발명의 기술적 사상을 벗어나지 않는 범주에서 다양한 치료법 및 진단법을 구현할 수 있다. Although one embodiment of the present invention has been described above, the technical idea of the present invention is not limited to the above embodiment, and various treatments and diagnostic methods can be implemented within the scope without departing from the technical idea of the present invention.

Claims (7)

  1. 금속 나노 입자(MMP)를 사용하여 금속 나노 입자의 전자와 하전입자(양성자 또는 중입자) 빔의 직접적인 쿨롱 충돌로부터 입자유도방사선을 생성하는 쿨롱 나노라디에이터 효과를 이용하여 종양 치료를 하는 것을 특징으로 하는 브래그피크-기반 입자 유도 방사선 치료요법(PIRT).Bragg, characterized by the use of metal nanoparticles (MMP) to treat tumors using the Coulomb nanoradiator effect, which generates particle-induced radiation from direct coulomb collisions of electrons and charged particles (protons or heavy particles) beams of metal nanoparticles Peak-Based Particle Induced Radiation Therapy (PIRT).
  2. 제 1항에 있어서,The method of claim 1,
    상기 금속 나노 입자(MMP)는 고 에너지 양성자 또는 중입자 빔으로 활성화되어 유도된 원자 내각전자(inner shell) 이온화 및 후속되는 탈여기 처치에 의해, X-선, γ-선, 광전자 및 오제 전자등의 입자유도방사선(PIR:particle induced radiation)을 국소적으로 생성하도록 하는 것을 특징으로 하는 하전입자 유도 방사선 치료요법.The metal nanoparticles (MMPs) are activated by high energy protons or heavy particle beams and induced by inner shell ionization and subsequent deexcitation treatment, such as X-rays, γ-rays, optoelectronics and Auger electrons. Charged particle induced radiation therapy characterized by locally generating particle induced radiation (PIR).
  3. 제 1항에 있어서,The method of claim 1,
    상기 브래그피크는 치료종양의 모양과 생체내 위치에 따라 크기가 큰 고형암일 경우 SOBP, 비교적크기가 작은 고형암의 경우(2 cm 미만) 흡수형 단일 BP (APBP), 정상조직에 퍼져있는 침윤성 종양의 경우 투과형 단일 BP (TPBP)등으로 양성자 또는 중입자 빔의 입사방식을 변환하여 종양조직에 입사시키고 수용된 나노금속입자와 반응하여 입자유도방사선(PIR)을 생성하도록 하는 것을 특징으로 하는 BP-기반 입자 유도 방사선 치료요법.The Bragg Peak is SOBP for large sized solid cancers (less than 2 cm) for absorption of solid BCCs (APBP) for large sized solid cancers depending on the shape and location of the tumor. In this case, BP-based particle induction is characterized by converting an incident method of a proton or medium particle beam into a transmissive single BP (TPBP) to enter a tumor tissue and reacting with the received nanometal particles to generate particle guided radiation (PIR). Radiation therapy.
  4. 제 1항 내지 제 3항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 3,
    양성자 또는 중입자 빔 에너지는 40MeV 이상, 브래그피크(Bragg-peak)위치에서 선량은 1 Gy 이상으로, 선량율 (dose rate)은 저선량율 (30 Gy/hr) 및 고선량율 (2000 Gy/hr)에 범위로 치료환자의 특성에 따라 선택하고 단일 선량(single dose) 또는 분획(fractination) 입사하여 입자유도방사선을 유발하는 것을 특징으로 하는 입자 유도 방사선 치료요법.Proton or medium particle beam energy of 40 MeV or more, dose of 1 Gy or more at Bragg-peak position, dose rate at low dose rate (30 Gy / hr) and high dose rate (2000 Gy / hr) Particle-induced radiation therapy characterized in that the selected according to the characteristics of the treatment patient and induces particle-induced radiation by entering a single dose or fraction (fractination).
  5. 제 1항에 내지 제 2항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 2,
    상기 금속 나노 입자(MMP)는 금(Au), 철(Fe), 인디움(In), 가도리늄(Gd), 백금(Pt)등의 금속원소로서 Z값이 26 이상-90 사이의 순수 금속원소이거나 이들의 산화물로된 나노입자로서 사이즈가 1-100 nm 사이의 나노입자로서 양성자 빔 또는 중이온 입자와 반응하여 입자유도방사선(PIR)을 생성하도록 하는 것을 특징으로 하는 BP-기반 입자 유도 방사선 치료요법.The metal nanoparticle (MMP) is a metal element such as gold (Au), iron (Fe), indium (In), gadolinium (Gd), or platinum (Pt), and has a Z value of 26 to 90 pure metal. BP-based particle induced radiation therapy characterized in that the nanoparticles are elemental or their oxides, which are nanoparticles between 1-100 nm in size and react with proton beams or heavy ion particles to produce particle guided radiation (PIR). therapy.
  6. 제 1항에 내지 제 4항 중 어느 한 항에 있어서The method according to any one of claims 1 to 4.
    상기 양성자 또는 중입자 빔은 단일 브래그 피크 또는 spread-out 브래그 피크를 단일 방향(port) 또는 여러 방향으로 나누어 빔세기가 변조된 (intensity modulated)방식으로 종양조직에 입사시킴으로써 금속나노입자와 반응하여 입자유도방사선(PIR)을 생성하도록 하는 것을 특징으로 하는 BP-기반 입자 유도 방사선 치료요법.The proton or medium particle beam reacts with metal nanoparticles by injecting a single Bragg peak or a spread-out Bragg peak into a tumor port in an intensity modulated manner by dividing a single Bragg peak or a spread-out Bragg peak into a single port or several directions. BP-based particle directed radiation therapy characterized in that it generates radiation (PIR).
  7. 제 1항에 내지 제 5항 중 어느 한 항에 있어서The method according to any one of claims 1 to 5.
    상기 금속 나노 입자(MMP)는 특정 종양조직을 표적 또는 약물동력학적 표면개질 수식이 첨가된 금속나노입자로서 양성자 빔 또는 중이온 입자와 반응하여 입자유도방사선(PIR)을 생성하도록 하는 것을 특징으로 하는 BP-기반 입자 유도 방사선 치료요법.The metal nanoparticles (MMP) are metal nanoparticles to which specific tumor tissues are added with target or pharmacokinetic surface modification formulas, and react with proton beams or heavy ion particles to generate particle induced radiation (PIR). -Based particle guided radiation therapy.
PCT/KR2011/009283 2011-12-02 2011-12-02 Bragg peak-based particle-induced radiation therapy WO2013081218A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2011/009283 WO2013081218A2 (en) 2011-12-02 2011-12-02 Bragg peak-based particle-induced radiation therapy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2011/009283 WO2013081218A2 (en) 2011-12-02 2011-12-02 Bragg peak-based particle-induced radiation therapy

Publications (1)

Publication Number Publication Date
WO2013081218A2 true WO2013081218A2 (en) 2013-06-06

Family

ID=48536204

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/009283 WO2013081218A2 (en) 2011-12-02 2011-12-02 Bragg peak-based particle-induced radiation therapy

Country Status (1)

Country Link
WO (1) WO2013081218A2 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11090508B2 (en) 2019-03-08 2021-08-17 Varian Medical Systems Particle Therapy Gmbh & Co. Kg System and method for biological treatment planning and decision support
US11103727B2 (en) 2019-03-08 2021-08-31 Varian Medical Systems International Ag Model based PBS optimization for flash therapy treatment planning and oncology information system
US11116995B2 (en) 2019-03-06 2021-09-14 Varian Medical Systems, Inc. Radiation treatment planning based on dose rate
US11291859B2 (en) 2019-10-03 2022-04-05 Varian Medical Systems, Inc. Radiation treatment planning for delivering high dose rates to spots in a target
US11348755B2 (en) 2018-07-25 2022-05-31 Varian Medical Systems, Inc. Radiation anode target systems and methods
US11478664B2 (en) 2017-07-21 2022-10-25 Varian Medical Systems, Inc. Particle beam gun control systems and methods
US11529532B2 (en) 2016-04-01 2022-12-20 Varian Medical Systems, Inc. Radiation therapy systems and methods
US11534625B2 (en) 2019-03-06 2022-12-27 Varian Medical Systems, Inc. Radiation treatment based on dose rate
US11541252B2 (en) 2020-06-23 2023-01-03 Varian Medical Systems, Inc. Defining dose rate for pencil beam scanning
US11554271B2 (en) 2019-06-10 2023-01-17 Varian Medical Systems, Inc Flash therapy treatment planning and oncology information system having dose rate prescription and dose rate mapping
US11590364B2 (en) 2017-07-21 2023-02-28 Varian Medical Systems International Ag Material inserts for radiation therapy
US11673003B2 (en) 2017-07-21 2023-06-13 Varian Medical Systems, Inc. Dose aspects of radiation therapy planning and treatment
US11712579B2 (en) 2017-07-21 2023-08-01 Varian Medical Systems, Inc. Range compensators for radiation therapy
US11766574B2 (en) 2017-07-21 2023-09-26 Varian Medical Systems, Inc. Geometric aspects of radiation therapy planning and treatment
US11857805B2 (en) 2017-11-16 2024-01-02 Varian Medical Systems, Inc. Increased beam output and dynamic field shaping for radiotherapy system
US11865361B2 (en) 2020-04-03 2024-01-09 Varian Medical Systems, Inc. System and method for scanning pattern optimization for flash therapy treatment planning
US11957934B2 (en) 2020-07-01 2024-04-16 Siemens Healthineers International Ag Methods and systems using modeling of crystalline materials for spot placement for radiation therapy
US11986677B2 (en) 2017-07-21 2024-05-21 Siemens Healthineers International Ag Triggered treatment systems and methods
US12023519B2 (en) 2022-02-25 2024-07-02 Siemens Healthineers International Ag Radiation treatment planning for delivering high dose rates to spots in a target

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11529532B2 (en) 2016-04-01 2022-12-20 Varian Medical Systems, Inc. Radiation therapy systems and methods
US11590364B2 (en) 2017-07-21 2023-02-28 Varian Medical Systems International Ag Material inserts for radiation therapy
US11478664B2 (en) 2017-07-21 2022-10-25 Varian Medical Systems, Inc. Particle beam gun control systems and methods
US11673003B2 (en) 2017-07-21 2023-06-13 Varian Medical Systems, Inc. Dose aspects of radiation therapy planning and treatment
US11766574B2 (en) 2017-07-21 2023-09-26 Varian Medical Systems, Inc. Geometric aspects of radiation therapy planning and treatment
US11712579B2 (en) 2017-07-21 2023-08-01 Varian Medical Systems, Inc. Range compensators for radiation therapy
US11986677B2 (en) 2017-07-21 2024-05-21 Siemens Healthineers International Ag Triggered treatment systems and methods
US11857805B2 (en) 2017-11-16 2024-01-02 Varian Medical Systems, Inc. Increased beam output and dynamic field shaping for radiotherapy system
US11854761B2 (en) 2018-07-25 2023-12-26 Varian Medical Systems, Inc. Radiation anode target systems and methods
US11348755B2 (en) 2018-07-25 2022-05-31 Varian Medical Systems, Inc. Radiation anode target systems and methods
US11534625B2 (en) 2019-03-06 2022-12-27 Varian Medical Systems, Inc. Radiation treatment based on dose rate
US11116995B2 (en) 2019-03-06 2021-09-14 Varian Medical Systems, Inc. Radiation treatment planning based on dose rate
US11090508B2 (en) 2019-03-08 2021-08-17 Varian Medical Systems Particle Therapy Gmbh & Co. Kg System and method for biological treatment planning and decision support
US11103727B2 (en) 2019-03-08 2021-08-31 Varian Medical Systems International Ag Model based PBS optimization for flash therapy treatment planning and oncology information system
US11554271B2 (en) 2019-06-10 2023-01-17 Varian Medical Systems, Inc Flash therapy treatment planning and oncology information system having dose rate prescription and dose rate mapping
US11865364B2 (en) 2019-06-10 2024-01-09 Varian Medical Systems, Inc. Flash therapy treatment planning and oncology information system having dose rate prescription and dose rate mapping
US11291859B2 (en) 2019-10-03 2022-04-05 Varian Medical Systems, Inc. Radiation treatment planning for delivering high dose rates to spots in a target
US11986672B2 (en) 2019-10-03 2024-05-21 Siemens Healthineers International Ag Radiation treatment planning for delivering high dose rates to spots in a target
US11865361B2 (en) 2020-04-03 2024-01-09 Varian Medical Systems, Inc. System and method for scanning pattern optimization for flash therapy treatment planning
US11541252B2 (en) 2020-06-23 2023-01-03 Varian Medical Systems, Inc. Defining dose rate for pencil beam scanning
US11957934B2 (en) 2020-07-01 2024-04-16 Siemens Healthineers International Ag Methods and systems using modeling of crystalline materials for spot placement for radiation therapy
US12023519B2 (en) 2022-02-25 2024-07-02 Siemens Healthineers International Ag Radiation treatment planning for delivering high dose rates to spots in a target

Similar Documents

Publication Publication Date Title
WO2013081218A2 (en) Bragg peak-based particle-induced radiation therapy
Taupin et al. Gadolinium nanoparticles and contrast agent as radiation sensitizers
Sweet et al. The Possible Use of Neutron-Capturing Isotopes such as Boron in the Treatment of Neoplasms: 1. Intracranial Tumors
Kim et al. Enhanced proton treatment in mouse tumors through proton irradiated nanoradiator effects on metallic nanoparticles
Kim et al. Therapeutic application of metallic nanoparticles combined with particle-induced x-ray emission effect
Liu et al. The dependence of radiation enhancement effect on the concentration of gold nanoparticles exposed to low-and high-LET radiations
Park et al. Tumor microenvironment targeting nano–bio emulsion for synergistic combinational X‐ray PDT with oncolytic bacteria therapy
Fukuda et al. Boron neutron capture therapy (BNCT) for malignant melanoma with special reference to absorbed doses to the normal skin and tumor
Smith et al. Determination of dose enhancement caused by gold-nanoparticles irradiated with proton, X-rays (kV and MV) and electron beams, using alanine/EPR dosimeters
Lin et al. Investigation of photoneutron dose equivalent from high-energy photons in radiotherapy
Smith et al. The effects of gold nanoparticles concentrations and beam quality/LET on dose enhancement when irradiated with X-rays and protons using alanine/EPR dosimetry
Sadri et al. Evaluation of glioblastoma (U87) treatment with ZnO nanoparticle and X-ray in spheroid culture model using MTT assay
Lipengolts et al. Binary technologies of malignant tumors radiotherapy
Seo et al. Enhancement of tumor regression by coulomb nanoradiator effect in proton treatment of iron-oxide nanoparticle-loaded orthotopic rat glioma model: implication of novel particle induced radiation therapy
Yamamoto et al. Intra-tumor distribution of metallofullerene using micro-particle induced X-ray emission (PIXE)
Austerlitz et al. Enhanced response of the Fricke solution doped with hematoporphyrin under X-rays irradiation
Jost et al. Imaging-therapy computed tomography with quasi-monochromatic x-rays
Walker Boron neutron capture therapy: principles and prospects
RU2270045C1 (en) Method for applying photon-capturing tumor therapy
CN115282297B (en) Metal organic nanomaterial marked by radioactive metal nuclide, preparation and application
WO2021261443A1 (en) Dose evaluation algorithm for radiotherapy device
RU2709682C1 (en) Method for determining absorbed dose from thermal neutrons in boron-neutron capture therapy of malignant tumors
Usami et al. Hadrontherapy enhanced by combination with heavy atoms: role of Auger effect in nanoparticles
KR20180009183A (en) Composition for radiosensitization in radiotherapy of cancer metastasis
TAKAGAKI et al. Gadolinium neutron capture therapy for malignant brain tumors

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11876676

Country of ref document: EP

Kind code of ref document: A2

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct app. not ent. europ. phase

Ref document number: 11876676

Country of ref document: EP

Kind code of ref document: A2