WO2013081091A1 - Drug for producing radiolabeled polypeptide reducing non-specific renal accumulation - Google Patents

Drug for producing radiolabeled polypeptide reducing non-specific renal accumulation Download PDF

Info

Publication number
WO2013081091A1
WO2013081091A1 PCT/JP2012/081033 JP2012081033W WO2013081091A1 WO 2013081091 A1 WO2013081091 A1 WO 2013081091A1 JP 2012081033 W JP2012081033 W JP 2012081033W WO 2013081091 A1 WO2013081091 A1 WO 2013081091A1
Authority
WO
WIPO (PCT)
Prior art keywords
polypeptide
acceptable salt
group
compound
pharmacologically acceptable
Prior art date
Application number
PCT/JP2012/081033
Other languages
French (fr)
Japanese (ja)
Inventor
泰 荒野
知也 上原
宏史 花岡
千恵 鈴木
Original Assignee
国立大学法人 千葉大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 千葉大学 filed Critical 国立大学法人 千葉大学
Priority to JP2013547226A priority Critical patent/JP6164556B2/en
Publication of WO2013081091A1 publication Critical patent/WO2013081091A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K51/00Preparations containing radioactive substances for use in therapy or testing in vivo
    • A61K51/02Preparations containing radioactive substances for use in therapy or testing in vivo characterised by the carrier, i.e. characterised by the agent or material covalently linked or complexing the radioactive nucleus
    • A61K51/04Organic compounds
    • A61K51/08Peptides, e.g. proteins, carriers being peptides, polyamino acids, proteins
    • A61K51/10Antibodies or immunoglobulins; Fragments thereof, the carrier being an antibody, an immunoglobulin or a fragment thereof, e.g. a camelised human single domain antibody or the Fc fragment of an antibody
    • A61K51/1093Antibodies or immunoglobulins; Fragments thereof, the carrier being an antibody, an immunoglobulin or a fragment thereof, e.g. a camelised human single domain antibody or the Fc fragment of an antibody conjugates with carriers being antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2803Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/04Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
    • C07K5/06Dipeptides
    • C07K5/06008Dipeptides with the first amino acid being neutral
    • C07K5/06017Dipeptides with the first amino acid being neutral and aliphatic
    • C07K5/06026Dipeptides with the first amino acid being neutral and aliphatic the side chain containing 0 or 1 carbon atom, i.e. Gly or Ala
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/04Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
    • C07K5/08Tripeptides
    • C07K5/0802Tripeptides with the first amino acid being neutral
    • C07K5/0804Tripeptides with the first amino acid being neutral and aliphatic
    • C07K5/0806Tripeptides with the first amino acid being neutral and aliphatic the side chain containing 0 or 1 carbon atoms, i.e. Gly, Ala
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides

Definitions

  • the present invention relates to a drug for producing a radiolabeled polypeptide with reduced nonspecific renal accumulation. More specifically, the present invention relates to an agent for producing a radioactive technetium-labeled polypeptide or a radioactive rhenium-labeled polypeptide with reduced nonspecific renal accumulation. The present invention also provides a radiolabeled polypeptide produced using the radiolabeled polypeptide-producing agent, a diagnostic or therapeutic pharmaceutical composition comprising the radiolabeled polypeptide as an active ingredient, and the radiolabel. The present invention relates to a diagnostic imaging method and a therapeutic method using a polypeptide.
  • a radiolabeled drug is a drug containing a compound labeled with a radioisotope (RI), and is widely used for diagnosis and treatment of diseases, for example, diagnosis and treatment of tumors.
  • RI radioisotope
  • Low molecular weight polypeptides such as antibody fragments labeled with radioisotopes are expected to be applied as probes for molecular imaging including cancer, and as internal radiotherapy drugs using ⁇ -ray emitting nuclides.
  • an RI-labeled low molecular weight polypeptide is administered to a living body, radioactivity is observed in the kidney for a long time from the early stage of administration. Therefore, there is a risk of kidney exposure and kidney damage, and dosage adjustment is required. Thus, accumulation of radiolabeled polypeptide in the kidney is a major obstacle to its application to diagnostic imaging and treatment.
  • Non-patent Document 2 Patent Document 1
  • An object of the present invention is to provide a compound that can be produced by a simple operation and that can provide a radiolabeled drug that has high accumulation at a target site and reduced nonspecific renal accumulation.
  • the inventors of the present invention have proposed a ligand structure that forms a complex with radioactive technetium- 99m ( 99m Tc) and radioactive rhenium-186 and 188 ( 186/188 Re), and a renal brush border membrane enzyme.
  • the substrate structure was examined.
  • M Tc or Re
  • the present invention relates to the following.
  • R 1 is a hydrogen atom, a methyl group, or a carboxymethyl group (CH 2 —COOH)
  • R 2 is CH 2 —CH 2 —NH—CH 2 —COOH, CH 2 —CH 2 —N (CH 2- COOH) 2 , CH 2 -CH 2 -NH 2 , CH 2 -CH 2 -NHR 3 , a carboxymethyl group, or CH 2 -CH 2 -NR 3 R 4 , wherein R 3 and R 4 are each An alkyl group which may be different, X, Y, and Z are all amino acids that may be different from each other, F is a functional group that can bind to a polypeptide.
  • R 1 is a hydrogen atom, a methyl group, or a carboxymethyl group (CH 2 —COOH)
  • R 2 is CH 2 —CH 2 —NH—CH 2 —COOH, CH 2 —CH 2 —N (CH 2- COOH) 2
  • the functional group F capable of binding to the polypeptide is any one selected from the group consisting of carboxylic acid and its active ester, maleimide group, bromoacetyl group, iodoacetyl group, isothiocyanate group, and amino group Or a pharmacologically acceptable salt thereof.
  • the functional group F capable of binding to the polypeptide is a maleimide group, or a pharmaceutically acceptable salt thereof.
  • a compound represented by the following formula (II) or a pharmacologically acceptable salt thereof A compound obtained by binding a polypeptide that binds to a target molecule to a compound of any one of (1) to (5) above or a pharmacologically acceptable salt thereof, or a pharmacologically acceptable salt thereof salt.
  • the compound of (6) above, wherein the polypeptide that binds to the target molecule is an antibody Fab fragment or Fv fragment, or a pharmaceutically acceptable salt thereof.
  • a radiolabeled polypeptide preparation drug comprising the compound according to any one of (1) to (5) above or a pharmacologically acceptable salt thereof.
  • a complex structure formed from a metal radioisotope and the compound of any one of (1) to (5) or a pharmacologically acceptable salt bound to a polypeptide that binds to a target molecule A radiolabeled drug comprising a complex having (10) The metal radioisotope is any one metal radioisotope selected from technetium-99m, rhenium-186, rhenium-188, indium-111, yttrium-90, and lutetium-177 (9) Radiolabeled drugs. (11) The radiolabeled drug according to (9) or (10), wherein the polypeptide that binds to the target molecule is an antibody Fab fragment or Fv fragment.
  • a radiolabeled drug comprising a complex having a complex structure formed from technetium-99m and a compound represented by the following formula (II) to which an antibody Fab fragment is bound.
  • a complex structure formed from a metal radioisotope and the compound of any one of (1) to (5) or a pharmacologically acceptable salt bound to a polypeptide that binds to a target molecule The diagnostic pharmaceutical composition which contains the complex which has as an active ingredient.
  • the metal radioisotope is any one of the metal radioisotopes selected from technetium-99m, rhenium-186, rhenium-188, indium-111, yttrium-90, and lutetium-177 (13) A pharmaceutical composition for diagnosis.
  • a complex structure formed from a metal radioisotope and the compound of any one of (1) to (5) or a pharmacologically acceptable salt bound to a polypeptide that binds to a target molecule The pharmaceutical composition for treatment which contains the complex which has as an active ingredient.
  • the metal radioisotope is any one metal radioisotope selected from technetium-99m, rhenium-186, rhenium-188, indium-111, yttrium-90, and lutetium-177
  • Pharmaceutical composition for the treatment of (17) Use of the compound of any one of (1) to (5) or a pharmaceutically acceptable salt thereof in the production of a radiolabeled polypeptide.
  • a novel compound or a pharmacologically acceptable salt thereof that facilitates the production of a radiolabeled polypeptide having a low renal accumulation, and the compound or a pharmacologically acceptable salt thereof and a radioisotope
  • a radiolabeled drug containing a complex having a complex structure formed from the above can be provided.
  • the radiolabeled polypeptide according to the present invention can be produced by a simple method without requiring a plurality of steps.
  • Radiolabeled drugs produced using the compounds according to the present invention or pharmacologically acceptable salts thereof have much lower non-specific renal accumulation than before. Can be applied.
  • the radiolabeled drug according to the present invention can greatly reduce kidney damage, which is a problem in internal radiotherapy using low molecular weight polypeptides, due to the property of low nonspecific renal accumulation, Application to labeling with 186/188 Re that emits not only 99m Tc but also cell-killing ⁇ -rays becomes possible.
  • the present invention enables safe administration of a radiolabeled polypeptide having a higher radioactivity than before, and contributes to radiographic diagnosis and internal radiotherapy.
  • 99m Tc-PGGFML-IT-Fab is a complex having a complex structure formed from PGGFML in which a Fab fragment is bound by 2-iminothiolane (IT) and 99m Tc.
  • IT 2-iminothiolane
  • HML-IT-Fab is a complex having a complex structure formed from hippur ⁇ -N-maleoyl-L-lysine (HML) to which a Fab fragment is bound by IT and 125 I.
  • 99m Tc-PG-Fab is a complex having a complex structure formed from PG and 99m Tc bonded via the lysine residue of the Fab fragment.
  • the present invention relates to a drug for producing a radiolabeled polypeptide with reduced nonspecific renal accumulation.
  • the present invention also provides a radiolabeled polypeptide produced using the radiolabeled polypeptide producing agent, a diagnostic or therapeutic pharmaceutical composition comprising the radiolabeled polypeptide as an active ingredient, and the radiolabel.
  • the present invention relates to a diagnostic imaging method and a therapeutic method using a polypeptide.
  • the agent for producing a radiolabeled polypeptide according to the present invention contains a compound represented by the following formula (I).
  • R 1 is a hydrogen atom, a methyl group, or a carboxymethyl group (CH 2 —COOH)
  • R 2 is CH 2 —CH 2 —NH—CH 2 —COOH, CH 2 —CH 2 —N (CH 2- COOH) 2 , CH 2 -CH 2 -NH 2 , CH 2 -CH 2 -NHR 3 , a carboxymethyl group, or CH 2 -CH 2 -NR 3 R 4 , wherein R 3 and R 4 are each An alkyl group which may be different, X, Y, and Z are all amino acids that may be different from each other, F is a functional group that can bind to a polypeptide.
  • the functional group F is a spacer, and the polypeptide can be bonded to the compound via the functional group F.
  • the functional group F is not particularly limited as long as it can bind to a polypeptide, but preferably a carboxylic acid and its active ester, a maleimide group, a bromoacetyl group, an iodoacetyl group, an isothiocyanate group, and an amino group Any one functional group selected from the group consisting of and more preferably a maleimide group.
  • the amino acid sequence represented by XYZ is an amino acid sequence that is cleaved by a kidney brush border membrane enzyme in the kidney, and the presence of this amino acid sequence allows the compound to be easily metabolized in the kidney. Is discharged into the urine.
  • the amino acid sequence represented by X-Y-Z is not particularly limited as long as it is an amino acid sequence cleaved by a kidney brush border membrane enzyme.
  • X is not particularly limited, but is preferably any amino acid residue selected from the group consisting of glycine, alanine, glutamine, glutamic acid, asparagine, aspartic acid, methionine, leucine, methionine, and isoleucine, more preferably glycine, Any amino acid residue selected from the group consisting of alanine, glutamine, glutamic acid, asparagine, aspartic acid, and methionine.
  • Y is not particularly limited, and is any amino acid residue selected from the group consisting of glycine, alanine, phenylalanine, histidine, leucine, isoleucine, tyrosine, and ⁇ -alanine.
  • Z is not particularly limited as long as it is an amino acid having a functional group in the side chain, and preferably any amino acid selected from the group consisting of lysine, ornithine, tyrosine, histidine, aspartic acid, glutamic acid, serine, and cysteine Residue.
  • examples of X, Y, and Z include glycine, L-phenylalanine, and lysine.
  • Preferred examples of the compound represented by the above formula (I) include a compound represented by the following formula (II).
  • the compound according to the present invention may be a free form or a pharmacologically acceptable salt.
  • pharmacologically acceptable salts include acid addition salts and base addition salts.
  • Acid addition salts include inorganic acid salts such as hydrochloride, hydrobromide, sulfate, hydroiodide, nitrate, or phosphate, and citrate, oxalate, acetate, formate, Examples thereof include organic acid salts such as propionate, benzoate, trifluoroacetate, maleate, tartrate, methanesulfonate, benzenesulfonate, or paratoluenesulfonate.
  • base addition salts include inorganic base salts such as sodium, potassium, calcium, magnesium, or ammonium salts, and organic base salts such as triethylammonium, triethanolammonium, pyridinium, and diisopropylammonium salts. .
  • a polypeptide that binds to a target molecule is sometimes referred to herein as a “target molecule recognition element” and refers to a polypeptide that specifically binds to a target molecule.
  • Specific binding refers to binding to a target molecule but not to a molecule other than the target molecule or weak binding.
  • a target molecule refers to a molecule present in a target site, for example, a tissue or a cell, preferably a molecule that is specifically expressed, to be diagnosed or treated with a radiolabeled drug. Specifically binding means that it is expressed at a target site, but not expressed at a site other than the target site, or is low in expression.
  • a target molecule recognition element specifically, a ligand that binds to a protein that is highly expressed in tissue construction associated with inflammation or tumor cell invasion, a protein that is specifically expressed in tumor cells, an antibody, and Examples include an antigen-binding region fragment of an antibody.
  • antibody antigen-binding region fragments include Fab fragments, F (ab ′) 2 fragments, F (ab) 2 fragments, and variable region (Fv) fragments.
  • the Fab fragment means an N-terminal product generated by papain degradation of an antibody and a fragment having the same domain structure.
  • the F (ab ′) 2 fragment means a fragment obtained by reducing the disulfide bond in the hinge region of F (ab ′) 2 of an antibody and a fragment having a domain structure similar to this.
  • the F (ab) 2 fragment means a dimer in which two molecules of Fab fragments are bonded to each other by a disulfide bond.
  • the Fv fragment means the smallest fragment that is an antibody fragment and has an antigen-binding activity. More specifically, an antibody against a protein specifically expressed in a specific cancer cell, and a Fab fragment or Fv fragment thereof can be exemplified.
  • a cyclic pentapeptide having an affinity for integrin which is highly expressed in cancer new blood vessels, such as cyclo-Arg-Gly-Asp-D-Phe-Lys [SEQ ID NO: 1, c (RGDfK) Abbreviated].
  • receptors for bisphosphonic acid, oligoaspartic acid, oligoglutamic acid and macrophages that have an affinity for hydroxyapatite, which is abundant in osteogenic cancer (bone metastasis), and affinity for the scanning factor on the surface of macrophages Examples thereof include fMet-Leu-Phe (fMLP), a folate that binds to a folate receptor that is expressed in cancer cells, and derivatives thereof.
  • the target molecule recognition element is not limited to these exemplified polypeptides, and any polypeptide that binds to the target molecule can be used.
  • the radiolabeled polypeptide preparation drug can contain additives such as a pH regulator such as an aqueous buffer and a stabilizer such as ascorbic acid and p-aminobenzoic acid.
  • a radiolabeled polypeptide comprising a complex having a complex structure formed from the aforementioned compound bound to a target molecule and a metal radioisotope, and a radioactivity comprising the radiolabeled polypeptide Labeling agents
  • the radiolabeled drug according to the present invention may contain unreacted substances and impurities in addition to the radiolabeled polypeptide, and may be a radiolabeled polypeptide purified by a purification method such as high performance liquid chromatography (HPLC) after production. It may contain a peptide.
  • HPLC high performance liquid chromatography
  • complex means a substance in which a ligand is coordinated around an atom or ion of a metal and a metal-like element, and is also called a coordination compound.
  • Coordination means that a ligand forms a coordinate bond with a central metal and is arranged around the central metal.
  • the complex is formed by a coordinate bond between a ligand and a metal. Formation of a complex of a ligand and a metal may be referred to as complex formation.
  • a coordinate bond refers to a bond in which two valence electrons participating in one bond are provided from only one atom.
  • the metal radioisotope is not particularly limited as long as it forms a ligand with the compound according to the present invention, but preferably a technetium isotope, rhenium isotope, indium isotope, yttrium isotope, and lutetium isotope, More preferred examples include technetium-99m, rhenium-186, rhenium-188, indium-111, yttrium-90, and lutetium-177, and more preferably technetium-99m, rhenium-186, and rhenium-188.
  • Metal radioisotopes are not limited to these specific examples, as long as they have appropriate radiation, radiation dose, and half-life for purposes such as diagnosis using radiolabeled drugs and internal radiotherapy of diseases such as cancer diseases. Either can be used. From the viewpoint of reducing the influence on normal tissues and cells in radiographic diagnosis and internal radiotherapy, short half-life metal radioisotopes are preferably used.
  • the complex can be produced by in vitro complexation with a metal radioactive isotope using the above compound bound to a target molecule recognition element as a ligand.
  • Complex formation can be performed by a simple operation using a conventionally known complex formation reaction.
  • the radiolabeled polypeptide according to the present invention is formed by in vitro complexation with a metal radioisotope using a compound obtained by binding an antibody Fab fragment to the compound represented by the above formula (II) as a ligand.
  • a radiolabeled polypeptide comprising a complex having a complex structure can be preferably exemplified.
  • the metal radioisotope is any one metal radioisotope selected from the group consisting of technetium-99m, rhenium-186, rhenium-188, indium-111, yttrium-90, and lutetium-177
  • a radiolabel comprising a complex having a complex structure formed using any one metal radioisotope selected from the group consisting of technetium-99m, rhenium-186, and rhenium-188 as a metal radioisotope Drugs can be exemplified.
  • the radiolabeled polypeptide produced by the present invention has the amino acid sequence XYZ that is selectively cleaved by the kidney, it is selectively enzymatically degraded after administration to a subject, and its metabolite accumulates in the kidney. And is rapidly excreted in the urine.
  • the radiolabeled polypeptide according to the present invention having the feature of low renal accumulation can greatly reduce kidney damage, which is a problem in isotope treatment using a low-molecular-weight polypeptide, It can be applied to labeling with metal radioisotopes that emit cell-killing ⁇ -rays as well as phase metal radioisotopes.
  • the radiolabeled polypeptide according to the present invention has a target molecule recognition element, it can specifically bind to the target site, and therefore efficiently accumulates in the target site. Due to such properties, the radiolabeled polypeptide according to the present invention can improve the sensitivity and therapeutic effect of diagnostic imaging.
  • the radiolabeled drug containing the radiolabeled polypeptide according to the present invention enables safe administration of a radiolabeled polypeptide having a higher radioactivity than the conventional one.
  • the radiolabeled drug according to the present invention contains the above radiolabeled polypeptide as an active ingredient and, if necessary, a pharmaceutical composition containing one or two or more pharmaceutically acceptable carriers (pharmaceutical carriers).
  • pharmaceutical carriers aqueous buffers, pH adjusters such as acids and bases, stabilizers such as ascorbic acid and p-aminobenzoic acid, excipients such as D-mannitol, isotonic agents, and preservatives Etc. can be illustrated.
  • radiolabeled drug according to the present invention can be provided in any form of an aqueous solution, a frozen solution, and a lyophilized product.
  • the radiolabeled drug according to the present invention is used for various diseases such as tumors, inflammations, infectious diseases, cardiovascular diseases, brain / central diseases, and radiographic diagnosis of organs / tissues, or internal radiotherapy.
  • it is used for radiological image diagnosis and internal radiotherapy of cancer diseases, but the applicable disease is not particularly limited, and any disease can be applied as long as it is image diagnosis or internal radiotherapy.
  • the radiolabeled drug according to the present invention is used in the field of diagnosis and treatment. Can be widely used in.
  • parenteral administration such as intravenous administration or intraarterial administration, or oral administration can be mentioned, and intravenous administration can be preferably mentioned.
  • the administration route is not limited to these routes, and any route can be used as long as its action can be effectively expressed after administration of the radiolabeled drug.
  • the radioactivity intensity of the radiolabeled drug according to the present invention is arbitrary as long as the objective can be achieved by administering the labeled drug and the subject is exposed to the lowest possible clinical dose. is there.
  • the radioactive intensity can be determined with reference to the radioactive intensity used in a general diagnostic method or therapeutic method using a radiolabeled drug.
  • the dose is determined in consideration of various conditions such as the patient's age, weight, appropriate radiographic imaging apparatus, and the state of the target disease, and the radioactivity and dose that can be imaged and treated are determined.
  • the dosage of a diagnostic agent using a technetium-99m label is 37 MBq to 111 MBq as the radioactivity of technetium-99m.
  • the radioactivity is in the range of 37 MBq to 18500 MBq, preferably 370 MBq to 7400 MBq.
  • kits comprising the above compound and a drug containing a metal radioisotope as separate packaging units can be provided.
  • a kit according to the present invention any one selected from the group consisting of the compound represented by the above formula (II) and technetium-99m, rhenium-186, rhenium-188, indium-111, yttrium-90, and lutetium-177
  • a kit comprising a drug containing one metal radioisotope as a separate packaging unit can be exemplified.
  • the agent comprising any one of the metal radioisotopes selected from the group consisting of technetium-99m, rhenium-186, rhenium-188, indium-111, yttrium-90, and lutetium-177 is preferably in the form of a solution.
  • the drug containing a metal radioisotope is a drug containing any one metal radioisotope selected from the group consisting of technetium-99m, rhenium-186, and rhenium-188.
  • Any of the compounds and drugs contained in the kit can contain one or more pharmaceutically acceptable carriers (pharmaceutical carriers) as described above, as necessary.
  • R 1 is a carboxymethyl group (CH 2 -COOH)
  • R 2 is a hydrogen atom
  • X is glycine
  • Y is L-phenylalanine
  • Z is L-lysine
  • F is maleimide
  • Methyl isonicotinate (1) (9.93 g, 72.4 mmol) was dissolved in methanol (MeOH, 100 mL), and a catalytic amount of sulfuric acid (0.33 mL) was added.
  • a saturated aqueous solution (55 mL) of ammonium persulfate (30 g, 131.5 mol) was added dropwise under reflux with heating, and the mixture was stirred at reflux temperature for 30 minutes.
  • the compound PGGFML-IT-Fab was prepared by binding the antibody Fab fragment to PGGFML.
  • PGGFML 50 mg / mL dissolved in DMF was added to a Fab solution (100 ⁇ L) thiolated with 2-iminothiolane (2-IT), and reacted at room temperature for 4 hours.
  • an iodoacetamide solution (10 mg / mL) was prepared using 0.1 M phosphate buffer (pH 6.0), and 14.8 ⁇ L was added thereto, followed by reaction at room temperature for 30 minutes to remove unreacted thiol groups. Alkylated.
  • PGGFML-IT-Fab was purified by a spin column method using Sephadex® G-50® Fine equilibrated with 0.1M phosphate buffer (pH 7.0). This reaction introduced an average of 0.95 molecules of PGGFML per antibody molecule.
  • the mixture was allowed to cool to room temperature, about 10 ⁇ l of 1N HCl aqueous solution was added, and the pH was adjusted to around 7 before use.
  • the formation of [ 99m Tc (CO) 3 (OH 2 ) 3 ] + was confirmed using RP-HPLC.
  • SEQ ID NO: 1 Cyclic peptide derived from the 10th fibronectin type III repeat region.

Abstract

Provided is a radiolabeled drug which contains a compound expressed in the following formula (I); the compound to which polypeptide is bound which is capable of being bound to a target site, or a pharmacologically acceptable salt of the compound; and a complex which includes a complex structure which contains the compound to which the polypeptide is bound which is capable of being bound to the target site, or the pharmacologically acceptable salt thereof, and a radioisotope. (I) Herein, R1 is a hydrogen atom, a methyl group, or a carboxymethyl group; R2 is CH2-CH2-NH-CH2-COOH, CH2-CH2-N(CH2-COOH)2, CH2-CH2-NH2, CH2-CH2-NHR3, the carboxymethyl group, or CH2-CH2-NR3R4; R3 and R4 are alkyl groups which may be different; X, Y, and Z are amino acids which may be different; and F is a functional group which is capable of being bound to the polypeptide. Using the compound according to the present invention, the radiolabeled drug is provided which is prepared through a simple operation, has high accumulation toward the target site, and reduces non-specific renal accumulation.

Description

非特異的腎集積が低減された放射性標識ポリペプチド作製用薬剤Drug for producing radiolabeled polypeptide with reduced nonspecific renal accumulation
 本発明は非特異的腎集積が低減された放射性標識ポリペプチド作製用薬剤に関する。より詳しくは、本発明は非特異的腎集積が低減された放射性テクネチウム標識ポリペプチドまたは放射性レニウム標識ポリペプチドの作製用薬剤に関する。また本発明は、該放射性標識ポリペプチド作製用薬剤を使用して作製された放射性標識ポリペプチド、該放射性標識ポリペプチドを有効成分とする画像診断用または治療用の医薬組成物、並びに該放射性標識ポリペプチドを使用した画像診断方法および治療方法に関する。 The present invention relates to a drug for producing a radiolabeled polypeptide with reduced nonspecific renal accumulation. More specifically, the present invention relates to an agent for producing a radioactive technetium-labeled polypeptide or a radioactive rhenium-labeled polypeptide with reduced nonspecific renal accumulation. The present invention also provides a radiolabeled polypeptide produced using the radiolabeled polypeptide-producing agent, a diagnostic or therapeutic pharmaceutical composition comprising the radiolabeled polypeptide as an active ingredient, and the radiolabel. The present invention relates to a diagnostic imaging method and a therapeutic method using a polypeptide.
 放射性標識薬剤は、放射性同位体(RI)により標識された化合物を含む薬剤であり、疾患の診断や治療、例えば腫瘍の診断や治療などに広く利用されている。放射性標識薬剤を用いた診断や治療においては、有用な核種の選択や、該薬剤を特定の組織や細胞に集積させるための薬剤設計が行われてきた。 A radiolabeled drug is a drug containing a compound labeled with a radioisotope (RI), and is widely used for diagnosis and treatment of diseases, for example, diagnosis and treatment of tumors. In diagnosis and treatment using radiolabeled drugs, selection of useful nuclides and drug design for accumulating the drugs in specific tissues and cells have been performed.
 放射性同位体で標識した抗体フラグメントなどの低分子ポリペプチドは、がんを始めとする分子イメージングのプローブとして、さらにβ線放出核種を用いた内部放射線治療薬剤としての応用が期待されている。しかし、RI標識低分子ポリペプチドを生体に投与すると、投与早期から長時間にわたり腎臓に放射活性が観察される。そのため、腎臓の被曝および腎障害のおそれがあり、投与量の調整が必要とされている。このように、放射性標識ポリペプチドの腎臓への集積は、画像診断や治療へのその応用の大きな障害となっている。 Low molecular weight polypeptides such as antibody fragments labeled with radioisotopes are expected to be applied as probes for molecular imaging including cancer, and as internal radiotherapy drugs using β-ray emitting nuclides. However, when an RI-labeled low molecular weight polypeptide is administered to a living body, radioactivity is observed in the kidney for a long time from the early stage of administration. Therefore, there is a risk of kidney exposure and kidney damage, and dosage adjustment is required. Thus, accumulation of radiolabeled polypeptide in the kidney is a major obstacle to its application to diagnostic imaging and treatment.
 これに対して本発明者らは、低分子ポリペプチドと尿排泄性の高い標識薬剤とを、腎臓刷子縁膜酵素の基質を介して結合する薬剤設計を考案した。そして、放射性ヨウ素を用いた検討から、かかる薬剤設計の有用性を明らかにした(非特許文献1)。さらに、この薬剤設計の金属放射性同位体標識への応用性を検証するため、有機レニウム化合物への展開を行い、その可能性を示した(非特許文献2、特許文献1)。 In contrast, the present inventors have devised a drug design that binds a low molecular weight polypeptide and a highly urinary excretion labeling drug through a substrate of kidney brush border membrane enzyme. And the usefulness of this drug design was clarified from the examination using radioactive iodine (nonpatent literature 1). Furthermore, in order to verify the applicability of this drug design to metal radioisotope labeling, development to organic rhenium compounds was performed and the possibility was shown (Non-patent Document 2, Patent Document 1).
特開2005-47821号公報。JP 2005-47821 A.
 低分子ポリペプチドと尿排泄性の高い標識薬剤とを、腎臓刷子縁膜酵素の基質を介して結合する薬剤設計により標識ポリペプチドを作製するには、複数にわたる工程が必要とされる。そのため、前臨床や臨床に使用するためのこのような標識ポリペプチドを製造することは実際には困難である。 In order to produce a labeled polypeptide by designing a drug that binds a low molecular weight polypeptide and a highly urinary labeling drug via a substrate of a renal brush border membrane enzyme, a plurality of steps are required. Therefore, it is actually difficult to produce such a labeled polypeptide for preclinical or clinical use.
 本発明の課題は、簡便な操作で製造でき、かつ標的部位への高い集積性を有し非特異的腎集積が低減された放射性標識薬剤を与えることのできる化合物を提供することである。 An object of the present invention is to provide a compound that can be produced by a simple operation and that can provide a radiolabeled drug that has high accumulation at a target site and reduced nonspecific renal accumulation.
 本発明者らは、上記課題を解決するため、放射性テクネチウム-99m(99mTc)および放射性レニウム-186および188(186/188Re)と錯体を形成する配位子構造並びに腎臓刷子縁膜酵素の基質構造の検討を行った。 In order to solve the above problems, the inventors of the present invention have proposed a ligand structure that forms a complex with radioactive technetium- 99m ( 99m Tc) and radioactive rhenium-186 and 188 ( 186/188 Re), and a renal brush border membrane enzyme. The substrate structure was examined.
 その結果、下式(II)で示される化合物が結合したポリペプチドと[M(CO)3(OH2)3]+(M= Tc or Re)とを混和するだけの操作で、放射性ヨウ素標識薬剤や金属レニウム標識薬剤とほぼ同様の体内動態を示し、非特異的腎集積が低減された金属RI標識ポリペプチドを作製することができた。本発明は本知見に基づいて達成したものである。 As a result, radioactive iodine labeling can be achieved by simply mixing [M (CO) 3 (OH 2 ) 3 ] + (M = Tc or Re) with the polypeptide to which the compound represented by the following formula (II) is bound. We were able to produce a metal-RI-labeled polypeptide that showed almost the same pharmacokinetics as drugs and metal-rhenium-labeled drugs and reduced nonspecific renal accumulation. The present invention has been achieved based on this finding.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 即ち、本発明は以下に関する。
(1)下式(I)で示される化合物、またはその薬理学的に許容される塩、
Figure JPOXMLDOC01-appb-C000005
ここで、R1は水素原子、メチル基、またはカルボキシメチル基(CH2-COOH)であり、R2はCH2-CH2-NH-CH2-COOH、CH2-CH2-N(CH2-COOH)2、 CH2-CH2-NH2、 CH2-CH2-NHR3、カルボキシメチル基、またはCH2-CH2-NR3R4であって、R3およびR4はそれぞれ異なっていてもよいアルキル基であり、
X、Y、およびZはいずれもそれぞれ異なっていてもよいアミノ酸であり、
Fはポリペプチドと結合することができる官能基である。
(2)ポリペプチドと結合することができる官能基Fがカルボン酸およびその活性エステル、マレイミド基、ブロモアセチル基、ヨードアセチル基、イソチオシアナート基、並びにアミノ基からなる群から選ばれるいずれか1の官能基である、前記(1)の化合物、またはその薬理学的に許容される塩。
(3)X、Y、およびZがそれぞれグリシン、L-フェニルアラニン、およびリジンである前記(1)または(2)の化合物、またはその薬理学的に許容される塩。
(4)ポリペプチドと結合することができる官能基Fがマレイミド基である前記(1)から(3)のいずれかの化合物、またはその薬理学的に許容される塩。
(5)下式(II)で示される化合物、またはその薬理学的に許容される塩。
Figure JPOXMLDOC01-appb-C000006
(6)前記(1)から(5)のいずれかの化合物またはその薬理学的に許容される塩に、標的分子に結合するポリペプチドを結合させてなる化合物またはその薬理学的に許容される塩。
(7)標的分子に結合するポリペプチドが、抗体のFab断片またはFv断片である前記(6)の化合物、またはその薬理学的に許容される塩。
(8)前記(1)から(5)のいずれかの化合物またはその薬理学的に許容される塩を含む放射性標識ポリペプチド作製用薬剤。
(9)標的分子に結合するポリペプチドを結合させた前記(1)から(5)のいずれかの化合物またはその薬理学的に許容される塩と、金属放射性同位体とから形成される錯体構造を有する錯体を含む放射性標識薬剤。
(10)金属放射性同位体がテクネチウム-99m、レニウム-186、レニウム-188、インジウム-111、イットリウム-90、およびルテチウム-177から選択されるいずれか1の金属放射性同位体である前記(9)の放射性標識薬剤。
(11)標的分子に結合するポリペプチドが、抗体のFab断片またはFv断片である前記(9)または(10)の放射性標識薬剤。
(12)抗体のFab断片を結合させた下式(II)で示される化合物とテクネチウム-99mとから形成される錯体構造を有する錯体を含む放射性標識薬剤。
Figure JPOXMLDOC01-appb-C000007
(13)標的分子に結合するポリペプチドを結合させた前記(1)から(5)のいずれかの化合物またはその薬理学的に許容される塩と金属放射性同位体とから形成される錯体構造を有する錯体を有効成分として含む診断用医薬組成物。
(14)金属放射性同位体がテクネチウム-99m、レニウム-186、レニウム-188、インジウム-111、イットリウム-90、およびルテチウム-177から選択されるいずれか1の金属放射性同位体である前記(13)の診断用医薬組成物。
(15)標的分子に結合するポリペプチドを結合させた前記(1)から(5)のいずれかの化合物またはその薬理学的に許容される塩と金属放射性同位体とから形成される錯体構造を有する錯体を有効成分として含む治療用医薬組成物。
(16)金属放射性同位体がテクネチウム-99m、レニウム-186、レニウム-188、インジウム-111、イットリウム-90、およびルテチウム-177から選択されるいずれか1の金属放射性同位体である前記(15)の治療用医薬組成物。
(17)前記(1)から(5)のいずれかの化合物またはその薬理学的に許容される塩の、放射性標識ポリペプチドの製造における使用。
That is, the present invention relates to the following.
(1) a compound represented by the following formula (I), or a pharmacologically acceptable salt thereof,
Figure JPOXMLDOC01-appb-C000005
Here, R 1 is a hydrogen atom, a methyl group, or a carboxymethyl group (CH 2 —COOH), and R 2 is CH 2 —CH 2 —NH—CH 2 —COOH, CH 2 —CH 2 —N (CH 2- COOH) 2 , CH 2 -CH 2 -NH 2 , CH 2 -CH 2 -NHR 3 , a carboxymethyl group, or CH 2 -CH 2 -NR 3 R 4 , wherein R 3 and R 4 are each An alkyl group which may be different,
X, Y, and Z are all amino acids that may be different from each other,
F is a functional group that can bind to a polypeptide.
(2) The functional group F capable of binding to the polypeptide is any one selected from the group consisting of carboxylic acid and its active ester, maleimide group, bromoacetyl group, iodoacetyl group, isothiocyanate group, and amino group Or a pharmacologically acceptable salt thereof.
(3) The compound of (1) or (2) above, wherein X, Y, and Z are glycine, L-phenylalanine, and lysine, or a pharmaceutically acceptable salt thereof.
(4) The compound according to any one of (1) to (3) above, wherein the functional group F capable of binding to the polypeptide is a maleimide group, or a pharmaceutically acceptable salt thereof.
(5) A compound represented by the following formula (II) or a pharmacologically acceptable salt thereof.
Figure JPOXMLDOC01-appb-C000006
(6) A compound obtained by binding a polypeptide that binds to a target molecule to a compound of any one of (1) to (5) above or a pharmacologically acceptable salt thereof, or a pharmacologically acceptable salt thereof salt.
(7) The compound of (6) above, wherein the polypeptide that binds to the target molecule is an antibody Fab fragment or Fv fragment, or a pharmaceutically acceptable salt thereof.
(8) A radiolabeled polypeptide preparation drug comprising the compound according to any one of (1) to (5) above or a pharmacologically acceptable salt thereof.
(9) A complex structure formed from a metal radioisotope and the compound of any one of (1) to (5) or a pharmacologically acceptable salt bound to a polypeptide that binds to a target molecule A radiolabeled drug comprising a complex having
(10) The metal radioisotope is any one metal radioisotope selected from technetium-99m, rhenium-186, rhenium-188, indium-111, yttrium-90, and lutetium-177 (9) Radiolabeled drugs.
(11) The radiolabeled drug according to (9) or (10), wherein the polypeptide that binds to the target molecule is an antibody Fab fragment or Fv fragment.
(12) A radiolabeled drug comprising a complex having a complex structure formed from technetium-99m and a compound represented by the following formula (II) to which an antibody Fab fragment is bound.
Figure JPOXMLDOC01-appb-C000007
(13) A complex structure formed from a metal radioisotope and the compound of any one of (1) to (5) or a pharmacologically acceptable salt bound to a polypeptide that binds to a target molecule The diagnostic pharmaceutical composition which contains the complex which has as an active ingredient.
(14) The metal radioisotope is any one of the metal radioisotopes selected from technetium-99m, rhenium-186, rhenium-188, indium-111, yttrium-90, and lutetium-177 (13) A pharmaceutical composition for diagnosis.
(15) A complex structure formed from a metal radioisotope and the compound of any one of (1) to (5) or a pharmacologically acceptable salt bound to a polypeptide that binds to a target molecule The pharmaceutical composition for treatment which contains the complex which has as an active ingredient.
(16) The metal radioisotope is any one metal radioisotope selected from technetium-99m, rhenium-186, rhenium-188, indium-111, yttrium-90, and lutetium-177 (15) Pharmaceutical composition for the treatment of
(17) Use of the compound of any one of (1) to (5) or a pharmaceutically acceptable salt thereof in the production of a radiolabeled polypeptide.
 本発明によれば、腎集積が低い放射性標識ポリペプチドの作製を容易にする新規化合物またはその薬理学的に許容される塩、および該化合物またはその薬理学的に許容される塩と放射性同位体とから形成される錯体構造を有する錯体を含む放射性標識薬剤を提供できる。本発明に係る放射性標識ポリペプチドの製造は複数にわたる工程を必要とせず簡便な方法で製造できる。 According to the present invention, a novel compound or a pharmacologically acceptable salt thereof that facilitates the production of a radiolabeled polypeptide having a low renal accumulation, and the compound or a pharmacologically acceptable salt thereof and a radioisotope A radiolabeled drug containing a complex having a complex structure formed from the above can be provided. The radiolabeled polypeptide according to the present invention can be produced by a simple method without requiring a plurality of steps.
 本発明に係る化合物またはその薬理学的に許容される塩を使用して作製された放射性標識薬剤は、非特異的腎集積が従来に比べて遙かに低いため、前臨床研究や臨床研究への応用が可能である。また、本発明に係る放射性標識薬剤は、非特異的腎集積が低いという特性により、低分子ポリペプチドを用いた内部放射線治療において問題とされている腎障害を大きく低減することが可能であり、99mTcのみならず細胞殺傷性のβ線を放出する186/188Reによる標識への応用も可能となる。 Radiolabeled drugs produced using the compounds according to the present invention or pharmacologically acceptable salts thereof have much lower non-specific renal accumulation than before. Can be applied. In addition, the radiolabeled drug according to the present invention can greatly reduce kidney damage, which is a problem in internal radiotherapy using low molecular weight polypeptides, due to the property of low nonspecific renal accumulation, Application to labeling with 186/188 Re that emits not only 99m Tc but also cell-killing β-rays becomes possible.
 このように本発明は、従来に比べて高い放射活性を有する放射性標識ポリペプチドの安全な投与を可能にするものであり、放射線画像診断や内部放射線治療に貢献する。 Thus, the present invention enables safe administration of a radiolabeled polypeptide having a higher radioactivity than before, and contributes to radiographic diagnosis and internal radiotherapy.
放射性標識Fab断片の構造を示す図である。99mTc-PGGFML-IT-Fabは、2-イミノチオラン(IT)によりFab断片を結合させたPGGFMLと99mTcとから形成される錯体構造を有する錯体である。[125I]HML-IT-Fabは、ITによりFab断片を結合させたヒプリル ε-N-マレオイル-L-リジン(HML)と125Iとから形成される錯体構造を有する錯体である。99mTc-PG-Fabは、Fab断片のリジン残基を介して結合させたPGと99mTcとから形成される錯体構造を有する錯体である。(実施例1、2、3)It is a figure which shows the structure of a radiolabeled Fab fragment. 99m Tc-PGGFML-IT-Fab is a complex having a complex structure formed from PGGFML in which a Fab fragment is bound by 2-iminothiolane (IT) and 99m Tc. [ 125 I] HML-IT-Fab is a complex having a complex structure formed from hippur ε-N-maleoyl-L-lysine (HML) to which a Fab fragment is bound by IT and 125 I. 99m Tc-PG-Fab is a complex having a complex structure formed from PG and 99m Tc bonded via the lysine residue of the Fab fragment. (Examples 1, 2, and 3) 99mTc-PGGFML-IT-Fabは、マウスへの投与後、血中および腎臓からの迅速な消失が認められたが、99mTc-PG-Fabは血中からの消失は同様に速いものの腎臓からの消失は遅かったことを示す図である。99mTc-PGGFML-IT-Fabの血中および腎臓からの消失速度は、[125I]HML-IT-Fabとほぼ同程度であった。(実施例3) 99m Tc-PGGFML-IT-Fab rapidly disappeared from the blood and kidney after administration to mice, while 99m Tc-PG-Fab disappeared from the kidney although it disappeared from the blood as well. It is a figure which shows that disappearance of was late. The disappearance rate of 99m Tc-PGGFML-IT-Fab from blood and kidney was almost the same as that of [ 125 I] HML-IT-Fab. (Example 3)
 本発明は、非特異的腎集積が低減された放射性標識ポリペプチド作製用薬剤に関する。本発明はまた、該放射性標識ポリペプチド作製用薬剤を使用して作製された放射性標識ポリペプチド、該放射性標識ポリペプチドを有効成分とする画像診断用または治療用の医薬組成物、並びに該放射性標識ポリペプチドを使用した画像診断方法および治療方法に関する。 The present invention relates to a drug for producing a radiolabeled polypeptide with reduced nonspecific renal accumulation. The present invention also provides a radiolabeled polypeptide produced using the radiolabeled polypeptide producing agent, a diagnostic or therapeutic pharmaceutical composition comprising the radiolabeled polypeptide as an active ingredient, and the radiolabel. The present invention relates to a diagnostic imaging method and a therapeutic method using a polypeptide.
 本発明に係る放射性標識ポリペプチド作製用薬剤は、下式(I)で示される化合物を含む。 The agent for producing a radiolabeled polypeptide according to the present invention contains a compound represented by the following formula (I).
Figure JPOXMLDOC01-appb-C000008
ここで、R1は水素原子、メチル基、またはカルボキシメチル基(CH2-COOH)であり、R2はCH2-CH2-NH-CH2-COOH、CH2-CH2-N(CH2-COOH)2、 CH2-CH2-NH2、 CH2-CH2-NHR3、カルボキシメチル基、またはCH2-CH2-NR3R4であって、R3およびR4はそれぞれ異なっていてもよいアルキル基であり、
X、Y、およびZはいずれもそれぞれ異なっていてもよいアミノ酸であり、
Fはポリペプチドと結合することができる官能基である。
Figure JPOXMLDOC01-appb-C000008
Here, R 1 is a hydrogen atom, a methyl group, or a carboxymethyl group (CH 2 —COOH), and R 2 is CH 2 —CH 2 —NH—CH 2 —COOH, CH 2 —CH 2 —N (CH 2- COOH) 2 , CH 2 -CH 2 -NH 2 , CH 2 -CH 2 -NHR 3 , a carboxymethyl group, or CH 2 -CH 2 -NR 3 R 4 , wherein R 3 and R 4 are each An alkyl group which may be different,
X, Y, and Z are all amino acids that may be different from each other,
F is a functional group that can bind to a polypeptide.
 上記式(I)で示される化合物において官能基Fはスペーサーであり、官能基Fを介してポリペプチドを該化合物に結合することができる。官能基Fはポリペプチドと結合することができるものである限り特に限定されないが、好ましくは、カルボン酸およびその活性エステル、マレイミド基、ブロモアセチル基、ヨードアセチル基、イソチオシアナート基、並びにアミノ基からなる群から選ばれるいずれか1の官能基であり、より好ましくはマレイミド基である。 In the compound represented by the above formula (I), the functional group F is a spacer, and the polypeptide can be bonded to the compound via the functional group F. The functional group F is not particularly limited as long as it can bind to a polypeptide, but preferably a carboxylic acid and its active ester, a maleimide group, a bromoacetyl group, an iodoacetyl group, an isothiocyanate group, and an amino group Any one functional group selected from the group consisting of and more preferably a maleimide group.
 上記式(1)で示される化合物において、X-Y-Zで表されるアミノ酸配列は、腎臓において腎臓刷子縁膜酵素により切断されるアミノ酸配列であり、このアミノ酸配列の存在により該化合物は腎臓で容易に代謝されて尿中に排出される。X-Y-Zで表されるアミノ酸配列は、腎臓刷子縁膜酵素により切断されるアミノ酸配列である限り特に限定されない。Xは、特に限定されないが、好ましくはグリシン、アラニン、グルタミン、グルタミン酸、アスパラギン、アスパラギン酸、メチオニン、ロイシン、メチオニン、およびイソロイシンからなる群より選択されるいずれかのアミノ酸残基、より好ましくはグリシン、アラニン、グルタミン、グルタミン酸、アスパラギン、アスパラギン酸、およびメチオニンからなる群より選択されるいずれかのアミノ酸残基である。Yは、特に限定されないが、グリシン、アラニン、フェニルアラニン、ヒスチジン、ロイシン、イソロイシン、チロシン、およびβアラニンからなる群より選択されるいずれかのアミノ酸残基である。Zは、側鎖に官能基のあるアミノ酸である限りにおいて特に限定されず、好ましくはリジン、オルニチン、チロシン、ヒスチジン、アスパラギン酸、グルタミン酸、セリン、およびシステインからなる群より選択されるいずれかのアミノ酸残基である。具体的には、X、Y、およびZとしてそれぞれグリシン、L-フェニルアラニン、およびリジンを挙げることができる。 In the compound represented by the above formula (1), the amino acid sequence represented by XYZ is an amino acid sequence that is cleaved by a kidney brush border membrane enzyme in the kidney, and the presence of this amino acid sequence allows the compound to be easily metabolized in the kidney. Is discharged into the urine. The amino acid sequence represented by X-Y-Z is not particularly limited as long as it is an amino acid sequence cleaved by a kidney brush border membrane enzyme. X is not particularly limited, but is preferably any amino acid residue selected from the group consisting of glycine, alanine, glutamine, glutamic acid, asparagine, aspartic acid, methionine, leucine, methionine, and isoleucine, more preferably glycine, Any amino acid residue selected from the group consisting of alanine, glutamine, glutamic acid, asparagine, aspartic acid, and methionine. Y is not particularly limited, and is any amino acid residue selected from the group consisting of glycine, alanine, phenylalanine, histidine, leucine, isoleucine, tyrosine, and β-alanine. Z is not particularly limited as long as it is an amino acid having a functional group in the side chain, and preferably any amino acid selected from the group consisting of lysine, ornithine, tyrosine, histidine, aspartic acid, glutamic acid, serine, and cysteine Residue. Specifically, examples of X, Y, and Z include glycine, L-phenylalanine, and lysine.
 上記式(I)で示される化合物の好ましい具体例として、下式(II)で示される化合物を挙げることができる。 Preferred examples of the compound represented by the above formula (I) include a compound represented by the following formula (II).
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 本発明に係る化合物は、遊離体のままでもよく、薬理学的に許容される塩であってもよい。薬理学的に許容される塩として、酸付加塩及び塩基付加塩を挙げることができる。酸付加塩として、塩酸塩、臭化水素酸塩、硫酸塩、ヨウ化水素酸塩、硝酸塩、またはリン酸塩などの無機酸塩、およびクエン酸塩、シュウ酸塩、酢酸塩、ギ酸塩、プロピオン酸塩、安息香酸塩、トリフルオロ酢酸塩、マレイン酸塩、酒石酸塩、メタンスルホン酸塩、ベンゼンスルホン酸塩、またはパラトルエンスルホン酸塩などの有機酸塩を例示できる。塩基付加塩として、ナトリウム塩、カリウム塩、カルシウム塩、マグネシウム塩、またはアンモニウム塩などの無機塩基塩、およびトリエチルアンモニウム塩、トリエタノールアンモニウム塩、ピリジニウム塩、ジイソプロピルアンモニウム塩などの有機塩基塩を例示できる。 The compound according to the present invention may be a free form or a pharmacologically acceptable salt. Examples of pharmacologically acceptable salts include acid addition salts and base addition salts. Acid addition salts include inorganic acid salts such as hydrochloride, hydrobromide, sulfate, hydroiodide, nitrate, or phosphate, and citrate, oxalate, acetate, formate, Examples thereof include organic acid salts such as propionate, benzoate, trifluoroacetate, maleate, tartrate, methanesulfonate, benzenesulfonate, or paratoluenesulfonate. Examples of base addition salts include inorganic base salts such as sodium, potassium, calcium, magnesium, or ammonium salts, and organic base salts such as triethylammonium, triethanolammonium, pyridinium, and diisopropylammonium salts. .
 本発明においてはまた、上記式(I)で示される化合物に、標的分子に結合するポリペプチドを結合させてなる化合物を提供することができる。 In the present invention, it is also possible to provide a compound obtained by binding a polypeptide that binds to a target molecule to the compound represented by the above formula (I).
 標的分子に結合するポリペプチドは、本明細書において「標的分子認識素子」と呼ぶことがあり、標的分子に特異的に結合するポリペプチドをいう。特異的に結合するとは、標的分子に結合するが、標的分子以外の分子には結合しないか、弱い結合であることをいう。標的分子とは、放射性標識薬剤による診断や治療の対象となる標的部位、例えば組織や細胞に存在する分子、好ましくは特異的に発現する分子をいう。特異的に結合するとは、標的部位に発現するが、標的部位以外の部位には発現しないか、低い発現であることをいう。本発明において、標的分子認識素子として、具体的には、炎症や腫瘍細胞浸潤などに伴う組織構築において高い発現が認められるタンパク質や腫瘍細胞に特異的に発現するタンパク質に結合するリガンド、並びに抗体および抗体の抗原結合領域断片などを例示できる。抗体の抗原結合領域断片として、Fab断片、F(ab')2断片、F(ab)2断片、および可変領域(Fv)断片を例示できる。Fab断片とは、抗体のパパイン分解により生ずるN末端側の産物およびこれと同様のドメイン構造を有する断片を意味する。F(ab')2断片とは、抗体のF(ab')2のヒンジ領域のジスルフィド結合を還元することにより得られる断片およびこれと同様のドメイン構造を有する断片を意味する。F(ab)2断片とは、2分子のFab断片が互いにジスルフィド結合で結合した二量体を意味する。Fv断片とは、抗体の断片であって抗原との結合活性を有する最小の断片を意味する。より具体的には、特定のがん細胞に特異的に発現するタンパク質に対する抗体、およびそのFab断片やFv断片を例示できる。また、がんの新生血管に高発現が認められるインテグリンに親和性を有する環状ペンタペプチド、例えばシクロ-Arg-Gly-Asp-D-Phe-Lys[配列表の配列番号1、c(RGDfK)と略称する]を挙げることができる。そのほか、造骨性のがん(骨転移)に多く存在するヒドロキシアパタイトへの親和性を有するビスフォスフォン酸やオリゴアスパラギン酸、オリゴグルタミン酸、マクロファージの表面に存在する走査因子の受容体と親和性があるペプチドであるfMet-Leu-Phe(fMLP)、がん細胞に発現が認められる葉酸受容体と結合する葉酸とその誘導体などを例示できる。標的分子認識素子は、これら例示されたポリペプチドに限定されず、標的分子に結合するポリペプチドであればいずれを使用することもできる。 A polypeptide that binds to a target molecule is sometimes referred to herein as a “target molecule recognition element” and refers to a polypeptide that specifically binds to a target molecule. Specific binding refers to binding to a target molecule but not to a molecule other than the target molecule or weak binding. A target molecule refers to a molecule present in a target site, for example, a tissue or a cell, preferably a molecule that is specifically expressed, to be diagnosed or treated with a radiolabeled drug. Specifically binding means that it is expressed at a target site, but not expressed at a site other than the target site, or is low in expression. In the present invention, as a target molecule recognition element, specifically, a ligand that binds to a protein that is highly expressed in tissue construction associated with inflammation or tumor cell invasion, a protein that is specifically expressed in tumor cells, an antibody, and Examples include an antigen-binding region fragment of an antibody. Examples of antibody antigen-binding region fragments include Fab fragments, F (ab ′) 2 fragments, F (ab) 2 fragments, and variable region (Fv) fragments. The Fab fragment means an N-terminal product generated by papain degradation of an antibody and a fragment having the same domain structure. The F (ab ′) 2 fragment means a fragment obtained by reducing the disulfide bond in the hinge region of F (ab ′) 2 of an antibody and a fragment having a domain structure similar to this. The F (ab) 2 fragment means a dimer in which two molecules of Fab fragments are bonded to each other by a disulfide bond. The Fv fragment means the smallest fragment that is an antibody fragment and has an antigen-binding activity. More specifically, an antibody against a protein specifically expressed in a specific cancer cell, and a Fab fragment or Fv fragment thereof can be exemplified. In addition, a cyclic pentapeptide having an affinity for integrin, which is highly expressed in cancer new blood vessels, such as cyclo-Arg-Gly-Asp-D-Phe-Lys [SEQ ID NO: 1, c (RGDfK) Abbreviated]. In addition, receptors for bisphosphonic acid, oligoaspartic acid, oligoglutamic acid and macrophages that have an affinity for hydroxyapatite, which is abundant in osteogenic cancer (bone metastasis), and affinity for the scanning factor on the surface of macrophages Examples thereof include fMet-Leu-Phe (fMLP), a folate that binds to a folate receptor that is expressed in cancer cells, and derivatives thereof. The target molecule recognition element is not limited to these exemplified polypeptides, and any polypeptide that binds to the target molecule can be used.
 本発明に係る化合物を使用して、当該化合物を含む放射性標識ポリペプチド作製用薬剤を提供できる。放射性標識ポリペプチド作製用薬剤は、当該化合物の他に、水性緩衝液などのpH調節剤、およびアスコルビン酸やp-アミノ安息香酸などの安定化剤などの添加物を含むことができる。 Using the compound according to the present invention, it is possible to provide a radiolabeled polypeptide preparation drug containing the compound. In addition to the compound, the radiolabeled polypeptide preparation drug can contain additives such as a pH regulator such as an aqueous buffer and a stabilizer such as ascorbic acid and p-aminobenzoic acid.
 本発明においてはまた、標的分子に結合するポリペプチドを結合させた前記化合物と金属放射性同位体とから形成される錯体構造を有する錯体からなる放射性標識ポリペプチド、および該放射性標識ポリペプチドを含む放射性標識薬剤を提供できる。本発明に係る放射性標識薬剤は、放射性標識ポリペプチドの他に未反応物や不純物を含んでいても良いし、製造後に高速液体クロマトグラフィー(HPLC)法などの精製法により精製された放射性標識ポリペプチドを含むものであっても良い。 In the present invention, a radiolabeled polypeptide comprising a complex having a complex structure formed from the aforementioned compound bound to a target molecule and a metal radioisotope, and a radioactivity comprising the radiolabeled polypeptide Labeling agents can be provided. The radiolabeled drug according to the present invention may contain unreacted substances and impurities in addition to the radiolabeled polypeptide, and may be a radiolabeled polypeptide purified by a purification method such as high performance liquid chromatography (HPLC) after production. It may contain a peptide.
 用語「錯体」とは、金属および金属類似元素の原子またはイオンを中心にして、配位子が配位した物質を意味し、配位化合物ともいう。配位とは、配位子が中心の金属と配位結合を形成して中心金属の周囲に配列することをいう。錯体は、配位子と金属との配位結合により形成される。配位子と金属による錯体の形成を、錯形成と称することがある。配位結合とは、1本の結合にあずかる2個の原子価電子が、一方の原子のみから提供されている結合をいう。 The term “complex” means a substance in which a ligand is coordinated around an atom or ion of a metal and a metal-like element, and is also called a coordination compound. Coordination means that a ligand forms a coordinate bond with a central metal and is arranged around the central metal. The complex is formed by a coordinate bond between a ligand and a metal. Formation of a complex of a ligand and a metal may be referred to as complex formation. A coordinate bond refers to a bond in which two valence electrons participating in one bond are provided from only one atom.
 金属放射性同位体は、本発明に係る化合物と配位子を形成するものであれば特に限定されないが、好ましくはテクネチウム同位体、レニウム同位体、インジウム同位体、イットリウム同位体、およびルテチウム同位体、より好ましくはテクネチウム-99m、レニウム-186、レニウム-188、インジウム-111、イットリウム-90、およびルテチウム-177、さらに好ましくはテクネチウム-99m、レニウム-186、およびレニウム-188を例示できる。金属放射性同位体は、これら具体例に限定されず、放射性標識薬剤を用いた診断や、がん疾患などの疾患の内部放射線治療などの目的に適当な放射線、放射線量、半減期を有する限りにおいていずれも使用することができる。放射線画像診断および内部放射線治療において正常の組織や細胞への影響を少なくするという観点から、短半減期金属放射性同位体が好ましく使用される。 The metal radioisotope is not particularly limited as long as it forms a ligand with the compound according to the present invention, but preferably a technetium isotope, rhenium isotope, indium isotope, yttrium isotope, and lutetium isotope, More preferred examples include technetium-99m, rhenium-186, rhenium-188, indium-111, yttrium-90, and lutetium-177, and more preferably technetium-99m, rhenium-186, and rhenium-188. Metal radioisotopes are not limited to these specific examples, as long as they have appropriate radiation, radiation dose, and half-life for purposes such as diagnosis using radiolabeled drugs and internal radiotherapy of diseases such as cancer diseases. Either can be used. From the viewpoint of reducing the influence on normal tissues and cells in radiographic diagnosis and internal radiotherapy, short half-life metal radioisotopes are preferably used.
 錯体の製造は、標的分子認識素子と結合させた上記化合物を配位子として用い、金属放射性同位体とインビトロで錯形成させることにより実施できる。錯形成は、従来知られている錯形成反応を利用する簡便な操作で実施できる。 The complex can be produced by in vitro complexation with a metal radioactive isotope using the above compound bound to a target molecule recognition element as a ligand. Complex formation can be performed by a simple operation using a conventionally known complex formation reaction.
 本発明に係る放射性標識ポリペプチドとして、上記式(II)で示される化合物に抗体のFab断片を結合させた化合物を配位子として用い、金属放射性同位体とインビトロで錯形成させることにより形成された錯体構造を有する錯体からなる放射性標識ポリペプチドを好ましく例示できる。より好ましくは、金属放射性同位体としてテクネチウム-99m、レニウム-186、レニウム-188、インジウム-111、イットリウム-90、およびルテチウム-177からなる群より選択されるいずれか1の金属放射性同位体、さらに好ましくは金属放射性同位体としてテクネチウム-99m、レニウム-186、およびレニウム-188からなる群より選択されるいずれか1の金属放射性同位体を使用して形成された錯体構造を有する錯体を含む放射性標識薬剤を例示できる。 The radiolabeled polypeptide according to the present invention is formed by in vitro complexation with a metal radioisotope using a compound obtained by binding an antibody Fab fragment to the compound represented by the above formula (II) as a ligand. A radiolabeled polypeptide comprising a complex having a complex structure can be preferably exemplified. More preferably, the metal radioisotope is any one metal radioisotope selected from the group consisting of technetium-99m, rhenium-186, rhenium-188, indium-111, yttrium-90, and lutetium-177, Preferably, a radiolabel comprising a complex having a complex structure formed using any one metal radioisotope selected from the group consisting of technetium-99m, rhenium-186, and rhenium-188 as a metal radioisotope Drugs can be exemplified.
 本発明により作製される放射性標識ポリペプチドは、腎臓で選択的に切断されるアミノ酸配列X-Y-Zを有するため、対象に投与された後に、選択的に酵素分解され、その代謝産物は腎臓に蓄積することなく、速やかに尿中に排泄される。このように腎集積が低いという特徴を有する本発明に係る放射性標識ポリペプチドは、低分子ポリペプチドを用いたアイソトープ治療において問題とされている腎障害を大きく低減することが可能であり、短半減期金属放射性同位体のみならず細胞殺傷性のβ線を放出する金属放射性同位体による標識への応用も可能である。またこの特徴により、放射性画像診断において腹部のバックグラウンドとなる放射能が少ないため、腹部の病巣部位の検出・診断が容易となる。さらに、本発明に係る放射性標識ポリペプチドは、標的分子認識素子を有するため、標的部位に特異的に結合することができ、そのため標的部位に効率的に集積する。このような性質のため、本発明に係る放射性標識ポリペプチドは、画像診断の感度や治療効果を向上させることができる。 Since the radiolabeled polypeptide produced by the present invention has the amino acid sequence XYZ that is selectively cleaved by the kidney, it is selectively enzymatically degraded after administration to a subject, and its metabolite accumulates in the kidney. And is rapidly excreted in the urine. As described above, the radiolabeled polypeptide according to the present invention having the feature of low renal accumulation can greatly reduce kidney damage, which is a problem in isotope treatment using a low-molecular-weight polypeptide, It can be applied to labeling with metal radioisotopes that emit cell-killing β-rays as well as phase metal radioisotopes. This feature also facilitates detection / diagnosis of the abdominal lesion site because there is little radioactivity that becomes the background of the abdomen in radiological image diagnosis. Furthermore, since the radiolabeled polypeptide according to the present invention has a target molecule recognition element, it can specifically bind to the target site, and therefore efficiently accumulates in the target site. Due to such properties, the radiolabeled polypeptide according to the present invention can improve the sensitivity and therapeutic effect of diagnostic imaging.
 このように本発明に係る放射性標識ポリペプチドを含む放射性標識薬剤は、従来に比べて高い放射活性を有する放射性標識ポリペプチドの安全な投与を可能にするものであり、放射性画像診断や内部放射線治療に有用である。本発明に係る放射性標識薬剤は、上記放射性標識ポリペプチドを有効成分として含むほか、必要に応じて、1種類または2種類以上の医薬的に許容される担体(医薬用担体)を含む医薬組成物として調製できる。医薬用担体として、水性緩衝液、酸、および塩基などのpH調節剤、アスコルビン酸やp-アミノ安息香酸などの安定化剤、D-マンニトールなどの賦形剤、等張化剤、並びに保存剤などを例示できる。また、放射化学的純度を改良するのに役立つクエン酸、酒石酸、マロン酸、グルコン酸ナトリウム、グルコヘプトン酸ナトリウムなどの化合物を添加してもよい。本発明に係る放射性標識薬剤は、水溶液の形態、凍結溶液の形態、および凍結乾燥品のいずれでも提供が可能である。 As described above, the radiolabeled drug containing the radiolabeled polypeptide according to the present invention enables safe administration of a radiolabeled polypeptide having a higher radioactivity than the conventional one. Useful for. The radiolabeled drug according to the present invention contains the above radiolabeled polypeptide as an active ingredient and, if necessary, a pharmaceutical composition containing one or two or more pharmaceutically acceptable carriers (pharmaceutical carriers). Can be prepared. As pharmaceutical carriers, aqueous buffers, pH adjusters such as acids and bases, stabilizers such as ascorbic acid and p-aminobenzoic acid, excipients such as D-mannitol, isotonic agents, and preservatives Etc. can be illustrated. In addition, compounds such as citric acid, tartaric acid, malonic acid, sodium gluconate, sodium glucoheptonate, etc., useful for improving the radiochemical purity may be added. The radiolabeled drug according to the present invention can be provided in any form of an aqueous solution, a frozen solution, and a lyophilized product.
 本発明に係る放射性標識薬剤は、腫瘍、炎症、感染症、心循環器疾患、脳・中枢系疾患等の各種疾患および臓器・組織の放射線画像診断、あるいは内部放射線治療に用いられる。好ましくはがん疾患の放射線画像診断や内部放射線治療に使用されるが、適用疾患は特に限定されず、画像診断や内部放射線治療が適用される疾患であればいずれにも適用できる。診断や治療の対象となる標的の特性にしたがって、標的分子認識素子を選択することにより、多種類多様な標的の診断や治療が可能であり、本発明に係る放射性標識薬剤は診断および治療の分野で広く使用できる。 The radiolabeled drug according to the present invention is used for various diseases such as tumors, inflammations, infectious diseases, cardiovascular diseases, brain / central diseases, and radiographic diagnosis of organs / tissues, or internal radiotherapy. Preferably, it is used for radiological image diagnosis and internal radiotherapy of cancer diseases, but the applicable disease is not particularly limited, and any disease can be applied as long as it is image diagnosis or internal radiotherapy. By selecting the target molecule recognition element according to the characteristics of the target to be diagnosed or treated, it is possible to diagnose and treat a wide variety of targets. The radiolabeled drug according to the present invention is used in the field of diagnosis and treatment. Can be widely used in.
 本発明に係る放射性標識薬剤の投与経路として、静脈内投与あるいは動脈内投与などの非経口投与、あるいは経口投与を挙げることができ、静脈内投与を好ましく挙げることができる。投与経路はこれら経路に限定されず、放射性標識薬剤の投与後に、その作用が有効に発現し得る経路であればいずれも利用できる。 As the administration route of the radiolabeled drug according to the present invention, parenteral administration such as intravenous administration or intraarterial administration, or oral administration can be mentioned, and intravenous administration can be preferably mentioned. The administration route is not limited to these routes, and any route can be used as long as its action can be effectively expressed after administration of the radiolabeled drug.
 本発明に係る放射性標識薬剤の放射活性強度は、本標識薬剤を投与したことにより目的を達成し得る強度であり、かつ、被験者の放射線被爆が可能な限り低い臨床投与量である限りにおいて任意である。放射性強度は、放射性標識薬剤を使用する一般的な診断方法や治療方法で使用されている放射活性強度を参考にして決定できる。その投与量は患者の年齢、体重、適当な放射線イメージング装置、および対象疾患の状態などの諸条件を考慮し、イメージングおよび治療が可能と考えられる放射能および投与量が決定される。ヒトを対象とする場合、テクネチウム-99m標識体を用いた診断剤の投与量は、テクネチウム-99mの放射能量として37MBq~111MBqである。レニウム-186またはレニウム-188標識体を用いた治療剤の場合は、放射能量として37MBq~18500MBqの範囲であり、好ましくは370MBq~7400MBqである。 The radioactivity intensity of the radiolabeled drug according to the present invention is arbitrary as long as the objective can be achieved by administering the labeled drug and the subject is exposed to the lowest possible clinical dose. is there. The radioactive intensity can be determined with reference to the radioactive intensity used in a general diagnostic method or therapeutic method using a radiolabeled drug. The dose is determined in consideration of various conditions such as the patient's age, weight, appropriate radiographic imaging apparatus, and the state of the target disease, and the radioactivity and dose that can be imaged and treated are determined. In the case of human subjects, the dosage of a diagnostic agent using a technetium-99m label is 37 MBq to 111 MBq as the radioactivity of technetium-99m. In the case of a therapeutic agent using a rhenium-186 or rhenium-188 label, the radioactivity is in the range of 37 MBq to 18500 MBq, preferably 370 MBq to 7400 MBq.
 本発明において、上記化合物と、金属放射性同位体を含む薬剤とを、別々の包装単位として含んでなるキットを提供できる。本発明に係るキットとして、上記式(II)で示される化合物と、テクネチウム-99m、レニウム-186、レニウム-188、インジウム-111、イットリウム-90、およびルテチウム-177からなる群より選択されるいずれか1の金属放射性同位体を含む薬剤とを、別々の包装単位として含んでなるキットを好ましく例示できる。テクネチウム-99m、レニウム-186、レニウム-188、インジウム-111、イットリウム-90、およびルテチウム-177からなる群より選択されるいずれか1の金属放射性同位体を含む薬剤は、好ましくは溶液の形態で提供される。金属放射性同位体を含む薬剤は、より好ましくはテクネチウム-99m、レニウム-186、およびレニウム-188からなる群より選択されるいずれか1の金属放射性同位体を含む薬剤である。キットに含まれる化合物および薬剤はいずれも、必要に応じて、上記のような1種類または2種類以上の医薬的に許容される担体(医薬用担体)を含むことができる。 In the present invention, a kit comprising the above compound and a drug containing a metal radioisotope as separate packaging units can be provided. As a kit according to the present invention, any one selected from the group consisting of the compound represented by the above formula (II) and technetium-99m, rhenium-186, rhenium-188, indium-111, yttrium-90, and lutetium-177 Preferably, a kit comprising a drug containing one metal radioisotope as a separate packaging unit can be exemplified. The agent comprising any one of the metal radioisotopes selected from the group consisting of technetium-99m, rhenium-186, rhenium-188, indium-111, yttrium-90, and lutetium-177 is preferably in the form of a solution. Provided. More preferably, the drug containing a metal radioisotope is a drug containing any one metal radioisotope selected from the group consisting of technetium-99m, rhenium-186, and rhenium-188. Any of the compounds and drugs contained in the kit can contain one or more pharmaceutically acceptable carriers (pharmaceutical carriers) as described above, as necessary.
 以下、実施例を示して本発明をより具体的に説明するが、本発明は以下に示す実施例によって何ら限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the examples shown below.
 下式(I)に記載の化合構造において、R1がカルボキシメチル基(CH2-COOH)、R2が水素原子、Xがグリシン、YがL-フェニルアラニン、ZがL-リジン、Fがマレイミド基である化合物、2-{2-[2-({2-[(カルボキシメチル-アミノ)-メチル]-ピリジン-4-カルボニル}-アミノ)-アセチルアミノ]-3-フェニル-プロピオニルアミノ}-6-(2,5-ジオキソ-2,5-ジヒドロ-ピロール-1-イル)-ヘキサン酸(2-{2-[2-({2-[(Carboxymethyl-amino)-methyl]-pyridine-4-carbonyl}-amino)-acetylamino]-3-phenyl-propionylamino}-6-(2,5-dioxo-2,5-dihydro-pyrrol-1-yl)-hexanoic acid、本明細書においてPGGFMLと略称する)を、イソニコチン酸メチル(1)を原料として、化学反応式1に示すように合成した。 In the compound structure represented by the following formula (I), R 1 is a carboxymethyl group (CH 2 -COOH), R 2 is a hydrogen atom, X is glycine, Y is L-phenylalanine, Z is L-lysine, and F is maleimide. The compound being a group, 2- {2- [2-({2-[(carboxymethyl-amino) -methyl] -pyridine-4-carbonyl} -amino) -acetylamino] -3-phenyl-propionylamino}- 6- (2,5-Dioxo-2,5-dihydro-pyrrol-1-yl) -hexanoic acid (2- {2- [2-({2-[(Carboxymethyl-amino) -methyl] -pyridine-4 -carbonyl} -amino) -acetylamino] -3-phenyl-propionylamino} -6- (2,5-dioxo-2,5-dihydro-pyrrol-1-yl) -hexanoic acid, abbreviated herein as PGGFML ) Was synthesized as shown in Chemical Reaction Formula 1 using methyl isonicotinate (1) as a raw material.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
(化学反応式1)
Figure JPOXMLDOC01-appb-C000011
(Chemical reaction formula 1)
Figure JPOXMLDOC01-appb-C000011
1.化合物2の合成
 イソニコチン酸メチル(1)(Methyl isonicotinate (1)、9.93 g, 72.4 mmol)をメタノール(MeOH、100 mL)に溶解し、触媒量の硫酸(0.33 mL)を加えた。加熱還流下、過硫酸アンモニウム(30 g, 131.5 mol)の飽和水溶液(55 mL)を滴下し、混合物を還流温度で30分間撹拌した。冷却後、炭酸ナトリウムを加えpHを7付近に調節し、反応物をろ過し、ろ液のMeOHを減圧留去して得た水層を酢酸エチル(AcOEt、150 mL×5)で抽出、有機層を無水硫酸マグネシウムで乾燥後、溶媒を減圧留去した。残渣をAcOEt:n- ヘキサン(Hex)=1:1の溶液を移動相とするシリカゲルクロマトグラフィにより精製し、黄色結晶を得た。得られた結晶をAcOEt(20 mL) に溶解し、Hex(40mL)を加えることで析出した結晶を、ろ取して、4.80 g(収率39.7 %)のメチル 2-ヒドロキシメチルイソニコチネート(2)(methyl 2-hydroxymethylisonicotinate (2))を白色針状結晶として得た。1H-NMR (CDCl3):δ8.69- 8.71 [1H, d, pyridine], δ7.81 [1H, s, pyridine],δ7.74- 7.75 [1H, d, pyridine], δ4.82[2H, s, CH2OH], δ3.95 [3H,s, COOCH3]. FAB-MS計算値:C8H9NO3[M+H]+:m/z 168, 測定値168.
1. Synthesis of Compound 2 Methyl isonicotinate (1) (9.93 g, 72.4 mmol) was dissolved in methanol (MeOH, 100 mL), and a catalytic amount of sulfuric acid (0.33 mL) was added. A saturated aqueous solution (55 mL) of ammonium persulfate (30 g, 131.5 mol) was added dropwise under reflux with heating, and the mixture was stirred at reflux temperature for 30 minutes. After cooling, sodium carbonate was added to adjust the pH to around 7, the reaction product was filtered, the filtrate MeOH was distilled off under reduced pressure, and the aqueous layer obtained was extracted with ethyl acetate (AcOEt, 150 mL × 5), organic The layer was dried over anhydrous magnesium sulfate, and the solvent was distilled off under reduced pressure. The residue was purified by silica gel chromatography using a solution of AcOEt: n-hexane (Hex) = 1: 1 as a mobile phase to obtain yellow crystals. The obtained crystals were dissolved in AcOEt (20 mL), and the crystals precipitated by adding Hex (40 mL) were collected by filtration, and 4.80 g (yield 39.7%) of methyl 2-hydroxymethylisonicotinate ( 2) (methyl 2-hydroxymethylisonicotinate (2)) was obtained as white needle crystals. 1 H-NMR (CDCl 3 ): δ8.69-8.71 [1H, d, pyridine], δ7.81 [1H, s, pyridine], δ7.74- 7.75 [1H, d, pyridine], δ4.82 [ 2H, s, CH 2 OH], δ 3.95 [3H, s, COOCH 3 ]. FAB-MS calculated: C 8 H 9 NO 3 [M + H] + : m / z 168, measured 168.
2.化合物3の合成
 化合物2(4.04 g,24.0 mmol)を乾燥トルエン(80 mL)に溶解し、氷冷下、塩化チオニル(20.8 mL, 288 mmol)を滴下した。室温で1時間撹拌し、溶媒を減圧留去することで、5.19 g(収率97.4 %)のメチル 2-クロロシメチルイソニコチネート(3)(methyl 2-chloromethylisonicotinate (3))を白色結晶として得た。1H-NMR(CDCl3) : δ8.79- 8.81 [1H, d, pyridine], δ8.26 [1H, s, pyridine], δ8.04-8.05[1H, d, pyridine], δ4.96 [2H, s, CH2OH], δ4.02 [3H, s, COOCH3].
2. Synthesis of Compound 3 Compound 2 (4.04 g, 24.0 mmol) was dissolved in dry toluene (80 mL), and thionyl chloride (20.8 mL, 288 mmol) was added dropwise under ice cooling. Stir at room temperature for 1 hour and evaporate the solvent under reduced pressure to obtain 5.19 g (97.4% yield) of methyl 2-chloromethylisonicotinate (3) as white crystals. Obtained. 1 H-NMR (CDCl 3 ): δ8.79-8.81 [1H, d, pyridine], δ8.26 [1H, s, pyridine], δ8.04-8.05 [1H, d, pyridine], δ4.96 [ 2H, s, CH 2 OH], δ4.02 [3H, s, COOCH 3 ].
3.化合物4の合成
 H-Gly-OtertBu・HCl(0.59 g, 3.51 mmol) と炭酸カリウム(1.13 g, 8.19 mmol)を乾燥アセトニトリル(MeCN、5 mL)に懸濁し、氷冷下、乾燥MeCN(5 mL)に溶解した化合物3(0.26 g, 1.17 mmol)を滴下した。室温で一晩撹拌後、反応溶液をろ過し、ろ液を減圧留去した。残渣をAcOEt(10 mL)に溶解し、飽和塩化ナトリウム水溶液(10 mL×3)で洗浄した。無水硫酸マグネシウムで乾燥後、溶媒を減圧留去した。残渣をAcOEt:Hex=1:2の溶液を移動相とするシリカゲルクロマトグラフィにより精製することで、323.4 mg(収率87.7 %)の化合物4を黄色油状物質として得た。1H-NMR(CDCl3) : δ8.71- 8.70 [1H, d, pyridine], δ8.08 [1H, s, pyridine], δ7.70-7.69[1H, d, pyridine], δ4.01 [2H, s, pyr-CH2], δ3.95 [3H, s, COOCH3], δ3.38 [2H, s, NHCH2CO], δ1.47 [9H, s, tBu].
3. Synthesis of Compound 4 H-Gly-OtertBu · HCl (0.59 g, 3.51 mmol) and potassium carbonate (1.13 g, 8.19 mmol) were suspended in dry acetonitrile (MeCN, 5 mL) and dried under ice-cooling with dry MeCN ( Compound 3 (0.26 g, 1.17 mmol) dissolved in 5 mL) was added dropwise. The reaction solution was filtered after stirring at room temperature overnight, and the filtrate was depressurizingly distilled. The residue was dissolved in AcOEt (10 mL) and washed with saturated aqueous sodium chloride solution (10 mL × 3). After drying over anhydrous magnesium sulfate, the solvent was distilled off under reduced pressure. The residue was purified by silica gel chromatography using a solution of AcOEt: Hex = 1: 2 as a mobile phase to obtain 323.4 mg (yield: 87.7%) of Compound 4 as a yellow oily substance. 1 H-NMR (CDCl 3 ): δ8.71- 8.70 [1H, d, pyridine], δ8.08 [1H, s, pyridine], δ7.70-7.69 [1H, d, pyridine], δ4.01 [ 2H, s, pyr-CH 2 ], δ 3.95 [3H, s, COOCH 3 ], δ 3.38 [2H, s, NHCH 2 CO], δ 1.47 [9H, s, tBu].
4.化合物5の合成
 化合物4(287.4 mg, 1.03 mmol)を乾燥ジクロロメタン(CH2Cl2、3 mL)に溶解し、トリエチルアミン(0.171 mL, 1.23 mmol)を加えた。氷冷下、乾燥CH2Cl2(2 mL)に溶解した二炭酸-tert-ジブチル(268 mg, 1.23 mmol)を滴下した。室温で4時間撹拌後、反応液を5% クエン酸水溶液(5 mL×3)で洗浄した。無水硫酸マグネシウムで乾燥後、溶媒を減圧留去した。残渣をAcOEt:Hex=1:5の溶液を移動相とするシリカゲルクロマトグラフィにより精製することで、246.1 mg(収率62.8 %)の化合物5を無色透明油状物質として得た。1H-NMR(CDCl3) : δ8.68- 8.67 [1H, d, pyridine], δ7.87 [1H, s, pyridine], δ7.73-7.72[1H, d, pyridine], δ4.61 [2H, s, pyr-CH2], δ3.95 [3H, s, COOCH3], δ3.86 [2H, s, NHCH2CO], δ1.43 [18H, s, tBu, Boc].
4. Synthesis of Compound 5 Compound 4 (287.4 mg, 1.03 mmol) was dissolved in dry dichloromethane (CH 2 Cl 2, 3 mL), and triethylamine (0.171 mL, 1.23 mmol) was added. Dicarbonate-tert-dibutyl dicarbonate (268 mg, 1.23 mmol) dissolved in dry CH 2 Cl 2 (2 mL) was added dropwise under ice cooling. After stirring at room temperature for 4 hours, the reaction solution was washed with 5% aqueous citric acid solution (5 mL × 3). After drying over anhydrous magnesium sulfate, the solvent was distilled off under reduced pressure. The residue was purified by silica gel chromatography using a solution of AcOEt: Hex = 1: 5 as a mobile phase to obtain 246.1 mg (yield 62.8%) of Compound 5 as a colorless transparent oily substance. 1 H-NMR (CDCl 3 ): δ8.68-8.67 [1H, d, pyridine], δ7.87 [1H, s, pyridine], δ7.73-7.72 [1H, d, pyridine], δ4.61 [ 2H, s, pyr-CH 2 ], δ 3.95 [3H, s, COOCH 3 ], δ 3.86 [2H, s, NHCH 2 CO], δ 1.43 [18H, s, tBu, Boc].
5.化合物6の合成
 化合物5(246.1 mg, 0.65 mmol)をMeOH(1 mL)に溶解し、氷冷下、2N 水酸化ナトリウム(NaOH)水溶液(1 mL)を加えた。室温で3時間撹拌後、1N 塩酸(HCl)水溶液を加えてpH 7付近に調節し、MeOHを減圧留去した。得られた水溶液をクロロホルム(CHCl3、3 mL×3)で抽出した。有機層を無水硫酸マグネシウムで乾燥後、溶媒を減圧留去することで、112.0 mg(収率47.3 %)の化合物6を白色結晶として得た。1H-NMR(CDCl3) : δ8.67- 8.65 [1H, d, pyridine], δ7.94 [1H, s, pyridine], δ7.89-7.88[1H, d, pyridine], δ4.78 [2H, s, pyr-CH2], , δ4.12 [2H, s, NCH2], δ1.42 [18H, s, tBu, Boc].
5. Synthesis of Compound 6 Compound 5 (246.1 mg, 0.65 mmol) was dissolved in MeOH (1 mL), and 2N aqueous sodium hydroxide (NaOH) solution (1 mL) was added under ice cooling. After stirring at room temperature for 3 hours, 1N hydrochloric acid (HCl) aqueous solution was added to adjust the pH to around 7, and MeOH was distilled off under reduced pressure. The obtained aqueous solution was extracted with chloroform (CHCl 3, 3 mL × 3). The organic layer was dried over anhydrous magnesium sulfate, and the solvent was distilled off under reduced pressure to obtain 112.0 mg (yield 47.3%) of Compound 6 as white crystals. 1 H-NMR (CDCl 3 ): δ8.67-8.65 [1H, d, pyridine], δ7.94 [1H, s, pyridine], δ7.89-7.88 [1H, d, pyridine], δ4.78 [ 2H, s, pyr-CH 2 ],, δ4.12 [2H, s, NCH 2 ], δ1.42 [18H, s, tBu, Boc].
6.化合物7の合成
 Cl-Trt(2-Cl)Resin(124.8 mg, 0.196 mmol)、Fmoc-Lys(Z)-OH(98.5 mg, 0.196 mmol)、N,N-ジイソプロピルエチルアミン(139.3 μL, 0.78 mmol)をCH2Cl2中、室温で90分間撹拌した。次いで、N,N-ジイソプロピルエチルアミン(139.3 μL, 0.78 mmol)とMeOH(0.38 mL)を加え、室温で15分間撹拌した。樹脂をジメチルホルムアミド(DMF、5 mL×3)、CH2Cl2(5 mL×3)、イソプロパノール(5 mL×3)、ジエチルエーテル(Et2O、5 mL×3)で洗浄し、減圧乾燥した。次いで、20% ピペリジン/DMF(v/v)(3 mL)を加え、20分間室温で撹拌した。樹脂をDMF(5 mL×8)で洗浄した後、樹脂の一部を採取してカイザーテスト(Kaiser test)を行い、Nα-Fmoc基の脱保護を確認した。
6. Synthesis of Compound 7 Cl-Trt (2-Cl) Resin (124.8 mg, 0.196 mmol), Fmoc-Lys (Z) -OH (98.5 mg, 0.196 mmol), N, N-diisopropylethylamine (139.3 μL, 0.78 mmol) was stirred in CH 2 Cl 2 for 90 min at room temperature. Next, N, N-diisopropylethylamine (139.3 μL, 0.78 mmol) and MeOH (0.38 mL) were added, and the mixture was stirred at room temperature for 15 minutes. Wash the resin with dimethylformamide (DMF, 5 mL × 3), CH 2 Cl 2 (5 mL × 3), isopropanol (5 mL × 3), diethyl ether (Et 2 O, 5 mL × 3), and dry under reduced pressure did. Then, 20% piperidine / DMF (v / v) (3 mL) was added and stirred for 20 minutes at room temperature. After the resin was washed with DMF (5 mL × 8), a part of the resin was collected and subjected to a Kaiser test to confirm the deprotection of the N α -Fmoc group.
 H-Lys(Z)-Trt(2-Cl)Resin(0.196 mmol)と、2.5等量の保護アミノ誘導体、Fmoc-Phe-OH(189.6mg, 0.49 mmol)、N,N-ジイソプロピルカルボジイミド(75.4 μL, 0.49 mmol)、1-ヒドロキシベンゾトリアゾール(75.0 mg, 0.49 mmol)をDMF(0.5 mL)中、室温で2時間撹拌した。樹脂をDMF(5 mL×8)で洗浄した後、樹脂の一部を採取してカイザーテストを行い、縮合反応の終了を確認した。次いで、20% ピペリジン/DMF (v/v)(3 mL)を加え、20分間室温で撹拌した。樹脂をDMF(5 mL×8)で洗浄した。さらに、保護アミノ酸Fmoc-Gly-OH(145.7 mg, 0.49 mmol)を用いて同様の反応を行い、H-Gly-Phe-Lys(Z)-Trt(2-Cl)Resinを作製した。 H-Lys (Z) -Trt (2-Cl) Resin (0.196 mmol), 2.5 equivalents of protected amino derivative, Fmoc-Phe-OH (189.6mg, 0.49 mmol), N, N-diisopropylcarbodiimide (75.4 μL) , 0.49 mmol, 1-hydroxybenzotriazole (75.0 mg, 0.49 mmol) was stirred in DMF (0.5 mL) at room temperature for 2 hours. After the resin was washed with DMF (5 mL × 8), a part of the resin was collected and subjected to a Kaiser test to confirm the completion of the condensation reaction. Subsequently, 20% piperidine / DMF (v / v) (3 mL) was added, and the mixture was stirred at room temperature for 20 minutes. The resin was washed with DMF (5 mL × 8). Furthermore, the same reaction was performed using the protected amino acid Fmoc-Gly-OH (145.7 mg, 0.49 mmol) to prepare H-Gly-Phe-Lys (Z) -Trt (2-Cl) Resin.
 H-Phe-Gly-Lys(Z)-Trt(2-Cl)Resin(0.196 mmol)と化合物6(71.8 mg, 0.196 mmol)、N,N-ジイソプロピルカルボジイミド(30.3 μL, 0.196 mmol)、1-ヒドロキシベンゾトリアゾール(30.0 mg, 0.196 mmol)を DMF(1 mL)中、室温で一晩撹拌した。樹脂をDMF(5 mL×8)次いでCH2Cl2(5 mL×8)で洗浄し、減圧乾燥した。 H-Phe-Gly-Lys (Z) -Trt (2-Cl) Resin (0.196 mmol) and compound 6 (71.8 mg, 0.196 mmol), N, N-diisopropylcarbodiimide (30.3 μL, 0.196 mmol), 1-hydroxy Benzotriazole (30.0 mg, 0.196 mmol) was stirred in DMF (1 mL) at room temperature overnight. The resin was washed with DMF (5 mL × 8) and then CH 2 Cl 2 (5 mL × 8) and dried under reduced pressure.
7.化合物8の合成
 PG(Boc)-OtBu-Phe-Gly-Trt(2-Cl)Resin(0.196 mmol)に、酢酸(AcOH):2,2,2-トリフロロエタノール:CH2Cl2=3:1:6 (v/v/v)(5 mL)を加え、室温で2時間撹拌した。反応液をろ過した後ろ液を減圧留去した。残渣をトルエン(5 mL×3)で共沸し、得られた薄黄色油状物質をEtOH(0.2 mL)に溶解し、Et2O(10 mL)を加えることにより析出した白色結晶をろ取して92.8 mg(収率56.9 %)のPG(Boc)-OtBu-Gly-Phe-Lys(Z)-OHを白色結晶として得た。本化合物はこれ以上の精製を行わず、そのまま次の反応に用いた。なお、PGは2-((カルボキシアミノ)メチル)イソニコチン酸(2-((carboxyamino)methyl)isonicotinic acid)の略称である。
7. Synthesis of Compound 8 To PG (Boc) -OtBu-Phe-Gly-Trt (2-Cl) Resin (0.196 mmol), acetic acid (AcOH): 2,2,2-trifluoroethanol: CH 2 Cl 2 = 3: 1: 6 (v / v / v) (5 mL) was added, and the mixture was stirred at room temperature for 2 hours. The back solution obtained by filtering the reaction solution was distilled off under reduced pressure. The residue was azeotroped with toluene (5 mL × 3), and the resulting pale yellow oily substance was dissolved in EtOH (0.2 mL). Et 2 O (10 mL) was added to collect the precipitated white crystals by filtration. 92.8 mg (yield 56.9%) of PG (Boc) -OtBu-Gly-Phe-Lys (Z) -OH was obtained as white crystals. This compound was used in the next reaction without further purification. Note that PG is an abbreviation for 2-((carboxyamino) methyl) isonicotinic acid.
8.化合物9の合成
 化合物8(50 mg, 0.060 mmol)をMeOH:H2O:AcOH=9:0.5:0.5 (v/v/v)の溶液(4 mL)に溶解し、10% Pd/C(5.0 mg, 0.0047 mmol)を懸濁させ、H2雰囲気下、室温で8時間撹拌した。反応溶液を少量のセライト(celiteを用いて吸引ろ過し、ろ液の溶媒を減圧留去した。残渣にEt2O(5 mL)を加え、析出した結晶をろ取することで、34.6 mg(収率82. 6%)の PG(Boc)-OtBu-Gly-Phe-Lys-OHを灰色結晶として得た。本化合物はこれ以上の精製を行わず、そのまま次の反応に用いた。
8. Synthesis of Compound 9 Compound 8 (50 mg, 0.060 mmol) was dissolved in a solution (4 mL) of MeOH: H 2 O: AcOH = 9: 0.5: 0.5 (v / v / v) and 10% Pd / C (5.0 mg, 0.0047 mmol) was suspended and stirred at room temperature for 8 hours under H 2 atmosphere. The reaction solution was suction filtered using a small amount of celite (the solvent of the filtrate was distilled off under reduced pressure. Et 2 O (5 mL) was added to the residue, and the precipitated crystals were collected by filtration to give 34.6 mg ( Yield 82.6%) of PG (Boc) -OtBu-Gly-Phe-Lys-OH was obtained as gray crystals, and this compound was used in the next reaction without further purification.
9.化合物10の合成
 PG(Boc)-OtBu-Gly-Phe-Lys-OH(34.6 mg, 0.050 mmol)を飽和炭酸水素ナトリウム水溶液(2 mL)に溶解し、氷冷下、N-(メトキシカルボニル)マレイミド(8.5 mg, 0.055 mmol)を加えた。氷冷下、40分間撹拌した後、室温で50分間撹拌した。再び氷冷し、濃硫酸を加えpH 3付近に調節し、酢酸エチル(3 mL×3)で抽出した。有機層を無水硫酸マグネシウムで乾燥後、溶媒を減圧留去することで、16.5 mg(収率42.4 %)のPG(Boc)-OtBu-Gly-Phe-Lys(mal)-OHを白色結晶として得た。1H-NMR(DMSO) : δ8.98- 8.97 [1H, d, NH], δ8.63[1H, s, NH], δ8.30-8.28 [1H, m, NH], δ.16-8.14 [1H, d, pyridine], δ7.68-7.65 [2H, m, pyridine], δ7.23-7.16 [5H, m, aromatic], δ6.99 [2H, s, COCHCHCO],δ4.58-4.51 [3H, m, NHCHCH2C6H5,pyr-CH2], δ4.13-4.12 [2H, m,NHCHCOOH], δ4.00-3.76 [4H, m, NHCH2, NCH2], δ3.16 [2H, s, CH2-mal],δ2.77-2.63 [2H, q, CHCH2-C6H5],δ1.72-1.62 [2H, m, CHCH2CH2],δ1.48-1.47 [2H, m, CH2 CH2NH],δ1.39-1.37 [18H, m, tBu,Boc], δ1.27-1.23[2H, m, CHCH2CH2].
9. Synthesis of Compound 10 PG (Boc) -OtBu-Gly-Phe-Lys-OH (34.6 mg, 0.050 mmol) was dissolved in a saturated aqueous solution of sodium bicarbonate (2 mL). Under ice cooling, N- (methoxycarbonyl ) Maleimide (8.5 mg, 0.055 mmol) was added. The mixture was stirred for 40 minutes under ice cooling, and then stirred at room temperature for 50 minutes. The mixture was ice-cooled again, concentrated sulfuric acid was added to adjust the pH to around 3, and the mixture was extracted with ethyl acetate (3 mL × 3). After drying the organic layer over anhydrous magnesium sulfate, the solvent was distilled off under reduced pressure to obtain 16.5 mg (yield 42.4%) of PG (Boc) -OtBu-Gly-Phe-Lys (mal) -OH as white crystals. It was. 1 H-NMR (DMSO): δ8.98-8.97 [1H, d, NH], δ8.63 [1H, s, NH], δ8.30-8.28 [1H, m, NH], δ.16-8.14 [1H, d, pyridine], δ7.68-7.65 [2H, m, pyridine], δ7.23-7.16 [5H, m, aromatic], δ6.99 [2H, s, COCHCHCO], δ4.58-4.51 [3H, m, NHCHCH 2 C 6 H 5 , pyr-CH 2 ], δ4.13-4.12 [2H, m, NHCHCOOH], δ4.00-3.76 [4H, m, NHCH 2 , NCH 2 ], δ3. 16 [2H, s, CH 2 -mal], δ2.77-2.63 [2H, q, CHCH 2 -C 6 H 5 ], δ1.72-1.62 [2H, m, CHCH 2 CH 2 ], δ1.48 -1.47 [2H, m, CH 2 CH 2 NH], δ1.39-1.37 [18H, m, tBu, Boc], δ1.27-1.23 [2H, m, CHCH 2 CH 2 ].
 10.化合物11(PGGFML)の合成
 PG(Boc)-OtBu-Gly-Phe-Lys(mal)-OH(16.5 mg, 0.021 mmol) をEtOAc(0.5 mL)に溶解し、4N HCl/EtOAc(1.5 mL)を加えた。室温で2時間撹拌後、析出した結晶をろ取し、分取用逆相高速液体クロマトグラフィー(RP-HPLC)で精製することで、8.6 mg(収率62.3 %)のPGGFMLの塩酸塩を白色結晶として得た。1H-NMR(DMSO) : δ9.02 [1H, d, NH], δ8.69[1H, s, NH], δ8.25-8.24 [1H, d, NH], δ8.20-8.18 [1H, d, pyridine], δ7.84 [1H, s, pyridine], δ7.69-7.68 [1H, d, pyridine], δ7.24-7.17 [5H, m, aromatic], δ6.99 [2H, s, COCHCHCO],δ4.56 [1H, m, NHCHCH2C6H5],δ4.11 [4H, s, NHCH2COOH,pyr-CH2], δ3.91-3.79 [2H, dq, NHCH2,],δ3.05-3.00 [1H, m, NHCHCOOH], δ2.80-2.74[2H, m, CH2-mal], δ2.33 [2H,m, CHCH2-C6H5],δ1.75-1.72 [2H, m, CHCH2CH2],δ1.48-1.46 [2H, m, CH2 CH2NH],δ1.28-1.24 [2H, m, CHCH2CH2].ESI-MS計算値:C30H34N6O9[M-H]-:m/z 621, 測定621.
10. Synthesis of Compound 11 (PGGFML) PG (Boc) -OtBu-Gly-Phe-Lys (mal) -OH (16.5 mg, 0.021 mmol) was dissolved in EtOAc (0.5 mL) and 4N HCl / EtOAc (1.5 mL) ) Was added. After stirring at room temperature for 2 hours, the precipitated crystals were collected by filtration and purified by preparative reverse-phase high performance liquid chromatography (RP-HPLC) to obtain 8.6 mg (yield: 62.3%) of PGGFML hydrochloride in white Obtained as crystals. 1 H-NMR (DMSO): δ9.02 [1H, d, NH], δ8.69 [1H, s, NH], δ8.25-8.24 [1H, d, NH], δ8.20-8.18 [1H , d, pyridine], δ7.84 [1H, s, pyridine], δ7.69-7.68 [1H, d, pyridine], δ7.24-7.17 [5H, m, aromatic], δ6.99 [2H, s , COCHCHCO], δ4.56 [1H, m, NHCHCH 2 C 6 H 5 ], δ4.11 [4H, s, NHCH 2 COOH, pyr-CH 2 ], δ3.91-3.79 [2H, dq, NHCH 2 ,], δ3.05-3.00 [1H, m, NHCHCOOH], δ2.80-2.74 [2H, m, CH 2 -mal], δ2.33 [2H, m, CHCH 2 -C 6 H 5 ], δ1 .75-1.72 [2H, m, CHCH 2 CH 2 ], δ1.48-1.46 [2H, m, CH 2 CH 2 NH], δ1.28-1.24 [2H, m, CHCH 2 CH 2 ] .ESI- MS calculated: C 30 H 34 N 6 O 9 [MH] - : m / z 621, measurement 621.
 PGGFMLに抗体のFab断片を結合させた化合物PGGFML-IT-Fabを作製した。 The compound PGGFML-IT-Fab was prepared by binding the antibody Fab fragment to PGGFML.
 まず、2-イミノチオラン(2-IT)によりチオール化したFab溶液(100 μL)に、DMFに溶解したPGGFML(50 mg/mL)を1 μL加え、室温で4時間反応した。次いで、0.1 Mリン酸緩衝液(pH 6.0)を用いてヨードアセトアミド溶液(10 mg/mL)を調製し、これを14.8 μL加えた後、室温で30分間反応を行い、未反応のチオール基をアルキル化した。その後、PGGFML-IT-Fabは0.1M リン酸緩衝液(pH 7.0)で平衡化したセファデックス G-50 Fineを用いるスピンカラム法で精製した。この反応により、抗体1分子当たり平均0.95分子のPGGFMLが導入された。 First, 1 μL of PGGFML (50 mg / mL) dissolved in DMF was added to a Fab solution (100 μL) thiolated with 2-iminothiolane (2-IT), and reacted at room temperature for 4 hours. Next, an iodoacetamide solution (10 mg / mL) was prepared using 0.1 M phosphate buffer (pH 6.0), and 14.8 μL was added thereto, followed by reaction at room temperature for 30 minutes to remove unreacted thiol groups. Alkylated. Thereafter, PGGFML-IT-Fab was purified by a spin column method using Sephadex® G-50® Fine equilibrated with 0.1M phosphate buffer (pH 7.0). This reaction introduced an average of 0.95 molecules of PGGFML per antibody molecule.
(1)PGGFML-IT-Fabの99mTc標識化
 PGGFML-IT-Fabを99mTcにより標識化した。標識化は、PGGFML-IT-Fabを[99mTc(CO)3(OH2)3]+と錯形成反応させることにより実施した。また、対照化合物としてPGのカルボン酸をFabのリジン由来のアミノ基に結合して作製したPG-Fabを同様に99mTcにより標識化して使用した。
(1) 99m Tc labeling of PGGFML-IT-Fab PGGFML-IT-Fab was labeled with 99m Tc. The labeling was performed by complexing PGGFML-IT-Fab with [ 99m Tc (CO) 3 (OH 2 ) 3 ] + . As a control compound, PG-Fab prepared by binding PG carboxylic acid to an amino group derived from lysine of Fab was similarly labeled with 99m Tc and used.
 まず、[99mTc(CO)3(OH2)3]+を調製した。ナトリウムボラノカーボネート(sodium boranocarbonate、3 mg)、四ホウ酸ナトリウム・十水和物(sodium tetraborate decahydrate、1.9 mg)、酒石酸(+)-ナトリウム・二水和物(sodium(+) tartrate dihydrate、4.8 mg)、炭酸ナトリウム(5.7 mg)を窒素置換したミリQ(milliQ)水1.0 mlに溶解し、1.5 mlエッペンドルフチューブに100 μlずつ分注し、凍結乾燥することで、99mTc-アクアキットを作成した。99mTc-アクアキットにジェネレータから溶出した99mTcO4 -生理食塩水溶液 100 μlを加え、100 ℃で20分間反応させることで、 [99mTc(CO)3(OH2)3]+を得た。室温まで放冷し、1N HCl水溶液を約10 μl加え、pHを7付近に調整して用いた。[99mTc(CO)3(OH2)3]+の生成はRP-HPLCを用いて確認した。99mTcO4 -は2.8 分および[99mTc(CO)3(OH2)3]+は4.9 分に認められ、放射化学的収率は100 %であった。 First, [ 99m Tc (CO) 3 (OH 2 ) 3 ] + was prepared. Sodium boranocarbonate (sodium boranocarbonate, 3 mg), sodium tetraborate decahydrate (1.9 mg), tartaric acid (+)-sodium dihydrate (sodium (+) tartrate dihydrate, 4.8 mg) and sodium carbonate (5.7 mg) dissolved in 1.0 ml of nitrogen-substituted MilliQ water and dispensed into a 1.5 ml Eppendorf tube, 100 μl at a time, and lyophilized to create a 99m Tc-Aqua kit did. 99m Tc-aqua kit 99m TcO 4 eluted from the generator - saline solution 100 [mu] l was added and reacted at 100 ° C. 20 minutes to obtain a + [99m Tc (CO) 3 (OH 2) 3]. The mixture was allowed to cool to room temperature, about 10 μl of 1N HCl aqueous solution was added, and the pH was adjusted to around 7 before use. The formation of [ 99m Tc (CO) 3 (OH 2 ) 3 ] + was confirmed using RP-HPLC. 99m TcO 4 was observed at 2.8 minutes and [ 99m Tc (CO) 3 (OH 2 ) 3 ] + was observed at 4.9 minutes, and the radiochemical yield was 100%.
 次に、錯形成反応を行った。0.1 Mリン酸緩衝水 pH 7.0 を用いて3.0 mg/mlに調製したPGGFML-IT-FabもしくはPG-Fab溶液10 μlに[99mTc(CO)3(OH2)3]+溶液10 μlを加え、40 ℃で60 分間インキュベーションした。放射化学的収率はサイズ排除HPLC(SE-HPLC)およびRP-TLCにより分析した。放射化学的収率は96.2 %であった。 Next, a complex formation reaction was performed. Add 10 μl of [ 99m Tc (CO) 3 (OH 2 ) 3 ] + solution to 10 μl of PGGFML-IT-Fab or PG-Fab solution adjusted to 3.0 mg / ml using 0.1 M phosphate buffered water pH 7.0 And incubated at 40 ° C. for 60 minutes. Radiochemical yields were analyzed by size exclusion HPLC (SE-HPLC) and RP-TLC. The radiochemical yield was 96.2%.
(2)99mTc-PGGFML-IT -Fabのマウス血漿中での安定性の評価
 99mTc-PGGFML-IT-Fab溶液を0.1 Mリン酸緩衝液(pH 7.0)で0.5 mg/mlの濃度に調製し、その溶液20 μLをマウス血漿230 μLに加えた。37 ℃でインキュベーションし、1、3、6時間後に試料の一部を、逆相薄層クロマトグラフィー(RP-TLC)およびSE-HPLCにより分析し、Fabから遊離した放射活性の割合を算出した。
(2) 99m Tc-PGGFML- IT -Fab evaluation of stability in mouse plasma in 99m Tc-PGGFML-IT-Fab solution 0.1 M phosphate buffer adjusted to a concentration of 0.5 mg / ml in (pH 7.0) Then, 20 μL of the solution was added to 230 μL of mouse plasma. After incubation at 37 ° C, a portion of the sample was analyzed by reverse phase thin layer chromatography (RP-TLC) and SE-HPLC after 1, 3 and 6 hours to calculate the percentage of radioactivity released from the Fab.
 その結果、99mTc-PGGFML-IT-Fabおよび99mTc-Fabをマウス血漿と37 ℃でインキュベートしたところ、6時間後まで98.3%以上が未変化体として存在した(表1)。 As a result, when 99m Tc-PGGFML-IT-Fab and 99m Tc-Fab were incubated with mouse plasma at 37 ° C., 98.3% or more existed unchanged until 6 hours later (Table 1).
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
(3)RI標識抗体フラグメントの体内動態実験
 99mTc-PGGFML-IT-Fabをマウス尾静脈より投与し、それぞれの組織の放射活性の経時変化を測定した。対照化合物として99mTc-PG-Fabおよび[125I]HML-IT-Fabを使用して同様に各組織の放射活性の経時変化を測定した。[125I]HML-IT-Fabは、[125I]-ヨードヒプリル N-マレオイル-L-リジン([125I]HML)にITを介してFab断片を結合させた化合物であり、非特許文献1に記載の方法で作製した。試験した放射性標識化合物の構造を図1に示す。
(3) Pharmacokinetic experiment of RI-labeled antibody fragment 99m Tc-PGGFML-IT-Fab was administered from the mouse tail vein, and the time course of radioactivity of each tissue was measured. Using 99m Tc-PG-Fab and [ 125 I] HML-IT-Fab as control compounds, the time course of radioactivity of each tissue was measured in the same manner. [ 125 I] HML-IT-Fab is a compound obtained by binding a Fab fragment to [ 125 I] -iodohypril N-maleoyl-L-lysine ([ 125 I] HML) via IT. It was produced by the method described in 1. The structure of the radiolabeled compound tested is shown in FIG.
 図2に示すように、試験したすべての放射性標識化合物は、ほぼ同じ血中消失速度を示した。一方、99mTc-PG-Fabは投与6時間後でも腎臓において高い放射活性を示したのに対し、99mTc-PGGFML-IT-Fabは投与早期から腎臓の放射活性が大きく低減し、その程度は[125I]HML-IT-Fabと同程度であった。また、血中の放射活性に対する腎臓の放射活性の割合を算出したところ、99mTc-PGGFML-IT-Fabおよび[125I]HML-IT-Fabは99mTc-PG-Fabと比較して著しく低いことが判明した。 As shown in FIG. 2, all of the radiolabeled compounds tested showed approximately the same blood elimination rate. On the other hand, 99m Tc-PG-Fab showed high radioactivity in the kidney even 6 hours after administration, whereas 99m Tc-PGGFML-IT-Fab greatly reduced the radioactivity in the kidney from the early stage of administration. Similar to [ 125 I] HML-IT-Fab. The ratio of renal radioactivity to blood radioactivity was calculated. 99m Tc-PGGFML-IT-Fab and [ 125 I] HML-IT-Fab were significantly lower than 99m Tc-PG-Fab It has been found.
 この結果から、99mTc-PGGFML-IT-Fabは非特異的腎集積が低減していることが明らかになった。このように、PGGFMLを使用し、これに標的物質に結合できる低分子ポリペプチドを結合させ、放射性同位体で標識することにより、非特異的腎集積が低減した放射性標識薬剤を簡便な操作で製造することができる。 From this result, it was revealed that 99m Tc-PGGFML-IT-Fab has reduced nonspecific renal accumulation. In this way, by using PGGFML, a low-molecular-weight polypeptide that can bind to the target substance is bound to it, and then labeled with a radioisotope, thereby producing a radiolabeled drug with reduced non-specific renal accumulation by a simple operation. can do.
 配列番号1:第10フィブロネクチンタイプIII反復領域に由来する環状ペプチド。 SEQ ID NO: 1: Cyclic peptide derived from the 10th fibronectin type III repeat region.

Claims (17)

  1. 下式(I)で示される化合物、またはその薬理学的に許容される塩、
    Figure JPOXMLDOC01-appb-C000001
    ここで、R1は水素原子、メチル基、またはカルボキシメチル基(CH2-COOH)であり、R2はCH2-CH2-NH-CH2-COOH、CH2-CH2-N(CH2-COOH)2、 CH2-CH2-NH2、 CH2-CH2-NHR3、カルボキシメチル基、またはCH2-CH2-NR3R4であって、R3およびR4はそれぞれ異なっていてもよいアルキル基であり、
    X、Y、およびZはいずれもそれぞれ異なっていてもよいアミノ酸であり、
    Fはポリペプチドと結合することができる官能基である。
    A compound represented by the following formula (I), or a pharmaceutically acceptable salt thereof:
    Figure JPOXMLDOC01-appb-C000001
    Here, R 1 is a hydrogen atom, a methyl group, or a carboxymethyl group (CH 2 —COOH), and R 2 is CH 2 —CH 2 —NH—CH 2 —COOH, CH 2 —CH 2 —N (CH 2- COOH) 2 , CH 2 -CH 2 -NH 2 , CH 2 -CH 2 -NHR 3 , a carboxymethyl group, or CH 2 -CH 2 -NR 3 R 4 , wherein R 3 and R 4 are each An alkyl group which may be different,
    X, Y, and Z are all amino acids that may be different from each other,
    F is a functional group that can bind to a polypeptide.
  2. ポリペプチドと結合することができる官能基Fがカルボン酸およびその活性エステル、マレイミド基、ブロモアセチル基、ヨードアセチル基、イソチオシアナート基、並びにアミノ基からなる群から選ばれるいずれか1の官能基である化合物、またはその薬理学的に許容される塩。 The functional group F capable of binding to the polypeptide is any one functional group selected from the group consisting of carboxylic acid and its active ester, maleimide group, bromoacetyl group, iodoacetyl group, isothiocyanate group, and amino group Or a pharmaceutically acceptable salt thereof.
  3. X、Y、およびZがそれぞれグリシン、L-フェニルアラニン、およびリジンである請求項1または請求項2に記載の化合物、またはその薬理学的に許容される塩。 3. The compound according to claim 1 or 2, or a pharmaceutically acceptable salt thereof, wherein X, Y, and Z are glycine, L-phenylalanine, and lysine, respectively.
  4. ポリペプチドと結合することができる官能基Fがマレイミド基である請求項1から3のいずれか1項に記載の化合物、またはその薬理学的に許容される塩。 4. The compound according to any one of claims 1 to 3, or a pharmaceutically acceptable salt thereof, wherein the functional group F that can bind to a polypeptide is a maleimide group.
  5. 下式(II)で示される化合物、またはその薬理学的に許容される塩。
    Figure JPOXMLDOC01-appb-C000002
    A compound represented by the following formula (II) or a pharmacologically acceptable salt thereof.
    Figure JPOXMLDOC01-appb-C000002
  6. 請求項1から5のいずれか1項に記載の化合物またはその薬理学的に許容される塩に、標的分子に結合するポリペプチドを結合させてなる化合物、またはその薬理学的に許容される塩。 A compound obtained by binding a polypeptide that binds to a target molecule to the compound according to any one of claims 1 to 5 or a pharmacologically acceptable salt thereof, or a pharmacologically acceptable salt thereof .
  7. 標的分子に結合するポリペプチドが、抗体のFab断片である請求項6に記載の化合物、またはその薬理学的に許容される塩。 7. The compound according to claim 6, or a pharmacologically acceptable salt thereof, wherein the polypeptide that binds to the target molecule is an antibody Fab fragment.
  8. 請求項1から請求項5のいずれかの化合物またはその薬理学的に許容される塩を含む放射性標識ポリペプチド作製用薬剤。 6. A radiolabeled polypeptide producing agent comprising the compound according to claim 1 or a pharmacologically acceptable salt thereof.
  9. 標的分子に結合するポリペプチドを結合させた請求項1から請求項5のいずれか1項に記載の化合物またはその薬理学的に許容される塩と金属放射性同位体とから形成される錯体構造を有する錯体を含む放射性標識薬剤。 A complex structure formed from a metal radioisotope and the compound according to any one of claims 1 to 5, or a pharmacologically acceptable salt thereof, to which a polypeptide that binds to a target molecule is bound. A radiolabeled drug containing a complex having the same.
  10. 金属放射性同位体がテクネチウム-99m、レニウム-186、レニウム-188、インジウム-111、イットリウム-90、およびルテチウム-177から選択されるいずれか1の金属放射性同位体である請求項9に記載の放射性標識薬剤。 The radioactivity according to claim 9, wherein the metal radioisotope is any one metal radioisotope selected from technetium-99m, rhenium-186, rhenium-188, indium-111, yttrium-90, and lutetium-177. Labeled drug.
  11. 標的分子に結合するポリペプチドが、抗体のFab断片である請求項9または請求項10に記載の放射性標識薬剤。 11. The radiolabeled drug according to claim 9 or 10, wherein the polypeptide that binds to the target molecule is an antibody Fab fragment.
  12. 抗体のFab断片を結合させた下式(II)で示される化合物とテクネチウム-99mとから形成される錯体構造を有する錯体を含む放射性標識薬剤。
    Figure JPOXMLDOC01-appb-C000003
    A radiolabeled drug comprising a complex having a complex structure formed from technetium-99m and a compound represented by the following formula (II) to which an antibody Fab fragment is bound.
    Figure JPOXMLDOC01-appb-C000003
  13. 標的分子に結合するポリペプチドを結合させた請求項1から請求項5のいずれか1項に記載の化合物またはその薬理学的に許容される塩と金属放射性同位体とから形成される錯体構造を有する錯体を有効成分として含む診断用医薬組成物。 A complex structure formed from a metal radioisotope and the compound according to any one of claims 1 to 5, or a pharmacologically acceptable salt thereof, to which a polypeptide that binds to a target molecule is bound. The diagnostic pharmaceutical composition which contains the complex which has as an active ingredient.
  14. 金属放射性同位体がテクネチウム-99m、レニウム-186、レニウム-188、インジウム-111、イットリウム-90、およびルテチウム-177から選択されるいずれか1の金属放射性同位体である請求項13に記載の診断用医薬組成物。 The diagnostic of claim 13, wherein the metal radioisotope is any one metal radioisotope selected from technetium-99m, rhenium-186, rhenium-188, indium-111, yttrium-90, and lutetium-177. Pharmaceutical composition.
  15. 標的分子に結合するポリペプチドを結合させた請求項1から請求項5のいずれか1項に記載の化合物またはその薬理学的に許容される塩と金属放射性同位体とから形成される錯体構造を有する錯体を有効成分として含む治療用医薬組成物。 A complex structure formed from a metal radioisotope and the compound according to any one of claims 1 to 5, or a pharmacologically acceptable salt thereof, to which a polypeptide that binds to a target molecule is bound. The pharmaceutical composition for treatment which contains the complex which has as an active ingredient.
  16. 金属放射性同位体がテクネチウム-99m、レニウム-186、レニウム-188、インジウム-111、イットリウム-90、およびルテチウム-177から選択されるいずれか1の金属放射性同位体である請求項15に記載の治療用医薬組成物。 The treatment according to claim 15, wherein the metal radioisotope is any one metal radioisotope selected from technetium-99m, rhenium-186, rhenium-188, indium-111, yttrium-90, and lutetium-177. Pharmaceutical composition.
  17. 請求項1から5のいずれか1項に記載の化合物またはその薬理学的に許容される塩の、放射性標識ポリペプチドの製造における使用。 Use of the compound according to any one of claims 1 to 5 or a pharmacologically acceptable salt thereof in the production of a radiolabeled polypeptide.
PCT/JP2012/081033 2011-12-01 2012-11-30 Drug for producing radiolabeled polypeptide reducing non-specific renal accumulation WO2013081091A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013547226A JP6164556B2 (en) 2011-12-01 2012-11-30 Drug for producing radiolabeled polypeptide with reduced nonspecific renal accumulation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-263647 2011-12-01
JP2011263647 2011-12-01

Publications (1)

Publication Number Publication Date
WO2013081091A1 true WO2013081091A1 (en) 2013-06-06

Family

ID=48535539

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/081033 WO2013081091A1 (en) 2011-12-01 2012-11-30 Drug for producing radiolabeled polypeptide reducing non-specific renal accumulation

Country Status (2)

Country Link
JP (1) JP6164556B2 (en)
WO (1) WO2013081091A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013224283A (en) * 2012-04-23 2013-10-31 Nipro Corp Peptide indicating renal clustering, drug carrier, drug formulation, and pharmaceutical composition
JP2015532295A (en) * 2012-10-02 2015-11-09 エピセラピューティックス・エイ・ピー・エス Inhibitors of histone demethylase
WO2017150549A1 (en) * 2016-03-01 2017-09-08 国立大学法人 千葉大学 Radiolabeled drug
WO2019203191A1 (en) 2018-04-16 2019-10-24 日本メジフィジックス株式会社 Modified antibody and radioactive metal-labelled antibody
WO2020145227A1 (en) 2019-01-07 2020-07-16 アステラス製薬株式会社 Complex comprising ligand, spacer, peptide linker, and biomolecule
JPWO2019065774A1 (en) * 2017-09-26 2021-01-28 国立大学法人千葉大学 Radioactive drug
US11667724B2 (en) 2017-07-07 2023-06-06 Astellas Pharma Inc. Anti-human CEACAM5 antibody Fab fragment
US11679166B2 (en) 2016-11-18 2023-06-20 Astellas Pharma Inc. Anti-human MUC1 antibody Fab fragment

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112020023420A8 (en) 2018-05-17 2022-06-07 Astellas Pharma Inc Complex having human anti-muc1 antibody fab fragment, linker and/or linker peptide

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002293796A (en) * 2001-03-30 2002-10-09 Canon Inc Reagent for contrastradiography and detection of cytochrome c by labeled peptide
JP2005047821A (en) * 2003-07-30 2005-02-24 Nihon Medi Physics Co Ltd Diagnostic or therapeutic medicine using cyclopentadienyl carbonyl group-containing radiactive compound
WO2011040574A1 (en) * 2009-09-30 2011-04-07 国立大学法人京都大学 Method for producing azetidinylmethoxypyridine derivative and use of azetidinylmethoxypyridine derivative

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002293796A (en) * 2001-03-30 2002-10-09 Canon Inc Reagent for contrastradiography and detection of cytochrome c by labeled peptide
JP2005047821A (en) * 2003-07-30 2005-02-24 Nihon Medi Physics Co Ltd Diagnostic or therapeutic medicine using cyclopentadienyl carbonyl group-containing radiactive compound
WO2011040574A1 (en) * 2009-09-30 2011-04-07 国立大学法人京都大学 Method for producing azetidinylmethoxypyridine derivative and use of azetidinylmethoxypyridine derivative

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013224283A (en) * 2012-04-23 2013-10-31 Nipro Corp Peptide indicating renal clustering, drug carrier, drug formulation, and pharmaceutical composition
JP2015532295A (en) * 2012-10-02 2015-11-09 エピセラピューティックス・エイ・ピー・エス Inhibitors of histone demethylase
US10189787B2 (en) 2012-10-02 2019-01-29 Gilead Sciences, Inc. Inhibitors of histone demethylases
US10221139B2 (en) 2012-10-02 2019-03-05 Gilead Sciences, Inc. Inhibitors of histone demethylases
US10960089B2 (en) 2016-03-01 2021-03-30 National University Corporation Chiba University Radiolabeled drug
WO2017150549A1 (en) * 2016-03-01 2017-09-08 国立大学法人 千葉大学 Radiolabeled drug
JPWO2017150549A1 (en) * 2016-03-01 2019-01-10 国立大学法人千葉大学 Radiolabeled drug
US11679166B2 (en) 2016-11-18 2023-06-20 Astellas Pharma Inc. Anti-human MUC1 antibody Fab fragment
US11667724B2 (en) 2017-07-07 2023-06-06 Astellas Pharma Inc. Anti-human CEACAM5 antibody Fab fragment
JP7207740B2 (en) 2017-09-26 2023-01-18 国立大学法人千葉大学 radiopharmaceutical
JPWO2019065774A1 (en) * 2017-09-26 2021-01-28 国立大学法人千葉大学 Radioactive drug
WO2019203191A1 (en) 2018-04-16 2019-10-24 日本メジフィジックス株式会社 Modified antibody and radioactive metal-labelled antibody
KR20200143366A (en) 2018-04-16 2020-12-23 니혼 메디피직스 가부시키가이샤 Modified antibodies and radioactive metal labeled antibodies
US11701440B2 (en) 2018-04-16 2023-07-18 Nihon Medi-Physics Co., Ltd. Modified antibody and radioactive metal-labelled antibody
WO2020145228A1 (en) 2019-01-07 2020-07-16 アステラス製薬株式会社 Complex comprising ligand and ceacam5 antibody fab fragment
KR20210113202A (en) 2019-01-07 2021-09-15 아스텔라스세이야쿠 가부시키가이샤 Complex comprising a ligand, a spacer, a peptide linker and a biological molecule
KR20210113201A (en) 2019-01-07 2021-09-15 아스텔라스세이야쿠 가부시키가이샤 Complex comprising a ligand and a CEACAM5 antibody Fab fragment
WO2020145227A1 (en) 2019-01-07 2020-07-16 アステラス製薬株式会社 Complex comprising ligand, spacer, peptide linker, and biomolecule

Also Published As

Publication number Publication date
JP6164556B2 (en) 2017-07-19
JPWO2013081091A1 (en) 2015-04-27

Similar Documents

Publication Publication Date Title
JP6164556B2 (en) Drug for producing radiolabeled polypeptide with reduced nonspecific renal accumulation
KR100932827B1 (en) Peptide Compound
RU2396272C9 (en) Diagnostic compounds
JP4625002B2 (en) Contrast agent
RU2592685C2 (en) Radioactive labelled peptides binding to her2
JP6966741B2 (en) Radioactive labeling drug
JP7207740B2 (en) radiopharmaceutical
RU2298012C2 (en) Improved chelate conjugates
KR20180098373A (en) Urea-based prostate-specific membrane antigen (PSMA) inhibitors for imaging and therapy
US20080267882A1 (en) Imaging compounds, methods of making imaging compounds, methods of imaging, therapeutic compounds, methods of making therapeutic compounds, and methods of therapy
BR112019023246B1 (en) COMPOUNDS COMPRISING A CHELATING FRACTION, METHODS FOR PRODUCING THEM AND USES THEREOF
KR102233726B1 (en) 18F-tagged inhibitor of prostate specific membrane antigen (PSMA) and its use as a contrast agent for prostate cancer
AU2014225381B2 (en) Vinylsulfone-based 18f-labeling compositions and methods and uses thereof
JP2023551741A (en) Dual targeting compounds and their preparation methods and applications
JPWO2019151384A1 (en) Radiopharmaceutical
CN117042812A (en) CXCR 4-ligands and precursors thereof for diagnostic and therapeutic uses
KR101551232B1 (en) Novel N3S1 chelator-folate derivatives, preparation method thereof and composition for diagnosis or treatment of cancer containing the same as an active ingredient
JP2005047821A (en) Diagnostic or therapeutic medicine using cyclopentadienyl carbonyl group-containing radiactive compound
EP4323017A1 (en) Folate receptor-targeted radiotherapeutic agents and their use
KR20090097868A (en) Radiolabelled peptide based compounds and uses thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12853925

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013547226

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12853925

Country of ref document: EP

Kind code of ref document: A1