WO2013080890A1 - Gas separation membrane, method for manufacturing same, and gas separation membrane module using same - Google Patents

Gas separation membrane, method for manufacturing same, and gas separation membrane module using same Download PDF

Info

Publication number
WO2013080890A1
WO2013080890A1 PCT/JP2012/080352 JP2012080352W WO2013080890A1 WO 2013080890 A1 WO2013080890 A1 WO 2013080890A1 JP 2012080352 W JP2012080352 W JP 2012080352W WO 2013080890 A1 WO2013080890 A1 WO 2013080890A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
gas separation
separation membrane
specific monomer
monomer
Prior art date
Application number
PCT/JP2012/080352
Other languages
French (fr)
Japanese (ja)
Inventor
憲一 石塚
滋英 伊藤
智則 石野
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2013080890A1 publication Critical patent/WO2013080890A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/40Polymers of unsaturated acids or derivatives thereof, e.g. salts, amides, imides, nitriles, anhydrides, esters
    • B01D71/401Polymers based on the polymerisation of acrylic acid, e.g. polyacrylate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/228Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion characterised by specific membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/76Macromolecular material not specifically provided for in a single one of groups B01D71/08 - B01D71/74
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/308Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/30Cross-linking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/40Polymers of unsaturated acids or derivatives thereof, e.g. salts, amides, imides, nitriles, anhydrides, esters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/54Yield strength; Tensile strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption

Definitions

  • the present invention relates to a gas separation membrane, a production method thereof, and a gas separation membrane module using the same.
  • Patent Document 2 Although the membrane applied to the gas separation method described in Patent Document 2 is made of polyimide, it has been proposed to use this as a crosslinked resin (Patent Documents 3 and 4, Non-Patent Documents). 1). Thereby, it is said that the selectivity of gas separation and the plastic resistance of the membrane are enhanced.
  • the inventors of the present invention focused on technical issues when separating carbon dioxide from methane, etc., and conducted research and analysis on various gas separation characteristics, changes in physical properties of membranes, separation behavior, and conducted research on materials. Then, as a factor affecting the life of the gas separation membrane, it was found that BTX (benzene, toluene, xylene-based organic components) was involved in the mixed gas rather than moisture. On the other hand, the above-mentioned crosslinked polyimide is not sufficient (see the comparative example described later), and further improvement in film strength and long life have been desired.
  • the present invention realizes high gas separation selectivity while exhibiting excellent gas permeability, exhibits high membrane strength, and further, for separation of mixed gas mixed with BTX.
  • An object of the present invention is to provide a gas separation membrane having a prolonged membrane life, a method for producing the same, and a gas separation membrane module using the same.
  • a gas separation membrane comprising a support layer and a separation layer made of a resin formed above the support layer, wherein the separation layer contains a polymer having an interpenetrating network structure
  • the penetrating network structure is a network structure in which at least the first polymer and the second polymer coexist and both are connected through a covalent bond
  • the interpenetrating network polymer is composed of at least the first polymer and the second polymer obtained by polymerizing a specific monomer in the presence of the polymer, and the second polymer is an acrylate polymer
  • a gas separation membrane that is at least one selected from the group consisting of acrylamide polymers and copolymers according to combinations thereof.
  • the gas separation membrane according to (1) wherein the specific monomer has at least two polymerizable groups.
  • the first polymer has a reactive group before linking, and is covalently bonded to the specific monomer via the reactive group to form the first polymer and the second polymer.
  • the gas separation membrane according to (1) or (2) which forms an interpenetrating network structure.
  • the gas separation membrane according to any one of (1) to (3) wherein the thickness of the separation layer is 0.05 ⁇ m to 10 ⁇ m.
  • a method for producing a gas separation membrane comprising a support layer and a separation layer made of a resin formed above the support layer, wherein the separation layer contains an interpenetrating network polymer.
  • the interpenetrating network structure at least the first polymer and the second polymer coexist, and in forming a network structure in which both are connected through a covalent bond, Preparing a mixed solution containing the first polymer and a monomer having a polymerizable group selected from an acrylate group and an acrylamide group as the specific monomer forming the second polymer; Applying the mixed solution on a support layer; And after the coating, the step of polymerizing the specific monomer, in the polymerization step, the specific monomer is polymerized, and the first polymer has a reactive group capable of covalent bonding with the specific monomer, A method for producing a gas separation membrane, wherein the reactive monomer is covalently bonded to the specific monomer to form the interpenetrating network structure.
  • a gas separation module comprising the gas separation membrane according to any one of (1) to (6).
  • the gas separation membrane of the present invention realize high gas separation selectivity while having excellent gas permeability, higher membrane strength, and high temperature. -Suitable for gas separation under high pressure conditions.
  • the present invention has an excellent effect of exhibiting resistance to separation of the mixed gas mixed with BTX and a long life.
  • the gas separation membrane of the present invention is a composite membrane having a gas separation function comprising a support layer and a separation layer formed on the support layer, the separation layer comprising a polymer having an interpenetrating network structure.
  • the interpenetrating network structure means a network structure in which at least a first polymer and a second polymer coexist, and both are connected through a covalent bond.
  • FIG. 1 is a cross-sectional view schematically showing a gas separation composite membrane 10 which is a preferred embodiment of the present invention.
  • 11 is a gas separation layer
  • 12 is a support layer comprising a porous layer.
  • FIG. 2 is a cross-sectional view schematically showing a gas separation composite membrane 20 which is a preferred embodiment of the present invention.
  • a nonwoven fabric layer 13 is added as a support layer in addition to the gas separation layer 11 and the porous layer 12.
  • the coating liquid (dope) that forms the gas separation layer is applied to at least the surface of the porous support layer (in this specification, coating is attached to the surface by dipping).
  • the upper side of the support layer means that another layer may be interposed between the support layer and the gas separation layer.
  • the direction in which the gas to be separated is supplied is “upper”, and the direction in which the separated gas is emitted is “lower”.
  • the polymer having an interpenetrating network structure constituting the separation layer is a network in which the first polymer and the second polymer are connected as described above. It has a structure. Since this unique form can be understood more clearly from the viewpoint of the synthesis process, it will be described below with reference to the accompanying drawings.
  • IPN polymers do not need to be connected via a bond, but in the present invention, it is essential to connect via a covalent bond, which is illustrated on the assumption.
  • FIG. 4 is an explanatory view schematically showing the form of a normal cross-linked resin different from the IPN polymer.
  • the crosslinking agent 9 is added to the place where the A polymer 1 is present (FIG. 4A), and the crosslinked body 90 is connected by the crosslinking chain 9a through the crosslinking reaction (FIG. 4B).
  • the crosslinked resin is usually composed of one type of polymer. In order to make this two or more types, it is necessary to uniformly mix two types of polymers at the molecular level, but usually different types of polymers are not compatible with each other, and two or more types of polymers are not compatible. It is difficult to form a crosslinked structure having a network structure made of a polymer.
  • FIG. 3 is an explanatory view schematically showing an example of the synthesis and structure of the IPN polymer.
  • a specific B monomer 3 is added to a system in which A polymer 1 is present (FIG. 3A), and in the presence of A polymer 1 To polymerize the B monomer 3 (FIG. 3B).
  • B monomer 3 is polymerized to form B polymer 3a, B monomer 3 and A polymer 1 are bonded, and a part of B monomer 3 is bonded to another B monomer 3 to be connected. Forms chain 3b.
  • an IPN polymer 100 in which two types of polymers are mixed at a molecular level and connected in a network form is formed. The bond at this time is a covalent bond.
  • the first polymer is not particularly limited, but is preferably one selected from the group consisting of a polyimide resin, a polyamide resin, a cellulose resin, and a polyethylene glycol resin.
  • a polyimide resin a polyamide resin
  • a cellulose resin a polycellulose resin
  • a polyethylene glycol resin a polyethylene glycol resin
  • Matrimid (Matrimid (registered trademark) 5218 sold under the trademark of Matrimid (registered trademark) by Huntsman Advanced Materials, Inc. is a specific polyimide polymer sold under the trademark of Matrimid (registered trademark).
  • polyimides such as P84 or P84HT sold under the trade name P84 and trade name P84HT from HP Polymers GmbH, respectively, cellulose acetate, cellulose triacetate, cellulose acetate butyrate, cellulose propionate, ethyl cellulose, methyl cellulose, nitro Celluloses such as cellulose, polydimethylsiloxanes, polyethylene glycol # 200 diacrylate (Shin Nakamura) Polyethylene glycols such as polymerized polymer GMBH, Ltd.), also can be selected such as a polymer described in JP-T 2010-513021.
  • the first molecular weight of the present embodiment is not particularly limited, but the weight average molecular weight is preferably 1.0 ⁇ 10 4 to 1.0 ⁇ 10 7 , and more preferably 1.0 ⁇ 10 4 to 5.0 ⁇ 10 6. .
  • the amount is not more than the above upper limit value because it can be easily dissolved in a solvent at the time of liquid preparation and the production suitability can be improved.
  • the molecular weight and the degree of dispersion are values measured using a GPC (gel filtration chromatography) method, and the molecular weight is a weight average molecular weight in terms of polystyrene.
  • the gel packed in the column used in the GPC method is preferably a gel having an aromatic compound as a repeating unit, and examples thereof include a gel made of a styrene-divinylbenzene copolymer. Two to six columns are preferably connected and used.
  • the solvent used include ether solvents such as tetrahydrofuran, amide solvents of N-methylpyrrolidone, halogen solvents such as chloroform, and aromatic solvents such as 1,2-dichlorobenzene.
  • the measurement is preferably performed at a solvent flow rate in the range of 0.1 to 2 mL / min, and most preferably in the range of 0.5 to 1.5 mL / min. By performing the measurement within this range, the apparatus is not loaded and the measurement can be performed more efficiently.
  • the measurement temperature is preferably 10 to 50 ° C, most preferably 20 to 40 ° C.
  • the measurement can also be performed at 50 ° C. to 200 ° C. using a column having a high usable temperature.
  • the column and carrier to be used can be appropriately selected according to the physical properties of the polymer compound to be measured.
  • the second polymer is at least one selected from the group consisting of an acrylate polymer (including a methacrylate polymer), an acrylamide polymer, and a copolymer obtained by combining them.
  • the second polymer is preferably obtained by polymerizing the specific monomer described in the next section in the presence of the first polymer. Therefore, the structure of the polymer is determined by the type of the specific monomer described later, and the preferred range also corresponds to the monomer.
  • the specific monomer that forms the second polymer is preferably a vinyl group-containing monomer. Furthermore, it is preferably an acryloyl group-containing monomer, and more preferably an acryloyloxy group-containing monomer or an acryloleumino group-containing monomer.
  • the acryloyl group is a narrowly defined acryloyl group in which an atom added to a carbon atom at the ⁇ -position is hydrogen, a methacryloyl group that is a methyl group, or any other atom such as an ethyl group or a halogen atom in the ⁇ -position. It is used as a meaning including the structure added to.
  • the specific monomer is preferably selected from the group consisting of monomers having a polymerizable group selected from an acrylate group (acryloyloxy group) and an acrylamide group (acryloylimimino group).
  • a polymerizable group selected from an acrylate group (acryloyloxy group) and an acrylamide group (acryloylimimino group).
  • Examples of the monomer include 1-hydroxy-2-propyl acrylate, 2-hydroxy-1-propyl acrylate, hydroxypropyl methacrylate, 2,3-dihydroxypropyl acrylate, hydroxyethyl acrylate, hydroxyethyl methacrylate, and hydroxyethyl methacrylate.
  • Alkyl (meth) acrylates Alkyl (meth) acrylates; glycidyl (meth) acrylates such as 4-hydroxybutyl acrylate glycidyl ether and glycidyl acrylate; primary amine (meth) acrylates such as aminoethyl methacrylate, dimethylaminoethyl methacrylate, and diethylaminoethyl methacrylate; Urethane (meth) acrylates; acrylamide, methacrylamide, ethacrylamide, N, N-dimethyla Acrylamides such as rilamide; Acrylic acids such as acrylic acid and methacrylic acid; (Meth) acrylic acid chlorides such as acrylic acid chloride and methacrylic acid chloride, and diacrylates of ethylene oxide-modified bisphenol F (for example, “Toagosei Co., Ltd.” Aronix M208 "), ethylene oxide-modified bisphenol A diacrylate (for example,” Aronix M
  • the ratio between the content of the first polymer and the content of the second polymer in other words, the ratio between the content of the first polymer and the application amount of the specific monomer is not particularly limited.
  • the specific monomer is preferably applied in an amount of 0.1 parts by mass or more, more preferably 0.5 parts by mass or more with respect to 100 parts by mass of the polymer.
  • an upper limit is not specifically limited, It is preferable to apply a specific monomer at 50 mass parts or less with respect to 100 mass parts of said 1st polymers, It is more preferable to apply at 45 mass parts or less, 40 mass parts or less It is more preferable to apply by.
  • the thickness T (see FIGS. 1 and 2) of the separation layer is preferably 0.05 ⁇ m or more, more preferably 0.08 ⁇ m or more, and particularly preferably 0.1 ⁇ m or more.
  • the upper limit is not particularly limited, but is preferably 10 ⁇ m or less, more preferably 5 ⁇ m or less, and particularly preferably 2 ⁇ m or less.
  • the gas permeation performance is kept high by setting it to the upper limit value or less.
  • the thickness of the membrane or each layer is a sample obtained by cleaving the entire membrane including the support layer with liquid nitrogen and then cleaving or cutting with an ultramicrotome. Is analyzed by observing with a high-magnification TEM or SEM.
  • the porous support preferably applied to the support layer is not particularly limited as long as it has the purpose of meeting the provision of mechanical strength and high gas permeability.
  • a porous film of an organic polymer is preferable, and the thickness thereof is 1 to 3000 ⁇ m, preferably 5 to 500 ⁇ m, and more preferably 5 to 300 ⁇ m.
  • the porous structure of this porous membrane has an average pore diameter of usually 10 ⁇ m or less, preferably 5 ⁇ m or less, more preferably 2 ⁇ m or less, and a porosity of preferably 20 to 90%, more preferably 30 to 30%. 90%.
  • the gas permeability is preferably 3 ⁇ 10 ⁇ 5 cm 3 (STP) / cm ⁇ sec ⁇ cmHg or more in terms of carbon dioxide permeation rate.
  • porous membrane materials include conventionally known polymers such as polyolefin resins such as polyethylene and polypropylene, fluorine-containing resins such as polytetrafluoroethylene, polyvinyl fluoride, and polyvinylidene fluoride, polystyrene, cellulose acetate, and polyurethane. And various resins such as polyacrylonitrile, polyphenylene oxide, polysulfone, polyethersulfone, polyimide, and polyaramid.
  • the support layer is preferably made of polyacrylonitrile, polysulfone, or polyphenylene oxide.
  • the shape of the porous membrane can be any shape such as a flat plate shape, a spiral shape, a tubular shape, and a hollow fiber shape.
  • the support layer is a thin and porous material because sufficient gas permeability can be secured.
  • the thin film porous form is preferable.
  • severe reaction conditions such as high temperature and long time are imposed on the formation of the gas separation membrane, the above-mentioned thin and porous support layer may be damaged, and sufficient performance as a composite membrane may not be exhibited.
  • the gas separation composite membrane using the radically crosslinkable polyimide compound adopted by the present invention can be formed under mild conditions, exhibits excellent effects, and is suitable for both production suitability and product quality. It can exhibit high performance.
  • a support be formed in order to further impart mechanical strength to the lower part of the support layer forming the gas separation layer.
  • the support include woven fabric, non-woven fabric, and net, and the non-woven fabric is preferably used from the viewpoint of film forming property and cost.
  • the nonwoven fabric fibers made of polyester, polypropylene, polyacrylonitrile, polyethylene, polyamide or the like may be used alone or in combination.
  • the nonwoven fabric can be produced, for example, by making a main fiber and a binder fiber uniformly dispersed in water using a circular net or a long net, and drying with a dryer.
  • it is also preferable to apply a heat treatment by sandwiching a non-woven fabric between two rolls for the purpose of removing fluff and improving mechanical properties.
  • the gas separation membrane of the present invention is a method for producing a gas separation membrane comprising a support layer and a separation layer made of a resin formed on the support layer, wherein the separation layer is a polymer having an interpenetrating network structure
  • the separation layer is a polymer having an interpenetrating network structure
  • Preparing a mixed solution containing the first polymer and a monomer having a polymerizable group selected from an acrylate group, a methacrylate group, and an acrylamide group as the specific monomer constituting the second polymer Applying the mixed solution on a support layer;
  • the step of polymerizing the specific monomer, in the polymerization step the specific monomer is polymerized, and the first polymer has a reactive group capable of covalent bonding with the specific monomer, It is preferably produced by a method for producing a gas separation membrane
  • the reactive group is not particularly limited as long as it has a bondability with the polymerizable site of the specific monomer.
  • a vinyl group an acryloyl group, an acrylate group (acryloyloxy group), an acrylamide group (acrylo rimino group), etc. Is mentioned.
  • the first polymer material includes a polyimide resin having the reactive group, a polyamide resin having the reactive group, a cellulose resin having the reactive group, and a polyethylene glycol resin having the reactive group. Is preferably used.
  • the solvent for dissolving the first polymer is not particularly limited, (1) Esters such as ethyl acetate, n-butyl acetate, isobutyl acetate, amyl formate, isoamyl acetate, isobutyl acetate, butyl propionate, isopropyl butyrate, ethyl butyrate, butyl butyrate, alkyl esters, methyl lactate, ethyl lactate 3-, such as methyl oxyacetate, ethyl oxyacetate, butyl oxyacetate, methyl methoxyacetate, ethyl methoxyacetate, butyl methoxyacetate, methyl ethoxyacetate, ethyl ethoxyacetate, methyl 3-oxypropionate, ethyl 3-oxypropionate Oxypropionic acid alkyl esters; methyl 3-methoxypropionate, ethyl acetate, n-buty
  • the concentration of the first polymer is not particularly limited, but is preferably 0.5% by mass or more, more preferably 0.75% by mass or more, and 1.0% by mass or more. It is particularly preferred. Although an upper limit is not specifically limited, It is preferable that it is 30 mass% or less, It is more preferable that it is 25 mass% or less, It is especially preferable that it is 20 mass% or less. By setting this concentration to be equal to or higher than the lower limit value, it is preferable that a film can be formed without being soaked into the support. On the other hand, it is preferable that the amount is not more than the above upper limit value because the liquid viscosity is not improved excessively and the film can be formed while maintaining the coating suitability. In the present invention, as long as the effects of the present invention are not hindered, two or more of the first polymers may be used in combination, and other additives may be used.
  • the solvent similar to what was utilized with said 1st polymer can be utilized as a solvent which melt
  • the concentration at which the specific monomer is contained is not particularly limited, but is preferably 0.01% by mass or more, more preferably 0.025% by mass or more, and 0.05% by mass or more. Particularly preferred. Although an upper limit is not specifically limited, It is preferable that it is 30 mass% or less, It is more preferable that it is 25 mass% or less, It is especially preferable that it is 20 mass% or less. It is preferable that IPN can be produced by setting this concentration to the lower limit value or more. On the other hand, it is preferable that the amount is not more than the upper limit because the monomer polymer can be formed without aggregation. In the present invention, two or more of the above specific monomers may be used in combination as long as the effects of the present invention are not hindered, and other additives and the like may be used.
  • the reaction mode for polymerizing the specific monomer in the specific monomer solution is not particularly limited. Depending on the type of specific monomer employed and the type of polymerization initiator, a thermal polymerization reaction or a photopolymerization reaction may be used as appropriate. When the polymerization reaction is allowed to proceed by applying heat, the reaction system is preferably heated to 40 to 200 ° C. when a typical compound is assumed. When the polymerization reaction is allowed to proceed by light irradiation, a predetermined active energy ray may be irradiated depending on the type of the compound, and specifically, an embodiment in which the polymerization reaction is performed by irradiating ultraviolet rays may be mentioned.
  • the specific monomer solution preferably contains a polymerization initiator.
  • thermal radical polymerization initiators that generate initiation radicals by cleavage by heat include ketone peroxides such as methyl ethyl ketone peroxide, methyl isobutyl ketone peroxide, acetylacetone peroxide, cyclohexanone peroxide, and methylcyclohexanone peroxide; 1,1 Hydroperoxides such as 1,3,3-tetramethylbutyl hydroperoxide, cumene hydroperoxide and t-butyl hydroperoxide; diisobutyryl peroxide, bis-3,5,5-trimethylhexanol peroxide, lauroyl peroxide Diacyl peroxides such as oxide, benzoyl peroxide and m-toluylbenzoyl peroxide; dicumyl peroxide, 2,5 Dimethyl-2,5-di (t-butyl)
  • azo compound used as an azo-based (AIBN or the like) polymerization initiator examples include 2,2′-azobisisobutyronitrile, 2,2′-azobis (2-methylbutyronitrile), 2, 2'-azobis (2,4-dimethylvaleronitrile), 1,1'-azobis-1-cyclohexanecarbonitrile, dimethyl-2,2'-azobisisobutyrate, 4,4'-azobis-4-cyano Examples include valeric acid, 2,2′-azobis- (2-amidinopropane) dihydrochloride, and the like (see JP 2010-189471 A).
  • radical polymerization initiator in addition to the thermal radical polymerization initiator, a radical polymerization initiator that generates an initiation radical by light, electron beam, or radiation can be used.
  • radical polymerization initiators include benzoin ether, 2,2-dimethoxy-1,2-diphenylethane-1-one [IRGACURE651, trade name, manufactured by Ciba Specialty Chemicals Co., Ltd.], 1-hydroxy-cyclohexyl -Phenyl-ketone [IRGACURE 184, trade name, manufactured by Ciba Specialty Chemicals Co., Ltd.], 2-hydroxy-2-methyl-1-phenyl-propan-1-one [DAROCUR 1173, manufactured by Ciba Specialty Chemicals Co., Ltd., Trademarks], 1- [4- (2-hydroxyethoxy) -phenyl] -2-hydroxy-2-methyl-1-propan-1-one [IRGACURE2959, trade name, manufactured by Ciba Specialty Chemicals Co., Ltd.], 2
  • radical polymerization initiators can be used singly or in combination of two or more.
  • a peroxide compound is preferable, and perbutyl O (t-butylperoxy-2-ethylhexanoate, manufactured by NOF Corporation) can be used.
  • the content of the polymerization initiator is not particularly limited, but it is preferably applied at 0.1 to 5% by mass.
  • a preferable method for producing a gas separation membrane of the present invention includes a step of preparing a mixed solution of the first polymer and a specific monomer, a step of applying the mixed solution, and a step of polymerizing the specific monomer after coating. Comprising.
  • the method for separating a gas mixture of the present invention is a method of separating an acidic gas from a gas mixture containing at least one kind of acidic gas by a gas separation membrane, wherein the acidic gas capable of using the gas separation membrane of the present invention or the composite membrane is Carbon dioxide or hydrogen sulfide is preferred.
  • the separation membrane of the present invention is a membrane for separating a gas (gas), but may be a separation membrane such as a supercritical fluid. Supercritical carbon dioxide is an example of the supercritical fluid to be used.
  • the components of the raw gas mixture are not particularly defined, but the main components of the gas mixture are preferably carbon dioxide and methane, or carbon dioxide and hydrogen. .
  • the gas mixture exhibits particularly excellent performance in the presence of acidic gases such as carbon dioxide and hydrogen sulfide, and preferably in the separation of hydrocarbons such as carbon dioxide and methane, carbon dioxide and nitrogen, and carbon dioxide and hydrogen. Demonstrate.
  • acidic gases such as carbon dioxide and hydrogen sulfide
  • hydrocarbons such as carbon dioxide and methane, carbon dioxide and nitrogen, and carbon dioxide and hydrogen.
  • the gas to be supplied is a mixed gas of carbon dioxide and methane
  • the permeability Q [CO 2 ] (permeation rate) of carbon dioxide at 40 ° C. and 200 kPa is preferably more than 10 GPU, and 10 to 500 GPU. More preferably.
  • the separation selectivity ⁇ (permeation rate ratio) between carbon dioxide and methane (P CO2 / P CH4 ) is preferably 10 or more, and more preferably 15 or more. Although there is no particular upper limit, it is practical that the separation selectivity is 100 or less.
  • the strength of the gas separation membrane is not particularly limited, but it is one of the advantages of the present invention that a high strength can be provided by applying an IPN polymer.
  • the strength of the separation layer is preferably increased, and the specific strength of the separation layer is preferably 2250 MPa or more, and more preferably 2500 MPa or more. Although there is no upper limit in particular, it is practical that it is 10,000 MPa or less. The strength value here is based on the test conditions employed in the examples described later.
  • the gas separation membrane of the present invention is preferably a composite membrane combined with a porous support, and more preferably a separation membrane module using this. Moreover, it can be set as the gas separation apparatus which has a means for carrying out separation collection
  • the gas separation membrane of the present invention can be suitably used in a modular form. Examples of modules include spiral type, hollow fiber type, pleated type, tubular type, plate & frame type and the like. Further, the polymer membrane of the present invention may be applied to a gas separation / recovery device as a membrane / absorption hybrid method used in combination with an absorbing solution as described in JP-A-2007-297605, for example.
  • Example 1 Preparation of separation membrane (1)>
  • Polyimide 6FDA / MEDA obtained by thermally crosslinking Polyacid 6FDA / MEDA described in Non-Patent Document 1 was synthesized, and 5% by mass thereof, 0.8% by mass M as a specific monomer.
  • -315 (trade name: manufactured by Toagosei Co., Ltd., ethylene oxide-modified isocyanuric acid triacrylate) and 0.01% by mass of a polymerization initiator (Irgacure 184, manufactured by BASF) mixed solution in THF (tetrahydrofuran) was prepared as a composition. .
  • polyacrylonitrile porous membrane Immediately after applying this composition to a polyacrylonitrile porous membrane (manufactured by GMT, polyacrylonitrile porous membrane is present on a non-woven fabric, including the non-woven fabric, the thickness is about 180 ⁇ m), UV irradiation (2. 2J / cm 2 ), polymerization, and drying were performed to produce a separation membrane 101 (Table 1).
  • MEDA means 2- (methacryloyloxy) ethyl-3,5-diaminobenzoate.
  • Separation membranes 102 to 104 were prepared in the same manner as the separation membrane 101 except that the first polymer, specific monomer, and polymerization initiator were changed to those shown in Table 1 (Table 2).
  • a separation membrane c11 was produced in the same manner as in Example 1 except that the monomer M-315 was not used. This sample corresponds to Non-Patent Document 1 (European Polymer Journal, 1997 (33) pp.1717-1721).
  • the separation membrane of the present invention exhibited significantly increased membrane strength and life, as well as high permeability (permeation rate) and good separation selectivity (see Examples 101 to 104, Comparative Example c11). From this result, in the gas separation in the system containing BTX, the separation membrane of the present invention exhibits high performance, and it can reduce the operation cost due to the long life of the membrane and improve the work related to maintenance. I understand that there is. Moreover, since it has high film
  • Example 2 (Example 2) -modularization- Using the separation membrane produced in Example 1, a spiral module was produced with reference to JP-A-5-168869. It was confirmed that the manufactured separation module of the present invention was good according to the performance of the built-in separation membrane.
  • Gas separation layer 12 Support layer (porous layer) 13 Nonwoven fabric layer 10, 20 Gas separation composite membrane 1 A polymer 3 B monomer 3a B polymer 3a 3b Linking chain 9 Crosslinking agent 90 Crosslinked body 100 IPN polymer

Abstract

[Solution] The present invention relates to a gas separation membrane which comprises a support layer, and a resin separation layer which is formed at an upper side of the support layer. The separation layer contains a polymer which has an interpenetrating-type network structure. The interpenetrating-type network structure is a network structure where a first polymer and a second polymer at least coexist and are both covalently bonded to each other. According to the gas separation membrane of the present invention, the polymer which has the interpenetrating-type network structure is at least composed of the first polymer, and the second polymer having a specific structure, wherein a specific monomer is polymerized in the second polymer in the presence of the first polymer.

Description

ガス分離膜、その製造方法、それを用いたガス分離膜モジュールGas separation membrane, method for producing the same, and gas separation membrane module using the same
 本発明は、ガス分離膜、その製造方法、それを用いたガス分離膜モジュールに関する。 The present invention relates to a gas separation membrane, a production method thereof, and a gas separation membrane module using the same.
 特定の高分子化合物から構成された膜によって、所望の気体成分を選択的に透過させ、その気体成分を分離する分離膜がある。その産業上の利用態様として、地球温暖化の問題と関連し、火力発電所やセメントプラント、製鉄所高炉等の大規模な二酸化炭素発生源からこれを分離回収することが検討されている。この膜分離技術は、比較的小さなエネルギーで達成できる環境問題の解決手段として着目されている。一方、天然ガスやバイオガス(生物の排泄物、有機質肥料、生分解性物質、汚水、ゴミ、エネルギー作物などの発酵、嫌気性消化により発生するガス)は主としてメタンと二酸化炭素の混合ガスである。その二酸化炭素等を除去する手段としても、上記膜分離法の利用が検討されている(特許文献1、2等参照)。 There is a separation membrane that selectively permeates a desired gas component by a membrane composed of a specific polymer compound and separates the gas component. As an industrial utilization mode, it is considered to separate and recover from a large-scale carbon dioxide generation source such as a thermal power plant, a cement plant, and a steelworks blast furnace in connection with the problem of global warming. This membrane separation technique is attracting attention as a means for solving environmental problems that can be achieved with relatively small energy. On the other hand, natural gas and biogas (gas generated by fermentation and anaerobic digestion of biological waste, organic fertilizers, biodegradable substances, sewage, garbage, energy crops, etc.) are mainly mixed gases of methane and carbon dioxide. . As a means for removing the carbon dioxide and the like, use of the membrane separation method has been studied (see Patent Documents 1 and 2).
 前記特許文献2に記載されたガス分離方法に適用される膜はポリイミド製のものであるが、さらにこれを架橋した架橋樹脂とすることが提案されている(特許文献3,4、非特許文献1参照)。これによりガス分離の選択性や膜の耐可塑性が高まるとされている。 Although the membrane applied to the gas separation method described in Patent Document 2 is made of polyimide, it has been proposed to use this as a crosslinked resin (Patent Documents 3 and 4, Non-Patent Documents). 1). Thereby, it is said that the selectivity of gas separation and the plastic resistance of the membrane are enhanced.
特開2007-297605号公報JP 2007-297605 A 特開2006-297335号公報JP 2006-297335 A 米国特許出願公開2009/0318620号明細書US Patent Application Publication No. 2009/0318620 米国特許第7247191号明細書US Pat. No. 7,247,191
 本発明者らは、特に二酸化炭素をメタン等から分離する際の技術課題に着目し、さまざまなガス分離特性や膜の物性変化、分離挙動について調査分析を行い、素材等に関する研究を行った。すると、ガス分離膜の寿命を左右する因子として、水分ではなく、むしろこの系の混合ガスにおいては、BTX(ベンゼン、トルエン、キシレン系有機成分)が関与していることを突き止めた。これに対して、上記架橋ポリイミドでは十分ではなく(後記比較例参照)、さらに膜強度の向上及び長寿命化が望まれた。 The inventors of the present invention focused on technical issues when separating carbon dioxide from methane, etc., and conducted research and analysis on various gas separation characteristics, changes in physical properties of membranes, separation behavior, and conducted research on materials. Then, as a factor affecting the life of the gas separation membrane, it was found that BTX (benzene, toluene, xylene-based organic components) was involved in the mixed gas rather than moisture. On the other hand, the above-mentioned crosslinked polyimide is not sufficient (see the comparative example described later), and further improvement in film strength and long life have been desired.
 上記の点を考慮し、本発明は、優れたガス透過性を有しながら、高いガス分離選択性をも実現し、かつ高い膜強度を示し、さらにBTXが混入している混合ガスの分離に対して膜寿命が長期化されたガス分離膜、その製造方法、それを用いたガス分離膜モジュールの提供を目的とする。 In consideration of the above points, the present invention realizes high gas separation selectivity while exhibiting excellent gas permeability, exhibits high membrane strength, and further, for separation of mixed gas mixed with BTX. An object of the present invention is to provide a gas separation membrane having a prolonged membrane life, a method for producing the same, and a gas separation membrane module using the same.
 上記の課題は以下の手段により達成された。
(1)支持層と該支持層の上側に形成された樹脂からなる分離層とを具備するガス分離膜であって、前記分離層は相互貫入型網目構造のポリマーを含有してなり、前記相互貫入型網目構造は、第一のポリマーと第二のポリマーとが少なくとも共存し、両者が共有結合を通じて連結した網目構造であり、
 前記相互貫入型網目構造のポリマーが、少なくとも、前記第一のポリマーと、この存在下で特定モノマーを重合せた前記第二のポリマーとで構成され、当該第二のポリマーが、アクリレート重合体、アクリルアミド重合体、及びそれらの組み合わせに係る共重合体からなる群から選ばれる少なくとも1種であるガス分離膜。
(2)前記特定モノマーが、少なくとも2つの重合性基を有する(1)に記載のガス分離膜。
(3)前記第一のポリマーには連結前の反応性基があり、当該反応性基を介して前記特定モノマーと共有結合して連結し、前記第一のポリマーと第二のポリマーとがなす相互貫入型網目構造を構成している(1)または(2)に記載のガス分離膜。
(4)前記分離層の厚さを0.05μm~10μmとした(1)~(3)のいずれか1項に記載のガス分離膜。
(5)前記第一のポリマーの重量平均分子量を1.0×10~1.0×10とした(1)~(4)のいずれか1項に記載のガス分離膜。
(6)前記第一のポリマー100質量部に対して、前記第二のポリマーが0.1~50質量部となるように前記特定モノマーを適用した(1)~(5)のいずれか1項に記載のガス分離膜。
(7)支持層と該支持層の上側に形成された樹脂からなる分離層とを具備するガス分離膜の製造方法であって、前記分離層が相互貫入型網目構造のポリマーを含有してなり、前記相互貫入型網目構造として、第一のポリマーと第二のポリマーとが少なくとも共存し、両者が共有結合を通じて連結した網目構造を形成するに当たり、
 前記第一のポリマーと、前記第二のポリマーをなす特定モノマーとして、アクリレート基及びアクリルアミド基から選ばれる重合性基を有するモノマーとを含有する混合溶液を準備する工程と、
 該混合溶液を支持体層上に塗布する工程と、
 前記塗布後、前記特定モノマーを重合させる工程とを含み、当該重合工程において、前記特定モノマーが重合されるとともに、前記第一のポリマーには前記特定モノマーと共有結合可能な反応性基があり、この反応性基を介して前記特定モノマーと共有結合して連結し、前記相互貫入型網目構造を形成する
 ガス分離膜の製造方法。
(8)前記特定モノマーとして、アクリレートモノマーまたはアクリルアミドモノマーを用いる(7)に記載のガス分離膜の製造方法。
(9)前記特定モノマーが、少なくとも2つの重合性基を有する(7)または(8)に記載のガス分離膜の製造方法。
(10)前記混合溶液に重合開始剤を含有させる(7)~(9)のいずれか1項に記載のガス分離膜の製造方法。
(11)(1)~(6)のいずれか1項に記載のガス分離膜を具備するガス分離モジュール。
The above problems have been achieved by the following means.
(1) A gas separation membrane comprising a support layer and a separation layer made of a resin formed above the support layer, wherein the separation layer contains a polymer having an interpenetrating network structure, The penetrating network structure is a network structure in which at least the first polymer and the second polymer coexist and both are connected through a covalent bond,
The interpenetrating network polymer is composed of at least the first polymer and the second polymer obtained by polymerizing a specific monomer in the presence of the polymer, and the second polymer is an acrylate polymer, A gas separation membrane that is at least one selected from the group consisting of acrylamide polymers and copolymers according to combinations thereof.
(2) The gas separation membrane according to (1), wherein the specific monomer has at least two polymerizable groups.
(3) The first polymer has a reactive group before linking, and is covalently bonded to the specific monomer via the reactive group to form the first polymer and the second polymer. The gas separation membrane according to (1) or (2), which forms an interpenetrating network structure.
(4) The gas separation membrane according to any one of (1) to (3), wherein the thickness of the separation layer is 0.05 μm to 10 μm.
(5) The gas separation membrane according to any one of (1) to (4), wherein the weight average molecular weight of the first polymer is 1.0 × 10 4 to 1.0 × 10 7 .
(6) Any one of (1) to (5), wherein the specific monomer is applied such that the second polymer is 0.1 to 50 parts by mass with respect to 100 parts by mass of the first polymer. 2. A gas separation membrane according to 1.
(7) A method for producing a gas separation membrane comprising a support layer and a separation layer made of a resin formed above the support layer, wherein the separation layer contains an interpenetrating network polymer. As the interpenetrating network structure, at least the first polymer and the second polymer coexist, and in forming a network structure in which both are connected through a covalent bond,
Preparing a mixed solution containing the first polymer and a monomer having a polymerizable group selected from an acrylate group and an acrylamide group as the specific monomer forming the second polymer;
Applying the mixed solution on a support layer;
And after the coating, the step of polymerizing the specific monomer, in the polymerization step, the specific monomer is polymerized, and the first polymer has a reactive group capable of covalent bonding with the specific monomer, A method for producing a gas separation membrane, wherein the reactive monomer is covalently bonded to the specific monomer to form the interpenetrating network structure.
(8) The method for producing a gas separation membrane according to (7), wherein an acrylate monomer or an acrylamide monomer is used as the specific monomer.
(9) The method for producing a gas separation membrane according to (7) or (8), wherein the specific monomer has at least two polymerizable groups.
(10) The method for producing a gas separation membrane according to any one of (7) to (9), wherein a polymerization initiator is contained in the mixed solution.
(11) A gas separation module comprising the gas separation membrane according to any one of (1) to (6).
 本発明のガス分離膜、その製造方法、それを用いたガス分離膜モジュールは、優れたガス透過性を有しながら、高いガス分離選択性をも実現し、さらに高い膜強度を有し、高温・高圧条件でのガス分離にも好適に対応することができる。また、BTXが混入している混合ガスの分離に対して耐性を示し、長寿命を示すという優れた作用効果を奏する。
 本発明の上記及び他の特徴及び利点は、下記の記載および添付の図面からより明らかになるであろう。
The gas separation membrane of the present invention, the production method thereof, and the gas separation membrane module using the same realize high gas separation selectivity while having excellent gas permeability, higher membrane strength, and high temperature. -Suitable for gas separation under high pressure conditions. In addition, the present invention has an excellent effect of exhibiting resistance to separation of the mixed gas mixed with BTX and a long life.
The above and other features and advantages of the present invention will become more apparent from the following description and accompanying drawings.
本発明のガス分離複合膜の一実施形態を模式的に示す断面図である。It is sectional drawing which shows typically one Embodiment of the gas separation composite membrane of this invention. 本発明のガス分離複合膜の別の実施形態を模式的に示す断面図である。It is sectional drawing which shows typically another embodiment of the gas separation composite membrane of this invention. IPNポリマーの合成形態と構造例を模式的に示した説明図である。It is explanatory drawing which showed typically the synthetic | combination form and structural example of IPN polymer. 一般的な架橋体の合成形態と構造を模式的に示した説明図である。It is explanatory drawing which showed typically the synthetic form and structure of a general crosslinked body.
 本発明のガス分離膜は、支持層と該支持層の上側に形成された分離層とを具備するガス分離機能を有する複合膜であって、前記分離層が、相互貫入型網目構造のポリマーを含有してなる。ここで、前記相互貫入型網目構造(IPN:interpenetrating polymer network)とは、第一のポリマーと第二のポリマーとが少なくとも共存し、両者が共有結合を通じて連結した網目構造を言う。以下に、本発明について、その好ましい実施形態を中心に図面を参照しながら詳細に説明する。 The gas separation membrane of the present invention is a composite membrane having a gas separation function comprising a support layer and a separation layer formed on the support layer, the separation layer comprising a polymer having an interpenetrating network structure. It contains. Here, the interpenetrating network structure (IPN) means a network structure in which at least a first polymer and a second polymer coexist, and both are connected through a covalent bond. Hereinafter, the present invention will be described in detail with reference to the drawings, focusing on preferred embodiments thereof.
[複合膜の構成]
 図1は、本発明の好ましい実施形態であるガス分離複合膜10を模式的に示す断面図である。11はガス分離層、12は多孔質層からなる支持層である。図2は、本発明の好ましい実施形態であるガス分離複合膜20を模式的に示す断面図である。この実施形態では、ガス分離層11及び多孔質層12に加え、支持層として不織布層13が追加されている。このような形態の複合膜は、多孔質性の支持層の少なくとも表面に、上記のガス分離層をなす塗布液(ドープ)を塗布し(本明細書において塗布とは浸漬により表面に付着される態様を含む意味である。)、任意の方法で硬化させることが好ましい。なお、支持層上側とは、支持層とガス分離層との間に他の層が介在してもよい意味である。なお、上下の表現については、特に断らない限り、分離対象となるガスが供給される方向を「上」とし、分離されたガスが出される方向を「下」とする。
[Composition of composite film]
FIG. 1 is a cross-sectional view schematically showing a gas separation composite membrane 10 which is a preferred embodiment of the present invention. 11 is a gas separation layer, and 12 is a support layer comprising a porous layer. FIG. 2 is a cross-sectional view schematically showing a gas separation composite membrane 20 which is a preferred embodiment of the present invention. In this embodiment, a nonwoven fabric layer 13 is added as a support layer in addition to the gas separation layer 11 and the porous layer 12. In such a composite membrane, the coating liquid (dope) that forms the gas separation layer is applied to at least the surface of the porous support layer (in this specification, coating is attached to the surface by dipping). It is the meaning including an aspect.), It is preferable to make it harden | cure by arbitrary methods. The upper side of the support layer means that another layer may be interposed between the support layer and the gas separation layer. For the upper and lower expressions, unless otherwise specified, the direction in which the gas to be separated is supplied is “upper”, and the direction in which the separated gas is emitted is “lower”.
[相互貫入型網目構造(IPN)]
 本発明のガス分離膜において分離層を構成する相互貫入型網目構造のポリマー(以下、IPNポリマーということがある。)は、上述のように第一のポリマーと第二のポリマーとが連結した網目構造を有する。この特有の形態は、その合成過程からみることでより明確に理解できるため、その点を踏まえ添付の図面を参照して以下に説明する。なお、一般的なIPNにおいては結合を介してポリマーどうしが連結されている必要はないが、本発明では共有結合を介して連結することが必須であり、その前提で図示している。
[Interpenetrating network structure (IPN)]
In the gas separation membrane of the present invention, the polymer having an interpenetrating network structure (hereinafter sometimes referred to as IPN polymer) constituting the separation layer is a network in which the first polymer and the second polymer are connected as described above. It has a structure. Since this unique form can be understood more clearly from the viewpoint of the synthesis process, it will be described below with reference to the accompanying drawings. In general IPN, polymers do not need to be connected via a bond, but in the present invention, it is essential to connect via a covalent bond, which is illustrated on the assumption.
 図4はIPNポリマーとは異なる通常の架橋樹脂の形態を模式的に示した説明図である。この形態では、Aポリマー1が存在するところに、架橋剤9を添加し(図4(a))、架橋反応を通じて架橋鎖9aにより連結された架橋体90としている(図4(b))。ここで示したように、通常架橋樹脂は1種のポリマーから構成されるものである。これを2種以上のものとするためには、2種のポリマーを分子レベルで均一に混合することが必要であるが、通常異種のポリマーは然様には相溶せず、2種以上のポリマーからなる網目構造の架橋体を形成することは困難である。 FIG. 4 is an explanatory view schematically showing the form of a normal cross-linked resin different from the IPN polymer. In this form, the crosslinking agent 9 is added to the place where the A polymer 1 is present (FIG. 4A), and the crosslinked body 90 is connected by the crosslinking chain 9a through the crosslinking reaction (FIG. 4B). As shown here, the crosslinked resin is usually composed of one type of polymer. In order to make this two or more types, it is necessary to uniformly mix two types of polymers at the molecular level, but usually different types of polymers are not compatible with each other, and two or more types of polymers are not compatible. It is difficult to form a crosslinked structure having a network structure made of a polymer.
 図3はIPNポリマーの合成及び構造に係る一例を模式的に示した説明図である。同図に示したように、IPNポリマーの合成には、典型的には、Aポリマー1が存在する系に特定のBモノマー3を添加し(図3(a))、Aポリマー1の存在下で前記Bモノマー3を重合させる(図3(b))。この例では、Bモノマー3が重合してBポリマー3aを構成するとともに、Bモノマー3とAポリマー1とが結合し、さらにBモノマー3の一部が別のBモノマー3と結合することで連結鎖3bを形成している。その結果、2種のポリマーが分子レベルで混在して網目状に連結されたIPNポリマー100を構成している。このときの結合は共有結合である。 FIG. 3 is an explanatory view schematically showing an example of the synthesis and structure of the IPN polymer. As shown in the figure, for the synthesis of an IPN polymer, typically, a specific B monomer 3 is added to a system in which A polymer 1 is present (FIG. 3A), and in the presence of A polymer 1 To polymerize the B monomer 3 (FIG. 3B). In this example, B monomer 3 is polymerized to form B polymer 3a, B monomer 3 and A polymer 1 are bonded, and a part of B monomer 3 is bonded to another B monomer 3 to be connected. Forms chain 3b. As a result, an IPN polymer 100 in which two types of polymers are mixed at a molecular level and connected in a network form is formed. The bond at this time is a covalent bond.
 図示した形態及び上記の例示説明はあくまで模式的に反応及び樹脂構造を理解するためのものであり、本発明がこれに限定して解釈されるものではない。なお、相互貫入型網目構造(IPN)にいついては、nature materials 2006.5,PP.494-501などを参照することができる。 The illustrated embodiment and the above-described exemplary explanation are only for schematically understanding the reaction and the resin structure, and the present invention is not construed as being limited thereto. It should be noted that when the interpenetrating network structure (IPN) is used, it is necessary to use nature materials 2006.5, PP. Reference may be made to 494-501.
(第一のポリマー)
 本発明において第一のポリマーは、特に限定されないが、ポリイミド樹脂、ポリアミド樹脂、セルロース樹脂、ポリエチレングリコール樹脂からなる群から選ばれる1種であることが好ましい。本発明のガス分離膜において、
(First polymer)
In the present invention, the first polymer is not particularly limited, but is preferably one selected from the group consisting of a polyimide resin, a polyamide resin, a cellulose resin, and a polyethylene glycol resin. In the gas separation membrane of the present invention,
 より具体的には、Huntsman Advanced Materials社よりMatrimid(登録商標)の商標で販売されているMatrimid(Matrimid(登録商標)5218は、Matrimid(登録商標)の商標で販売されている特定のポリイミドポリマーを指す)およびHP Polymers GmbH社よりそれぞれ商品名P84および商品名P84HTで販売されているP84またはP84HT等のポリイミド類、セルロースアセテート、セルローストリアセテート、セルロースアセテートブチレート、セルロースプロピオネート、エチルセルロース、メチルセルロース、ニトロセルロース等のセルロース類、ポリジメチルシロキサン類、ポリエチレングリコール#200ジアクリレート(新中村化学社製)の重合したポリマーなどのポリエチレングリコール類、また、特表2010-513021に記載のポリマーなどを選択することができる。 More specifically, Matrimid (Matrimid (registered trademark) 5218 sold under the trademark of Matrimid (registered trademark) by Huntsman Advanced Materials, Inc. is a specific polyimide polymer sold under the trademark of Matrimid (registered trademark). And polyimides such as P84 or P84HT sold under the trade name P84 and trade name P84HT from HP Polymers GmbH, respectively, cellulose acetate, cellulose triacetate, cellulose acetate butyrate, cellulose propionate, ethyl cellulose, methyl cellulose, nitro Celluloses such as cellulose, polydimethylsiloxanes, polyethylene glycol # 200 diacrylate (Shin Nakamura) Polyethylene glycols such as polymerized polymer GMBH, Ltd.), also can be selected such as a polymer described in JP-T 2010-513021.
(分子量)
 本実施形態の第一の分子量は特に限定されないが、重量平均分子量で1.0×10~1.0×10が好ましく、1.0×10~5.0×10がより好ましい。この分子量を前記下限値以上とすることで、はじきなどによる欠陥を低減でき、性能を安定させることができ好ましい。一方、前記上限値以下とすることで、調液時に溶媒に溶解しやすくなり、製造適性が向上することができ好ましい。
(Molecular weight)
The first molecular weight of the present embodiment is not particularly limited, but the weight average molecular weight is preferably 1.0 × 10 4 to 1.0 × 10 7 , and more preferably 1.0 × 10 4 to 5.0 × 10 6. . By making this molecular weight more than the said lower limit, the defect by a repelling etc. can be reduced and performance can be stabilized, and it is preferable. On the other hand, it is preferable that the amount is not more than the above upper limit value because it can be easily dissolved in a solvent at the time of liquid preparation and the production suitability can be improved.
 分子量及び分散度は特に断らない限りGPC(ゲルろ過クロマトグラフィー)法を用いて測定した値とし、分子量はポリスチレン換算の重量平均分子量とする。GPC法に用いるカラムに充填されているゲルは芳香族化合物を繰り返し単位に持つゲルが好ましく、例えばスチレン-ジビニルベンゼン共重合体からなるゲルが挙げられる。カラムは2~6本連結させて用いることが好ましい。用いる溶媒は、テトラヒドロフラン等のエーテル系溶媒、N-メチルピロリドンのアミド系溶媒、クロロホルム等のハロゲン系溶媒、1,2-ジクロロベンゼン等の芳香族系溶媒が挙げられる。測定は、溶媒の流速が0.1~2mL/minの範囲で行うことが好ましく、0.5~1.5mL/minの範囲で行うことが最も好ましい。この範囲内で測定を行うことで、装置に負荷がかからず、さらに効率的に測定ができる。測定温度は10~50℃で行うことが好ましく、20~40℃で行うことが最も好ましい。使用可能温度が高いカラムを用いて50℃~200℃で測定をおこなうこともできる。なお、使用するカラム及びキャリアは測定対象となる高分子化合物の物性に応じて適宜選定することができる。 Unless otherwise specified, the molecular weight and the degree of dispersion are values measured using a GPC (gel filtration chromatography) method, and the molecular weight is a weight average molecular weight in terms of polystyrene. The gel packed in the column used in the GPC method is preferably a gel having an aromatic compound as a repeating unit, and examples thereof include a gel made of a styrene-divinylbenzene copolymer. Two to six columns are preferably connected and used. Examples of the solvent used include ether solvents such as tetrahydrofuran, amide solvents of N-methylpyrrolidone, halogen solvents such as chloroform, and aromatic solvents such as 1,2-dichlorobenzene. The measurement is preferably performed at a solvent flow rate in the range of 0.1 to 2 mL / min, and most preferably in the range of 0.5 to 1.5 mL / min. By performing the measurement within this range, the apparatus is not loaded and the measurement can be performed more efficiently. The measurement temperature is preferably 10 to 50 ° C, most preferably 20 to 40 ° C. The measurement can also be performed at 50 ° C. to 200 ° C. using a column having a high usable temperature. The column and carrier to be used can be appropriately selected according to the physical properties of the polymer compound to be measured.
(第二のポリマー)
 本発明において前記第二のポリマーは、少なくとも、アクリレート重合体(メタクリレート重合体を含む)、アクリルアミド重合体、及びそれらを組み合わせた共重合体からなる群から選ばれる1種である。この第二のポリマーは上述のとおり、第一のポリマーの共存下で次項で述べる特定モノマーを重合させてなることが好ましい。そのため、その重合体の構造は後記特定モノマーの種類により定まるものであり、その好ましい範囲も前記モノマーに対応したものである。
(Second polymer)
In the present invention, the second polymer is at least one selected from the group consisting of an acrylate polymer (including a methacrylate polymer), an acrylamide polymer, and a copolymer obtained by combining them. As described above, the second polymer is preferably obtained by polymerizing the specific monomer described in the next section in the presence of the first polymer. Therefore, the structure of the polymer is determined by the type of the specific monomer described later, and the preferred range also corresponds to the monomer.
(特定モノマー)
 前記第二のポリマーをなす特定モノマーは、ビニル基含有モノマーであることが好ましい。さらに、アクリロイル基含有モノマーであることが好ましく、アクリロイルオキシ基含有モノマーまたはアクリロイルイミノ基含有モノマーであることがより好ましい。ここで、アクリロイル基とは、α位の炭素原子に付加した原子が水素である狭義のアクリロイル基のほか、メチル基であるメタクリロイル基、その他、エチル基、ハロゲン原子等の任意の原子がα位に付加した構造を含む意味として用いる。特定モノマーとしては、アクリレート基(アクリロイルオキシ基)およびアクリルアミド基(アクリロイルイミノ基)から選ばれる重合性基を有するモノマーとからなる群から選ばれるものであることが好ましい。アクリロイル基等については、なかでもアクリロイル基(α=H)含有基およびメタクリロイル基(α=メチル基)含有基が好ましい。前記モノマーとしては、例えば、1-ヒドロキシ-2-プロピルアクリレート、2-ヒドロキシ-1-プロピルアクリレート、ヒドロキシプロピルメタクリレート、2,3-ジヒドロキシプロピルアクリレート、ヒドロキシエチルアクリレート、ヒドロキシエチルメタクリレート、ヒドロキシエチルメタクリレート等のアルキル(メタ)アクリレート類;4-ヒドロキシブチルアクリレートグリシジルエーテル、アクリル酸グリシジル等のグリシジル(メタ)アクリレート類;アミノエチルメタクリレート、ジメチルアミノエチルメタクリレート、ジエチルアミノエチルメタクリレート等の第一アミン(メタ)アクリレート類;ウレタン(メタ)アクリレート類;アクリルアミド、メタクリルアミド、エタクリルアミド、N,N-ジメチルアクリルアミド等のアクリルアミド類;アクリル酸、メタクリル酸等のアクリル酸類;アクリル酸クロライド、メタクリル酸クロライド等の(メタ)アクリル酸クロライド類、エチレンオキサイド変性ビスフェノールFのジアクリレート(例えば東亞合成(株)製「アロニックスM208」)、エチレンオキサイド変性ビスフェノールAのジアクリレート(例えば東亞合成(株)製「アロニックスM210」)、プロピレンオキサイド変性ビスフェノールAのジアクリレート(例えば共栄社化学(株)製「ライトアクリレートBP-4PA」)、エチレンオキサイド変性イソシアヌル酸のジアクリレート(例えば東亞合成(株)製「アロニックスM215」)、ポリプロピレングリコールジアクリレート(例えば東亞合成(株)製「アロニックスM225」)、ポリエチレングリコールジアクリレート(例えば東亞合成(株)製「アロニックスM240」)、ポリテトラメチレングリコールジアクリレート(例えば共栄社化学(株)製「ライトアクリレートPTMGA-250」)、ペンタエリスリトールジアクリレートモノステアレート(例えば東亞合成(株)製「アロニックスM233」)、ネオペンチルグリコールジアクリレート、ヘキサンジオールジアクリレート、ノナンジオールジアクリレート、ジメチロールトリシクロデカンジアクリレート(例えば共栄社化学(株)製「ライトアクリレートDCP-A」)、トリメチロールプロパンアクリル酸安息香酸エステル(例えば共栄社化学(株)製「ライトアクリレートBA-134」)、ヒドロキシピバリン酸ネオペンチルグリコールジアクリレート(例えば共栄社化学(株)製「ライトアクリレートHPP-A」)、ペンタエリスリトールトリアクリレート(例えば東亞合成(株)製「アロニックスM305」)、トリメチロールプロパントリアクリレート(例えば東亞合成(株)製「アロニックスM309」)、アルキレンオキサイド変性トリメチロールプロパントリアクリレート(例えば東亞合成(株)製「アロニックスM310」、「アロニックスM350」)、エチレンオキサイド変性イソシアヌル酸のトリアクリレート(例えば東亞合成(株)製「アロニックスM315」)、グリセリントリアクリレート、アルキレンオキサイド変性グリセロールのトリアクリレート(例えば日本化薬(株)製「カヤラッドGPO-303」)、ペンタエリスリトールテトラアクリレート(例えば東亞合成(株)製「アロニックスM450」)、ジペンタエリスリトールヘキサアクリレート(例えば東亞合成(株)製「アロニックスM400」)、ジトリメチロールプロパンテトラアクリレート(例えば東亞合成(株)製「アロニックスM458」)、ウレタンアクリレート(例えば東亞合成(株)製「アロニックスM1100」、「アロニックスM1200」、「アロニックスM1600」)、ポリエステルアクリレート(例えば東亞合成(株)製「アロニックスM6100」、「アロニックスM7100」)、アルキレングリコールジグリシジルエーテルのアクリル酸付加物(例えば共栄社化学(株)製「エポキシエステル70PA」)、ビスフェノールAジグリシジルエーテルのアクリル酸付加物(例えば昭和高分子(株)製「リポキシVR60」)、フェノールノボラック型エポキシ樹脂のアクリル酸付加物(例えば昭和高分子(株)製「リポキシH600」)、臭素化ビスフェノールAジグリシジルエーテルのアクリル酸付加物(例えば昭和高分子(株)製「リポキシSP510」)等の多官能(メタ)アクリレートなどが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
(Specific monomer)
The specific monomer that forms the second polymer is preferably a vinyl group-containing monomer. Furthermore, it is preferably an acryloyl group-containing monomer, and more preferably an acryloyloxy group-containing monomer or an acryloleumino group-containing monomer. Here, the acryloyl group is a narrowly defined acryloyl group in which an atom added to a carbon atom at the α-position is hydrogen, a methacryloyl group that is a methyl group, or any other atom such as an ethyl group or a halogen atom in the α-position. It is used as a meaning including the structure added to. The specific monomer is preferably selected from the group consisting of monomers having a polymerizable group selected from an acrylate group (acryloyloxy group) and an acrylamide group (acryloylimimino group). As for the acryloyl group and the like, an acryloyl group (α = H) -containing group and a methacryloyl group (α = methyl group) -containing group are particularly preferable. Examples of the monomer include 1-hydroxy-2-propyl acrylate, 2-hydroxy-1-propyl acrylate, hydroxypropyl methacrylate, 2,3-dihydroxypropyl acrylate, hydroxyethyl acrylate, hydroxyethyl methacrylate, and hydroxyethyl methacrylate. Alkyl (meth) acrylates; glycidyl (meth) acrylates such as 4-hydroxybutyl acrylate glycidyl ether and glycidyl acrylate; primary amine (meth) acrylates such as aminoethyl methacrylate, dimethylaminoethyl methacrylate, and diethylaminoethyl methacrylate; Urethane (meth) acrylates; acrylamide, methacrylamide, ethacrylamide, N, N-dimethyla Acrylamides such as rilamide; Acrylic acids such as acrylic acid and methacrylic acid; (Meth) acrylic acid chlorides such as acrylic acid chloride and methacrylic acid chloride, and diacrylates of ethylene oxide-modified bisphenol F (for example, “Toagosei Co., Ltd.” Aronix M208 "), ethylene oxide-modified bisphenol A diacrylate (for example," Aronix M210 "manufactured by Toagosei Co., Ltd.), propylene oxide-modified bisphenol A diacrylate (for example," Light acrylate BP-4PA "manufactured by Kyoeisha Chemical Co., Ltd.) ), Dioxide of ethylene oxide-modified isocyanuric acid (for example, “Aronix M215” manufactured by Toagosei Co., Ltd.), polypropylene glycol diacrylate (for example, “Aronic manufactured by Toagosei Co., Ltd.) M225 "), polyethylene glycol diacrylate (for example," Aronix M240 "manufactured by Toagosei Co., Ltd.), polytetramethylene glycol diacrylate (for example," Light acrylate PTMGA-250 "manufactured by Kyoeisha Chemical Co., Ltd.), pentaerythritol diacrylate mono Stearate (for example, “Aronix M233” manufactured by Toagosei Co., Ltd.), neopentyl glycol diacrylate, hexanediol diacrylate, nonanediol diacrylate, dimethylol tricyclodecane diacrylate (for example, “Light acrylate” manufactured by Kyoeisha Chemical Co., Ltd.) DCP-A "), trimethylolpropane acrylic acid benzoate (for example," Light acrylate BA-134 "manufactured by Kyoeisha Chemical Co., Ltd.), neopentyl hydroxypivalate Recall diacrylate (for example, “Light acrylate HPP-A” manufactured by Kyoeisha Chemical Co., Ltd.), pentaerythritol triacrylate (for example, “Aronix M305” manufactured by Toagosei Co., Ltd.), trimethylolpropane triacrylate (for example, Toagosei Co., Ltd.) "Aronix M309"), alkylene oxide modified trimethylolpropane triacrylate (for example, "Aronix M310", "Aronix M350" manufactured by Toagosei Co., Ltd.), ethylene oxide modified isocyanuric acid triacrylate (for example, manufactured by Toagosei Co., Ltd.) “Aronix M315”), glycerin triacrylate, alkylene oxide modified glycerol triacrylate (eg “Kayarad GPO-303” manufactured by Nippon Kayaku Co., Ltd.), pentaerythritol Toraacrylate (for example, “Aronix M450” manufactured by Toagosei Co., Ltd.), dipentaerythritol hexaacrylate (for example, “Aronix M400” manufactured by Toagosei Co., Ltd.), ditrimethylolpropane tetraacrylate (for example, “Aronix manufactured by Toagosei Co., Ltd.) M458 "), urethane acrylate (for example," Aronix M1100 "," Aronix M1200 "," Aronix M1600 "manufactured by Toagosei Co., Ltd.), polyester acrylate (for example," Aronix M6100 "," Aronix M7100 "manufactured by Toagosei Co., Ltd.) Acrylic acid adduct of alkylene glycol diglycidyl ether (for example, “Epoxy ester 70PA” manufactured by Kyoeisha Chemical Co., Ltd.), acrylic acid adduct of bisphenol A diglycidyl ether (example) "Lipoxy VR60" manufactured by Showa Polymer Co., Ltd.), acrylic acid adducts of phenol novolac type epoxy resins (eg "Lipoxy H600" manufactured by Showa Polymer Co., Ltd.), and acrylic acid addition of brominated bisphenol A diglycidyl ether And polyfunctional (meth) acrylates such as products (for example, “Lipoxy SP510” manufactured by Showa Polymer Co., Ltd.). These may be used individually by 1 type and may use 2 or more types together.
 前記第一のポリマーの含有量と第二のポリマーの含有量との比率、換言すると前記第一のポリマーの含有量と特定のモノマーの適用量との比率は特に限定されないが、前記第一のポリマー100質量部に対して、特定のモノマーを0.1質量部以上で適用することが好ましく、0.5質量部以上で適用することがより好ましい。上限は特に限定されないが、前記第一のポリマー100質量部に対して、特定のモノマーを50質量部以下で適用することが好ましく、45質量部以下で適用することがより好ましく、40質量部以下で適用することがより好ましい。両者の量を上記の範囲とすることでネットワーク化の効果が際立ち、膜強度等において優れた特定が発揮され好ましい。 The ratio between the content of the first polymer and the content of the second polymer, in other words, the ratio between the content of the first polymer and the application amount of the specific monomer is not particularly limited. The specific monomer is preferably applied in an amount of 0.1 parts by mass or more, more preferably 0.5 parts by mass or more with respect to 100 parts by mass of the polymer. Although an upper limit is not specifically limited, It is preferable to apply a specific monomer at 50 mass parts or less with respect to 100 mass parts of said 1st polymers, It is more preferable to apply at 45 mass parts or less, 40 mass parts or less It is more preferable to apply by. By setting both amounts in the above range, the effect of networking is conspicuous, and excellent identification in film strength and the like is exhibited, which is preferable.
[分離層の厚さ]
 前記分離層の膜厚T(図1、図2参照)は、0.05μm以上であることが好ましく、0.08μm以上であることがより好ましく、0.1μm以上であることが特に好ましい。上限値は特に制限されないが、10μm以下であることが好ましく、5μm以下であることがより好ましく、2μm以下であることが特に好ましい。この厚さを前記下限値以上とすることで、異物やはじきなどの欠陥が低減でき、性能が安定する点で好ましい。一方、前記上限値以下とすることで、ガス透過性能が高く保つことができ好ましい。
[Thickness of separation layer]
The thickness T (see FIGS. 1 and 2) of the separation layer is preferably 0.05 μm or more, more preferably 0.08 μm or more, and particularly preferably 0.1 μm or more. The upper limit is not particularly limited, but is preferably 10 μm or less, more preferably 5 μm or less, and particularly preferably 2 μm or less. By setting the thickness to be equal to or more than the lower limit, defects such as foreign matter and repellency can be reduced, and this is preferable in terms of stable performance. On the other hand, it is preferable that the gas permeation performance is kept high by setting it to the upper limit value or less.
 本明細書において膜ないし各層の厚さは、特に断らない限り、支持層を含めた膜全体を液体窒素で凍結した後、割断したサンプル、もしくは、ウルトラミクロトームによる切削などにより作成した超薄切片サンプルを、高倍率のTEMやSEMにより観察することで解析する。 In the present specification, unless otherwise specified, the thickness of the membrane or each layer is a sample obtained by cleaving the entire membrane including the support layer with liquid nitrogen and then cleaving or cutting with an ultramicrotome. Is analyzed by observing with a high-magnification TEM or SEM.
[支持層]
 支持層に好ましく適用される多孔質支持体は、機械的強度及び高気体透過性の付与に合致する目的のものであれば、特に限定されるものではなく有機、無機どちらの素材であっても構わないが、好ましくは有機高分子の多孔質膜であり、その厚さは1~3000μm、好ましくは5~500μmであり、より好ましくは5~300μmである。この多孔質膜の細孔構造は、通常平均細孔直径が10μm以下、好ましくは5μm以下、より好ましくは2μm以下であり、空孔率は好ましくは20~90%であり、より好ましくは30~90%である。また、その気体透過率は二酸化炭素透過速度で3×10-5cm(STP)/cm・sec・cmHg以上であることが好ましい。多孔質膜の素材としては、従来公知の高分子、例えばポリエチレン、ポリプロピレン等のポリオレフィン系樹脂等、ポリテトラフルオロエチレン、ポリフッ化ビニル、ポリフッ化ビニリデン等の含フッ素樹脂等、ポリスチレン、酢酸セルロース、ポリウレタン、ポリアクリロニトリル、ポリフェニレンオキシド、ポリスルホン、ポリエーテルスルホン、ポリイミド、ポリアラミド等の各種樹脂を挙げることができる。なかでも、高い膜強度、高いガス透過性と分離選択性とを同時に達成する観点から、支持層が、ポリアクリロニトリル、ポリスルホン、ポリフェニレンオキシドからなるものであることが好ましい。多孔質膜の形状としては、平板状、スパイラル状、管状、中空糸状などいずれの形状をとることができる。
[Support layer]
The porous support preferably applied to the support layer is not particularly limited as long as it has the purpose of meeting the provision of mechanical strength and high gas permeability. However, a porous film of an organic polymer is preferable, and the thickness thereof is 1 to 3000 μm, preferably 5 to 500 μm, and more preferably 5 to 300 μm. The porous structure of this porous membrane has an average pore diameter of usually 10 μm or less, preferably 5 μm or less, more preferably 2 μm or less, and a porosity of preferably 20 to 90%, more preferably 30 to 30%. 90%. Further, the gas permeability is preferably 3 × 10 −5 cm 3 (STP) / cm · sec · cmHg or more in terms of carbon dioxide permeation rate. Examples of porous membrane materials include conventionally known polymers such as polyolefin resins such as polyethylene and polypropylene, fluorine-containing resins such as polytetrafluoroethylene, polyvinyl fluoride, and polyvinylidene fluoride, polystyrene, cellulose acetate, and polyurethane. And various resins such as polyacrylonitrile, polyphenylene oxide, polysulfone, polyethersulfone, polyimide, and polyaramid. Among these, from the viewpoint of simultaneously achieving high membrane strength, high gas permeability, and separation selectivity, the support layer is preferably made of polyacrylonitrile, polysulfone, or polyphenylene oxide. The shape of the porous membrane can be any shape such as a flat plate shape, a spiral shape, a tubular shape, and a hollow fiber shape.
 この支持層は上述したように薄く、多孔質な素材であることが、十分なガス透過性を確保することができ好ましい。また、後述するガス分離層の優れたガス分離選択性を最大限に引き出すためにも、薄膜多孔質の形態が好ましい。一方、ガス分離膜の成形に高温・長時間等のシビアな反応条件が課される場合には、上述した薄く多孔質の支持層を損傷し、複合膜として十分な性能を発揮できない場合がある。かかる観点から、本発明が採用するラジカル架橋性のポリイミド化合物を利用したガス分離複合膜は穏和な条件で製膜することができ、優れた効果を発揮し、製造適正と、製品質との両面で高い性能を発揮しうるものである。 As described above, it is preferable that the support layer is a thin and porous material because sufficient gas permeability can be secured. In order to maximize the gas separation selectivity of the gas separation layer described later, the thin film porous form is preferable. On the other hand, when severe reaction conditions such as high temperature and long time are imposed on the formation of the gas separation membrane, the above-mentioned thin and porous support layer may be damaged, and sufficient performance as a composite membrane may not be exhibited. . From this point of view, the gas separation composite membrane using the radically crosslinkable polyimide compound adopted by the present invention can be formed under mild conditions, exhibits excellent effects, and is suitable for both production suitability and product quality. It can exhibit high performance.
 本発明においては、ガス分離層を形成する支持層の下部にさらに機械的強度を付与するために支持体が形成されていることが望ましい。その支持体としては、織布、不織布、ネット等が挙げられるが、製膜性およびコスト面から不織布が好適に用いられる。不織布としてはポリエステル、ポリプロピレン、ポリアクリロニトリル、ポリエチレン、ポリアミド等からなる繊維を単独あるいは複数を組み合わせて用いてもよい。不織布は、例えば、水に均一に分散した主体繊維とバインダー繊維を円網や長網等で抄造し、ドライヤーで乾燥することにより製造できる。また、毛羽を除去したり機械的性質を向上させたり等の目的で、不織布を2本のロール挟んで圧熱加工を施すことも好ましい。 In the present invention, it is desirable that a support be formed in order to further impart mechanical strength to the lower part of the support layer forming the gas separation layer. Examples of the support include woven fabric, non-woven fabric, and net, and the non-woven fabric is preferably used from the viewpoint of film forming property and cost. As the nonwoven fabric, fibers made of polyester, polypropylene, polyacrylonitrile, polyethylene, polyamide or the like may be used alone or in combination. The nonwoven fabric can be produced, for example, by making a main fiber and a binder fiber uniformly dispersed in water using a circular net or a long net, and drying with a dryer. Moreover, it is also preferable to apply a heat treatment by sandwiching a non-woven fabric between two rolls for the purpose of removing fluff and improving mechanical properties.
[ガス分離膜の製造方法]
 本発明のガス分離膜は、支持層と該支持層の上側に形成された樹脂からなる分離層とを具備するガス分離膜の製造方法であって、前記分離層が相互貫入型網目構造のポリマーを含有してなり、前記相互貫入型網目構造として、第一のポリマーと第二のポリマーとが少なくとも共存し、両者が共有結合を通じて連結した網目構造を形成するに当たり、
 前記第一のポリマーと、前記第二のポリマーをなす特定モノマーとして、アクリレート基、メタクリレート基、及びアクリルアミド基から選ばれる重合性基を有するモノマーとを含有する混合溶液を準備する工程と、
 該混合溶液を支持層上に塗布する工程と、
 前記塗布後、前記特定モノマーを重合させる工程とを含み、当該重合工程において、前記特定モノマーが重合されるとともに、前記第一のポリマーには前記特定モノマーと共有結合可能な反応性基があり、この反応性基を介して前記特定モノマーと共有結合して連結し、前記相互貫入型網目構造を形成するガス分離膜の製造方法によって製造されたものであることが好ましい。
 この反応性基は前記特定モノマーの重合性部位と結合性を有していれば特に限定されないが、例えば、ビニル基、アクリロイル基、アクリレート基(アクリロイルオキシ基)、アクリルアミド基(アクリロイルイミノ基)などが挙げられる。アクリロイル基等については、なかでもアクリロイル基(α=H)含有基およびメタクリロイル基(α=メチル基)含有基が好ましい。このような観点から、第1のポリマー材料としては、前記反応性基を有するポリイミド樹脂、前記反応性基を有するポリアミド樹脂、前記反応性基を有するセルロース樹脂、前記反応性基を有するポリエチレングリコール樹脂を用いることが好ましい。
[Method for producing gas separation membrane]
The gas separation membrane of the present invention is a method for producing a gas separation membrane comprising a support layer and a separation layer made of a resin formed on the support layer, wherein the separation layer is a polymer having an interpenetrating network structure In order to form a network structure in which at least the first polymer and the second polymer coexist as the interpenetrating network structure and both are connected through a covalent bond,
Preparing a mixed solution containing the first polymer and a monomer having a polymerizable group selected from an acrylate group, a methacrylate group, and an acrylamide group as the specific monomer constituting the second polymer;
Applying the mixed solution on a support layer;
And after the coating, the step of polymerizing the specific monomer, in the polymerization step, the specific monomer is polymerized, and the first polymer has a reactive group capable of covalent bonding with the specific monomer, It is preferably produced by a method for producing a gas separation membrane that is covalently linked to the specific monomer via this reactive group to form the interpenetrating network structure.
The reactive group is not particularly limited as long as it has a bondability with the polymerizable site of the specific monomer. For example, a vinyl group, an acryloyl group, an acrylate group (acryloyloxy group), an acrylamide group (acrylo rimino group), etc. Is mentioned. As for the acryloyl group and the like, an acryloyl group (α = H) -containing group and a methacryloyl group (α = methyl group) -containing group are particularly preferable. From this point of view, the first polymer material includes a polyimide resin having the reactive group, a polyamide resin having the reactive group, a cellulose resin having the reactive group, and a polyethylene glycol resin having the reactive group. Is preferably used.
(第一のポリマーの溶液)
・溶媒
 前記第一のポリマーを溶解させる溶媒は特に限定されないが、
(1)エステル類、例えば酢酸エチル、酢酸-n-ブチル、酢酸イソブチル、ギ酸アミル、酢酸イソアミル、酢酸イソブチル、プロピオン酸ブチル、酪酸イソプロピル、酪酸エチル、酪酸ブチル、アルキルエステル類、乳酸メチル、乳酸エチル、オキシ酢酸メチル、オキシ酢酸エチル、オキシ酢酸ブチル、メトキシ酢酸メチル、メトキシ酢酸エチル、メトキシ酢酸ブチル、エトキシ酢酸メチル、エトキシ酢酸エチル、3-オキシプロピオン酸メチル、3-オキシプロピオン酸エチルなどの3-オキシプロピオン酸アルキルエステル類;3-メトキシプロピオン酸メチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、2-オキシプロピオン酸メチル、2-オキシプロピオン酸エチル、2-オキシプロピオン酸プロピル、2-メトキシプロピオン酸メチル、2-メトキシプロピオン酸エチル、2-メトキシプロピオン酸プロピル、2-エトキシプロピオン酸メチル、2-エトキシプロピオン酸エチル、2-オキシ-2-メチルプロピオン酸メチル、2-オキシ-2-メチルプロピオン酸エチル、2-メトキシ-2-メチルプロピオン酸メチル、2-エトキシ-2-メチルプロピオン酸エチル、ピルビン酸メチル、ピルビン酸エチル、ピルビン酸プロピル、アセト酢酸メチル、アセト酢酸エチル、2-オキソブタン酸メチル、2-オキソブタン酸エチル等;
(2)エーテル類、例えばジエチレングリコールジメチルエーテル、テトラヒドロフラン、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、メチルセロソルブアセテート、エチルセロソルブアセテート、ジエチレングリコールモノメチルエーテル、プロピレングリコールメチルエーテルアセテート、等;
(3)ケトン類、例えばメチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、シクロヘキサノール、2-ヘプタノン、3-ヘプタノン等;芳香族炭化水素類、例えばトルエン、キシレン
等が挙げられる。
(First polymer solution)
-Solvent The solvent for dissolving the first polymer is not particularly limited,
(1) Esters such as ethyl acetate, n-butyl acetate, isobutyl acetate, amyl formate, isoamyl acetate, isobutyl acetate, butyl propionate, isopropyl butyrate, ethyl butyrate, butyl butyrate, alkyl esters, methyl lactate, ethyl lactate 3-, such as methyl oxyacetate, ethyl oxyacetate, butyl oxyacetate, methyl methoxyacetate, ethyl methoxyacetate, butyl methoxyacetate, methyl ethoxyacetate, ethyl ethoxyacetate, methyl 3-oxypropionate, ethyl 3-oxypropionate Oxypropionic acid alkyl esters; methyl 3-methoxypropionate, ethyl 3-methoxypropionate, methyl 3-ethoxypropionate, ethyl 3-ethoxypropionate, methyl 2-oxypropionate, ethyl 2-oxypropionate Propyl 2-oxypropionate, methyl 2-methoxypropionate, ethyl 2-methoxypropionate, propyl 2-methoxypropionate, methyl 2-ethoxypropionate, ethyl 2-ethoxypropionate, 2-oxy-2-methylpropion Methyl acid, ethyl 2-oxy-2-methylpropionate, methyl 2-methoxy-2-methylpropionate, ethyl 2-ethoxy-2-methylpropionate, methyl pyruvate, ethyl pyruvate, propyl pyruvate, acetoacetic acid Methyl, ethyl acetoacetate, methyl 2-oxobutanoate, ethyl 2-oxobutanoate and the like;
(2) ethers such as diethylene glycol dimethyl ether, tetrahydrofuran, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, methyl cellosolve acetate, ethyl cellosolve acetate, diethylene glycol monomethyl ether, propylene glycol methyl ether acetate, etc .;
(3) Ketones such as methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, cyclohexanol, 2-heptanone and 3-heptanone; aromatic hydrocarbons such as toluene and xylene.
・濃度
 第一のポリマーを含有させる濃度は特に限定されないが、0.5質量%以上であることがより好ましく、0.75質量%以上であることがより好ましく、1.0質量%以上であることが特に好ましい。上限値は特に限定されないが、30質量%以下であることが好ましく、25質量%以下であることがより好ましく、20質量%以下であることが特に好ましい。この濃度を前記下限値以上とすることで、支持体へ染み込みすぎず製膜することができ好ましい。一方、前記上限値以下とすることで、液粘度が向上しすぎず塗布適性を保ったまま製膜することができ好ましい。なお、本発明においては、本発明の効果を妨げない限り、上記第一のポリマーを二種以上併用してもよく、これ以外の添加剤等を使用してもよい。
Concentration The concentration of the first polymer is not particularly limited, but is preferably 0.5% by mass or more, more preferably 0.75% by mass or more, and 1.0% by mass or more. It is particularly preferred. Although an upper limit is not specifically limited, It is preferable that it is 30 mass% or less, It is more preferable that it is 25 mass% or less, It is especially preferable that it is 20 mass% or less. By setting this concentration to be equal to or higher than the lower limit value, it is preferable that a film can be formed without being soaked into the support. On the other hand, it is preferable that the amount is not more than the above upper limit value because the liquid viscosity is not improved excessively and the film can be formed while maintaining the coating suitability. In the present invention, as long as the effects of the present invention are not hindered, two or more of the first polymers may be used in combination, and other additives may be used.
(特定モノマーの溶液)
・溶媒
 本発明において特定モノマーを溶解する溶媒としては、前記第一のポリマーで利用したものと同様のものを利用することができる。
(Solution of specific monomer)
-Solvent In this invention, the solvent similar to what was utilized with said 1st polymer can be utilized as a solvent which melt | dissolves a specific monomer.
・濃度
 特定モノマーを含有させる濃度は特に限定されないが、0.01質量%以上であることがより好ましく、0.025質量%以上であることがより好ましく、0.05質量%以上であることが特に好ましい。上限値は特に限定されないが、30質量%以下であることが好ましく、25質量%以下であることがより好ましく、20質量%以下であることが特に好ましい。この濃度を前記下限値以上とすることで、IPNを作製することができ好ましい。一方、前記上限値以下とすることで、モノマー重合体が凝集することなく製膜することができ好ましい。なお、本発明においては、本発明の効果を妨げない限り、上記特定モノマーを二種以上併用してもよく、これ以外の添加剤等を使用してもよい。
Concentration The concentration at which the specific monomer is contained is not particularly limited, but is preferably 0.01% by mass or more, more preferably 0.025% by mass or more, and 0.05% by mass or more. Particularly preferred. Although an upper limit is not specifically limited, It is preferable that it is 30 mass% or less, It is more preferable that it is 25 mass% or less, It is especially preferable that it is 20 mass% or less. It is preferable that IPN can be produced by setting this concentration to the lower limit value or more. On the other hand, it is preferable that the amount is not more than the upper limit because the monomer polymer can be formed without aggregation. In the present invention, two or more of the above specific monomers may be used in combination as long as the effects of the present invention are not hindered, and other additives and the like may be used.
(重合反応)
 特定モノマー溶液中の特定モノマーを重合させる反応形態は特に限定されない。採用される特定モノマーの種類や、重合開始剤の種類に応じて、適宜、熱重合反応を利用しても、光重合反応を利用してもよい。熱を付与して重合反応を進行させる場合には、代表的な化合物を想定するときには、40~200℃に反応系内を加熱することが好ましい。光の照射により重合反応を進行させる場合には、上記化合物の種類に応じて所定の活性エネルギー線を照射すればよく、具体的には紫外線を照射して重合反応を行う態様が挙げられる。
(Polymerization reaction)
The reaction mode for polymerizing the specific monomer in the specific monomer solution is not particularly limited. Depending on the type of specific monomer employed and the type of polymerization initiator, a thermal polymerization reaction or a photopolymerization reaction may be used as appropriate. When the polymerization reaction is allowed to proceed by applying heat, the reaction system is preferably heated to 40 to 200 ° C. when a typical compound is assumed. When the polymerization reaction is allowed to proceed by light irradiation, a predetermined active energy ray may be irradiated depending on the type of the compound, and specifically, an embodiment in which the polymerization reaction is performed by irradiating ultraviolet rays may be mentioned.
(重合開始剤)
 特定モノマー溶液には重合開始剤を含有させることが好ましい。
 熱によって開裂して開始ラジカルを発生する熱ラジカル重合開始剤としては、メチルエチルケトンパーオキサイド、メチルイソブチルケトンパーオキサイド、アセチルアセトンパーオキサイド、シクロヘキサノンパーオキサイド及びメチルシクロヘキサノンパーオキサイドなどのケトンパーオキサイド類;1,1,3,3-テトラメチルブチルハイドロパーオキサイド、クメンハイドロパーオキサイド及びt-ブチルハイドロパーオキサイドなどのハイドロパーオキサイド類;ジイソブチリルパーオキサイド、ビス-3,5,5-トリメチルヘキサノールパーオキサイド、ラウロイルパーオキサイド、ベンゾイルパーオキサイド及びm-トルイルベンゾイルパーオキサイドなどのジアシルパーオキサイド類;ジクミルパーオキサイド、2,5-ジメチル-2,5-ジ(t-ブチルペルオキシ)ヘキサン、1,3-ビス(t-ブチルペルオキシイソプロピル)ヘキサン、t-ブチルクミルパーオキサイド、ジ-t-ブチルパーオキサイド及び2,5-ジメチル-2,5-ジ(t-ブチルペルオキシ)ヘキセンなどのジアルキルパーオキサイド類;1,1-ジ(t-ブチルペルオキシ-3,5,5-トリメチル)シクロヘキサン、1,1-ジ-t-ブチルペルオキシシクロヘキサン及び2,2-ジ(t-ブチルペルオキシ)ブタンなどのパーオキシケタール類;1,1,3,3-テトラメチルブチルペルオキシネオジカーボネート、α-クミルペルオキシネオジカーボネート、t-ブチルペルオキシネオジカーボネート、t-ヘキシルペルオキシピバレート、t-ブチルペルオキシピバレート、1,1,3,3-テトラメチルブチルペルオキシ-2-エチルヘキサノエート、t-アミルペルオキシ-2-エチルヘキサノエート、t-ブチルペルオキシ-2-エチルヘキサノエート、t-ブチルペルオキシイソブチレート、ジ-t-ブチルペルオキシヘキサヒドロテレフタレート、1,1,3,3-テトラメチルブチルペルオキシ-3,5,5-トリメチルヘキサネート、t-アミルペルオキシ-3,5,5-トリメチルヘキサノエート、t-ブチルペルオキシ-3,5,5-トリメチルヘキサノエート、t-ブチルペルオキシアセテート、t-ブチルペルオキシベンゾエート及びジブチルペルオキシトリメチルアジペートなどのアルキルパーエステル類;ジ-3-メトキシブチルペルオキシジカーボネート、ジ-2-エチルヘキシルペルオキシジカーボネート、ビス(1,1-ブチルシクロヘキサオキシジカーボネート)、ジイソプロピルオキシジカーボネート、t-アミルペルオキシイソプロピルカーボネート、t-ブチルペルオキシイソプロピルカーボネート、t-ブチルペルオキシ-2-エチルヘキシルカーボネート及び1,6-ビス(t-ブチルペルオキシカルボキシ)ヘキサンなどのパーオキシカーボネート類;1,1-ビス(t-ヘキシルペルオキシ)シクロヘキサン及び(4-t-ブチルシクロヘキシル)パーオキシジカルボネートなどが挙げられる。
 アゾ系(AIBN等)の重合開始剤として使用するアゾ化合物の具体例としては、2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス(2-メチルブチロニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、1,1’-アゾビス-1-シクロヘキサンカルボニトリル、ジメチル-2,2’-アゾビスイソブチレート、4,4’-アゾビス-4-シアノバレリック酸、2,2’-アゾビス-(2-アミジノプロパン)ジハイドロクロライド等が挙げられる(特開2010-189471など参照)。
(Polymerization initiator)
The specific monomer solution preferably contains a polymerization initiator.
Examples of thermal radical polymerization initiators that generate initiation radicals by cleavage by heat include ketone peroxides such as methyl ethyl ketone peroxide, methyl isobutyl ketone peroxide, acetylacetone peroxide, cyclohexanone peroxide, and methylcyclohexanone peroxide; 1,1 Hydroperoxides such as 1,3,3-tetramethylbutyl hydroperoxide, cumene hydroperoxide and t-butyl hydroperoxide; diisobutyryl peroxide, bis-3,5,5-trimethylhexanol peroxide, lauroyl peroxide Diacyl peroxides such as oxide, benzoyl peroxide and m-toluylbenzoyl peroxide; dicumyl peroxide, 2,5 Dimethyl-2,5-di (t-butylperoxy) hexane, 1,3-bis (t-butylperoxyisopropyl) hexane, t-butylcumyl peroxide, di-t-butyl peroxide and 2,5-dimethyl- Dialkyl peroxides such as 2,5-di (t-butylperoxy) hexene; 1,1-di (t-butylperoxy-3,5,5-trimethyl) cyclohexane, 1,1-di-t-butylperoxy Peroxyketals such as cyclohexane and 2,2-di (t-butylperoxy) butane; 1,1,3,3-tetramethylbutylperoxyneodicarbonate, α-cumylperoxyneodicarbonate, t-butylperoxyneodicarbonate , T-hexylperoxypivalate, t-butylperoxypivalate 1,1,3,3-tetramethylbutylperoxy-2-ethylhexanoate, t-amylperoxy-2-ethylhexanoate, t-butylperoxy-2-ethylhexanoate, t-butyl Peroxyisobutyrate, di-t-butylperoxyhexahydroterephthalate, 1,1,3,3-tetramethylbutylperoxy-3,5,5-trimethylhexanate, t-amylperoxy-3,5,5-trimethyl Alkyl peresters such as hexanoate, t-butylperoxy-3,5,5-trimethylhexanoate, t-butylperoxyacetate, t-butylperoxybenzoate and dibutylperoxytrimethyladipate; di-3-methoxybutylperoxy Dicarbonate, di-2-ethylhexyl Ruperoxydicarbonate, bis (1,1-butylcyclohexaoxydicarbonate), diisopropyloxydicarbonate, t-amylperoxyisopropylcarbonate, t-butylperoxyisopropylcarbonate, t-butylperoxy-2-ethylhexylcarbonate and 1, Peroxycarbonates such as 6-bis (t-butylperoxycarboxy) hexane; 1,1-bis (t-hexylperoxy) cyclohexane and (4-t-butylcyclohexyl) peroxydicarbonate.
Specific examples of the azo compound used as an azo-based (AIBN or the like) polymerization initiator include 2,2′-azobisisobutyronitrile, 2,2′-azobis (2-methylbutyronitrile), 2, 2'-azobis (2,4-dimethylvaleronitrile), 1,1'-azobis-1-cyclohexanecarbonitrile, dimethyl-2,2'-azobisisobutyrate, 4,4'-azobis-4-cyano Examples include valeric acid, 2,2′-azobis- (2-amidinopropane) dihydrochloride, and the like (see JP 2010-189471 A).
 ラジカル重合開始剤として、上記の熱ラジカル重合開始剤の他に、光、電子線又は放射線で開始ラジカルを生成するラジカル重合開始剤を用いることができる。
 このようなラジカル重合開始剤としては、ベンゾインエーテル、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン〔IRGACURE651、チバ・スペシャルティ・ケミカルズ(株)製、商標〕、1-ヒドロキシ-シクロヘキシル-フェニル-ケトン〔IRGACURE184、チバ・スペシャルティ・ケミカルズ(株)製、商標〕、2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン〔DAROCUR1173、チバ・スペシャルティ・ケミカルズ(株)製、商標〕、1-[4-(2-ヒドロキシエトキシ)-フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン〔IRGACURE2959、チバ・スペシャルティ・ケミカルズ(株)製、商標〕、2-ヒドロキシ-1-[4-[4-(2-ヒドロキシ-2-メチル-プロピオニル)-ベンジル]フェニル]-2-メチル-プロパン-1-オン〔IRGACURE127、チバ・スペシャルティ・ケミカルズ(株)製、商標〕、2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノプロパン-1-オン〔IRGACURE907、チバ・スペシャルティ・ケミカルズ(株)製、商標〕、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1〔IRGACURE369、チバ・スペシャルティ・ケミカルズ(株)製、商標〕、2-(ジメチルアミノ)-2-[(4-メチルフェニル)メチル]-1-[4-(4-モノホリニル)フェニル]-1-ブタノン〔IRGACURE379、チバ・スペシャルティ・ケミカルズ(株)製、商標〕、2,4,6-トリメチルベンゾイル-ジフェニル-ホスフィンオキサイド〔DAROCUR TPO、チバ・スペシャルティ・ケミカルズ(株)製、商標〕、ビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキサイド〔IRGACURE819、チバ・スペシャルティ・ケミカルズ(株)製、商標〕、ビス(η-2,4-シクロペンタジエン-1-イル)-ビス(2,6-ジフルオロ-3-(1H-ピロール-1-イル)-フェニル)チタニウム〔IRGACURE784、チバ・スペシャルティ・ケミカルズ(株)製、商標〕、1,2-オクタンジオン,1-[4-(フェニルチオ)-,2-(O-ベンゾイルオキシム)]〔IRGACURE OXE 01、チバ・スペシャルティ・ケミカルズ(株)製、商標〕、エタノン,1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-,1-(O-アセチルオキシム)〔IRGACURE OXE 02、チバ・スペシャルティ・ケミカルズ(株)製、商標〕などを挙げることができる。
 これらのラジカル重合開始剤は、一種を単独で又は二種以上を組み合わせて用いることができる。
 中でも好ましくは、パーオキサイド化合物が挙げられ、パーブチルO(t-ブチルペルオキシ-2-エチルヘキサノエート、日油(株)社製)などを用いることができる。
 重合開始剤の含有量は特に限定されないが、0.1~5質量%で適用することが好ましい。
As the radical polymerization initiator, in addition to the thermal radical polymerization initiator, a radical polymerization initiator that generates an initiation radical by light, electron beam, or radiation can be used.
Examples of such radical polymerization initiators include benzoin ether, 2,2-dimethoxy-1,2-diphenylethane-1-one [IRGACURE651, trade name, manufactured by Ciba Specialty Chemicals Co., Ltd.], 1-hydroxy-cyclohexyl -Phenyl-ketone [IRGACURE 184, trade name, manufactured by Ciba Specialty Chemicals Co., Ltd.], 2-hydroxy-2-methyl-1-phenyl-propan-1-one [DAROCUR 1173, manufactured by Ciba Specialty Chemicals Co., Ltd., Trademarks], 1- [4- (2-hydroxyethoxy) -phenyl] -2-hydroxy-2-methyl-1-propan-1-one [IRGACURE2959, trade name, manufactured by Ciba Specialty Chemicals Co., Ltd.], 2 -Hydroxy-1- [4- [4- (2-H Roxy-2-methyl-propionyl) -benzyl] phenyl] -2-methyl-propan-1-one (IRGACURE127, trade name, manufactured by Ciba Specialty Chemicals), 2-methyl-1- (4-methylthiophenyl) ) -2-morpholinopropan-1-one [IRGACURE907, trade name, manufactured by Ciba Specialty Chemicals Co., Ltd.], 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone-1 [ IRGACURE369, manufactured by Ciba Specialty Chemicals, Inc., trademark], 2- (dimethylamino) -2-[(4-methylphenyl) methyl] -1- [4- (4-monophorinyl) phenyl] -1-butanone [IRGACURE 379, trade name, manufactured by Ciba Specialty Chemicals Co., Ltd.] 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide [DAROCUR TPO, trade name, manufactured by Ciba Specialty Chemicals Co., Ltd.], bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide [IRGACURE819, Ciba Trademarks, Specialty Chemicals, Inc.], bis (η 5 -2,4-cyclopentadien-1-yl) -bis (2,6-difluoro-3- (1H-pyrrol-1-yl) -phenyl) Titanium [IRGACURE784, manufactured by Ciba Specialty Chemicals, Inc., trademark], 1,2-octanedione, 1- [4- (phenylthio)-, 2- (O-benzoyloxime)] [IRGACURE OXE 01, Ciba Specialty Chemicals Co., Ltd., Trademark], D Non, 1- [9-ethyl-6- (2-methylbenzoyl) -9H-carbazol-3-yl]-, 1- (O-acetyloxime) [IRGACURE OXE 02, manufactured by Ciba Specialty Chemicals Co., Ltd. , Trademark] and the like.
These radical polymerization initiators can be used singly or in combination of two or more.
Among them, a peroxide compound is preferable, and perbutyl O (t-butylperoxy-2-ethylhexanoate, manufactured by NOF Corporation) can be used.
The content of the polymerization initiator is not particularly limited, but it is preferably applied at 0.1 to 5% by mass.
(製膜方法)
 本発明の好ましいガス分離膜の製膜方法は、前記第一のポリマーと特定モノマーの混合溶液を調液する工程と、前記混合溶液を塗布する工程と、塗布後前記特定モノマーを重合させる工程とを含んでなる。本実施形態においては、前記混合溶液を準備し、支持体に塗布後、溶媒が完全に乾燥しない時期に、特定モノマーを光重合することが好ましい。
(Film forming method)
A preferable method for producing a gas separation membrane of the present invention includes a step of preparing a mixed solution of the first polymer and a specific monomer, a step of applying the mixed solution, and a step of polymerizing the specific monomer after coating. Comprising. In this embodiment, it is preferable to photopolymerize a specific monomer at a time when the solvent is not completely dried after the mixed solution is prepared and applied to a support.
[ガス混合物の分離方法]
 本発明のガス混合物の分離方法は、少なくとも一種の酸性ガスを含むガス混合物から酸性ガスを気体分離膜によって分離する方法において、本発明のガス分離膜又は前記複合膜を用いることができる酸性ガスが二酸化炭素又は硫化水素であることが好ましい。このように、本発明の分離膜はガス(気体)を分離する膜であるが、超臨界流体等の分離膜であってもよい。対象となる超臨界流体としては、超臨界二酸化炭素が挙げられる。
[Separation method of gas mixture]
The method for separating a gas mixture of the present invention is a method of separating an acidic gas from a gas mixture containing at least one kind of acidic gas by a gas separation membrane, wherein the acidic gas capable of using the gas separation membrane of the present invention or the composite membrane is Carbon dioxide or hydrogen sulfide is preferred. As described above, the separation membrane of the present invention is a membrane for separating a gas (gas), but may be a separation membrane such as a supercritical fluid. Supercritical carbon dioxide is an example of the supercritical fluid to be used.
 本発明の分離膜を用いる気体の分離方法において、原料の気体混合物の成分は特に規定されるものではないが、ガス混合物の主成分が二酸化炭素及びメタン、又は二酸化炭素及び水素であることが好ましい。ガス混合物が二酸化炭素や硫化水素のような酸性ガス共存下で特に優れた性能を発揮し、好ましくは二酸化炭素とメタン等の炭化水素、二酸化炭素と窒素、二酸化炭素と水素の分離において優れた性能を発揮する。そして、上述のとおり、分離する混合ガス中にBTXが含まれるような場合に本発明が高い効果を発揮して、良好なガス分離性を維持して、膜の長寿命化を図ることができる。 In the gas separation method using the separation membrane of the present invention, the components of the raw gas mixture are not particularly defined, but the main components of the gas mixture are preferably carbon dioxide and methane, or carbon dioxide and hydrogen. . The gas mixture exhibits particularly excellent performance in the presence of acidic gases such as carbon dioxide and hydrogen sulfide, and preferably in the separation of hydrocarbons such as carbon dioxide and methane, carbon dioxide and nitrogen, and carbon dioxide and hydrogen. Demonstrate. And as above-mentioned, when BTX is contained in the mixed gas to isolate | separate, this invention exhibits a high effect, can maintain favorable gas-separation property, and can aim at the lifetime improvement of a film | membrane. .
 とりわけ、供給されるガスが二酸化炭素とメタンとの混合ガスであり、40℃、200kPaにおける二酸化炭素の透過度Q[CO](透過速度)が10GPU超であることが好ましく、10~500GPUであることがより好ましい。二酸化炭素とメタンとの分離選択性α(透過速度比)(PCO2/PCH4)は10以上であることが好ましく、15以上であることがより好ましい。上限値は特にないが、分離選択性は100以下であることが実際的である。 In particular, the gas to be supplied is a mixed gas of carbon dioxide and methane, and the permeability Q [CO 2 ] (permeation rate) of carbon dioxide at 40 ° C. and 200 kPa is preferably more than 10 GPU, and 10 to 500 GPU. More preferably. The separation selectivity α (permeation rate ratio) between carbon dioxide and methane (P CO2 / P CH4 ) is preferably 10 or more, and more preferably 15 or more. Although there is no particular upper limit, it is practical that the separation selectivity is 100 or less.
 本発明においてガス分離膜の強度は特に限定されないが、IPNポリマーを適用することにより高い強度のものを提供できることが本発明の利点のひとつである。ガス分離膜のなかでも、分離層の強度が高まることが好ましく、分離層の具体的な強度を挙げると、2250MPa以上であることが好ましく、2500MPa以上であることがより好ましい。上限値は特にないが、10000MPa以下であることが実際的である。ここでの強度の値は後記実施例で採用した試験条件によるものとする。 In the present invention, the strength of the gas separation membrane is not particularly limited, but it is one of the advantages of the present invention that a high strength can be provided by applying an IPN polymer. Among the gas separation membranes, the strength of the separation layer is preferably increased, and the specific strength of the separation layer is preferably 2250 MPa or more, and more preferably 2500 MPa or more. Although there is no upper limit in particular, it is practical that it is 10,000 MPa or less. The strength value here is based on the test conditions employed in the examples described later.
[ガス分離膜モジュール・気体分離装置]
 本発明のガス分離膜は多孔質支持体と組み合わせた複合膜とすることが好ましく、更にはこれを用いた分離膜モジュールとすることが好ましい。また、本発明のガス分離膜、複合膜又は分離膜モジュールを用いて、ガスを分離回収又は分離精製させるための手段を有する気体分離装置とすることができる。
 本発明のガス分離膜はモジュール化して好適に用いることができる。モジュールの例としては、スパイラル型、中空糸型、プリーツ型、管状型、プレート&フレーム型などが挙げられる。また本発明の高分子膜は、例えば、特開2007-297605号に記載のような吸収液と併用した膜・吸収ハイブリッド法としての気体分離回収装置に適用してもよい。
[Gas separation membrane module / gas separation device]
The gas separation membrane of the present invention is preferably a composite membrane combined with a porous support, and more preferably a separation membrane module using this. Moreover, it can be set as the gas separation apparatus which has a means for carrying out separation collection | recovery or separation refinement | purification using the gas separation membrane of this invention, a composite membrane, or a separation membrane module.
The gas separation membrane of the present invention can be suitably used in a modular form. Examples of modules include spiral type, hollow fiber type, pleated type, tubular type, plate & frame type and the like. Further, the polymer membrane of the present invention may be applied to a gas separation / recovery device as a membrane / absorption hybrid method used in combination with an absorbing solution as described in JP-A-2007-297605, for example.
(実施例1)
<分離膜(1)の作製>
 第一のポリマーとして、非特許文献1に記載のPolyamic acid 6FDA/MEDAを熱架橋することにより得られるPolyimide 6FDA/MEDAを合成し、その5質量%、特定モノマーとして、0.8質量%のM-315(商品名:東亞合成社製、エチレンオキサイド変性イソシアヌル酸トリアクリレート)及び0.01質量%の重合開始剤(Irgacure184、BASF社製)を含むTHF(テトラヒドロフラン)混合溶液を組成物として調製した。この組成物を、ポリアクリロニトリル多孔質膜(GMT社製、不織布上にポリアクリロニトリル多孔質膜が存在、不織布含め、膜厚は約180μm厚)を支持体として、塗布後、直ちにUV照射(2.2J/cm)を行い、重合させ、乾燥させることで、分離膜101を作製した(表1)。なお、MEDAは2-(methacryloyloxy)ethyl-3,5-diaminobenzoateを意味する。
Example 1
<Preparation of separation membrane (1)>
As a first polymer, Polyimide 6FDA / MEDA obtained by thermally crosslinking Polyacid 6FDA / MEDA described in Non-Patent Document 1 was synthesized, and 5% by mass thereof, 0.8% by mass M as a specific monomer. -315 (trade name: manufactured by Toagosei Co., Ltd., ethylene oxide-modified isocyanuric acid triacrylate) and 0.01% by mass of a polymerization initiator (Irgacure 184, manufactured by BASF) mixed solution in THF (tetrahydrofuran) was prepared as a composition. . Immediately after applying this composition to a polyacrylonitrile porous membrane (manufactured by GMT, polyacrylonitrile porous membrane is present on a non-woven fabric, including the non-woven fabric, the thickness is about 180 μm), UV irradiation (2. 2J / cm 2 ), polymerization, and drying were performed to produce a separation membrane 101 (Table 1). MEDA means 2- (methacryloyloxy) ethyl-3,5-diaminobenzoate.
 第一のポリマー、特定モノマー、重合開始剤、を表1のものに変更した以外は分離膜101と同様にして、分離膜102~104を作製した(表2)。 Separation membranes 102 to 104 were prepared in the same manner as the separation membrane 101 except that the first polymer, specific monomer, and polymerization initiator were changed to those shown in Table 1 (Table 2).
Figure JPOXMLDOC01-appb-T000001
*繰り返し単位数9のポリエチレングリコールジアクリレートを用いた。
Figure JPOXMLDOC01-appb-T000001
* Polyethylene glycol diacrylate having 9 repeating units was used.
 前記モノマーM-315を用いない以外実施例1と同様にして、分離膜c11を作製した。なお、本試料が前記非特許文献1(European Polymer Journal,1997(33)pp.1717-1721)に相当するものとなる。 A separation membrane c11 was produced in the same manner as in Example 1 except that the monomer M-315 was not used. This sample corresponds to Non-Patent Document 1 (European Polymer Journal, 1997 (33) pp.1717-1721).
-ガス分離評価1-
 前記で製膜した各分離膜を用いて二酸化炭素ガスの分離性能について、以下のように評価した。
 支持層ごと直径47mmに切り取り、PTFEメンブレンフィルターで挟んで透過試験サンプルを作製した。テストガスとしてCO/CH:50/50(容積比)の混合ガスを相対湿度0%、流量300ml/分、温度40℃、全圧200kPaで、前記の各サンプル(有効面積2.40cm)に供給し、透過側にArガス(流量90ml/分)をフローさせた。透過してきたガスをガスクロマトグラフで分析し、CO透過速度と分離係数を算出した。その値を表2に示す。
-Gas separation evaluation 1-
The separation performance of carbon dioxide gas was evaluated as follows using each separation membrane formed as described above.
The support layer was cut to a diameter of 47 mm and sandwiched between PTFE membrane filters to prepare a transmission test sample. As a test gas, a CO 2 / CH 4 : 50/50 (volume ratio) mixed gas was used with each sample (effective area 2.40 cm 2 ) at a relative humidity of 0%, a flow rate of 300 ml / min, a temperature of 40 ° C., and a total pressure of 200 kPa. ) And Ar gas (flow rate 90 ml / min) was allowed to flow on the permeate side. The permeated gas was analyzed with a gas chromatograph, and the CO 2 permeation rate and the separation factor were calculated. The values are shown in Table 2.
-膜強度評価-
 製膜した各分離膜を支持体から剥離し、引張試験(引張試験機:SHIMADZU社製)を行い、弾性率を測定した。試験条件は、引張速度10mm/min、チャック間距離25mm、25℃50%RHで行った。その結果を表2に示す。
-Evaluation of membrane strength-
Each separation membrane thus formed was peeled off from the support and subjected to a tensile test (tensile tester: manufactured by SHIMADZU) to measure the elastic modulus. The test conditions were a tensile speed of 10 mm / min, a distance between chucks of 25 mm, and 25 ° C. and 50% RH. The results are shown in Table 2.
-膜寿命-
 ガス分離評価1において、100時間後の分離係数の減少率を、本願の膜寿命として、評価した。その結果を表2に示す。
-Membrane life-
In gas separation evaluation 1, the reduction rate of the separation factor after 100 hours was evaluated as the membrane life of the present application. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
*1 透過流速単位:1×10-6cm3(STP)/(s・cm2・cmHg)
*2 α=Q(CO2)/Q(CH4)
* 1 Permeation velocity unit: 1 × 10 -6 cm 3 (STP) / (s · cm 2 · cmHg)
* 2 α = Q (CO 2 ) / Q (CH 4 )
 本発明の分離膜は、高い透過度(透過速度)と良好な分離選択性とともに、大幅に長期化された膜強度及び寿命を示した(実施例101~104、比較例c11を対比参照)。この結果より、BTXを含む系におけるガス分離において、本発明の分離膜は高い性能を発揮し、しかもその膜寿命の長さからオペレーションコストを削減するとともに、メンテナンスに係る作業を改善しうるものであることが分かる。また、高い膜強度を有するため、強度が求められる使用条件にも好適に対応して良好なガス分離を行うことができ、アプリケーションの拡大に資することが分かる。 The separation membrane of the present invention exhibited significantly increased membrane strength and life, as well as high permeability (permeation rate) and good separation selectivity (see Examples 101 to 104, Comparative Example c11). From this result, in the gas separation in the system containing BTX, the separation membrane of the present invention exhibits high performance, and it can reduce the operation cost due to the long life of the membrane and improve the work related to maintenance. I understand that there is. Moreover, since it has high film | membrane intensity | strength, it turns out that favorable gas separation can be performed suitably corresponding to the use conditions for which intensity | strength is calculated | required, and it turns out that it contributes to expansion of an application.
(実施例2)
-モジュール化-
 実施例1で作製した分離膜を用いて、特開平5-168869を参考に、スパイラル型モジュールを作製した。作製した本発明の分離モジュールは、内蔵する分離膜の性能の通り良好なものであることを確認した。
(Example 2)
-modularization-
Using the separation membrane produced in Example 1, a spiral module was produced with reference to JP-A-5-168869. It was confirmed that the manufactured separation module of the present invention was good according to the performance of the built-in separation membrane.
 本発明をその実施態様とともに説明したが、我々は特に指定しない限り我々の発明を説明のどの細部においても限定しようとするものではなく、添付の請求の範囲に示した発明の精神と範囲に反することなく幅広く解釈されるべきであると考える。
 本願は、2011年11月30日に日本国で特許出願された特願2011-263068に基づく優先権を主張するものであり、これらはここに参照してその内容を本明細書の記載の一部として取り込む。
While this invention has been described in conjunction with its embodiments, we do not intend to limit our invention in any detail of the description unless otherwise specified and are contrary to the spirit and scope of the invention as set forth in the appended claims. I think it should be interpreted widely.
This application claims priority based on Japanese Patent Application No. 2011-263068 filed in Japan on November 30, 2011, which is hereby incorporated herein by reference. Capture as part.
11 ガス分離層
12 支持層(多孔質層)
13 不織布層
10、20 ガス分離複合膜
1 Aポリマー
3 Bモノマー
 3a Bポリマー3a
 3b 連結鎖
9 架橋剤
90 架橋体
100 IPNポリマー
11 Gas separation layer 12 Support layer (porous layer)
13 Nonwoven fabric layer 10, 20 Gas separation composite membrane 1 A polymer 3 B monomer 3a B polymer 3a
3b Linking chain 9 Crosslinking agent 90 Crosslinked body 100 IPN polymer

Claims (11)

  1.  支持層と該支持層の上側に形成された樹脂からなる分離層とを具備するガス分離膜であって、前記分離層は相互貫入型網目構造のポリマーを含有してなり、前記相互貫入型網目構造は、第一のポリマーと第二のポリマーとが少なくとも共存し、両者が共有結合を通じて連結した網目構造であり、
     前記相互貫入型網目構造のポリマーが、少なくとも、前記第一のポリマーと、この存在下で特定モノマーを重合せた前記第二のポリマーとで構成され、当該第二のポリマーが、アクリレート重合体、アクリルアミド重合体、及びそれらの組み合わせに係る共重合体からなる群から選ばれる少なくとも1種であるガス分離膜。
    A gas separation membrane comprising a support layer and a separation layer made of a resin formed on the support layer, the separation layer containing a polymer having an interpenetrating network structure, and the interpenetrating network The structure is a network structure in which the first polymer and the second polymer coexist at least, and both are connected through a covalent bond,
    The interpenetrating network polymer is composed of at least the first polymer and the second polymer obtained by polymerizing a specific monomer in the presence of the polymer, and the second polymer is an acrylate polymer, A gas separation membrane that is at least one selected from the group consisting of acrylamide polymers and copolymers according to combinations thereof.
  2.  前記特定モノマーが、少なくとも2つの重合性基を有する請求項1に記載のガス分離膜。 The gas separation membrane according to claim 1, wherein the specific monomer has at least two polymerizable groups.
  3.  前記第一のポリマーには連結前の反応性基があり、当該反応性基を介して前記特定モノマーと共有結合して連結し、前記第一のポリマーと第二のポリマーとがなす相互貫入型網目構造を構成している請求項1または2に記載のガス分離膜。 The first polymer has a reactive group before linking, and is covalently bonded to the specific monomer via the reactive group to form an interpenetrating type formed by the first polymer and the second polymer. The gas separation membrane according to claim 1 or 2, constituting a network structure.
  4.  前記分離層の厚さを0.05μm~10μmとした請求項1~3のいずれか1項に記載のガス分離膜。 The gas separation membrane according to any one of claims 1 to 3, wherein the separation layer has a thickness of 0.05 to 10 µm.
  5.  前記第一のポリマーの重量平均分子量を1.0×10~1.0×10とした請求項1~4のいずれか1項に記載のガス分離膜。 The gas separation membrane according to any one of claims 1 to 4, wherein the weight average molecular weight of the first polymer is 1.0 × 10 4 to 1.0 × 10 7 .
  6.  前記第一のポリマー100質量部に対して、前記第二のポリマーが0.1~50質量部となるように前記特定モノマーを適用した請求項1~5のいずれか1項に記載のガス分離膜。 The gas separation according to any one of claims 1 to 5, wherein the specific monomer is applied so that the second polymer is 0.1 to 50 parts by mass with respect to 100 parts by mass of the first polymer. film.
  7.  支持層と該支持層の上側に形成された樹脂からなる分離層とを具備するガス分離膜の製造方法であって、前記分離層が相互貫入型網目構造のポリマーを含有してなり、前記相互貫入型網目構造として、第一のポリマーと第二のポリマーとが少なくとも共存し、両者が共有結合を通じて連結した網目構造を形成するに当たり、
     前記第一のポリマーと、前記第二のポリマーをなす特定モノマーとして、アクリレート基及びアクリルアミド基から選ばれる重合性基を有するモノマーとを含有する混合溶液を準備する工程と、
     該混合溶液を支持層上に塗布する工程と、
     前記塗布後、前記特定モノマーを重合させる工程とを含み、当該重合工程において、前記特定モノマーが重合されるとともに、前記第一のポリマーには前記特定モノマーと共有結合可能な反応性基があり、この反応性基を介して前記特定モノマーと共有結合して連結し、前記相互貫入型網目構造を形成する
     ガス分離膜の製造方法。
    A gas separation membrane manufacturing method comprising a support layer and a separation layer made of a resin formed on the support layer, wherein the separation layer contains a polymer having an interpenetrating network structure, As an intrusive network structure, at least the first polymer and the second polymer coexist, and in forming a network structure in which both are connected through a covalent bond,
    Preparing a mixed solution containing the first polymer and a monomer having a polymerizable group selected from an acrylate group and an acrylamide group as the specific monomer forming the second polymer;
    Applying the mixed solution on a support layer;
    And after the coating, the step of polymerizing the specific monomer, in the polymerization step, the specific monomer is polymerized, and the first polymer has a reactive group capable of covalent bonding with the specific monomer, A method for producing a gas separation membrane, wherein the reactive monomer is covalently bonded to the specific monomer to form the interpenetrating network structure.
  8.  前記特定モノマーとして、アクリレートモノマーまたはアクリルアミドモノマーを用いる請求項7に記載のガス分離膜の製造方法。 The method for producing a gas separation membrane according to claim 7, wherein an acrylate monomer or an acrylamide monomer is used as the specific monomer.
  9.  前記特定モノマーが、少なくとも2つの重合性基を有する請求項7または8に記載のガス分離膜の製造方法。 The method for producing a gas separation membrane according to claim 7 or 8, wherein the specific monomer has at least two polymerizable groups.
  10.  前記混合溶液に重合開始剤を含有させる請求項7~9のいずれか1項に記載のガス分離膜の製造方法。 10. The method for producing a gas separation membrane according to claim 7, wherein a polymerization initiator is contained in the mixed solution.
  11.  請求項1~6のいずれか1項に記載のガス分離膜を具備するガス分離モジュール。 A gas separation module comprising the gas separation membrane according to any one of claims 1 to 6.
PCT/JP2012/080352 2011-11-30 2012-11-22 Gas separation membrane, method for manufacturing same, and gas separation membrane module using same WO2013080890A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011263068A JP2013111565A (en) 2011-11-30 2011-11-30 Gas separation membrane, method of manufacturing the same, and gas separation membrane module using the same
JP2011-263068 2011-11-30

Publications (1)

Publication Number Publication Date
WO2013080890A1 true WO2013080890A1 (en) 2013-06-06

Family

ID=48535349

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/080352 WO2013080890A1 (en) 2011-11-30 2012-11-22 Gas separation membrane, method for manufacturing same, and gas separation membrane module using same

Country Status (2)

Country Link
JP (1) JP2013111565A (en)
WO (1) WO2013080890A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019110962A1 (en) * 2017-12-04 2019-06-13 Fujifilm Manufacturing Europe Bv Composite membranes
CN110494499A (en) * 2017-03-31 2019-11-22 住友化学株式会社 Gel with inierpeneirating network structure

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017003661A1 (en) * 2015-07-01 2017-01-05 Sabic Global Technologies B.V. Cross-linked mixed matrix membranes by in-situ polymerization

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BEE TING LOW ET AL.: "Tuning the Free Volume Cavities of Polyimide Membranes via the Construction of Pseudo-Interpenetrating Networks for Enhanced Gas Separation Performance", MACROMOLECULES, vol. 42, no. 18, 2009, pages 7042 - 7054, XP055072960 *
MAREK M. ET AL.: "Crosslinked Ultra-Thin Poryimide Filem as A Gas separation Layer for Composite Membranes", EUROPEAN POLYMER JOURNAL, vol. 33, no. 10-12, 1997, pages 1717 - 1721, XP004578045 *
SUNDAR SAIMANI ET AL.: "Semi-IPN Asymmetric Membranes Based on Polyether Imide (ULTEM) and Polyethylene Glycol Diacrylate for Gaseous Separation", JOURNAL OF APPLIED POLYMER SCIENCE, vol. 110, no. 6, 2008, pages 3606 - 3615, XP055072957 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110494499A (en) * 2017-03-31 2019-11-22 住友化学株式会社 Gel with inierpeneirating network structure
CN110494499B (en) * 2017-03-31 2021-08-31 住友化学株式会社 Gel with interpenetrating network structure
WO2019110962A1 (en) * 2017-12-04 2019-06-13 Fujifilm Manufacturing Europe Bv Composite membranes

Also Published As

Publication number Publication date
JP2013111565A (en) 2013-06-10

Similar Documents

Publication Publication Date Title
WO2012133737A1 (en) Crosslinkable amine compound, polymer membrane using crosslinkable amine compound, and method for producing polymer membrane
KR101136943B1 (en) The method of preparation for hydrophilic water filtration membrane having improved antifouling and hydrophilic water filtration membrane according to the method
JP5014576B2 (en) Porous composite membrane and method for producing the same
He et al. Photo-irradiation for preparation, modification and stimulation of polymeric membranes
JP6222625B2 (en) Composite separation membrane and separation membrane module using the same
KR101950500B1 (en) Curable compositions and memebranes
US8992668B2 (en) Gas separation membrane and method for producing the same, and method for separating gas mixture, gas separation membrane module and gas separation apparatus using the same
US20200222860A1 (en) Method for preparing membrane selective layers by interfacial free radical polymerization
KR101580702B1 (en) Composite separation membrane
WO2013077418A1 (en) Gas separation membrane, method for manufacturing same, and gas separation membrane module using same
JP5314291B2 (en) Polymer membrane and method for producing the same
US20120006685A1 (en) Process for Preparing Composite Membranes
US20010021421A1 (en) Non-cracking hydrophilic polyethersulfone membranes
KR101630208B1 (en) A preparation method of hydrophilic membrane and a hydrophilic membrane prepared by the same
US9764293B2 (en) Gas separation composite membrane, method of producing the same, gas separating module using the same, and gas separation apparatus and gas separation method
CN111542384B (en) Polymer blend membranes for acid gas separation
WO2013080890A1 (en) Gas separation membrane, method for manufacturing same, and gas separation membrane module using same
CN104031282A (en) Polyvinylidene fluoride (PVDF) microfiltration membrane surface light graft modification method
JP2009241006A (en) Composite membrane and its manufacturing method
JP5893578B2 (en) Functional composite membrane and method for producing the same, ion exchange membrane and proton conducting membrane provided with functional composite membrane
WO2018020949A1 (en) Gas separation membrane, gas separation membrane module and gas separation device
CN107138056B (en) For N2/CH4Separated gas separation membrane
EP3296011B1 (en) Membranes comprising fluoropolymers
CN107051238B (en) Tetrahydrofurfuryl-containing CO2Permselective separation membranes
US11148103B2 (en) Gas separation membrane comprising crosslinked blends of rubbery polymers

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12853627

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12853627

Country of ref document: EP

Kind code of ref document: A1