WO2013080850A1 - Liquid crystal composition and liquid crystal display element - Google Patents

Liquid crystal composition and liquid crystal display element Download PDF

Info

Publication number
WO2013080850A1
WO2013080850A1 PCT/JP2012/080150 JP2012080150W WO2013080850A1 WO 2013080850 A1 WO2013080850 A1 WO 2013080850A1 JP 2012080150 W JP2012080150 W JP 2012080150W WO 2013080850 A1 WO2013080850 A1 WO 2013080850A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
component
compound
crystal composition
formula
Prior art date
Application number
PCT/JP2012/080150
Other languages
French (fr)
Japanese (ja)
Inventor
泰行 後藤
幸宏 藤田
孝仁 柳井
憲和 服部
Original Assignee
Jnc株式会社
Jnc石油化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jnc株式会社, Jnc石油化学株式会社 filed Critical Jnc株式会社
Priority to JP2013547109A priority Critical patent/JP6098520B2/en
Publication of WO2013080850A1 publication Critical patent/WO2013080850A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • C09K19/3003Compounds containing at least two rings in which the different rings are directly linked (covalent bond)
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/0403Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit the structure containing one or more specific, optionally substituted ring or ring systems
    • C09K2019/0411Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit the structure containing one or more specific, optionally substituted ring or ring systems containing a chlorofluoro-benzene, e.g. 2-chloro-3-fluoro-phenylene-1,4-diyl
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K2019/0444Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by a linking chain between rings or ring systems, a bridging chain between extensive mesogenic moieties or an end chain group
    • C09K2019/0448Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by a linking chain between rings or ring systems, a bridging chain between extensive mesogenic moieties or an end chain group the end chain group being a polymerizable end group, e.g. -Sp-P or acrylate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • C09K19/3003Compounds containing at least two rings in which the different rings are directly linked (covalent bond)
    • C09K2019/3009Cy-Ph
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • C09K19/3003Compounds containing at least two rings in which the different rings are directly linked (covalent bond)
    • C09K2019/301Cy-Cy-Ph
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • C09K19/3003Compounds containing at least two rings in which the different rings are directly linked (covalent bond)
    • C09K2019/3016Cy-Ph-Ph

Definitions

  • the present invention relates to a liquid crystal composition containing a polymerizable compound that is polymerized by, for example, light or heat. Further, the present invention relates to a liquid crystal display element in which the liquid crystal composition is sealed between substrates and a polymerizable compound contained in the liquid crystal composition is polymerized while adjusting a voltage applied to the liquid crystal layer to fix the alignment of the liquid crystal.
  • the technical field of the present invention mainly relates to a liquid crystal composition suitable for an AM (active matrix) device and the like, and an AM device containing the composition.
  • liquid crystal composition having a negative dielectric anisotropy, an IPS (in-plane switching) mode, an FFS (fringe field switching) mode, a VA (vertical alignment) mode, or a PSA (polymer sustained alignment) containing the composition. ) Mode elements.
  • the VA mode includes an MVA (multi-domain vertical alignment) mode, a PVA (patterned vertical alignment) mode, and the like.
  • the classification based on the operation mode of the liquid crystal includes PC (phase change), TN (twisted nematic), STN (super twisted nematic), ECB (electrically controlled birefringence), OCB (optically compensated bend), IPS ( in-plane switching, FFS (fringe field switching), VA (vertical alignment), PSA (polymer sustained alignment) mode, and the like.
  • the classification based on the element drive system is PM (passive matrix) and AM (active matrix). PM is classified into static and multiplex, and AM is classified into TFT (thin film insulator), MIM (metal insulator metal), and the like. TFTs are classified into amorphous silicon and polycrystalline silicon. The latter is classified into a high temperature type and a low temperature type according to the manufacturing process.
  • the classification based on the light source includes a reflection type using natural light, a transmission type using backlight, and a semi-transmission type using both natural light and backlight.
  • the elements contain a liquid crystal composition having appropriate characteristics.
  • This liquid crystal composition has a nematic phase.
  • the general characteristics of the composition are improved.
  • the relationships in the two general characteristics are summarized in Table 1 below.
  • the general characteristics of the composition will be further described based on a commercially available AM device.
  • the temperature range of the nematic phase is related to the temperature range in which the device can be used.
  • a preferred upper limit temperature of the nematic phase is about 70 ° C. or more, and a preferred lower limit temperature of the nematic phase is about ⁇ 10 ° C. or less.
  • the viscosity of the composition is related to the response time of the device. A short response time is preferred for displaying moving images on the device. Therefore, a small viscosity in the composition is preferred. Small viscosities at low temperatures are more preferred.
  • the optical anisotropy of the composition is related to the contrast ratio of the device.
  • the product ( ⁇ n ⁇ d) of the optical anisotropy ( ⁇ n) of the composition and the cell gap (d) of the device is designed to maximize the contrast ratio.
  • the appropriate product value depends on the type of operation mode.
  • the range is about 0.30 ⁇ m to about 0.40 ⁇ m for the VA mode or PSA mode device, and the range is about 0.20 ⁇ m to about 0.30 ⁇ m for the IPS mode device. In this case, a composition having a large optical anisotropy is preferable for a device having a small cell gap.
  • the dielectric anisotropy having a large absolute value in the composition contributes to a low threshold voltage, a small power consumption and a large contrast ratio in the device. Therefore, a dielectric anisotropy having a large absolute value is preferable.
  • a large specific resistance in the composition contributes to a large voltage holding ratio and a large contrast ratio in the device. Therefore, a composition having a large specific resistance not only at room temperature but also at a high temperature in the initial stage is preferable.
  • a composition having a large specific resistance not only at room temperature but also at a high temperature after being used for a long time is preferable.
  • the stability of the composition against ultraviolet rays and heat is related to the lifetime of the liquid crystal display device. When their stability is high, the lifetime of the device is long. Such characteristics are preferable for an AM device used in a liquid crystal projector, a liquid crystal television, and the like.
  • a composition having a positive dielectric anisotropy is used for an AM device having a TN mode.
  • a composition having negative dielectric anisotropy is used for an AM device having a VA mode.
  • a composition having a positive or negative dielectric anisotropy is used in an AM device having an IPS mode and an FFS mode.
  • a composition having a positive or negative dielectric anisotropy is used in an AM device having a PSA mode.
  • Examples of liquid crystal compositions having negative dielectric anisotropy are disclosed in the following Patent Document 1 to Patent Document 6, and the like.
  • Desirable AM elements have characteristics such as a wide usable temperature range, a short response time, a large contrast ratio, a low threshold voltage, a large voltage holding ratio, and a long lifetime. A shorter response time is desirable even at 1 millisecond. Therefore, desirable properties of the composition include a high maximum temperature of the nematic phase, a low minimum temperature of the nematic phase, a small viscosity, a suitable optical anisotropy, a large positive or negative dielectric anisotropy, a large specific resistance, and a high resistance to ultraviolet light. High stability, high heat stability, etc.
  • a small amount for example, about 0.3 wt% to about 1 wt%) of a polymerizable compound (RM) is added to the liquid crystal composition, and after being introduced into the liquid crystal display cell, a voltage is applied between the electrodes. In this state, only the polymerizable compound is polymerized under normal UV irradiation to form a polymer structure in the device.
  • RM polymerizable mesogenic or liquid crystal compound is particularly suitable as a liquid crystal composition additive monomer.
  • the above-described polymerizable mesogenic or liquid crystalline compounds generally have a high ability to align liquid crystal molecules.
  • the solubility in the liquid crystal composition is poor, and a large amount cannot be added.
  • a flexible linking group such as alkylene or ester between the ring structures
  • the solubility in the liquid crystal composition is improved, but the rigidity of the molecule is weakened and the ability to align the liquid crystal molecules is lowered.
  • the pretilt angle which is the tilt of the orientation, becomes small.
  • a polymerizable compound into which two flexible linking groups are introduced is not very suitable for a PSA mode display because it has a high image sticking rate.
  • One object of the present invention is to provide a high maximum temperature of the nematic phase, a low minimum temperature of the nematic phase, a small viscosity, a suitable optical anisotropy, a large negative dielectric anisotropy, a large specific resistance, and a high stability to ultraviolet light.
  • the liquid crystal composition satisfies at least one characteristic in characteristics such as high stability to heat.
  • Another object is a liquid crystal composition having an appropriate balance regarding at least two properties.
  • Another object is a liquid crystal display device containing such a composition.
  • Another object is a composition having a small optical anisotropy, or a suitable optical anisotropy that is a large optical anisotropy, a negative large dielectric anisotropy, a high stability to ultraviolet light, and the like, and
  • An AM device having a short response time, a large pretilt angle, a small image sticking rate, a small residual monomer concentration, a large voltage holding ratio, a large contrast ratio, a long lifetime, and the like by building a polymer structure in the layer.
  • P 1 and P 2 are independently a group selected from the groups represented by formulas (P-1) to (P-6); R 1 and R 2 are independently alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, or alkenyl having 2 to 12 carbons; ring A and ring B are independently 1,4 -Cyclohexylene, 1,4-cyclohexenylene, 1,4-phenylene, tetrahydropyran-2,5-diyl, 1,3-dioxane-2,5-diyl, or pyrimidine-2,5-diyl In these, at least one hydrogen may be replaced by halogen, alkyl having 1 to 12 carbons, or alkyl having 1 to 12 carbons in which at least one hydrogen is replaced by halogen;
  • the present inventors paid attention to the skeleton structure of a polymerizable compound for a liquid crystal display device to which PSA technology is applied, and substituted alkylene with —CH 2 — with —O— or —CH ⁇ CH—.
  • a linking group in one skeleton structure introducing a reactive group that is not the same, or introducing a substituent into the ring structure, the solubility in the liquid crystal composition and the pretilt angle are improved and efficient. It was found that the ability to orient the liquid crystal molecules by increasing the PSA effect.
  • a VA type device using PSA technology has two substrates provided with a transparent electrode and an alignment control film for aligning liquid crystal molecules, and a liquid crystal composition containing a polymerizable compound is disposed between these substrates, It is a liquid crystal display device manufactured through a process of polymerizing a polymerizable compound while applying a voltage between opposing transparent electrodes of these substrates.
  • a liquid crystal material in which an alignment state at the time of applying a voltage is stored in a polymer component can be disposed between substrates, the direction in which the encapsulated liquid crystal molecules are tilted is stored, the response time is shortened, and the degree of image sticking is improved. be able to.
  • the polymerizable compound of the present invention it has become possible to deal with a wide range of cell manufacturing processes and to manufacture a high-quality liquid crystal display element.
  • the advantage of the present invention is high stability against ultraviolet rays or heat for a polymer of a polymerizable mesogenic or liquid crystalline compound.
  • Other advantages of the present invention are a high maximum temperature of the nematic phase, a low minimum temperature of the nematic phase, a small viscosity, a suitable optical anisotropy, a large negative dielectric anisotropy, a large specific resistance, and a high stability to ultraviolet rays.
  • the liquid crystal composition satisfies at least one characteristic in characteristics such as high stability to heat.
  • One aspect of the present invention is a liquid crystal composition having an appropriate balance regarding at least two properties. Another aspect is a liquid crystal display device containing such a composition.
  • Another aspect is a polymerizable compound having high stability to ultraviolet light or heat, a composition having appropriate optical anisotropy, negatively large dielectric anisotropy, high stability to ultraviolet light, and the like, and short
  • the AM device has a response time, a suitable pretilt, a small image sticking rate, a large voltage holding ratio, a large contrast ratio, a long lifetime, and the like.
  • liquid crystal composition of the present invention or the liquid crystal display device of the present invention may be abbreviated as “composition” or “device”, respectively.
  • a liquid crystal display element is a general term for a liquid crystal display panel and a liquid crystal display module.
  • Liquid crystal compound means a compound having a liquid crystal phase such as a nematic phase or a smectic phase, or a compound having no liquid crystal phase but useful as a component of a composition. This useful compound has a six-membered ring such as 1,4-cyclohexylene and 1,4-phenylene, and its molecular structure is rod-like. Optically active compounds and polymerizable compounds may be added to the composition.
  • At least one compound selected from the group of compounds represented by formula (1) may be abbreviated as “compound (1)”.
  • “Compound (1)” means one compound or two or more compounds represented by formula (1). The same applies to compounds represented by other formulas.
  • At least one group selected from the group of groups represented by formula (P-1) may be abbreviated as “group (P-1)”. The same applies to groups represented by other formulas. “At least one” of “replaced” indicates that not only the position but also the number can be arbitrarily selected.
  • the upper limit temperature of the nematic phase may be abbreviated as “upper limit temperature”.
  • the lower limit temperature of the nematic phase may be abbreviated as “lower limit temperature”.
  • “High specific resistance” means that the composition has a large specific resistance not only at room temperature in the initial stage but also at a temperature close to the upper limit temperature of the nematic phase. It means having a large specific resistance even at a close temperature.
  • “High voltage holding ratio” means that the device has a large voltage holding ratio not only at room temperature in the initial stage but also at a temperature close to the upper limit temperature of the nematic phase. It means having a large voltage holding ratio even at a temperature close to.
  • the first component is one compound or two or more compounds.
  • the “ratio of the first component” is expressed as a weight ratio (parts by weight) of the first component when the weight of the liquid crystal composition excluding the first component and the polymerizable compound other than the first component is 100.
  • the “ratio of the second component” is expressed as a weight percentage (% by weight) of the second component based on the weight of the liquid crystal composition excluding the first component and a polymerizable compound other than the first component.
  • the “ratio of the third component” is the same as the “ratio of the second component”.
  • the ratio of the additive mixed with the composition is expressed by weight percentage (% by weight) or weight parts per million (ppm) based on the total weight of the liquid crystal composition.
  • the “ratio” is represented by the weight ratio (parts by weight) of the polymerizable compound other than the first component when the weight of the liquid crystal composition excluding the first component and the polymerizable compound other than the first component is 100.
  • R 1 is used for a plurality of compounds. In any two of these compounds, those selected by R 1 may be the same or different.
  • R 1 of the compound (2) is ethyl
  • R 1 of compound (2) is ethyl
  • R 1 of compound (2) is ethyl
  • R 1 of compound (2-1) is propyl. This rule also applies to R 2 , X 1 , Y 1 and the like.
  • the present invention includes the following items. 1. Contains at least one compound selected from the group of compounds represented by formula (1) as the first component and at least one compound selected from the group of compounds represented by formula (2) as the second component Liquid crystal composition.
  • P 1 and P 2 are independently a group selected from the groups represented by formulas (P-1) to (P-6); R 1 and R 2 are independently alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, or alkenyl having 2 to 12 carbons; ring A and ring B are independently 1,4 -Cyclohexylene, 1,4-cyclohexenylene, 1,4-phenylene, tetrahydropyran-2,5-diyl, 1,3-dioxane-2,5-diyl, or pyrimidine-2,5-diyl In these, at least one hydrogen may be replaced by halogen, alkyl having 1 to 12 carbons, or alkyl having 1 to 12 carbons in which at least one hydrogen is replaced by
  • Item 2 The liquid crystal composition according to item 1, wherein the first component is at least one compound selected from the group of compounds represented by formula (1-1) to formula (1-8).
  • Y 1 to Y 12 are independently hydrogen, halogen, alkyl having 1 to 12 carbons, or trifluoromethyl;
  • X 1 and X 2 are independently hydrogen or methyl.
  • the first component is at least one compound selected from the group of compounds represented by formula (1-1) to formula (1-8) according to item 2, and Y 1 to Y 12 are hydrogen
  • the first component is at least one compound selected from the group of compounds represented by formula (1-1) to formula (1-8) according to item 2, wherein formula (1-1) to formula (1- In item 1 wherein at least one of Y 1 to Y 8 is fluorine or trifluoromethyl in 7) and at least one of Y 1 to Y 12 is fluorine or trifluoromethyl in formula (1-8)
  • the liquid crystal composition described is at least one compound selected from the group of compounds represented by formula (1-1) to formula (1-8) according to item 2, wherein formula (1-1) to formula (1- In item 1 wherein at least one of Y 1 to Y 8 is fluorine or trifluoromethyl in 7) and at least one of Y 1 to Y 12 is fluorine or trifluoromethyl in formula (1-8)
  • the liquid crystal composition described described.
  • Item 5 The liquid crystal composition according to any one of items 1 to 4, wherein the first component is at least one compound selected from the group of compounds represented by formula (1-1) according to item 2.
  • Item 5 The liquid crystal composition according to any one of items 1 to 4, wherein the first component is at least one compound selected from the group of compounds represented by formula (1-2) according to item 2.
  • Item 7 The liquid crystal composition according to any one of items 1 to 6, wherein the first component comprises at least two compounds selected from the group of compounds represented by formula (1) according to item 1.
  • the first component is at least one compound selected from the group of compounds represented by formula (1) according to item 1, and further contains a polymerizable compound other than the formula (1) according to item 1 8.
  • the liquid crystal composition according to any one of 7 above.
  • Item 9 The liquid crystal composition according to item 1 to 8, wherein the second component is at least one compound selected from the group of compounds represented by formulas (2-1) to (2-19).
  • R 1 and R 2 are independently alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, or alkenyl having 2 to 12 carbons.
  • Item 2 The liquid crystal composition according to item 1, wherein the second component is at least one compound selected from the group of compounds represented by formula (2-5) according to item 9.
  • Item 14 The liquid crystal composition according to any one of items 1 to 13, further containing at least one compound selected from the group of compounds represented by formula (3) as a third component.
  • R 3 and R 4 are independently alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, alkenyl having 2 to 12 carbons, or carbons in which at least one hydrogen is replaced by fluorine.
  • Ring F, ring G, and ring I are independently 1,4-cyclohexylene, 1,4-phenylene, 2-fluoro-1,4-phenylene, or 3-fluoro.
  • -1,4-phenylene; Z 4 and Z 5 are independently a single bond, ethylene, methyleneoxy, or carbonyloxy; p is 0, 1, or 2.
  • Item 15 The liquid crystal composition according to item 14, wherein the third component is at least one compound selected from the group of compounds represented by formulas (3-1) to (3-13).
  • R 3 and R 4 are independently alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, alkenyl having 2 to 12 carbons, or carbon number in which at least one hydrogen is replaced by fluorine. 2 to 12 alkenyl.
  • the proportion of the second component is in the range of 10 wt% to 80 wt%, and the proportion of the third component is 20 wt%.
  • % To 90% by weight of the polymerizable compound other than the first component and the first component with respect to 100 parts by weight of the liquid crystal composition excluding the polymerizable compound other than the first component and the first component.
  • Item 18 The liquid crystal composition according to any one of items 14 to 17, wherein the ratio is in the range of 0.03 to 10 parts by weight.
  • Item 19 The liquid crystal composition according to any one of items 1 to 18, further comprising a polymerization initiator.
  • Item 20 The liquid crystal composition according to any one of items 1 to 19, further comprising a polymerization inhibitor.
  • the upper limit temperature of the nematic phase is 70 ° C. or higher, the optical anisotropy (25 ° C.) at a wavelength of 589 nm is 0.08 or higher, and the dielectric anisotropy (25 ° C.) at a frequency of 1 kHz is ⁇ 2 or lower.
  • Item 21. The liquid crystal composition according to any one of items 1 to 20.
  • Item 21 A liquid crystal comprising two substrates each having an electrode layer on at least one substrate, and a compound obtained by polymerizing the polymerizable compound in the liquid crystal composition according to any one of items 1 to 21 between the two substrates.
  • a polymer-supported alignment type (PSA) liquid crystal display element characterized by disposing a material.
  • Item 23 The liquid crystal display device according to item 22, wherein the operation mode of the liquid crystal display device is a TN mode, a VA mode, an OCB mode, an IPS mode, or an FFS mode, and the driving method of the liquid crystal display device is an active matrix method.
  • Item 22 A liquid crystal display device according to item 22, wherein the liquid crystal composition according to any one of items 1 to 21 disposed between two substrates is irradiated with light in a voltage application state to polymerize a polymerizable compound.
  • a method for manufacturing a liquid crystal display element A method for manufacturing a liquid crystal display element.
  • Item 21 Use of the liquid crystal composition according to any one of items 1 to 21 in a liquid crystal display device.
  • the present invention includes the following items. 1) The above composition further containing an optically active compound, 2) the above composition further containing an additive such as an antioxidant, an ultraviolet absorber, and an antifoaming agent, and 3) the above composition.
  • AM device 4) a device containing the above composition and having a mode of TN, ECB, OCB, IPS, FFS, VA, or PSA, 5) a transmissive device containing the above composition, 6) Use of the above composition as a composition having a nematic phase, 7) Use as an optically active composition by adding an optically active compound to the above composition.
  • composition of the present invention will be described in the following order. First, the constitution of component compounds in the composition will be described. Second, the main characteristics of the component compounds and the main effects of the compounds on the composition will be explained. Third, the combination of components in the composition, the preferred ratio of the components, and the basis thereof will be described. Fourth, a preferred form of the component compound will be described. Fifth, specific examples of component compounds are shown. Sixth, additives that may be mixed into the composition will be described. Seventh, a method for synthesizing the component compounds will be described. Finally, the use of the composition will be described.
  • the composition of the component compounds in the composition will be described.
  • the composition of the present invention is classified into Composition A and Composition B.
  • the composition A may further contain other liquid crystal compounds, additives, impurities and the like in addition to the liquid crystal compound selected from the compound (1), the compound (2), and the compound (3).
  • the “other liquid crystal compound” is a liquid crystal compound different from the compound (1), the compound (2), and the compound (3). Such compounds are mixed into the composition for the purpose of further adjusting the properties.
  • a smaller amount of cyano compound is preferable from the viewpoint of stability to heat or ultraviolet light.
  • a more desirable ratio of the cyano compound is 0% by weight.
  • Additives include optically active compounds, antioxidants, ultraviolet absorbers, dyes, antifoaming agents, polymerization initiators, and the like. Impurities are compounds mixed in a process such as synthesis of component compounds. Even if this compound is a liquid crystal compound, it is classified as an impurity here.
  • Composition B consists essentially of compound (1), compound (2), and compound (3). “Substantially” means that the composition may contain additives and impurities, but does not contain a liquid crystal compound different from these compounds. Composition B has fewer components than composition A. From the viewpoint of reducing the cost, the composition B is preferable to the composition A. The composition A is preferable to the composition B from the viewpoint that the physical properties can be further adjusted by mixing other liquid crystal compounds.
  • the main characteristics of the component compounds and the main effects of the compounds on the characteristics of the composition will be explained.
  • the main characteristics of the component compounds are summarized in Table 2 based on the effects of the present invention.
  • L means large or high
  • M means moderate
  • S means small or low.
  • L, M, and S are classifications based on a qualitative comparison among the component compounds, and 0 (zero) means that the value is close to zero.
  • Compound (2) increases the absolute value of dielectric anisotropy and decreases the minimum temperature.
  • Compound (3) decreases the viscosity or increases the maximum temperature and decreases the minimum temperature.
  • the combination of the components in the composition is first component + second component and first component + second component + third component.
  • a desirable ratio of the first component is about 0.05 parts by weight or more for aligning liquid crystal molecules with respect to 100 parts by weight of the liquid crystal composition excluding the first component, and about 10 parts by weight or less for preventing display defects. It is. A more desirable ratio is in the range of approximately 0.1 parts by weight to approximately 2 parts by weight.
  • a desirable ratio of the second component is approximately 10% by weight or more for increasing the absolute value of the dielectric anisotropy and approximately 80% by weight for decreasing the minimum temperature based on the liquid crystal composition excluding the first component. It is as follows. A more desirable ratio is in the range of approximately 15% by weight to approximately 70% by weight. A particularly preferred ratio is in the range of approximately 20% by weight to approximately 60% by weight.
  • a desirable ratio of the third component is approximately 20% by weight or more for decreasing the viscosity or increasing the maximum temperature based on the liquid crystal composition excluding the first component, and increases the absolute value of the dielectric anisotropy. Therefore, it is about 90% by weight or less.
  • a more desirable ratio is in the range of approximately 30% by weight to approximately 80% by weight.
  • a particularly preferred ratio is in the range of approximately 40% by weight to approximately 70% by weight.
  • R 1 and R 2 are independently alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, or alkenyl having 2 to 12 carbons. Desirable R 1 or R 2 is alkyl having 1 to 12 carbons for increasing the stability to ultraviolet light or heat, and alkoxy having 1 to 12 carbons for decreasing the viscosity.
  • R 3 and R 4 are independently alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, alkenyl having 2 to 12 carbons, or 2 to 12 carbons in which at least one hydrogen is replaced by fluorine. Of alkenyl. Desirable R 3 or R 4 is alkenyl having 2 to 12 carbons for decreasing the viscosity, and alkyl having 1 to 12 carbons for increasing the stability to ultraviolet light or the stability to heat. is there.
  • Preferred alkyl is methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl or octyl. More desirable alkyl is ethyl, propyl, butyl, pentyl, or heptyl for decreasing the viscosity.
  • Preferred alkoxy is methoxy, ethoxy, propoxy, butoxy, pentyloxy, hexyloxy, or heptyloxy. More desirable alkoxy is methoxy or ethoxy for decreasing the viscosity.
  • Preferred alkenyl is vinyl, 1-propenyl, 2-propenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1-pentenyl, 2-pentenyl, 3-pentenyl, 4-pentenyl, 1-hexenyl, 2-hexenyl, 3-hexenyl, 4-hexenyl, or 5-hexenyl. More desirable alkenyl is vinyl, 1-propenyl, 3-butenyl, or 3-pentenyl for decreasing the viscosity.
  • the preferred configuration of —CH ⁇ CH— in these alkenyls depends on the position of the double bond.
  • Trans is preferable in alkenyl such as 1-propenyl, 1-butenyl, 1-pentenyl, 1-hexenyl, 3-pentenyl and 3-hexenyl for decreasing the viscosity.
  • Cis is preferred for alkenyl such as 2-butenyl, 2-pentenyl, and 2-hexenyl.
  • linear alkenyl is preferable to branched.
  • alkenyl in which at least one hydrogen is replaced by fluorine are 2,2-difluorovinyl, 3,3-difluoro-2-propenyl, 4,4-difluoro-3-butenyl, 5,5-difluoro-4 -Pentenyl, and 6,6-difluoro-5-hexenyl. Further preferred examples are 2,2-difluorovinyl and 4,4-difluoro-3-butenyl for decreasing the viscosity.
  • Alkyl does not include cyclic alkyl.
  • Alkoxy does not include cyclic alkoxy.
  • Alkenyl does not include cyclic alkenyl.
  • trans is preferable to cis for increasing the maximum temperature.
  • Sp is alkylene having 1 to 6 carbon atoms, and in the alkylene, at least one —CH 2 — may be replaced by —O—, —OCO—, —COO—, or —CH ⁇ CH—.
  • Preferred Sp is alkylene having 1 to 6 carbon atoms for increasing the stability to ultraviolet light or heat, and alkylene in which —CH 2 — is replaced with —CH ⁇ CH— for increasing the solubility in the liquid crystal composition. is there.
  • the configuration of —CH ⁇ CH— may be a cis form or a trans form.
  • P 1 and P 2 are independently a group selected from the groups represented by Formula (P-1) to Formula (P-6). Desirable P 1 or P 2 is a group (P-1) or a group (P-2) for increasing the reactivity or shortening the response time, and a group (P-1) for increasing the solubility in the liquid crystal composition. -5), and the groups (P-3) and (P-4) are for increasing the stability to ultraviolet light or heat.
  • Ring A and Ring B are independently 1,4-cyclohexylene, 1,4-cyclohexenylene, 1,4-phenylene, tetrahydropyran-2,5-diyl, 1,3-dioxane-2,5 -Diyl, pyrimidine-2,5-diyl, in which at least one hydrogen is halogen, alkyl having 1 to 12 carbons, or alkyl having 1 to 12 carbons in which at least one hydrogen is replaced by halogen It may be substituted, and when k is 2 or 3, any two rings A may be the same or different.
  • Preferred ring A or ring B is at least one hydrogen in order to shorten the response time, halogen, alkyl having 1 to 12 carbons, or alkyl having 1 to 12 carbons in which at least one hydrogen is replaced by halogen.
  • 1,4-phenylene which may be substituted. More preferred ring A or ring B is 1,4-phenylene.
  • Ring C and Ring E are independently 1,4-cyclohexylene, tetrahydropyran-2,5-diyl, 1,4-phenylene, 2-fluoro-1,4-phenylene, or 3-fluoro-1, When 4-phenylene and m is 2 or 3, any two rings C may be the same or different.
  • Preferred ring C or ring E is 1,4-cyclohexylene for decreasing the viscosity, and tetrahydropyran-2,5-diyl for increasing the absolute value of the dielectric anisotropy. 1,4-phenylene for raising. Tetrahydropyran-2,5-diyl is Ring D is 2,3-difluoro-1,4-phenylene, 2-chloro-3-fluoro-1,4-phenylene, 2,3-difluoro-5-methyl-1,4-phenylene, 3,4,5 -Trifluoronaphthalene-2,6-diyl or 7,8-difluorochroman-2,6-diyl.
  • Preferred ring D is 2,3-difluoro-1,4-phenylene for decreasing the viscosity, and 2-chloro-3-fluoro-1,4-phenylene for decreasing the optical anisotropy. 7,8-Difluorochroman-2,6-diyl for increasing the absolute value of the isotropic property.
  • Ring F, Ring G, and Ring I are independently 1,4-cyclohexylene, 1,4-phenylene, 2-fluoro-1,4-phenylene, or 3-fluoro-1,4-phenylene.
  • P is 2, any two rings F may be the same or different.
  • Desirable ring F, ring G or ring I is 1,4-cyclohexylene for decreasing the viscosity or increasing the maximum temperature, and 1,4-phenylene for decreasing the minimum temperature.
  • Z 1 , Z 2 , and Z 3 are independently a single bond, ethylene, methyleneoxy, or carbonyloxy, and when k is 2 or 3, any two Z 1 may be the same, Any two Z 2 may be the same or different when m is 2 or 3.
  • Preferred Z 1 is a single bond for increasing the reactivity, and ethylene for increasing the solubility in the liquid crystal composition.
  • Desirable Z 2 or Z 3 is a single bond for decreasing the viscosity, ethylene for decreasing the minimum temperature, and methyleneoxy for increasing the absolute value of the dielectric anisotropy.
  • Z 4 and Z 5 are independently a single bond, ethylene, methyleneoxy, or carbonyloxy, and when p is 2, the two Z 4 may be the same or different.
  • Desirable Z 4 or Z 5 is a single bond for decreasing the viscosity, ethylene for decreasing the minimum temperature, and carbonyloxy for increasing the maximum temperature.
  • Y 1 to Y 12 are independently hydrogen, halogen, alkyl having 1 to 12 carbons, or trifluoromethyl. Desirable Y 1 to Y 12 are hydrogen for increasing the reactivity, and halogen or trifluoromethyl for increasing the solubility in the liquid crystal composition.
  • X 1 and X 2 are independently hydrogen or methyl.
  • Preferred X 1 or X 2 is methyl for increasing the reactivity, and hydrogen for increasing the stability to ultraviolet light.
  • k is 0, 1, 2 or 3. Preferred k is 1 for increasing the reactivity. m is 1, 2 or 3. Preferred m is 1 for decreasing the viscosity, and 2 or 3 for increasing the maximum temperature. n is 0 or 1. Desirable n is 0 for decreasing the viscosity, and is 1 for decreasing the minimum temperature. p is 0, 1, or 2. Preferred p is 0 for decreasing the viscosity, and 1 or 2 for increasing the maximum temperature.
  • R 5 and R 8 are linear alkyl having 1 to 12 carbons, linear alkoxy having 1 to 12 carbons, or linear alkenyl having 2 to 12 carbons. is there.
  • R 6 is linear alkyl having 1 to 12 carbons or linear alkoxy having 1 to 12 carbons.
  • R 7 is linear alkyl having 1 to 12 carbons or linear alkenyl having 2 to 12 carbons.
  • Y 4 is hydrogen, halogen, alkyl having 1 to 12 carbons, or trifluoromethyl.
  • X 1 and X 2 are hydrogen or methyl.
  • Desirable compounds (1) are from the compound (1-1-1) to the compound (1-8-1). More desirable compounds (1) are the compound (1-1-1) to the compound (1-5-1) and the compound (1-8-1). Particularly preferred compounds (1) are the compound (1-1-1) and the compound (1-2-1). Desirable compounds (2) are from the compound (2-1-1) to the compound (2-19-1). More desirable compounds (2) are the compound (2-1-1) to the compound (2-10-1) and the compound (2-12-1) to the compound (2-15-1). Particularly preferred compounds (2) are the compound (2-1-1) to the compound (2-8-1), the compound (2-13-1), and the compound (2-15-1). Desirable compounds (3) are from the compound (3-1-1) to the compound (3-13-1). More desirable compounds (3) are the compound (3-1-1) to the compound (3-7-1) and the compound (3-9-1) to the compound (3-13-1). Particularly preferred compounds (3) are the compound (3-1-1), the compound (3-3-1), the compound (3-7-1), and the compound (3-13-1).
  • additives that may be mixed with the composition will be described.
  • Such additives are optically active compounds, antioxidants, ultraviolet absorbers, dyes, antifoaming agents, polymerization initiators, polymerization inhibitors, and the like.
  • An optically active compound is mixed with the composition for the purpose of inducing a helical structure of liquid crystal to give a twist angle. Examples of such a compound are the compound (4-1) to the compound (4-5).
  • a desirable ratio of the optically active compound is approximately 5% by weight or less.
  • a more desirable ratio is in the range of approximately 0.01% by weight to approximately 2% by weight.
  • oxidation prevention An agent is mixed into the composition.
  • a preferred example of the antioxidant is a compound (5) in which w is an integer of 1 to 9.
  • preferred w is 1, 3, 5, 7, or 9. Further preferred w is 1 or 7. Since the compound (5) in which w is 1 has high volatility, it is effective in preventing a decrease in specific resistance due to heating in the atmosphere. Since the compound (5) in which w is 7 has low volatility, it is effective for maintaining a large voltage holding ratio not only at room temperature but also at a temperature close to the upper limit temperature of the nematic phase after using the device for a long time. .
  • a desirable ratio of the antioxidant is approximately 50 ppm or more for achieving its effect, and is approximately 600 ppm or less for avoiding a decrease in the maximum temperature or avoiding an increase in the minimum temperature. A more desirable ratio is in the range of approximately 100 ppm to approximately 300 ppm.
  • the ultraviolet absorber examples include benzophenone derivatives, benzoate derivatives, triazole derivatives and the like. Also preferred are light stabilizers such as sterically hindered amines.
  • a desirable ratio in these absorbents and stabilizers is approximately 50 ppm or more for obtaining the effect thereof, and approximately 10,000 ppm or less for avoiding a decrease in the maximum temperature or avoiding an increase in the minimum temperature. A more desirable ratio is in the range of approximately 100 ppm to approximately 10,000 ppm.
  • a dichroic dye such as an azo dye or an anthraquinone dye is mixed with the composition so as to be adapted to a GH (guest host) mode element.
  • a preferred ratio of the dye is in the range of approximately 0.01% by weight to approximately 10% by weight.
  • an antifoaming agent such as dimethyl silicone oil or methylphenyl silicone oil is mixed with the composition.
  • a desirable ratio of the antifoaming agent is 1 ppm or more for obtaining the effect thereof, and is about 1000 ppm or less for preventing a poor display.
  • a more desirable ratio is in the range of approximately 1 ppm to approximately 500 ppm.
  • the liquid crystal composition of the present invention contains a polymerizable compound, it is suitable for a PSA (polymer-sustained-alignment) mode device.
  • the composition may further contain a polymerizable compound other than the compound (1).
  • Preferred examples of the polymerizable compound are compounds having a polymerizable group such as acrylate, methacrylate, vinyl compound, vinyloxy compound, propenyl ether, epoxy compound (oxirane, oxetane), vinyl ketone and the like. Particularly preferred examples are acrylate or methacrylate derivatives.
  • a desirable ratio of the polymerizable compound is about 0.03 parts by weight or more for obtaining the effect when the weight of the liquid crystal composition is 100 parts by weight, and is 10 parts by weight or less for preventing display defects. .
  • a more desirable ratio is in the range of approximately 0.1 parts by weight to approximately 2 parts by weight.
  • a desirable ratio of the compound (1) in the polymerizable compound is 10% by weight or more.
  • a more desirable ratio is 30% by weight or more.
  • the polymerizable compound is preferably polymerized by UV irradiation or the like in the presence of a suitable initiator such as a photopolymerization initiator. Appropriate conditions for polymerization, the appropriate type of initiator, and the appropriate amount are known to those skilled in the art and are described in the literature.
  • Irgacure 651 registered trademark; BASF
  • Irgacure 184 registered trademark; BASF
  • Darocur 1173 registered trademark; BASF
  • a preferred proportion of the photopolymerization initiator is in the range of about 0.1% to about 5% by weight of the polymerizable compound, and more preferably in the range of about 1% to about 3% by weight.
  • a liquid crystal composition containing a previously polymerized compound may be disposed between two substrates in the liquid crystal display element.
  • Examples of the polymerizable compound that may be further contained other than the compound (1) are the compounds (6-1) to (6-9). By adding the compound (1) among the polymerizable compounds, the solubility in the composition can be increased and the reactivity can be increased.
  • R 9 , R 10 , R 11 , and R 12 are independently acryloyl or methacryloyl, and R 13 and R 14 are independently hydrogen, halogen, or alkyl having 1 to 10 carbons.
  • Z 6 and Z 7 are simultaneously a single bond or alkylene having 1 to 12 carbons, and in the alkylene, at least one —CH 2 — may be replaced by —O—;
  • Z 8 and Z 9 Is independently a single bond or alkylene having 1 to 12 carbons, in which at least one —CH 2 — may be replaced by —O—;
  • q, r, s are independently , 0, 1, or 2.
  • Component compounds are Organic Synthesis (OrganicOrSyntheses, sJohn Wiley & Sons, Inc), Organic Reactions (OrganicOrReactions, actionJohn Wiley & Sons, Inc), Comprehensive Organic Synthesis (Comprehensive Organic Synthesis, Pergamon Press) It can be synthesized by appropriately combining known organic synthetic chemistry techniques described in a new experimental chemistry course (Maruzen).
  • compositions have a minimum temperature of about ⁇ 10 ° C. or lower, a maximum temperature of about 70 ° C. or higher, and an optical anisotropy in the range of about 0.07 to about 0.20.
  • a device containing this composition has a large voltage holding ratio.
  • This composition is suitable for an AM device.
  • This composition is particularly suitable for a transmissive AM device.
  • a composition having an optical anisotropy in the range of about 0.08 to about 0.25 may be prepared by controlling the ratio of the component compounds or by mixing other liquid crystal compounds.
  • This composition can be used as a composition having a nematic phase, or can be used as an optically active composition by adding an optically active compound.
  • This composition can be used for an AM device. Further, it can be used for PM elements.
  • This composition can be used for an AM device and a PM device having modes such as PC, TN, STN, ECB, OCB, IPS, VA, and PSA.
  • Use for an AM device having a PSA mode is particularly preferable.
  • These elements may be reflective, transmissive, or transflective. Use in a transmissive element is preferred. It can also be used for an amorphous silicon-TFT device or a polycrystalline silicon-TFT device.
  • NCAP non-curvilinear-aligned-phase
  • PD polymer-dispersed
  • the liquid crystal display element of the present invention comprises two substrates having an electrode layer on at least one substrate, and a liquid crystal containing the liquid crystal composition of the present invention or a compound obtained by polymerizing the compound of the present invention between the two substrates. It is characterized by arranging the composition.
  • the glass substrate includes two glass substrates called an array substrate and a color filter substrate, and a thin film transistor (TFT), a pixel, a colored layer, and the like are formed on each glass substrate.
  • TFT thin film transistor
  • aluminosilicate glass or aluminoborosilicate glass is used for the glass substrate.
  • As the electrode layer indium-tin oxide (Indium-Tin Oxide) or indium-zinc oxide (Indium-Zinc Oxide) is generally used.
  • the compound obtained by the synthesis was identified by proton nuclear magnetic resonance spectroscopy ( 1 H-NMR), high performance liquid chromatography (HPLC), ultraviolet / visible spectroscopy (UV / Vis) and the like.
  • the melting point of the compound was determined by differential scanning calorimetry (DSC). First, each analysis method will be described.
  • HPLC analysis Prominence (LC-20AD; SPD-20A) manufactured by Shimadzu Corporation was used as a measuring apparatus.
  • the column used was YMC-Pack ODS-A (length 150 mm, inner diameter 4.6 mm, particle diameter 5 ⁇ m) manufactured by YMC.
  • the eluent was acetonitrile / water (volume ratio: 80/20), and the flow rate was adjusted to 1 mL / min.
  • a UV detector, an RI detector, a CORONA detector, or the like was appropriately used. When a UV detector was used, the detection wavelength was 254 nm.
  • the sample was dissolved in acetonitrile to prepare a 0.1 wt% solution, and 1 ⁇ L of the obtained solution was introduced into the sample chamber.
  • a recorder a C-R7Aplus manufactured by Shimadzu Corporation was used.
  • the obtained chromatogram shows the peak retention time and peak area values corresponding to the component compounds.
  • the peak area ratio in the chromatogram obtained from HPLC corresponds to the ratio of the component compounds.
  • the weight% of the component compound of the analysis sample is not completely the same as the area% of each peak of the analysis sample.
  • the correction factor is substantially 1. Therefore, the weight% of the component compound in the analysis sample substantially corresponds to the area% of each peak in the analysis sample. This is because there is no significant difference in the correction coefficients of the component liquid crystal compounds.
  • an internal standard method based on the chromatogram is used.
  • test component Each liquid crystal compound component (test component) and a reference liquid crystal compound (reference material) weighed accurately by a certain amount are simultaneously measured by HPLC, and the peak of the obtained test component and the peak of the reference material are measured.
  • the relative intensity of the area ratio is calculated in advance.
  • the composition ratio of the liquid crystal compound in the liquid crystal composition can be accurately determined from the chromatogram.
  • UV / Vis analysis PharmaSpec UV-1700 manufactured by Shimadzu Corporation was used as a measuring apparatus. The detection wavelength was 190 nm to 700 nm. The sample was dissolved in acetonitrile to prepare a 0.01 mmol / L solution, and the sample was placed in a quartz cell (optical path length 1 cm) and measured.
  • DSC measurement Using a scanning calorimeter DSC-7 system manufactured by PerkinElmer or a Diamond DSC system, the temperature is increased and decreased at a rate of 3 ° C / min, and the start point of the endothermic peak or exothermic peak accompanying the phase change of the sample is excluded. The melting point was determined by onset.
  • Example 1 Comparative 1 of solubility in liquid crystal composition
  • 1 part by weight of the polymerizable compound (R-1) was added to 100 parts by weight of the liquid crystal composition A, and dissolution was attempted at 25 ° C., but the remaining crystals did not dissolve in the liquid crystal composition.
  • 1 part by weight of the polymerizable compound (1-1-1-1) of the present invention was added to 100 parts by weight of the liquid crystal composition A and dissolution was attempted at 25 ° C., the total amount of the compound (1-1-1-1) was dissolved. did. From this comparison, it was found that the compound of the present invention was easily dissolved in the liquid crystal composition.
  • Table 3 shows the results. In the symbols in Table 3, “ ⁇ ” indicates the result when no crystal was observed, and “X” indicates the result when crystal was observed.
  • the components of the liquid crystal composition A and the ratios thereof are as follows.
  • the composition and this compound are used as the measurement object.
  • the object to be measured was a composition
  • the measurement object was a compound
  • a sample for measurement was prepared by mixing this compound (15% by weight) with mother liquid crystals (85% by weight).
  • the ratio of the compound and the mother liquid crystal is 10% by weight: 90% by weight, 5% by weight: 95% by weight, 1% by weight: 99% by weight in this order. changed.
  • the maximum temperature, optical anisotropy, viscosity, and dielectric anisotropy values for the compound were determined.
  • the components of the mother liquid crystals and their proportions are as follows.
  • Measured characteristic values according to the following method. Many of them are the methods described in the JEITA standard (JEITA ED-2521B) established by the Japan Electronics and Information Technology Industries Association (JEITA ED-2521B) or a modified method thereof. is there.
  • NI Maximum temperature of nematic phase
  • a sample was placed on a hot plate of a melting point measuring device equipped with a polarizing microscope and heated at a rate of 1 ° C./min. The temperature was measured when a part of the sample changed from a nematic phase to an isotropic liquid.
  • the upper limit temperature of the nematic phase may be abbreviated as “upper limit temperature”.
  • T C Minimum temperature of nematic phase
  • Viscosity (bulk viscosity; ⁇ ; measured at 20 ° C .; mPa ⁇ s): An E-type viscometer was used for measurement.
  • the dielectric constants ( ⁇ and ⁇ ) were measured as follows. 1) Measurement of dielectric constant ( ⁇ ): An ethanol (20 mL) solution of octadecyltriethoxysilane (0.16 mL) was applied to a well-cleaned glass substrate. The glass substrate was rotated with a spinner and then heated at 150 ° C. for 1 hour. A sample was put in a VA element in which the distance between two glass substrates (cell gap) was 4 ⁇ m, and the element was sealed with an adhesive that was cured with ultraviolet rays.
  • Sine waves (0.5 V, 1 kHz) were applied to the device, and after 2 seconds, the dielectric constant ( ⁇ ) in the major axis direction of the liquid crystal molecules was measured.
  • 2) Measurement of dielectric constant ( ⁇ ) A polyimide solution was applied to a well-cleaned glass substrate. After baking this glass substrate, the obtained alignment film was rubbed. A sample was put in a TN device in which the distance between two glass substrates (cell gap) was 9 ⁇ m and the twist angle was 80 degrees. Sine waves (0.5 V, 1 kHz) were applied to the device, and after 2 seconds, the dielectric constant ( ⁇ ) in the minor axis direction of the liquid crystal molecules was measured.
  • Threshold voltage (Vth; measured at 25 ° C .; V): An LCD5100 luminance meter manufactured by Otsuka Electronics Co., Ltd. was used for measurement.
  • the light source is a halogen lamp.
  • a sample is placed in a normally black mode VA element in which the distance between two glass substrates (cell gap) is 4 ⁇ m and the rubbing direction is anti-parallel, and an adhesive that cures the element with ultraviolet rays is used. And sealed.
  • the voltage (60 Hz, rectangular wave) applied to this element was increased stepwise from 0V to 20V by 0.02V.
  • the device was irradiated with light from the vertical direction, and the amount of light transmitted through the device was measured.
  • a voltage-transmittance curve was created in which the transmittance was 100% when the light amount reached the maximum and the transmittance was 0% when the light amount was the minimum.
  • the threshold voltage is a voltage when the transmittance reaches 10%.
  • Voltage holding ratio (VHR-1; 25 ° C .;%):
  • the TN device used for the measurement has a polyimide alignment film, and the distance between two glass substrates (cell gap) is 5 ⁇ m. This element was sealed with an adhesive that was cured with ultraviolet rays after the sample was placed.
  • the TN device was charged by applying a pulse voltage (60 microseconds at 5 V).
  • the decaying voltage was measured for 16.7 milliseconds with a high-speed voltmeter, and the area A between the voltage curve and the horizontal axis in a unit cycle was determined.
  • the area B is an area when it is not attenuated.
  • the voltage holding ratio is a percentage of the area A with respect to the area B.
  • Voltage holding ratio (VHR-2; 80 ° C .;%):
  • the TN device used for the measurement has a polyimide alignment film, and the distance between two glass substrates (cell gap) is 5 ⁇ m. This element was sealed with an adhesive that was cured with ultraviolet rays after the sample was placed.
  • the TN device was charged by applying a pulse voltage (60 microseconds at 5 V).
  • the decaying voltage was measured for 16.7 milliseconds with a high-speed voltmeter, and the area A between the voltage curve and the horizontal axis in a unit cycle was determined.
  • the area B is an area when it is not attenuated.
  • the voltage holding ratio is a percentage of the area A with respect to the area B.
  • VHR-3 Voltage holding ratio
  • the TN device used for measurement has a polyimide alignment film, and the cell gap is 5 ⁇ m.
  • a sample was injected into this element and irradiated with light for 20 minutes.
  • the light source is an ultra high pressure mercury lamp USH-500D (manufactured by USHIO), and the distance between the element and the light source is 20 cm.
  • USH-500D ultra high pressure mercury lamp manufactured by USHIO
  • the decreasing voltage was measured for 16.7 milliseconds.
  • a composition having a large VHR-3 has a large stability to ultraviolet light.
  • VHR-3 is preferably 90% or more, and more preferably 95% or more.
  • VHR-4 Voltage holding ratio
  • the TN device into which the sample was injected was heated in a constant temperature bath at 80 ° C. for 500 hours, and then the voltage holding ratio was measured to evaluate the stability against heat. In the measurement of VHR-4, the decreasing voltage was measured for 16.7 milliseconds. A composition having a large VHR-4 has a large stability to heat.
  • the device was irradiated with ultraviolet rays of 25 mW / cm 2 (EXECURE 4000-D type manufactured by HOYA CANDEO OPTRONICS; mercury xenon lamp) for 400 seconds while applying a voltage of 15V.
  • a rectangular wave 60 Hz, 10 V, 0.5 seconds was applied to this element.
  • the device was irradiated with light from the vertical direction, and the amount of light transmitted through the device was measured.
  • the transmittance is 100% when the light amount is maximum, and the transmittance is 0% when the light amount is minimum.
  • the response time is the rise time (millisecond) required to change the transmittance from 0% to 90%.
  • GC-14B gas chromatograph manufactured by Shimadzu Corporation was used for measurement.
  • the carrier gas is helium (2 mL / min).
  • the sample vaporization chamber was set at 280 ° C, and the detector (FID) was set at 300 ° C.
  • capillary column DB-1 (length 30 m, inner diameter 0.32 mm, film thickness 0.25 ⁇ m; stationary liquid phase is dimethylpolysiloxane; nonpolar) manufactured by Agilent Technologies Inc. was used.
  • the column was held at 200 ° C. for 2 minutes and then heated to 280 ° C. at a rate of 5 ° C./min.
  • a sample was prepared in an acetone solution (0.1% by weight), and 1 ⁇ L thereof was injected into the sample vaporization chamber.
  • the recorder is a C-R5A Chromatopac manufactured by Shimadzu Corporation, or an equivalent product.
  • the obtained gas chromatogram showed the peak retention time and peak area corresponding to the component compounds.
  • capillary column As a solvent for diluting the sample, chloroform, hexane or the like may be used.
  • the following capillary column may be used.
  • HP-1 from Agilent Technologies Inc. (length 30 m, inner diameter 0.32 mm, film thickness 0.25 ⁇ m), Rtx-1 from Restek Corporation (length 30 m, inner diameter 0.32 mm, film thickness 0.25 ⁇ m), BP-1 (length 30 m, inner diameter 0.32 mm, film thickness 0.25 ⁇ m) manufactured by SGE International Pty.
  • a capillary column CBP1-M50-025 length 50 m, inner diameter 0.25 mm, film thickness 0.25 ⁇ m
  • Shimadzu Corporation may be used.
  • the ratio of the liquid crystal compound contained in the composition may be calculated by the following method. Liquid crystalline compounds can be detected by gas chromatography. The area ratio of peaks in the gas chromatogram corresponds to the ratio (number of moles) of liquid crystal compounds. When the capillary column described above is used, the correction coefficient of each liquid crystal compound may be regarded as 1. Accordingly, the ratio (% by weight) of the liquid crystal compound is calculated from the peak area ratio.
  • the compounds in Comparative Examples and Examples were represented by symbols based on the definitions in Table 4 below.
  • Table 4 the configuration regarding 1,4-cyclohexylene is trans.
  • the number in parentheses after the symbol corresponds to the compound number.
  • the symbol ( ⁇ ) means other liquid crystal compounds.
  • the ratio (percentage) of the liquid crystal compound is a weight percentage (% by weight) based on the weight of the liquid crystal composition excluding the first component, and the liquid crystal composition contains impurities in addition to this.
  • This composition is a liquid crystal composition having a negative dielectric anisotropy and not containing the first component of the present invention.
  • the components and properties of this composition are as follows. V-HB (2F, 3F) -O2 (2-1-1) 15% V-HB (2F, 3F) -O4 (2-1-1) 10% 2-HBB (2F, 3F) -O2 (2-8-1) 4% 3-HBB (2F, 3F) -O2 (2-8-1) 10% 5-HBB (2F, 3F) -O2 (2-8-1) 10% 2-HHB (2F, 3CL) -O2 (2-9-1) 2% 3-HHB (2F, 3CL) -O2 (2-9-1) 3% 4-HHB (2F, 3CL) -O2 (2-9-1) 3% 5-HHB (2F, 3CL) -O2 (2-9-1) 3% 2-HH-3 (3-1-1) 27% 3-HB-O2 (3-2-1) 2% 3-HHB-1 (3-5-1) 3% 3-HHB-3 (3-5-1) 3% 3-HHB
  • V-HB (2F, 3F) -O2 (2-1-1) 15% V-HB (2F, 3F) -O4 (2-1-1) 10% 2-HBB (2F, 3F) -O2 (2-8-1) 4% 3-HBB (2F, 3F) -O2 (2-8-1) 10% 5-HBB (2F, 3F) -O2 (2-8-1) 10% 2-HHB (2F, 3CL) -O2 (2-9-1) 2% 3-HHB (2F, 3CL) -O2 (2-9-1) 3% 4-HHB (2F, 3CL) -O2 (2-9-1) 3% 5-HHB (2F, 3CL) -O2 (2-9-1) 3% 2-HH-3 (3-1-1) 27% 3-HB-O2 (3-2-1) 2% 3-HHB-1 (3-5-1) 3% 3-HHB-3 (3-5-1) 5% 3-HHB-O1 (3-5-1) 3% 0.3 parts by weight of the compound (1-1-1-1) as the first component of the present invention was added to 100 parts by weight of
  • the alignment agent was applied to two glass substrates with ITO electrodes by a spinner to form a film. After coating, the film was dried by heating at 80 ° C. for about 10 minutes, and then heat-treated at 180 ° C. for 60 minutes to form an alignment film. A gap material was sprayed on one glass substrate, and the other substrate was sealed with an epoxy-based adhesive leaving a liquid crystal inlet, and bonded with the surface on which the alignment film was formed facing inside.
  • a heat treatment was performed at 110 ° C. for 30 minutes to prepare a liquid crystal display element.
  • This device was irradiated with 25 mW / cm 2 ultraviolet light (EXECURE 4000-D type manufactured by HOYA CANDEO OPTRONICS Co., Ltd .; mercury xenon lamp) for 400 seconds while applying a voltage of 15 V, and finally a liquid crystal display device was produced.
  • V-HB (2F, 3F) -O2 (2-1-1) 10% V-HB (2F, 3F) -O4 (2-1-1) 10% 3-H1OB (2F, 3F) -O2 (2-4-1) 6% 3-HBB (2F, 3F) -O2 (2-8-1) 10% 5-HBB (2F, 3F) -O2 (2-8-1) 8% 3-dhHB (2F, 3F) -O2 (2-14-1) 3% 3-HH1OCro (7F, 8F) -5 (2-19-1) 5% 2-HH-5 (3-1-1) 8% 3-HH-4 (3-1-1) 14% 5-HB-O2 (3-2-1) 8% 3-HHB-1 (3-5-1) 3% 3-HHB-O1 (3-5-1) 2% 5-HBB-2 (3-6-1) 4% 3-HHEBH-3 (3-10-1) 2% 3-HHEBH-5 (3-10-1) 2% 3-HBBH-5 (3-11-1) 3% 5-HBB (F) B-2 (3-13-1) 2% 0.3 parts by weight of the compound
  • MAC-V-BB-MAC (1-2-1-1)
  • ACA-BB-MAC (1-5-1-2)
  • MAC-V-BB-MAC (1-2-1-1)
  • V-HB (2F, 3F) -O2 (2-1-1) 15% V-HB (2F, 3F) -O4 (2-1-1) 7% 3-HBB (2F, 3F) -O2 (2-8-1) 3% V-HBB (2F, 3F) -O2 (2-8-1) 10% V2-HBB (2F, 3F) -O2 (2-8-1) 10% 3-HH1OCro (7F, 8F) -5 (2-19-1) 8% 2-HH-3 (3-1-1) 29% 3-HHB-1 (3-5-1) 6% 3-HHB-3 (3-5-1) 6% 3-HHB-O1 (3-5-1) 6% 0.3 parts by weight of the compound (1-1-1-1) as the first component of the present invention was added to 100 parts by weight of the above composition.
  • MAC-V-BB-MAC (1-2-1-1)
  • MAC-V-BB-MAC (1-2-1-1)
  • MAC-VO-BB-MAC (1-1-1-1) MAC-VO-BB-AC (1-1-1-2)
  • MAC-VO-BB-MAC (1-1-1-1) MAC-VO-BB-AC (1-1-1-2) MAC-B (2F) B-MAC (6-1-2)
  • MAC-VO-BB-MAC (1-1-1-1) AC-VO-BB-AC (1-1-1-4)
  • MAC-VO-BB (CF3) -MAC (1-1) AC-VO-BB-AC (1-1-1-4) MAC-VO-BB (2F)
  • B-MAC (1-8-1-2)
  • MAC-VO-BB-MAC (1-1-1-1) AC-VO-BB-MAC (1-1-1-3) MAC-VO-B (2F) BB-MAC (1-8-1-3)
  • Example M1 to Example M30 have a shorter response time than that of Comparative Example M1. Therefore, the liquid crystal composition according to the present invention has more excellent characteristics than the liquid crystal composition shown in Comparative Example M1.

Abstract

Provided is a highly reactive polymerizable compound having high solubility in a liquid crystal composition. Provided is a liquid crystal composition satisfying at least one property among a high maximum temperature of the nematic phase, low minimum temperature of the nematic phase, low viscosity, appropriate optical anisotropy, high negative dielectric anisotropy, high specific resistance, high ultraviolet stability, high heat stability, and other such properties; and having an appropriate balance as relates to two or more properties. Provided is a PSA element having a short response time, large pretilt angle, low residual monomer concentration, high voltage maintenance rate, high contrast ratio, long life, and the like. A polymerizable compound having one linking group or reactive groups that are not the same introduced to obtain stable display by the construction of a polymeric structure having a high degree of polymerization in a step for manufacturing a PSA element, a liquid crystal composition containing the same, and a liquid crystal display element containing this composition. 

Description

液晶組成物および液晶表示素子Liquid crystal composition and liquid crystal display element
 本発明は、例えば光または熱により重合する重合性化合物を含有する液晶組成物に関する。また、その液晶組成物を基板間に封入し、液晶層に印加する電圧を調整しながら液晶組成物に含有されている重合性化合物を重合して液晶の配向を固定化する液晶表示素子に関する。
 本発明の技術分野は、主としてAM(active matrix)素子などに適する液晶組成物、およびこの組成物を含有するAM素子などに関する。特に、誘電率異方性が負の液晶組成物に関し、この組成物を含有するIPS(in-plane switching)モード、FFS(fringe field switching)、VA(vertical alignment)モード、またはPSA(polymer sustained alignment)モードの素子などに関する。VAモードには、MVA(multi-domain vertical alignment)モード、PVA(patterned vertical alignment)モードなどが含まれる。
The present invention relates to a liquid crystal composition containing a polymerizable compound that is polymerized by, for example, light or heat. Further, the present invention relates to a liquid crystal display element in which the liquid crystal composition is sealed between substrates and a polymerizable compound contained in the liquid crystal composition is polymerized while adjusting a voltage applied to the liquid crystal layer to fix the alignment of the liquid crystal.
The technical field of the present invention mainly relates to a liquid crystal composition suitable for an AM (active matrix) device and the like, and an AM device containing the composition. In particular, regarding a liquid crystal composition having a negative dielectric anisotropy, an IPS (in-plane switching) mode, an FFS (fringe field switching) mode, a VA (vertical alignment) mode, or a PSA (polymer sustained alignment) containing the composition. ) Mode elements. The VA mode includes an MVA (multi-domain vertical alignment) mode, a PVA (patterned vertical alignment) mode, and the like.
 液晶表示素子において、液晶の動作モードに基づいた分類は、PC(phase change)、TN(twisted nematic)、STN(super twisted nematic)、ECB(electrically controlled birefringence)、OCB(optically compensated bend)、IPS(in-plane switching)、FFS(fringe field switching)、VA(vertical alignment)、PSA(polymer sustained alignment)モードなどである。素子の駆動方式に基づいた分類は、PM(passive matrix)とAM(active matrix)である。PMはスタティック(static)とマルチプレックス(multiplex)などに分類され、AMはTFT(thin film transistor)、MIM(metal insulator metal)などに分類される。TFTの分類は非晶質シリコン(amorphous silicon)および多結晶シリコン(polycrystal silicon)である。後者は製造工程によって高温型と低温型とに分類される。光源に基づいた分類は、自然光を利用する反射型、バックライトを利用する透過型、そして自然光とバックライトの両方を利用する半透過型である。 In the liquid crystal display element, the classification based on the operation mode of the liquid crystal includes PC (phase change), TN (twisted nematic), STN (super twisted nematic), ECB (electrically controlled birefringence), OCB (optically compensated bend), IPS ( in-plane switching, FFS (fringe field switching), VA (vertical alignment), PSA (polymer sustained alignment) mode, and the like. The classification based on the element drive system is PM (passive matrix) and AM (active matrix). PM is classified into static and multiplex, and AM is classified into TFT (thin film insulator), MIM (metal insulator metal), and the like. TFTs are classified into amorphous silicon and polycrystalline silicon. The latter is classified into a high temperature type and a low temperature type according to the manufacturing process. The classification based on the light source includes a reflection type using natural light, a transmission type using backlight, and a semi-transmission type using both natural light and backlight.
 これらの素子は適切な特性を有する液晶組成物を含有する。この液晶組成物はネマチック相を有する。良好な一般的特性を有するAM素子を得るには組成物の一般的特性を向上させる。2つの一般的特性における関連を下記の表1にまとめる。組成物の一般的特性を市販されているAM素子に基づいてさらに説明する。ネマチック相の温度範囲は、素子の使用できる温度範囲に関連する。ネマチック相の好ましい上限温度は約70℃以上であり、そしてネマチック相の好ましい下限温度は約-10℃以下である。組成物の粘度は素子の応答時間に関連する。素子で動画を表示するためには短い応答時間が好ましい。したがって、組成物における小さな粘度が好ましい。低い温度における小さな粘度はより好ましい。 These elements contain a liquid crystal composition having appropriate characteristics. This liquid crystal composition has a nematic phase. In order to obtain an AM device having good general characteristics, the general characteristics of the composition are improved. The relationships in the two general characteristics are summarized in Table 1 below. The general characteristics of the composition will be further described based on a commercially available AM device. The temperature range of the nematic phase is related to the temperature range in which the device can be used. A preferred upper limit temperature of the nematic phase is about 70 ° C. or more, and a preferred lower limit temperature of the nematic phase is about −10 ° C. or less. The viscosity of the composition is related to the response time of the device. A short response time is preferred for displaying moving images on the device. Therefore, a small viscosity in the composition is preferred. Small viscosities at low temperatures are more preferred.
Figure JPOXMLDOC01-appb-I000008
Figure JPOXMLDOC01-appb-I000008
 組成物の光学異方性は、素子のコントラスト比に関連する。組成物の光学異方性(Δn)と素子のセルギャップ(d)との積(Δn×d)は、コントラスト比を最大にするように設計される。適切な積の値は動作モードの種類に依存する。VAモードまたはPSAモードの素子では約0.30μmから約0.40μmの範囲、IPSモードの素子では約0.20μmから約0.30μmの範囲である。この場合、小さなセルギャップの素子には大きな光学異方性を有する組成物が好ましい。組成物における絶対値の大きな誘電率異方性は素子における低いしきい値電圧、小さな消費電力と大きなコントラスト比に寄与する。したがって、絶対値の大きな誘電率異方性が好ましい。組成物における大きな比抵抗は、大きな電圧保持率に寄与し、素子における大きなコントラスト比に寄与する。したがって、初期段階において室温だけでなく高い温度でも大きな比抵抗を有する組成物が好ましい。長時間使用したあと、室温だけでなく高い温度でも大きな比抵抗を有する組成物が好ましい。紫外線および熱に対する組成物の安定性は、液晶表示素子の寿命に関連する。これらの安定性が高いとき、この素子の寿命は長い。このような特性は、液晶プロジェクター、液晶テレビなどに用いるAM素子に好ましい。 The optical anisotropy of the composition is related to the contrast ratio of the device. The product (Δn × d) of the optical anisotropy (Δn) of the composition and the cell gap (d) of the device is designed to maximize the contrast ratio. The appropriate product value depends on the type of operation mode. The range is about 0.30 μm to about 0.40 μm for the VA mode or PSA mode device, and the range is about 0.20 μm to about 0.30 μm for the IPS mode device. In this case, a composition having a large optical anisotropy is preferable for a device having a small cell gap. The dielectric anisotropy having a large absolute value in the composition contributes to a low threshold voltage, a small power consumption and a large contrast ratio in the device. Therefore, a dielectric anisotropy having a large absolute value is preferable. A large specific resistance in the composition contributes to a large voltage holding ratio and a large contrast ratio in the device. Therefore, a composition having a large specific resistance not only at room temperature but also at a high temperature in the initial stage is preferable. A composition having a large specific resistance not only at room temperature but also at a high temperature after being used for a long time is preferable. The stability of the composition against ultraviolet rays and heat is related to the lifetime of the liquid crystal display device. When their stability is high, the lifetime of the device is long. Such characteristics are preferable for an AM device used in a liquid crystal projector, a liquid crystal television, and the like.
 TNモードを有するAM素子においては正の誘電率異方性を有する組成物が用いられる。一方、VAモードを有するAM素子においては負の誘電率異方性を有する組成物が用いられる。IPSモードおよびFFSモードを有するAM素子においては正または負の誘電率異方性を有する組成物が用いられる。PSAモードを有するAM素子においては正または負の誘電率異方性を有する組成物が用いられる。負の誘電率異方性を有する液晶組成物の例は次の特許文献1から特許文献6などに開示されている。 A composition having a positive dielectric anisotropy is used for an AM device having a TN mode. On the other hand, a composition having negative dielectric anisotropy is used for an AM device having a VA mode. In an AM device having an IPS mode and an FFS mode, a composition having a positive or negative dielectric anisotropy is used. In an AM device having a PSA mode, a composition having a positive or negative dielectric anisotropy is used. Examples of liquid crystal compositions having negative dielectric anisotropy are disclosed in the following Patent Document 1 to Patent Document 6, and the like.
特開2003-307720号公報JP 2003-307720 A 特開2004-131704号公報JP 2004-131704 A 特開2006-133619号公報JP 2006-133619 A 欧州特許出願公開1889894号明細書European Patent Application Publication No. 1898894 特表2010-537010号公報Special table 2010-537010 特表2010-537256号公報Special table 2010-537256
 望ましいAM素子は、使用できる温度範囲が広い、応答時間が短い、コントラスト比が大きい、しきい値電圧が低い、電圧保持率が大きい、寿命が長い、などの特性を有する。1ミリ秒でもより短い応答時間が望ましい。したがって、組成物の望ましい特性は、ネマチック相の高い上限温度、ネマチック相の低い下限温度、小さな粘度、適切な光学異方性、正または負に大きな誘電率異方性、大きな比抵抗、紫外線に対する高い安定性、熱に対する高い安定性などである。
 PSAモードのディスプレイでは、少量(例えば、約0.3重量%から約1重量%)の重合性化合物(RM)が液晶組成物に添加され、液晶表示セルに導入後、電極間に電圧を印加した状態で通常UV照射下に重合性化合物のみを重合させ、素子内で高分子構造を形成する。RMとしては重合性のメソゲン性または液晶性化合物が液晶組成物添加モノマーとして特に適していることが知られている。
Desirable AM elements have characteristics such as a wide usable temperature range, a short response time, a large contrast ratio, a low threshold voltage, a large voltage holding ratio, and a long lifetime. A shorter response time is desirable even at 1 millisecond. Therefore, desirable properties of the composition include a high maximum temperature of the nematic phase, a low minimum temperature of the nematic phase, a small viscosity, a suitable optical anisotropy, a large positive or negative dielectric anisotropy, a large specific resistance, and a high resistance to ultraviolet light. High stability, high heat stability, etc.
In the PSA mode display, a small amount (for example, about 0.3 wt% to about 1 wt%) of a polymerizable compound (RM) is added to the liquid crystal composition, and after being introduced into the liquid crystal display cell, a voltage is applied between the electrodes. In this state, only the polymerizable compound is polymerized under normal UV irradiation to form a polymer structure in the device. As RM, it is known that a polymerizable mesogenic or liquid crystal compound is particularly suitable as a liquid crystal composition additive monomer.
 上述の重合性のメソゲン性または液晶性化合物は一般に、液晶分子を配向させる能力が高い。その反面、液晶組成物への溶解性が悪く、多くの量を添加することができない。環構造間にアルキレンやエステルなどのフレキシブルな連結基を導入することで、液晶組成物への溶解性は良くなるが、分子の剛直性が弱くなり液晶分子を配向させる能力が低くなり、また液晶配向の傾きであるプレチルト角が小さくなる。また、フレキシブルな2個の連結基を導入した重合性化合物は、焼付き率が大きいなどとして、PSAモードのディスプレイには余り適していない。 The above-described polymerizable mesogenic or liquid crystalline compounds generally have a high ability to align liquid crystal molecules. On the other hand, the solubility in the liquid crystal composition is poor, and a large amount cannot be added. By introducing a flexible linking group such as alkylene or ester between the ring structures, the solubility in the liquid crystal composition is improved, but the rigidity of the molecule is weakened and the ability to align the liquid crystal molecules is lowered. The pretilt angle, which is the tilt of the orientation, becomes small. In addition, a polymerizable compound into which two flexible linking groups are introduced is not very suitable for a PSA mode display because it has a high image sticking rate.
 本発明の1つの目的は、ネマチック相の高い上限温度、ネマチック相の低い下限温度、小さな粘度、適切な光学異方性、負に大きな誘電率異方性、大きな比抵抗、紫外線に対する高い安定性、熱に対する高い安定性などの特性において、少なくとも1つの特性を充足する液晶組成物である。他の目的は、少なくとも2つの特性に関して適切なバランスを有する液晶組成物である。別の目的は、このような組成物を含有する液晶表示素子である。別の目的は、小さな光学異方性、または大きな光学異方性である適切な光学異方性、負に大きな誘電率異方性、紫外線に対する高い安定性などを有する組成物であり、そして液晶層中に高分子構造を構築することによって短い応答時間、大きなプレチルト角、小さな焼付き率、小さな残留モノマー濃度、大きな電圧保持率、大きなコントラスト比、長い寿命などを有するAM素子である。 One object of the present invention is to provide a high maximum temperature of the nematic phase, a low minimum temperature of the nematic phase, a small viscosity, a suitable optical anisotropy, a large negative dielectric anisotropy, a large specific resistance, and a high stability to ultraviolet light. The liquid crystal composition satisfies at least one characteristic in characteristics such as high stability to heat. Another object is a liquid crystal composition having an appropriate balance regarding at least two properties. Another object is a liquid crystal display device containing such a composition. Another object is a composition having a small optical anisotropy, or a suitable optical anisotropy that is a large optical anisotropy, a negative large dielectric anisotropy, a high stability to ultraviolet light, and the like, and An AM device having a short response time, a large pretilt angle, a small image sticking rate, a small residual monomer concentration, a large voltage holding ratio, a large contrast ratio, a long lifetime, and the like by building a polymer structure in the layer.
 第一成分として式(1)で表される化合物の群から選択された少なくとも1つの化合物、および第二成分として式(2)で表される化合物の群から選択された少なくとも1つの化合物を含有する液晶組成物、およびこの組成物を含有する液晶表示素子である。
Figure JPOXMLDOC01-appb-I000009

ここで、PおよびPは独立して、式(P-1)から式(P-6)で表わされる基から選択された基であり;
Figure JPOXMLDOC01-appb-I000010

およびRは独立して、炭素数1から12のアルキル、炭素数1から12のアルコキシ、または炭素数2から12のアルケニルであり;環Aおよび環Bは独立して、1,4-シクロへキシレン、1,4-シクロヘキセニレン、1,4-フェニレン、テトラヒドロピラン-2,5-ジイル、1,3-ジオキサン-2,5-ジイル、またはピリミジン-2,5-ジイルであり、これらにおいて、少なくとも1つの水素は、ハロゲン、炭素数1から12のアルキル、または少なくとも1つの水素がハロゲンで置き換えられた炭素数1から12のアルキルで置き換えられてもよく;環Cおよび環Eは独立して、1,4-シクロへキシレン、テトラヒドロピラン-2,5-ジイル、1,4-フェニレン、2-フルオロ-1,4-フェニレン、または3-フルオロ-1,4-フェニレンであり;環Dは、2,3-ジフルオロ-1,4-フェニレン、2-クロロ-3-フルオロ-1,4-フェニレン、2,3-ジフルオロ-5-メチル-1,4-フェニレン、3,4,5-トリフルオロナフタレン-2,6-ジイル、または7,8-ジフルオロクロマン-2,6-ジイルであり;Spは炭素数1から6のアルキレンであり、アルキレンにおいて、少なくとも1つの-CH-は、-O-、-OCO-、-COO-、または-CH=CH-により置き換えられていてもよく;Z、Z、およびZは独立して、単結合、エチレン、メチレンオキシ、またはカルボニルオキシであり;kは、0、1、2または3であり;mは、1、2、または3であり;nは0または1であり、そして、mとnとの和が3以下である。
Contains at least one compound selected from the group of compounds represented by formula (1) as the first component and at least one compound selected from the group of compounds represented by formula (2) as the second component And a liquid crystal display device containing the composition.
Figure JPOXMLDOC01-appb-I000009

Wherein P 1 and P 2 are independently a group selected from the groups represented by formulas (P-1) to (P-6);
Figure JPOXMLDOC01-appb-I000010

R 1 and R 2 are independently alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, or alkenyl having 2 to 12 carbons; ring A and ring B are independently 1,4 -Cyclohexylene, 1,4-cyclohexenylene, 1,4-phenylene, tetrahydropyran-2,5-diyl, 1,3-dioxane-2,5-diyl, or pyrimidine-2,5-diyl In these, at least one hydrogen may be replaced by halogen, alkyl having 1 to 12 carbons, or alkyl having 1 to 12 carbons in which at least one hydrogen is replaced by halogen; ring C and ring E Are independently 1,4-cyclohexylene, tetrahydropyran-2,5-diyl, 1,4-phenylene, 2-fluoro-1,4-phenylene, and 3-fluoro-1,4-phenylene; ring D is 2,3-difluoro-1,4-phenylene, 2-chloro-3-fluoro-1,4-phenylene, 2,3-difluoro-5- Methyl-1,4-phenylene, 3,4,5-trifluoronaphthalene-2,6-diyl, or 7,8-difluorochroman-2,6-diyl; Sp is alkylene having 1 to 6 carbon atoms; Yes, in alkylene, at least one —CH 2 — may be replaced by —O—, —OCO—, —COO—, or —CH═CH—; Z 1 , Z 2 , and Z 3 are Independently a single bond, ethylene, methyleneoxy, or carbonyloxy; k is 0, 1, 2, or 3; m is 1, 2, or 3; n is 0 or 1 And m The sum of the n is 3 or less.
 本発明者らはPSA技術を応用した液晶表示素子用の重合性化合物の骨格構造に着目し、アルキレンや、アルキレンにおいて-CH-を-O-、または-CH=CH-により置換したものなどの連結基を一方の骨格構造に導入すること、同じでない反応基を導入すること、または環構造に置換基を導入することにより、液晶組成物への溶解性やプレチルト角を向上させ、効率的にPSA効果を発現して、液晶分子を配向させる能力が高くせしめることを見出した。 The present inventors paid attention to the skeleton structure of a polymerizable compound for a liquid crystal display device to which PSA technology is applied, and substituted alkylene with —CH 2 — with —O— or —CH═CH—. By introducing a linking group in one skeleton structure, introducing a reactive group that is not the same, or introducing a substituent into the ring structure, the solubility in the liquid crystal composition and the pretilt angle are improved and efficient. It was found that the ability to orient the liquid crystal molecules by increasing the PSA effect.
 また本発明は、特にPSA技術を適用したVA型液晶表示素子の性能改善に著しく効果がある。PSA技術を用いたVA型素子は、透明電極と液晶分子を配向させる配向制御膜を備えた二枚の基板を有し、これらの基板の間に重合性化合物を含む液晶組成物を配置し、これらの基板の相対する透明電極の間に電圧を印加しながら重合性化合物を重合する工程を経て製造される液晶表示装置である。 The present invention is particularly effective for improving the performance of a VA liquid crystal display element to which the PSA technology is applied. A VA type device using PSA technology has two substrates provided with a transparent electrode and an alignment control film for aligning liquid crystal molecules, and a liquid crystal composition containing a polymerizable compound is disposed between these substrates, It is a liquid crystal display device manufactured through a process of polymerizing a polymerizable compound while applying a voltage between opposing transparent electrodes of these substrates.
 本発明によって、電圧印加時の配向状態を高分子成分に記憶させた液晶材料を基板間に配置でき、封入した液晶分子の倒れる方向を記憶させて応答時間を短縮し、焼き付きの程度を改善することができる。
 特に本発明の重合性化合物を用いることによってセル製造工程に幅広く対応することが可能となり、高品位な液晶表示素子を製造することが可能となった。
According to the present invention, a liquid crystal material in which an alignment state at the time of applying a voltage is stored in a polymer component can be disposed between substrates, the direction in which the encapsulated liquid crystal molecules are tilted is stored, the response time is shortened, and the degree of image sticking is improved. be able to.
In particular, by using the polymerizable compound of the present invention, it has become possible to deal with a wide range of cell manufacturing processes and to manufacture a high-quality liquid crystal display element.
 本発明の長所は、重合性メソゲン性または液晶性化合物の重合体について、紫外線または熱に対する高い安定性である。本発明の他の長所は、ネマチック相の高い上限温度、ネマチック相の低い下限温度、小さな粘度、適切な光学異方性、負に大きな誘電率異方性、大きな比抵抗、紫外線に対する高い安定性、熱に対する高い安定性などの特性において、少なくとも1つの特性を充足する液晶組成物である。本発明の1つの側面は、少なくとも2つの特性に関して適切なバランスを有する液晶組成物である。別の側面は、このような組成物を含有する液晶表示素子である。他の側面は、紫外線または熱に対する安定性の高い重合性化合物であり、適切な光学異方性、負に大きな誘電率異方性、紫外線に対する高い安定性などを有する組成物であり、そして短い応答時間、適切なプレチルト、小さな焼付き率、大きな電圧保持率、大きなコントラスト比、長い寿命などを有するAM素子である。 The advantage of the present invention is high stability against ultraviolet rays or heat for a polymer of a polymerizable mesogenic or liquid crystalline compound. Other advantages of the present invention are a high maximum temperature of the nematic phase, a low minimum temperature of the nematic phase, a small viscosity, a suitable optical anisotropy, a large negative dielectric anisotropy, a large specific resistance, and a high stability to ultraviolet rays. The liquid crystal composition satisfies at least one characteristic in characteristics such as high stability to heat. One aspect of the present invention is a liquid crystal composition having an appropriate balance regarding at least two properties. Another aspect is a liquid crystal display device containing such a composition. Another aspect is a polymerizable compound having high stability to ultraviolet light or heat, a composition having appropriate optical anisotropy, negatively large dielectric anisotropy, high stability to ultraviolet light, and the like, and short The AM device has a response time, a suitable pretilt, a small image sticking rate, a large voltage holding ratio, a large contrast ratio, a long lifetime, and the like.
 この明細書における用語の使い方は次のとおりである。本発明の液晶組成物または本発明の液晶表示素子をそれぞれ「組成物」または「素子」と略すことがある。液晶表示素子は液晶表示パネルおよび液晶表示モジュールの総称である。「液晶性化合物」は、ネマチック相、スメクチック相などの液晶相を有する化合物または液晶相を有さないが組成物の成分として有用な化合物を意味する。この有用な化合物は例えば1,4-シクロヘキシレンや1,4-フェニレンのような六員環を有し、その分子構造は棒状(rod like)である。光学活性な化合物および重合可能な化合物は組成物に添加されることがある。これらの化合物が液晶性化合物であったとしても、ここでは添加物として分類される。式(1)で表される化合物の群から選択された少なくとも1つの化合物を「化合物(1)」と略すことがある。「化合物(1)」は、式(1)で表される1つの化合物または2つ以上の化合物を意味する。他の式で表される化合物についても同様である。式(P-1)で表される基の群から選択された少なくとも1つの基を「基(P-1)」と略すことがある。他の式で表される基についても同様である。「置き換えられた」の「少なくとも1つの」は、位置だけでなく個数についても、任意に選択できることを示す。 用語 Terms used in this specification are as follows. The liquid crystal composition of the present invention or the liquid crystal display device of the present invention may be abbreviated as “composition” or “device”, respectively. A liquid crystal display element is a general term for a liquid crystal display panel and a liquid crystal display module. “Liquid crystal compound” means a compound having a liquid crystal phase such as a nematic phase or a smectic phase, or a compound having no liquid crystal phase but useful as a component of a composition. This useful compound has a six-membered ring such as 1,4-cyclohexylene and 1,4-phenylene, and its molecular structure is rod-like. Optically active compounds and polymerizable compounds may be added to the composition. Even if these compounds are liquid crystal compounds, they are classified as additives here. At least one compound selected from the group of compounds represented by formula (1) may be abbreviated as “compound (1)”. “Compound (1)” means one compound or two or more compounds represented by formula (1). The same applies to compounds represented by other formulas. At least one group selected from the group of groups represented by formula (P-1) may be abbreviated as “group (P-1)”. The same applies to groups represented by other formulas. “At least one” of “replaced” indicates that not only the position but also the number can be arbitrarily selected.
 ネマチック相の上限温度を「上限温度」と略すことがある。ネマチック相の下限温度を「下限温度」と略すことがある。「比抵抗が大きい」は、組成物が初期段階において室温だけでなくネマチック相の上限温度に近い温度でも大きな比抵抗を有し、そして長時間使用したあと室温だけでなくネマチック相の上限温度に近い温度でも大きな比抵抗を有することを意味する。「電圧保持率が大きい」は、素子が初期段階において室温だけでなくネマチック相の上限温度に近い温度でも大きな電圧保持率を有し、そして長時間使用したあと室温だけでなくネマチック相の上限温度に近い温度でも大きな電圧保持率を有することを意味する。光学異方性などの特性を説明するときは、実施例に記載した測定方法で得られた値を用いる。第一成分は、1つの化合物または2つ以上の化合物である。「第一成分の割合」は、第一成分および第一成分以外の重合可能な化合物を除く液晶組成物の重量を100としたときの第一成分の重量比率(重量部)で表す。「第二成分の割合」は、第一成分および第一成分以外の重合可能な化合物を除く液晶組成物の重量に基づいた第二成分の重量百分率(重量%)で表す。「第三成分の割合」は「第二成分の割合」と同様である。組成物に混合される添加物の割合は、液晶組成物の全重量に基づいた重量百分率(重量%)または重量百万分率(ppm)で表し、「第一成分以外の重合可能な化合物の割合」は、第一成分および第一成分以外の重合可能な化合物を除く液晶組成物の重量を100としたときの第一成分以外の重合可能な化合物の重量比率(重量部)で表す。 The upper limit temperature of the nematic phase may be abbreviated as “upper limit temperature”. The lower limit temperature of the nematic phase may be abbreviated as “lower limit temperature”. "High specific resistance" means that the composition has a large specific resistance not only at room temperature in the initial stage but also at a temperature close to the upper limit temperature of the nematic phase. It means having a large specific resistance even at a close temperature. "High voltage holding ratio" means that the device has a large voltage holding ratio not only at room temperature in the initial stage but also at a temperature close to the upper limit temperature of the nematic phase. It means having a large voltage holding ratio even at a temperature close to. When describing characteristics such as optical anisotropy, values obtained by the measurement methods described in the examples are used. The first component is one compound or two or more compounds. The “ratio of the first component” is expressed as a weight ratio (parts by weight) of the first component when the weight of the liquid crystal composition excluding the first component and the polymerizable compound other than the first component is 100. The “ratio of the second component” is expressed as a weight percentage (% by weight) of the second component based on the weight of the liquid crystal composition excluding the first component and a polymerizable compound other than the first component. The “ratio of the third component” is the same as the “ratio of the second component”. The ratio of the additive mixed with the composition is expressed by weight percentage (% by weight) or weight parts per million (ppm) based on the total weight of the liquid crystal composition. The “ratio” is represented by the weight ratio (parts by weight) of the polymerizable compound other than the first component when the weight of the liquid crystal composition excluding the first component and the polymerizable compound other than the first component is 100.
 成分化合物の化学式において、Rの記号を複数の化合物に用いた。これらのうちの任意の2つの化合物において、Rで選択されるものは、同じであっても、異なってもよい。例えば、化合物(2)のRがエチルであり、化合物(2-1)のRがエチルであるケースがある。化合物(2)のRがエチルであり、化合物(2-1)のRがプロピルであるケースもある。このルールは、R、X、Yなどにも適用される。 In the chemical formulas of the component compounds, the symbol R 1 is used for a plurality of compounds. In any two of these compounds, those selected by R 1 may be the same or different. For example, R 1 of the compound (2) is ethyl, there are cases wherein R 1 is ethyl of the compound (2-1). In some cases, R 1 of compound (2) is ethyl and R 1 of compound (2-1) is propyl. This rule also applies to R 2 , X 1 , Y 1 and the like.
 本発明は、下記の項などである。
1. 第一成分として式(1)で表される化合物の群から選択された少なくとも1つの化合物、および第二成分として式(2)で表される化合物の群から選択された少なくとも1つの化合物を含有する液晶組成物。
Figure JPOXMLDOC01-appb-I000011

ここで、PおよびPは独立して、式(P-1)から式(P-6)で表わされる基から選択された基であり;

Figure JPOXMLDOC01-appb-I000012

およびRは独立して、炭素数1から12のアルキル、炭素数1から12のアルコキシ、または炭素数2から12のアルケニルであり;環Aおよび環Bは独立して、1,4-シクロへキシレン、1,4-シクロヘキセニレン、1,4-フェニレン、テトラヒドロピラン-2,5-ジイル、1,3-ジオキサン-2,5-ジイル、またはピリミジン-2,5-ジイルであり、これらにおいて、少なくとも1つの水素は、ハロゲン、炭素数1から12のアルキル、または少なくとも1つの水素がハロゲンで置き換えられた炭素数1から12のアルキルで置き換えられてもよく;環Cおよび環Eは独立して、1,4-シクロへキシレン、テトラヒドロピラン-2,5-ジイル、1,4-フェニレン、2-フルオロ-1,4-フェニレン、または3-フルオロ-1,4-フェニレンであり;環Dは、2,3-ジフルオロ-1,4-フェニレン、2-クロロ-3-フルオロ-1,4-フェニレン、2,3-ジフルオロ-5-メチル-1,4-フェニレン、3,4,5-トリフルオロナフタレン-2,6-ジイル、または7,8-ジフルオロクロマン-2,6-ジイルであり;Spは炭素数1から6のアルキレンであり、アルキレンにおいて、少なくとも1つの-CH-は、-O-、-OCO-、-COO-、または-CH=CH-により置き換えられていてもよく;Z、Z、およびZは独立して、単結合、エチレン、メチレンオキシ、またはカルボニルオキシであり;kは、0、1、2または3であり;mは、1、2、または3であり;nは0または1であり、そして、mとnとの和が3以下である。
The present invention includes the following items.
1. Contains at least one compound selected from the group of compounds represented by formula (1) as the first component and at least one compound selected from the group of compounds represented by formula (2) as the second component Liquid crystal composition.
Figure JPOXMLDOC01-appb-I000011

Wherein P 1 and P 2 are independently a group selected from the groups represented by formulas (P-1) to (P-6);

Figure JPOXMLDOC01-appb-I000012

R 1 and R 2 are independently alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, or alkenyl having 2 to 12 carbons; ring A and ring B are independently 1,4 -Cyclohexylene, 1,4-cyclohexenylene, 1,4-phenylene, tetrahydropyran-2,5-diyl, 1,3-dioxane-2,5-diyl, or pyrimidine-2,5-diyl In these, at least one hydrogen may be replaced by halogen, alkyl having 1 to 12 carbons, or alkyl having 1 to 12 carbons in which at least one hydrogen is replaced by halogen; ring C and ring E Are independently 1,4-cyclohexylene, tetrahydropyran-2,5-diyl, 1,4-phenylene, 2-fluoro-1,4-phenylene, and 3-fluoro-1,4-phenylene; ring D is 2,3-difluoro-1,4-phenylene, 2-chloro-3-fluoro-1,4-phenylene, 2,3-difluoro-5- Methyl-1,4-phenylene, 3,4,5-trifluoronaphthalene-2,6-diyl, or 7,8-difluorochroman-2,6-diyl; Sp is alkylene having 1 to 6 carbon atoms; Yes, in alkylene, at least one —CH 2 — may be replaced by —O—, —OCO—, —COO—, or —CH═CH—; Z 1 , Z 2 , and Z 3 are Independently a single bond, ethylene, methyleneoxy, or carbonyloxy; k is 0, 1, 2, or 3; m is 1, 2, or 3; n is 0 or 1 And m The sum of the n is 3 or less.
2. 第一成分が式(1-1)から式(1-8)で表される化合物の群から選択された少なくとも1つの化合物である項1に記載の液晶組成物。
Figure JPOXMLDOC01-appb-I000013

ここで、YからY12は独立して、水素、ハロゲン、炭素数1から12のアルキル、またはトリフルオロメチルであり;XおよびXは独立して、水素またはメチルである。
2. Item 2. The liquid crystal composition according to item 1, wherein the first component is at least one compound selected from the group of compounds represented by formula (1-1) to formula (1-8).
Figure JPOXMLDOC01-appb-I000013

Here, Y 1 to Y 12 are independently hydrogen, halogen, alkyl having 1 to 12 carbons, or trifluoromethyl; X 1 and X 2 are independently hydrogen or methyl.
3. 第一成分が項2記載の式(1-1)から式(1-8)で表される化合物の群から選択された少なくとも1つの化合物であり、YからY12が水素である項1に記載の液晶組成物。 3. Item 1. The first component is at least one compound selected from the group of compounds represented by formula (1-1) to formula (1-8) according to item 2, and Y 1 to Y 12 are hydrogen The liquid crystal composition described in 1.
4. 第一成分が項2記載の式(1-1)から式(1-8)で表される化合物の群から選択された少なくとも1つの化合物であり、式(1-1)から式(1-7)においてYからYのうちの少なくとも1つがフッ素またはトリフルオロメチルであり、式(1-8)においてYからY12のうちの少なくとも1つがフッ素またはトリフルオロメチルである項1に記載の液晶組成物。 4). The first component is at least one compound selected from the group of compounds represented by formula (1-1) to formula (1-8) according to item 2, wherein formula (1-1) to formula (1- In item 1 wherein at least one of Y 1 to Y 8 is fluorine or trifluoromethyl in 7) and at least one of Y 1 to Y 12 is fluorine or trifluoromethyl in formula (1-8) The liquid crystal composition described.
5. 第一成分が項2記載の式(1-1)で表される化合物の群から選択された少なくとも1つの化合物である項1から4のいずれか1項に記載の液晶組成物。 5. Item 5. The liquid crystal composition according to any one of items 1 to 4, wherein the first component is at least one compound selected from the group of compounds represented by formula (1-1) according to item 2.
6. 第一成分が項2記載の式(1-2)で表される化合物の群から選択された少なくとも1つの化合物である項1から4のいずれか1項に記載の液晶組成物。 6). Item 5. The liquid crystal composition according to any one of items 1 to 4, wherein the first component is at least one compound selected from the group of compounds represented by formula (1-2) according to item 2.
7. 第一成分が項1記載の式(1)で表される化合物の群から選択された少なくとも2つ以上の化合物からなる項1から6のいずれか1項に記載の液晶組成物。 7). Item 7. The liquid crystal composition according to any one of items 1 to 6, wherein the first component comprises at least two compounds selected from the group of compounds represented by formula (1) according to item 1.
8. 第一成分が項1記載の式(1)で表される化合物の群から選択された少なくとも1つの化合物であり、さらに項1記載の式(1)以外の重合性化合物を含有する項1から7のいずれか1項に記載の液晶組成物。 8). The first component is at least one compound selected from the group of compounds represented by formula (1) according to item 1, and further contains a polymerizable compound other than the formula (1) according to item 1 8. The liquid crystal composition according to any one of 7 above.
9. 第二成分が式(2-1)から式(2-19)で表される化合物の群から選択された少なくとも1つの化合物である項1から8に記載の液晶組成物。
Figure JPOXMLDOC01-appb-I000014

Figure JPOXMLDOC01-appb-I000015

ここで、RおよびRは独立して、炭素数1から12のアルキル、炭素数1から12のアルコキシ、または炭素数2から12のアルケニルである。
9. Item 9. The liquid crystal composition according to item 1 to 8, wherein the second component is at least one compound selected from the group of compounds represented by formulas (2-1) to (2-19).
Figure JPOXMLDOC01-appb-I000014

Figure JPOXMLDOC01-appb-I000015

Here, R 1 and R 2 are independently alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, or alkenyl having 2 to 12 carbons.
10. 第二成分が項9記載の式(2-3)で表される化合物の群から選択された少なくとも1つの化合物である項1に記載の液晶組成物。 10. Item 2. The liquid crystal composition according to item 1, wherein the second component is at least one compound selected from the group of compounds represented by formula (2-3) according to item 9.
11. 第二成分が項9記載の式(2-5)で表される化合物の群から選択された少なくとも1つの化合物である項1に記載の液晶組成物。 11. Item 2. The liquid crystal composition according to item 1, wherein the second component is at least one compound selected from the group of compounds represented by formula (2-5) according to item 9.
12. 第二成分が項9記載の式(2-7)で表される化合物の群から選択された少なくとも1つの化合物である項1に記載の液晶組成物。 12 Item 2. The liquid crystal composition according to item 1, wherein the second component is at least one compound selected from the group of compounds represented by formula (2-7) according to item 9.
13. 第二成分が項9記載の式(2-13)で表される化合物の群から選択された少なくとも1つの化合物である項1に記載の液晶組成物。 13. Item 12. The liquid crystal composition according to item 1, wherein the second component is at least one compound selected from the group of compounds represented by formula (2-13) according to item 9.
14. 第三成分として式(3)で表される化合物の群から選択された少なくとも1つの化合物をさらに含有する項1から13のいずれか1項に記載の液晶組成物。
Figure JPOXMLDOC01-appb-I000016

ここで、RおよびRは独立して、炭素数1から12のアルキル、炭素数1から12のアルコキシ、炭素数2から12のアルケニル、または少なくとも1つの水素がフッ素で置き換えられた炭素数2から12のアルケニルであり;環F、環G、および環Iは独立して、1,4-シクロへキシレン、1,4-フェニレン、2-フルオロ-1,4-フェニレン、または3-フルオロ-1,4-フェニレンであり;ZおよびZは独立して、単結合、エチレン、メチレンオキシ、またはカルボニルオキシであり;pは、0、1、または2である。
14 Item 14. The liquid crystal composition according to any one of items 1 to 13, further containing at least one compound selected from the group of compounds represented by formula (3) as a third component.
Figure JPOXMLDOC01-appb-I000016

Here, R 3 and R 4 are independently alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, alkenyl having 2 to 12 carbons, or carbons in which at least one hydrogen is replaced by fluorine. Ring F, ring G, and ring I are independently 1,4-cyclohexylene, 1,4-phenylene, 2-fluoro-1,4-phenylene, or 3-fluoro. -1,4-phenylene; Z 4 and Z 5 are independently a single bond, ethylene, methyleneoxy, or carbonyloxy; p is 0, 1, or 2.
15. 第三成分が式(3-1)から式(3-13)で表される化合物の群から選択された少なくとも1つの化合物である項14に記載の液晶組成物。
Figure JPOXMLDOC01-appb-I000017

ここで、RおよびRは独立して、炭素数1から12のアルキル、炭素数1から12のアルコキシ、炭素数2から12のアルケニル、または少なくとも1つの水素がフッ素で置き換えられた炭素数2から12のアルケニルである。
15. Item 15. The liquid crystal composition according to item 14, wherein the third component is at least one compound selected from the group of compounds represented by formulas (3-1) to (3-13).
Figure JPOXMLDOC01-appb-I000017

Here, R 3 and R 4 are independently alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, alkenyl having 2 to 12 carbons, or carbon number in which at least one hydrogen is replaced by fluorine. 2 to 12 alkenyl.
16. 第三成分が項15の式(3-1)で表される化合物の群から選択された少なくとも1つの化合物である項14に記載の液晶組成物。 16. Item 15. The liquid crystal composition according to item 14, wherein the third component is at least one compound selected from the group of compounds represented by formula (3-1) in item 15.
17. 第三成分が項15の式(3-7)で表される化合物の群から選択された少なくとも1つの化合物である項14に記載の液晶組成物。 17. Item 15. The liquid crystal composition according to item 14, wherein the third component is at least one compound selected from the group of compounds represented by formula (3-7) of item 15.
18. 第一成分および第一成分以外の重合可能な化合物を除く液晶組成物の重量に基づいて、第二成分の割合が10重量%から80重量%の範囲であり、第三成分の割合が20重量%から90重量%の範囲であり、そして第一成分および第一成分以外の重合可能な化合物を除く液晶組成物100重量部に対して、第一成分および第一成分以外の重合可能な化合物の割合が0.03重量部から10重量部の範囲である、項14から17のいずれか1項に記載の液晶組成物。 18. Based on the weight of the liquid crystal composition excluding the first component and the polymerizable compound other than the first component, the proportion of the second component is in the range of 10 wt% to 80 wt%, and the proportion of the third component is 20 wt%. % To 90% by weight of the polymerizable compound other than the first component and the first component with respect to 100 parts by weight of the liquid crystal composition excluding the polymerizable compound other than the first component and the first component. Item 18. The liquid crystal composition according to any one of items 14 to 17, wherein the ratio is in the range of 0.03 to 10 parts by weight.
19. 重合開始剤をさらに含有する項1から18のいずれか1項に記載の液晶組成物。 19. Item 19. The liquid crystal composition according to any one of items 1 to 18, further comprising a polymerization initiator.
20. 重合禁止剤をさらに含有する項1から19のいずれか1項に記載の液晶組成物。 20. Item 20. The liquid crystal composition according to any one of items 1 to 19, further comprising a polymerization inhibitor.
21. ネマチック相の上限温度が70℃以上であり、波長589nmにおける光学異方性(25℃)が0.08以上であり、そして周波数1kHzにおける誘電率異方性(25℃)が-2以下である、項1から20のいずれか1項に記載の液晶組成物。 21. The upper limit temperature of the nematic phase is 70 ° C. or higher, the optical anisotropy (25 ° C.) at a wavelength of 589 nm is 0.08 or higher, and the dielectric anisotropy (25 ° C.) at a frequency of 1 kHz is −2 or lower. Item 21. The liquid crystal composition according to any one of items 1 to 20.
22. 少なくとも一方の基板に電極層を有する2つの基板から構成され、この2つの基板の間に項1から21のいずれか1項に記載の液晶組成物中の重合性化合物が重合した化合物を含む液晶材料を配置する事を特徴とする、高分子支持配向型(PSA)液晶表示素子。 22. Item 21. A liquid crystal comprising two substrates each having an electrode layer on at least one substrate, and a compound obtained by polymerizing the polymerizable compound in the liquid crystal composition according to any one of items 1 to 21 between the two substrates. A polymer-supported alignment type (PSA) liquid crystal display element characterized by disposing a material.
23. 液晶表示素子の動作モードが、TNモード、VAモード、OCBモード、IPSモード、またはFFSモードであり、液晶表示素子の駆動方式がアクティブマトリックス方式である、項22に記載の液晶表示素子。 23. Item 23. The liquid crystal display device according to item 22, wherein the operation mode of the liquid crystal display device is a TN mode, a VA mode, an OCB mode, an IPS mode, or an FFS mode, and the driving method of the liquid crystal display device is an active matrix method.
24. 項22に記載の液晶表示素子を、2つの基板間に配置した項1から21のいずれか1項に記載の液晶組成物を電圧印加状態で光照射して重合性化合物を重合させることにより製造する液晶表示素子の製造方法。 24. Item 22. A liquid crystal display device according to item 22, wherein the liquid crystal composition according to any one of items 1 to 21 disposed between two substrates is irradiated with light in a voltage application state to polymerize a polymerizable compound. A method for manufacturing a liquid crystal display element.
25. 項1から21のいずれか1項に記載の液晶組成物の液晶表示素子における使用。 25. Item 21. Use of the liquid crystal composition according to any one of items 1 to 21 in a liquid crystal display device.
 本発明は、次の項も含む。1)光学活性な化合物をさらに含有する上記の組成物、2)酸化防止剤、紫外線吸収剤、消泡剤などの添加物をさらに含有する上記の組成物、3)上記の組成物を含有するAM素子、4)上記の組成物を含有し、そしてTN、ECB、OCB、IPS、FFS、VA、またはPSAのモードを有する素子、5)上記の組成物を含有する透過型の素子、6)上記の組成物を、ネマチック相を有する組成物としての使用、7)上記の組成物に光学活性な化合物を添加することによって光学活性な組成物としての使用。 The present invention includes the following items. 1) The above composition further containing an optically active compound, 2) the above composition further containing an additive such as an antioxidant, an ultraviolet absorber, and an antifoaming agent, and 3) the above composition. AM device, 4) a device containing the above composition and having a mode of TN, ECB, OCB, IPS, FFS, VA, or PSA, 5) a transmissive device containing the above composition, 6) Use of the above composition as a composition having a nematic phase, 7) Use as an optically active composition by adding an optically active compound to the above composition.
 本発明の組成物を次の順で説明する。第一に、組成物における成分化合物の構成を説明する。第二に、成分化合物の主要な特性、およびこの化合物が組成物に及ぼす主要な効果を説明する。第三に、組成物における成分の組み合わせ、成分の好ましい割合およびその根拠を説明する。第四に、成分化合物の好ましい形態を説明する。第五に、成分化合物の具体的な例を示す。第六に、組成物に混合してもよい添加物を説明する。第七に、成分化合物の合成法を説明する。最後に、組成物の用途を説明する。 The composition of the present invention will be described in the following order. First, the constitution of component compounds in the composition will be described. Second, the main characteristics of the component compounds and the main effects of the compounds on the composition will be explained. Third, the combination of components in the composition, the preferred ratio of the components, and the basis thereof will be described. Fourth, a preferred form of the component compound will be described. Fifth, specific examples of component compounds are shown. Sixth, additives that may be mixed into the composition will be described. Seventh, a method for synthesizing the component compounds will be described. Finally, the use of the composition will be described.
 第一に、組成物における成分化合物の構成を説明する。本発明の組成物は組成物Aと組成物Bに分類される。組成物Aは、化合物(1)、化合物(2)、および化合物(3)から選ばれた液晶性化合物の他に、その他の液晶性化合物、添加物、不純物などをさらに含有してもよい。「その他の液晶性化合物」は、化合物(1)、化合物(2)、および化合物(3)とは異なる液晶性化合物である。このような化合物は、特性をさらに調整する目的で組成物に混合される。その他の液晶性化合物の中で、シアノ化合物は熱または紫外線に対する安定性の観点から少ない方が好ましい。シアノ化合物のさらに好ましい割合は0重量%である。添加物は、光学活性な化合物、酸化防止剤、紫外線吸収剤、色素、消泡剤、重合開始剤などである。不純物は成分化合物の合成などの工程において混入した化合物などである。この化合物が液晶性化合物であったとしても、ここでは不純物として分類される。 First, the composition of the component compounds in the composition will be described. The composition of the present invention is classified into Composition A and Composition B. The composition A may further contain other liquid crystal compounds, additives, impurities and the like in addition to the liquid crystal compound selected from the compound (1), the compound (2), and the compound (3). The “other liquid crystal compound” is a liquid crystal compound different from the compound (1), the compound (2), and the compound (3). Such compounds are mixed into the composition for the purpose of further adjusting the properties. Among the other liquid crystal compounds, a smaller amount of cyano compound is preferable from the viewpoint of stability to heat or ultraviolet light. A more desirable ratio of the cyano compound is 0% by weight. Additives include optically active compounds, antioxidants, ultraviolet absorbers, dyes, antifoaming agents, polymerization initiators, and the like. Impurities are compounds mixed in a process such as synthesis of component compounds. Even if this compound is a liquid crystal compound, it is classified as an impurity here.
 組成物Bは、実質的に化合物(1)、化合物(2)、および化合物(3)のみからなる。「実質的に」は、組成物が添加物および不純物を含有してもよいが、これらの化合物と異なる液晶性化合物を含有しないことを意味する。組成物Bは組成物Aに比較して成分の数が少ない。コストを下げるという観点から、組成物Bは組成物Aよりも好ましい。その他の液晶性化合物を混合することによって物性をさらに調整できるという観点から、組成物Aは組成物Bよりも好ましい。 Composition B consists essentially of compound (1), compound (2), and compound (3). “Substantially” means that the composition may contain additives and impurities, but does not contain a liquid crystal compound different from these compounds. Composition B has fewer components than composition A. From the viewpoint of reducing the cost, the composition B is preferable to the composition A. The composition A is preferable to the composition B from the viewpoint that the physical properties can be further adjusted by mixing other liquid crystal compounds.
 第二に、成分化合物の主要な特性、およびこの化合物が組成物の特性に及ぼす主要な効果を説明する。成分化合物の主要な特性を本発明の効果に基づいて表2にまとめる。表2の記号において、Lは大きいまたは高い、Mは中程度の、Sは小さいまたは低い、を意味する。記号L、M、Sは、成分化合物のあいだの定性的な比較に基づいた分類であり、0(ゼロ)は、値がゼロに近いことを意味する。 Second, the main characteristics of the component compounds and the main effects of the compounds on the characteristics of the composition will be explained. The main characteristics of the component compounds are summarized in Table 2 based on the effects of the present invention. In the symbols in Table 2, L means large or high, M means moderate, and S means small or low. The symbols L, M, and S are classifications based on a qualitative comparison among the component compounds, and 0 (zero) means that the value is close to zero.
Figure JPOXMLDOC01-appb-I000018
Figure JPOXMLDOC01-appb-I000018
 成分化合物を組成物に混合したとき、成分化合物が組成物の特性に及ぼす主要な効果は次のとおりである。化合物(2)は、誘電率異方性の絶対値を上げ、そして下限温度を下げる。化合物(3)は、粘度を下げる、または上限温度を上げ、下限温度を下げる。 When the component compound is mixed with the composition, the main effects of the component compound on the properties of the composition are as follows. Compound (2) increases the absolute value of dielectric anisotropy and decreases the minimum temperature. Compound (3) decreases the viscosity or increases the maximum temperature and decreases the minimum temperature.
 第三に、組成物における成分の組み合わせ、成分の好ましい割合およびその根拠を説明する。組成物における成分の組み合わせは、第一成分+第二成分、および第一成分+第二成分+第三成分である。 Third, the combination of components in the composition, the preferred ratio of the components, and the basis thereof will be described. The combination of the components in the composition is first component + second component and first component + second component + third component.
 第一成分の好ましい割合は、第一成分を除く液晶組成物100重量部に対して、液晶分子を配向させるために約0.05重量部以上であり、表示不良を防ぐために約10重量部以下である。さらに好ましい割合は、約0.1重量部から約2重量部の範囲である。 A desirable ratio of the first component is about 0.05 parts by weight or more for aligning liquid crystal molecules with respect to 100 parts by weight of the liquid crystal composition excluding the first component, and about 10 parts by weight or less for preventing display defects. It is. A more desirable ratio is in the range of approximately 0.1 parts by weight to approximately 2 parts by weight.
 第二成分の好ましい割合は、第一成分を除く液晶組成物に基づいて、誘電率異方性の絶対値を上げるために約10重量%以上であり、下限温度を下げるために約80重量%以下である。さらに好ましい割合は約15重量%から約70重量%の範囲である。特に好ましい割合は約20重量%から約60重量%の範囲である。 A desirable ratio of the second component is approximately 10% by weight or more for increasing the absolute value of the dielectric anisotropy and approximately 80% by weight for decreasing the minimum temperature based on the liquid crystal composition excluding the first component. It is as follows. A more desirable ratio is in the range of approximately 15% by weight to approximately 70% by weight. A particularly preferred ratio is in the range of approximately 20% by weight to approximately 60% by weight.
 第三成分の好ましい割合は、第一成分を除く液晶組成物に基づいて、粘度を下げるため、または上限温度を上げるために約20重量%以上であり、誘電率異方性の絶対値を上げるために約90重量%以下である。さらに好ましい割合は約30重量%から約80重量%の範囲である。特に好ましい割合は約40重量%から約70重量%の範囲である。 A desirable ratio of the third component is approximately 20% by weight or more for decreasing the viscosity or increasing the maximum temperature based on the liquid crystal composition excluding the first component, and increases the absolute value of the dielectric anisotropy. Therefore, it is about 90% by weight or less. A more desirable ratio is in the range of approximately 30% by weight to approximately 80% by weight. A particularly preferred ratio is in the range of approximately 40% by weight to approximately 70% by weight.
 第四に、成分化合物の好ましい形態を説明する。
 RおよびRは独立して、炭素数1から12のアルキル、炭素数1から12のアルコキシ、または炭素数2から12のアルケニルである。好ましいRまたはRは、紫外線または熱に対する安定性を上げるために、炭素数1から12のアルキルであり、粘度を下げるために炭素数1から12のアルコキシである。
 RおよびRは独立して、炭素数1から12のアルキル、炭素数1から12のアルコキシ、炭素数2から12のアルケニル、または少なくとも1つの水素がフッ素で置き換えられた炭素数2から12のアルケニルである。好ましいRまたはRは、粘度を下げるために、炭素数2から12のアルケニルであり、紫外線に対する安定性を上げるため、または熱に対する安定性を上げるために、炭素数1から12のアルキルである。
Fourth, a preferred form of the component compound will be described.
R 1 and R 2 are independently alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, or alkenyl having 2 to 12 carbons. Desirable R 1 or R 2 is alkyl having 1 to 12 carbons for increasing the stability to ultraviolet light or heat, and alkoxy having 1 to 12 carbons for decreasing the viscosity.
R 3 and R 4 are independently alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, alkenyl having 2 to 12 carbons, or 2 to 12 carbons in which at least one hydrogen is replaced by fluorine. Of alkenyl. Desirable R 3 or R 4 is alkenyl having 2 to 12 carbons for decreasing the viscosity, and alkyl having 1 to 12 carbons for increasing the stability to ultraviolet light or the stability to heat. is there.
 好ましいアルキルは、メチル、エチル、プロピル、ブチル、ペンチル、ヘキシル、ヘプチル、またはオクチルである。さらに好ましいアルキルは、粘度を下げるために、エチル、プロピル、ブチル、ペンチル、またはヘプチルである。 Preferred alkyl is methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl or octyl. More desirable alkyl is ethyl, propyl, butyl, pentyl, or heptyl for decreasing the viscosity.
 好ましいアルコキシは、メトキシ、エトキシ、プロポキシ、ブトキシ、ペンチルオキシ、ヘキシルオキシ、またはヘプチルオキシである。さらに好ましいアルコキシは、粘度を下げるために、メトキシまたはエトキシである。 Preferred alkoxy is methoxy, ethoxy, propoxy, butoxy, pentyloxy, hexyloxy, or heptyloxy. More desirable alkoxy is methoxy or ethoxy for decreasing the viscosity.
 好ましいアルケニルは、ビニル、1-プロペニル、2-プロペニル、1-ブテニル、2-ブテニル、3-ブテニル、1-ペンテニル、2-ペンテニル、3-ペンテニル、4-ペンテニル、1-ヘキセニル、2-ヘキセニル、3-ヘキセニル、4-ヘキセニル、または5-ヘキセニルである。さらに好ましいアルケニルは、粘度を下げるために、ビニル、1-プロペニル、3-ブテニル、または3-ペンテニルである。これらのアルケニルにおける-CH=CH-の好ましい立体配置は、二重結合の位置に依存する。粘度を下げるためなどから1-プロペニル、1-ブテニル、1-ペンテニル、1-ヘキセニル、3-ペンテニル、3-ヘキセニルのようなアルケニルにおいてはトランスが好ましい。2-ブテニル、2-ペンテニル、2-ヘキセニルのようなアルケニルにおいてはシスが好ましい。これらのアルケニルにおいては、分岐状よりも直鎖状のアルケニルが好ましい。 Preferred alkenyl is vinyl, 1-propenyl, 2-propenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1-pentenyl, 2-pentenyl, 3-pentenyl, 4-pentenyl, 1-hexenyl, 2-hexenyl, 3-hexenyl, 4-hexenyl, or 5-hexenyl. More desirable alkenyl is vinyl, 1-propenyl, 3-butenyl, or 3-pentenyl for decreasing the viscosity. The preferred configuration of —CH═CH— in these alkenyls depends on the position of the double bond. Trans is preferable in alkenyl such as 1-propenyl, 1-butenyl, 1-pentenyl, 1-hexenyl, 3-pentenyl and 3-hexenyl for decreasing the viscosity. Cis is preferred for alkenyl such as 2-butenyl, 2-pentenyl, and 2-hexenyl. In these alkenyl, linear alkenyl is preferable to branched.
 少なくとも1つの水素がフッ素で置き換えられたアルケニルの好ましい例は、2,2-ジフルオロビニル、3,3-ジフルオロ-2-プロペニル、4,4-ジフルオロ-3-ブテニル、5,5-ジフルオロ-4-ペンテニル、および6,6-ジフルオロ-5-ヘキセニルである。さらに好ましい例は、粘度を下げるために、2,2-ジフルオロビニル、および4,4-ジフルオロ-3-ブテニルである。 Preferred examples of alkenyl in which at least one hydrogen is replaced by fluorine are 2,2-difluorovinyl, 3,3-difluoro-2-propenyl, 4,4-difluoro-3-butenyl, 5,5-difluoro-4 -Pentenyl, and 6,6-difluoro-5-hexenyl. Further preferred examples are 2,2-difluorovinyl and 4,4-difluoro-3-butenyl for decreasing the viscosity.
 アルキルは環状アルキルを含まない。アルコキシは環状アルコキシを含まない。アルケニルは環状アルケニルを含まない。1,4-シクロヘキシレンに関する立体配置は、上限温度を上げるためにシスよりもトランスが好ましい。 Alkyl does not include cyclic alkyl. Alkoxy does not include cyclic alkoxy. Alkenyl does not include cyclic alkenyl. As the configuration of 1,4-cyclohexylene, trans is preferable to cis for increasing the maximum temperature.
 Spは炭素数1から6のアルキレンであり、アルキレンにおいて、少なくとも1つの-CH-は、-O-、-OCO-、-COO-、または-CH=CH-により置き換えられてもよい。好ましいSpは紫外線または熱に対する安定性を上げるために炭素数1から6のアルキレンであり、液晶組成物に対する溶解性を上げるために、-CH-が-CH=CH-で置き換えられたアルキレンである。-CH=CH-の立体配置はシス体であっても、トランス体であってもよい。 Sp is alkylene having 1 to 6 carbon atoms, and in the alkylene, at least one —CH 2 — may be replaced by —O—, —OCO—, —COO—, or —CH═CH—. Preferred Sp is alkylene having 1 to 6 carbon atoms for increasing the stability to ultraviolet light or heat, and alkylene in which —CH 2 — is replaced with —CH═CH— for increasing the solubility in the liquid crystal composition. is there. The configuration of —CH═CH— may be a cis form or a trans form.
 PおよびPは独立して、式(P-1)から式(P-6)で表わされる基から選択された基である。
Figure JPOXMLDOC01-appb-I000019

 好ましいPまたはPは、反応性を上げるためまたは応答時間を短くするために基(P-1)および基(P-2)であり、液晶組成物に対する溶解性を上げるために基(P-5)であり、紫外線または熱に対する安定性を上げるために基(P-3)および基(P-4)である。
P 1 and P 2 are independently a group selected from the groups represented by Formula (P-1) to Formula (P-6).
Figure JPOXMLDOC01-appb-I000019

Desirable P 1 or P 2 is a group (P-1) or a group (P-2) for increasing the reactivity or shortening the response time, and a group (P-1) for increasing the solubility in the liquid crystal composition. -5), and the groups (P-3) and (P-4) are for increasing the stability to ultraviolet light or heat.
 環Aおよび環Bは独立して、1,4-シクロへキシレン、1,4-シクロヘキセニレン、1,4-フェニレン、テトラヒドロピラン-2,5-ジイル、1,3-ジオキサン-2,5-ジイル、ピリミジン-2,5-ジイルであり、これらにおいて、少なくとも1つの水素はハロゲン、炭素数1から12のアルキル、または少なくとも1つの水素がハロゲンで置き換えられた炭素数1から12のアルキルで置換えられてもよく、kが2または3である時、任意の2つの環Aは同じであっても、異なってもよい。好ましい環Aまたは環Bは、応答時間を短くするために少なくとも1つの水素が、ハロゲン、炭素数1から12のアルキル、または少なくとも1つの水素がハロゲンで置き換えられた炭素数1から12のアルキルで置き換えられてもよい1,4-フェニレンである。さらに好ましい環Aまたは環Bは、1,4-フェニレンである。
 環Cおよび環Eは独立して、1,4-シクロへキシレン、テトラヒドロピラン-2,5-ジイル、1,4-フェニレン、2-フルオロ-1,4-フェニレン、または3-フルオロ-1,4-フェニレンであり、mが2または3である時、任意の2つの環Cは同じであっても、異なってもよい。好ましい環Cまたは環Eは、粘度を下げるために1,4-シクロヘキシレンであり、誘電率異方性の絶対値を上げるためにテトラヒドロピラン-2,5-ジイルであり、光学異方性を上げるために1,4-フェニレンである。テトラヒドロピラン-2,5-ジイルは、
Figure JPOXMLDOC01-appb-I000020

 環Dは2,3-ジフルオロ-1,4-フェニレン、2-クロロ-3-フルオロ-1,4-フェニレン、2,3-ジフルオロ-5-メチル-1,4-フェニレン、3,4,5-トリフルオロナフタレン-2,6-ジイル、または7,8-ジフルオロクロマン-2,6-ジイルである。好ましい環Dは粘度を下げるために2,3-ジフルオロ-1,4-フェニレンであり、光学異方性を下げるために2-クロロ-3-フルオロ-1,4-フェニレンであり、誘電率異方性の絶対値を上げるために7,8-ジフルオロクロマン-2,6-ジイルである。
 環F、環G、および環Iは独立して、1,4-シクロへキシレン、1,4-フェニレン、2-フルオロ-1,4-フェニレン、または3-フルオロ-1,4-フェニレンであり、pが2である時、任意の2つの環Fは同じであっても、異なってもよい。好ましい環F、環G、または環Iは、粘度を下げるためまたは上限温度を上げるために1,4-シクロヘキシレンであり、下限温度を下げるために1,4-フェニレンである。
Ring A and Ring B are independently 1,4-cyclohexylene, 1,4-cyclohexenylene, 1,4-phenylene, tetrahydropyran-2,5-diyl, 1,3-dioxane-2,5 -Diyl, pyrimidine-2,5-diyl, in which at least one hydrogen is halogen, alkyl having 1 to 12 carbons, or alkyl having 1 to 12 carbons in which at least one hydrogen is replaced by halogen It may be substituted, and when k is 2 or 3, any two rings A may be the same or different. Preferred ring A or ring B is at least one hydrogen in order to shorten the response time, halogen, alkyl having 1 to 12 carbons, or alkyl having 1 to 12 carbons in which at least one hydrogen is replaced by halogen. 1,4-phenylene which may be substituted. More preferred ring A or ring B is 1,4-phenylene.
Ring C and Ring E are independently 1,4-cyclohexylene, tetrahydropyran-2,5-diyl, 1,4-phenylene, 2-fluoro-1,4-phenylene, or 3-fluoro-1, When 4-phenylene and m is 2 or 3, any two rings C may be the same or different. Preferred ring C or ring E is 1,4-cyclohexylene for decreasing the viscosity, and tetrahydropyran-2,5-diyl for increasing the absolute value of the dielectric anisotropy. 1,4-phenylene for raising. Tetrahydropyran-2,5-diyl is
Figure JPOXMLDOC01-appb-I000020

Ring D is 2,3-difluoro-1,4-phenylene, 2-chloro-3-fluoro-1,4-phenylene, 2,3-difluoro-5-methyl-1,4-phenylene, 3,4,5 -Trifluoronaphthalene-2,6-diyl or 7,8-difluorochroman-2,6-diyl. Preferred ring D is 2,3-difluoro-1,4-phenylene for decreasing the viscosity, and 2-chloro-3-fluoro-1,4-phenylene for decreasing the optical anisotropy. 7,8-Difluorochroman-2,6-diyl for increasing the absolute value of the isotropic property.
Ring F, Ring G, and Ring I are independently 1,4-cyclohexylene, 1,4-phenylene, 2-fluoro-1,4-phenylene, or 3-fluoro-1,4-phenylene. , P is 2, any two rings F may be the same or different. Desirable ring F, ring G or ring I is 1,4-cyclohexylene for decreasing the viscosity or increasing the maximum temperature, and 1,4-phenylene for decreasing the minimum temperature.
 Z、Z、およびZは独立して、単結合、エチレン、メチレンオキシ、またはカルボニルオキシであり、kが2または3である時、任意の2つのZは同じであっても、異なってもよく、mが2または3である時、任意の2つのZは同じであっても、異なってもよい。好ましいZは反応性を上げるために単結合であり、液晶組成物に対する溶解性を上げるためにエチレンである。好ましいZまたはZは、粘度を下げるために単結合であり、下限温度を下げるためにエチレンであり、誘電率異方性の絶対値を上げるためにメチレンオキシである。
 ZおよびZは独立して、単結合、エチレン、メチレンオキシ、またはカルボニルオキシであり、pが2である時、2つのZは同じであっても、異なってもよい。好ましいZまたはZは、粘度を下げるために単結合であり、下限温度を下げるためにエチレンであり、上限温度を上げるためにカルボニルオキシである。
Z 1 , Z 2 , and Z 3 are independently a single bond, ethylene, methyleneoxy, or carbonyloxy, and when k is 2 or 3, any two Z 1 may be the same, Any two Z 2 may be the same or different when m is 2 or 3. Preferred Z 1 is a single bond for increasing the reactivity, and ethylene for increasing the solubility in the liquid crystal composition. Desirable Z 2 or Z 3 is a single bond for decreasing the viscosity, ethylene for decreasing the minimum temperature, and methyleneoxy for increasing the absolute value of the dielectric anisotropy.
Z 4 and Z 5 are independently a single bond, ethylene, methyleneoxy, or carbonyloxy, and when p is 2, the two Z 4 may be the same or different. Desirable Z 4 or Z 5 is a single bond for decreasing the viscosity, ethylene for decreasing the minimum temperature, and carbonyloxy for increasing the maximum temperature.
 YからY12は独立して、水素、ハロゲン、炭素数1から12のアルキル、またはトリフルオロメチルである。好ましいYからY12は反応性を上げるために水素であり、液晶組成物に対する溶解性を上げるためにハロゲンまたはトリフルオロメチルである。 Y 1 to Y 12 are independently hydrogen, halogen, alkyl having 1 to 12 carbons, or trifluoromethyl. Desirable Y 1 to Y 12 are hydrogen for increasing the reactivity, and halogen or trifluoromethyl for increasing the solubility in the liquid crystal composition.
 XおよびXは独立して、水素またはメチルである。好ましいXまたはXは、反応性を上げるためにメチルであり、紫外線に対する安定性を上げるために水素である。 X 1 and X 2 are independently hydrogen or methyl. Preferred X 1 or X 2 is methyl for increasing the reactivity, and hydrogen for increasing the stability to ultraviolet light.
 kは、0、1、2または3である。好ましいkは反応性を上げるために1である。
 mは、1、2、または3である。好ましいmは粘度を下げるために1であり、上限温度を上げるために2または3である。
 nは0または1である。好ましいnは粘度を下げるために0であり、下限温度を下げるために1である。
 pは、0、1、または2である。好ましいpは粘度を下げるために0であり、上限温度を上げるために1または2である。
k is 0, 1, 2 or 3. Preferred k is 1 for increasing the reactivity.
m is 1, 2 or 3. Preferred m is 1 for decreasing the viscosity, and 2 or 3 for increasing the maximum temperature.
n is 0 or 1. Desirable n is 0 for decreasing the viscosity, and is 1 for decreasing the minimum temperature.
p is 0, 1, or 2. Preferred p is 0 for decreasing the viscosity, and 1 or 2 for increasing the maximum temperature.
 第五に、成分化合物の具体的な例を示す。下記の好ましい化合物において、RおよびRは、直鎖状の炭素数1から12のアルキル、直鎖状の炭素数1から12のアルコキシ、または直鎖状の炭素数2から12のアルケニルである。Rは、直鎖状の炭素数1から12のアルキルまたは直鎖状の炭素数1から12のアルコキシである。Rは、直鎖状の炭素数1から12のアルキルまたは直鎖状の炭素数2から12のアルケニルである。Yは、水素、ハロゲン、炭素数1から12のアルキル、またはトリフルオロメチルである。XおよびXは、水素またはメチルである。 Fifth, specific examples of component compounds are shown. In the following preferred compounds, R 5 and R 8 are linear alkyl having 1 to 12 carbons, linear alkoxy having 1 to 12 carbons, or linear alkenyl having 2 to 12 carbons. is there. R 6 is linear alkyl having 1 to 12 carbons or linear alkoxy having 1 to 12 carbons. R 7 is linear alkyl having 1 to 12 carbons or linear alkenyl having 2 to 12 carbons. Y 4 is hydrogen, halogen, alkyl having 1 to 12 carbons, or trifluoromethyl. X 1 and X 2 are hydrogen or methyl.
 好ましい化合物(1)は、化合物(1-1-1)から化合物(1-8-1)である。さらに好ましい化合物(1)は、化合物(1-1-1)から化合物(1-5-1)、および化合物(1-8-1)である。特に好ましい化合物(1)は化合物(1-1-1)および化合物(1-2-1)である。好ましい化合物(2)は、化合物(2-1-1)から化合物(2-19-1)である。さらに好ましい化合物(2)は、化合物(2-1-1)から化合物(2-10-1)、および化合物(2-12-1)から化合物(2-15-1)である。特に好ましい化合物(2)は、化合物(2-1-1)から化合物(2-8-1)、化合物(2-13-1)、および化合物(2-15-1)である。好ましい化合物(3)は、化合物(3-1-1)から化合物(3-13-1)である。さらに好ましい化合物(3)は、化合物(3-1-1)から化合物(3-7-1)、および化合物(3-9-1)から化合物(3-13-1)である。特に好ましい化合物(3)は、化合物(3-1-1)、化合物(3-3-1)、化合物(3-7-1)、および化合物(3-13-1)である。 Desirable compounds (1) are from the compound (1-1-1) to the compound (1-8-1). More desirable compounds (1) are the compound (1-1-1) to the compound (1-5-1) and the compound (1-8-1). Particularly preferred compounds (1) are the compound (1-1-1) and the compound (1-2-1). Desirable compounds (2) are from the compound (2-1-1) to the compound (2-19-1). More desirable compounds (2) are the compound (2-1-1) to the compound (2-10-1) and the compound (2-12-1) to the compound (2-15-1). Particularly preferred compounds (2) are the compound (2-1-1) to the compound (2-8-1), the compound (2-13-1), and the compound (2-15-1). Desirable compounds (3) are from the compound (3-1-1) to the compound (3-13-1). More desirable compounds (3) are the compound (3-1-1) to the compound (3-7-1) and the compound (3-9-1) to the compound (3-13-1). Particularly preferred compounds (3) are the compound (3-1-1), the compound (3-3-1), the compound (3-7-1), and the compound (3-13-1).
Figure JPOXMLDOC01-appb-I000021
Figure JPOXMLDOC01-appb-I000021
Figure JPOXMLDOC01-appb-I000022
Figure JPOXMLDOC01-appb-I000022
Figure JPOXMLDOC01-appb-I000023
Figure JPOXMLDOC01-appb-I000023
Figure JPOXMLDOC01-appb-I000024
Figure JPOXMLDOC01-appb-I000024
 第六に、組成物に混合してもよい添加物を説明する。このような添加物は、光学活性な化合物、酸化防止剤、紫外線吸収剤、色素、消泡剤、重合開始剤、重合禁止剤などである。液晶のらせん構造を誘起してねじれ角を与える目的で光学活性な化合物が組成物に混合される。このような化合物の例は、化合物(4-1)から化合物(4-5)である。光学活性な化合物の好ましい割合は約5重量%以下である。さらに好ましい割合は約0.01重量%から約2重量%の範囲である。 Sixth, additives that may be mixed with the composition will be described. Such additives are optically active compounds, antioxidants, ultraviolet absorbers, dyes, antifoaming agents, polymerization initiators, polymerization inhibitors, and the like. An optically active compound is mixed with the composition for the purpose of inducing a helical structure of liquid crystal to give a twist angle. Examples of such a compound are the compound (4-1) to the compound (4-5). A desirable ratio of the optically active compound is approximately 5% by weight or less. A more desirable ratio is in the range of approximately 0.01% by weight to approximately 2% by weight.
Figure JPOXMLDOC01-appb-I000025
Figure JPOXMLDOC01-appb-I000025
 大気中での加熱による比抵抗の低下を防止するために、または素子を長時間使用したあと、室温だけではなくネマチック相の上限温度に近い温度でも大きな電圧保持率を維持するために、酸化防止剤が組成物に混合される。
Figure JPOXMLDOC01-appb-I000026
In order to prevent a decrease in specific resistance due to heating in the atmosphere or to maintain a large voltage holding ratio not only at room temperature but also at a temperature close to the upper limit temperature of the nematic phase after the device has been used for a long time, oxidation prevention An agent is mixed into the composition.
Figure JPOXMLDOC01-appb-I000026
 酸化防止剤の好ましい例は、wが1から9の整数である化合物(5)などである。化合物(5)において、好ましいwは、1、3、5、7、または9である。さらに好ましいwは1または7である。wが1である化合物(5)は、揮発性が大きいので、大気中での加熱による比抵抗の低下を防止するときに有効である。wが7である化合物(5)は、揮発性が小さいので、素子を長時間使用したあと、室温だけではなくネマチック相の上限温度に近い温度でも大きな電圧保持率を維持するのに有効である。酸化防止剤の好ましい割合は、その効果を得るために約50ppm以上であり、上限温度を下げないように、または下限温度を上げないように約600ppm以下である。さらに好ましい割合は、約100ppmから約300ppmの範囲である。 A preferred example of the antioxidant is a compound (5) in which w is an integer of 1 to 9. In the compound (5), preferred w is 1, 3, 5, 7, or 9. Further preferred w is 1 or 7. Since the compound (5) in which w is 1 has high volatility, it is effective in preventing a decrease in specific resistance due to heating in the atmosphere. Since the compound (5) in which w is 7 has low volatility, it is effective for maintaining a large voltage holding ratio not only at room temperature but also at a temperature close to the upper limit temperature of the nematic phase after using the device for a long time. . A desirable ratio of the antioxidant is approximately 50 ppm or more for achieving its effect, and is approximately 600 ppm or less for avoiding a decrease in the maximum temperature or avoiding an increase in the minimum temperature. A more desirable ratio is in the range of approximately 100 ppm to approximately 300 ppm.
 紫外線吸収剤の好ましい例は、ベンゾフェノン誘導体、ベンゾエート誘導体、トリアゾール誘導体などである。立体障害のあるアミンのような光安定剤もまた好ましい。これらの吸収剤や安定剤における好ましい割合は、その効果を得るために約50ppm以上であり、上限温度を下げないように、または下限温度を上げないように約10000ppm以下である。さらに好ましい割合は約100ppmから約10000ppmの範囲である。 Preferred examples of the ultraviolet absorber include benzophenone derivatives, benzoate derivatives, triazole derivatives and the like. Also preferred are light stabilizers such as sterically hindered amines. A desirable ratio in these absorbents and stabilizers is approximately 50 ppm or more for obtaining the effect thereof, and approximately 10,000 ppm or less for avoiding a decrease in the maximum temperature or avoiding an increase in the minimum temperature. A more desirable ratio is in the range of approximately 100 ppm to approximately 10,000 ppm.
 GH(guest host)モードの素子に適合させるためにアゾ系色素、アントラキノン系色素などのような二色性色素(dichroic dye)が組成物に混合される。色素の好ましい割合は、約0.01重量%から約10重量%の範囲である。 A dichroic dye such as an azo dye or an anthraquinone dye is mixed with the composition so as to be adapted to a GH (guest host) mode element. A preferred ratio of the dye is in the range of approximately 0.01% by weight to approximately 10% by weight.
 泡立ちを防ぐために、ジメチルシリコーンオイル、メチルフェニルシリコーンオイルなどの消泡剤が組成物に混合される。消泡剤の好ましい割合は、その効果を得るために1ppm以上であり、表示の不良を防ぐために約1000ppm以下である。さらに好ましい割合は、約1ppmから約500ppmの範囲である。 In order to prevent foaming, an antifoaming agent such as dimethyl silicone oil or methylphenyl silicone oil is mixed with the composition. A desirable ratio of the antifoaming agent is 1 ppm or more for obtaining the effect thereof, and is about 1000 ppm or less for preventing a poor display. A more desirable ratio is in the range of approximately 1 ppm to approximately 500 ppm.
 本発明の液晶組成物は、重合可能な化合物を含んでいるので、PSA(polymer sustained alignment)モードの素子に適合している。組成物は化合物(1)以外の重合可能な化合物をさらに含んでもよい。重合可能な化合物の好ましい例は、アクリレート、メタクリレート、ビニル化合物、ビニルオキシ化合物、プロペニルエーテル、エポキシ化合物(オキシラン、オキセタン)、ビニルケトンなどの重合可能な基を有する化合物である。特に好ましい例は、アクリレート、またはメタクリレートの誘導体である。重合可能な化合物の好ましい割合は、液晶組成物の重量を100重量部としたとき、その効果を得るために、約0.03重量部以上であり、表示不良を防ぐために10重量部以下である。さらに好ましい割合は、約0.1重量部から約2重量部の範囲である。重合可能な化合物中の化合物(1)の好ましい割合は、10重量%以上である。さらに好ましい割合は、30重量%以上である。重合可能な化合物は、好ましくは光重合開始剤などの適切な開始剤存在下でUV照射などにより重合する。重合のための適切な条件、開始剤の適切なタイプ、および適切な量は、当業者には既知であり、文献に記載されている。例えば光開始剤であるIrgacure651(登録商標;BASF)、Irgacure184(登録商標;BASF)、またはDarocure1173(登録商標;BASF)がラジカル重合に対して適切である。好ましい光重合開始剤の割合は、重合可能な化合物の約0.1重量%から約5重量%の範囲であり、さらに好ましくは約1重量%から約3重量%の範囲である。液晶表示素子における2つの基板の間に、重合可能な化合物を含む液晶組成物を配置し、これらの基板の相対する電極層の間に電圧を印加しながら重合可能な化合物を重合する工程を経てもよいし、液晶表示素子における2つの基板の間に予め重合させた化合物を含む液晶組成物を配置してもよい。 Since the liquid crystal composition of the present invention contains a polymerizable compound, it is suitable for a PSA (polymer-sustained-alignment) mode device. The composition may further contain a polymerizable compound other than the compound (1). Preferred examples of the polymerizable compound are compounds having a polymerizable group such as acrylate, methacrylate, vinyl compound, vinyloxy compound, propenyl ether, epoxy compound (oxirane, oxetane), vinyl ketone and the like. Particularly preferred examples are acrylate or methacrylate derivatives. A desirable ratio of the polymerizable compound is about 0.03 parts by weight or more for obtaining the effect when the weight of the liquid crystal composition is 100 parts by weight, and is 10 parts by weight or less for preventing display defects. . A more desirable ratio is in the range of approximately 0.1 parts by weight to approximately 2 parts by weight. A desirable ratio of the compound (1) in the polymerizable compound is 10% by weight or more. A more desirable ratio is 30% by weight or more. The polymerizable compound is preferably polymerized by UV irradiation or the like in the presence of a suitable initiator such as a photopolymerization initiator. Appropriate conditions for polymerization, the appropriate type of initiator, and the appropriate amount are known to those skilled in the art and are described in the literature. For example, Irgacure 651 (registered trademark; BASF), Irgacure 184 (registered trademark; BASF), or Darocur 1173 (registered trademark; BASF), which are photoinitiators, are suitable for radical polymerization. A preferred proportion of the photopolymerization initiator is in the range of about 0.1% to about 5% by weight of the polymerizable compound, and more preferably in the range of about 1% to about 3% by weight. A process of polymerizing a polymerizable compound while placing a liquid crystal composition containing a polymerizable compound between two substrates in a liquid crystal display element and applying a voltage between opposing electrode layers of these substrates. Alternatively, a liquid crystal composition containing a previously polymerized compound may be disposed between two substrates in the liquid crystal display element.
 化合物(1)以外のさらに含んでもよい重合可能な化合物の例は化合物(6-1)から(6-9)である。重合可能な化合物のうちに、化合物(1)を加えることで組成物への溶解性を上げ、反応性を高くすることができる。
Figure JPOXMLDOC01-appb-I000027

ここで、R、R10、R11、およびR12は独立して、アクリロイルまたはメタクリロイルであり、R13およびR14は独立して、水素、ハロゲン、または炭素数1から10のアルキルであり;ZおよびZは同時に、単結合または炭素数1から12のアルキレンであり、アルキレンにおいて、少なくとも1つの-CH-は、-O-により置き換えられていてもよく;ZおよびZは独立して、単結合または炭素数1から12のアルキレンであり、アルキレンにおいて、少なくとも1つの-CH-は、-O-により置き換えられていてもよく;q、r、sは独立して、0、1、または2である。
Examples of the polymerizable compound that may be further contained other than the compound (1) are the compounds (6-1) to (6-9). By adding the compound (1) among the polymerizable compounds, the solubility in the composition can be increased and the reactivity can be increased.
Figure JPOXMLDOC01-appb-I000027

Where R 9 , R 10 , R 11 , and R 12 are independently acryloyl or methacryloyl, and R 13 and R 14 are independently hydrogen, halogen, or alkyl having 1 to 10 carbons. Z 6 and Z 7 are simultaneously a single bond or alkylene having 1 to 12 carbons, and in the alkylene, at least one —CH 2 — may be replaced by —O—; Z 8 and Z 9 Is independently a single bond or alkylene having 1 to 12 carbons, in which at least one —CH 2 — may be replaced by —O—; q, r, s are independently , 0, 1, or 2.
 第七に、成分化合物の合成法を説明する。成分化合物は、オーガニック・シンセシス(Organic Syntheses, John Wiley & Sons, Inc)、オーガニック・リアクションズ(Organic Reactions, John Wiley & Sons, Inc)、コンプリヘンシブ・オーガニック・シンセシス(Comprehensive Organic Synthesis, Pergamon Press)、新実験化学講座(丸善)などに記載された既知の有機合成化学の手法を適切に組み合わせることにより合成できる。 Seventh, a method for synthesizing component compounds will be described. Component compounds are Organic Synthesis (OrganicOrSyntheses, sJohn Wiley & Sons, Inc), Organic Reactions (OrganicOrReactions, actionJohn Wiley & Sons, Inc), Comprehensive Organic Synthesis (Comprehensive Organic Synthesis, Pergamon Press) It can be synthesized by appropriately combining known organic synthetic chemistry techniques described in a new experimental chemistry course (Maruzen).
 これらの化合物は既知の方法によって合成できる。合成法を例示する。化合物(2-1-1)および化合物(2-5-1)は、特表平2-503441号公報に記載された方法で合成する。化合物(3-1-1)および化合物(3-5-1)は、特開昭59-176221号公報に記載された方法で合成する。酸化防止剤は市販されている。式(5)のwが1である化合物は、アルドリッチ(Sigma-Aldrich Corporation)から入手できる。wが7である化合物(5)などは、米国特許3660505号明細書に記載された方法によって合成する。 These compounds can be synthesized by known methods. The synthesis method is illustrated. Compound (2-1-1) and compound (2-5-1) are synthesized by the method described in JP-T-2-503441. Compound (3-1-1) and compound (3-5-1) are synthesized by the method described in JP-A-59-176221. Antioxidants are commercially available. A compound of formula (5) in which w is 1 is available from Sigma-Aldrich Corporation. Compound (5) or the like in which w is 7 is synthesized by the method described in US Pat. No. 3,660,505.
 合成法を記載しなかった化合物は、オーガニック・シンセシス(Organic Syntheses, John Wiley & Sons, Inc)、オーガニック・リアクションズ(Organic Reactions, John Wiley & Sons, Inc)、コンプリヘンシブ・オーガニック・シンセシス(Comprehensive Organic Synthesis, Pergamon Press)、新実験化学講座(丸善)などの成書に記載された方法によって合成できる。組成物は、このようにして得た化合物から公知の方法によって調製される。例えば、成分化合物を混合し、そして加熱によって互いに溶解させる。 Compounds that have not been described as synthetic methods are Organic Synthesis (Organic Syntheses, John Wiley & Sons, Inc), Organic Reactions (Organic Reactions, John Wiley & Sons, Inc), Comprehensive Organic Synthesis (Comprehensive Organic) Synthesis, (Pergamon Press) and new experimental chemistry course (Maruzen). The composition is prepared from the compound thus obtained by known methods. For example, the component compounds are mixed and dissolved in each other by heating.
 最後に、組成物の用途を説明する。大部分の組成物は、約-10℃以下の下限温度、約70℃以上の上限温度、そして約0.07から約0.20の範囲の光学異方性を有する。この組成物を含有する素子は大きな電圧保持率を有する。この組成物はAM素子に適する。この組成物は透過型のAM素子に特に適する。成分化合物の割合を制御することによって、またはその他の液晶性化合物を混合することによって、約0.08から約0.25の範囲の光学異方性を有する組成物を調製してもよい。この組成物は、ネマチック相を有する組成物としての使用、光学活性な化合物を添加することによって光学活性な組成物としての使用が可能である。 Finally, the use of the composition will be explained. Most compositions have a minimum temperature of about −10 ° C. or lower, a maximum temperature of about 70 ° C. or higher, and an optical anisotropy in the range of about 0.07 to about 0.20. A device containing this composition has a large voltage holding ratio. This composition is suitable for an AM device. This composition is particularly suitable for a transmissive AM device. A composition having an optical anisotropy in the range of about 0.08 to about 0.25 may be prepared by controlling the ratio of the component compounds or by mixing other liquid crystal compounds. This composition can be used as a composition having a nematic phase, or can be used as an optically active composition by adding an optically active compound.
 この組成物はAM素子への使用が可能である。さらにPM素子への使用も可能である。この組成物は、PC、TN、STN、ECB、OCB、IPS、VA、PSAなどのモードを有するAM素子およびPM素子への使用が可能である。PSAモードを有するAM素子への使用は特に好ましい。これらの素子が反射型、透過型または半透過型であってもよい。透過型の素子への使用は好ましい。非結晶シリコン-TFT素子または多結晶シリコン-TFT素子への使用も可能である。この組成物をマイクロカプセル化して作製したNCAP(nematic curvilinear aligned phase)型の素子や、組成物中に三次元の網目状高分子を形成させたPD(polymer dispersed)型の素子にも使用できる。 This composition can be used for an AM device. Further, it can be used for PM elements. This composition can be used for an AM device and a PM device having modes such as PC, TN, STN, ECB, OCB, IPS, VA, and PSA. Use for an AM device having a PSA mode is particularly preferable. These elements may be reflective, transmissive, or transflective. Use in a transmissive element is preferred. It can also be used for an amorphous silicon-TFT device or a polycrystalline silicon-TFT device. It can also be used for an NCAP (nematic-curvilinear-aligned-phase) type device produced by microencapsulating this composition, or a PD (polymer-dispersed) type device in which a three-dimensional network polymer is formed in the composition.
 本発明の液晶表示素子は、少なくとも一方の基板に電極層を有する2つの基板から構成され、この2つの基板の間に本発明の液晶組成物、または本発明の化合物が重合した化合物を含む液晶組成物を配置する事を特徴とする。例えば、アレイ基板とカラーフィルター基板と呼ばれる2つのガラス基板からなり、それぞれのガラス基板上に薄膜トランジスタ(TFT)、画素、着色層などが形成される。ガラス基板には、例えば、アルミノケイ酸ガラスまたはアルミノホウケイ酸ガラスが用いられる。電極層は、酸化インジウム-錫(Indium-Tin Oxide)や酸化インジウム-亜鉛(Indium-Zinc Oxide)が、一般的に使用される。 The liquid crystal display element of the present invention comprises two substrates having an electrode layer on at least one substrate, and a liquid crystal containing the liquid crystal composition of the present invention or a compound obtained by polymerizing the compound of the present invention between the two substrates. It is characterized by arranging the composition. For example, the glass substrate includes two glass substrates called an array substrate and a color filter substrate, and a thin film transistor (TFT), a pixel, a colored layer, and the like are formed on each glass substrate. For example, aluminosilicate glass or aluminoborosilicate glass is used for the glass substrate. As the electrode layer, indium-tin oxide (Indium-Tin Oxide) or indium-zinc oxide (Indium-Zinc Oxide) is generally used.
 以下、実施例により本発明を詳細に説明するが、本発明はこれらの実施例により制限されない。 Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited to these examples.
 合成によって得られた化合物は、プロトン核磁気共鳴分光法(H-NMR)、高速液体クロマトグラフィー(HPLC)、紫外/可視分光度法(UV/Vis)などにより同定した。化合物の融点は、示差走査熱量測定(DSC)により決定した。まず、各分析方法について説明をする。 The compound obtained by the synthesis was identified by proton nuclear magnetic resonance spectroscopy ( 1 H-NMR), high performance liquid chromatography (HPLC), ultraviolet / visible spectroscopy (UV / Vis) and the like. The melting point of the compound was determined by differential scanning calorimetry (DSC). First, each analysis method will be described.
 H-NMR分析:測定装置は、DRX-500(ブルカーバイオスピン製)を用いた。測定は、実施例などで製造したサンプルを、CDClなどのサンプルが可溶な重水素化溶媒に溶解し、室温で、500MHz、積算回数24回などの条件で行った。なお、得られた核磁気共鳴スペクトルの説明において、sはシングレット、dはダブレット、tはトリプレット、qはカルテット、mはマルチプレットであることを意味する。また、化学シフトδ値のゼロ点の基準物質としてはテトラメチルシラン(TMS)を用いた。 1 H-NMR analysis: DRX-500 (manufactured by Bruker BioSpin) was used as a measuring apparatus. The measurement was carried out by dissolving the sample produced in Examples and the like in a deuterated solvent in which a sample such as CDCl 3 is soluble and at room temperature under conditions of 500 MHz and 24 times of integration. In the description of the obtained nuclear magnetic resonance spectrum, s is a singlet, d is a doublet, t is a triplet, q is a quartet, and m is a multiplet. Tetramethylsilane (TMS) was used as a reference material for the zero point of the chemical shift δ value.
 HPLC分析:測定装置は、島津製作所製のProminence(LC-20AD;SPD-20A)を用いた。カラムはワイエムシー製のYMC-Pack ODS-A(長さ150mm、内径4.6mm、粒子径5μm)を用いた。溶出液はアセトニトリル/水(容量比:80/20)を用い、流速は1mL/分に調整した。検出器としてはUV検出器、RI検出器、CORONA検出器などを適宜用いた。UV検出器を用いた場合、検出波長は254nmとした。
 試料はアセトニトリルに溶解して、0.1重量%の溶液となるように調製し、得られた溶液1μLを試料室に導入した。
記録計としては島津製作所製のC-R7Aplusを用いた。得られたクロマトグラムには、成分化合物に対応するピークの保持時間およびピークの面積値が示されている。
HPLC analysis: Prominence (LC-20AD; SPD-20A) manufactured by Shimadzu Corporation was used as a measuring apparatus. The column used was YMC-Pack ODS-A (length 150 mm, inner diameter 4.6 mm, particle diameter 5 μm) manufactured by YMC. The eluent was acetonitrile / water (volume ratio: 80/20), and the flow rate was adjusted to 1 mL / min. As a detector, a UV detector, an RI detector, a CORONA detector, or the like was appropriately used. When a UV detector was used, the detection wavelength was 254 nm.
The sample was dissolved in acetonitrile to prepare a 0.1 wt% solution, and 1 μL of the obtained solution was introduced into the sample chamber.
As a recorder, a C-R7Aplus manufactured by Shimadzu Corporation was used. The obtained chromatogram shows the peak retention time and peak area values corresponding to the component compounds.
 HPLCより得られたクロマトグラムにおけるピークの面積比は成分化合物の割合に相当する。一般には、分析サンプルの成分化合物の重量%は、分析サンプルの各ピークの面積%と完全に同一ではないが、本発明において上述したカラムを用いる場合には、実質的に補正係数は1であるので、分析サンプル中の成分化合物の重量%は、分析サンプル中の各ピークの面積%とほぼ対応している。成分の液晶性化合物における補正係数に大きな差異がないからである。クロマトグラムにより液晶組成物中の液晶性化合物の組成比をより正確に求めるには、クロマトグラムによる内部標準法を用いる。一定量正確に秤量された各液晶性化合物成分(被検成分)と基準となる液晶性化合物(基準物質)を同時にHPLCにより測定して、得られた被検成分のピークと基準物質のピークとの面積比の相対強度をあらかじめ算出する。基準物質に対する各成分のピーク面積の相対強度を用いて補正すると、液晶組成物中の液晶性化合物の組成比をクロマトグラムより正確に求めることができる。 The peak area ratio in the chromatogram obtained from HPLC corresponds to the ratio of the component compounds. In general, the weight% of the component compound of the analysis sample is not completely the same as the area% of each peak of the analysis sample. However, when the above-described column is used in the present invention, the correction factor is substantially 1. Therefore, the weight% of the component compound in the analysis sample substantially corresponds to the area% of each peak in the analysis sample. This is because there is no significant difference in the correction coefficients of the component liquid crystal compounds. In order to more accurately determine the composition ratio of the liquid crystal compound in the liquid crystal composition from the chromatogram, an internal standard method based on the chromatogram is used. Each liquid crystal compound component (test component) and a reference liquid crystal compound (reference material) weighed accurately by a certain amount are simultaneously measured by HPLC, and the peak of the obtained test component and the peak of the reference material are measured. The relative intensity of the area ratio is calculated in advance. When correction is performed using the relative intensity of the peak area of each component with respect to the reference substance, the composition ratio of the liquid crystal compound in the liquid crystal composition can be accurately determined from the chromatogram.
 UV/Vis分析:測定装置は、島津製作所製のPharmaSpec UV‐1700を用いた。検出波長は190nmから700nmとした。
 試料はアセトニトリルに溶解して、0.01mmol/Lの溶液となるように調製し、石英セル(光路長1cm)に入れて測定した。
UV / Vis analysis: PharmaSpec UV-1700 manufactured by Shimadzu Corporation was used as a measuring apparatus. The detection wavelength was 190 nm to 700 nm.
The sample was dissolved in acetonitrile to prepare a 0.01 mmol / L solution, and the sample was placed in a quartz cell (optical path length 1 cm) and measured.
 DSC測定:パーキンエルマー社製走査熱量計DSC-7システム、またはDiamond DSCシステムを用いて、3℃/分速度で昇降温し、試料の相変化に伴う吸熱ピーク、または発熱ピークの開始点を外挿により求め(on set)、融点を決定した。 DSC measurement: Using a scanning calorimeter DSC-7 system manufactured by PerkinElmer or a Diamond DSC system, the temperature is increased and decreased at a rate of 3 ° C / min, and the start point of the endothermic peak or exothermic peak accompanying the phase change of the sample is excluded. The melting point was determined by onset.
[実施例1]
(液晶組成物への溶解性の比較1)
 比較として、液晶組成物A100重量部に重合性化合物(R-1)1重量部を加え25℃で溶解を試みたが、結晶が液晶組成物中に残りすべて溶解しなかった。
 液晶組成物A100重量部に本発明の重合性化合物(1-1-1-1)1重量部を加え25℃で溶解を試みたところ、化合物(1-1-1-1)の全量が溶解した。この比較により本発明の化合物が液晶組成物に溶解しやすいことがわかった。表3に結果を示す。表3中の記号において“○”は結晶が認められないもの、“×”は結晶が認められたものの結果を示す。 液晶組成物Aの成分とその割合は以下のとおりである。
[Example 1]
(Comparison 1 of solubility in liquid crystal composition)
As a comparison, 1 part by weight of the polymerizable compound (R-1) was added to 100 parts by weight of the liquid crystal composition A, and dissolution was attempted at 25 ° C., but the remaining crystals did not dissolve in the liquid crystal composition.
When 1 part by weight of the polymerizable compound (1-1-1-1) of the present invention was added to 100 parts by weight of the liquid crystal composition A and dissolution was attempted at 25 ° C., the total amount of the compound (1-1-1-1) was dissolved. did. From this comparison, it was found that the compound of the present invention was easily dissolved in the liquid crystal composition. Table 3 shows the results. In the symbols in Table 3, “◯” indicates the result when no crystal was observed, and “X” indicates the result when crystal was observed. The components of the liquid crystal composition A and the ratios thereof are as follows.
Figure JPOXMLDOC01-appb-I000028
Figure JPOXMLDOC01-appb-I000028
Figure JPOXMLDOC01-appb-I000029
Figure JPOXMLDOC01-appb-I000029
 組成物および組成物に含有させる化合物の特性を評価するために、組成物およびこの化合物を測定目的物とする。測定目的物が組成物のときはそのままを試料として測定し、得られた値を記載した。測定目的物が化合物のときは、この化合物(15重量%)を母液晶(85重量%)に混合することによって測定用試料を調製した。測定によって得られた値から外挿法によって化合物の特性値を算出した。(外挿値)={(測定用試料の測定値)-0.85×(母液晶の測定値)}/0.15。この割合でスメクチック相(または結晶)が25℃で析出するときは、化合物と母液晶の割合を10重量%:90重量%、5重量%:95重量%、1重量%:99重量%の順に変更した。この外挿法によって化合物に関する上限温度、光学異方性、粘度、および誘電率異方性の値を求めた。 In order to evaluate the properties of the composition and the compound contained in the composition, the composition and this compound are used as the measurement object. When the object to be measured was a composition, it was measured as it was as a sample, and the obtained value was described. When the measurement object was a compound, a sample for measurement was prepared by mixing this compound (15% by weight) with mother liquid crystals (85% by weight). The characteristic value of the compound was calculated from the value obtained by the measurement by extrapolation. (Extrapolated value) = {(Measured value of measurement sample) −0.85 × (Measured value of mother liquid crystal)} / 0.15. When the smectic phase (or crystal) is precipitated at 25 ° C. at this ratio, the ratio of the compound and the mother liquid crystal is 10% by weight: 90% by weight, 5% by weight: 95% by weight, 1% by weight: 99% by weight in this order. changed. By this extrapolation method, the maximum temperature, optical anisotropy, viscosity, and dielectric anisotropy values for the compound were determined.
 母液晶の成分とその割合は下記のとおりである。
Figure JPOXMLDOC01-appb-I000030
The components of the mother liquid crystals and their proportions are as follows.
Figure JPOXMLDOC01-appb-I000030
 特性値の測定は下記の方法にしたがった。それらの多くは、社団法人電子情報技術産業協会(Japan Electronics and Information Technology Industries Association以下JEITAという)で審議制定されるJEITA規格(JEITA ED-2521B)に記載された方法、またはこれを修飾した方法である。 Measured characteristic values according to the following method. Many of them are the methods described in the JEITA standard (JEITA ED-2521B) established by the Japan Electronics and Information Technology Industries Association (JEITA ED-2521B) or a modified method thereof. is there.
 ネマチック相の上限温度(NI;℃):偏光顕微鏡を備えた融点測定装置のホットプレートに試料を置き、1℃/分の速度で加熱した。試料の一部がネマチック相から等方性液体に変化したときの温度を測定した。ネマチック相の上限温度を「上限温度」と略すことがある。 Maximum temperature of nematic phase (NI; ° C.): A sample was placed on a hot plate of a melting point measuring device equipped with a polarizing microscope and heated at a rate of 1 ° C./min. The temperature was measured when a part of the sample changed from a nematic phase to an isotropic liquid. The upper limit temperature of the nematic phase may be abbreviated as “upper limit temperature”.
 ネマチック相の下限温度(T;℃):ネマチック相を有する試料をガラス瓶に入れ、0℃、-10℃、-20℃、-30℃、および-40℃のフリーザー中に10日間保管したあと、液晶相を観察した。例えば、試料が-20℃ではネマチック相のままであり、-30℃では結晶またはスメクチック相に変化したとき、Tを<-20℃と記載した。ネマチック相の下限温度を「下限温度」と略すことがある。 Minimum temperature of nematic phase (T C ; ° C.): After a sample having a nematic phase is put in a glass bottle and stored in a freezer at 0 ° C., −10 ° C., −20 ° C., −30 ° C., and −40 ° C. for 10 days The liquid crystal phase was observed. For example, when the sample remained nematic at −20 ° C. and changed to a crystalline or smectic phase at −30 ° C., the TC was described as <−20 ° C. The lower limit temperature of the nematic phase may be abbreviated as “lower limit temperature”.
 粘度(バルク粘度;η;20℃で測定;mPa・s):測定にはE型回転粘度計を用いた。 Viscosity (bulk viscosity; η; measured at 20 ° C .; mPa · s): An E-type viscometer was used for measurement.
 光学異方性(屈折率異方性;Δn;25℃で測定):測定は、波長589nmの光を用い、接眼鏡に偏光板を取り付けたアッベ屈折計により行なった。主プリズムの表面を一方向にラビングしたあと、試料を主プリズムに滴下した。屈折率n∥は偏光の方向がラビングの方向と平行であるときに測定した。屈折率n⊥は偏光の方向がラビングの方向と垂直であるときに測定した。光学異方性の値は、Δn=n∥-n⊥、の式から計算した。 Optical anisotropy (refractive index anisotropy; Δn; measured at 25 ° C.): Measurement was performed with an Abbe refractometer using a light having a wavelength of 589 nm and a polarizing plate attached to an eyepiece. After rubbing the surface of the main prism in one direction, the sample was dropped on the main prism. The refractive index n∥ was measured when the direction of polarized light was parallel to the direction of rubbing. The refractive index n⊥ was measured when the polarization direction was perpendicular to the rubbing direction. The value of optical anisotropy was calculated from the equation: Δn = n∥−n⊥.
 誘電率異方性(Δε;25℃で測定):誘電率異方性の値は、Δε=ε∥-ε⊥、の式から計算した。誘電率(ε∥およびε⊥)は次のように測定した。
1)誘電率(ε∥)の測定:よく洗浄したガラス基板にオクタデシルトリエトキシシラン(0.16mL)のエタノール(20mL)溶液を塗布した。ガラス基板をスピンナーで回転させたあと、150℃で1時間加熱した。2枚のガラス基板の間隔(セルギャップ)が4μmであるVA素子に試料を入れ、この素子を紫外線で硬化する接着剤で密閉した。この素子にサイン波(0.5V、1kHz)を印加し、2秒後に液晶分子の長軸方向における誘電率(ε∥)を測定した。
2)誘電率(ε⊥)の測定:よく洗浄したガラス基板にポリイミド溶液を塗布した。このガラス基板を焼成した後、得られた配向膜にラビング処理をした。2枚のガラス基板の間隔(セルギャップ)が9μmであり、ツイスト角が80度であるTN素子に試料を入れた。この素子にサイン波(0.5V、1kHz)を印加し、2秒後に液晶分子の短軸方向における誘電率(ε⊥)を測定した。
Dielectric Anisotropy (Δε; measured at 25 ° C.): The value of dielectric anisotropy was calculated from the equation: Δε = ε∥−ε⊥. The dielectric constants (ε∥ and ε⊥) were measured as follows.
1) Measurement of dielectric constant (ε∥): An ethanol (20 mL) solution of octadecyltriethoxysilane (0.16 mL) was applied to a well-cleaned glass substrate. The glass substrate was rotated with a spinner and then heated at 150 ° C. for 1 hour. A sample was put in a VA element in which the distance between two glass substrates (cell gap) was 4 μm, and the element was sealed with an adhesive that was cured with ultraviolet rays. Sine waves (0.5 V, 1 kHz) were applied to the device, and after 2 seconds, the dielectric constant (ε∥) in the major axis direction of the liquid crystal molecules was measured.
2) Measurement of dielectric constant (ε⊥): A polyimide solution was applied to a well-cleaned glass substrate. After baking this glass substrate, the obtained alignment film was rubbed. A sample was put in a TN device in which the distance between two glass substrates (cell gap) was 9 μm and the twist angle was 80 degrees. Sine waves (0.5 V, 1 kHz) were applied to the device, and after 2 seconds, the dielectric constant (ε⊥) in the minor axis direction of the liquid crystal molecules was measured.
 しきい値電圧(Vth;25℃で測定;V):測定には大塚電子株式会社製のLCD5100型輝度計を用いた。光源はハロゲンランプである。2枚のガラス基板の間隔(セルギャップ)が4μmであり、ラビング方向がアンチパラレルであるノーマリーブラックモード(normally black mode)のVA素子に試料を入れ、この素子を紫外線で硬化する接着剤を用いて密閉した。この素子に印加する電圧(60Hz、矩形波)は0Vから20Vまで0.02Vずつ段階的に増加させた。この際に、素子に垂直方向から光を照射し、素子を透過した光量を測定した。この光量が最大になったときが透過率100%であり、この光量が最小であったときが透過率0%である電圧-透過率曲線を作成した。しきい値電圧は透過率が10%になったときの電圧である。 Threshold voltage (Vth; measured at 25 ° C .; V): An LCD5100 luminance meter manufactured by Otsuka Electronics Co., Ltd. was used for measurement. The light source is a halogen lamp. A sample is placed in a normally black mode VA element in which the distance between two glass substrates (cell gap) is 4 μm and the rubbing direction is anti-parallel, and an adhesive that cures the element with ultraviolet rays is used. And sealed. The voltage (60 Hz, rectangular wave) applied to this element was increased stepwise from 0V to 20V by 0.02V. At this time, the device was irradiated with light from the vertical direction, and the amount of light transmitted through the device was measured. A voltage-transmittance curve was created in which the transmittance was 100% when the light amount reached the maximum and the transmittance was 0% when the light amount was the minimum. The threshold voltage is a voltage when the transmittance reaches 10%.
 電圧保持率(VHR-1;25℃;%):測定に用いたTN素子はポリイミド配向膜を有し、そして2枚のガラス基板の間隔(セルギャップ)は5μmである。この素子は試料を入れたあと紫外線で硬化する接着剤で密閉した。このTN素子にパルス電圧(5Vで60マイクロ秒)を印加して充電した。減衰する電圧を高速電圧計で16.7ミリ秒のあいだ測定し、単位周期における電圧曲線と横軸との間の面積Aを求めた。面積Bは減衰しなかったときの面積である。電圧保持率は面積Bに対する面積Aの百分率である。 Voltage holding ratio (VHR-1; 25 ° C .;%): The TN device used for the measurement has a polyimide alignment film, and the distance between two glass substrates (cell gap) is 5 μm. This element was sealed with an adhesive that was cured with ultraviolet rays after the sample was placed. The TN device was charged by applying a pulse voltage (60 microseconds at 5 V). The decaying voltage was measured for 16.7 milliseconds with a high-speed voltmeter, and the area A between the voltage curve and the horizontal axis in a unit cycle was determined. The area B is an area when it is not attenuated. The voltage holding ratio is a percentage of the area A with respect to the area B.
 電圧保持率(VHR-2;80℃;%):測定に用いたTN素子はポリイミド配向膜を有し、そして2枚のガラス基板の間隔(セルギャップ)は5μmである。この素子は試料を入れたあと紫外線で硬化する接着剤で密閉した。このTN素子にパルス電圧(5Vで60マイクロ秒)を印加して充電した。減衰する電圧を高速電圧計で16.7ミリ秒のあいだ測定し、単位周期における電圧曲線と横軸との間の面積Aを求めた。面積Bは減衰しなかったときの面積である。電圧保持率は面積Bに対する面積Aの百分率である。 Voltage holding ratio (VHR-2; 80 ° C .;%): The TN device used for the measurement has a polyimide alignment film, and the distance between two glass substrates (cell gap) is 5 μm. This element was sealed with an adhesive that was cured with ultraviolet rays after the sample was placed. The TN device was charged by applying a pulse voltage (60 microseconds at 5 V). The decaying voltage was measured for 16.7 milliseconds with a high-speed voltmeter, and the area A between the voltage curve and the horizontal axis in a unit cycle was determined. The area B is an area when it is not attenuated. The voltage holding ratio is a percentage of the area A with respect to the area B.
 電圧保持率(VHR-3;25℃;%):紫外線を照射したあと、電圧保持率を測定し、紫外線に対する安定性を評価した。測定に用いたTN素子はポリイミド配向膜を有し、そしてセルギャップは5μmである。この素子に試料を注入し、光を20分間照射した。光源は超高圧水銀ランプUSH-500D(ウシオ電機製)であり、素子と光源の間隔は20cmである。VHR-3の測定では、減衰する電圧を16.7ミリ秒のあいだ測定した。大きなVHR-3を有する組成物は紫外線に対して大きな安定性を有する。VHR-3は90%以上が好ましく、95%以上がより好ましい。 Voltage holding ratio (VHR-3; 25 ° C .;%): After irradiation with ultraviolet rays, the voltage holding ratio was measured to evaluate the stability against ultraviolet rays. The TN device used for measurement has a polyimide alignment film, and the cell gap is 5 μm. A sample was injected into this element and irradiated with light for 20 minutes. The light source is an ultra high pressure mercury lamp USH-500D (manufactured by USHIO), and the distance between the element and the light source is 20 cm. In the measurement of VHR-3, the decreasing voltage was measured for 16.7 milliseconds. A composition having a large VHR-3 has a large stability to ultraviolet light. VHR-3 is preferably 90% or more, and more preferably 95% or more.
 電圧保持率(VHR-4;25℃;%):試料を注入したTN素子を80℃の恒温槽内で500時間加熱したあと、電圧保持率を測定し、熱に対する安定性を評価した。VHR-4の測定では、減衰する電圧を16.7ミリ秒のあいだ測定した。大きなVHR-4を有する組成物は熱に対して大きな安定性を有する。 Voltage holding ratio (VHR-4; 25 ° C .;%): The TN device into which the sample was injected was heated in a constant temperature bath at 80 ° C. for 500 hours, and then the voltage holding ratio was measured to evaluate the stability against heat. In the measurement of VHR-4, the decreasing voltage was measured for 16.7 milliseconds. A composition having a large VHR-4 has a large stability to heat.
 応答時間(τ;25℃で測定;ms):測定には大塚電子株式会社製のLCD5100型輝度計を用いた。光源はハロゲンランプである。ローパス・フィルター(Low-pass filter)は5kHzに設定した。2枚のガラス基板の間隔(セルギャップ)が3.2μmであり、ラビング方向がアンチパラレルであるノーマリーブラックモード(normally black mode)のPVA素子に試料を入れ、この素子を紫外線で硬化する接着剤を用いて密閉した。この素子に、15Vの電圧を印加しながら25mW/cmの紫外線(HOYA CANDEO OPTRONICS株式会社製のEXECURE4000-D型;水銀キセノンランプ)を400秒間照射した。この素子に矩形波(60Hz、10V、0.5秒)を印加した。この際に、素子に垂直方向から光を照射し、素子を透過した光量を測定した。この光量が最大になったときが透過率100%であり、この光量が最小であったときが透過率0%である。応答時間は透過率0%から90%に変化するのに要した時間立ち上がり時間(rise time;ミリ秒)である。 Response time (τ; measured at 25 ° C .; ms): An LCD5100 luminance meter manufactured by Otsuka Electronics Co., Ltd. was used for measurement. The light source is a halogen lamp. The low-pass filter was set to 5 kHz. Adhesion in which a specimen is placed in a normally black mode PVA element in which the distance between two glass substrates (cell gap) is 3.2 μm and the rubbing direction is anti-parallel, and the element is cured with ultraviolet rays. Sealed with an agent. The device was irradiated with ultraviolet rays of 25 mW / cm 2 (EXECURE 4000-D type manufactured by HOYA CANDEO OPTRONICS; mercury xenon lamp) for 400 seconds while applying a voltage of 15V. A rectangular wave (60 Hz, 10 V, 0.5 seconds) was applied to this element. At this time, the device was irradiated with light from the vertical direction, and the amount of light transmitted through the device was measured. The transmittance is 100% when the light amount is maximum, and the transmittance is 0% when the light amount is minimum. The response time is the rise time (millisecond) required to change the transmittance from 0% to 90%.
 比抵抗(ρ;25℃で測定;Ωcm):電極を備えた容器に試料1.0mLを注入した。この容器に直流電圧(10V)を印加し、10秒後の直流電流を測定した。比抵抗は次の式から算出した。(比抵抗)={(電圧)×(容器の電気容量)}/{(直流電流)×(真空の誘電率)}。 Specific resistance (ρ; measured at 25 ° C .; Ωcm): 1.0 mL of a sample was injected into a container equipped with electrodes. A DC voltage (10 V) was applied to the container, and the DC current after 10 seconds was measured. The specific resistance was calculated from the following equation. (Resistivity) = {(Voltage) × (Capacity of container)} / {(DC current) × (Dielectric constant of vacuum)}.
 ガスクロマト分析:測定には島津製作所製のGC-14B型ガスクロマトグラフを用いた。キャリアーガスはヘリウム(2mL/分)である。試料気化室を280℃に、検出器(FID)を300℃に設定した。成分化合物の分離には、Agilent Technologies Inc.製のキャピラリカラムDB-1(長さ30m、内径0.32mm、膜厚0.25μm;固定液相はジメチルポリシロキサン;無極性)を用いた。このカラムは、200℃で2分間保持したあと、5℃/分の割合で280℃まで昇温した。試料はアセトン溶液(0.1重量%)に調製したあと、その1μLを試料気化室に注入した。記録計は島津製作所製のC-R5A型Chromatopac、またはその同等品である。得られたガスクロマトグラムは、成分化合物に対応するピークの保持時間およびピークの面積を示した。 Gas chromatographic analysis: GC-14B gas chromatograph manufactured by Shimadzu Corporation was used for measurement. The carrier gas is helium (2 mL / min). The sample vaporization chamber was set at 280 ° C, and the detector (FID) was set at 300 ° C. For separation of the component compounds, capillary column DB-1 (length 30 m, inner diameter 0.32 mm, film thickness 0.25 μm; stationary liquid phase is dimethylpolysiloxane; nonpolar) manufactured by Agilent Technologies Inc. was used. The column was held at 200 ° C. for 2 minutes and then heated to 280 ° C. at a rate of 5 ° C./min. A sample was prepared in an acetone solution (0.1% by weight), and 1 μL thereof was injected into the sample vaporization chamber. The recorder is a C-R5A Chromatopac manufactured by Shimadzu Corporation, or an equivalent product. The obtained gas chromatogram showed the peak retention time and peak area corresponding to the component compounds.
 試料を希釈するための溶媒は、クロロホルム、ヘキサンなどを用いてもよい。成分化合物を分離するために、次のキャピラリカラムを用いてもよい。Agilent Technologies Inc.製のHP-1(長さ30m、内径0.32mm、膜厚0.25μm)、Restek Corporation製のRtx-1(長さ30m、内径0.32mm、膜厚0.25μm)、SGE International Pty. Ltd製のBP-1(長さ30m、内径0.32mm、膜厚0.25μm)。化合物ピークの重なりを防ぐ目的で島津製作所製のキャピラリカラムCBP1-M50-025(長さ50m、内径0.25mm、膜厚0.25μm)を用いてもよい。 As a solvent for diluting the sample, chloroform, hexane or the like may be used. In order to separate the component compounds, the following capillary column may be used. HP-1 from Agilent Technologies Inc. (length 30 m, inner diameter 0.32 mm, film thickness 0.25 μm), Rtx-1 from Restek Corporation (length 30 m, inner diameter 0.32 mm, film thickness 0.25 μm), BP-1 (length 30 m, inner diameter 0.32 mm, film thickness 0.25 μm) manufactured by SGE International Pty. In order to prevent compound peaks from overlapping, a capillary column CBP1-M50-025 (length 50 m, inner diameter 0.25 mm, film thickness 0.25 μm) manufactured by Shimadzu Corporation may be used.
 組成物に含有される液晶性化合物の割合は、次のような方法で算出してよい。液晶性化合物はガスクロマトグラフで検出することができる。ガスクロマトグラムにおけるピークの面積比は液晶性化合物の割合(モル数)に相当する。上に記載したキャピラリカラムを用いたときは、各々の液晶性化合物の補正係数を1とみなしてよい。したがって、液晶性化合物の割合(重量%)は、ピークの面積比から算出する。 The ratio of the liquid crystal compound contained in the composition may be calculated by the following method. Liquid crystalline compounds can be detected by gas chromatography. The area ratio of peaks in the gas chromatogram corresponds to the ratio (number of moles) of liquid crystal compounds. When the capillary column described above is used, the correction coefficient of each liquid crystal compound may be regarded as 1. Accordingly, the ratio (% by weight) of the liquid crystal compound is calculated from the peak area ratio.
 比較例および実施例における化合物は、下記の表4の定義に基づいて記号により表した。表4において、1,4-シクロヘキシレンに関する立体配置はトランスである。実施例において記号の後にあるかっこ内の番号は化合物の番号に対応する。(-)の記号はその他の液晶性化合物を意味する。液晶性化合物の割合(百分率)は、第一成分を除く液晶組成物の重量に基づいた重量百分率(重量%)であり、液晶組成物にはこの他に不純物が含まれている。最後に、組成物の特性値をまとめた。 The compounds in Comparative Examples and Examples were represented by symbols based on the definitions in Table 4 below. In Table 4, the configuration regarding 1,4-cyclohexylene is trans. In the examples, the number in parentheses after the symbol corresponds to the compound number. The symbol (−) means other liquid crystal compounds. The ratio (percentage) of the liquid crystal compound is a weight percentage (% by weight) based on the weight of the liquid crystal composition excluding the first component, and the liquid crystal composition contains impurities in addition to this. Finally, the characteristic values of the composition are summarized.
Figure JPOXMLDOC01-appb-I000031
Figure JPOXMLDOC01-appb-I000031
[比較例M1]
 この組成物は本発明の第一成分を含有していない誘電率異方性が負の液晶組成物である。この組成物の成分および特性は下記のとおりである。
V-HB(2F,3F)-O2     (2-1-1)   15%
V-HB(2F,3F)-O4     (2-1-1)   10%
2-HBB(2F,3F)-O2    (2-8-1)    4%
3-HBB(2F,3F)-O2    (2-8-1)   10%
5-HBB(2F,3F)-O2    (2-8-1)   10%
2-HHB(2F,3CL)-O2   (2-9-1)    2%
3-HHB(2F,3CL)-O2   (2-9-1)    3%
4-HHB(2F,3CL)-O2   (2-9-1)    3%
5-HHB(2F,3CL)-O2   (2-9-1)    3%
2-HH-3             (3-1-1)   27%
3-HB-O2            (3-2-1)    2%
3-HHB-1            (3-5-1)    3%
3-HHB-3            (3-5-1)    5%
3-HHB-O1           (3-5-1)    3%
 NI=73.8℃;Tc<-20℃;Δn=0.092;Δε=-3.1;Vth=2.11V;τ=8.0ms;VHR-1=99.1%;VHR-2=98.0%;VHR-3=98.0%.
[Comparative Example M1]
This composition is a liquid crystal composition having a negative dielectric anisotropy and not containing the first component of the present invention. The components and properties of this composition are as follows.
V-HB (2F, 3F) -O2 (2-1-1) 15%
V-HB (2F, 3F) -O4 (2-1-1) 10%
2-HBB (2F, 3F) -O2 (2-8-1) 4%
3-HBB (2F, 3F) -O2 (2-8-1) 10%
5-HBB (2F, 3F) -O2 (2-8-1) 10%
2-HHB (2F, 3CL) -O2 (2-9-1) 2%
3-HHB (2F, 3CL) -O2 (2-9-1) 3%
4-HHB (2F, 3CL) -O2 (2-9-1) 3%
5-HHB (2F, 3CL) -O2 (2-9-1) 3%
2-HH-3 (3-1-1) 27%
3-HB-O2 (3-2-1) 2%
3-HHB-1 (3-5-1) 3%
3-HHB-3 (3-5-1) 5%
3-HHB-O1 (3-5-1) 3%
NI = 73.8 ° C .; Tc <−20 ° C .; Δn = 0.092; Δε = −3.1; Vth = 2.11 V; τ = 8.0 ms; VHR-1 = 99.1%; VHR-2 = 98.0%; VHR-3 = 98.0%.
[実施例M1]
V-HB(2F,3F)-O2     (2-1-1)   15%
V-HB(2F,3F)-O4     (2-1-1)   10%
2-HBB(2F,3F)-O2    (2-8-1)    4%
3-HBB(2F,3F)-O2    (2-8-1)   10%
5-HBB(2F,3F)-O2    (2-8-1)   10%
2-HHB(2F,3CL)-O2   (2-9-1)    2%
3-HHB(2F,3CL)-O2   (2-9-1)    3%
4-HHB(2F,3CL)-O2   (2-9-1)    3%
5-HHB(2F,3CL)-O2   (2-9-1)    3%
2-HH-3             (3-1-1)   27%
3-HB-O2            (3-2-1)    2%
3-HHB-1            (3-5-1)    3%
3-HHB-3            (3-5-1)    5%
3-HHB-O1           (3-5-1)    3%
 上記組成物100重量部に本発明の第一成分である化合物(1-1-1-1)を0.3重量部添加した。
MAC-VO-BB-MAC         (1-1-1-1)
 この組成物の特性は下記のとおりである。
 NI=74.3℃;Tc<-20℃;Δn=0.095;Δε=-3.1;Vth=2.13V;VHR-1=99.2%;VHR-2=98.2%;VHR-3=98.3%.
[Example M1]
V-HB (2F, 3F) -O2 (2-1-1) 15%
V-HB (2F, 3F) -O4 (2-1-1) 10%
2-HBB (2F, 3F) -O2 (2-8-1) 4%
3-HBB (2F, 3F) -O2 (2-8-1) 10%
5-HBB (2F, 3F) -O2 (2-8-1) 10%
2-HHB (2F, 3CL) -O2 (2-9-1) 2%
3-HHB (2F, 3CL) -O2 (2-9-1) 3%
4-HHB (2F, 3CL) -O2 (2-9-1) 3%
5-HHB (2F, 3CL) -O2 (2-9-1) 3%
2-HH-3 (3-1-1) 27%
3-HB-O2 (3-2-1) 2%
3-HHB-1 (3-5-1) 3%
3-HHB-3 (3-5-1) 5%
3-HHB-O1 (3-5-1) 3%
0.3 parts by weight of the compound (1-1-1-1) as the first component of the present invention was added to 100 parts by weight of the above composition.
MAC-VO-BB-MAC (1-1-1-1)
The properties of this composition are as follows.
NI = 74.3 ° C .; Tc <−20 ° C .; Δn = 0.095; Δε = −3.1; Vth = 2.13 V; VHR-1 = 99.2%; VHR-2 = 98.2%; VHR-3 = 98.3%.
(液晶表示素子の作成方法)
 配向剤を、二枚のITO電極付きガラス基板にスピナーにて塗布し、膜を形成した。塗布後80℃にて約10分間加熱乾燥した後、180℃にて60分間加熱処理を行い、配向膜を形成した。一方のガラス基板にギャップ材を散布し、もう一方の基板には周辺を液晶の注入口を残してエポキシ系接着剤でシールし、配向膜を形成した面を内側にして貼り合わせた。この素子に本願記載の液晶組成物である[実施例M1]の試料を真空注入し、注入口を光硬化剤で封止して、紫外線を照射して光硬化剤を固化した。次いで110℃で30分間加熱処理を行い、液晶表示素子を作成した。この素子に、15Vの電圧を印加しながら25mW/cmの紫外線(HOYA CANDEO OPTRONICS株式会社製のEXECURE4000-D型;水銀キセノンランプ)を400秒間照射し、最終的に液晶表示素子を作成した。
 本液晶表示素子の応答時間はτ=4.3msであった。
(Method for creating liquid crystal display element)
The alignment agent was applied to two glass substrates with ITO electrodes by a spinner to form a film. After coating, the film was dried by heating at 80 ° C. for about 10 minutes, and then heat-treated at 180 ° C. for 60 minutes to form an alignment film. A gap material was sprayed on one glass substrate, and the other substrate was sealed with an epoxy-based adhesive leaving a liquid crystal inlet, and bonded with the surface on which the alignment film was formed facing inside. A sample of [Example M1], which is a liquid crystal composition described in the present application, was vacuum-injected into this device, the inlet was sealed with a photocuring agent, and the photocuring agent was solidified by irradiation with ultraviolet rays. Next, a heat treatment was performed at 110 ° C. for 30 minutes to prepare a liquid crystal display element. This device was irradiated with 25 mW / cm 2 ultraviolet light (EXECURE 4000-D type manufactured by HOYA CANDEO OPTRONICS Co., Ltd .; mercury xenon lamp) for 400 seconds while applying a voltage of 15 V, and finally a liquid crystal display device was produced.
The response time of this liquid crystal display element was τ = 4.3 ms.
[実施例M2]
3-H2B(2F,3F)-O2    (2-2-1)   17%
5-H2B(2F,3F)-O2    (2-2-1)   16%
3-HHB(2F,3F)-O2    (2-5-1)    7%
3-HBB(2F,3F)-O2    (2-8-1)    5%
4-HBB(2F,3F)-O2    (2-8-1)    6%
5-HBB(2F,3F)-O2    (2-8-1)   10%
2-HH-3             (3-1-1)   20%
3-HH-4             (3-1-1)    4%
5-HB-O2            (3-2-1)    4%
3-HHB-1            (3-5-1)    4%
5-HBB(F)B-2        (3-13-1)   7%
 上記組成物100重量部に本発明の第一成分である化合物(1-1-1-1)を0.3重量部添加した。
MAC-VO-BB-MAC      (1-1-1-1)
 得られた組成物の特性は下記のとおりである。
 NI=76.8℃;Tc<-20℃;Δn=0.099;Δε=-3.1;Vth=2.36V;VHR-1=99.1%;VHR-2=98.5%;VHR-3=98.6%.
 実施例M1に記載の方法で作成した液晶表示素子の応答時間はτ=4.6msであった。
[Example M2]
3-H2B (2F, 3F) -O2 (2-2-1) 17%
5-H2B (2F, 3F) -O2 (2-2-1) 16%
3-HHB (2F, 3F) -O2 (2-5-1) 7%
3-HBB (2F, 3F) -O2 (2-8-1) 5%
4-HBB (2F, 3F) -O2 (2-8-1) 6%
5-HBB (2F, 3F) -O2 (2-8-1) 10%
2-HH-3 (3-1-1) 20%
3-HH-4 (3-1-1) 4%
5-HB-O2 (3-2-1) 4%
3-HHB-1 (3-5-1) 4%
5-HBB (F) B-2 (3-13-1) 7%
0.3 parts by weight of the compound (1-1-1-1) as the first component of the present invention was added to 100 parts by weight of the above composition.
MAC-VO-BB-MAC (1-1-1-1)
The characteristics of the obtained composition are as follows.
NI = 76.8 ° C .; Tc <−20 ° C .; Δn = 0.099; Δε = −3.1; Vth = 2.36 V; VHR-1 = 99.1%; VHR-2 = 98.5%; VHR-3 = 98.6%.
The response time of the liquid crystal display device prepared by the method described in Example M1 was τ = 4.6 ms.
[実施例M3]
V-HB(2F,3F)-O2     (2-1-1)   11%
3-H2B(2F,3F)-O2    (2-2-1)   15%
5-H2B(2F,3F)-O2    (2-2-1)    5%
3-BB(2F,3F)-O2     (2-3-1)    5%
3-H1OB(2F,3F)-O2   (2-4-1)    5%
3-HH2B(2F,3F)-O2   (2-6-1)    5%
3-HBB(2F,3F)-O2    (2-8-1)    5%
4-HBB(2F,3F)-O2    (2-8-1)    6%
5-HBB(2F,3F)-O2    (2-8-1)    6%
3-HH-4             (3-1-1)   10%
1-BB-3             (3-3-1)    4%
3-HHB-1            (3-5-1)    4%
3-HHB-3            (3-5-1)    5%
3-HHB-O1           (3-5-1)    3%
5-HBB(F)B-2        (3-13-1)   6%
5-HBB(F)B-3        (3-13-1)   5%
 上記組成物100重量部に本発明の第一成分である化合物(1-1-1-1)を0.3重量部添加した。
MAC-VO-BB-MAC      (1-1-1-1)
 得られた組成物の特性は下記のとおりである。
 NI=85.3℃;Tc<-20℃;Δn=0.122;Δε=-3.8;Vth=2.15V;VHR-1=99.2%;VHR-2=98.7%;VHR-3=98.6%.
 実施例M1に記載の方法で作成した液晶表示素子の応答時間はτ=5.3msであった。
[Example M3]
V-HB (2F, 3F) -O2 (2-1-1) 11%
3-H2B (2F, 3F) -O2 (2-2-1) 15%
5-H2B (2F, 3F) -O2 (2-2-1) 5%
3-BB (2F, 3F) -O2 (2-3-1) 5%
3-H1OB (2F, 3F) -O2 (2-4-1) 5%
3-HH2B (2F, 3F) -O2 (2-6-1) 5%
3-HBB (2F, 3F) -O2 (2-8-1) 5%
4-HBB (2F, 3F) -O2 (2-8-1) 6%
5-HBB (2F, 3F) -O2 (2-8-1) 6%
3-HH-4 (3-1-1) 10%
1-BB-3 (3-3-1) 4%
3-HHB-1 (3-5-1) 4%
3-HHB-3 (3-5-1) 5%
3-HHB-O1 (3-5-1) 3%
5-HBB (F) B-2 (3-13-1) 6%
5-HBB (F) B-3 (3-13-1) 5%
0.3 parts by weight of the compound (1-1-1-1) as the first component of the present invention was added to 100 parts by weight of the above composition.
MAC-VO-BB-MAC (1-1-1-1)
The characteristics of the obtained composition are as follows.
NI = 85.3 ° C .; Tc <−20 ° C .; Δn = 0.122; Δε = −3.8; Vth = 2.15V; VHR-1 = 99.2%; VHR-2 = 98.7%; VHR-3 = 98.6%.
The response time of the liquid crystal display device prepared by the method described in Example M1 was τ = 5.3 ms.
[実施例M4]
V-HB(2F,3F)-O2     (2-1-1)   10%
V-HB(2F,3F)-O4     (2-1-1)   10%
3-H1OB(2F,3F)-O2   (2-4-1)    6%
3-HBB(2F,3F)-O2    (2-8-1)   10%
5-HBB(2F,3F)-O2    (2-8-1)    8%
3-dhHB(2F,3F)-O2   (2-14-1)   3%
3-HH1OCro(7F,8F)-5 (2-19-1)   5%
2-HH-5             (3-1-1)    8%
3-HH-4             (3-1-1)   14%
5-HB-O2            (3-2-1)    8%
3-HHB-1            (3-5-1)    3%
3-HHB-O1           (3-5-1)    2%
5-HBB-2            (3-6-1)    4%
3-HHEBH-3          (3-10-1)   2%
3-HHEBH-5          (3-10-1)   2%
3-HBBH-5           (3-11-1)   3%
5-HBB(F)B-2        (3-13-1)   2%
 上記組成物100重量部に本発明の第一成分である化合物(1-1-1-1)を0.3重量部添加した。
MAC-VO-BB-MAC      (1-1-1-1)
 得られた組成物の特性は下記のとおりである。
 NI=89.9℃;Tc<-20℃;Δn=0.100;Δε=-3.0;Vth=2.30V;VHR-1=99.2%;VHR-2=98.6%;VHR-3=98.8%.
 実施例M1に記載の方法で作成した液晶表示素子の応答時間はτ=5.3msであった。
[Example M4]
V-HB (2F, 3F) -O2 (2-1-1) 10%
V-HB (2F, 3F) -O4 (2-1-1) 10%
3-H1OB (2F, 3F) -O2 (2-4-1) 6%
3-HBB (2F, 3F) -O2 (2-8-1) 10%
5-HBB (2F, 3F) -O2 (2-8-1) 8%
3-dhHB (2F, 3F) -O2 (2-14-1) 3%
3-HH1OCro (7F, 8F) -5 (2-19-1) 5%
2-HH-5 (3-1-1) 8%
3-HH-4 (3-1-1) 14%
5-HB-O2 (3-2-1) 8%
3-HHB-1 (3-5-1) 3%
3-HHB-O1 (3-5-1) 2%
5-HBB-2 (3-6-1) 4%
3-HHEBH-3 (3-10-1) 2%
3-HHEBH-5 (3-10-1) 2%
3-HBBH-5 (3-11-1) 3%
5-HBB (F) B-2 (3-13-1) 2%
0.3 parts by weight of the compound (1-1-1-1) as the first component of the present invention was added to 100 parts by weight of the above composition.
MAC-VO-BB-MAC (1-1-1-1)
The characteristics of the obtained composition are as follows.
NI = 89.9 ° C .; Tc <−20 ° C .; Δn = 0.100; Δε = −3.0; Vth = 2.30 V; VHR-1 = 99.2%; VHR-2 = 98.6%; VHR-3 = 98.8%.
The response time of the liquid crystal display device prepared by the method described in Example M1 was τ = 5.3 ms.
[実施例M5]
V-HB(2F,3F)-O2     (2-1-1)   10%
3-H2B(2F,3F)-O2    (2-2-1)   13%
5-H2B(2F,3F)-O2    (2-2-1)   12%
5-BB(2F,3F)-O2     (2-3-1)    5%
5-H1OB(2F,3F)-O2   (2-4-1)    5%
5-HH1OB(2F,3F)-O2  (2-7-1)    6%
5-HBB(2F,3F)-O2    (2-8-1)    9%
3-HHB(2F,3CL)-O2   (2-9-1)    4%
3-HH-4             (3-1-1)    2%
5-HH-V             (3-1-1)    5%
3-HHEH-3           (3-4-1)    2%
3-HHEH-5           (3-4-1)    2%
4-HHEH-3           (3-4-1)    2%
4-HHEH-5           (3-4-1)    2%
3-HHB-1            (3-5-1)    4%
3-HHB-3            (3-5-1)    7%
3-HHB-O1           (3-5-1)    4%
3-HHEBH-3          (3-10-1)   3%
3-HHEBH-5          (3-10-1)   3%
 上記組成物100重量部に本発明の第一成分である化合物(1-2-1-1)を0.3重量部添加した。
MAC-V-BB-MAC       (1-2-1-1)
 得られた組成物の特性は下記のとおりである。
 NI=89.5℃;Tc<-20℃;Δn=0.095;Δε=-4.3;Vth=2.05V;VHR-1=99.1%;VHR-2=98.2%;VHR-3=98.6%.
 実施例M1に記載の方法で作成した液晶表示素子の応答時間はτ=5.5msであった。
[Example M5]
V-HB (2F, 3F) -O2 (2-1-1) 10%
3-H2B (2F, 3F) -O2 (2-2-1) 13%
5-H2B (2F, 3F) -O2 (2-2-1) 12%
5-BB (2F, 3F) -O2 (2-3-1) 5%
5-H1OB (2F, 3F) -O2 (2-4-1) 5%
5-HH1OB (2F, 3F) -O2 (2-7-1) 6%
5-HBB (2F, 3F) -O2 (2-8-1) 9%
3-HHB (2F, 3CL) -O2 (2-9-1) 4%
3-HH-4 (3-1-1) 2%
5-HH-V (3-1-1) 5%
3-HHEH-3 (3-4-1) 2%
3-HHEH-5 (3-4-1) 2%
4-HHEH-3 (3-4-1) 2%
4-HHEH-5 (3-4-1) 2%
3-HHB-1 (3-5-1) 4%
3-HHB-3 (3-5-1) 7%
3-HHB-O1 (3-5-1) 4%
3-HHEBH-3 (3-10-1) 3%
3-HHEBH-5 (3-10-1) 3%
0.3 parts by weight of the compound (1-2-1-1) as the first component of the present invention was added to 100 parts by weight of the above composition.
MAC-V-BB-MAC (1-2-1-1)
The characteristics of the obtained composition are as follows.
NI = 89.5 ° C .; Tc <−20 ° C .; Δn = 0.095; Δε = −4.3; Vth = 2.05 V; VHR-1 = 99.1%; VHR-2 = 98.2%; VHR-3 = 98.6%.
The response time of the liquid crystal display device prepared by the method described in Example M1 was τ = 5.5 ms.
[実施例M6]
V-HB(2F,3F)-O2     (2-1-1)   11%
3-H2B(2F,3F)-O2    (2-2-1)    5%
3-HH1OB(2F,3F)-O2  (2-7-1)    5%
4-HBB(2F,3F)-O2    (2-8-1)    4%
5-HBB(2F,3F)-O2    (2-8-1)    7%
3-HDhB(2F,3F)-O2   (2-13-1)   5%
3-dhBB(2F,3F)-O2   (2-15-1)   6%
3-HH1OCro(7F,8F)-5 (2-19-1)   8%
2-HH-3             (3-1-1)   17%
3-HH-5             (3-1-1)    4%
5-HB-O2            (3-2-1)    6%
1-BB-3             (3-3-1)    5%
3-HHB-1            (3-5-1)    5%
3-HHB-3            (3-5-1)    6%
3-HHB-O1           (3-5-1)    3%
3-B(F)BB-2         (3-8-1)    3%
 上記組成物100重量部に本発明の第一成分である化合物(1-6-1-1)を0.3重量部添加した。
MAC-2O-BB(CF3)-MAC (1-6-1-1)
 得られた組成物の特性は下記のとおりである。
 NI=84.5℃;Tc<-20℃;Δn=0.103;Δε=-3.1;Vth=2.22V;VHR-1=99.3%;VHR-2=98.5%;VHR-3=98.5%.
 実施例M1に記載の方法で作成した液晶表示素子の応答時間はτ=4.5msであった。
[Example M6]
V-HB (2F, 3F) -O2 (2-1-1) 11%
3-H2B (2F, 3F) -O2 (2-2-1) 5%
3-HH1OB (2F, 3F) -O2 (2-7-1) 5%
4-HBB (2F, 3F) -O2 (2-8-1) 4%
5-HBB (2F, 3F) -O2 (2-8-1) 7%
3-HDhB (2F, 3F) -O2 (2-13-1) 5%
3-dhBB (2F, 3F) -O2 (2-15-1) 6%
3-HH1OCro (7F, 8F) -5 (2-19-1) 8%
2-HH-3 (3-1-1) 17%
3-HH-5 (3-1-1) 4%
5-HB-O2 (3-2-1) 6%
1-BB-3 (3-3-1) 5%
3-HHB-1 (3-5-1) 5%
3-HHB-3 (3-5-1) 6%
3-HHB-O1 (3-5-1) 3%
3-B (F) BB-2 (3-8-1) 3%
0.3 parts by weight of the compound (1-6-1-1) as the first component of the present invention was added to 100 parts by weight of the above composition.
MAC-2O-BB (CF3) -MAC (1-6-1-1)
The characteristics of the obtained composition are as follows.
NI = 84.5 ° C .; Tc <−20 ° C .; Δn = 0.103; Δε = −3.1; Vth = 2.22 V; VHR-1 = 99.3%; VHR-2 = 98.5%; VHR-3 = 98.5%.
The response time of the liquid crystal display device prepared by the method described in Example M1 was τ = 4.5 ms.
[実施例M7]
V-HB(2F,3F)-O2     (2-1-1)   10%
3-H2B(2F,3F)-O2    (2-2-1)    5%
3-BB(2F,3F)-O2     (2-3-1)    5%
3-H1OB(2F,3F)-O2   (2-4-1)    6%
3-HBB(2F,3F)-O2    (2-8-1)    6%
3-HHB(2F,3CL)-O2   (2-9-1)    3%
3-DhHB(2F,3F)-O2   (2-12-1)   3%
3-HDhB(2F,3F)-O2   (2-13-1)   3%
3-HH1OCro(7F,8F)-5 (2-19-1)   5%
2-HH-3             (3-1-1)   19%
5-HB-O2            (3-2-1)    5%
V2-BB-1            (3-3-1)    3%
3-HHB-1            (3-5-1)    4%
3-HHB-3            (3-5-1)    7%
3-HHB-O1           (3-5-1)    4%
2-BB(F)B-3         (3-7-1)    4%
3-HB(F)BH-3        (3-12-1)   3%
5-HBB(F)B-2        (3-13-1)   5%
 上記組成物100重量部に本発明の第一成分である化合物(1-5-1-1)を0.3重量部添加した。
ACA-BB-AC          (1-5-1-1)
 得られた組成物の特性は下記のとおりである。
 NI=83.3℃;Tc<-20℃;Δn=0.111;Δε=-2.6;Vth=2.32V;VHR-1=99.1%;VHR-2=98.5%;VHR-3=98.5%.
 実施例M1に記載の方法で作成した液晶表示素子の応答時間はτ=4.1msであった。
[Example M7]
V-HB (2F, 3F) -O2 (2-1-1) 10%
3-H2B (2F, 3F) -O2 (2-2-1) 5%
3-BB (2F, 3F) -O2 (2-3-1) 5%
3-H1OB (2F, 3F) -O2 (2-4-1) 6%
3-HBB (2F, 3F) -O2 (2-8-1) 6%
3-HHB (2F, 3CL) -O2 (2-9-1) 3%
3-DhHB (2F, 3F) -O2 (2-12-1) 3%
3-HDhB (2F, 3F) -O2 (2-13-1) 3%
3-HH1OCro (7F, 8F) -5 (2-19-1) 5%
2-HH-3 (3-1-1) 19%
5-HB-O2 (3-2-1) 5%
V2-BB-1 (3-3-1) 3%
3-HHB-1 (3-5-1) 4%
3-HHB-3 (3-5-1) 7%
3-HHB-O1 (3-5-1) 4%
2-BB (F) B-3 (3-7-1) 4%
3-HB (F) BH-3 (3-12-1) 3%
5-HBB (F) B-2 (3-13-1) 5%
To 100 parts by weight of the above composition, 0.3 part by weight of the compound (1-5-1-1) as the first component of the present invention was added.
ACA-BB-AC (1-5-1-1)
The characteristics of the obtained composition are as follows.
NI = 83.3 ° C .; Tc <−20 ° C .; Δn = 0.111; Δε = −2.6; Vth = 2.32 V; VHR-1 = 99.1%; VHR-2 = 98.5%; VHR-3 = 98.5%.
The response time of the liquid crystal display device prepared by the method described in Example M1 was τ = 4.1 ms.
[実施例M8]
V-HB(2F,3F)-O2     (2-1-1)   14%
5-H2B(2F,3F)-O2    (2-2-1)    5%
3-HBB(2F,3F)-O2    (2-8-1)   10%
4-HBB(2F,3F)-O2    (2-8-1)    4%
5-HBB(2F,3F)-O2    (2-8-1)    5%
3-HH1OCro(7F,8F)-5 (2-19-1)   7%
2-HH-3             (3-1-1)   23%
3-HH-O1            (3-1-1)    5%
3-HH-V             (3-1-1)    3%
4-HHEH-3           (3-4-1)    3%
4-HHEH-5           (3-4-1)    3%
3-HHB-1            (3-5-1)    6%
3-HHB-3            (3-5-1)    6%
3-HHB-O1           (3-5-1)    3%
2-BB(F)B-5         (3-7-1)    3%
 上記組成物100重量部に本発明の第一成分である化合物(1-5-1-2)を0.3重量部添加した。
ACA-BB-MAC         (1-5-1-2)
 得られた組成物の特性は下記のとおりである。
 NI=83.2℃;Tc<-20℃;Δn=0.093;Δε=-2.6;Vth=2.25V;VHR-1=99.3%;VHR-2=98.7%;VHR-3=98.6%.
 実施例M1に記載の方法で作成した液晶表示素子の応答時間はτ=4.1msであった。
[Example M8]
V-HB (2F, 3F) -O2 (2-1-1) 14%
5-H2B (2F, 3F) -O2 (2-2-1) 5%
3-HBB (2F, 3F) -O2 (2-8-1) 10%
4-HBB (2F, 3F) -O2 (2-8-1) 4%
5-HBB (2F, 3F) -O2 (2-8-1) 5%
3-HH1OCro (7F, 8F) -5 (2-19-1) 7%
2-HH-3 (3-1-1) 23%
3-HH-O1 (3-1-1) 5%
3-HH-V (3-1-1) 3%
4-HHEH-3 (3-4-1) 3%
4-HHEH-5 (3-4-1) 3%
3-HHB-1 (3-5-1) 6%
3-HHB-3 (3-5-1) 6%
3-HHB-O1 (3-5-1) 3%
2-BB (F) B-5 (3-7-1) 3%
To 100 parts by weight of the above composition, 0.3 part by weight of the compound (1-5-1-2) as the first component of the present invention was added.
ACA-BB-MAC (1-5-1-2)
The characteristics of the obtained composition are as follows.
NI = 83.2 ° C .; Tc <−20 ° C .; Δn = 0.093; Δε = −2.6; Vth = 2.25 V; VHR-1 = 99.3%; VHR-2 = 98.7%; VHR-3 = 98.6%.
The response time of the liquid crystal display device prepared by the method described in Example M1 was τ = 4.1 ms.
[実施例M9]
3-H2B(2F,3F)-O2    (2-2-1)   15%
5-H2B(2F,3F)-O2    (2-2-1)   15%
2-HBB(2F,3F)-O2    (2-8-1)    3%
3-HBB(2F,3F)-O2    (2-8-1)    9%
5-HBB(2F,3F)-O2    (2-8-1)    9%
3-HHB(2F,3CL)-O2   (2-9-1)    5%
2-HH-5             (3-1-1)    4%
3-HH-4             (3-1-1)   15%
3-HH-V1            (3-1-1)    4%
3-HB-O2            (3-2-1)   12%
3-HHB-3            (3-5-1)    6%
3-HB(F)HH-2        (3-9-1)    3%
 上記組成物100重量部に本発明の第一成分である化合物(1-1-1-1)を0.3重量部添加した。
MAC-VO-BB-MAC      (1-1-1-1)
 得られた組成物の特性は下記のとおりである。
 NI=75.2℃;Tc<-20℃;Δn=0.096;Δε=-2.7;Vth=2.41V;VHR-1=99.2%;VHR-2=98.5%;VHR-3=98.5%.
 実施例M1に記載の方法で作成した液晶表示素子の応答時間はτ=4.5msであった。
[Example M9]
3-H2B (2F, 3F) -O2 (2-2-1) 15%
5-H2B (2F, 3F) -O2 (2-2-1) 15%
2-HBB (2F, 3F) -O2 (2-8-1) 3%
3-HBB (2F, 3F) -O2 (2-8-1) 9%
5-HBB (2F, 3F) -O2 (2-8-1) 9%
3-HHB (2F, 3CL) -O2 (2-9-1) 5%
2-HH-5 (3-1-1) 4%
3-HH-4 (3-1-1) 15%
3-HH-V1 (3-1-1) 4%
3-HB-O2 (3-2-1) 12%
3-HHB-3 (3-5-1) 6%
3-HB (F) HH-2 (3-9-1) 3%
0.3 parts by weight of the compound (1-1-1-1) as the first component of the present invention was added to 100 parts by weight of the above composition.
MAC-VO-BB-MAC (1-1-1-1)
The characteristics of the obtained composition are as follows.
NI = 75.2 ° C .; Tc <−20 ° C .; Δn = 0.096; Δε = −2.7; Vth = 2.41 V; VHR-1 = 99.2%; VHR-2 = 98.5%; VHR-3 = 98.5%.
The response time of the liquid crystal display device prepared by the method described in Example M1 was τ = 4.5 ms.
[実施例M10]
3-H2B(2F,3F)-O2    (2-2-1)   17%
5-H2B(2F,3F)-O2    (2-2-1)   17%
3-HH1OB(2F,3F)-O2  (2-7-1)    5%
3-HHB(2F,3CL)-O2   (2-9-1)    4%
4-HHB(2F,3CL)-O2   (2-9-1)    3%
5-HHB(2F,3CL)-O2   (2-9-1)    3%
3-HBB(2F,3CL)-O2   (2-10-1)   8%
2-BB(2F,3F)B-3     (2-11-1)   4%
3-HH-V             (3-1-1)   27%
V-HHB-1            (3-5-1)    7%
2-BB(F)B-3         (3-7-1)    2%
3-HHEBH-3          (3-10-1)   3%
 上記組成物100重量部に本発明の第一成分である化合物(1-2-1-1)を0.3重量部添加した。
MAC-V-BB-MAC       (1-2-1-1)
 得られた組成物の特性は下記のとおりである。
 NI=71.9℃;Tc<-20℃;Δn=0.093;Δε=-2.8;Vth=2.33V;VHR-1=99.2%;VHR-2=98.6%;VHR-3=98.6%.
 実施例M1に記載の方法で作成した液晶表示素子の応答時間はτ=3.8msであった。
[Example M10]
3-H2B (2F, 3F) -O2 (2-2-1) 17%
5-H2B (2F, 3F) -O2 (2-2-1) 17%
3-HH1OB (2F, 3F) -O2 (2-7-1) 5%
3-HHB (2F, 3CL) -O2 (2-9-1) 4%
4-HHB (2F, 3CL) -O2 (2-9-1) 3%
5-HHB (2F, 3CL) -O2 (2-9-1) 3%
3-HBB (2F, 3CL) -O2 (2-10-1) 8%
2-BB (2F, 3F) B-3 (2-11-1) 4%
3-HH-V (3-1-1) 27%
V-HHB-1 (3-5-1) 7%
2-BB (F) B-3 (3-7-1) 2%
3-HHEBH-3 (3-10-1) 3%
0.3 parts by weight of the compound (1-2-1-1) as the first component of the present invention was added to 100 parts by weight of the above composition.
MAC-V-BB-MAC (1-2-1-1)
The characteristics of the obtained composition are as follows.
NI = 71.9 ° C .; Tc <−20 ° C .; Δn = 0.093; Δε = −2.8; Vth = 2.33 V; VHR-1 = 99.2%; VHR-2 = 98.6%; VHR-3 = 98.6%.
The response time of the liquid crystal display device prepared by the method described in Example M1 was τ = 3.8 ms.
[実施例M11]
V-HB(2F,3F)-O2     (2-1-1)   15%
V-HB(2F,3F)-O4     (2-1-1)    7%
3-HBB(2F,3F)-O2    (2-8-1)    3%
V-HBB(2F,3F)-O2    (2-8-1)   10%
V2-HBB(2F,3F)-O2   (2-8-1)   10%
3-HH1OCro(7F,8F)-5 (2-19-1)   8%
2-HH-3             (3-1-1)   29%
3-HHB-1            (3-5-1)    6%
3-HHB-3            (3-5-1)    6%
3-HHB-O1           (3-5-1)    6%
 上記組成物100重量部に本発明の第一成分である化合物(1-1-1-1)を0.3重量部添加した。
MAC-VO-BB-MAC      (1-1-1-1)
 得られた組成物の特性は下記のとおりである。
 NI=80.9℃;Tc<-20℃;Δn=0.094;Δε=-3.1;Vth=2.26V;VHR-1=99.3%;VHR-2=98.5%;VHR-3=98.6%.
 実施例M1に記載の方法で作成した液晶表示素子の応答時間はτ=4.7msであった。
[Example M11]
V-HB (2F, 3F) -O2 (2-1-1) 15%
V-HB (2F, 3F) -O4 (2-1-1) 7%
3-HBB (2F, 3F) -O2 (2-8-1) 3%
V-HBB (2F, 3F) -O2 (2-8-1) 10%
V2-HBB (2F, 3F) -O2 (2-8-1) 10%
3-HH1OCro (7F, 8F) -5 (2-19-1) 8%
2-HH-3 (3-1-1) 29%
3-HHB-1 (3-5-1) 6%
3-HHB-3 (3-5-1) 6%
3-HHB-O1 (3-5-1) 6%
0.3 parts by weight of the compound (1-1-1-1) as the first component of the present invention was added to 100 parts by weight of the above composition.
MAC-VO-BB-MAC (1-1-1-1)
The characteristics of the obtained composition are as follows.
NI = 80.9 ° C .; Tc <−20 ° C .; Δn = 0.094; Δε = −3.1; Vth = 2.26 V; VHR-1 = 99.3%; VHR-2 = 98.5%; VHR-3 = 98.6%.
The response time of the liquid crystal display device prepared by the method described in Example M1 was τ = 4.7 ms.
[実施例M12]
5-BB(2F,3F)-O2     (2-3-1)    7%
5-H1OB(2F,3F)-O2   (2-4-1)   10%
4-HH1OB(2F,3F)-O2  (2-7-1)    5%
5-HH1OB(2F,3F)-O2  (2-7-1)    5%
5-HBB(2F,3CL)-O2   (2-10-1)   6%
2-BB(2F,3F)B-3     (2-11-1)   3%
3-DhHB(2F,3F)-O2   (2-12-1)   6%
3-HDhB(2F,3F)-O2   (2-13-1)   7%
3-HH-V             (3-1-1)   30%
3-HH-V1            (3-1-1)    6%
3-HHB-1            (3-5-1)    4%
3-HHB-O1           (3-5-1)    4%
3-B(F)BB-2         (3-8-1)    3%
1O1-HBBH-5         (-)        4%
 上記組成物100重量部に本発明の第一成分である化合物(1-1-1-1)を0.3重量部添加した。
MAC-VO-BB-MAC         (1-1-1-1)
 得られた組成物の特性は下記のとおりである。
 NI=90.8℃;Tc<-20℃;Δn=0.099;Δε=-2.6;VHR-1=99.1%;VHR-2=98.1%;VHR-3=98.3%.
 実施例M1に記載の方法で作成した液晶表示素子の応答時間はτ=4.1msであった。
[Example M12]
5-BB (2F, 3F) -O2 (2-3-1) 7%
5-H1OB (2F, 3F) -O2 (2-4-1) 10%
4-HH1OB (2F, 3F) -O2 (2-7-1) 5%
5-HH1OB (2F, 3F) -O2 (2-7-1) 5%
5-HBB (2F, 3CL) -O2 (2-10-1) 6%
2-BB (2F, 3F) B-3 (2-11-1) 3%
3-DhHB (2F, 3F) -O2 (2-12-1) 6%
3-HDhB (2F, 3F) -O2 (2-13-1) 7%
3-HH-V (3-1-1) 30%
3-HH-V1 (3-1-1) 6%
3-HHB-1 (3-5-1) 4%
3-HHB-O1 (3-5-1) 4%
3-B (F) BB-2 (3-8-1) 3%
1O1-HBBH-5 (-) 4%
0.3 parts by weight of the compound (1-1-1-1) as the first component of the present invention was added to 100 parts by weight of the above composition.
MAC-VO-BB-MAC (1-1-1-1)
The characteristics of the obtained composition are as follows.
NI = 90.8 ° C .; Tc <−20 ° C .; Δn = 0.099; Δε = −2.6; VHR-1 = 99.1%; VHR-2 = 98.1%; VHR-3 = 98. 3%.
The response time of the liquid crystal display device prepared by the method described in Example M1 was τ = 4.1 ms.
[実施例M13]
3-H2B(2F,3F)-O2    (2-2-1)   12%
3-HH2B(2F,3F)-O2   (2-6-1)    5%
2-HBB(2F,3F)-O2    (2-8-1)    5%
3-HBB(2F,3F)-O2    (2-8-1)    7%
5-HBB(2F,3F)-O2    (2-8-1)    4%
3-HH2B(2F,3F,6Me)-O2 
                   (2-16-1)   5%
3-HH1OB(2F,3F,6Me)-O2
                   (2-17-1)   6%
3-HH1OCro(7F,8F)-5 
                   (2-19-1)   4%
4-HH-V             (3-1-1)   15%
5-HH-V             (3-1-1)   23%
3-HH-V1            (3-1-1)    6%
V-HHB-1            (3-5-1)    5%
V2-HHB-1           (3-5-1)    3%
 上記組成物100重量部に本発明の第一成分である化合物(1-1-1-1)を0.3重量部添加した。
MAC-VO-BB-MAC      (1-1-1-1)
 得られた組成物の特性は下記のとおりである。
 NI=88.5℃;Tc<-20℃;Δn=0.092;Δε=-2.9;VHR-1=99.4%;VHR-2=98.5%;VHR-3=98.7%.
 実施例M1に記載の方法で作成した液晶表示素子の応答時間はτ=4.7msであった。
[Example M13]
3-H2B (2F, 3F) -O2 (2-2-1) 12%
3-HH2B (2F, 3F) -O2 (2-6-1) 5%
2-HBB (2F, 3F) -O2 (2-8-1) 5%
3-HBB (2F, 3F) -O2 (2-8-1) 7%
5-HBB (2F, 3F) -O2 (2-8-1) 4%
3-HH2B (2F, 3F, 6Me) -O2
(2-16-1) 5%
3-HH1OB (2F, 3F, 6Me) -O2
(2-17-1) 6%
3-HH1OCro (7F, 8F) -5
(2-19-1) 4%
4-HH-V (3-1-1) 15%
5-HH-V (3-1-1) 23%
3-HH-V1 (3-1-1) 6%
V-HHB-1 (3-5-1) 5%
V2-HHB-1 (3-5-1) 3%
0.3 parts by weight of the compound (1-1-1-1) as the first component of the present invention was added to 100 parts by weight of the above composition.
MAC-VO-BB-MAC (1-1-1-1)
The characteristics of the obtained composition are as follows.
NI = 88.5 ° C .; Tc <−20 ° C .; Δn = 0.092; Δε = −2.9; VHR-1 = 99.4%; VHR-2 = 98.5%; VHR-3 = 98. 7%.
The response time of the liquid crystal display device prepared by the method described in Example M1 was τ = 4.7 ms.
[実施例M14]
3-HB(2F,3F)-O2     (2-1-1)    8%
3-HHB(2F,3F)-O2    (2-5-1)   10%
3-HBB(2F,3F)-O2    (2-8-1)    7%
5-HBB(2F,3F)-O2    (2-8-1)    5%
3-dhBB(2F,3F)-O2   (2-15-1)   6%
3-HH1OB(2F,3F,6Me)-O2
                   (2-17-1)   6%
3-H1OCro(7F,8F)-5  (2-18-1)   5%
3-HH-V             (3-1-1)   40%
1-HH-2V1           (3-1-1)    6%
3-HHEBH-3          (3-10-1)   4%
3-HHEBH-4          (3-10-1)   3%
 上記組成物100重量部に本発明の第一成分である化合物(1-2-1-1)を0.3重量部添加した。
MAC-V-BB-MAC          (1-2-1-1)
 得られた組成物の特性は下記のとおりである。
 NI=84.7℃;Tc<-20℃;Δn=0.090;Δε=-3.1;VHR-1=99.1%;VHR-2=98.6%;VHR-3=98.6%.
 実施例M1に記載の方法で作成した液晶表示素子の応答時間はτ=4.0msであった。
[Example M14]
3-HB (2F, 3F) -O2 (2-1-1) 8%
3-HHB (2F, 3F) -O2 (2-5-1) 10%
3-HBB (2F, 3F) -O2 (2-8-1) 7%
5-HBB (2F, 3F) -O2 (2-8-1) 5%
3-dhBB (2F, 3F) -O2 (2-15-1) 6%
3-HH1OB (2F, 3F, 6Me) -O2
(2-17-1) 6%
3-H1OCro (7F, 8F) -5 (2-18-1) 5%
3-HH-V (3-1-1) 40%
1-HH-2V1 (3-1-1) 6%
3-HHEBH-3 (3-10-1) 4%
3-HHEBH-4 (3-10-1) 3%
0.3 parts by weight of the compound (1-2-1-1) as the first component of the present invention was added to 100 parts by weight of the above composition.
MAC-V-BB-MAC (1-2-1-1)
The characteristics of the obtained composition are as follows.
NI = 84.7 ° C .; Tc <−20 ° C .; Δn = 0.090; Δε = −3.1; VHR-1 = 99.1%; VHR-2 = 98.6%; VHR-3 = 98. 6%.
The response time of the liquid crystal display device prepared by the method described in Example M1 was τ = 4.0 ms.
[実施例M15]
V-HB(2F,3F)-O2     (2-1-1)   12%
V-HB(2F,3F)-O4     (2-1-1)    5%
3-H2B(2F,3F)-O2    (2-2-1)   15%
3-BB(2F,3F)-O2     (2-3-1)    4%
3-HBB(2F,3F)-O2    (2-8-1)    7%
4-HBB(2F,3F)-O2    (2-8-1)    6%
5-HBB(2F,3F)-O2    (2-8-1)    6%
2-BB(2F,3F)B-4     (2-11-1)   3%
2-HH-5             (3-1-1)    5%
3-HH-4             (3-1-1)   14%
3-HHB-1            (3-5-1)    4%
3-HHB-3            (3-5-1)    5%
3-HHB-O1           (3-5-1)    3%
5-HBB(F)B-2        (3-13-1)   6%
1O1-HBBH-5         (-)        5%
 上記組成物100重量部に本発明の第一成分である化合物(1-2-1-1)を0.3重量部添加した。
MAC-V-BB-MAC       (1-2-1-1)
 得られた組成物の特性は下記のとおりである。
 NI=88.7℃;Tc<-20℃;Δn=0.115;Δε=-3.3;VHR-1=99.2%;VHR-2=98.5%;VHR-3=98.6%.
 実施例M1に記載の方法で作成した液晶表示素子の応答時間はτ=4.9msであった。
[Example M15]
V-HB (2F, 3F) -O2 (2-1-1) 12%
V-HB (2F, 3F) -O4 (2-1-1) 5%
3-H2B (2F, 3F) -O2 (2-2-1) 15%
3-BB (2F, 3F) -O2 (2-3-1) 4%
3-HBB (2F, 3F) -O2 (2-8-1) 7%
4-HBB (2F, 3F) -O2 (2-8-1) 6%
5-HBB (2F, 3F) -O2 (2-8-1) 6%
2-BB (2F, 3F) B-4 (2-11-1) 3%
2-HH-5 (3-1-1) 5%
3-HH-4 (3-1-1) 14%
3-HHB-1 (3-5-1) 4%
3-HHB-3 (3-5-1) 5%
3-HHB-O1 (3-5-1) 3%
5-HBB (F) B-2 (3-13-1) 6%
1O1-HBBH-5 (-) 5%
0.3 parts by weight of the compound (1-2-1-1) as the first component of the present invention was added to 100 parts by weight of the above composition.
MAC-V-BB-MAC (1-2-1-1)
The characteristics of the obtained composition are as follows.
NI = 88.7 ° C .; Tc <−20 ° C .; Δn = 0.115; Δε = −3.3; VHR-1 = 99.2%; VHR-2 = 98.5%; VHR-3 = 98. 6%.
The response time of the liquid crystal display device prepared by the method described in Example M1 was τ = 4.9 ms.
[実施例M16]
3-HB(2F,3F)-O2     (2-1-1)    5%
3-H2B(2F,3F)-O2    (2-2-1)   19%
5-H2B(2F,3F)-O2    (2-2-1)    5%
3-HHB(2F,3F)-O2    (2-5-1)    8%
5-HHB(2F,3F)-O2    (2-5-1)    7%
3-HBB(2F,3F)-O2    (2-8-1)   10%
4-HBB(2F,3F)-O2    (2-8-1)    5%
3-HDhB(2F,3F)-O2   (2-13-1)   5%
2-HH-3             (3-1-1)   20%
3-HH-4             (3-1-1)    7%
3-HHB-1            (3-5-1)    4%
V-HHB-1            (3-5-1)    3%
5-B(F)BB-2         (3-8-1)    2%
 上記組成物100重量部に本発明の第一成分である化合物(1-1-1-1)を0.15重量部添加し、本発明の第一成分でない重合性化合物(6-1-1)を0.15重量部添加した。
MAC-VO-BB-MAC      (1-1-1-1)
MAC-BB-MAC         (6-1-1)
 得られた組成物の特性は下記のとおりである。
 NI=78.8℃;Tc<-20℃;Δn=0.090;Δε=-3.5;VHR-1=99.1%;VHR-2=98.3%;VHR-3=98.4%.
 実施例M1に記載の方法で作成した液晶表示素子の応答時間はτ=4.2msであった。
[Example M16]
3-HB (2F, 3F) -O2 (2-1-1) 5%
3-H2B (2F, 3F) -O2 (2-2-1) 19%
5-H2B (2F, 3F) -O2 (2-2-1) 5%
3-HHB (2F, 3F) -O2 (2-5-1) 8%
5-HHB (2F, 3F) -O2 (2-5-1) 7%
3-HBB (2F, 3F) -O2 (2-8-1) 10%
4-HBB (2F, 3F) -O2 (2-8-1) 5%
3-HDhB (2F, 3F) -O2 (2-13-1) 5%
2-HH-3 (3-1-1) 20%
3-HH-4 (3-1-1) 7%
3-HHB-1 (3-5-1) 4%
V-HHB-1 (3-5-1) 3%
5-B (F) BB-2 (3-8-1) 2%
0.15 parts by weight of the compound (1-1-1-1) which is the first component of the present invention is added to 100 parts by weight of the above composition, and the polymerizable compound (6-1-1) which is not the first component of the present invention. ) Was added at 0.15 parts by weight.
MAC-VO-BB-MAC (1-1-1-1)
MAC-BB-MAC (6-1-1)
The characteristics of the obtained composition are as follows.
NI = 78.8 ° C .; Tc <−20 ° C .; Δn = 0.090; Δε = −3.5; VHR-1 = 99.1%; VHR-2 = 98.3%; VHR-3 = 98. 4%.
The response time of the liquid crystal display device prepared by the method described in Example M1 was τ = 4.2 ms.
[実施例M17]
V-HB(2F,3F)-O2     (2-1-1)    5%
3-H2B(2F,3F)-O2    (2-2-1)   10%
5-H2B(2F,3F)-O2    (2-2-1)   10%
3-HHB(2F,3F)-O2    (2-5-1)    8%
5-HHB(2F,3F)-O2    (2-5-1)    6%
3-HH1OB(2F,3F)-O2  (2-7-1)    5%
3-HBB(2F,3F)-O2    (2-8-1)   10%
4-HBB(2F,3F)-O2    (2-8-1)    5%
3-HDhB(2F,3F)-O2   (2-13-1)   5%
2-HH-3             (3-1-1)   20%
3-HH-4             (3-1-1)    7%
3-HHB-1            (3-5-1)    4%
3-HHB-3            (3-5-1)    3%
5-B(F)BB-2         (3-8-1)    2%
 上記組成物100重量部に本発明の第一成分である化合物(1-1-1-1)を0.15重量部添加し、本発明の第一成分でない重合性化合物(6-1-2)を0.15重量部添加した。
MAC-VO-BB-MAC      (1-1-1-1)
MAC-B(2F)B-MAC     (6-1-2)
 得られた組成物の特性は下記のとおりである。
 NI=83.7℃;Tc<-20℃;Δn=0.090;Δε=-3.6;VHR-1=99.2%;VHR-2=98.3%;VHR-3=98.6%.
 実施例M1に記載の方法で作成した液晶表示素子の応答時間はτ=4.4msであった。
[Example M17]
V-HB (2F, 3F) -O2 (2-1-1) 5%
3-H2B (2F, 3F) -O2 (2-2-1) 10%
5-H2B (2F, 3F) -O2 (2-2-1) 10%
3-HHB (2F, 3F) -O2 (2-5-1) 8%
5-HHB (2F, 3F) -O2 (2-5-1) 6%
3-HH1OB (2F, 3F) -O2 (2-7-1) 5%
3-HBB (2F, 3F) -O2 (2-8-1) 10%
4-HBB (2F, 3F) -O2 (2-8-1) 5%
3-HDhB (2F, 3F) -O2 (2-13-1) 5%
2-HH-3 (3-1-1) 20%
3-HH-4 (3-1-1) 7%
3-HHB-1 (3-5-1) 4%
3-HHB-3 (3-5-1) 3%
5-B (F) BB-2 (3-8-1) 2%
0.15 parts by weight of the compound (1-1-1-1) which is the first component of the present invention is added to 100 parts by weight of the above composition, and the polymerizable compound (6-1-2) which is not the first component of the present invention. ) Was added in an amount of 0.15 parts by weight.
MAC-VO-BB-MAC (1-1-1-1)
MAC-B (2F) B-MAC (6-1-2)
The characteristics of the obtained composition are as follows.
NI = 83.7 ° C .; Tc <−20 ° C .; Δn = 0.090; Δε = −3.6; VHR-1 = 99.2%; VHR-2 = 98.3%; VHR-3 = 98. 6%.
The response time of the liquid crystal display device prepared by the method described in Example M1 was τ = 4.4 ms.
[実施例M18]
3-H2B(2F,3F)-O2    (2-2-1)   19%
5-H2B(2F,3F)-O2    (2-2-1)   10%
3-HHB(2F,3F)-O2    (2-5-1)    8%
5-HHB(2F,3F)-O2    (2-5-1)    5%
3-HBB(2F,3F)-O2    (2-8-1)   10%
4-HBB(2F,3F)-O2    (2-8-1)    5%
3-dhBB(2F,3F)-O2   (2-15-1)   5%
2-HH-3             (3-1-1)   20%
2-HH-5             (3-1-1)    5%
3-HHB-1            (3-5-1)    5%
3-HHB-3            (3-5-1)    3%
5-B(F)BB-2         (3-8-1)    5%
 上記組成物100重量部に本発明の第一成分である化合物(1-1-1-1)を0.15重量部および化合物(1-1-1-2)を0.15重量部添加した。
MAC-VO-BB-MAC      (1-1-1-1)
MAC-VO-BB-AC       (1-1-1-2)
 得られた組成物の特性は下記のとおりである。
 NI=81.1℃;Tc<-20℃;Δn=0.100;Δε=-3.4;VHR-1=99.2%;VHR-2=98.5%;VHR-3=98.6%.
 実施例M1に記載の方法で作成した液晶表示素子の応答時間はτ=4.4msであった。
[Example M18]
3-H2B (2F, 3F) -O2 (2-2-1) 19%
5-H2B (2F, 3F) -O2 (2-2-1) 10%
3-HHB (2F, 3F) -O2 (2-5-1) 8%
5-HHB (2F, 3F) -O2 (2-5-1) 5%
3-HBB (2F, 3F) -O2 (2-8-1) 10%
4-HBB (2F, 3F) -O2 (2-8-1) 5%
3-dhBB (2F, 3F) -O2 (2-15-1) 5%
2-HH-3 (3-1-1) 20%
2-HH-5 (3-1-1) 5%
3-HHB-1 (3-5-1) 5%
3-HHB-3 (3-5-1) 3%
5-B (F) BB-2 (3-8-1) 5%
0.15 parts by weight of the compound (1-1-1-1) as the first component of the present invention and 0.15 parts by weight of the compound (1-1-1-2) were added to 100 parts by weight of the composition. .
MAC-VO-BB-MAC (1-1-1-1)
MAC-VO-BB-AC (1-1-1-2)
The characteristics of the obtained composition are as follows.
NI = 81.1 ° C .; Tc <−20 ° C .; Δn = 0.100; Δε = −3.4; VHR-1 = 99.2%; VHR-2 = 98.5%; VHR-3 = 98. 6%.
The response time of the liquid crystal display device prepared by the method described in Example M1 was τ = 4.4 ms.
[実施例M19]
3-H2B(2F,3F)-O2    (2-2-1)   10%
5-H2B(2F,3F)-O2    (2-2-1)   10%
3-BB(2F,3F)-O2     (2-3-1)    5%
3-HHB(2F,3F)-O2    (2-5-1)    8%
5-HHB(2F,3F)-O2    (2-5-1)    5%
3-HBB(2F,3F)-O2    (2-8-1)   10%
2-BB(2F,3F)B-3     (2-11-1)   5%
3-HDhB(2F,3F)-O2   (2-13-1)   5%
2-HH-3             (3-1-1)   20%
3-HH-4             (3-1-1)    7%
3-HH-V1            (3-1-1)    3%
3-HHB-1            (3-5-1)    4%
3-HHB-3            (3-5-1)    3%
5-B(F)BB-2         (3-8-1)    5%
 上記組成物100重量部に本発明の第一成分である化合物(1-1-1-1)を0.1重量部および化合物(1-1-1-2)を0.1重量部添加し、本発明の第一成分でない重合性化合物(6-1-2)を0.1重量部添加した。
MAC-VO-BB-MAC      (1-1-1-1)
MAC-VO-BB-AC       (1-1-1-2)
MAC-B(2F)B-MAC     (6-1-2)
 得られた組成物の特性は下記のとおりである。
 NI=79.0℃;Tc<-20℃;Δn=0.101;Δε=-3.0;VHR-1=99.4%;VHR-2=98.7%;VHR-3=98.8%.
 実施例M1に記載の方法で作成した液晶表示素子の応答時間はτ=3.9msであった。
[Example M19]
3-H2B (2F, 3F) -O2 (2-2-1) 10%
5-H2B (2F, 3F) -O2 (2-2-1) 10%
3-BB (2F, 3F) -O2 (2-3-1) 5%
3-HHB (2F, 3F) -O2 (2-5-1) 8%
5-HHB (2F, 3F) -O2 (2-5-1) 5%
3-HBB (2F, 3F) -O2 (2-8-1) 10%
2-BB (2F, 3F) B-3 (2-11-1) 5%
3-HDhB (2F, 3F) -O2 (2-13-1) 5%
2-HH-3 (3-1-1) 20%
3-HH-4 (3-1-1) 7%
3-HH-V1 (3-1-1) 3%
3-HHB-1 (3-5-1) 4%
3-HHB-3 (3-5-1) 3%
5-B (F) BB-2 (3-8-1) 5%
To 100 parts by weight of the above composition, 0.1 part by weight of the compound (1-1-1-1) as the first component of the present invention and 0.1 part by weight of the compound (1-1-1-2) are added. Then, 0.1 part by weight of the polymerizable compound (6-1-2) which is not the first component of the present invention was added.
MAC-VO-BB-MAC (1-1-1-1)
MAC-VO-BB-AC (1-1-1-2)
MAC-B (2F) B-MAC (6-1-2)
The characteristics of the obtained composition are as follows.
NI = 79.0 ° C .; Tc <−20 ° C .; Δn = 0.101; Δε = −3.0; VHR-1 = 99.4%; VHR-2 = 98.7%; VHR-3 = 98. 8%.
The response time of the liquid crystal display device prepared by the method described in Example M1 was τ = 3.9 ms.
[実施例M20]
V-HB(2F,3F)-O2     (2-1-1)    5%
3-H2B(2F,3F)-O2    (2-2-1)   10%
3-BB(2F,3F)-O2     (2-3-1)    5%
3-HHB(2F,3F)-O2    (2-5-1)    8%
5-HHB(2F,3F)-O2    (2-5-1)    6%
3-HH1OB(2F,3F)-O2  (2-7-1)    5%
3-HBB(2F,3F)-O2    (2-8-1)   10%
5-HBB(2F,3F)-O2    (2-8-1)    5%
3-HHB(2F,3CL)-O2   (2-9-1)    3%
3-HDhB(2F,3F)-O2   (2-13-1)   5%
2-HH-3             (3-1-1)   22%
3-HH-4             (3-1-1)    7%
3-HHB-1            (3-5-1)    4%
2-BB(F)B-5         (3-7-1)    3%
5-B(F)BB-3         (3-8-1)    2%
 上記組成物100重量部に本発明の第一成分である化合物(1-1)を0.1重量部および化合物(1-1-1-2)を0.1重量部添加し、本発明の第一成分でない重合性化合物(6-1-2)を0.1重量部添加した。
MAC-VO-BB(F)-MAC   (1-1)
MAC-VO-BB-AC       (1-1-1-2)
MAC-B(2F)B-MAC     (6-1-2)
 得られた組成物の特性は下記のとおりである。
 NI=86.1℃;Tc<-20℃;Δn=0.098;Δε=-3.6;VHR-1=99.2%;VHR-2=98.4%;VHR-3=98.7%.
 実施例M1に記載の方法で作成した液晶表示素子の応答時間はτ=3.9msであった。
[Example M20]
V-HB (2F, 3F) -O2 (2-1-1) 5%
3-H2B (2F, 3F) -O2 (2-2-1) 10%
3-BB (2F, 3F) -O2 (2-3-1) 5%
3-HHB (2F, 3F) -O2 (2-5-1) 8%
5-HHB (2F, 3F) -O2 (2-5-1) 6%
3-HH1OB (2F, 3F) -O2 (2-7-1) 5%
3-HBB (2F, 3F) -O2 (2-8-1) 10%
5-HBB (2F, 3F) -O2 (2-8-1) 5%
3-HHB (2F, 3CL) -O2 (2-9-1) 3%
3-HDhB (2F, 3F) -O2 (2-13-1) 5%
2-HH-3 (3-1-1) 22%
3-HH-4 (3-1-1) 7%
3-HHB-1 (3-5-1) 4%
2-BB (F) B-5 (3-7-1) 3%
5-B (F) BB-3 (3-8-1) 2%
To 100 parts by weight of the above composition, 0.1 part by weight of the compound (1-1) as the first component of the present invention and 0.1 part by weight of the compound (1-1-1-2) are added. 0.1 parts by weight of the polymerizable compound (6-1-2) which is not the first component was added.
MAC-VO-BB (F) -MAC (1-1)
MAC-VO-BB-AC (1-1-1-2)
MAC-B (2F) B-MAC (6-1-2)
The characteristics of the obtained composition are as follows.
NI = 86.1 ° C .; Tc <−20 ° C .; Δn = 0.098; Δε = −3.6; VHR-1 = 99.2%; VHR-2 = 98.4%; VHR-3 = 98. 7%.
The response time of the liquid crystal display device prepared by the method described in Example M1 was τ = 3.9 ms.
[実施例M21]
3-H2B(2F,3F)-O2    (2-2-1)   19%
5-BB(2F,3F)-O2     (2-3-1)    5%
3-HHB(2F,3F)-O2    (2-5-1)    8%
5-HHB(2F,3F)-O2    (2-5-1)    7%
3-HBB(2F,3F)-O2    (2-8-1)    5%
5-HBB(2F,3F)-O2    (2-8-1)    5%
2-BB(2F,3F)B-3     (2-11-1)   5%
5-dhBB(2F,3F)-O2   (2-15-1)   5%
2-HH-3             (3-1-1)   22%
3-HH-5             (3-1-1)    3%
3-HH-O1            (3-1-1)    3%
3-HHB-1            (3-5-1)    5%
3-HHB-O1           (3-5-1)    3%
2-B(F)BB-5         (3-8-1)    5%
 上記組成物100重量部に本発明の第一成分である化合物(1-1)を0.1重量部および化合物(1-8-1-1)を0.1重量部添加し、本発明の第一成分でない重合性化合物(6-1-2)を0.1重量部添加した。
MAC-VO-BB(F)-MAC   (1-1)
MAC-VO-BB(F)B-MAC  (1-8-1-1)
MAC-B(2F)B-MAC     (6-1-2)
 得られた組成物の特性は下記のとおりである。
 NI=81.7℃;Tc<-20℃;Δn=0.104;Δε=-3.1;VHR-1=99.3%;VHR-2=98.5%;VHR-3=98.7%.
 実施例M1に記載の方法で作成した液晶表示素子の応答時間はτ=4.3msであった。
[Example M21]
3-H2B (2F, 3F) -O2 (2-2-1) 19%
5-BB (2F, 3F) -O2 (2-3-1) 5%
3-HHB (2F, 3F) -O2 (2-5-1) 8%
5-HHB (2F, 3F) -O2 (2-5-1) 7%
3-HBB (2F, 3F) -O2 (2-8-1) 5%
5-HBB (2F, 3F) -O2 (2-8-1) 5%
2-BB (2F, 3F) B-3 (2-11-1) 5%
5-dhBB (2F, 3F) -O2 (2-15-1) 5%
2-HH-3 (3-1-1) 22%
3-HH-5 (3-1-1) 3%
3-HH-O1 (3-1-1) 3%
3-HHB-1 (3-5-1) 5%
3-HHB-O1 (3-5-1) 3%
2-B (F) BB-5 (3-8-1) 5%
To 100 parts by weight of the above composition, 0.1 part by weight of the compound (1-1) as the first component of the present invention and 0.1 part by weight of the compound (1-8-1-1) are added. 0.1 parts by weight of the polymerizable compound (6-1-2) which is not the first component was added.
MAC-VO-BB (F) -MAC (1-1)
MAC-VO-BB (F) B-MAC (1-8-1-1)
MAC-B (2F) B-MAC (6-1-2)
The characteristics of the obtained composition are as follows.
NI = 81.7 ° C .; Tc <−20 ° C .; Δn = 0.104; Δε = −3.1; VHR-1 = 99.3%; VHR-2 = 98.5%; VHR-3 = 98. 7%.
The response time of the liquid crystal display device prepared by the method described in Example M1 was τ = 4.3 ms.
[実施例M22]
V-HB(2F,3F)-O2     (2-1-1)    5%
3-H2B(2F,3F)-O2    (2-2-1)   13%
5-BB(2F,3F)-O2     (2-3-1)    5%
3-HHB(2F,3F)-O2    (2-5-1)    8%
5-HHB(2F,3F)-O2    (2-5-1)    6%
2-HH1OB(2F,3F)-O2  (2-7-1)    5%
3-HBB(2F,3F)-O2    (2-8-1)   10%
5-HBB(2F,3F)-O2    (2-8-1)    5%
2-HDhB(2F,3F)-O2   (2-13-1)   5%
2-HH-3             (3-1-1)   22%
3-HH-4             (3-1-1)    7%
3-HHB-1            (3-5-1)    4%
2-BB(F)B-5         (3-7-1)    3%
5-B(F)BB-3         (3-8-1)    2%
 上記組成物100重量部に本発明の第一成分である化合物(1-1-1-3)を0.3重量部添加した。
AC-VO-BB-MAC       (1-1-1-3)
 得られた組成物の特性は下記のとおりである。
 NI=80.0℃;Tc<-20℃;Δn=0.096;Δε=-3.6;VHR-1=99.0%;VHR-2=98.1%;VHR-3=98.5%.
 実施例M1に記載の方法で作成した液晶表示素子の応答時間はτ=4.6msであった。
[Example M22]
V-HB (2F, 3F) -O2 (2-1-1) 5%
3-H2B (2F, 3F) -O2 (2-2-1) 13%
5-BB (2F, 3F) -O2 (2-3-1) 5%
3-HHB (2F, 3F) -O2 (2-5-1) 8%
5-HHB (2F, 3F) -O2 (2-5-1) 6%
2-HH1OB (2F, 3F) -O2 (2-7-1) 5%
3-HBB (2F, 3F) -O2 (2-8-1) 10%
5-HBB (2F, 3F) -O2 (2-8-1) 5%
2-HDhB (2F, 3F) -O2 (2-13-1) 5%
2-HH-3 (3-1-1) 22%
3-HH-4 (3-1-1) 7%
3-HHB-1 (3-5-1) 4%
2-BB (F) B-5 (3-7-1) 3%
5-B (F) BB-3 (3-8-1) 2%
To 100 parts by weight of the above composition, 0.3 part by weight of the compound (1-1-1-3) as the first component of the present invention was added.
AC-VO-BB-MAC (1-1-1-3)
The characteristics of the obtained composition are as follows.
NI = 80.0 ° C .; Tc <−20 ° C .; Δn = 0.096; Δε = −3.6; VHR-1 = 99.0%; VHR-2 = 98.1%; VHR-3 = 98. 5%.
The response time of the liquid crystal display device prepared by the method described in Example M1 was τ = 4.6 ms.
[実施例M23]
V-HB(2F,3F)-O2     (2-1-1)    5%
3-H2B(2F,3F)-O2    (2-2-1)   10%
3-BB(2F,3F)-O2     (2-3-1)    5%
3-HHB(2F,3F)-O2    (2-5-1)    8%
5-HHB(2F,3F)-O2    (2-5-1)    6%
2-HH1OB(2F,3F)-O2  (2-7-1)    5%
3-HBB(2F,3F)-O2    (2-8-1)   10%
2-BB(2F,3F)B-4     (2-11-1)   8%
3-HDhB(2F,3F)-O2   (2-13-1)   5%
2-HH-3             (3-1-1)   20%
3-HH-4             (3-1-1)    9%
3-HHB-1            (3-5-1)    4%
2-BB(F)B-5         (3-7-1)    3%
5-B(F)BB-3         (3-8-1)    2%
 上記組成物100重量部に本発明の第一成分である化合物(1-1-1-1)を0.285重量部および化合物(1-1-1-4)を0.015重量部添加した。
MAC-VO-BB-MAC      (1-1-1-1)
AC-VO-BB-AC        (1-1-1-4)
 得られた組成物の特性は下記のとおりである。
 NI=81.7℃;Tc<-20℃;Δn=0.106;Δε=-3.3;VHR-1=99.3%;VHR-2=98.7%;VHR-3=98.9%.
 実施例M1に記載の方法で作成した液晶表示素子の応答時間はτ=4.4msであった。
[Example M23]
V-HB (2F, 3F) -O2 (2-1-1) 5%
3-H2B (2F, 3F) -O2 (2-2-1) 10%
3-BB (2F, 3F) -O2 (2-3-1) 5%
3-HHB (2F, 3F) -O2 (2-5-1) 8%
5-HHB (2F, 3F) -O2 (2-5-1) 6%
2-HH1OB (2F, 3F) -O2 (2-7-1) 5%
3-HBB (2F, 3F) -O2 (2-8-1) 10%
2-BB (2F, 3F) B-4 (2-11-1) 8%
3-HDhB (2F, 3F) -O2 (2-13-1) 5%
2-HH-3 (3-1-1) 20%
3-HH-4 (3-1-1) 9%
3-HHB-1 (3-5-1) 4%
2-BB (F) B-5 (3-7-1) 3%
5-B (F) BB-3 (3-8-1) 2%
0.285 parts by weight of the compound (1-1-1-1) as the first component of the present invention and 0.015 parts by weight of the compound (1-1-1-4) were added to 100 parts by weight of the composition. .
MAC-VO-BB-MAC (1-1-1-1)
AC-VO-BB-AC (1-1-1-4)
The characteristics of the obtained composition are as follows.
NI = 81.7 ° C .; Tc <−20 ° C .; Δn = 0.106; Δε = −3.3; VHR-1 = 99.3%; VHR-2 = 98.7%; VHR-3 = 98. 9%.
The response time of the liquid crystal display device prepared by the method described in Example M1 was τ = 4.4 ms.
[実施例M24]
V-HB(2F,3F)-O2     (2-1-1)    5%
3-H2B(2F,3F)-O2    (2-2-1)   10%
3-BB(2F,3F)-O2     (2-3-1)    5%
3-HHB(2F,3F)-O2    (2-5-1)    8%
5-HHB(2F,3F)-O2    (2-5-1)    6%
3-HH1OB(2F,3F)-O2  (2-7-1)    5%
3-HBB(2F,3F)-O2    (2-8-1)   10%
3-HHB(2F,3CL)-O2   (2-9-1)    2%
3-HDhB(2F,3F)-O2   (2-13-1)   4%
3-dhBB(2F,3F)-O2   (2-15-1)   5%
2-HH-3             (3-1-1)   22%
5-HB-3             (3-2-1)    7%
3-HHB-1            (3-5-1)    8%
2-BB(F)B-3         (3-7-1)    3%
 上記組成物100重量部に本発明の第一成分である化合物(1-1)を0.1重量部、化合物(1-1-1-4)を0.1重量部、および化合物(1-8-1-2)を0.1重量部添加した。
MAC-VO-BB(CF3)-MAC (1-1)
AC-VO-BB-AC        (1-1-1-4)
MAC-VO-BB(2F)B-MAC (1-8-1-2)
 得られた組成物の特性は下記のとおりである。
 NI=81.7℃;Tc<-20℃;Δn=0.098;Δε=-3.5;VHR-1=99.1%;VHR-2=98.5%;VHR-3=98.1%.
 実施例M1に記載の方法で作成した液晶表示素子の応答時間はτ=4.5msであった。
[Example M24]
V-HB (2F, 3F) -O2 (2-1-1) 5%
3-H2B (2F, 3F) -O2 (2-2-1) 10%
3-BB (2F, 3F) -O2 (2-3-1) 5%
3-HHB (2F, 3F) -O2 (2-5-1) 8%
5-HHB (2F, 3F) -O2 (2-5-1) 6%
3-HH1OB (2F, 3F) -O2 (2-7-1) 5%
3-HBB (2F, 3F) -O2 (2-8-1) 10%
3-HHB (2F, 3CL) -O2 (2-9-1) 2%
3-HDhB (2F, 3F) -O2 (2-13-1) 4%
3-dhBB (2F, 3F) -O2 (2-15-1) 5%
2-HH-3 (3-1-1) 22%
5-HB-3 (3-2-1) 7%
3-HHB-1 (3-5-1) 8%
2-BB (F) B-3 (3-7-1) 3%
In 100 parts by weight of the above composition, 0.1 part by weight of the compound (1-1) as the first component of the present invention, 0.1 part by weight of the compound (1-1-1-4), and the compound (1- 8-1-2) was added in an amount of 0.1 part by weight.
MAC-VO-BB (CF3) -MAC (1-1)
AC-VO-BB-AC (1-1-1-4)
MAC-VO-BB (2F) B-MAC (1-8-1-2)
The characteristics of the obtained composition are as follows.
NI = 81.7 ° C .; Tc <−20 ° C .; Δn = 0.098; Δε = −3.5; VHR-1 = 99.1%; VHR-2 = 98.5%; VHR-3 = 98. 1%.
The response time of the liquid crystal display device prepared by the method described in Example M1 was τ = 4.5 ms.
[実施例M25]
3-HB(2F,3F)-O4     (2-1-1)    5%
5-H2B(2F,3F)-O2    (2-2-1)   10%
3-BB(2F,3F)-O2     (2-3-1)    5%
3-HHB(2F,3F)-O2    (2-5-1)    8%
5-HHB(2F,3F)-O2    (2-5-1)    6%
3-HH1OB(2F,3F)-O2  (2-7-1)    5%
3-HBB(2F,3F)-O2    (2-8-1)    7%
3-HHB(2F,3CL)-O2   (2-9-1)    3%
3-HDhB(2F,3F)-O2   (2-13-1)   5%
2-HH-3             (3-1-1)   22%
3-HH-4             (3-1-1)    7%
1-BB-3             (3-3-1)    5%
3-HHB-1            (3-5-1)    4%
5-B(F)BB-3         (3-8-1)    5%
5-HBB(F)B-2        (3-13-1)   3%
 上記組成物100重量部に本発明の第一成分である化合物(1-1-1-4)を0.05重量部および化合物(1-8-1-3)を0.2重量部添加し、本発明の第一成分でない重合性化合物(6-1-2)を0.15重量部添加した。
AC-VO-BB-AC        (1-1-1-4)
MAC-VO-B(2F)BB-MAC (1-8-1-3)
MAC-B(2F)B-MAC     (6-1-2)
 得られた組成物の特性は下記のとおりである。
 NI=82.8℃;Tc<-20℃;Δn=0.099;Δε=-3.1;VHR-1=99.1%;VHR-2=98.0%;VHR-3=98.5%.
 実施例M1に記載の方法で作成した液晶表示素子の応答時間はτ=4.2msであった。
[Example M25]
3-HB (2F, 3F) -O4 (2-1-1) 5%
5-H2B (2F, 3F) -O2 (2-2-1) 10%
3-BB (2F, 3F) -O2 (2-3-1) 5%
3-HHB (2F, 3F) -O2 (2-5-1) 8%
5-HHB (2F, 3F) -O2 (2-5-1) 6%
3-HH1OB (2F, 3F) -O2 (2-7-1) 5%
3-HBB (2F, 3F) -O2 (2-8-1) 7%
3-HHB (2F, 3CL) -O2 (2-9-1) 3%
3-HDhB (2F, 3F) -O2 (2-13-1) 5%
2-HH-3 (3-1-1) 22%
3-HH-4 (3-1-1) 7%
1-BB-3 (3-3-1) 5%
3-HHB-1 (3-5-1) 4%
5-B (F) BB-3 (3-8-1) 5%
5-HBB (F) B-2 (3-13-1) 3%
0.05 parts by weight of the compound (1-1-1-4) as the first component of the present invention and 0.2 parts by weight of the compound (1-8-1-3) are added to 100 parts by weight of the above composition. Then, 0.15 parts by weight of the polymerizable compound (6-1-2) which is not the first component of the present invention was added.
AC-VO-BB-AC (1-1-1-4)
MAC-VO-B (2F) BB-MAC (1-8-1-3)
MAC-B (2F) B-MAC (6-1-2)
The characteristics of the obtained composition are as follows.
NI = 82.8 ° C .; Tc <−20 ° C .; Δn = 0.099; Δε = −3.1; VHR-1 = 99.1%; VHR-2 = 98.0%; VHR-3 = 98. 5%.
The response time of the liquid crystal display device prepared by the method described in Example M1 was τ = 4.2 ms.
[実施例M26]
V-HB(2F,3F)-O2     (2-1-1)    5%
3-H2B(2F,3F)-O2    (2-2-1)   10%
5-BB(2F,3F)-O4     (2-3-1)    5%
3-HHB(2F,3F)-O2    (2-5-1)    8%
5-HHB(2F,3F)-O2    (2-5-1)    6%
5-HH1OB(2F,3F)-O2  (2-7-1)    5%
3-HBB(2F,3F)-O2    (2-8-1)   10%
5-HDhB(2F,3F)-O2   (2-13-1)   5%
2-HH-3             (3-1-1)   18%
2-HH-5             (3-1-1)    7%
3-HB-O2            (3-2-1)    7%
3-HHB-3            (3-5-1)    5%
3-B(F)BB-2         (3-8-1)    4%
5-HBB(F)B-3        (3-13-1)   5%
 上記組成物100重量部に本発明の第一成分である化合物(1-1-1-1)を0.1重量部、化合物(1-3-1-1)を0.1重量部、および化合物(1-8-1-2)を0.1重量部添加した。
MAC-VO-BB-MAC      (1-1-1-1)
MAC-1V-BB-MAC      (1-3-1-1)
MAC-VO-BB(2F)B-MAC (1-8-1-2)
 得られた組成物の特性は下記のとおりである。
 NI=88.0℃;Tc<-20℃;Δn=0.103;Δε=-3.3;VHR-1=99.3%;VHR-2=98.5%;VHR-3=98.9%.
 実施例M1に記載の方法で作成した液晶表示素子の応答時間はτ=4.5msであった。
[Example M26]
V-HB (2F, 3F) -O2 (2-1-1) 5%
3-H2B (2F, 3F) -O2 (2-2-1) 10%
5-BB (2F, 3F) -O4 (2-3-1) 5%
3-HHB (2F, 3F) -O2 (2-5-1) 8%
5-HHB (2F, 3F) -O2 (2-5-1) 6%
5-HH1OB (2F, 3F) -O2 (2-7-1) 5%
3-HBB (2F, 3F) -O2 (2-8-1) 10%
5-HDhB (2F, 3F) -O2 (2-13-1) 5%
2-HH-3 (3-1-1) 18%
2-HH-5 (3-1-1) 7%
3-HB-O2 (3-2-1) 7%
3-HHB-3 (3-5-1) 5%
3-B (F) BB-2 (3-8-1) 4%
5-HBB (F) B-3 (3-13-1) 5%
In 100 parts by weight of the composition, 0.1 part by weight of the compound (1-1-1-1) as the first component of the present invention, 0.1 part by weight of the compound (1-3-1-1), and 0.1 part by weight of compound (1-8-1-2) was added.
MAC-VO-BB-MAC (1-1-1-1)
MAC-1V-BB-MAC (1-3-1-1)
MAC-VO-BB (2F) B-MAC (1-8-1-2)
The characteristics of the obtained composition are as follows.
NI = 88.0 ° C .; Tc <−20 ° C .; Δn = 0.103; Δε = −3.3; VHR-1 = 99.3%; VHR-2 = 98.5%; VHR-3 = 98. 9%.
The response time of the liquid crystal display device prepared by the method described in Example M1 was τ = 4.5 ms.
[実施例M27]
5-HB(2F,3F)-O2     (2-1-1)    5%
3-H2B(2F,3F)-O4    (2-2-1)   10%
3-BB(2F,3F)-O2     (2-3-1)    5%
3-HHB(2F,3F)-O2    (2-5-1)    9%
5-HHB(2F,3F)-O2    (2-5-1)    8%
2-HH1OB(2F,3F)-O2  (2-7-1)    5%
5-HBB(2F,3F)-O2    (2-8-1)    5%
2-BB(2F,3F)B-4     (2-11-1)  10%
2-HDhB(2F,3F)-O2   (2-13-1)   5%
2-HH-3             (3-1-1)   22%
3-HH-4             (3-1-1)    7%
3-HHB-1            (3-5-1)    4%
5-B(F)BB-3         (3-8-1)    5%
 上記組成物100重量部に本発明の第一成分である化合物(1-1-1-1)を0.1重量部、化合物(1-1-1-3)を0.15重量部、および化合物(1-8-1-3)を0.1重量部添加した。
MAC-VO-BB-MAC      (1-1-1-1)
AC-VO-BB-MAC       (1-1-1-3)
MAC-VO-B(2F)BB-MAC (1-8-1-3)
 得られた組成物の特性は下記のとおりである。
 NI=80.7℃;Tc<-20℃;Δn=0.104;Δε=-3.3;VHR-1=99.3%;VHR-2=98.4%;VHR-3=98.5%.
 実施例M1に記載の方法で作成した液晶表示素子の応答時間はτ=4.5msであった。
[Example M27]
5-HB (2F, 3F) -O2 (2-1-1) 5%
3-H2B (2F, 3F) -O4 (2-2-1) 10%
3-BB (2F, 3F) -O2 (2-3-1) 5%
3-HHB (2F, 3F) -O2 (2-5-1) 9%
5-HHB (2F, 3F) -O2 (2-5-1) 8%
2-HH1OB (2F, 3F) -O2 (2-7-1) 5%
5-HBB (2F, 3F) -O2 (2-8-1) 5%
2-BB (2F, 3F) B-4 (2-11-1) 10%
2-HDhB (2F, 3F) -O2 (2-13-1) 5%
2-HH-3 (3-1-1) 22%
3-HH-4 (3-1-1) 7%
3-HHB-1 (3-5-1) 4%
5-B (F) BB-3 (3-8-1) 5%
0.1 parts by weight of the compound (1-1-1-1) as the first component of the present invention, 0.15 parts by weight of the compound (1-1-1-3), and 100 parts by weight of the composition 0.1 part by weight of the compound (1-8-1-3) was added.
MAC-VO-BB-MAC (1-1-1-1)
AC-VO-BB-MAC (1-1-1-3)
MAC-VO-B (2F) BB-MAC (1-8-1-3)
The characteristics of the obtained composition are as follows.
NI = 80.7 ° C .; Tc <−20 ° C .; Δn = 0.104; Δε = −3.3; VHR-1 = 99.3%; VHR-2 = 98.4%; VHR-3 = 98. 5%.
The response time of the liquid crystal display device prepared by the method described in Example M1 was τ = 4.5 ms.
[実施例M28]
V-HB(2F,3F)-O3     (2-1-1)    5%
3-H2B(2F,3F)-O2    (2-2-1)   10%
3-BB(2F,3F)-O2     (2-3-1)    5%
5-HHB(2F,3F)-O2    (2-5-1)    8%
3-HH1OB(2F,3F)-O2  (2-7-1)    5%
3-HBB(2F,3F)-O2    (2-8-1)   10%
3-HHB(2F,3CL)-O2   (2-9-1)    3%
5-BB(2F,3F)B-2     (2-11-1)  10%
3-HDhB(2F,3F)-O2   (2-13-1)   5%
2-HH-3             (3-1-1)   20%
3-HH-4             (3-1-1)    7%
5-HB-3             (3-2-1)    3%
3-HHB-1            (3-5-1)    3%
2-BB(F)B-5         (3-7-1)    3%
5-HBB(F)B-2        (3-13-1)   3%
 上記組成物100重量部に本発明の第一成分である化合物(1-1-1-4)を0.1重量部、化合物(1-8-1-2)を0.1重量部、および化合物(1-8-1-3)を0.1重量部添加した。
AC-VO-BB-AC        (1-1-1-4)
MAC-VO-BB(2F)B-MAC (1-8-1-2)
MAC-VO-B(2F)BB-MAC (1-8-1-3)
 得られた組成物の特性は下記のとおりである。
 NI=81.6℃;Tc<-20℃;Δn=0.109;Δε=-3.2;VHR-1=99.2%;VHR-2=98.7%;VHR-3=98.9%.
 実施例M1に記載の方法で作成した液晶表示素子の応答時間はτ=4.5msであった。
[Example M28]
V-HB (2F, 3F) -O3 (2-1-1) 5%
3-H2B (2F, 3F) -O2 (2-2-1) 10%
3-BB (2F, 3F) -O2 (2-3-1) 5%
5-HHB (2F, 3F) -O2 (2-5-1) 8%
3-HH1OB (2F, 3F) -O2 (2-7-1) 5%
3-HBB (2F, 3F) -O2 (2-8-1) 10%
3-HHB (2F, 3CL) -O2 (2-9-1) 3%
5-BB (2F, 3F) B-2 (2-11-1) 10%
3-HDhB (2F, 3F) -O2 (2-13-1) 5%
2-HH-3 (3-1-1) 20%
3-HH-4 (3-1-1) 7%
5-HB-3 (3-2-1) 3%
3-HHB-1 (3-5-1) 3%
2-BB (F) B-5 (3-7-1) 3%
5-HBB (F) B-2 (3-13-1) 3%
In 100 parts by weight of the above composition, 0.1 part by weight of the compound (1-1-1-4) as the first component of the present invention, 0.1 part by weight of the compound (1-8-1-2), and 0.1 part by weight of the compound (1-8-1-3) was added.
AC-VO-BB-AC (1-1-1-4)
MAC-VO-BB (2F) B-MAC (1-8-1-2)
MAC-VO-B (2F) BB-MAC (1-8-1-3)
The characteristics of the obtained composition are as follows.
NI = 81.6 ° C .; Tc <−20 ° C .; Δn = 0.109; Δε = −3.2; VHR-1 = 99.2%; VHR-2 = 98.7%; VHR-3 = 98. 9%.
The response time of the liquid crystal display device prepared by the method described in Example M1 was τ = 4.5 ms.
[実施例M29]
3-HB(2F,3F)-O2     (2-1-1)    5%
3-H2B(2F,3F)-O4    (2-2-1)    8%
2-BB(2F,3F)-O2     (2-3-1)    5%
3-HHB(2F,3F)-O2    (2-5-1)    8%
5-HHB(2F,3F)-O2    (2-5-1)    6%
3-HH1OB(2F,3F)-O2  (2-7-1)    5%
5-HBB(2F,3F)-O2    (2-8-1)    5%
3-HDhB(2F,3F)-O2   (2-13-1)   8%
5-dhBB(2F,3F)-O2   (2-15-1)   5%
2-HH-3             (3-1-1)   20%
3-HH-4             (3-1-1)    8%
1-BB-3             (3-3-1)    5%
3-HHB-1            (3-5-1)    4%
5-B(F)BB-2         (3-8-1)    5%
5-HBB(F)B-3        (3-13-1)   3%
 上記組成物100重量部に本発明の第一成分である化合物(1-1-1-3)を0.1重量部および化合物(1-8-1-2)を0.1重量部添加し、本発明の第一成分でない重合性化合物(6-1-2)を0.1重量部添加した。
AC-VO-BB-MAC       (1-1-1-3)
MAC-VO-BB(2F)B-MAC (1-8-1-2)
MAC-B(2F)B-MAC     (6-1-2)
 得られた組成物の特性は下記のとおりである。
 NI=84.1℃;Tc<-20℃;Δn=0.100;Δε=-3.2;VHR-1=99.2%;VHR-2=98.4%;VHR-3=98.7%.
 実施例M1に記載の方法で作成した液晶表示素子の応答時間はτ=4.3msであった。
[Example M29]
3-HB (2F, 3F) -O2 (2-1-1) 5%
3-H2B (2F, 3F) -O4 (2-2-1) 8%
2-BB (2F, 3F) -O2 (2-3-1) 5%
3-HHB (2F, 3F) -O2 (2-5-1) 8%
5-HHB (2F, 3F) -O2 (2-5-1) 6%
3-HH1OB (2F, 3F) -O2 (2-7-1) 5%
5-HBB (2F, 3F) -O2 (2-8-1) 5%
3-HDhB (2F, 3F) -O2 (2-13-1) 8%
5-dhBB (2F, 3F) -O2 (2-15-1) 5%
2-HH-3 (3-1-1) 20%
3-HH-4 (3-1-1) 8%
1-BB-3 (3-3-1) 5%
3-HHB-1 (3-5-1) 4%
5-B (F) BB-2 (3-8-1) 5%
5-HBB (F) B-3 (3-13-1) 3%
To 100 parts by weight of the above composition, 0.1 part by weight of the compound (1-1-1-3) as the first component of the present invention and 0.1 part by weight of the compound (1-8-1-2) are added. Then, 0.1 part by weight of the polymerizable compound (6-1-2) which is not the first component of the present invention was added.
AC-VO-BB-MAC (1-1-1-3)
MAC-VO-BB (2F) B-MAC (1-8-1-2)
MAC-B (2F) B-MAC (6-1-2)
The characteristics of the obtained composition are as follows.
NI = 84.1 ° C .; Tc <−20 ° C .; Δn = 0.100; Δε = −3.2; VHR-1 = 99.2%; VHR-2 = 98.4%; VHR-3 = 98. 7%.
The response time of the liquid crystal display device prepared by the method described in Example M1 was τ = 4.3 ms.
[実施例M30]
V-HB(2F,3F)-O3     (2-1-1)    5%
3-H2B(2F,3F)-O2    (2-2-1)   10%
3-BB(2F,3F)-O2     (2-3-1)    5%
5-HHB(2F,3F)-O2    (2-5-1)    8%
3-HH1OB(2F,3F)-O2  (2-7-1)    5%
3-HBB(2F,3F)-O2    (2-8-1)   10%
3-HHB(2F,3CL)-O2   (2-9-1)    3%
5-BB(2F,3F)B-2     (2-11-1)  10%
3-HDhB(2F,3F)-O2   (2-13-1)   5%
2-HH-3             (3-1-1)   20%
3-HH-4             (3-1-1)    7%
5-HB-3             (3-2-1)    3%
3-HHB-1            (3-5-1)    3%
2-BB(F)B-5         (3-7-1)    3%
5-HBB(F)B-2        (3-13-1)   3%
 上記組成物100重量部に本発明の第一成分である化合物(1-8-1-4)を0.1重量部、化合物(1-8-1-5)を0.1重量部、および化合物(6-1-2)を0.1重量部添加した。
AC-VO-BB(2F)B-AC   (1-8-1-4)
AC-VO-BB(2F)B-MAC  (1-8-1-5)
MAC-B(2F)B-MAC     (6-1-2)
 得られた組成物の特性は下記のとおりである。
 NI=81.7℃;Tc<-20℃;Δn=0.109;Δε=-3.1;VHR-1=99.1%;VHR-2=98.5%;VHR-3=98.8%.
 実施例M1に記載の方法で作成した液晶表示素子の応答時間はτ=4.1msであった。
[Example M30]
V-HB (2F, 3F) -O3 (2-1-1) 5%
3-H2B (2F, 3F) -O2 (2-2-1) 10%
3-BB (2F, 3F) -O2 (2-3-1) 5%
5-HHB (2F, 3F) -O2 (2-5-1) 8%
3-HH1OB (2F, 3F) -O2 (2-7-1) 5%
3-HBB (2F, 3F) -O2 (2-8-1) 10%
3-HHB (2F, 3CL) -O2 (2-9-1) 3%
5-BB (2F, 3F) B-2 (2-11-1) 10%
3-HDhB (2F, 3F) -O2 (2-13-1) 5%
2-HH-3 (3-1-1) 20%
3-HH-4 (3-1-1) 7%
5-HB-3 (3-2-1) 3%
3-HHB-1 (3-5-1) 3%
2-BB (F) B-5 (3-7-1) 3%
5-HBB (F) B-2 (3-13-1) 3%
In 100 parts by weight of the composition, 0.1 part by weight of the compound (1-8-1-4) as the first component of the present invention, 0.1 part by weight of the compound (1-8-1-5), and 0.1 part by weight of compound (6-1-2) was added.
AC-VO-BB (2F) B-AC (1-8-1-4)
AC-VO-BB (2F) B-MAC (1-8-1-5)
MAC-B (2F) B-MAC (6-1-2)
The characteristics of the obtained composition are as follows.
NI = 81.7 ° C .; Tc <−20 ° C .; Δn = 0.109; Δε = −3.1; VHR-1 = 99.1%; VHR-2 = 98.5%; VHR-3 = 98. 8%.
The response time of the liquid crystal display device prepared by the method described in Example M1 was τ = 4.1 ms.
 実施例M1から実施例M30の組成物は、比較例M1のそれと比べて短い応答時間を有する。よって、本発明による液晶組成物は、比較例M1に示された液晶組成物よりも、さらに優れた特性を有する。 The compositions of Example M1 to Example M30 have a shorter response time than that of Comparative Example M1. Therefore, the liquid crystal composition according to the present invention has more excellent characteristics than the liquid crystal composition shown in Comparative Example M1.

Claims (25)

  1.  第一成分として式(1)で表される化合物の群から選択された少なくとも1つの化合物、および第二成分として式(2)で表される化合物の群から選択された少なくとも1つの化合物を含有する液晶組成物。
    Figure JPOXMLDOC01-appb-I000001

    ここで、PおよびPは独立して、式(P-1)から式(P-6)で表わされる基から選択された基であり;
    Figure JPOXMLDOC01-appb-I000002

    およびRは独立して、炭素数1から12のアルキル、炭素数1から12のアルコキシ、または炭素数2から12のアルケニルであり;環Aおよび環Bは独立して、1,4-シクロへキシレン、1,4-シクロヘキセニレン、1,4-フェニレン、テトラヒドロピラン-2,5-ジイル、1,3-ジオキサン-2,5-ジイル、またはピリミジン-2,5-ジイルであり、これらにおいて、少なくとも1つの水素は、ハロゲン、炭素数1から12のアルキル、または少なくとも1つの水素がハロゲンで置き換えられた炭素数1から12のアルキルで置き換えられてもよく;環Cおよび環Eは独立して、1,4-シクロへキシレン、テトラヒドロピラン-2,5-ジイル、1,4-フェニレン、2-フルオロ-1,4-フェニレン、または3-フルオロ-1,4-フェニレンであり;環Dは、2,3-ジフルオロ-1,4-フェニレン、2-クロロ-3-フルオロ-1,4-フェニレン、2,3-ジフルオロ-5-メチル-1,4-フェニレン、3,4,5-トリフルオロナフタレン-2,6-ジイル、または7,8-ジフルオロクロマン-2,6-ジイルであり;Spは炭素数1から6のアルキレンであり、アルキレンにおいて、少なくとも1つの-CH-は、-O-、-OCO-、-COO-、または-CH=CH-により置き換えられていてもよく;Z、Z、およびZは独立して、単結合、エチレン、メチレンオキシ、またはカルボニルオキシであり;kは、0、1、2または3であり;mは、1、2、または3であり;nは0または1であり、そして、mとnとの和が3以下である。
    Contains at least one compound selected from the group of compounds represented by formula (1) as the first component and at least one compound selected from the group of compounds represented by formula (2) as the second component Liquid crystal composition.
    Figure JPOXMLDOC01-appb-I000001

    Wherein P 1 and P 2 are independently a group selected from the groups represented by formulas (P-1) to (P-6);
    Figure JPOXMLDOC01-appb-I000002

    R 1 and R 2 are independently alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, or alkenyl having 2 to 12 carbons; ring A and ring B are independently 1,4 -Cyclohexylene, 1,4-cyclohexenylene, 1,4-phenylene, tetrahydropyran-2,5-diyl, 1,3-dioxane-2,5-diyl, or pyrimidine-2,5-diyl In these, at least one hydrogen may be replaced by halogen, alkyl having 1 to 12 carbons, or alkyl having 1 to 12 carbons in which at least one hydrogen is replaced by halogen; ring C and ring E Are independently 1,4-cyclohexylene, tetrahydropyran-2,5-diyl, 1,4-phenylene, 2-fluoro-1,4-phenylene, and 3-fluoro-1,4-phenylene; ring D is 2,3-difluoro-1,4-phenylene, 2-chloro-3-fluoro-1,4-phenylene, 2,3-difluoro-5- Methyl-1,4-phenylene, 3,4,5-trifluoronaphthalene-2,6-diyl, or 7,8-difluorochroman-2,6-diyl; Sp is alkylene having 1 to 6 carbon atoms; Yes, in alkylene, at least one —CH 2 — may be replaced by —O—, —OCO—, —COO—, or —CH═CH—; Z 1 , Z 2 , and Z 3 are Independently a single bond, ethylene, methyleneoxy, or carbonyloxy; k is 0, 1, 2, or 3; m is 1, 2, or 3; n is 0 or 1 And m The sum of the n is 3 or less.
  2.  第一成分が式(1-1)から式(1-8)で表される化合物の群から選択された少なくとも1つの化合物である請求項1に記載の液晶組成物。
    Figure JPOXMLDOC01-appb-I000003

    ここで、YからY12は独立して、水素、ハロゲン、炭素数1から12のアルキル、またはトリフルオロメチルであり;XおよびXは独立して、水素またはメチルである。
    2. The liquid crystal composition according to claim 1, wherein the first component is at least one compound selected from the group of compounds represented by formula (1-1) to formula (1-8).
    Figure JPOXMLDOC01-appb-I000003

    Here, Y 1 to Y 12 are independently hydrogen, halogen, alkyl having 1 to 12 carbons, or trifluoromethyl; X 1 and X 2 are independently hydrogen or methyl.
  3.  第一成分が請求項2記載の式(1-1)から式(1-8)で表される化合物の群から選択された少なくとも1つの化合物であり、YからY12が水素である請求項1に記載の液晶組成物。 The first component is at least one compound selected from the group of compounds represented by formula (1-1) to formula (1-8) according to claim 2, and Y 1 to Y 12 are hydrogen. Item 2. A liquid crystal composition according to item 1.
  4.  第一成分が請求項2記載の式(1-1)から式(1-8)で表される化合物の群から選択された少なくとも1つの化合物であり、式(1-1)から式(1-7)においてYからYのうちの少なくとも1つがフッ素またはトリフルオロメチルであり、式(1-8)においてYからY12のうちの少なくとも1つがフッ素またはトリフルオロメチルである請求項1に記載の液晶組成物。 The first component is at least one compound selected from the group of compounds represented by formula (1-1) to formula (1-8) according to claim 2, wherein formula (1-1) to formula (1) -7) wherein at least one of Y 1 to Y 8 is fluorine or trifluoromethyl, and in formula (1-8), at least one of Y 1 to Y 12 is fluorine or trifluoromethyl. 2. The liquid crystal composition according to 1.
  5.  第一成分が請求項2記載の式(1-1)で表される化合物の群から選択された少なくとも1つの化合物である請求項1から4のいずれか1項に記載の液晶組成物。 The liquid crystal composition according to any one of claims 1 to 4, wherein the first component is at least one compound selected from the group of compounds represented by formula (1-1) according to claim 2.
  6.  第一成分が請求項2記載の式(1-2)で表される化合物の群から選択された少なくとも1つの化合物である請求項1から4のいずれか1項に記載の液晶組成物。 The liquid crystal composition according to any one of claims 1 to 4, wherein the first component is at least one compound selected from the group of compounds represented by formula (1-2) according to claim 2.
  7.  第一成分が請求項1記載の式(1)で表される化合物の群から選択された少なくとも2つ以上の化合物からなる請求項1から6のいずれか1項に記載の液晶組成物。 The liquid crystal composition according to any one of claims 1 to 6, wherein the first component comprises at least two compounds selected from the group of compounds represented by formula (1) according to claim 1.
  8.  第一成分が請求項1記載の式(1)で表される化合物の群から選択された少なくとも1つの化合物であり、さらに請求項1記載の式(1)以外の重合性化合物を含有する請求項1から7のいずれか1項に記載の液晶組成物。 The first component is at least one compound selected from the group of compounds represented by formula (1) according to claim 1, and further contains a polymerizable compound other than formula (1) according to claim 1. Item 8. The liquid crystal composition according to any one of items 1 to 7.
  9.  第二成分が式(2-1)から式(2-19)で表される化合物の群から選択された少なくとも1つの化合物である請求項1から8に記載の液晶組成物。
    Figure JPOXMLDOC01-appb-I000004

    Figure JPOXMLDOC01-appb-I000005

    ここで、RおよびRは独立して、炭素数1から12のアルキル、炭素数1から12のアルコキシ、または炭素数2から12のアルケニルである。
    9. The liquid crystal composition according to claim 1, wherein the second component is at least one compound selected from the group of compounds represented by formulas (2-1) to (2-19).
    Figure JPOXMLDOC01-appb-I000004

    Figure JPOXMLDOC01-appb-I000005

    Here, R 1 and R 2 are independently alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, or alkenyl having 2 to 12 carbons.
  10.  第二成分が請求項9記載の式(2-3)で表される化合物の群から選択された少なくとも1つの化合物である請求項1に記載の液晶組成物。 The liquid crystal composition according to claim 1, wherein the second component is at least one compound selected from the group of compounds represented by formula (2-3) according to claim 9.
  11.  第二成分が請求項9記載の式(2-5)で表される化合物の群から選択された少なくとも1つの化合物である請求項1に記載の液晶組成物。 The liquid crystal composition according to claim 1, wherein the second component is at least one compound selected from the group of compounds represented by formula (2-5) according to claim 9.
  12.  第二成分が請求項9記載の式(2-7)で表される化合物の群から選択された少なくとも1つの化合物である請求項1に記載の液晶組成物。 The liquid crystal composition according to claim 1, wherein the second component is at least one compound selected from the group of compounds represented by formula (2-7) according to claim 9.
  13.  第二成分が請求項9記載の式(2-13)で表される化合物の群から選択された少なくとも1つの化合物である請求項1に記載の液晶組成物。 The liquid crystal composition according to claim 1, wherein the second component is at least one compound selected from the group of compounds represented by formula (2-13) according to claim 9.
  14.  第三成分として式(3)で表される化合物の群から選択された少なくとも1つの化合物をさらに含有する請求項1から13のいずれか1項に記載の液晶組成物。
    Figure JPOXMLDOC01-appb-I000006

    ここで、RおよびRは独立して、炭素数1から12のアルキル、炭素数1から12のアルコキシ、炭素数2から12のアルケニル、または少なくとも1つの水素がフッ素で置き換えられた炭素数2から12のアルケニルであり;環F、環G、および環Iは独立して、1,4-シクロへキシレン、1,4-フェニレン、2-フルオロ-1,4-フェニレン、または3-フルオロ-1,4-フェニレンであり;ZおよびZは独立して、単結合、エチレン、メチレンオキシ、またはカルボニルオキシであり;pは、0、1、または2である。
    The liquid crystal composition according to claim 1, further comprising at least one compound selected from the group of compounds represented by formula (3) as a third component.
    Figure JPOXMLDOC01-appb-I000006

    Here, R 3 and R 4 are independently alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, alkenyl having 2 to 12 carbons, or carbons in which at least one hydrogen is replaced by fluorine. Ring F, ring G, and ring I are independently 1,4-cyclohexylene, 1,4-phenylene, 2-fluoro-1,4-phenylene, or 3-fluoro. -1,4-phenylene; Z 4 and Z 5 are independently a single bond, ethylene, methyleneoxy, or carbonyloxy; p is 0, 1, or 2.
  15.  第三成分が式(3-1)から式(3-13)で表される化合物の群から選択された少なくとも1つの化合物である請求項14に記載の液晶組成物。
    Figure JPOXMLDOC01-appb-I000007

    ここで、RおよびRは独立して、炭素数1から12のアルキル、炭素数1から12のアルコキシ、炭素数2から12のアルケニル、または少なくとも1つの水素がフッ素で置き換えられた炭素数2から12のアルケニルである。
    The liquid crystal composition according to claim 14, wherein the third component is at least one compound selected from the group of compounds represented by formulas (3-1) to (3-13).
    Figure JPOXMLDOC01-appb-I000007

    Here, R 3 and R 4 are independently alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, alkenyl having 2 to 12 carbons, or carbon number in which at least one hydrogen is replaced by fluorine. 2 to 12 alkenyl.
  16.  第三成分が請求項15の式(3-1)で表される化合物の群から選択された少なくとも1つの化合物である請求項14に記載の液晶組成物。 The liquid crystal composition according to claim 14, wherein the third component is at least one compound selected from the group of compounds represented by formula (3-1) of claim 15.
  17.  第三成分が請求項15の式(3-7)で表される化合物の群から選択された少なくとも1つの化合物である請求項14に記載の液晶組成物。 The liquid crystal composition according to claim 14, wherein the third component is at least one compound selected from the group of compounds represented by formula (3-7) of claim 15.
  18.  第一成分および第一成分以外の重合可能な化合物を除く液晶組成物の重量に基づいて、第二成分の割合が10重量%から80重量%の範囲であり、第三成分の割合が20重量%から90重量%の範囲であり、そして第一成分および第一成分以外の重合可能な化合物を除く液晶組成物100重量部に対して、第一成分および第一成分以外の重合可能な化合物の割合が0.03重量部から10重量部の範囲である、請求項14から17のいずれか1項に記載の液晶組成物。 Based on the weight of the liquid crystal composition excluding the first component and the polymerizable compound other than the first component, the ratio of the second component is in the range of 10 wt% to 80 wt%, and the ratio of the third component is 20 wt%. % To 90% by weight of the polymerizable compound other than the first component and the first component with respect to 100 parts by weight of the liquid crystal composition excluding the polymerizable compound other than the first component and the first component. The liquid crystal composition according to any one of claims 14 to 17, wherein the ratio is in the range of 0.03 parts by weight to 10 parts by weight.
  19.  重合開始剤をさらに含有する請求項1から18のいずれか1項に記載の液晶組成物。 The liquid crystal composition according to claim 1, further comprising a polymerization initiator.
  20.  重合禁止剤をさらに含有する請求項1から19のいずれか1項に記載の液晶組成物。 The liquid crystal composition according to any one of claims 1 to 19, further comprising a polymerization inhibitor.
  21.  ネマチック相の上限温度が70℃以上であり、波長589nmにおける光学異方性(25℃)が0.08以上であり、そして周波数1kHzにおける誘電率異方性(25℃)が-2以下である、請求項1から20のいずれか1項に記載の液晶組成物。 The upper limit temperature of the nematic phase is 70 ° C. or higher, the optical anisotropy (25 ° C.) at a wavelength of 589 nm is 0.08 or higher, and the dielectric anisotropy (25 ° C.) at a frequency of 1 kHz is −2 or lower. The liquid crystal composition according to any one of claims 1 to 20.
  22.  少なくとも一方の基板に電極層を有する2つの基板から構成され、この2つの基板の間に請求項1から21のいずれか1項に記載の液晶組成物中の重合性化合物が重合した化合物を含む液晶材料を配置する事を特徴とする、高分子支持配向型(PSA)液晶表示素子。 It is comprised from two board | substrates which have an electrode layer in at least one board | substrate, The compound which the polymeric compound in the liquid-crystal composition of any one of Claim 1 to 21 superposed | polymerized between these two board | substrates contains A polymer-supported alignment type (PSA) liquid crystal display element characterized by disposing a liquid crystal material.
  23.  液晶表示素子の動作モードが、TNモード、VAモード、OCBモード、IPSモード、またはFFSモードであり、液晶表示素子の駆動方式がアクティブマトリックス方式である、請求項22に記載の液晶表示素子。 The liquid crystal display element according to claim 22, wherein the operation mode of the liquid crystal display element is a TN mode, a VA mode, an OCB mode, an IPS mode, or an FFS mode, and the driving method of the liquid crystal display element is an active matrix method.
  24.  請求項22に記載の液晶表示素子を、2つの基板間に配置した請求項1から21のいずれか1項に記載の液晶組成物を電圧印加状態で光照射して重合性化合物を重合させることにより製造する液晶表示素子の製造方法。 The liquid crystal display element according to claim 22 is disposed between two substrates, and the liquid crystal composition according to any one of claims 1 to 21 is irradiated with light in a voltage applied state to polymerize a polymerizable compound. The manufacturing method of the liquid crystal display element manufactured by this.
  25.  請求項1から21のいずれか1項に記載の液晶組成物の液晶表示素子における使用。 Use of the liquid crystal composition according to any one of claims 1 to 21 in a liquid crystal display device.
PCT/JP2012/080150 2011-11-28 2012-11-21 Liquid crystal composition and liquid crystal display element WO2013080850A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013547109A JP6098520B2 (en) 2011-11-28 2012-11-21 Liquid crystal composition and liquid crystal display element

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2011-259029 2011-11-28
JP2011259029 2011-11-28
JP2012-089083 2012-04-10
JP2012089083 2012-04-10
JP2012166105 2012-07-26
JP2012-166105 2012-07-26

Publications (1)

Publication Number Publication Date
WO2013080850A1 true WO2013080850A1 (en) 2013-06-06

Family

ID=48535311

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/080150 WO2013080850A1 (en) 2011-11-28 2012-11-21 Liquid crystal composition and liquid crystal display element

Country Status (2)

Country Link
JP (1) JP6098520B2 (en)
WO (1) WO2013080850A1 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103305233A (en) * 2013-06-24 2013-09-18 北京八亿时空液晶科技股份有限公司 Negative dielectric anisotropy liquid crystal composition and application thereof
CN103773383A (en) * 2013-12-30 2014-05-07 北京八亿时空液晶科技股份有限公司 Quick-response liquid crystal composition with negative dielectric anisotropy and application thereof
WO2015004954A1 (en) * 2013-07-11 2015-01-15 Jnc株式会社 Liquid crystal composition and liquid crystal display element
JP2015044998A (en) * 2014-09-16 2015-03-12 Dic株式会社 Liquid crystal composition, liquid crystal display element, and liquid crystal display
WO2015052948A1 (en) * 2013-10-08 2015-04-16 Dic株式会社 Nematic liquid crystal composition and liquid crystal display element using same
JP2015214671A (en) * 2014-04-21 2015-12-03 Jnc株式会社 Liquid crystal composition and liquid crystal display element
JPWO2014064765A1 (en) * 2012-10-23 2016-09-05 Dic株式会社 Liquid crystal composition, liquid crystal display element and liquid crystal display
CN106459764A (en) * 2014-06-19 2017-02-22 Dic株式会社 Polymerizable-monomer-containing liquid crystal composition and liquid crystal display element using same
WO2017098933A1 (en) * 2015-12-08 2017-06-15 Jnc株式会社 Liquid crystal composition and liquid crystal display element
JP2017141424A (en) * 2016-02-05 2017-08-17 Jnc株式会社 Liquid crystal composition and liquid crystal display element
JP2017526786A (en) * 2014-08-26 2017-09-14 ジアンスー ヘチェン ディスプレイ テクノロジー カンパニー リミテッド Liquid crystal composition having negative dielectric anisotropy and display device thereof
WO2017188002A1 (en) * 2016-04-27 2017-11-02 Dic株式会社 Liquid crystal composition and liquid crystal display element
JP2017214589A (en) * 2017-07-03 2017-12-07 Dic株式会社 Liquid crystal composition, liquid crystal display element and liquid crystal display
US10308873B2 (en) 2010-12-24 2019-06-04 Dic Corporation Polymerizable compound-containing liquid crystal composition and liquid crystal display device using the same
JP2020097678A (en) * 2018-12-18 2020-06-25 Dic株式会社 Liquid crystal composition and liquid crystal display element
CN114829544A (en) * 2020-02-25 2022-07-29 Dic株式会社 Liquid crystal composition and liquid crystal display element

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7255730B2 (en) 2018-06-29 2023-04-11 スズキ株式会社 Protective structure of the canister
JP7255729B2 (en) 2018-06-29 2023-04-11 スズキ株式会社 Protective structure of the canister

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009104119A (en) * 2007-10-24 2009-05-14 Au Optronics Corp Liquid crystal mixture for psa process, and liquid crystal display device
WO2010131600A1 (en) * 2009-05-11 2010-11-18 チッソ株式会社 Polymerizable compound and liquid crystal composition containing same
JP2010536894A (en) * 2007-08-30 2010-12-02 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング LCD display
JP2010275244A (en) * 2009-05-29 2010-12-09 Dic Corp Polymerizable compound, and polymerizable composition by using the same
WO2011055643A1 (en) * 2009-11-09 2011-05-12 Jnc株式会社 Liquid crystal display element, liquid crystal composition, aligning agent, method for producing liquid crystal display element, and use of liquid crystal composition
WO2011062017A1 (en) * 2009-11-18 2011-05-26 株式会社Adeka Liquid crystal composition comprising polymerizable compound, and liquid crystal display element using said liquid crystal composition
JP2011162571A (en) * 2010-02-04 2011-08-25 Dic Corp Liquid crystal composition containing polymerizable compound and liquid crystal display element using the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010536894A (en) * 2007-08-30 2010-12-02 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング LCD display
JP2009104119A (en) * 2007-10-24 2009-05-14 Au Optronics Corp Liquid crystal mixture for psa process, and liquid crystal display device
WO2010131600A1 (en) * 2009-05-11 2010-11-18 チッソ株式会社 Polymerizable compound and liquid crystal composition containing same
JP2010275244A (en) * 2009-05-29 2010-12-09 Dic Corp Polymerizable compound, and polymerizable composition by using the same
WO2011055643A1 (en) * 2009-11-09 2011-05-12 Jnc株式会社 Liquid crystal display element, liquid crystal composition, aligning agent, method for producing liquid crystal display element, and use of liquid crystal composition
WO2011062017A1 (en) * 2009-11-18 2011-05-26 株式会社Adeka Liquid crystal composition comprising polymerizable compound, and liquid crystal display element using said liquid crystal composition
JP2011162571A (en) * 2010-02-04 2011-08-25 Dic Corp Liquid crystal composition containing polymerizable compound and liquid crystal display element using the same

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10934488B2 (en) 2010-12-24 2021-03-02 Dic Corporation Polymerizable compound-containing liquid crystal composition and liquid crystal display device using the same
US10308873B2 (en) 2010-12-24 2019-06-04 Dic Corporation Polymerizable compound-containing liquid crystal composition and liquid crystal display device using the same
JPWO2014064765A1 (en) * 2012-10-23 2016-09-05 Dic株式会社 Liquid crystal composition, liquid crystal display element and liquid crystal display
CN103305233B (en) * 2013-06-24 2014-08-06 北京八亿时空液晶科技股份有限公司 Negative dielectric anisotropy liquid crystal composition and application thereof
CN103305233A (en) * 2013-06-24 2013-09-18 北京八亿时空液晶科技股份有限公司 Negative dielectric anisotropy liquid crystal composition and application thereof
US10280368B2 (en) 2013-07-11 2019-05-07 Jnc Corporation Liquid crystal composition and liquid crystal display device
CN105358655A (en) * 2013-07-11 2016-02-24 捷恩智株式会社 Liquid crystal composition and liquid crystal display element
WO2015004954A1 (en) * 2013-07-11 2015-01-15 Jnc株式会社 Liquid crystal composition and liquid crystal display element
CN105358655B (en) * 2013-07-11 2017-05-17 捷恩智株式会社 Liquid crystal composition and liquid crystal display element
JP5664833B1 (en) * 2013-07-11 2015-02-04 Jnc株式会社 Liquid crystal composition and liquid crystal display element
CN105637065B (en) * 2013-10-08 2018-09-28 Dic株式会社 Nematic liquid-crystal composition and use its liquid crystal display element
CN105637065A (en) * 2013-10-08 2016-06-01 Dic株式会社 Nematic liquid crystal composition and liquid crystal display element using same
WO2015052948A1 (en) * 2013-10-08 2015-04-16 Dic株式会社 Nematic liquid crystal composition and liquid crystal display element using same
US10093857B2 (en) 2013-10-08 2018-10-09 Dic Corporation Nematic liquid crystal composition and liquid crystal display device using the same
CN103773383A (en) * 2013-12-30 2014-05-07 北京八亿时空液晶科技股份有限公司 Quick-response liquid crystal composition with negative dielectric anisotropy and application thereof
JP2015214671A (en) * 2014-04-21 2015-12-03 Jnc株式会社 Liquid crystal composition and liquid crystal display element
JPWO2015194632A1 (en) * 2014-06-19 2017-04-20 Dic株式会社 Polymerizable monomer-containing liquid crystal composition and liquid crystal display device using the same
CN106459764A (en) * 2014-06-19 2017-02-22 Dic株式会社 Polymerizable-monomer-containing liquid crystal composition and liquid crystal display element using same
JP2017526786A (en) * 2014-08-26 2017-09-14 ジアンスー ヘチェン ディスプレイ テクノロジー カンパニー リミテッド Liquid crystal composition having negative dielectric anisotropy and display device thereof
JP2015044998A (en) * 2014-09-16 2015-03-12 Dic株式会社 Liquid crystal composition, liquid crystal display element, and liquid crystal display
WO2017098933A1 (en) * 2015-12-08 2017-06-15 Jnc株式会社 Liquid crystal composition and liquid crystal display element
CN108368427A (en) * 2015-12-08 2018-08-03 捷恩智株式会社 Liquid-crystal composition and liquid crystal display element
JP2017141424A (en) * 2016-02-05 2017-08-17 Jnc株式会社 Liquid crystal composition and liquid crystal display element
JP2018095839A (en) * 2016-04-27 2018-06-21 Dic株式会社 Liquid crystal composition and liquid crystal display element
WO2017188002A1 (en) * 2016-04-27 2017-11-02 Dic株式会社 Liquid crystal composition and liquid crystal display element
JP6233550B1 (en) * 2016-04-27 2017-11-22 Dic株式会社 Liquid crystal composition and liquid crystal display element
JP7062915B2 (en) 2016-04-27 2022-05-09 Dic株式会社 Liquid crystal composition and liquid crystal display element
US11555152B2 (en) 2016-04-27 2023-01-17 Dic Corporation Liquid crystal composition and liquid crystal display element
JP2017214589A (en) * 2017-07-03 2017-12-07 Dic株式会社 Liquid crystal composition, liquid crystal display element and liquid crystal display
JP2020097678A (en) * 2018-12-18 2020-06-25 Dic株式会社 Liquid crystal composition and liquid crystal display element
JP7318204B2 (en) 2018-12-18 2023-08-01 Dic株式会社 Liquid crystal composition and liquid crystal display element
CN114829544A (en) * 2020-02-25 2022-07-29 Dic株式会社 Liquid crystal composition and liquid crystal display element

Also Published As

Publication number Publication date
JP6098520B2 (en) 2017-03-22
JPWO2013080850A1 (en) 2015-04-27

Similar Documents

Publication Publication Date Title
JP6098520B2 (en) Liquid crystal composition and liquid crystal display element
JP6156376B2 (en) Liquid crystal composition and liquid crystal display element
JP5765236B2 (en) Liquid crystal composition and liquid crystal display element
JP6248932B2 (en) Liquid crystal composition and liquid crystal display element
US9074132B2 (en) Liquid crystal composition and liquid crystal display device
JP5928338B2 (en) Liquid crystal composition and liquid crystal display element
JP5783247B2 (en) Liquid crystal composition and liquid crystal display element
JP6107806B2 (en) Liquid crystal composition and liquid crystal display element
JP5573094B2 (en) Liquid crystal composition and liquid crystal display element
JP5636954B2 (en) Liquid crystal composition and liquid crystal display element
JP5648371B2 (en) Liquid crystal composition and liquid crystal display element
JP5515505B2 (en) Liquid crystal composition and liquid crystal display element
JP5633515B2 (en) Liquid crystal composition and liquid crystal display element
JP5983393B2 (en) Liquid crystal composition and liquid crystal display element
JP6056234B2 (en) Liquid crystal composition and liquid crystal display element
JP2011144274A (en) Liquid crystal composition and liquid crystal display element
JPWO2010032612A1 (en) Liquid crystal composition and liquid crystal display element
JP2013076061A (en) Liquid crystal composition and liquid crystal display device
WO2013175892A1 (en) Liquid crystal composition and liquid crystal display element
WO2011158820A1 (en) Liquid crystal composition and liquid crystal display element
WO2011142302A1 (en) Liquid crystal composition and liquid crystal display element
WO2013084762A1 (en) Liquid crystal composition and liquid crystal display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12853298

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013547109

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12853298

Country of ref document: EP

Kind code of ref document: A1