WO2013080300A1 - Elevator group management control device - Google Patents

Elevator group management control device Download PDF

Info

Publication number
WO2013080300A1
WO2013080300A1 PCT/JP2011/077544 JP2011077544W WO2013080300A1 WO 2013080300 A1 WO2013080300 A1 WO 2013080300A1 JP 2011077544 W JP2011077544 W JP 2011077544W WO 2013080300 A1 WO2013080300 A1 WO 2013080300A1
Authority
WO
WIPO (PCT)
Prior art keywords
car
regenerative
elevator
control device
power
Prior art date
Application number
PCT/JP2011/077544
Other languages
French (fr)
Japanese (ja)
Inventor
江藤 正治
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2011/077544 priority Critical patent/WO2013080300A1/en
Priority to CN201180074965.XA priority patent/CN103946140B/en
Priority to JP2013546878A priority patent/JP5812106B2/en
Publication of WO2013080300A1 publication Critical patent/WO2013080300A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B1/00Control systems of elevators in general
    • B66B1/24Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration
    • B66B1/2408Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration where the allocation of a call to an elevator car is of importance, i.e. by means of a supervisory or group controller
    • B66B1/2458For elevator systems with multiple shafts and a single car per shaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B1/00Control systems of elevators in general
    • B66B1/24Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration
    • B66B1/28Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration electrical
    • B66B1/30Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration electrical effective on driving gear, e.g. acting on power electronics, on inverter or rectifier controlled motor
    • B66B1/302Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration electrical effective on driving gear, e.g. acting on power electronics, on inverter or rectifier controlled motor for energy saving
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B2201/00Aspects of control systems of elevators
    • B66B2201/10Details with respect to the type of call input
    • B66B2201/102Up or down call input
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B2201/00Aspects of control systems of elevators
    • B66B2201/20Details of the evaluation method for the allocation of a call to an elevator car
    • B66B2201/216Energy consumption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B2201/00Aspects of control systems of elevators
    • B66B2201/20Details of the evaluation method for the allocation of a call to an elevator car
    • B66B2201/222Taking into account the number of passengers present in the elevator car to be allocated
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B50/00Energy efficient technologies in elevators, escalators and moving walkways, e.g. energy saving or recuperation technologies

Definitions

  • This invention relates to an elevator group management control device.
  • an elevator car and a counterweight are connected by a main rope, and the weight of the counterweight is set so as to balance the car when half of the capacity is on board. For this reason, when the empty car with no passengers rises, the hoisting machine is rotated by the potential energy of the lowering counterweight, and the hoisting machine can regenerate electric power by acting as a generator. On the other hand, when the empty car descends, the hoisting machine operates in a power running to increase the counterweight and consumes power.
  • a predicted value of power consumption in each elevator is calculated from information such as hall call, car call and number of passengers, so that the total of power consumption in all elevators does not exceed the preset power suppression value.
  • a device that controls the operation is also known in the art (see, for example, Patent Document 3).
  • Patent Document 1 assigns the generated hall call to an elevator that consumes as little power as possible, but uses the power regenerated along with the operation of the elevator. Since this is not taken into consideration, there is a problem that the regenerative power cannot be used effectively.
  • the conventional elevator group management control device disclosed in Patent Document 2 controls the operation of the elevator so as to suppress the regenerative power of the elevator according to the load of the power distribution facility of the building. There is no consideration for effective use of electric power. Therefore, there is a problem similar to that described in Patent Document 1 described above. The point that the regenerative power is not effectively utilized is the same in the conventional elevator disclosed in Patent Document 3.
  • the present invention has been made to solve such a problem, and can efficiently consume regenerative power of an elevator by powering operation, and can further reduce energy consumption.
  • a group management control device is obtained.
  • the elevator group management control device is an elevator group management control device that manages and controls a plurality of elevator cars as a group, and for a certain car, the moving direction and load of the car Based on the above, it is predicted whether the operation from the current stop floor to the next stop floor is a regenerative operation that regenerates power or a power running operation that consumes power, and the time for the regenerative operation or power running operation is predicted And the predicting unit predicts that another car that is different from the car is in a power running operation or a regenerative operation in the time of the regenerative operation or power running of the car predicted by the prediction unit.
  • the regenerative operation or power running operation of the car and the power running operation or regenerative operation of the other car are duplicated and performed simultaneously.
  • the regenerative electric power of the elevator can be efficiently consumed by powering operation, and it is possible to further reduce the consumption energy.
  • FIG. FIGS. 1 to 3 relate to Embodiment 1 of the present invention.
  • FIG. 1 is a diagram schematically showing the overall configuration of an elevator system including a group management control device
  • FIG. 2 is an elevator group management control device.
  • FIG. 3 is a flowchart showing the operation of the elevator group management control device.
  • reference numeral 1 denotes a plurality of elevator cars that carry users, luggage, and the like and move up and down the hoistway.
  • One end of the main rope 2 is connected to the upper end of each of these cars 1, and the other end of the main rope 2 is connected to the upper end of the counterweight 4.
  • the intermediate part of the main rope 2 is wound around the drive sheave of the hoisting machine 3 installed in the top part of the hoistway.
  • the car 1 and the counterweight 4 are suspended by the main rope 2 in a slidable manner that can be raised and lowered in opposite directions in the hoistway.
  • the weight of the counterweight 4 is set so as to be balanced with the car 1 in which half of the capacity is on board.
  • Electric power necessary for elevator operation is supplied from a commercial power source 7.
  • the AC voltage supplied from the commercial power supply 7 is converted into a DC voltage by the converter 6.
  • Inverters 5 are provided corresponding to the hoisting machines 3 that drive the raising and lowering of each car 1. These inverters 5 convert the DC voltage from the converter 6 into a variable voltage / variable frequency AC voltage and supply it to the hoisting machine 3.
  • the hoisting machine 3 is driven by the AC voltage supplied from the inverter 5. Note that the inverters 5 of the respective cars 1 are connected to each other so that the regenerative power in one hoisting machine 3 can be used interchangeably with other hoisting machines 3.
  • the operation of a plurality of elevators (the car 1) is managed and controlled as a group (bank) by the elevator group management control device 10.
  • the operation of each elevator (the car 1) is controlled by the elevator control device 9 provided for each elevator under the group management control by the elevator group management control device 10.
  • the elevator control device 9 adjusts the voltage and frequency of the AC voltage supplied from the inverter 5 to the hoisting machine 3, thereby changing the rotational torque and the rotational speed of the hoisting machine 3, thereby driving the car 1.
  • the speed is controlled.
  • a hall button 8 is installed at each stop floor of the elevator.
  • the hall button 8 is used for registering a hall call in a desired direction when operated by an elevator user.
  • Each hall button 8 is connected to the elevator control device 9, and operation information for each hall button 8 is transmitted to the elevator group management control device 10 via the elevator control device 9.
  • FIG. 2 shows the configuration of the elevator group management control device 10.
  • the elevator group management control device 10 includes a hall call registration unit 10a, a hall call assignment unit 10b, a power prediction unit 10c, and a speed setting unit 10d.
  • the operation information for the hall button 8 is input to the hall call registration unit 10a provided in the elevator group management control device 10 (via the elevator control device 9).
  • the hall call registration unit 10a registers a hall call to the floor where the operated hall button 8 is installed based on the input operation information. At this time, if the operated hall button 8 is an upward button, an upward hall call is registered, and if it is a downward button, a downward hall call is registered.
  • the hall call assignment unit 10b assigns a specific car 1 that responds to the registered hall call. This assignment is performed so as to optimize the transportation efficiency of the elevator based on the evaluation value calculated based on the current position of each car 1, the status of call registration, and the like.
  • the elevator control device 9 causes the car 1 to travel so that the car 1 assigned to the hall call registration responds according to the assignment of the car 1 to the hall call registration by the hall call assignment unit 10b.
  • the power predicting unit 10c predicts the amount of regenerative power and the amount of power consumed in the hoisting machine 3 of each elevator based on predetermined elements related to the state of the elevator.
  • the predetermined elements relating to the state of the elevator used for the prediction of the regenerative power amount and the power consumption amount in the power prediction unit 10c include the allocation status of the car 1 to the hall call registration by the hall call allocation unit 10b, the car 1 current position and the riding load of the car 1 are included.
  • the power prediction unit 10c starts the next floor where the call is registered after the car 1 leaves the floor. It is predicted whether the operation of the car 1 until it reaches the floor is either a regenerative operation that regenerates electric power or a power running operation that consumes electric power in the hoisting machine 3.
  • the prediction of whether the operation of the car 1 will be a regenerative operation or a power running operation is based on the allocation status of the car 1 to the landing call registration and the moving direction of the car 1 obtained from the current position of the car 1. This can be performed using the riding load of the car 1. Further, the amount of regenerative power or power consumption in this regenerative operation or power running operation is also predicted. Furthermore, the power predicting unit 10c also predicts the time during which the previously predicted regenerative operation or power running operation of the car 1 is performed from the current stop floor to the next stop floor.
  • the speed setting unit 10d is configured so that the overlap time in which the regenerative operation in one car 1 and the power running operation in another car 1 are performed simultaneously is as long as possible.
  • the speed command value of the car 1 set in this way is sent from the speed setting unit 10d to the elevator control device 9.
  • the elevator control device 9 controls the speed at which the car 1 travels according to the assignment of the car 1 to the hall call registration by the hall call assignment unit 10b according to the speed command value.
  • step S1 it is confirmed whether or not a certain car 1 is just before departing from the stop floor. If it can be confirmed in step S1 that a certain car 1 is just before starting from the stop floor, the process proceeds to the next step S2.
  • step S2 the power prediction unit 10c determines whether the operation up to the next stop floor is the regenerative operation or the power running operation for the car 1 that has been confirmed to be immediately before departure in step S1. Is estimated from the moving direction of the car 1 and the boarding load. If the operation up to the next stop floor is a regenerative operation, the regenerative power amount is predicted, and if the operation is a power running operation, the power consumption amount is predicted.
  • the speed setting unit 10d refers to the information on the regenerative electric energy and electric power consumption of the other car 1 that has already been predicted in the same manner, and the car 1 predicted in the previous step S2.
  • Other car 1 that is currently traveling hereinafter referred to as “own car”
  • step S3 if it is determined that there is another car that is currently running that is the consumed (or regenerated) electric energy that can be mutually compensated for the regenerated (or consumed) electric energy of the own car, Proceed to S4.
  • step S4 the speed setting unit 10d determines whether the regenerative (or consumption) power amount of the own car is larger than the consumption (or regenerative) power amount of the other car. If the regenerative (or regenerative) power amount of the own car is larger than the consumed (or regenerative) power amount of the other car, the process proceeds to step S5.
  • step S5 it is determined whether or not the traveling time to the next stop floor of the own car is shorter than the traveling time to the next stop floor of the other car. If the traveling time to the next stop floor of the car is shorter than the traveling time to the next stop floor of the other car, the process proceeds to step S6.
  • step S6 the speed setting unit 10d determines the regenerative (or consumed) power amount of the own car and the consumed (or regenerative) power amount of the other car within a range in which the traveling time of the own car does not exceed the traveling time of the other car.
  • the speed of the car is calculated so that the difference between the two is as small as possible.
  • the traveling speed of the own car is set to be reduced so that the overlap time between the regenerating (or powering) driving of the own car and the powering (or regenerating) driving of the other car 1 is as long as possible. .
  • step S7 following step S6, the speed setting unit 10d sends the command value for the speed of the own car obtained in step S6 to the elevator control device 9, and the elevator control device 9 determines the speed of the car according to the command value.
  • step S8 the elevator controller 9 starts the car 1 (own car) and causes the car 1 (self car) to travel to the next stop floor at the speed set in step S7. Control.
  • step S3 the own car is determined in step S4. If the regenerative (or regenerative) electric energy of the car is less than or equal to the consumed (or regenerative) electric energy of the other car, and the travel time to the next stop floor of the own car in step S5 until the next stop floor of the other car If it is equal to or longer than the travel time, the process proceeds from each step to step S9.
  • step S9 the speed setting unit 10d sends a normal speed command value to the elevator control device 9, and sets the speed of the car to a normal one. Then, the process proceeds to step S8, and the elevator control device 9 controls the car 1 (own car) to leave the car 1 (own car) to the next stop floor at a normal speed.
  • step S6 in FIG. 3 the speed setting (step S6 in FIG. 3) in the speed setting unit 10d will be described with a specific example.
  • the power prediction unit 10c predicts a regenerative operation for 15 seconds at a regenerative power amount of 100% of the maximum regenerative power amount when the car travels at a normal speed. Then, it is assumed that there is another car that is predicted to power-run for 20 seconds when the power consumption is 75% of the maximum power consumption.
  • the speed setting unit 10d sets the traveling speed to be lower than usual so that the traveling time of the own car becomes 20 seconds so that the regenerative power in the own car can be consumed without waste by another car.
  • the regenerative electric energy is roughly proportional to the number of revolutions of the hoisting machine 3, when the traveling time of the own car is changed from 15 seconds to 20 seconds, the regenerative electric energy decreases from 100% to 75%. Since the regenerative power amount is 75% and the regenerative operation is performed for 20 seconds, all of the regenerative power of the own car can be used with other cars without waste.
  • a limit may be provided for the speed reduction amount (amount of increase in travel time) so that the travel speed does not decrease more than a predetermined decrease amount from the normal speed.
  • the speed of the car 1 is reduced in order to increase the overlap time between the regenerative operation and the power running operation has been described.
  • the overlap time between the regenerative operation and the power running operation may be increased. If possible, the speed may be increased within a range that does not hinder the safety of the elevator.
  • the speed setting unit 10d can lengthen the overlap time between the regenerative operation and the power running operation
  • the speed setting unit 10d is not limited to the speed of the car 1 itself, for example, the acceleration or deceleration of the car 1 or the hoisting machine 3 A specified value such as a drive torque may be set.
  • the elevator group management control device configured as described above is a regenerative system that regenerates electric power for a certain car from the current stop floor to the next stop floor based on the moving direction and load of the car.
  • a power prediction unit that is a prediction unit that predicts a time for performing the regenerative operation or powering operation while predicting which operation or powering operation that consumes power, and the regenerative operation of the car predicted by the prediction unit Alternatively, when the prediction unit predicts that another car that is different from the car in the power running time is in a power running or regenerative operation, the regenerative operation or power running of the car and the other Calculate the overlap time that is the same as the power running or regenerative operation of the car at the same time, and calculate the overlap time while changing the traveling speed of the car. Has long overlap time is obtained demanded traveling speed, and the speed setting unit is a command setting unit for setting a command value of the running speed of the cab, the.
  • the regenerative power of the elevator can be efficiently consumed by powering operation, and the energy consumption can be further reduced. Moreover, since it is not necessary to charge rechargeable power to a secondary battery, or the capacity
  • the present invention can be used for an elevator group management control device that manages and controls a plurality of elevator cars as a group and uses regenerative power.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Elevator Control (AREA)

Abstract

Provided is an elevator group management control device able to efficiently consume regenerated power from the elevator during powered operation. For this reason, an elevator group management control device for controlling a plurality of elevator cars by managing the same as one group, wherein the control device is provided with a prediction unit (10c) for predicting for a certain elevator car, on the basis of the movement direction and load of the elevator car, whether operation until the next stopping floor will be regenerative operation or powered operation and the time for regenerative (powered) operation, and a command setting unit (10d) for calculating the overlap time between the regenerative (powered) operation of the elevator car and the regenerative powered (poweredregenerative) operation of another elevator car, obtaining a running speed from a longer overlap time by calculating overlap time while the elevator car changes running speed, and setting a command value for the running speed of the elevator car, when the other different elevator car is predicted to realize powered (regenerative) operation during the time predicted for regenerative (powered) operation of the first elevator car.

Description

エレベータの群管理制御装置Elevator group management control device
 この発明は、エレベータの群管理制御装置に関するものである。 This invention relates to an elevator group management control device.
 一般的にエレベータシステムでは、エレベータの乗りかごと釣合い重りとが主ロープにより接続されており、釣合い重りの重量は、定員の半分が乗車したときの乗りかごと釣り合うように設定される。このため、乗客がいない空かごが上昇するときは、下降する釣合い重りの位置エネルギーにより巻上機を回し、巻上機が発電機としての作用により電力を回生できる。逆に空かごが下降するときは、釣合い重りを上昇させるため巻上機は力行運転となり電力を消費する。 Generally, in an elevator system, an elevator car and a counterweight are connected by a main rope, and the weight of the counterweight is set so as to balance the car when half of the capacity is on board. For this reason, when the empty car with no passengers rises, the hoisting machine is rotated by the potential energy of the lowering counterweight, and the hoisting machine can regenerate electric power by acting as a generator. On the other hand, when the empty car descends, the hoisting machine operates in a power running to increase the counterweight and consumes power.
 従来におけるエレベータの群管理制御装置においては、釣合い重りの重さと乗りかごの荷重とから両者のアンバランス荷重を検出し、この検出したアンバランス荷重に基づいて、発生した乗場呼びに対して巻上機への負荷が軽くなる方向のエレベータ号機を優先して割り当てるようにして消費電力を抑制しようとするものが知られている(例えば、特許文献1参照)。 In a conventional elevator group management control device, the unbalanced load of both is detected from the weight of the counterweight and the load on the car, and the hoisting call is generated based on the detected unbalanced load. There has been known one that attempts to suppress power consumption by preferentially assigning elevators in a direction in which the load on the aircraft is lightened (see, for example, Patent Document 1).
 また、エレベータを含むビルの電気機器に電力を供給する配電設備にかかる負担を軽減するため、配電設備の負荷が軽くなった場合に、エレベータが回生運転であったときにはエレベータの速度を低下させてエレベータの回生電力量を制限するものも従来において知られている(例えば、特許文献2参照)。 Also, in order to reduce the burden on the power distribution equipment that supplies power to the building electrical equipment including the elevator, when the load on the power distribution equipment is reduced, the elevator speed is reduced when the elevator is in regenerative operation. The thing which restrict | limits the regenerative electric energy of an elevator is also known conventionally (for example, refer patent document 2).
 さらにまた、乗場呼び、かご呼び及び乗車人数等の情報から各エレベータでの使用電力量の予測値を算出し、全エレベータにおける使用電力量の合計が予め設定した電力抑制値を超えないようにエレベータを運行制御するものも従来において知られている(例えば、特許文献3参照)。 Furthermore, a predicted value of power consumption in each elevator is calculated from information such as hall call, car call and number of passengers, so that the total of power consumption in all elevators does not exceed the preset power suppression value. A device that controls the operation is also known in the art (see, for example, Patent Document 3).
日本特開平09-227033号公報Japanese Unexamined Patent Publication No. 09-227033 日本特開2010-215365号公報Japanese Unexamined Patent Publication No. 2010-215365 日本特開2011-057395号公報Japanese Unexamined Patent Publication No. 2011-057395
 しかしながら、特許文献1に示された従来におけるエレベータの群管理制御装置は、発生した乗場呼びに対してなるべく消費電力の少ないエレベータに割り当てるものであるが、エレベータの運転に伴い回生された電力を利用することまでは考慮されていないため、回生電力を有効に活用することができないという課題がある。 However, the conventional elevator group management control device disclosed in Patent Document 1 assigns the generated hall call to an elevator that consumes as little power as possible, but uses the power regenerated along with the operation of the elevator. Since this is not taken into consideration, there is a problem that the regenerative power cannot be used effectively.
 また、特許文献2に示された従来のエレベータの群管理制御装置は、ビルの配電設備の負荷に応じて、エレベータの回生電力を抑制するようにエレベータの運転を制御するものであって、回生電力の有効活用については全く考慮されていない。従って、前述した特許文献1に記載されたものと同様の課題が存在する。回生電力の有効活用を図っていないという点は、特許文献3にある従来のエレベータにおいても同様である。 The conventional elevator group management control device disclosed in Patent Document 2 controls the operation of the elevator so as to suppress the regenerative power of the elevator according to the load of the power distribution facility of the building. There is no consideration for effective use of electric power. Therefore, there is a problem similar to that described in Patent Document 1 described above. The point that the regenerative power is not effectively utilized is the same in the conventional elevator disclosed in Patent Document 3.
 この発明は、このような課題を解決するためになされたもので、エレベータの回生電力を力行運転で効率よく消費することができ、消費エネルギーのより一層の削減を図ることが可能であるエレベータの群管理制御装置を得るものである。 The present invention has been made to solve such a problem, and can efficiently consume regenerative power of an elevator by powering operation, and can further reduce energy consumption. A group management control device is obtained.
 この発明に係るエレベータの群管理制御装置においては、複数のエレベータの乗りかごを一群として管理して制御するエレベータの群管理制御装置であって、ある乗りかごについて、当該乗りかごの移動方向及び負荷に基づいて、現在の停止階から次の停止階までの運転が電力を回生する回生運転又は電力を消費する力行運転のいずれであるのかを予測するとともに、前記回生運転又は力行運転する時間を予測する予測部と、前記予測部が予測した当該乗りかごの前記回生運転又は力行運転する時間において、当該乗りかごとは異なる他の乗りかごが力行運転又は回生運転することが前記予測部により予測されている場合に、当該乗りかごの前記回生運転又は力行運転と前記他の乗りかごの前記力行運転又は回生運転とが重複して同時に行われる重複時間を演算し、当該乗りかごの走行速度を変化させながら前記重複時間を演算してより長い前記重複時間が得られる走行速度を求め、当該乗りかごの走行速度の指令値を設定する指令設定部と、を備えた構成とする。 The elevator group management control device according to the present invention is an elevator group management control device that manages and controls a plurality of elevator cars as a group, and for a certain car, the moving direction and load of the car Based on the above, it is predicted whether the operation from the current stop floor to the next stop floor is a regenerative operation that regenerates power or a power running operation that consumes power, and the time for the regenerative operation or power running operation is predicted And the predicting unit predicts that another car that is different from the car is in a power running operation or a regenerative operation in the time of the regenerative operation or power running of the car predicted by the prediction unit. The regenerative operation or power running operation of the car and the power running operation or regenerative operation of the other car are duplicated and performed simultaneously. A command for calculating the overlap time, calculating the overlap time while changing the travel speed of the car, obtaining a travel speed at which a longer overlap time is obtained, and setting a command value for the travel speed of the car And a setting unit.
 この発明に係るエレベータの群管理制御装置においては、エレベータの回生電力を力行運転で効率よく消費することができ、消費エネルギーのより一層の削減を図ることが可能であるという効果を奏する。 In the elevator group management control device according to the present invention, the regenerative electric power of the elevator can be efficiently consumed by powering operation, and it is possible to further reduce the consumption energy.
この発明の実施の形態1に係る群管理制御装置を備えたエレベータシステムの全体構成を模式的に示す図である。It is a figure which shows typically the whole structure of the elevator system provided with the group management control apparatus which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係るエレベータの群管理制御装置の構成を示すブロック図である。It is a block diagram which shows the structure of the group management control apparatus of the elevator which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係るエレベータの群管理制御装置の動作を示すフロー図である。It is a flowchart which shows operation | movement of the group management control apparatus of the elevator which concerns on Embodiment 1 of this invention.
 この発明を添付の図面に従い説明する。各図を通じて同符号は同一部分又は相当部分を示しており、その重複説明は適宜に簡略化又は省略する。 The present invention will be described with reference to the accompanying drawings. Throughout the drawings, the same reference numerals indicate the same or corresponding parts, and redundant description thereof will be simplified or omitted as appropriate.
実施の形態1.
 図1から図3は、この発明の実施の形態1に係るもので、図1は群管理制御装置を備えたエレベータシステムの全体構成を模式的に示す図、図2はエレベータの群管理制御装置の要部の構成を示すブロック図、図3はエレベータの群管理制御装置の動作を示すフロー図である。
Embodiment 1 FIG.
FIGS. 1 to 3 relate to Embodiment 1 of the present invention. FIG. 1 is a diagram schematically showing the overall configuration of an elevator system including a group management control device, and FIG. 2 is an elevator group management control device. FIG. 3 is a flowchart showing the operation of the elevator group management control device.
 図1において、1は、利用者や荷物等を積載して昇降路内を昇降する複数台のエレベータの乗りかごである。これらの乗りかご1それぞれの上端には主ロープ2の一端が連結されており、この主ロープ2の他端は釣合い重り4の上端に連結されている。そして、主ロープ2の中間部は、昇降路の頂部に設置された巻上機3の駆動シーブに巻き掛けられている。 Referring to FIG. 1, reference numeral 1 denotes a plurality of elevator cars that carry users, luggage, and the like and move up and down the hoistway. One end of the main rope 2 is connected to the upper end of each of these cars 1, and the other end of the main rope 2 is connected to the upper end of the counterweight 4. And the intermediate part of the main rope 2 is wound around the drive sheave of the hoisting machine 3 installed in the top part of the hoistway.
 このようにして、乗りかご1及び釣合い重り4は、主ロープ2によって昇降路内で互いに相反する方向に昇降自在なつるべ状に吊持されている。なお、ここで、釣合い重り4の重量は、定員の半分が乗車した状態の乗りかご1と釣り合うように設定されている。 In this way, the car 1 and the counterweight 4 are suspended by the main rope 2 in a slidable manner that can be raised and lowered in opposite directions in the hoistway. Here, the weight of the counterweight 4 is set so as to be balanced with the car 1 in which half of the capacity is on board.
 エレベータの運転に必要な電力は、商用電源7から供給される。商用電源7から供給された交流電圧は、コンバータ6により直流電圧へと変換される。各乗りかご1の昇降を駆動する巻上機3のそれぞれに対応して、インバータ5が設けられている。これらのインバータ5は、コンバータ6からの直流電圧を可変電圧・可変周波数の交流電圧へと変換して巻上機3へと供給する。巻上機3はインバータ5から供給された交流電圧により駆動される。なお、各乗りかご1のインバータ5は相互に接続されており、ある巻上機3での回生電力を他の巻上機3へと融通して使用することができるようになっている。 Electric power necessary for elevator operation is supplied from a commercial power source 7. The AC voltage supplied from the commercial power supply 7 is converted into a DC voltage by the converter 6. Inverters 5 are provided corresponding to the hoisting machines 3 that drive the raising and lowering of each car 1. These inverters 5 convert the DC voltage from the converter 6 into a variable voltage / variable frequency AC voltage and supply it to the hoisting machine 3. The hoisting machine 3 is driven by the AC voltage supplied from the inverter 5. Note that the inverters 5 of the respective cars 1 are connected to each other so that the regenerative power in one hoisting machine 3 can be used interchangeably with other hoisting machines 3.
 複数のエレベータ(の乗りかご1)の運行は、エレベータ群管理制御装置10により、一群(バンク)として管理制御される。そして、各エレベータ(の乗りかご1)のそれぞれの運転は、エレベータ群管理制御装置10による群管理制御の下で、各エレベータ毎に設けられたエレベータ制御装置9により制御される。エレベータ制御装置9は、インバータ5から巻上機3へと供給される交流電圧の電圧及び周波数を調節することで、巻上機3の回転トルク及び回転数を変化させて、乗りかご1の走行速度を制御している。 The operation of a plurality of elevators (the car 1) is managed and controlled as a group (bank) by the elevator group management control device 10. The operation of each elevator (the car 1) is controlled by the elevator control device 9 provided for each elevator under the group management control by the elevator group management control device 10. The elevator control device 9 adjusts the voltage and frequency of the AC voltage supplied from the inverter 5 to the hoisting machine 3, thereby changing the rotational torque and the rotational speed of the hoisting machine 3, thereby driving the car 1. The speed is controlled.
 エレベータの各停止階の乗場のそれぞれには、乗場ボタン8が設置されている。この乗場ボタン8は、エレベータの利用者が操作することにより所望する方向への乗場呼びを登録するためのものである。各乗場ボタン8は、エレベータ制御装置9に接続されており、各乗場ボタン8への操作情報は、エレベータ制御装置9を経由してエレベータ群管理制御装置10へと伝送される。 A hall button 8 is installed at each stop floor of the elevator. The hall button 8 is used for registering a hall call in a desired direction when operated by an elevator user. Each hall button 8 is connected to the elevator control device 9, and operation information for each hall button 8 is transmitted to the elevator group management control device 10 via the elevator control device 9.
 図2にエレベータ群管理制御装置10の構成を示す。エレベータ群管理制御装置10は、乗場呼び登録部10a、乗場呼び割当部10b、電力予測部10c及び速度設定部10dを備えている。 FIG. 2 shows the configuration of the elevator group management control device 10. The elevator group management control device 10 includes a hall call registration unit 10a, a hall call assignment unit 10b, a power prediction unit 10c, and a speed setting unit 10d.
 乗場ボタン8への操作情報は、(エレベータ制御装置9を介して)エレベータ群管理制御装置10が備える乗場呼び登録部10aへと入力される。この乗場呼び登録部10aは、入力された操作情報に基づいて、操作された乗場ボタン8が設置されている階床への乗場呼びを登録する。この際、操作された乗場ボタン8が、上方向ボタンであれば上方向の乗場呼びを、下方向ボタンであれば下方向の乗場呼びを登録する。 The operation information for the hall button 8 is input to the hall call registration unit 10a provided in the elevator group management control device 10 (via the elevator control device 9). The hall call registration unit 10a registers a hall call to the floor where the operated hall button 8 is installed based on the input operation information. At this time, if the operated hall button 8 is an upward button, an upward hall call is registered, and if it is a downward button, a downward hall call is registered.
 乗場呼び登録部10aにより乗場呼びが登録されると、乗場呼び割当部10bは、登録された乗場呼びに対して応答する特定の乗りかご1を割り当てる。この割り当ては、各乗りかご1の現在位置や呼び登録の状況等を基に算出した評価値に基づいて、エレベータの輸送効率的に最適となるように行われる。 When a hall call is registered by the hall call registration unit 10a, the hall call assignment unit 10b assigns a specific car 1 that responds to the registered hall call. This assignment is performed so as to optimize the transportation efficiency of the elevator based on the evaluation value calculated based on the current position of each car 1, the status of call registration, and the like.
 エレベータ制御装置9は、この乗場呼び割当部10bによる乗場呼び登録への乗りかご1の割り当てに従って、乗場呼び登録に割り当てられた乗りかご1を応答させるように、乗りかご1を走行させる。 The elevator control device 9 causes the car 1 to travel so that the car 1 assigned to the hall call registration responds according to the assignment of the car 1 to the hall call registration by the hall call assignment unit 10b.
 電力予測部10cは、エレベータの状態に係る所定の要素に基づいて、各エレベータの巻上機3における回生電力量及び消費電力量を予測するものである。この電力予測部10cにおける回生電力量及び消費電力量の予測に用いられる、エレベータの状態に係る所定の要素には、乗場呼び割当部10bによる乗場呼び登録への乗りかご1の割り当て状況、乗りかご1の現在位置及び乗りかご1の乗車負荷が含まれている。 The power predicting unit 10c predicts the amount of regenerative power and the amount of power consumed in the hoisting machine 3 of each elevator based on predetermined elements related to the state of the elevator. The predetermined elements relating to the state of the elevator used for the prediction of the regenerative power amount and the power consumption amount in the power prediction unit 10c include the allocation status of the car 1 to the hall call registration by the hall call allocation unit 10b, the car 1 current position and the riding load of the car 1 are included.
 より詳しくは、電力予測部10cは、乗りかご1が呼びに応答してある階床に停止した際に、当該乗りかご1が当該階床から出発した後、呼びが登録されている次の階床へと到着するまでの当該乗りかご1の運転が、巻上機3において電力を回生する回生運転か電力を消費する力行運転のいずれかであるかを予測する。 More specifically, when the car 1 stops at a certain floor in response to the call, the power prediction unit 10c starts the next floor where the call is registered after the car 1 leaves the floor. It is predicted whether the operation of the car 1 until it reaches the floor is either a regenerative operation that regenerates electric power or a power running operation that consumes electric power in the hoisting machine 3.
 この乗りかご1の運転が回生運転となるか力行運転となるかの予測は、乗場呼び登録への乗りかご1の割り当て状況及び乗りかご1の現在位置から求められる乗りかご1の移動方向と、乗りかご1の乗車負荷とを用いて行うことができる。また、この回生運転又は力行運転における回生電力量又は消費電力量も予測される。さらに、電力予測部10cは、現在の停止階から次の停止階までの、先程予測した乗りかご1の回生運転又は力行運転が行われる時間も予測する。 The prediction of whether the operation of the car 1 will be a regenerative operation or a power running operation is based on the allocation status of the car 1 to the landing call registration and the moving direction of the car 1 obtained from the current position of the car 1. This can be performed using the riding load of the car 1. Further, the amount of regenerative power or power consumption in this regenerative operation or power running operation is also predicted. Furthermore, the power predicting unit 10c also predicts the time during which the previously predicted regenerative operation or power running operation of the car 1 is performed from the current stop floor to the next stop floor.
 速度設定部10dは、電力予測部10cによる予測結果に基づいて、ある乗りかご1での回生運転と他の乗りかご1での力行運転とが同時に行われる重複時間がなるべく長くなるよう乗りかご1の走行速度の指令値を設定する。より詳しくは、一方の乗りかご1の走行速度を変化させながら重複時間を演算して、重複時間より長くなる走行速度を求め、乗りかご1の走行速度指令値を設定する。このように設定することで、エレベータの群で見たときに当該群における回生電力量と消費電力量との差をなるべく小さくし、回生電力を力行運転で有効に活用することができる。 Based on the prediction result by the power prediction unit 10c, the speed setting unit 10d is configured so that the overlap time in which the regenerative operation in one car 1 and the power running operation in another car 1 are performed simultaneously is as long as possible. Set the running speed command value. More specifically, the overlap time is calculated while changing the travel speed of one of the cars 1, the travel speed longer than the overlap time is obtained, and the travel speed command value of the car 1 is set. By setting in this way, the difference between the amount of regenerative power and the amount of power consumption in the group of elevators as viewed from the group of elevators can be reduced as much as possible, and the regenerative power can be effectively utilized in powering operation.
 このようにして設定された乗りかご1の速度指令値は、速度設定部10dからエレベータ制御装置9へと送られる。エレベータ制御装置9は、乗場呼び割当部10bによる乗場呼び登録への乗りかご1の割り当てに従って乗りかご1を走行させる際の速度を、当該速度指令値に従って制御する。 The speed command value of the car 1 set in this way is sent from the speed setting unit 10d to the elevator control device 9. The elevator control device 9 controls the speed at which the car 1 travels according to the assignment of the car 1 to the hall call registration by the hall call assignment unit 10b according to the speed command value.
 図3のフロー図は、この実施の形態におけるエレベータの群管理制御装置の動作を示すものである。
 まず、ステップS1において、ある乗りかご1について、停止階から出発する直前であるか否かを確認する。このステップS1で、ある乗りかご1について停止階から出発する直前であることが確認できれば、次のステップS2へと進む。
The flow chart of FIG. 3 shows the operation of the elevator group management control apparatus in this embodiment.
First, in step S1, it is confirmed whether or not a certain car 1 is just before departing from the stop floor. If it can be confirmed in step S1 that a certain car 1 is just before starting from the stop floor, the process proceeds to the next step S2.
 このステップS2においては、電力予測部10cは、先のステップS1で出発直前であることが確認できた乗りかご1について、次の停止階までの運転が回生運転又は力行運転のいずれかであるのかを当該乗りかご1の移動方向及び乗車負荷から予測する。そして、次の停止階までの運転が、回生運転であればその回生電力量を、力行運転であればその消費電力量を予測する。 In step S2, the power prediction unit 10c determines whether the operation up to the next stop floor is the regenerative operation or the power running operation for the car 1 that has been confirmed to be immediately before departure in step S1. Is estimated from the moving direction of the car 1 and the boarding load. If the operation up to the next stop floor is a regenerative operation, the regenerative power amount is predicted, and if the operation is a power running operation, the power consumption amount is predicted.
 続くステップS3においては、速度設定部10dは、同様にして既に予測されている他の乗りかご1の回生電力量及び消費電力量の情報を参照し、先のステップS2で予測した当該乗りかご1(以下「自かご」という)の回生電力量又は消費電力量と互いに補償し合う(打ち消し合う)ことが可能な消費電力量又は回生電力量である現在走行中の他の乗りかご1(以下「他かご」という)が存在するか否かを判定する。 In the subsequent step S3, the speed setting unit 10d refers to the information on the regenerative electric energy and electric power consumption of the other car 1 that has already been predicted in the same manner, and the car 1 predicted in the previous step S2. Other car 1 that is currently traveling (hereinafter referred to as “own car”), which is the amount of consumed power or amount of regenerative power that can compensate (cancel) each other It is determined whether or not “other car” is present.
 このステップS3において、自かごの回生(又は消費)電力量と互いに補償し合うことが可能な消費(又は回生)電力量である現在走行中の他かごが存在すると判定された場合には、ステップS4へと進む。このステップS4においては、速度設定部10dは、自かごの回生(又は消費)電力量が他かごの消費(又は回生)電力量より大きいか否かを判定する。そして、自かごの回生(又は消費)電力量が他かごの消費(又は回生)電力量より大きい場合には、ステップS5へと進む。 In this step S3, if it is determined that there is another car that is currently running that is the consumed (or regenerated) electric energy that can be mutually compensated for the regenerated (or consumed) electric energy of the own car, Proceed to S4. In step S4, the speed setting unit 10d determines whether the regenerative (or consumption) power amount of the own car is larger than the consumption (or regenerative) power amount of the other car. If the regenerative (or regenerative) power amount of the own car is larger than the consumed (or regenerative) power amount of the other car, the process proceeds to step S5.
 このステップS5においては、自かごの次の停止階までの走行時間が他かごの次の停止階までの走行時間より短いか否かを判定する。そして、自かごの次の停止階までの走行時間が他かごの次の停止階までの走行時間より短い場合には、ステップS6へと進む。 In this step S5, it is determined whether or not the traveling time to the next stop floor of the own car is shorter than the traveling time to the next stop floor of the other car. If the traveling time to the next stop floor of the car is shorter than the traveling time to the next stop floor of the other car, the process proceeds to step S6.
 このステップS6では、速度設定部10dは、自かごの走行時間が他かごの走行時間を超えない範囲で、自かごの回生(又は消費)電力量と他かごの消費(又は回生)電力量との差がなるべく小さくなるような自かごの速度を求める。具体的には、自かごの回生(又は力行)運転と他の乗りかご1での力行(又は回生)運転との重複時間がなるべく長くなるように、自かごの走行速度を低下させるよう設定する。 In step S6, the speed setting unit 10d determines the regenerative (or consumed) power amount of the own car and the consumed (or regenerative) power amount of the other car within a range in which the traveling time of the own car does not exceed the traveling time of the other car. The speed of the car is calculated so that the difference between the two is as small as possible. Specifically, the traveling speed of the own car is set to be reduced so that the overlap time between the regenerating (or powering) driving of the own car and the powering (or regenerating) driving of the other car 1 is as long as possible. .
 ステップS6に続くステップS7においては、速度設定部10dは、ステップS6で求めた自かごの速度の指令値をエレベータ制御装置9へと送り、エレベータ制御装置9は自かごの速度をこの指令値に従って設定する。そして、続くステップS8において、エレベータ制御装置9は、乗りかご1(自かご)を出発させ、ステップS7で設定された速度でもって乗りかご1(自かご)を次の停止階まで走行させるように制御する。 In step S7 following step S6, the speed setting unit 10d sends the command value for the speed of the own car obtained in step S6 to the elevator control device 9, and the elevator control device 9 determines the speed of the car according to the command value. Set. In step S8, the elevator controller 9 starts the car 1 (own car) and causes the car 1 (self car) to travel to the next stop floor at the speed set in step S7. Control.
 一方、ステップS3において自かごの回生(又は消費)電力量と互いに補償し合うことが可能な消費(又は回生)電力量である現在走行中の他の他かごが存在しない場合、ステップS4において自かごの回生(又は消費)電力量が他かごの消費(又は回生)電力量以下である場合、及び、ステップS5において自かごの次の停止階までの走行時間が他かごの次の停止階までの走行時間以上である場合には、それぞれのステップからステップS9へと進む。 On the other hand, if there is no other car currently running that is the consumed (or regenerated) electric energy that can be mutually compensated for the regenerated (or consumed) electric energy of the own car in step S3, the own car is determined in step S4. If the regenerative (or regenerative) electric energy of the car is less than or equal to the consumed (or regenerative) electric energy of the other car, and the travel time to the next stop floor of the own car in step S5 until the next stop floor of the other car If it is equal to or longer than the travel time, the process proceeds from each step to step S9.
 このステップS9では、速度設定部10dは、通常の速度の指令値をエレベータ制御装置9へと送り、自かごの速度を通常のものに設定する。そして、ステップS8へと進み、エレベータ制御装置9は、乗りかご1(自かご)を出発させ、通常の速度でもって乗りかご1(自かご)を次の停止階まで走行させるように制御する。 In step S9, the speed setting unit 10d sends a normal speed command value to the elevator control device 9, and sets the speed of the car to a normal one. Then, the process proceeds to step S8, and the elevator control device 9 controls the car 1 (own car) to leave the car 1 (own car) to the next stop floor at a normal speed.
 ここで、特に速度設定部10dにおける速度の設定(図3のステップS6)について具体的な例により説明する。例えば、電力予測部10cにより、自かごが通常の速度で走行した場合、最大回生電力量の100%の回生電力量で15秒間回生運転すると予測されたとする。そして、最大消費電力量の75%の消費電力量であと20秒間力行運転すると予測されている他かごがあるとする。 Here, the speed setting (step S6 in FIG. 3) in the speed setting unit 10d will be described with a specific example. For example, suppose that the power prediction unit 10c predicts a regenerative operation for 15 seconds at a regenerative power amount of 100% of the maximum regenerative power amount when the car travels at a normal speed. Then, it is assumed that there is another car that is predicted to power-run for 20 seconds when the power consumption is 75% of the maximum power consumption.
 ここで、最大回生電力量と最大消費電力量とは等しいとした場合には、自かごで回生される電力量のうち(自かごの100%から他かごの75%を引いた)25%分は、ここでは使用されることがない無駄となる回生電力となる。そこで、速度設定部10dは、自かごでの回生電力を他かごで無駄無く消費できるように、自かごの走行時間が20秒となるように通常より走行速度を低下させるよう設定する。 Here, when the maximum regenerative power amount and the maximum power consumption amount are equal to each other, 25% (100% of the own car minus 75% of the other car) of the electric energy regenerated in the own car Is a wasteful regenerative power that is not used here. Therefore, the speed setting unit 10d sets the traveling speed to be lower than usual so that the traveling time of the own car becomes 20 seconds so that the regenerative power in the own car can be consumed without waste by another car.
 回生電力量は巻上機3の回転数に概ね比例することから、自かごの走行時間を15秒から20秒にすると、回生電力量は100%から75%へと低下するが、自かごは回生電力量が75%で20秒の回生運転となるため、自かごの回生電力の全てを他かごで無駄無く使用することができるようになる。 Since the regenerative electric energy is roughly proportional to the number of revolutions of the hoisting machine 3, when the traveling time of the own car is changed from 15 seconds to 20 seconds, the regenerative electric energy decreases from 100% to 75%. Since the regenerative power amount is 75% and the regenerative operation is performed for 20 seconds, all of the regenerative power of the own car can be used with other cars without waste.
 なお、以上においては、説明上の便宜のため、エレベータ(乗りかご1)の台数を2台とした場合について説明したが、3台以上の場合も、同様にして回生電力の総量と消費電力の総量との差が小さくなり、かつ、回生電力を消費する時間が長くなるように乗りかご1の走行速度を設定する。 In the above description, for convenience of explanation, the case where the number of elevators (cars 1) is two has been described, but the total amount of regenerative power and the amount of power consumed are also the same in the case of three or more. The traveling speed of the car 1 is set so that the difference from the total amount is small and the time for consuming regenerative power is long.
 また、回生運転と力行運転の重複時間を長くするためとはいえ、走行速度を低下させ過ぎてしまうと今度は運転効率(利用者の運搬効率)の面で問題が出てくる可能性がある。そこで、速度の低下量(走行時間の増加量)に制限を設け、走行速度が通常の速度より所定の低下量以上は低下しないようにしてもよい。 In addition, although it is intended to lengthen the overlap time between regenerative operation and power running operation, if the traveling speed is reduced too much, there may be a problem in terms of driving efficiency (user transportation efficiency). . Therefore, a limit may be provided for the speed reduction amount (amount of increase in travel time) so that the travel speed does not decrease more than a predetermined decrease amount from the normal speed.
 さらにまた、以上においては、回生運転と力行運転との重複時間を長くするために、乗りかご1の速度を低下させる場合について説明したが、回生運転と力行運転との重複時間を長くすることができるのであれば、エレベータの安全に支障がない範囲内において速度を増加させる場合も考えられる。 Furthermore, in the above, the case where the speed of the car 1 is reduced in order to increase the overlap time between the regenerative operation and the power running operation has been described. However, the overlap time between the regenerative operation and the power running operation may be increased. If possible, the speed may be increased within a range that does not hinder the safety of the elevator.
 さらにまた、速度設定部10dは、回生運転と力行運転との重複時間を長くできるのであれば、乗りかご1の速度そのものでなく、例えば乗りかご1の加速度、減速度や、巻上機3の駆動トルク等の指定値を設定するようにしてもよい。 Furthermore, if the speed setting unit 10d can lengthen the overlap time between the regenerative operation and the power running operation, the speed setting unit 10d is not limited to the speed of the car 1 itself, for example, the acceleration or deceleration of the car 1 or the hoisting machine 3 A specified value such as a drive torque may be set.
 以上のように構成されたエレベータの群管理制御装置は、ある乗りかごについて、当該乗りかごの移動方向及び負荷に基づいて、現在の停止階から次の停止階までの運転が電力を回生する回生運転又は電力を消費する力行運転のいずれであるのかを予測するとともに、前記回生運転又は力行運転する時間を予測する予測部である電力予測部と、予測部が予測した当該乗りかごの前記回生運転又は力行運転する時間において、当該乗りかごとは異なる他の乗りかごが力行運転又は回生運転することが予測部により予測されている場合に、当該乗りかごの前記回生運転又は力行運転と前記他の乗りかごの前記力行運転又は回生運転とが重複して同時に行われる重複時間を演算し、当該乗りかごの走行速度を変化させながら重複時間を演算してより長い重複時間が得られる走行速度を求め、当該乗りかごの走行速度の指令値を設定する指令設定部である速度設定部と、を備えている。 The elevator group management control device configured as described above is a regenerative system that regenerates electric power for a certain car from the current stop floor to the next stop floor based on the moving direction and load of the car. A power prediction unit that is a prediction unit that predicts a time for performing the regenerative operation or powering operation while predicting which operation or powering operation that consumes power, and the regenerative operation of the car predicted by the prediction unit Alternatively, when the prediction unit predicts that another car that is different from the car in the power running time is in a power running or regenerative operation, the regenerative operation or power running of the car and the other Calculate the overlap time that is the same as the power running or regenerative operation of the car at the same time, and calculate the overlap time while changing the traveling speed of the car. Has long overlap time is obtained demanded traveling speed, and the speed setting unit is a command setting unit for setting a command value of the running speed of the cab, the.
 このため、エレベータの回生電力を力行運転で効率よく消費することができ、消費エネルギーのより一層の削減を図ることが可能である。また、回生電力を二次電池に充電する必要がなく、あるいは、必要とする二次電池の容量を小さくすることができるため、二次電池にかかる費用を削減することができる。さらに、エレベータで発生した回生電力をエレベータ自身で消費することで、ビルの電源系統に回生する電力が小さくなり、ビルの電気設備に対する影響を小さくすることが可能である。 Therefore, the regenerative power of the elevator can be efficiently consumed by powering operation, and the energy consumption can be further reduced. Moreover, since it is not necessary to charge rechargeable power to a secondary battery, or the capacity | capacitance of a required secondary battery can be made small, the expense concerning a secondary battery can be reduced. Further, by consuming the regenerative power generated in the elevator by the elevator itself, the power regenerated in the power supply system of the building is reduced, and the influence on the electrical equipment of the building can be reduced.
 この発明は、複数のエレベータの乗りかごを一群として管理して制御し、回生電力を利用するエレベータの群管理制御装置に利用できる。 The present invention can be used for an elevator group management control device that manages and controls a plurality of elevator cars as a group and uses regenerative power.
  1  乗りかご
  2  主ロープ
  3  巻上機
  4  釣合い重り
  5  インバータ
  6  コンバータ
  7  商用電源
  8  乗場ボタン
  9  エレベータ制御装置
 10  エレベータ群管理制御装置
 10a 乗場呼び登録部
 10b 乗場呼び割当部
 10c 電力予測部
 10d 速度設定部
DESCRIPTION OF SYMBOLS 1 Passenger car 2 Main rope 3 Hoisting machine 4 Balance weight 5 Inverter 6 Converter 7 Commercial power supply 8 Landing button 9 Elevator control device 10 Elevator group management control device 10a Landing call registration part 10b Landing call allocation part 10c Electric power prediction part 10d Speed setting Part

Claims (4)

  1.  複数のエレベータの乗りかごを一群として管理して制御するエレベータの群管理制御装置であって、
     ある乗りかごについて、当該乗りかごの移動方向及び負荷に基づいて、現在の停止階から次の停止階までの運転が電力を回生する回生運転又は電力を消費する力行運転のいずれであるのかを予測するとともに、前記回生運転又は力行運転する時間を予測する予測部と、
     前記予測部が予測した当該乗りかごの前記回生運転又は力行運転する時間において、当該乗りかごとは異なる他の乗りかごが力行運転又は回生運転することが前記予測部により予測されている場合に、当該乗りかごの前記回生運転又は力行運転と前記他の乗りかごの前記力行運転又は回生運転とが重複して同時に行われる重複時間を演算し、当該乗りかごの走行速度を変化させながら前記重複時間を演算してより長い前記重複時間が得られる走行速度を求め、当該乗りかごの走行速度の指令値を設定する指令設定部と、を備えたことを特徴とするエレベータの群管理制御装置。
    An elevator group management control device that manages and controls a plurality of elevator cars as a group,
    Predicting whether the operation from the current stop floor to the next stop floor is a regenerative operation that regenerates power or a power running operation that consumes power based on the moving direction and load of the car. And a prediction unit for predicting the time for the regenerative operation or power running operation,
    In the time of the regenerative operation or power running of the car predicted by the prediction unit, when the prediction unit predicts that another car different from the car is power running or regenerative operation, The overlap time in which the regenerative operation or power running operation of the car is overlapped with the power running operation or regenerative operation of the other car at the same time is calculated, and the overlap time is changed while changing the traveling speed of the car. An elevator group management control device, comprising: a command setting unit that calculates a travel speed at which a longer overlap time is obtained by calculating the travel speed and sets a command value for the travel speed of the car.
  2.  前記指令設定部は、より長い前記重複時間が得られる当該乗りかごの加速度又は減速度を求め、当該乗りかごの加速度又は減速度の指令値を設定することを特徴とする請求項1に記載のエレベータの群管理制御装置。 The said command setting part calculates | requires the acceleration or deceleration of the said car from which the said duplication time longer is obtained, and sets the command value of the acceleration or the deceleration of the said car, The Claim 1 characterized by the above-mentioned. Elevator group management control device.
  3.  前記指令設定部は、より長い前記重複時間が得られる当該乗りかごを駆動する巻上機のトルク量を求め、当該乗りかごを駆動する巻上機のトルク量の指令値を設定することを特徴とする請求項1に記載のエレベータの群管理制御装置。 The command setting unit obtains a torque amount of a hoisting machine that drives the car that can obtain the longer overlap time, and sets a command value for the torque amount of the hoisting machine that drives the car. The elevator group management control device according to claim 1.
  4.  前記指令定部は、当該乗りかごの走行速度が、通常の走行速度と比較して所定量以上低下しないように当該乗りかごの前記指令値を設定することを特徴とする請求項1から請求項3のいずれかに記載のエレベータの群管理制御装置。 The said command fixed part sets the said command value of the said car so that the traveling speed of the said car may not reduce more than predetermined amount compared with a normal traveling speed. The elevator group management control device according to any one of claims 3 to 4.
PCT/JP2011/077544 2011-11-29 2011-11-29 Elevator group management control device WO2013080300A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2011/077544 WO2013080300A1 (en) 2011-11-29 2011-11-29 Elevator group management control device
CN201180074965.XA CN103946140B (en) 2011-11-29 2011-11-29 Elevator group management and control device
JP2013546878A JP5812106B2 (en) 2011-11-29 2011-11-29 Elevator group management control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/077544 WO2013080300A1 (en) 2011-11-29 2011-11-29 Elevator group management control device

Publications (1)

Publication Number Publication Date
WO2013080300A1 true WO2013080300A1 (en) 2013-06-06

Family

ID=48534825

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/077544 WO2013080300A1 (en) 2011-11-29 2011-11-29 Elevator group management control device

Country Status (3)

Country Link
JP (1) JP5812106B2 (en)
CN (1) CN103946140B (en)
WO (1) WO2013080300A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019156607A (en) * 2018-03-15 2019-09-19 株式会社日立製作所 Elevator system
WO2020216987A1 (en) * 2019-04-25 2020-10-29 Kone Corporation A solution for overspeed monitoring of an elevator car
CN114261859A (en) * 2021-12-29 2022-04-01 日立电梯(中国)有限公司 Energy-saving elevator allocation control method and system and elevator

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110817624A (en) * 2019-09-30 2020-02-21 苏州汇川技术有限公司 Elevator emergency rescue method, device, equipment and computer readable storage medium

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04191251A (en) * 1990-11-26 1992-07-09 Takenaka Komuten Co Ltd Driving method of elevator
JP2009057133A (en) * 2007-08-30 2009-03-19 Toshiba Elevator Co Ltd Elevator
JP2010064864A (en) * 2008-09-11 2010-03-25 Toshiba Elevator Co Ltd Elevator system
JP2010168154A (en) * 2009-01-21 2010-08-05 Mitsubishi Electric Corp Control device for elevator

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102186757B (en) * 2008-10-20 2013-10-30 三菱电机株式会社 Elevator group management controller

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04191251A (en) * 1990-11-26 1992-07-09 Takenaka Komuten Co Ltd Driving method of elevator
JP2009057133A (en) * 2007-08-30 2009-03-19 Toshiba Elevator Co Ltd Elevator
JP2010064864A (en) * 2008-09-11 2010-03-25 Toshiba Elevator Co Ltd Elevator system
JP2010168154A (en) * 2009-01-21 2010-08-05 Mitsubishi Electric Corp Control device for elevator

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019156607A (en) * 2018-03-15 2019-09-19 株式会社日立製作所 Elevator system
CN111836771A (en) * 2018-03-15 2020-10-27 株式会社日立制作所 Elevator system
CN111836771B (en) * 2018-03-15 2022-12-20 株式会社日立制作所 Elevator system
WO2020216987A1 (en) * 2019-04-25 2020-10-29 Kone Corporation A solution for overspeed monitoring of an elevator car
CN114261859A (en) * 2021-12-29 2022-04-01 日立电梯(中国)有限公司 Energy-saving elevator allocation control method and system and elevator

Also Published As

Publication number Publication date
JPWO2013080300A1 (en) 2015-04-27
JP5812106B2 (en) 2015-11-11
CN103946140A (en) 2014-07-23
CN103946140B (en) 2015-11-25

Similar Documents

Publication Publication Date Title
EP2323941B1 (en) Elevator and building power system with secondary power supply management
KR101242527B1 (en) Method for operating an elevator in an emergency mode
US20080185234A1 (en) Elevator system
EP3447016B1 (en) Power system for vertical transportation, method and vertical transportation arrangements
JP4619038B2 (en) Elevator control device
JP2002154759A (en) Emergency power control device for elevator
JP5812106B2 (en) Elevator group management control device
JP2010168154A (en) Control device for elevator
JP6089796B2 (en) Elevator power outage rescue operation device
CN104724555A (en) Elevator group supervisory operation system and elevator group supervisory operation method
JP2009035408A (en) Elevator
JP7241490B2 (en) Automatic rescue and charging system for elevator drives
JP5550680B2 (en) Elevator system and elevator control method
JP6943201B2 (en) Inverter system and inverter control method
EP2671835B1 (en) Elevator group management and control apparatus
JP2013147328A (en) Elevator operated by emergency power supply
JP6324303B2 (en) Elevator emergency rescue operation device at power failure
JP2014009041A (en) Elevator control device
JP5535352B1 (en) elevator
JP2014172668A (en) Elevator system
KR101169428B1 (en) Elevator Apparatus with Slave motor and Method for Controlling thereof
JP6222857B2 (en) Elevator control device and elevator control method
JP2013216424A (en) Elevator control system
JP2001240335A (en) Operation device of elevator in service interruption
JP2014069952A (en) Elevator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11876664

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013546878

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11876664

Country of ref document: EP

Kind code of ref document: A1