WO2013078773A1 - 熵循环发动机 - Google Patents

熵循环发动机 Download PDF

Info

Publication number
WO2013078773A1
WO2013078773A1 PCT/CN2012/001618 CN2012001618W WO2013078773A1 WO 2013078773 A1 WO2013078773 A1 WO 2013078773A1 CN 2012001618 W CN2012001618 W CN 2012001618W WO 2013078773 A1 WO2013078773 A1 WO 2013078773A1
Authority
WO
WIPO (PCT)
Prior art keywords
working fluid
gas
cycle engine
entropy cycle
communication
Prior art date
Application number
PCT/CN2012/001618
Other languages
English (en)
French (fr)
Inventor
靳北彪
Original Assignee
Jin Beibiao
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jin Beibiao filed Critical Jin Beibiao
Publication of WO2013078773A1 publication Critical patent/WO2013078773A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/03EGR systems specially adapted for supercharged engines with a single mechanically or electrically driven intake charge compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B33/00Engines characterised by provision of pumps for charging or scavenging
    • F02B33/32Engines with pumps other than of reciprocating-piston type
    • F02B33/34Engines with pumps other than of reciprocating-piston type with rotary pumps
    • F02B33/36Engines with pumps other than of reciprocating-piston type with rotary pumps of positive-displacement type
    • F02B33/38Engines with pumps other than of reciprocating-piston type with rotary pumps of positive-displacement type of Roots type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust

Definitions

  • the invention relates to the field of thermal energy and power, and more particularly to an entropy cycle engine.
  • the invention provides an entropy cycle engine with high power and high power density, which solves the problem that the traditional heat engine is difficult to be heated to the proper height due to the temperature and pressure of the working medium, which affects the power and power density.
  • An entropy cycle engine includes a gas compression mechanism, a gas work mechanism, and a communication passage, and the gas compression mechanism communicates with the gas work mechanism via the communication passage to form a working fluid closed a circuit, an internal combustion combustion chamber is disposed in the working fluid closed circuit, and a working fluid outlet is disposed on the working fluid closed circuit; at least one of the gas compression mechanism or the gas working mechanism is an impeller type, Roots Or screw type mechanism.
  • the internal combustion combustion chamber is disposed in a closed loop of the working fluid downstream of a working fluid outlet of the gas compression mechanism and a working fluid inlet of the gas working mechanism. .
  • Solution 3 On the basis of the solution 1 or the solution 2, the internal combustion combustion chamber is set as a side internal combustion combustion chamber.
  • the entropy cycle engine further includes a cooler, and the cooler is disposed on the working fluid closed loop.
  • Solution 5 On the basis of the solution 1: the cooler is disposed on the working fluid closed loop upstream of the working fluid outlet of the gas working mechanism and downstream of the working fluid inlet of the internal combustion combustion chamber.
  • the entropy cycle engine further includes a cooling liquid discharge port, and the cooling liquid discharge port is disposed at the communication passage between the cooler and the working fluid outlet on.
  • the entropy cycle engine further comprises a heat exchanger, a working medium outlet of the gas working mechanism and a working medium inlet of the gas compression mechanism
  • the communication passage is set as a cooled fluid passage of the heat exchanger, and the communication passage between the working fluid outlet of the gas compression mechanism and the working fluid inlet of the gas work mechanism is set as the heat exchanger The heated fluid channel.
  • the entropy cycle engine further includes an oxidant source, the oxidant source being in closed loop communication with the working fluid.
  • the oxidant source is in direct communication with the internal combustion combustion chamber via an oxidant control valve.
  • the entropy cycle engine further includes a direct mixing condensing cooler, the direct mixing cold A cooled fluid inlet of the condensing cooler is in communication with the working fluid outlet, the oxidant source is in communication with a heated fluid inlet of the direct mixing condensing cooler, and is passed through a heated fluid outlet of the direct mixing condensing cooler Connected to the working fluid closed loop.
  • Scheme U On the basis of Scheme 10, the oxidant source is in communication with the internal combustion combustor via the direct mixing condensing cooler.
  • the working fluid outlet is disposed at a working fluid outlet of the gas working mechanism upstream and a working fluid closed loop downstream of the working fluid inlet of the internal combustion combustion chamber on.
  • the entropy cycle engine further includes a non-direct-mixing condensing cooler, and the cooled working fluid inlet of the non-straight-mix condensing cooler is in communication with the working fluid outlet.
  • the entropy cycle engine further includes a cryogenic liquid working fluid storage tank, wherein the cryogenic liquid working fluid storage tank is in communication with the cryogenic liquid working fluid outlet.
  • the entropy cycle engine further includes an oxidant source in communication with the internal combustion chamber via a heated fluid passage of the non-straight-mix condensing cooler.
  • Scheme 21 On the basis of the scheme 1, a control valve is arranged on the working fluid outlet.
  • control valve is configured as a pressure control valve, and the pressure control valve controls the working fluid outlet to derive the working fluid when the pressure in the working fluid closed circuit exceeds a set limit.
  • the entropy cycle engine further includes an auxiliary gas working mechanism, and the working fluid outlet is in communication with the working fluid inlet of the auxiliary gas working mechanism.
  • the entropy cycle engine further includes a gas storage tank, and the working fluid outlet port is in communication with the gas storage tank.
  • Scheme 26 On the basis of the scheme 1, a check valve is arranged on the closed circuit of the working fluid.
  • Scheme 29 On the basis of the scheme 1, in the closed circuit of the working fluid, a part of the gas participating in the circulation is non-condensable.
  • the entropy cycle engine On the basis of the scheme 29, the entropy cycle engine further includes a non-condensable gas storage tank, and the non-condensable gas storage tank is connected to the working fluid closed circuit via a control device.
  • the entropy cycle engine further includes a non-condensing gas returning compressor, wherein the air inlet of the non-condensing gas returning compressor is connected to the working fluid closed circuit via a control valve.
  • the gas that does not condense and store the compressor The oral control valve is in communication with the non-condensable gas storage tank.
  • the entropy cycle engine further includes a low temperature cold source for providing a low temperature substance for cooling the gas compression mechanism or about to enter the gas The working medium of the compression mechanism.
  • the entropy cycle engine further includes a secondary turbine power mechanism and a secondary impeller compressor, wherein the working fluid outlet is in communication with a working fluid inlet of the secondary turbine power mechanism, a working fluid outlet of the secondary turbine power mechanism is connected to a working fluid inlet of the secondary impeller compressor via an auxiliary cooler, and a working fluid outlet of the secondary impeller compressor is in communication with the working fluid closed circuit;
  • An auxiliary working fluid outlet is provided on the passage between the working fluid outlet of the stage turbine power mechanism and the working fluid inlet of the secondary impeller compressor.
  • the entropy cycle engine further includes a four-type door cylinder piston mechanism, wherein a supply port of the four-type door cylinder piston mechanism is in communication with the gas work mechanism, and the four types of door cylinder pistons The refill port of the mechanism is in communication with the working fluid outlet.
  • the side internal combustion combustion chamber is set as a four-type door cylinder piston mechanism, and the air supply port of the four-type door cylinder piston mechanism is connected to the gas working mechanism, and the four types of doors are The refill port of the cylinder piston mechanism is in communication with the working fluid outlet.
  • the entropy cycle engine further includes an oxidant sensor and an oxidant control device, wherein the oxidant sensor is disposed in the working fluid closed circuit, and the oxidant sensor provides a signal to the oxidant control device,
  • the oxidant source is in communication with the working fluid closed circuit via an oxidant control valve, and the oxidant control device controls the oxidant control valve.
  • the gas compression mechanism or the gas work mechanism is a piston liquid mechanism
  • the piston liquid mechanism includes a gas liquid cylinder and a gas-liquid isolation structure, and the gas-liquid isolation structure is disposed on the Inside the gas cylinder.
  • the gas working medium of the gas-liquid cylinder has a pressure greater than the inertia force when the gas-liquid isolation structure is reciprocated by the liquid in the gas-liquid cylinder and the gas-liquid isolation structure.
  • Solution 40 On the basis of the solution 1, the mass flow rate of the substance discharged from the internal combustion combustion chamber is greater than the mass flow rate of the substance introduced into the internal combustion combustion chamber from outside the working fluid closed circuit.
  • the principle of the present invention is: using the internal combustion combustion chamber to perform internal combustion heating on the working fluid in the closed circuit of the working fluid, and pushing the gas working mechanism to perform external work, and realizing the part of the working fluid from the closed loop of the working fluid
  • the working medium is closed in the working fluid closed loop, and part of the heat can be derived while the working fluid in the working fluid closed loop is derived;
  • the function of the cooler in the present invention is cooled in the traditional Stirling engine
  • the function of the condensing cooler is to condense and liquefy part of the working fluid in the closed circuit, and to be discharged from the closed circuit of the working fluid in the form of liquid, so that the working fluid can be realized not only
  • the balance of the working medium in the closed loop can also achieve the effect of not discharging the gas to the environment, forming zero emissions of the engine as a whole.
  • the internal combustion combustion chamber is used to replace the working medium heating heat exchanger of the conventional hot air machine (including all types of hot air machines such as a Stirling engine), so that the temperature and pressure of the working medium can be higher.
  • the level of heat engine efficiency and power density is increased, and the size, weight and manufacturing cost of the mechanism can be greatly reduced.
  • the gas compression mechanism refers to any mechanism that can compress a gas, such as a screw gas compression mechanism, an impeller gas compression mechanism, a Roots gas compression mechanism, a cylinder piston gas compression mechanism, etc., a cylinder piston
  • the gas compression mechanism comprises a conventional cylinder piston gas compression mechanism and a piston liquid mechanism, and the gas compression mechanism functions to compress or compress and translate the gas working medium in the entropy cycle engine, and the so-called translation refers to the working fluid. The process of moving from one place to another.
  • the gas work mechanism refers to any mechanism that can generate power by gas working fluid expansion and/or flow, such as a screw gas work mechanism, an impeller gas work mechanism, a Roots gas work mechanism, a cylinder piston type
  • the gas working mechanism of the cylinder includes a conventional piston-type gas working mechanism and a piston liquid mechanism, and the function of the gas working mechanism is to perform work by using the gas working medium in the high-energy state in the entropy circulating engine.
  • the so-called high energy state means that in the cycle of the entropy cycle engine, the gas working medium is in the state of the highest temperature and the highest pressure.
  • the working fluid in the closed circuit of the working fluid may be a flue gas formed by the combustion of the oxidant and the fuel, or a mixture of the flue gas and other gases previously stored, such as a mixture of flue gas and nitrogen, and flue gas. Mixture with argon, etc.
  • the working fluid closed circuit refers to a space in which the working medium composed of the gas compression mechanism, the gas working mechanism, and the communication passage connecting the two can circulate.
  • the internal combustion combustion chamber means that the high temperature product formed by the combustion chemical reaction between the oxidant and the fuel is directly used as a circulating working medium or mixed with other gases existing in the closed circuit of the working fluid as a circulating working medium. Combustion chamber.
  • the internal combustion combustion chamber is provided in the working fluid closed circuit, including the internal combustion combustion chamber directly disposed in the working fluid closed circuit, and also includes an outlet of the high temperature combustion product of the internal combustion combustion chamber and the The structure in which the working fluid is closed loop, that is, the structure of the side internal combustion combustor.
  • the side-by-side internal combustion combustion chamber means that the internal combustion combustion chamber is an independent combustion space in which a passage is connected to the working fluid closed circuit.
  • the internal combustion combustion chamber may be an internal combustion continuous combustion chamber, an internal combustion intermittent combustion chamber or an internal combustion timing combustion chamber; the internal combustion continuous combustion chamber refers to an internal combustion combustion in which the exothermic chemical reaction may continuously occur.
  • the internal combustion intermittent combustion chamber refers to an internal combustion combustion chamber in which the exothermic chemical reaction occurs discontinuously, and the internal combustion intermittent combustion chamber may be a timing intermittent combustion chamber in which the combustion chamber is in each working cycle of the entropy cycle engine
  • the exothermic chemical reaction occurs only once, the exothermic chemical reaction occurs only in one stroke; or may be a positive-time intermittent combustion chamber in which the exothermic chemistry occurs once in a plurality of working cycles of the entropy cycle engine
  • the reaction may be a long positive intermittent combustion chamber in which the exothermic chemical reaction occurs continuously in a plurality of consecutive working cycles of the entropy cycle engine.
  • the communication passage means a passage through which the working fluid of the gas compression mechanism and the gas work mechanism communicates.
  • the oxidant source refers to a device, mechanism or storage tank that can provide an oxidant, and the oxidant in the oxidant source should have a higher pressure than the pressure in the internal combustion combustion chamber when entering the internal combustion combustion chamber.
  • the oxidizing agent refers to a substance which can react with a fuel in a liquid or high-pressure gas state, such as liquid oxygen, high-pressure oxygen, high-pressure compressed air, liquefied air, hydrogen peroxide, aqueous hydrogen peroxide, and the like.
  • a fuel in a liquid or high-pressure gas state
  • liquid oxygen high-pressure oxygen
  • high-pressure compressed air high-pressure compressed air
  • liquefied air hydrogen peroxide
  • hydrogen peroxide hydrogen peroxide
  • aqueous hydrogen peroxide aqueous hydrogen peroxide
  • the fuel source refers to a device, a mechanism or a storage tank that can provide fuel, and when the fuel in the fuel source enters the internal combustion combustion chamber, the pressure thereof should be higher than the pressure in the internal combustion combustion chamber, and the fuel is A substance capable of undergoing a combustion chemical reaction with an oxidant, such as a hydrocarbon, a carbon oxyhydroxide, or the like; wherein the hydrocarbon includes gasoline, diesel, heavy oil, kerosene, aviation kerosene, and the like; the carbon oxyhydroxide; Including methanol, ethanol, methyl ether, ether, and the like.
  • the fuel in which the combustion chemical reaction occurs in the combustion chamber may be hydrocarbon, carbon oxyhydroxide or solid carbon.
  • Solid carbon has the advantages of high concentration of carbon dioxide in the product after combustion and no liquefaction in the product after combustion; solid carbon can be pre-assembled by solids, sprayed or powdered after powdering, and then fluidized by liquid or gas carbon dioxide. Into the way to enter the hot air machine
  • the working fluid outlet may be a continuous derivation working medium, and may be an intermittent derivation working medium (that is, the working medium is derivatized according to the working medium accumulated in the closed circuit of the working medium), or may be The working fluid is exported according to the timing relationship.
  • the derivation working medium may be that the working medium is derived during each working cycle of the entropy cycle engine and the pressure at the working material outlet is low; or the working medium is derived at the timing, and the working medium is intermittently
  • the entropy cycle engine performs a plurality of working cycles and then derives a working medium when the pressure at the working fluid outlet is low; or a pressure control device such as a pressure limiting valve may be used to derive the pressure when the pressure in the working medium passage exceeds a certain set limit. quality.
  • a control valve is disposed on the working fluid outlet; the control is controlled by a peak pressure control mechanism, and the peak pressure control mechanism causes the pressure in the closed circuit of the working fluid to exceed a set value Controlling ⁇ is turned on, and closing the control ⁇ when the pressure in the closed loop drops back to the set value; or the control valve is controlled by the valley pressure control mechanism, in the closed loop of the working fluid
  • the control valve is opened when the pressure is in the valley pressure state, and the control is closed when the pressure in the working fluid closed circuit is to 0.2 MPa; or the control valve is controlled by the opening degree control mechanism,
  • the opening degree control mechanism controls the opening degree of the control valve according to the pressure setting range in the working fluid closed circuit, so that the working fluid outlet is in a normally open state under a certain degree of opening.
  • the working fluid in the closed loop of the working fluid may be derived in the form of a gas or may be derived in the form of a liquid.
  • the gas storage tank that communicates with the working fluid outlet can be used as a compressed gas source.
  • the highest pressure of the working medium in the working fluid closed circuit reaches the pressure bearing capacity of the working fluid closed circuit.
  • the circulating gas in the working fluid closed circuit may be selected from gases such as helium gas and oxygen gas.
  • the cooler refers to any device capable of cooling the working medium, such as a hybrid type, a heat exchanger type, and a dispersion.
  • Heater cooler refers to a device that directly mixes a heated fluid with a cooled working fluid, and directly performs heat exchange to achieve working fluid cooling; the heat exchanger cooler refers to heat using other fluids.
  • the device receives the medium and exchanges heat with the working medium to reach a cooling medium.
  • the radiator type cooler is a device that uses an ambient gas as a heat receiving medium to diffuse the heat of the working medium into the environment to reach a cooling working medium. Wherein the heat exchanger type and the radiator type cooler are all non-direct mixing type coolers, that is, the heated fluid is not mixed with the cooled working medium.
  • the non-direct-mixing condensing cooler means having a heated fluid passage and a cooled fluid passage, wherein the heated fluid in the heated fluid passage and the cooled fluid in the cooled fluid passage are in a device that generates heat exchange but does not mix, such as a heat exchanger type and a radiator type condensing cooler;
  • the straight mixed condensing cooler means that a heated fluid and a cooled fluid are mixed therein to cause a portion of the cooled fluid to be generated or A device that condenses all of the heat to warm the heated fluid.
  • the non-direct mixing condensing cooler and the direct mixing condensing cooler may have the function of a gas-liquid separator when necessary.
  • the non-condensable gas refers to a gas in which an inert gas, nitrogen gas, or the like participates in circulation in the closed circuit of the working fluid and is not liquefied after being cooled.
  • the position of the internal combustion continuous combustion chamber and the cooler on the working fluid closed circuit should be set according to a known thermodynamic cycle.
  • the working fluid in the working fluid closed circuit needs to be subjected to compression, heating, temperature rising and boosting, work and cooling, which requires the working fluid closed circuit to withstand a certain pressure
  • the pressure capacity of the closed loop of the working fluid can be set to be greater than 2 MPa, 2.5 MPa, 3 MPa, 3.5 MPa, 4 MPa, 4.5 MPa, 5 MPa, 5.5 MPa, 6 MPa, 6.5 MPa, 7 MPa, 7.5 MPa, 8 MPa, 8.5 MPa> 9 MPa, 9.5.
  • MPa let Pa, 10.5MPa, l lMPa, 11.5MPa, 12MPa, 12.5MPa, 13MPa, 13.5MPa, 14MPa, 14.5MPa, 15MPa, 15.5MPa, 16MPa, 16.5MPa, 17MPa, 17.5MPa, 18MPa, 18.5MPa, 19MPa 19.5MPa, 20MPa, 20.5MPa, 21MPa, 22MPa, 23MPa, 24MPa 25MPa, 26MPa, 27MPa, 28MPa, 29MPa, 30MPa, 31MPa, 32MPa, 33MPa, 34MPa, 35MPa, 36MPa, 37MPa, 38MPa, 39MPa or more than 40MPa. Accordingly, the pressure bearing capacity of the oxidant source and the fuel source is also set to the same numerical range as described above.
  • control valve is controlled such that the minimum pressure in the closed circuit of the working fluid is greater than 0.2 MPa, 0.3 MPa, 0.5 MPa, 1 MPa, 1.5 MPa, 2 MPa 2.5 MPa, 3 MPa, 5 MPa, 8 MPa or more than 10 MPa. control.
  • the gas compression mechanism and the gas work mechanism may be provided without a valve, and the phase difference between the two may be used to form a compression and expansion work of the system.
  • the low-temperature cold source refers to a device, a mechanism or a storage tank capable of providing a low-temperature substance having a temperature below 0 ° C, for example, a storage tank stored with a low-temperature substance obtained by a commercially available method, the low-temperature substance It can be liquid nitrogen, liquid oxygen, liquid helium or liquefied air.
  • the oxidizing agent in the present invention is liquid oxygen, liquid oxygen can be directly used as the low temperature substance.
  • the low-temperature cold source is directly connected to the working fluid closed circuit to mix the low-temperature substance with the working medium in the working fluid closed circuit, or to make the low-temperature substance through a heat exchange device In the closed loop with the working fluid
  • the working medium heat exchange mode cools the working fluid in the piston type gas compression mechanism or is about to enter the piston type gas compression mechanism.
  • the hot air machine is a power mechanism with a working cycle close to the Carnot cycle.
  • the calculation of the thermal efficiency can refer to the calculation formula of the Carnot cycle thermal efficiency: It can be seen that when the temperature of the cold source drops by 7 ⁇ , the thermal efficiency increases and the heat is discharged to the cold source. The heat is reduced.
  • the temperature of the cold source is greatly reduced, that is, the temperature of the cold source is very low, the thermal efficiency W is high, and the amount of heat discharged to the cold source is small. It is inferred that the cold source temperature 7 i can be greatly reduced by using a relatively low temperature low temperature substance, thereby greatly reducing the amount of heat discharged to the cold source and effectively improving the engine efficiency.
  • the energy is stored in a very low temperature material, which is equivalent to the concept of a new type of battery, which can be manufactured using a low-cost energy source such as garbage electricity, thereby effectively reducing the operating cost of the engine.
  • the low-temperature substance in the low-temperature cold source after the low-temperature substance in the low-temperature cold source is cooled, it may be introduced into the working fluid closed circuit as a circulating working fluid of the entropy cycle engine, or may not be introduced into the working fluid closed circuit. .
  • the so-called two devices are in communication, meaning that the fluid can flow in one or two directions between the two devices.
  • communication is meant direct communication or indirect communication via a control mechanism, control unit or other control component.
  • the liquid oxygen includes commercial liquid oxygen or liquid oxygen prepared in the field.
  • the four-type door cylinder piston mechanism means that an air inlet, an exhaust port, a gas supply port and a refill port are provided on the cylinder, and the air inlet, the exhaust port, and the supply port are provided
  • the air port and the refill port are correspondingly arranged with a cylinder piston mechanism of an intake valve, an exhaust valve, a supply valve and a refill door.
  • the auxiliary working fluid outlet is optionally disposed on a passage between the working fluid outlet of the secondary turbine power mechanism and the auxiliary cooler.
  • the working fluid outlet of the secondary impeller compressor is connected to a communication port provided on the closed circuit of the working fluid, and the communication port and the working fluid outlet are disposed at different positions on the closed circuit of the working fluid.
  • the mass flow rate M 2 of the substance discharged from the internal combustion combustion chamber is greater than that from the work a mass flow rate Mi of the substance introduced into the internal combustion combustion chamber outside the closed loop, that is to say, in addition to the substance introduced into the internal combustion combustion chamber from the closed circuit of the working fluid, a part of the substance is closed from the working medium Introducing the internal combustion combustion chamber into the circuit, since the internal combustion combustion chamber is disposed in the working fluid closed circuit, that is, at least a portion of the material discharged from the internal combustion combustion chamber flows back to the internal combustion combustion
  • the chamber, that is, the working medium has a reciprocating flow between the hot end mechanism and the cold end mechanism.
  • the substance introduced from the outside of the working fluid closed circuit to the internal combustion combustion chamber may be an oxidant, a reducing agent, a compressed gas or a high temperature gas.
  • the hot end mechanism refers to a gas distribution mechanism or a work mechanism in which the internal combustion combustion chamber is disposed, or the working medium generated after the combustion chemical reaction occurs in the internal combustion combustion chamber, for example, a cylinder piston Institutions or organizations such as Roots Motors.
  • the cold end mechanism refers to a gas working mechanism or a gas compression mechanism that the working medium flows out from the hot end mechanism, such as a cylinder piston mechanism or a Roots type compressor.
  • the oxidant sensor refers to detecting the content of the oxidant in the closed circuit of the working fluid.
  • the oxidant sensor provides a signal to the oxidant control device, the oxidant control device according to a signal provided by the oxidant sensor and a preset static or dynamic oxidant content setting value in the working fluid closed circuit
  • the oxidant control valve is controlled to increase or decrease the amount of oxidant supplied to the working fluid closed circuit for the purpose of regulating the content of the oxidant in the closed loop of the working fluid.
  • the set value of the oxidant content may be a numerical value or a numerical interval, for example, the setting value of the oxidant content in the working fluid closed loop may be 5%, 10% or 10% ⁇ 12%, etc. .
  • the oxidant sensor may be disposed on a closed circuit remote from the internal combustion combustion chamber to ensure that the entire working fluid closed circuit operates in an oxygen-rich (oxygen content greater than zero) state, and stable combustion chemistry occurs in the internal combustion combustion chamber. The reaction also prevents the occurrence of carbon deposits.
  • the gas-liquid isolation structure divides the gas-liquid cylinder into a gas end and a liquid end, and the gas end of the gas-liquid cylinder is provided with a gas working opening for being closed in the closed circuit of the working fluid Other devices or mechanisms are connected; the liquid end of the gas-liquid cylinder is provided with a liquid working opening for communicating with a hydraulic power mechanism or a liquid working fluid returning system.
  • the gas working medium in the gas-liquid cylinder can be adjusted by adjusting the pressure in the working fluid closed circuit (for example, by adjusting the opening pressure or switching time of the working fluid outlet)
  • the pressure of the gas-liquid insulation panel is greater than the total inertia force of the liquid in the gas-liquid cylinder and the gas-liquid insulation structure, thereby preventing the gas-liquid insulation structure from colliding with the gas-liquid cylinder.
  • thermodynamic processes and thermodynamic cycles are the most basic and important state parameters of the working fluid.
  • P-T diagrams with pressure P and temperature T as coordinates have not been used in the study of thermodynamic processes and thermodynamic cycles.
  • the inventors have for the first time proposed the idea of studying thermodynamic processes and thermodynamic cycles using P-T diagrams.
  • PT maps have obvious advantages over commonly used PV maps and ⁇ -s maps, which can more fully describe the working conditions of thermodynamic processes and thermodynamic cycles. The changes have enabled the inventors to have a deeper understanding of thermodynamic processes and thermodynamic cycles.
  • thermodynamics Using the PT diagram, the inventors summarized ten new ways of elaboration of the second law of thermodynamics. These new elaborations are equivalent to the previous methods of thermodynamics of Kelvin and Clausius, but more clearly reveal the work. The difference between the quality heating process and the compression process also points the way for the development of high-efficiency heat engines. This new method and new law will greatly promote the development of thermodynamics and the advancement of the heat engine industry. details as follows:
  • thermodynamic research has long been widely used in thermodynamic research, yet given?
  • T is the most important state parameter of the working fluid, so the inventors plotted the PT map with the pressure P and the temperature T as coordinates, and identified the Carnot Cycle and the Otto Cycle in the PT map shown in FIG.
  • the PT map makes the changes in the working state of the thermodynamic process and the thermodynamic cycle more obvious, and makes the nature of the thermodynamic process and the thermodynamic cycle easier to understand.
  • the PT diagram of the Carnot Cycle shown in Figure 26 allows the inventors to easily conclude that the mission of the reversible adiabatic compression process of Carnot Cycle is to increase the temperature of the working fluid to a reversible adiabatic compression.
  • the temperature of the high-temperature heat source is constant temperature endothermic expansion process from the high-temperature heat source under the premise of keeping the temperature of the high-temperature heat source consistent. Furthermore, the inventors can clearly see that when the temperature of the high temperature heat source of the Carnot Cycle rises, the inventor must be reversible in the Carnot Cycle. During the hot compression process, the working medium is further compressed to a higher temperature to reach the temperature of the high-temperature heat source after the temperature rise, so as to achieve the high temperature after self-heating on the premise of maintaining the temperature of the high-temperature heat source after the temperature rise. The heat source is heated at a constant temperature to expand the expansion process, thereby achieving efficiency.
  • adiabatic process equation p cr ⁇ (where c is a constant, which is the adiabatic index of the working medium), the inventors plotted the curves of the adiabatic process equations of different C values in Fig. 27. According to the mathematical analysis, and as shown in Fig. 27, any two adiabatic process curves do not intersect. This means that the process on the same adiabatic process curve is an adiabatic process, and the process of intersecting any adiabatic process curve is a non-adiabatic process.
  • any process connecting two different adiabatic process curves is a non-adiabatic process (so-called A non-adiabatic process refers to a process with heat transfer, that is, an exothermic process and an endothermic process).
  • a non-adiabatic process refers to a process with heat transfer, that is, an exothermic process and an endothermic process.
  • the inventors have marked two state points, point A and point B. If a thermal process or a series of interconnected thermal processes arrives from point A to point B, the inventors refer to the process of connecting point A and point B, whereas the inventors refer to the process of connecting point B and point A. According to Fig.
  • the inventors can conclude that if point B is on the adiabatic process curve where point A is located, the process of connecting point A and point B is an adiabatic process; if point B is at point A On the right side of the adiabatic process curve, the process of connecting point A and point B is an endothermic process; if point B is to the left of the adiabatic process curve where point A is located, the process of connecting point A and point B is an exothermic process. Since the process of connecting the point A and the point B may be an exothermic process, an adiabatic process or an endothermic process, the inventors have defined point A as having a surplus temperature, an ideal temperature, and an insufficient temperature, respectively, with reference to point B.
  • the process of connecting point B and point A may be an exothermic process, an adiabatic process or an endothermic process, so the inventors have defined point B as having an excess temperature, an ideal temperature, and an insufficient temperature, respectively, with reference to point A.
  • thermodynamics
  • the difference between the heating process of the working fluid and the compression process of the working fluid is that the heating process must generate excess temperature, but the compression process is not.
  • thermodynamics research the PT diagram and the above-mentioned new elaboration method for the second law of thermodynamics should be widely applied.
  • PT map and new rules on the second law of thermodynamics The way of elaboration is of great significance to the advancement of thermodynamics and the development of high-efficiency heat engines.
  • the temperature of that state is lower than that of the initial state.
  • the invention adopts the internal combustion heating method instead of the external combustion heating mode of the hot air machine, and applies the advantages of direct heating of the internal combustion heating mode to the high heat efficiency, and overcomes the difficulty of reaching the temperature and pressure of the working medium in the conventional hot air machine.
  • the high level affects the efficiency and power density, which can effectively save energy and greatly reduce the size, weight and manufacturing cost of the mechanism.
  • it is practical for both piston and impeller compression and work mechanisms, and has broad application prospects. .
  • the invention overcomes the defects of the traditional Stirling engine with low power, low power density and poor load response, and is high efficiency, high power density, high power, low pollution emission or zero emission, low vibration noise, load Responsive to a new engine.
  • Embodiment 1 is a schematic structural view of Embodiment 1 of the present invention
  • 2 is a schematic structural view of Embodiment 2 of the present invention
  • Embodiment 3 is a schematic structural view of Embodiment 3 of the present invention.
  • Embodiment 4 is a schematic structural view of Embodiment 4 of the present invention.
  • Figure 5 is a schematic structural view of Embodiment 5 of the present invention.
  • Figure 6 is a schematic structural view of Embodiment 6 of the present invention.
  • Figure 7 is a schematic structural view of Embodiment 7 of the present invention.
  • Figure 8 is a schematic structural view of Embodiment 8 of the present invention.
  • Figure 9 is a schematic structural view of Embodiment 9 of the present invention.
  • Figure 10 is a schematic structural view of Embodiment 10 of the present invention.
  • Figure 11 is a schematic structural view of Embodiment 11 of the present invention.
  • Figure 12 is a schematic structural view of Embodiment 12 of the present invention.
  • Figure 13 is a schematic structural view of Embodiment 13 of the present invention.
  • Figure 14 is a schematic structural view of Embodiment 14 of the present invention.
  • Figure 15 is a schematic structural view of Embodiment 15 of the present invention.
  • Figure 16 is a schematic structural view of Embodiment 16 of the present invention.
  • Figure 17 is a schematic structural view of Embodiment 17 of the present invention.
  • Figure 18 is a schematic structural view of Embodiment 18 of the present invention.
  • Figure 19 is a schematic structural view of Embodiment 19 of the present invention.
  • Figure 20 is a schematic structural view of Embodiment 20 of the present invention.
  • Figure 21 is a schematic structural view of Embodiment 21 of the present invention.
  • Figure 22 is a schematic structural view of Embodiment 22 of the present invention.
  • Figure 23 is a schematic structural view of Embodiment 23 of the present invention.
  • Figure 24 is a schematic structural view of Embodiment 24 of the present invention.
  • Figure 25 is a schematic structural view of Embodiment 25 of the present invention.
  • Figure 26 shows the ⁇ - ⁇ diagram of the Carnot cycle and the Alto cycle, where e is . , q and are constants of different values, are the adiabatic index, the cycle 0-1-2-3-0 is the Carnot cycle, and the cycle 0-1-4-5-0 is the Carnot cycle after the temperature of the high temperature heat source rises.
  • Cycle 0-6-7-8-0 is the Alto cycle;
  • Figure 27 shows a ⁇ - ⁇ diagram of a plurality of different adiabatic process curves, where, C G and G are constants of different values, are adiabatic indices, and A and B are state points;
  • Figure 28 shows the P-T diagram of the adiabatic process curve, where C is a constant, : is the adiabatic index, and A and B are the state points.
  • the entropy cycle engine shown in FIG. 1 comprises a gas compression mechanism 1, a gas work mechanism 2 and two communication passages 3, and the working fluid outlet of the gas compression mechanism 1 flows along the working medium to a communication passage 3 and The working fluid inlet of the gas working mechanism 2 is in communication, and the working fluid outlet of the gas working mechanism 2 is connected to the working medium inlet of the gas compression mechanism 1 via the other connecting passage 3 along the working medium flow, that is,
  • the gas compression mechanism 1 and the gas work mechanism 2 are connected to each other through the two communication passages 3 to form a working fluid closed circuit; an internal combustion combustion chamber 4 is disposed in the working fluid closed circuit, and the working fluid closed circuit is provided There is a working fluid outlet 5; at least one of the gas compression mechanism 1 or the gas working mechanism 2 is an impeller type, a Roots type or a screw type mechanism.
  • the internal combustion combustion chamber 4 shown in FIG. 1 is disposed in the communication passage 3 of the gas compression mechanism 1 along the working fluid flow direction to communicate with the working medium inlet of the gas work mechanism 2;
  • the internal combustion combustion chamber 4 is in communication with a corresponding oxidant source 41 and a fuel source 42, and an ignition device 43 is provided on the internal combustion combustion chamber 4.
  • a control valve 51 is disposed at the working fluid outlet 5 to facilitate discharge of excess working fluid in the working fluid closed circuit; the control width 51 is such that the minimum pressure in the closed circuit of the working fluid is greater than 0.2 MPa. Controlled by the control mechanism; optionally the minimum pressure is limited to greater than 0.3 MPa, 0.5 MPa, 1 MPa, 1.5 MPa, 2 MPa, 2.5 MPa, 3 MPa, 5 MPa, 8 MPa or greater than 10 MPa.
  • the working process of the embodiment is: the working medium compressed by the gas compression mechanism 1 is heated when passing through the internal combustion combustion chamber 4, and enters the gas working mechanism 2 together with the combustion products to output power externally; The working fluid after the work can be discharged through the working fluid outlet 5, and the remaining working fluid is circulated to the gas compression mechanism 1 to be compressed again, and the cycle is performed.
  • the entropy cycle engine shown in FIG. 2 differs from the embodiment 1 in that the entropy cycle engine further includes a cooler 6 provided on the gas compression mechanism 1 and at the gas A check valve 31 is provided on the communication passage 3 between the working fluid outlet of the compression mechanism 1 and the working fluid inlet of the internal combustion combustion chamber 4.
  • the working fluid outlet 5 is connected to the gas storage tank 52.
  • the pressure of the working fluid closed circuit is set to be at least greater than 2 MPa;
  • the control valve 51 can be As a pressure control valve, a working fluid portion that causes an excessive pressure is introduced into the gas storage tank 52, and can be used as a high-pressure gas source.
  • the pressure bearing capacity of the working fluid closed loop is set to be greater than 2.5 MPa, 3 MPa, 3.5 MPa, 4 MPa, 4.5 MPa, 5 MPa, 5.5 MPa, 6 MPa, 6.5 MPa, 7 MPa, 7.5 MPa, 8 MPa, 8.5 MPa.
  • the pressure bearing capacity of the oxidant source 41 and the fuel source 42 is also set to the same numerical range as described above. Since the oxidant source 41 or the material in the fuel source 42 needs to be injected into the closed loop of the working fluid, in practical applications, the pressure bearing capacity of the oxidant source 41 or the fuel source 42 is generally set to It is greater than the pressure bearing capacity of the closed circuit of the working fluid.
  • the cooler 6 is disposed on the working fluid closed loop upstream of the working fluid outlet of the gas working mechanism 2 and downstream of the working fluid inlet of the internal combustion combustion chamber 4
  • the cooler 6 is provided on the communication passage 3 between the working fluid outlet of the gas compression mechanism 1 and the working fluid inlet of the internal combustion combustion chamber 4.
  • the entropy cycle engine shown in FIG. 3 differs from the second embodiment in that: the gas compression mechanism 1 is an impeller compressor 11, and the gas work mechanism 2 is a turbine power mechanism 21; 4 is disposed in the communication passage 3 between the working fluid outlet of the impeller compressor 11 and the turbine power mechanism 21, and the oxidant source 41 is in direct communication with the internal combustion combustion chamber 4 via an oxidant control valve 53.
  • the working fluid outlet 5 communicates with the cooled fluid passage of the non-direct mixing condensing cooler 7, i.e., the excess fluid that is derived will be condensed and cooled to reduce environmental pollution.
  • the impeller compressor 11 is set to two and arranged in series to achieve multi-stage compression; the turbine power mechanism 21 can also be set to two to achieve multi-stage work.
  • the entropy cycle engine shown in FIG. 4 differs from the embodiment 3 in that: the gas work mechanism 2 is set as a cylinder piston work mechanism 22, and the internal combustion combustion chamber 4 is provided in the cylinder piston work mechanism 22 Inside.
  • the oxidant source 41 is in communication with the working fluid closed circuit via the heated fluid passage of the non-direct mixed condensing cooler 7, and the non-direct mixed condensing cooler 7 is provided with a non-condensing gas outlet 71 and a cryogenic liquid.
  • the working fluid outlet 72 is connected to the communication passage 3 between the working fluid outlet of the cylinder piston mechanism 22 and the working inlet of the impeller compressor 11 . From the working fluid outlet 5, the non-direct mixing condensing cooler 7 is subjected to a condensing cooling process, wherein the condensed portion is led out through the cryogenic liquid working fluid outlet 72, and the condensed portion is not condensed, via The non-condensing gas outlet 71 is returned to the working fluid closed circuit.
  • the entropy cycle engine shown in FIG. 5 differs from the embodiment 4 in that the internal combustion combustion chamber 4 is disposed as a bypass internal combustion combustion chamber 40, and the bypass internal combustion combustion chamber 40 is in communication with the working fluid closed circuit. ; the gas compression mechanism 1 is provided In the Roots blower 12, the gas work mechanism 2 is a screw power mechanism 24.
  • a liquid discharge port 50 is cooled on the communication passage 3 between the cooler 6 and the working fluid outlet 5.
  • the working fluid outlet 5 is connected to a direct mixing condensing cooler 70, and the cryogenic liquid working fluid outlet 72 is connected to a cryogenic liquid working fluid storage tank 721.
  • the oxidant source 41 is in communication with the bypass internal combustion combustor 40 via the direct mixing condensing cooler 70.
  • the entropy cycle engine shown in FIG. 6 differs from the embodiment 3 in that: the gas work mechanism 2 is set as a Roots motor 23: the working fluid outlet 5 communicates with the screw power mechanism 24, that is, The working fluid derived from the working fluid outlet 5 will continue to drive the screw power mechanism 24 to perform external work.
  • the entropy cycle engine shown in FIG. 7 differs from the third embodiment in that: the gas compression mechanism 1 is a cylinder piston compressor 13 and the gas work mechanism 2 is a Roots motor 23;
  • the heated fluid passage through the non-direct mixing condensing cooler 7 is in communication with the internal combustion combustion chamber 4.
  • the working capacity of the working fluid closed circuit is 8 MPa, and the pressure of the oxidant source 41 and the fuel source 42 are both 10 MPa.
  • the pressure bearing capacity of the oxidant source 41 or the fuel source 42 is generally set to It is greater than the pressure bearing capacity of the closed loop of the working fluid.
  • the entropy cycle engine shown in FIG. 8 differs from the embodiment 5 in that: the gas work mechanism 2 is set as a cylinder piston work mechanism 22, and the internal combustion combustion chamber 4 is disposed in the cylinder piston work mechanism 22,
  • the oxidant source 41 is in communication with the through-mix condensing cooler 70 and the working fluid outlet 5.
  • the pressure-receiving capacity of the working fluid closed circuit is 15 MPa, and the pressure of the oxidant source 41 and the fuel source 42 are both 20 MPa.
  • the entropy cycle engine shown in FIG. 9 differs from the second embodiment in that: the gas compression mechanism 1 is a Roots blower 12, and the gas work mechanism 2 is a Roots motor 23; 6 is set as a direct mixing cooler 62, and the working fluid outlet 5 is provided on the direct mixing cooler 62.
  • the entropy cycle engine shown in Fig. 10 differs from the embodiment 9 in that the gas compression mechanism 1 is a cylinder piston compressor 13 and the cooler 6 is an adsorption cooler 63.
  • the entropy cycle engine shown in FIG. II differs from the embodiment 10 in that: the gas compression mechanism 1 is set as a screw compressor 14, and the gas work mechanism 2 is set as a screw power mechanism 24; 4 is set as a side internal combustion combustion chamber 40, the bypass internal combustion combustion chamber 40 and the communication passage 3 upstream of the working fluid outlet of the screw compressor 14 and downstream of the inlet of the screw power mechanism 24 The working fluid outlet 5 is disposed on the communication passage 3 between the working outlet of the screw compressor 14 and the communication between the bypass internal combustion chamber 40.
  • the cooling The device 6 is set as an absorption cooler 64.
  • the entropy cycle engine further includes a non-condensing gas returning compressor 74, and the inlet port of the non-condensing gas returning compressor 74 is connected to the working fluid closed circuit via a control valve, and the non-condensing gas is stored and compressed.
  • the gas outlet of the machine 74 is in communication with the non-condensable gas storage tank 73 via a control valve, and the non-condensable gas storage tank 73 is in communication with the working fluid closed circuit.
  • the entropy cycle engine shown in FIG. 12 is different from the embodiment 10 in that: the gas compression mechanism 1 is set as a screw compressor 14, and the gas work mechanism 2 is set as a Roots motor 23;
  • the chamber 4 is set as a bypass internal combustion chamber 40 in communication with the working fluid closed circuit;
  • the cooler 6 is configured as a throttle expansion cooler 65, and the inlet and the work of the throttle expansion cooler 65
  • the mass outlet 5 is connected.
  • the entropy cycle engine shown in FIG. 13 differs from the first embodiment in that: the gas compression mechanism 1 is provided as an impeller compressor 11, and the gas work mechanism 2 is provided with two: respectively, a turbine power mechanism 21 and The screw power mechanism 24, the working fluid outlet of the turbine power mechanism 21 is in communication with the working fluid inlet of the screw power mechanism 24, and the working fluid outlet of the screw power mechanism 24 passes through the cooler 6 and the impeller compressor 11 The entrance is connected.
  • the entropy cycle engine shown in FIG. 14 differs from the first embodiment in that: the gas compression mechanism 1 is a Roots blower 12, and the gas work mechanism 2 is a cylinder piston work mechanism 22, and the internal combustion is performed.
  • the chamber 4 is disposed within the cylinder piston working mechanism 22.
  • the entropy cycle engine further includes a heat exchanger 8, and the communication passage 3 between the working fluid outlet of the Roots blower 12 and the working fluid inlet of the cylinder piston working mechanism 22 is set as the heat exchanger a heated fluid passage of 8 , wherein the communication passage 3 between the working fluid outlet of the cylinder piston working mechanism 22 and the working fluid inlet of the Roots blower 12 is set as the cooled fluid of the heat exchanger 8 a passage, a cooling device 6 is disposed on the communication passage 3 between the heat exchanger 8 and the working fluid inlet of the Roots blower 12, and the working capacity of the working fluid closed circuit is 37 MPa, the oxidant Both the source 41 and the fuel source 42 have a pressure of 40 MPa.
  • the entropy cycle engine shown in FIG. 15 differs from the embodiment 14 in that: the gas work mechanism 2 is set as a turbine power mechanism 21; the entropy cycle engine further includes a heat exchanger 8, and the turbine power mechanism 21 A cooler 6 is disposed on the communication passage 3 between the working medium outlet and the working fluid inlet of the Roots blower 12.
  • the communication passage 3 between the working fluid outlet of the turbine power mechanism 21 and the cooler 6 is set as a cooled fluid passage of the heat exchanger 8, and the cooler 6 and the Roots blower
  • the communication passage 3 between the working fluid inlets of 12 is set as the heated fluid passage of the heat exchanger 8.
  • the entropy cycle engine shown in FIG. 16 differs from the first embodiment in that: the gas compression mechanism 1 is an impeller compressor 11, and the gas work mechanism 2 is a Roots motor 23; the Roots motor A cooler 6 is provided on the communication passage 3 between the working fluid outlet of the impeller 23 and the working fluid inlet of the impeller compressor 11.
  • the entropy cycle engine further includes a non-condensable gas storage tank 73, and the non-condensable gas storage tank 73 is in communication with the communication passage 3 between the working fluid outlet of the impeller compressor 11 and the internal combustion combustion chamber 4. .
  • the entropy cycle engine shown in FIG. 17 differs from the embodiment 16 in that: the gas compression mechanism 1 is a cylinder piston compressor 13 and the gas work mechanism 2 is a screw power mechanism 24;
  • the gas storage tank 73 communicates with the communication passage 3 between the cooler 6 and the working fluid inlet of the cylinder piston compressor 13 .
  • the entropy cycle engine shown in FIG. 18 differs from the embodiment 6 in that the working fluid outlet 5 is directly discharged through the control port 51, and the working medium outlet 5 and the Roots motor 23 are A three-way catalyst 81 is disposed on the communication passage 3 between the working fluid outlets.
  • the entropy cycle engine shown in FIG. 19 differs from the embodiment 14 in that: the communication passage 3 between the outlet of the cooled fluid passage of the heat exchanger 8 and the working fluid outlet 5 is provided. There is a three-way catalyst 81.
  • the entropy cycle engine shown in FIG. 20 is different from the embodiment 18 in that: the communication passage 3 between the working fluid outlet of the Roots motor 23 and the working fluid outlet 5 is provided. a cooler 6, the entropy cycle engine further comprising a cryogenic cold source 66 in communication with the communication passage 3 at the inlet of the working fluid of the impeller compressor 11, the cryogenic cold source 66 for providing A cryogenic substance for cooling the working fluid that is about to enter the impeller compressor 11.
  • the low temperature refrigerant 66 may be directly in communication with the cylinder piston compressor 13 , which is provided by the low temperature source 66 a low temperature substance for cooling the working fluid in the cylinder piston compressor 13 .
  • the entropy cycle engine shown in FIG. 21 differs from the embodiment 20 in that the cooler 6 is disposed between the working fluid outlet 5 and the working inlet of the impeller compressor 11 On the channel 3, the entropy cycle engine further includes a secondary turbine power mechanism 211 and a secondary impeller compressor 111, and the working fluid outlet 5 communicates with the working fluid inlet of the secondary turbine power mechanism 211, The working fluid outlet of the stage turbine power mechanism 211 is in communication with the working fluid inlet of the secondary impeller compressor 111 via an auxiliary cooler 67, and the working fluid outlet of the secondary impeller compressor 111 is in communication with the working fluid closed circuit; An auxiliary working fluid outlet 55 is provided on the communication passage 3 between the working fluid outlet of the secondary turbine power mechanism 211 and the working fluid inlet of the secondary impeller compressor 111.
  • the secondary turbine power mechanism 211 may further perform work by using a working fluid that flows out after completion of work in the Roots motor 23, and the secondary impeller compressor 111 and the impeller compressor 11 may The quality is multi-stage compressed to improve the efficiency of the engine.
  • the secondary turbine power mechanism 211 is disposed coaxially with the sub-stage impeller compressor 111 and outputs power thereto.
  • the auxiliary working fluid outlet 55 is optionally provided to the secondary turbine power mechanism 211.
  • the passage between the mass outlet and the auxiliary cooler 67 is provided on a passage between the auxiliary cooler 67 and the working fluid inlet of the secondary impeller compressor 111.
  • the entropy cycle engine shown in FIG. 22 differs from the embodiment 18 in that the oxidant source 41 is a piston type compressor, and the piston type compressor is set as a four-type door cylinder piston mechanism 99.
  • the door-like cylinder piston mechanism 99 is controlled by four types of door control mechanisms that cause the four-type door cylinder piston mechanism 99 to operate in accordance with an intake stroke-pressure gas supply stroke-gas back-charge power stroke-exhaust stroke operation mode.
  • the gas supply port 993 of the four types of door cylinder piston mechanism 99 is the oxidant outlet of the oxidant source 41, and the refill port 994 of the four types of door cylinder piston mechanism 99 is in communication with the working fluid outlet 5.
  • the oxidant compressed by the four-type door cylinder piston mechanism 99 enters the internal combustion combustion chamber 4 through the air supply port 993, and the fuel source 42 injects fuel into the internal combustion combustion chamber 4, the oxidant And a combustion chemical reaction occurs in the internal combustion combustion chamber 4 with the fuel, and a large amount of heat generated pushes the Roots motor 23 to work, and part of the working fluid discharged from the working fluid outlet 6 passes through the refill port 994.
  • the four types of door cylinder piston mechanism 99 After entering the four types of door cylinder piston mechanism 99, after the residual heat of the working medium pushes the four types of door cylinder piston mechanism 99 to work, the four types of door cylinder piston mechanism 99 are discharged through the exhaust port 992.
  • the entropy cycle engine shown in FIG. 23 differs from the embodiment 18 in that: the internal combustion combustion chamber 4 is set as a side internal combustion combustion chamber 40, and the side internal combustion combustion chamber 40 is set as a four-type door cylinder piston mechanism. 99.
  • the oxidant source 41 and the fuel source 42 are in communication with an intake port 991 of the four-type door cylinder piston mechanism 99.
  • An ignition device 43 is disposed on the four-type door cylinder piston mechanism 99.
  • the air supply port 993 enters the Roots motor 23, and the backfill port 994 communicates with the working fluid outlet 5, and part of the working fluid discharged from the working fluid outlet 5 is from the refill port 994. Introduced into the four types of door cylinder piston mechanism 99, the four types of door cylinder piston mechanism 99 discharges part of the working fluid through the exhaust port 992.
  • the entropy cycle engine shown in FIG. 24 differs from the embodiment 18 in that the entropy cycle engine further includes an oxidant sensor 44 and an oxidant control device 45, the oxidant sensor 44 includes an oxidant probe, and the oxidant probe is provided.
  • the oxidant sensor 44 provides a signal to the oxidant control device 45
  • the oxidant source 41 is in communication with the working fluid closed circuit via an oxidant control block 53
  • the oxidant control device 45 controls the The oxidant control valve 53 is opened or closed to adjust the amount of oxidant in the working fluid closed circuit.
  • the entropy cycle engine shown in FIG. 25 differs from the first embodiment in that: the gas work mechanism 2 is a turbine power mechanism 21, and the gas compression mechanism 1 is a piston liquid mechanism 15, the piston liquid mechanism. 15 includes a gas-liquid cylinder 94 and a gas-liquid isolation structure 95, and the gas-liquid isolation structure 95 is disposed in the gas-liquid cylinder 94.
  • the liquid end of the gas-liquid cylinder 94 is in communication with a hydraulic power mechanism 96, and the hydraulic power mechanism 96 is in communication with the liquid working fluid return system 97.
  • the liquid working fluid return system 97 is in communication with the liquid end of the gas cylinder 94; the hydraulic power mechanism % and the liquid working fluid return system 97 are controlled by the process control mechanism 98.
  • the gas working fluid of the gas-liquid cylinder 94 has a pressure greater than the total inertia force of the liquid in the gas-liquid cylinder 94 and the gas-liquid isolation structure 95 to isolate the gas-liquid.
  • the structure 95 does not hit the cylinder head of the gas cylinder 94.
  • the mass flow rate of the substance discharged from the internal combustion combustion chamber 4 is greater than the mass flow rate of the substance introduced into the internal combustion combustion chamber 4 from outside the working fluid circuit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

一种熵循环发动机,包括:气体压缩机构(1)、气体做功机构(2)和连通通道(3),气体压缩机构(1)经连通通道(3)与气体做功机构(2)连通形成工质闭合回路,在工质闭合回路内设内燃燃烧室(4),在工质闭合回路上设工质导出口(5),气体压缩机构(1)或气体做功机构(2)中至少一个设置为叶轮、罗茨式或螺杆式机构。这种熵循环发动机具有效率高,节能的特点。

Description

熵循环发动机 技术领域
本发明涉及热能与动力领域, 尤其是一种熵循环发动机。
背景技术
近年来, 传统内燃机的高能耗、 高污染排放问题日显突出, 所以, 热气机得到了广泛 重视, 然而热气机都是以外燃加热方式对工质进行加热的, 众所周知, 外燃加热过程很难 得到温度较高的工质, 因此, 造成大量化学佣损失。 不仅如此, 由于外燃加热的速率有限, 对材料要求高, 负荷响应差, 所以严重制约了热气机的单机功率和整机功率密度, 最终使 热气机的用途严重受限。 因此, 需要发明一种新型发动机。
发明内容
本发明提供了一种功率大、 功率密度高的熵循环发动机, 解决了传统热气机因工质的 温度和压力难以被加热到应有的高度而影响功率和功率密度的问题。
本发明提出的技术方案如下- 方案 1 : 一种熵循环发动机, 包括气体压缩机构、 气体做功机构和连通通道, 所述气体 压缩机构经所述连通通道与所述气体做功机构连通形成工质闭合回路, 在所述工质闭合回 路内设内燃燃烧室, 在所述工质闭合回路上设工质导出口; 所述气体压缩机构或所述气体 做功机构中至少一个设为叶轮式、 罗茨式或螺杆式机构。
方案 2: 在方案 1的基础上, 所述内燃燃烧室设在以所述气体压缩机构的工质出口为上 游和以所述气体做功机构的工质入口为下游的所述工质闭合回路内。
方案 3: 在方案 1或方案 2的基础上, 所述内燃燃烧室设为旁置内燃燃烧室。
方案 4: 在方案 1的基础上: 所述熵循环发动机还包括冷却器, 所述冷却器设置在所述 工质闭合回路上。
方案 5: 在方案 1的基础上: 所述冷却器设在以所述气体做功机构的工质出口为上游和 以所述内燃燃烧室的工质入口为下游的所述工质闭合回路上。
方案 6: 在方案 4或 5的基础上, 所述熵循环发动机还包括冷却液体排出口, 所述冷却 液体排出口设在所述冷却器和所述工质导出口之间的所述连通通道上。
方案 7: 在方案 1、 2或方案 4的基础上, 所述熵循环发动机还包括热交换器, 所述气 体做功机构的工质出口和所述气体压縮机构的工质入口之间的所述连通通道设为所述热交 换器的被冷却流体通道, 所述气体压缩机构的工质出口和所述气体做功机构的工质入口之 间的所述连通通道设为所述热交换器的被加热流体通道。
方案 8: 在方案 1的基础上, 所述熵循环发动机还包括氧化剂源, 所述氧化剂源与所述 工质闭合回路连通。
方案 9:在方案 8的基础上,所述氧化剂源经氧化剂控制阀与所述内燃燃烧室直接连通。 方案 10: 在方案 8的基础上, 所述熵循环发动机还包括直混冷凝冷却器, 所述直混冷 凝冷却器的被冷却流体入口与所述工质导出口连通, 所述氧化剂源与所述直混冷凝冷却器 的被加热流体入口连通, 并经所述直混冷凝冷却器的被加热流体出口与所述工质闭合回路 连通。
方案 U : 在方案 10的基础上, 所述氧化剂源经所述直混冷凝冷却器与所述内燃燃烧室 连通。
方案 12: 在方案 8的基础上, 所述氧化剂源的压力大于 2MPa。
方案 13: 在方案 2的基础上, 所述工质导出口设在以所述气体做功机构的工质出口为 上游和以所述内燃燃烧室的工质入口为下游的所述工质闭合回路上。
方案 14: 在方案 1的基础上, 所述熵循环发动机还包括非直混冷凝冷却器, 所述非直 混冷凝冷却器的被冷却工质入口与所述工质导出口连通。
方案 15: 在方案 10的基础上, 所述直混冷凝冷却器上设有深冷液体工质出口。
方案 16: 在方案 14基础上, 所述非直混冷凝冷却器上设有深冷液体工质出口。
方案 Π: 在方案 16基础上, 所述熵循环发动机还包括有深冷液体工质储罐, 所述深冷 液体工质储罐与所述深冷液体工质出口连通。
方案 18: 在方案 10或 14基础上, 所述非直混冷凝冷却器上设有不凝气出口。
方案 19: 在方案 18基础上, 所述不凝气出口与所述工质闭合回路连通。
方案 20: 在方案 14基础上, 所述熵循环发动机还包括氧化剂源, 所述氧化剂源经所述 非直混冷凝冷却器的被加热流体通道与所述内燃燃烧室连通。
方案 21 : 在方案 1基础上, 所述工质导出口上设控制阀。
方案 22: 在方案 21基础上, 所述控制阀设为压力控制阀, 所述压力控制阀控制所述工 质导出口在所述工质闭合回路内的压力超过设定限度时导出工质。
方案 23: 在方案 22基础上, 所述压力控制阀受使所述工质闭合回路中的最低压力大于
0.2MPa的控制机构所控制。
方案 24: 在方案 1或 13基础上, 所述熵循环发动机还包括有附属气体做功机构, 所述 工质导出口与所述附属气体做功机构的工质入口连通。
方案 25: 在方案 1或 13的基础上, 所述熵循环发动机还包括有储气罐, 所述工质导出 口与所述储气罐连通。
方案 26: 在方案 1基础上, 在所述工质闭合回路上设有逆止阀。
方案 27: 在方案 1基础上, 所述气体做功机构设有两个且串联方式连通。
方案 28: 在方案 1基础上, 所述气体做功机构对所述气体压縮机构输出动力。
方案 29: 在方案 1基础上, 所述工质闭合回路中, 参与循环的气体的一部分为不凝气。 方案 30: 在方案 29基础上, 所述熵循环发动机还包括不凝气储罐, 所述不凝气储罐经 控制装置与所述工质闭合回路连通。
方案 31 : 在方案 30基础上, 所述熵循环发动机还包括不凝气回储压缩机, 所述不凝气 回储压缩机的进气口经控制阀与所述工质闭合回路连通, 所述不凝气回储压缩机的气体出 口经控制阀与所述不凝气储罐连通。
方案 32: 在方案 1基础上, 在所述工质闭合回路上设有三元催化器
方案 33: 在方案 1基础上, 所述熵循环发动机还包括低温冷源, 所述低温冷源用于提 供低温物质, 所述低温物质用于冷却所述气体压缩机构中或即将进入所述气体压缩机构的 工质。
方案 34: 在方案 1基础上, 所述熵循环发动机还包括次级涡轮动力机构和次级叶轮压 气机, 所述工质导出口与所述次级涡轮动力机构的工质入口连通, 所述次级涡轮动力机构 的工质出口经附属冷却器与所述次级叶轮压气机的工质入口连通, 所述次级叶轮压气机的 工质出口与所述工质闭合回路连通; 所述次级涡轮动力机构的工质出口与所述次级叶轮压 气机的工质入口之间的通道上设有附属工质导出口。
方案 35: 在方案 1基础上, 所述熵循环发动机还包括四类门气缸活塞机构, 所述四类 门气缸活塞机构的供气口与所述气体做功机构连通, 所述四类门气缸活塞机构的回充口与 所述工质导出口连通。
方案 36: 在方案 3基础上, 所述旁置内燃燃烧室设为四类门气缸活塞机构, 所述四类 门气缸活塞机构的供气口与所述气体做功机构连通, 所述四类门气缸活塞机构的回充口与 所述工质导出口连通。
方案 37: 在方案 8基础上, 所述熵循环发动机还包括氧化剂传感器和氧化剂控制装置, 所述氧化剂传感器设在所述工质闭合回路内, 所述氧化剂传感器对所述氧化剂控制装置提 供信号, 所述氧化剂源经氧化剂控制阀与所述工质闭合回路连通, 所述氧化剂控制装置控 制所述氧化剂控制阀。
方案 38: 在方案 1基础上, 所述气体压缩机构或所述气体做功机构设为活塞液体机构, 所述活塞液体机构包括气液缸和气液隔离结构, 所述气液隔离结构设在所述气液缸内。
方案 39: 在方案 37基础上, 所述气液缸的气体工质对所述气液隔离结构的压力大于所 述气液缸内的液体和所述气液隔离结构做往复运动时的惯性力之和。
方案 40: 在方案 1基础上, 所述内燃燃烧室排出的物质的质量流量大于从所述工质闭 合回路外导入所述内燃燃烧室的物质的质量流量。
方案 41 : 在方案 1基础上, 所述工质闭合回路的承压能力大于 2MPa。
本发明的原理是: 利用所述内燃燃烧室对所述工质闭合回路内的工质进行内燃加热, 推动气体做功机构对外做功, 通过将部分工质从所述工质闭合回路内导出实现所述工质闭 合回路内工质平衡, 在将所述工质闭合回路内的工质导出的过程的同时可导出部分热量; 本发明中所述冷却器的作用与传统斯特林发动机中的冷却器的作用相同; 本发明中所述冷 凝冷却器的作用是将闭合回路中的部分工质进行冷凝液化, 以液体的形式从所述工质闭合 回路中导出, 这样不仅可以实现所述工质闭合回路内工质平衡, 也可以实现不向环境排放 气体的作用, 形成发动机整体零排放。 用所述内燃燃烧室取代传统热气机 (包括斯特林发 动机等所有类型的热气机) 的工质加热热交换器, 从而使工质的温度和压力可以达到更高 的水平, 实现热气机效率和功率密度的本质性提高, 而且可以大幅度减少机构的体积、 重 量和制造成本。
本发明中, 所述气体压缩机构是指一切可以对气体进行压缩的机构, 例如螺杆式气体 压缩机构、 叶轮式气体压缩机构、 罗茨式气体压缩机构、 气缸活塞式气体压缩机构等, 气 缸活塞式气体压缩机构包括常规的气缸活塞式气体压缩机构和活塞液体机构, 气体压缩机 构的作用是将所述熵循环发动机内的气体工质进行压缩或压缩及平移, 所谓的平移是指将 工质从一个地方移动到另一个地方的过程。
本发明中, 所述气体做功机构是指一切可以利用气体工质膨胀和 /或流动产生动力的机 构, 例如螺杆式气体做功机构、 叶轮式气体做功机构、 罗茨式气体做功机构、 气缸活塞式 气体做功机构等, 气缸活塞式气体做功机构包括常规的气缸活塞式气体做功机构和活塞液 体机构, 气体做功机构的作用是利用所述熵循环发动机内的处于高能状态下的气体工质进 行做功, 所谓的高能状态是指在所述熵循环发动机的循环中, 气体工质处于温度最高、 压 力最大的状态。
本发明中, 所述工质闭合回路内的工质可以是氧化剂和燃料燃烧形成的烟气, 也可以 是烟气与事先存入的其它气体的混合物, 例如烟气与氮气的混合物、 烟气与氩气的混合物 等。
本发明中, 所述工质闭合回路是指由所述气体压缩机构和所述气体做功机构以及连通 两者的所述连通通道构成的工质可以循环流动的空间。
本发明中, 所述内燃燃烧室是指氧化剂和燃料发生燃烧化学反应后所形成的高温产物 直接作为循环工质或与所述工质闭合回路内事先存在的其它气体混合后作为循环工质的燃 烧室。
本发明中, 所述工质闭合回路内设有内燃燃烧室包括将所述内燃燃烧室直接设置在所 述工质闭合回路内, 也包括所述内燃燃烧室的高温燃烧产物的出口与所述工质闭合回路连 通的结构, 即旁置内燃燃烧室结构。
本发明中, 所述旁置内燃燃烧室是指内燃燃烧室设为采用通道与所述工质闭合回路连 通的独立燃烧空间。
本发明中, 所述内燃燃烧室可以设为内燃连续燃烧室、 内燃间歇燃烧室或内燃正时燃 烧室; 所述内燃连续燃烧室是指其内可以连续发生所述放热化学反应的内燃燃烧室; 所述 内燃间歇燃烧室是指非连续发生所述放热化学反应的内燃燃烧室, 所述内燃间歇燃烧室可 以是正时间歇燃烧室, 所述熵循环发动机的每个工作循环中燃烧室内只发生一次所述放热 化学反应, 所述放热化学反应只在一个冲程内发生; 或者可以是正时长间歇燃烧室, 所述 熵循环发动机多个工作循环中燃烧室内发生一次所述放热化学反应; 或者可以是长正时间 歇燃烧室, 所述熵循环发动机连续的多个工作循环中燃烧室连续发生所述放热化学反应。
本发明中, 所述连通通道是指连通所述气体压缩机构和所述气体做功机构的工质流动 的通道。 本发明中, 所述氧化剂源是指可以提供氧化剂的装置、 机构或储罐, 所述氧化剂源中 的氧化剂在进入所述内燃燃烧室时, 其压力应高于所述内燃燃烧室内的压力。
本发明中, 所述氧化剂是指液态或高压气态的能与燃料发生燃烧化学反应的物质, 例 如液氧、 高压氧气、 高压压缩空气、 液化空气、 双氧水、 双氧水溶液等。 当所述氧化剂是 液态时, 需通过高压液体泵供送; 当所述氧化剂是高压气态时, 可直接以高压形式送入。
本发明中, 应根据公知技术不仅向所述内燃燃烧室提供氧化剂还应向所述内燃燃烧室 提供燃料。 所述燃料源是指可以提供燃料的装置、 机构或储罐, 所述燃料源中的燃料在进 入所述内燃燃烧室时, 其压力应高于所述内燃燃烧室内的压力, 所述燃料是指能与氧化剂 发生燃烧化学反应的物质, 例如碳氢化合物、 碳氢氧化合物等; 其中所述碳氢化合物包括 汽油、 柴油、 重油、 煤油、 航空煤油等其它烃类; 所述碳氢氧化合物包括甲醇、 乙醇、 甲 醚、 乙醚等。
本发明中, 在所述燃烧室中发生燃烧化学反应的燃料可以是碳氢化合物、 碳氢氧化合 物或固体碳。 固体碳具有燃烧后没有水生成和燃烧后产物中的二氧化碳浓度高, 易液化等 优点; 固体碳可采用固体预先装配、 粉末化后喷入或粉末化后再用液体或气体二氧化碳流 化后喷入的方式输入热气机
本发明中, 所述工质导出口可以是连续导出工质, 可以是间歇导出工质 (即根据工质 在所述工质闭合回路内积累的情况, 对工质进行导出), 也可以是按正时关系对工质进行导 出。
本发明中, 导出工质可以是在所述熵循环发动机的每个工作循环中、 工质导出口处压 力较低的时候导出一次工质; 还可以是正时导出工质, 间歇式地在所述熵循环发动机进行 多个工作循环后在工质导出口处压力低的时候导出一次工质; 还可以采用限压阀等压力控 制装置在工质通道内压力超过某设定限度的时候导出工质。
本发明中, 在所述工质导出口上设控制阀; 所述控制阔受峰压控制机构控制, 所述峰 压控制机构在所述工质闭合回路内的压力超过设定值时使所述控制闽开启, 并当所述闭合 回路内的压力回降到所述设定值时使所述控制闽关闭; 或所述控制阀受谷压控制机构控制, 在所述工质闭合回路内的压力处于谷压状态时使所述控制阀开启, 并当所述工质闭合回路 内的压力将至 0.2MPa时使所述控制阔关闭; 或所述控制阀受开启度控制机构控制, 所述开 启度控制机构根据所述工质闭合回路内的压力设定范围控制所述控制阀的开启度, 使所述 工质导出口在某种幵启度下处于常开状态。
本发明中, 导出所述工质闭合回路内的工质可以以气体的形式导出也可以以液体的形 式导出。
本发明中, 与所述工质导出口连通的所述储气罐可作为压缩气体源使用。
本发明中, 所述工质闭合回路中工质的最高压力达到所述工质闭合回路的承压能力。 本发明中, 所述工质闭合回路中的循环气体可以选自氦气、 氧气等气体。
本发明中, 所述冷却器是指一切能使工质冷却的装置, 例如混合式、 热交换器式和散 热器式冷却器。 所述混合式冷却器是指将被加热流体与被冷却工质直接混合, 两者直接进 行热交换而达到工质冷却的装置; 所述热交换器式冷却器是指采用其它流体做热的接受介 质, 与工质进行热交换达到冷却工质的装置; 所述散热器式冷却器是采用环境气体作为热 接受介质, 使工质热量扩散至环境中, 达到冷却工质的装置。 其中所述热交换器式和所述 散热器式冷却器均属于非直混式冷却器, 即被加热流体与被冷却工质不混合。
本发明中, 所述非直混冷凝冷却器是指具有被加热流体通道和被冷却流体通道, 所述 被加热流体通道中的被加热流体和所述被冷却流体通道内的被冷却流体在其中发生热量交 换但不进行混合的装置, 例如热交换器式和散热器式冷凝冷却器; 所述直混冷凝冷却器是 指被加热流体和被冷却流体在其中混合, 使被冷却流体发生部分或全部冷凝, 使被加热流 体升温的装置。
本发明中, 所述非直混冷凝冷却器和直混冷凝冷却器在必要的时候可以具有气液分离 器的功能。
本发明中, 所述不凝气是指惰性气体、 氮气等在所述工质闭合回路中参与循环而经冷 却后不液化的气体。
本发明中, 所述内燃连续燃烧室和所述冷却器在所述工质闭合回路上的位置应根据公 知的热力学循环来设置。
本发明中, 所述工质闭合回路内的工质需要经过压缩、 加热升温升压、 做功以及被冷 却的过程, 这就要求所述工质闭合回路能承受一定压力, 选择性地, 所述工质闭合回路的 承压能力可设为大于 2MPa、 2.5MPa、 3MPa、 3.5MPa、 4MPa、 4.5MPa、 5MPa、 5.5MPa、 6MPa、 6.5MPa、 7MPa、 7.5MPa、 8MPa、 8.5MPa> 9MPa、 9.5MPa、讓 Pa、 10.5MPa、 l lMPa、 11.5MPa、 12MPa、 12.5MPa、 13MPa、 13.5MPa、 14MPa、 14.5MPa、 15MPa、 15.5MPa、 16MPa、 16.5MPa、 17MPa、 17.5MPa、 18MPa、 18.5MPa、 19MPa、 19.5MPa、 20MPa、 20.5MPa、 21MPa、 22MPa、 23MPa、 24MPa 25MPa、 26MPa、 27MPa、 28MPa、 29MPa、 30MPa、 31MPa、 32MPa、 33MPa、 34MPa、 35MPa、 36MPa、 37MPa、 38MPa、 39MPa或大于 40MPa。 相应地, 所述 氧化剂源和所述燃料源的承压能力也设为上述同样的数值范围。
本发明中, 所述控制阀受使所述工质闭合回路中的最低压力大于 0.2MPa、 0.3MPa、 0.5MPa、 lMPa、 1.5MPa、 2MPa 2.5MPa、 3MPa, 5MPa、 8MPa或大于 lOMPa控制机构 所控制。
本发明中, 所述气体压缩机构和所述气体做功机构之间可以不设阀, 而依靠相互之间 的相位差来形成系统的压缩和膨胀做功。
本发明中, 所述低温冷源是指能提供温度在 0°C以下的低温物质的装置、 机构或储罐, 例如釆用商业购买方式获得的储存有低温物质的储罐, 所述低温物质可以是液氮、 液氧、 液氦或液化空气等。 当本发明中氧化剂为液氧时, 液氧可直接作为所述低温物质。
本发明中, 所述低温冷源以直接与所述工质闭合回路连通使所述低温物质与所述工质 闭合回路内的工质混合的方式, 或者以经换热装置使所述低温物质与所述工质闭合回路内 的工质换热的方式, 对所述活塞式气体压缩机构中或即将进入所述活塞式气体压缩机构的 工质进行冷却处理。 热气机是一种工作循环接近卡诺循环的动力机构, 其热效率的计算可 以参考卡诺循环热效率计算公式: 从中可知, 当冷源温度7 ^下降时,热效率 升 高, 而且向冷源排放的热量减少, 如果冷源温度 ^下降幅度很大, 即冷源温度很低, 则热效 率 W很高, 向冷源排放的热量很小。 由此推断, 可用温度相当低的低温物质使冷源温度7 i大 幅下降, 从而大幅减少向冷源排放的热量, 有效提高发动机效率。
温度越低的低温物质(例如液氧、液氮或液氦等),在制造过程中需要消耗越多的能量, 但是就单位质量而言,对发动机热效率 7提升的贡献越大,就好比将能量存储在温度很低的 物质中, 相当于一种新型电池的概念, 所述低温物质可以使用垃圾电等成本很低的能源来 制造, 从而有效降低发动机的使用成本。
本发明中, 所述低温冷源中的所述低温物质发挥冷却作用后, 既可导入所述工质闭合 回路中, 作为熵循环发动机的循环工质, 也可不导入所述工质闭合回路中。
本发明中, 所谓的两个装置连通, 是指流体可以在两个装置之间单向或者双向流通。 所谓的连通是指直接连通或经控制机构、 控制单元或其他控制部件间接连通。
本发明中, 所述液氧包括商业液氧或现场制备的液氧。
本发明中, 所述四类门气缸活塞机构是指气缸上设有进气口、 排气口、 供气口和回充 口, 在所述进气口、 所述排气口、 所述供气口和所述回充口处依次对应设置进气门、 排气 门、 供气门和回充门的气缸活塞机构。
所述附属工质导出口可选择地设在所述次级涡轮动力机构的工质出口与所述附属冷却 器之间的通道上。 所述次级叶轮压气机的工质出口与设在所述工质闭合回路上的连通口连 通, 该连通口和所述工质导出口设在所述工质闭合回路上的不同位置。
本发明中, 通过调整工质闭合回路的工作压力以及热端机构的排量, 以控制热端机构 的质量排量,使所述内燃燃烧室排出的物质的质量流量 M2大于从所述工质闭合回路外导入 所述内燃燃烧室的物质的质量流量 Mi, 也就是说除了从所述工质闭合回路外导入所述内燃 燃烧室的物质外, 还有一部分物质是从所述工质闭合回路中导入所述内燃燃烧室的, 由于 所述内燃燃烧室是设置在所述工质闭合回路内的, 所以也就是说从所述内燃燃烧室排出的 物质至少有一部分流回所述内燃燃烧室, 即实现了工质在热端机构和冷端机构之间有往复 流动。 从所述工质闭合回路外向所述内燃燃烧室导入的物质可以是氧化剂、 还原剂、 压缩 气体或高温燃气等。
本发明中, 所述热端机构是指所述内燃燃烧室设在其中, 或者所述内燃燃烧室中发生 燃烧化学反应后产生的工质首先进入其中的配气机构或做功机构, 例如气缸活塞机构或罗 茨马达等机构。
本发明中, 所述冷端机构是指工质从所述热端机构流出后进入的气体做功机构或气体 压缩机构, 例如气缸活塞机构或罗茨式压气机等机构。
本发明中, 所述氧化剂传感器是指对所述工质闭合回路中的氧化剂的含量进行检测的 装置。 所述氧化剂传感器对所述氧化剂控制装置提供信号, 所述氧化剂控制装置根据所述 氧化剂传感器提供的信号以及预先设定的所述工质闭合回路中静态或动态的氧化剂含量设 定值对所述氧化剂控制阀进行控制以增加或减少向所述工质闭合回路中供给氧化剂的量, 达到调控所述工质闭合回路中氧化剂的含量的目的。
所述氧化剂含量的设定值可以是一个数值, 也可以是一个数值区间, 例如: 所述工质 闭合回路中的氧化剂含量的设定值可以为 5 %、 10%或 10%〜12%等。
所述氧化剂传感器可以设在远离所述内燃燃烧室的闭合回路上, 可保证整个工质闭合 回路是在富氧 (氧含量大于零) 状态下工作, 使所述内燃燃烧室内发生稳定的燃烧化学反 应, 同时还可以防止积碳的发生。
本发明中, 所述气液隔离结构将所述气液缸分隔成气体端和液体端, 所述气液缸的气 体端设有气体工质开口, 用于与所述工质闭合回路中的其他装置或机构连通; 所述气液缸 的液体端设有液体工质开口, 用于与液压动力机构或液体工质回送系统连通。
本发明中, 可以通过调整所述工质闭合回路中的压力 (例如可以通过调整所述工质导 出口的开启压力或者开关时间来实现), 使所述气液缸内的气体工质对所述气液隔离板的压 力大于所述气液缸内的液体和所述气液隔离结构的总惯性力, 从而防止所述气液隔离结构 与所述气液缸碰撞。
本发明人提出如下所述 P-T图和热力学第二定律的新的阐述方式:
压力和温度是工质的最基本、 最重要的状态参数。 然而, 在至今为止的热力学研究中, 没有将以压力 P和温度 T为坐标的 P-T图用于对热力学过程及热力循环的研究中。 在热力 学诞生以来的两百多年里, 本发明人第一次提出用 P-T 图研究热力学过程和热力循环的思 想。 在利用 P-T图研究热力学过程和热力循环中, 本发明人发现 P-T图比常用的 P-V图和 τ-s图都具有明显的优势, 它能更本质地描述热力学过程和热力循环中工质状态的变化, 使 本发明人对热力学过程和热力循环有更深刻的理解。 利用 P-T 图, 本发明人总结了十条热 力学第二定律的新的阐述方式, 这些新的阐述方式与以往的开尔文和克劳修斯的热力学阐 述方式虽然等价, 但是更明确的揭示了对工质的加热过程和压缩过程的区别, 也为高效热 机的开发指明了方向。 这一新方法和新定律, 将大大促进热力学的发展和热机工业的进步。 具体如下:
P-V图和 T-S图在热力学研究中早已被广泛应用, 然而鉴于?、 T是工质最重要的状态 参数,所以本发明人以压力 P和温度 T为坐标绘制了 P-T图,并将 Carnot Cycle和 Otto Cycle 标识在图 26所示的 P-T图中。 很明显地, P-T图使热力学过程和热力循环中工质状态的变 化更加显而易见, 也使热力学过程和热力循环的本质更易理解。 例如: 图 26所示的 Carnot Cycle的 P-T图, 可以使本发明人容易地得出这样的结论: Carnot Cycle的可逆绝热压缩过 程的使命是以可逆绝热压缩的方式将工质的温度升高至其高温热源的温度, 以实现与高温 热源的温度保持一致的前提下自高温热源恒温吸热膨胀过程。 此外, 本发明人还可以明显 地看出: 当 Carnot Cycle的高温热源的温度升高时, 本发明人必须在 Carnot Cycle的可逆绝 热压缩过程中将工质更加深度地压缩, 使其达到更高的温度, 以达到升温后的高温热源的 温度, 以实现与升温后的高温热源的温度保持一致的前提下自升温后的高温热源恒温吸热 膨胀过程, 从而实现效率的提 。
根据绝热过程方程 p = cr^ (其中, c是常数, 是工质的绝热指数), 本发明人将不 同 C值的绝热过程方程的曲线绘制在图 27中。 根据数学分析, 并如图 27所示, 任何两条 绝热过程曲线都不相交。 这意味着: 在同一条绝热过程曲线上的过程是绝热过程, 而与任 何绝热过程曲线相交的过程是非绝热过程, 换句话说, 任何连接两条不同绝热过程曲线的 过程是非绝热过程 (所谓的非绝热过程是指具有热量传递的过程, 即放热的过程和吸热的 过程)。 在图 28中, 本发明人标注了两个状态点, 即点 A和点 B。 如果一个热力过程或一 系列相互连接的热力过程从点 A出发到达点 B,则本发明人称之为连接点 A和点 B的过程, 反之本发明人称之为连接点 B和点 A的过程。根据图 28所示,本发明人可以得出这样的结 论: 如点 B在点 A所在的绝热过程曲线上, 则连接点 A和点 B的过程是绝热过程; 如点 B 在点 A所在的绝热过程曲线的右侧, 则连接点 A和点 B的过程是吸热过程; 如点 B在点 A 所在的绝热过程曲线的左侧, 则连接点 A和点 B的过程是放热过程。 由于连接点 A和点 B 的过程可能是放热过程、 绝热过程或吸热过程, 所以本发明人以点 B为参照, 将点 A分别 定义为具有过剩温度、 理想温度和不足温度。 同理, 连接点 B和点 A的过程可能是放热过 程、绝热过程或吸热过程, 所以本发明人以点 A为参照, 将点 B分别定义为具有过剩温度、 理想温度和不足温度。
通过这些分析和定义, 本发明人得出如下十条关于热力学第二定律的新的阐述方式:
1、 没有吸热过程的参与, 不可能将放热过程恢复至其始点。
2、 没有放热过程的参与, 不可能将吸热过程恢复至其始点。
3、 没有非绝热过程的参与, 不可能将非绝热过程恢复至其始点。
4、 仅用绝热过程, 不可能将非绝热过程恢复至其始点。
5、 用放热过程以外的热力过程使吸热过程的压力恢复到其始点的压力时, 其温度一定 高于其始点的温度。
6、 用吸热过程以外的热力过程使放热过程的压力恢复到其始点的压力时, 其温度一定 低于其始点的温度。
7、 吸热过程不可能不产生过剩温度。
8、 放热过程不可能不产生不足温度。
9、 任何在压缩过程中不放热的热机的效率不可能达到卡诺循环的效率。
10、 对工质的加热过程和对工质的压缩过程的区别在于: 加热过程一定产生过剩温度, 而压缩过程则不然。
关于热力学第二定律的十条新的阐述方式, 是等价的, 也是可以经数学证明的, 这十 条阐述方式中的任何一条均可单独使用。 本发明人建议: 在热力学研究过程中, 应广泛应 用 P-T图及上述关于热力学第二定律的新的阐述方式。 P-T图以及关于热力学第二定律的新 的阐述方式对热力学的进步和高效热机的开发具有重大意义。
热力学第二定律的新的阐述方式的英文表达:
1. It is impossible to return a heat rejection process to its initial state without a heat injection process involved.
2. It is impossible to return a heat injection process to its initial state without a heat rejection process involved.
3. It is impossible to return a non-adiabatic process to its initial state without a non-adiabatic process involved.
4. It is impossible to return a non-adiabatic process to its initial state only by adiabatic process.
5. If the final pressure of heat injection process is returned to its initial pressure by process other than heat rejection process, the temperature of that state is higher than that of the initial state.
6. If the final pressure of heat rejection process is returned to its initial pressure by process other than heat injection process, the temperature of that state is lower than that of the initial state.
7. It is impossible to make heat injection process not generate excess-temperature,
8. It is impossible to make heat rejection process not generate insufficient- temperature.
9. It is impossible for any device that operates on a cycle to reach the efficiency indicated by Carnot cycle without heat rejection in compression process.
10. The difference between heat injection process and compression process which are applied to working fluid of thermodynamic process or cycle is that heat injection process must generate excess-temperature, but compression process must not.
本发明中, 根据热气机领域的公知技术, 在必要的地方设置必要的部件、 单元或系统。 本发明的有益效果如下:
本发明通过利用内燃加热方式代替热气机的外燃加热方式, 将内燃加热方式的直接加 热以致加热效率高的优势应用到热气机上, 克服了传统热气机中因工质的温度和压力难以 达到更高水平而影响效率和功率密度的问题, 从而可以有效节约能源并大幅度减少机构的 体积、 重量和制造成本, 且同时对于活塞式和叶轮式的压缩和做功机构均实用, 具有广阔 的应用前景。
本发明克服了传统斯特林发动机功率小、 整机功率密度低和负荷响应差的缺陷, 是一 种高效、 高功率密度、 可大功率化、 污染排放少或零排放、 震动噪声小、 负荷响应好的新 型发动机。
附图说明
图 1为本发明实施例 1的结构示意图; 图 2为本发明实施例 2的结构示意图;
图 3为本发明实施例 3的结构示意图;
图 4为本发明实施例 4的结构示意图;
图 5为本发明实施例 5的结构示意图;
图 6为本发明实施例 6的结构示意图;
图 7为本发明实施例 7的结构示意图;
图 8为本发明实施例 8的结构示意图;
图 9为本发明实施例 9的结构示意图;
图 10为本发明实施例 10的结构示意图;
图 11为本发明实施例 11的结构示意图;
图 12为本发明实施例 12的结构示意图;
图 13为本发明实施例 13的结构示意图;
图 14为本发明实施例 14的结构示意图;
图 15为本发明实施例 15的结构示意图;
图 16为本发明实施例 16的结构示意图;
图 17为本发明实施例 17的结构示意图;
图 18为本发明实施例 18的结构示意图;
图 19为本发明实施例 19的结构示意图;
图 20为本发明实施例 20的结构示意图;
图 21为本发明实施例 21的结构示意图;
图 22为本发明实施例 22的结构示意图;
图 23为本发明实施例 23的结构示意图;
图 24为本发明实施例 24的结构示意图;
图 25为本发明实施例 25的结构示意图;
图 26所示的是卡诺循环和奥拓循环的 ρ-τ图, 其中, e。, q和 是不同数值的常数, 是绝热指数, 循环 0-1-2-3-0是卡诺循环, 循环 0-1-4-5-0 是高温热源温度升高后的卡诺 循环, 循环 0-6-7-8-0 是奥拓循环;
图 27所示的是多条不同绝热过程曲线的 ρ-τ图, 其中, , C G和 G是不同 数值的常数, 是绝热指数, A和 B是状态点;
图 28所示的是绝热过程曲线的 P-T图, 其中, C是常数, :是绝热指数, A和 B是状 态点,
图中-
1气体压缩机构、 11叶轮压气机、 111次级叶轮压气机、 12罗茨风机、 13气缸活塞压 气机构、 14螺杆压气机、 15活塞液体机构、 2气体做功机构、 21涡轮动力机构、 211次级 涡轮动力结构、 22气缸活塞做功机构、 23罗茨马达、 24螺杆动力机构、 3连通通道、 31逆 止阔、 4内燃燃烧室、 40旁置内燃燃烧室、 41氧化剂源、 42燃料源、 43点火装置、 44氧 化剂传感器、 45氧化剂控制装置、 5工质导出口、 55附属工质导出口、 50冷却液体排出口、 51控制阀、 52储气罐、 6冷却器、 61热交换器式冷却器、 62直混冷却器、 63吸附式冷却 器、 64吸收式冷却器、 65节流膨胀式冷却器、 66低温冷源、 67附属冷却器、 7非直混冷凝 冷却器、 70直混冷凝冷却器、 71不凝气出口、 72深冷液体工质出口、 73不凝气储罐、 721 深冷液体工质储罐、 8热交换器、 81三元催化器、 94气液缸、 95气液隔离结构、 96液压动 力机构、 97液体工质回送系统连通、 98过程控制机构、 99四类门气缸活塞机构、 99】进气 口、 992排气口、 993供气口、 994回充口。
具体实施方式
实施例 1
如图 1所示的熵循环发动机,包括气体压缩机构 1、气体做功机构 2和两条连通通道 3, 所述气体压缩机构 1 的工质出口沿工质流向经一条所述连通通道 3与所述气体做功机构 2 的工质入口连通, 而所述气体做功机构 2 的工质出口沿工质流向经另一条所述连通通道 3 与所述气体压缩机构 1的工质入口连通, 即所述气体压缩机构 1和所述气体做功机构 2经 两条所述连通通道 3连通构成工质闭合回路; 在所述工质闭合回路内设有内燃燃烧室 4, 在 所述工质闭合回路上设有工质导出口 5;所述气体压缩机构 1或所述气体做功机构 2中至少 一个设为叶轮式、 罗茨式或螺杆式机构。
图 1 中所示的所述内燃燃烧室 4设在所述气体压缩机构 1的工质出口沿工质流向与所 述气体做功机构 2的工质入口连通的所述连通通道 3内; 所述内燃燃烧室 4与相应的氧化 剂源 41和燃料源 42连通, 且在所述内燃燃烧室 4上设点火装置 43。
在所述工质导出口 5处设有控制阀 51, 便于排出所述工质闭合回路中的过剩的工质; 所述控制阔 51受使所述工质闭合回路中的最低压力大于 0.2MPa的控制机构所控制; 可选 择的将最低压力限制为大于 0.3MPa、 0.5MPa、 lMPa、 1.5MPa、 2MPa、 2.5MPa、 3MPa、 5MPa、 8MPa或大于 10MPa。
本实施例的工作过程为: 被所述气体压缩机构 1压缩的工质,在经过所述内燃燃烧室 4 时被加热后, 与燃烧产物一起进入所述气体做功机构 2 中, 对外输出动力; 做功后的混合 工质可经所述工质导出口 5部分导出, 余下工质循环流动至所述气体压缩机构 1 中再次被 压缩, 依此循环进行。
实施例 2
如图 2所示的熵循环发动机, 其与实施例 1 的区别在于: 所述熵循环发动机还包括冷 却器 6,所述冷却器 6设在所述气体压缩机构 1上, 且在所述气体压缩机构 1的工质出口与 所述内燃燃烧室 4的工质入口之间的所述连通通道 3上设有逆止阀 31。
所述工质导出口 5连通有储气罐 52, 在所述工质闭合回路的压力高于设定限度时, 所 述工质闭合回路的压力设为至少大于 2MPa; 所述控制阀 51可设为压力控制阀, 将导致压 力过高的工质部分导入所述储气罐 52中, 可作为高压气源用。 可选择地, 将所述工质闭合回路的承压能力设为大于 2.5MPa、 3MPa、 3.5MPa、 4MPa、 4.5MPa、 5MPa、 5.5MPa、 6MPa、 6.5MPa、 7MPa、 7.5MPa、 8MPa、 8.5MPa、 9MPa、 9.5MPa、 麵 Pa、】0.5MPa、 l lMPa、 11.5MPa、 12MPa、 12.5MPa、 l3MPa、 13.5MPa、 14MPa、 14.5MPa、 15MPa、 15.5MPa、 16MPa、 16.5MPa 17MPa、 l7.5MPa l8MPa, 18.5MPa, 19MPa、 19.5MPa 20MPa、 20.5MPa 21MPa、 22MPa、 23MPa、 24MPa、 25MPa、 26MPa、 27MPa、 28MPa、 29MPa、 30MPa> 31MPa、 32MPa、 33MPa> 34MPa> 35MPa、 36MPa、 37MPa、 38MPa、 39MPa 或大于 40MPa。
相应地, 所述氧化剂源 41和所述燃料源 42的承压能力也设为上述同样的数值范围。 由于需要将所述氧化剂源 41或所述燃料源 42中物质向所述工质闭合回路内喷射, 因此在 实际应用中, 所述氧化剂源 41或所述燃料源 42的承压能力一般设为大于所述工质闭合回 路的承压能力的。
可选择地, 将所述冷却器 6设在以所述气体做功机构 2的工质出口为上游和以所述内 燃燃烧室 4的工质入口为下游的所述工质闭合回路上, 即所述冷却器 6设在所述气体压缩 机构 1的工质出口与所述内燃燃烧室 4的工质入口之间的所述连通通道 3上。
实施例 3
如图 3所示的熵循环发动机, 其与实施例 2的区别在于: 所述气体压缩机构 1设为叶 轮压气机 11, 所述气体做功机构 2设为涡轮动力机构 21 ; 所述内燃燃烧室 4设在所述叶轮 压气机 11的工质出口与所述涡轮动力机构 21之间的所述连通通道 3内, 所述氧化剂源 41 经氧化剂控制阀 53与所述内燃燃烧室 4直接连通。
所述工质导出口 5与非直混冷凝冷却器 7的被冷却流体通道连通, 即所导出的过剩工 质将被进行冷凝冷却处理, 从而减少对环境的排放污染。
可选择地, 所述叶轮压气机 11设为两个并串联设置, 以实现多级压缩; 所述涡轮动力 机构 21也可设为两个, 以实现多级做功。
实施例 4
如图 4所示的熵循环发动机, 其与实施例 3的区别在于: 所述气体做功机构 2设为气 缸活塞做功机构 22, 且将所述内燃燃烧室 4设在所述气缸活塞做功机构 22内。
所述氧化剂源 41经所述非直混冷凝冷却器 7的被加热流体通道与所述工质闭合回路连 通,所述非直混冷凝冷却器 7上设有不凝气出口 71和深冷液体工质出口 72,所述不凝气出 口 71设在所述气缸活塞机构 22的工质出口与所述叶轮压气机 11工质入口之间的所述连通 通道 3连通。 从所述工质导出口 5进入所述非直混冷凝冷却器 7进行冷凝冷却处理, 其中 被冷凝部分经由所述深冷液体工质出口 72导出, 而不能被冷凝部分为不凝气, 经由所述不 凝气出口 71送回到所述工质闭合回路。
实施例 5
如图 5所示的熵循环发动机, 其与实施例 4的区别在于: 所述内燃燃烧室 4设为旁置 内燃燃烧室 40, 所述旁置内燃燃烧室 40与所述工质闭合回路连通; 所述气体压缩机构 1设 为罗茨风机 12, 所述气体做功机构 2设为螺杆动力机构 24。
在所述冷却器 6和所述工质导出口 5之间的所述连通通道 3上冷却液体排出口 50。 所述工质导出口 5连通有直混冷凝冷却器 70,所述深冷液体工质出口 72连通有深冷液 体工质储罐 721。 所述氧化剂源 41经所述直混冷凝冷却器 70与所述旁置内燃燃烧室 40连 通。
实施例 6
如图 6所示的熵循环发动机, 其与实施例 3的区别在于: 所述气体做功机构 2设为罗 茨马达 23: 所述工质导出口 5与螺杆动力机构 24连通, 即由所述工质导出口 5导出的工质 将继续驱动所述螺杆动力机构 24对外做功。
实施例 7
如图 7所示的熵循环发动机, 其与实施例 3的区别在于: 所述气体压缩机构 1设为气 缸活塞压气机构 13, 所述气体做功机构 2设为罗茨马达 23; 所述氧化剂源 41经所述非直 混冷凝冷却器 7的被加热流体通道与所述内燃燃烧室 4连通。 所述工质闭合回路的承压能 力为 8MPa, 所述氧化剂源 41和所述燃料源 42的压力均为 10MPa。
由于需要将所述氧化剂源 41或所述燃料源 42中物质向所述工质闭合回路内喷射, 因 此在实际应用中, 所述氧化剂源 41或所述燃料源 42的承压能力一般设为大于所述工质闭 合回路的承压能力。
实施例 8
如图 8所示的熵循环发动机, 其与实施例 5的区别在于: 所述气体做功机构 2设为气 缸活塞做功机构 22, 所述内燃燃烧室 4设在所述气缸活塞做功机构 22 内, 所述氧化剂源 41经所述直混冷凝冷却器 70和所述工质导出口 5连通。 所述工质闭合回路的承压能力为 15MPa, 所述氧化剂源 41和所述燃料源 42的压力均为 20MPa。
实施例 9
如图 9所示的熵循环发动机, 其与实施例 2的区别在于: 所述气体压縮机构 1设为罗 茨风机 12, 所述气体做功机构 2设为罗茨马达 23; 所述冷却器 6设为直混冷却器 62, 所述 工质导出口 5设在所述直混冷却器 62上。
实施例 10
如图 10所示的熵循环发动机, 其与实施例 9的区别在于: 所述气体压缩机构 1设为气 缸活塞压气机构 13, 所述冷却器 6设为吸附式冷却器 63。
实施例 11
如图 I I所示的熵循环发动机, 其与实施例 10的区别在于: 所述气体压缩机构 1设为 螺杆压气机 14, 所述气体做功机构 2设为螺杆动力机构 24; 所述内燃燃烧室 4设为旁置内 燃燃烧室 40, 所述旁置内燃燃烧室 40和以所述螺杆压气机 14的工质出口为上游与以所述 螺杆动力机构 24的入口为下游的所述连通通道 3连通; 所述工质导出口 5设在所述螺杆压 气机 14工质出口和所述旁置内燃燃烧室 40的连通处之间的所述连通通道 3上。 所述冷却 器 6设为吸收式冷却器 64。
所述熵循环发动机还包括不凝气回储压缩机 74,所述不凝气回储压缩机 74的进气口经 控制阀与所述工质闭合回路连通, 所述不凝气回储压缩机 74的气体出口经控制阀与不凝气 储罐 73连通, 所述不凝气储罐 73与所述工质闭合回路连通。
实施例 12
如图 12所示的熵循环发动机, 其与实施例 10的区别在与: 所述气体压缩机构 1设为 螺杆压气机 14, 所述气体做功机构 2设为罗茨马达 23; 所述内燃燃烧室 4设为与所述工质 闭合回路连通的旁置内燃燃烧室 40; 所述冷却器 6设为节流膨胀式冷却器 65, 所述节流膨 胀式冷却器 65的入口与所述工质导出口 5连通。
实施例 13
如图 13所示的熵循环发动机, 其与实施例 1的区别在于: 所述气体压缩机构 1设为叶 轮压气机 11, 所述气体做功机构 2设有两个: 分别为涡轮动力机构 21和螺杆动力机构 24, 所述涡轮动力机构 21 的工质出口与所述螺杆动力机构 24的工质入口连通, 所述螺杆动力 机构 24的工质出口经冷却器 6与所述叶轮压气机 11的入口连通。
实施例 14
如图 14所示的熵循环发动机, 其与实施例 1的区别在于: 所述气体压缩机构 1设为罗 茨风机 12, 所述气体做功机构 2设为气缸活塞做功机构 22, 所述内燃燃烧室 4设在所述气 缸活塞做功机构 22 内。
所述熵循环发动机还包括有热交换器 8, 所述罗茨风机 12的工质出口与所述气缸活塞 做功机构 22的工质入口之间的所述连通通道 3设为所述热交换器 8的被加热流体通道, 而 所述气缸活塞做功机构 22的工质出口与所述罗茨风机 12的工质入口之间的所述连通通道 3 设为所述热交换器 8的被冷却流体通道, 所述热交换器 8与所述罗茨风机 12的工质入口之 间的所述连通通道 3上设有冷却器 6,所述工质闭合回路的承压能力为 37MPa,所述氧化剂 源 41和所述燃料源 42的压力均为 40MPa。
实施例 15
如图 15所示的熵循环发动机, 其与实施例 14的区别在于: 所述气体做功机构 2设为 涡轮动力机构 21 ; 所述熵循环发动机还包括热交换器 8, 所述涡轮动力机构 21的工质出口 与所述罗茨风机 12的工质入口之间的所述连通通道 3上设有冷却器 6。 所述涡轮动力机构 21的工质出口与所述冷却器 6之间的所述连通通道 3设为所述热交换器 8的被冷却流体通 道, 而所述冷却器 6与所述罗茨风机 12的工质入口之间的所述连通通道 3设为所述热交换 器 8的被加热流体通道。
实施例 16
如图 16所示的熵循环发动机, 其与实施例 1的区别在于: 所述气体压缩机构 1设为叶 轮压气机 11, 所述气体做功机构 2设为罗茨马达 23; 所述罗茨马达 23的工质出口与所述 叶轮压气机 11的工质入口之间的所述连通通道 3上设有冷却器 6。 所述熵循环发动机还包括有不凝气储罐 73, 所述不凝气储罐 73与所述叶轮压气机 11 的工质出口和所述内燃燃烧室 4之间的所述连通通道 3连通。
实施例 17
如图 17所示的熵循环发动机, 其与实施例 16的区别在于: 所述气体压缩机构 1设为 气缸活塞压气机构 13, 所述气体做功机构 2设为螺杆动力机构 24; 所述不凝气储罐 73与 所述冷却器 6和所述气缸活塞压气机构 13的工质入口之间的所述连通通道 3连通。
实施例 18
如图 18所示的熵循环发动机, 其与实施例 6的区别在于: 所述工质导出口 5经所述控 制闽 51直接排出, 在所述工质导出口 5与所述罗茨马达 23的工质出口之间的所述连通通 道 3上设有三元催化器 81。
实施例 19
如图 19所示的熵循环发动机, 其与实施例 14的区别在于: 在所述热交换器 8的被冷 却流体通道的出口与所述工质导出口 5之间的所述连通通道 3设有三元催化器 81。
实施例 20
如图 20所示的熵循环发动机, 其与实施例 18的区别在于: 在所述罗茨马达 23的工质 出口与所述工质导出口 5与之间的所述连通通道 3上设有冷却器 6,所述熵循环发动机还包 括低温冷源 66,所述低温冷源 66与所述叶轮压气机 11工质入口处的所述连通通道 3连通, 所述低温冷源 66用于提供低温物质, 所述低温物质用于冷却即将进入所述叶轮压气机 11 的工质。
可选择地, 当所述气体压缩机构 1设为所述气缸活塞压气机构 13时, 可将所述低温冷 源 66与所述气缸活塞压气机构 13直接连通, 所述低温冷源 66所提供的低温物质, 用于冷 却所述气缸活塞压气机构 13中的工质。
实施例 21
如图 21所示的熵循环发动机, 其与实施例 20的区别在于: 所述冷却器 6设置在所述 工质导出口 5和所述叶轮压气机 11的工质入口之间的所述连通通道 3上, 所述熵循环发动 机还包括次级涡轮动力机构 211和次级叶轮压气机 111,所述工质导出口 5与所述次级涡轮 动力机构 211的工质入口连通, 所述次级涡轮动力机构 211的工质出口经附属冷却器 67与 所述次级叶轮压气机 111的工质入口连通,所述次级叶轮压气机 111的工质出口与所述工质 闭合回路连通;所述次级涡轮动力机构 211的工质出口与所述次级叶轮压气机 111的工质入 口之间的连通通道 3上设有附属工质导出口 55。
所述次级涡轮动力机构 211可以进一步利用在所述罗茨马达 23中做功完成后流出的工 质进一步做功, 而所述次级叶轮压气机 111和所述叶轮压气机 11可对所述工质进行多级压 缩, 从而提高发动机的效率。
具体实施时,可选择地,所述次级涡轮动力机构 211与次所述级叶轮压气机 111同轴设 置并对其输出动力。 所述附属工质导出口 55可选择地设在所述次级涡轮动力机构 211的工 质出口与所述附属冷却器 67之间的通道上, 或设在所述附属冷却器 67与所述次级叶轮压 气机 111的工质入口之间的通道上。
实施例 22
如图 22所示的熵循环发动机, 其与实施例 18的区别在于: 所述氧化剂源 41设为活塞 式压气机, 所述活塞式压气机设为四类门气缸活塞机构 99,所述四类门气缸活塞机构 99受 使所述四类门气缸活塞机构 99按照吸气冲程-压气供气冲程 -气体回充做功冲程 -排气冲程工 作模式循环工作的四类门控制机构控制, 所述四类门气缸活塞机构 99的供气口 993为所述 氧化剂源 41的氧化剂出口,所述四类门气缸活塞机构 99的回充口 994与所述工质导出口 5 连通。
被所述四类门气缸活塞机构 99压缩后的氧化剂, 经所述供气口 993进入所述内燃燃烧 室 4中, 所述燃料源 42向所述内燃燃烧室 4喷入燃料, 所述氧化剂和所述燃料在所述内燃 燃烧室 4内发生燃烧化学反应, 产生的大量热推动所述罗茨马达 23做功, 从所述工质导出 口 6导出的部分工质经所述回充口 994进入所述四类门气缸活塞机构 99中, 所述工质的余 热推动所述四类门气缸活塞机构 99做功后, 经所述排气口 992排出所述四类门气缸活塞机 构 99。
实施例 23
如图 23所示的熵循环发动机, 其与实施例 18的区别在于: 所述内燃燃烧室 4设为旁 置内燃燃烧室 40, 所述旁置内燃燃烧室 40设为四类门气缸活塞机构 99, 所述氧化剂源 41 和所述燃料源 42与所述四类门气缸活塞机构 99的进气口 991连通, 在所述四类门气缸活 塞机构 99上设有点火装置 43,所述氧化剂源 41和所述燃料源 42在所述四类门气缸活塞机 构 99 中进行燃烧化学反应后, 产生的部分高温高压工质可用来使四类门气缸活塞机构 99 对外做功, 另外一部分工质经所述供气口 993进入所述罗茨马达 23, 所述回充口 994与所 述工质导出口 5连通, 从所述工质导出口 5导出的部分工质从所述回充口 994导入所述四 类门气缸活塞机构 99内, 所述四类门气缸活塞机构 99经所述排气口 992排出部分工质。
实施例 24
如图 24所示的熵循环发动机, 其与实施例 18的区别在于: 所述熵循环发动机还包括 氧化剂传感器 44和氧化剂控制装置 45 , 所述氧化剂传感器 44包含有氧化剂探头, 所述氧 化剂探头设在所述连通通道 3内, 所述氧化剂传感器 44对所述氧化剂控制装置 45提供信 号, 所述氧化剂源 41经氧化剂控制阔 53与所述工质闭合回路连通, 所述氧化剂控制装置 45控制所述氧化剂控制阀 53打开或关闭, 以调整所述工质闭合回路中的氧化剂的量。
实施例 25
如图 25所示的熵循环发动机, 其与实施例 1的区别在于: 所述气体做功机构 2设为涡 轮动力机构 21, 所述气体压缩机构 1设为活塞液体机构 15, 所述活塞液体机构 15包括气 液缸 94和气液隔离结构 95, 所述气液隔离结构 95设在所述气液缸 94内。 所述气液缸 94 的液体端与液压动力机构 96连通, 所述液压动力机构 96与液体工质回送系统 97连通, 所 述液体工质回送系统 97与所述气液缸 94的液体端连通; 所述液压动力机构%和所述液体 工质回送系统 97受过程控制机构 98控制。 所述气液缸 94的气体工质对所述气液隔离结构 95的压力大于所述气液缸 94内的液体和所述气液隔离结构 95的总惯性力, 以使所述气液 隔离结构 95不撞上所述气液缸 94的缸盖。
以上所有实施例中, 所述内燃燃烧室 4排出的物质的质量流量大于从所述工质回路外 导入所述内燃燃烧室 4的物质的质量流量。
显然, 本发明不限于以上实施例, 根据本领域的公知技术和本发明所公开的技术方案, 可以推导出或联想出许多变型方案, 所有这些变型方案, 也应认为是本发明的保护范围。

Claims

】、 一种熵循环发动机, 包括气体压缩机构 (1 )、 气体做功机构 (2) 和连通通道(3 ), 所述气体压缩机构 (1 )经所述连通通道(3) 与所述气体做功机构 (2)连通形成工质闭合 回路, 其特征在于: 在所述工质闭合回路内设内燃燃烧室 (4), 在所述工质闭合回路上设 工质导出口 (5 ); 所述气体压缩机构 (1 ) 或所述气体做功机构 (2) 中至少一个设为叶轮 式、 罗茨式或螺杆式机构。
2、 如权利要求 1 所述熵循环发动机, 其特征在于: 所述内燃燃烧室 (4) 设在以所述 气体压缩机构 (1 ) 的工质出口为上游和以所述气体做功机构 (2 ) 的工质入口为下游的所 述工质闭合回路内。
3、 如权利要求 1或 2所述熵循环发动机, 其特征在于: 所述内燃燃烧室 (4) 设为旁 置内燃燃烧室 (40)。
4、如权利要求 1所述熵循环发动机,其特征在于:所述熵循环发动机还包括冷却器(6), 所述冷却器 (6) 设置在所述工质闭合回路上。
5、 如权利要求 4所述熵循环发动机, 其特征在于: 所述冷却器 (6) 设在以所述气体 做功机构 (2 ) 的工质出口为上游和以所述内燃燃烧室 (4) 的工质入口为下游的所述工质 闭合回路上。
6、 如权利要求 4或 5所述熵循环发动机, 其特征在于: 所述熵循环发动机还包括冷却 液体排出口 (50), 所述冷却液体排出口 (50)设在所述冷却器(6)和所述工质导出口 (5) 之间的所述连通通道 (3 ) 上。
7、 如权利要求 1、 2或 4所述熵循环发动机, 其特征在于: 所述熵循环发动机还包括 热交换器 (8), 所述气体做功机构 (2) 的工质出口和所述气体压缩机构 (1 ) 的工质入口 之间的所述连通通道 (3) 设为所述热交换器 (8) 的被冷却流体通道, 所述气体压缩机构
( 1 ) 的工质出口和所述气体做功机构 (2) 的工质入口之间的所述连通通道 (3) 设为所述 热交换器 (8) 的被加热流体通道。
8、 如权利要求 1所述熵循环发动机, 其特征在于: 所述熵循环发动机还包括氧化剂源 (41 ), 所述氧化剂源 (41 ) 与所述工质闭合回路连通。
9、 如权利要求 8所述熵循环发动机, 其特征在于: 所述氧化剂源 (41 ) 经氧化剂控制 阀 (53) 与所述内燃燃烧室 (4) 直接连通。
10、 如权利要求 8所述熵循环发动机, 其特征在于: 所述熵循环发动机还包括直混冷 凝冷却器 (70), 所述直混冷凝冷却器 (70) 的被冷却流体入口与所述工质导出口 (5)连 通, 所述氧化剂源 (41 ) 与所述直混冷凝冷却器 (70) 的被加热流体入口连通, 并经所述 直混冷凝冷却器 (70) 的被加热流体出口与所述工质闭合回路连通。
11、 如权利要求 10所述熵循环发动机, 其特征在于: 所述氧化剂源 (41 )经所述直混 冷凝冷却器 (70) 与所述内燃燃烧室 (4) 连通。
12、 如权利要求 8所述熵循环发动机, 其特征在于: 所述氧化剂源 (41 ) 的压力大于 2MPa。
13、 如权利要求 2所述熵循环发动机, 其特征在于: 所述工质导出口 (5 ) 设在以所述 气体做功机构 (2) 的工质出口为上游和以所述内燃燃烧室 (4 ) 的工质入口为下游的所述 工质闭合回路上。
14、 如权利要求 1 所述熵循环发动机, 其特征在于: 所述熵循环发动机还包括非直混 冷凝冷却器, 所述非直混冷凝冷却器的被冷却工质入口与所述工质导出口 (5 )连通。
15、 如权利要求 10所述熵循环发动机, 其特征在于: 所述直混冷凝冷却器 (70) 上设 有深冷液体工质出口 (72)。
16、 如权利要求 14所述熵循环发动机, 其特征在于: 所述非直混冷凝冷却器上设有深 冷液体工质出口 (72)。
17、 如权利要求 15或 16所述熵循环发动机, 其特征在于: 所述熵循环发动机还包括 有深冷液体工质储罐(72】), 所述深冷液体工质储罐(721 )与所述深冷液体工质出口 (72) 连通。
18、 如权利要求 10或 14所述熵循环发动机, 其特征在于: 所述非直混冷凝冷却器上 设有不凝气出口 (71 )。
19、 如权利要求 18所述熵循环发动机, 其特征在于: 所述不凝气出口 (71 )与所述工 质闭合回路连通。
20、 如权利要求 14所述熵循环发动机, 其特征在于: 所述熵循环发动机还包括氧化剂 源 (41 ), 所述氧化剂源 (41 )经所述非直混冷凝冷却器的被加热流体通道与所述内燃燃烧 室 (4) 连通。
21、 如权利要求 1所述熵循环发动机, 其特征在于: 所述工质导出口 (5 )上设控制阀 (51 )。
22、 如权利要求 21所述熵循环发动机, 其特征在于: 所述控制阀 (51 )设为压力控制 阀, 所述压力控制阀控制所述工质导出口 (5 )在所述工质闭合回路内的压力超过设定限度 时导出工质。
23、 如权利要求 22所述熵循环发动机, 其特征在于: 所述压力控制阀受使所述工质闭 合回路中的最低压力大于 0.2MPa的控制机构所控制。
24、 如权利要求 1或 Π所述熵循环发动机, 其特征在于: 所述熵循环发动机还包括有 附属气体做功机构, 所述工质导出口 (5 ) 与所述附属气体做功机构的工质入口连通。
25、 如权利要求 1或 Π所述熵循环发动机, 其特征在于: 所述熵循环发动机还包括有 储气罐 (52), 所述工质导出口 (5 ) 与所述储气罐 (52 ) 连通。
26、 如权利要求 1 所述熵循环发动机, 其特征在于: 在所述工质闭合回路上设有逆止 阀 (31 )。
27、 如权利要求 1所述熵循环发动机, 其特征在于: 所述气体做功机构 (2) 设有两个 且串联方式连通。
28、 如权利要求 1所述熵循环发动机, 其特征在于: 所述气体做功机构(2)对所述气 体压缩机构 (1)输出动力。
29、 如权利要求 1 所述熵循环发动机, 其特征在于: 所述工质闭合回路中, 参与循环 的气体的一部分为不凝气。
30、 如权利要求 29所述熵循环发动机, 其特征在于: 所述熵循环发动机还包括不凝气 储罐 (73), 所述不凝气储罐 (73) 经控制装置与所述工质闭合回路连通。
31、 如权利要求 30所述熵循环发动机, 其特征在于: 所述熵循环发动机还包括不凝气 回储压缩机(74), 所述不凝气回储压缩机 (74) 的进气口经控制阀与所述工质闭合回路连 通, 所述不凝气回储压缩机 (74) 的气体出口经控制阀与所述不凝气储罐 (73)连通。
32、 如权利要求 1 所述熵循环发动机, 其特征在于: 在所述工质闭合回路上设有三元 催化器 (81)。
33、 如权利要求 1 所述熵循环发动机, 其特征在于: 所述熵循环发动机还包括低温冷 源 (66), 所述低温冷源 (66) 用于提供低温物质, 所述低温物质用于冷却所述气体压缩机 构 (1) 中或即将进入所述气体压缩机构 (1) 的工质。
34、 如权利要求 1 所述熵循环发动机, 其特征在于: 所述熵循环发动机还包括次级涡 轮动力机构(211)和次级叶轮压气机(111), 所述工质导出口 (5)与所述次级涡轮动力机 构 (211) 的工质入口连通, 所述次级涡轮动力机构 (211) 的工质出口经附属冷却器 (67) 与所述次级叶轮压气机(111)的工质入口连通, 所述次级叶轮压气机(111)的工质出口与 所述工质闭合回路连通; 所述次级涡轮动力机构 (211) 的工质出口与所述次级叶轮压气机
(111) 的工质入口之间的通道上设有附属工质导出口 (55)。
35、 如权利要求 1 所述熵循环发动机, 其特征在于: 所述熵循环发动机还包括四类门 气缸活塞机构 (99), 所述四类门气缸活塞机构 (99) 的供气口 (993) 与所述气体做功机 构 (2)连通, 所述四类门气缸活塞机构 (99) 的回充口 (994) 与所述工质导出口 (5)连 通。
36、 如权利要求 3 所述熵循环发动机, 其特征在于: 所述旁置内燃燃烧室 (40)设为 四类门气缸活塞机构 (99), 所述四类门气缸活塞机构 (99) 的供气口 (993) 与所述气体 做功机构 (2)连通, 所述四类门气缸活塞机构 (99) 的回充口 (994) 与所述工质导出口
(5)连通。
37、 如权利要求 8所述熵循环发动机, 其特征在于: 所述熵循环发动机还包括氧化剂 传感器(44)和氧化剂控制装置(45), 所述氧化剂传感器(44)设在所述工质闭合回路内, 所述氧化剂传感器 (44) 对所述氧化剂控制装置 (45) 提供信号, 所述氧化剂源 (41) 经 氧化剂控制阔 (53) 与所述工质闭合回路连通, 所述氧化剂控制装置 (45) 控制所述氧化 剂控制阀 (53)。
38、 如权利要求 1所述熵循环发动机, 其特征在于: 所述气体压缩机构 (1)或所述气 体做功机构 (2) 设为活塞液体机构 (15), 所述活塞液体机构 (15) 包括气液缸 (94) 和 气液隔离结构 (95), 所述气液隔离结构 (95) 设在所述气液缸 (94) 内。
39、 如权利要求 37所述熵循环发动机, 其特征在于: 所述气液缸(94) 的气体工质对 所述气液隔离结构 (95) 的压力大于所述气液缸 (94) 内的液体和所述气液隔离结构 (95) 做往复运动时的惯性力之和。
40、 如权利要求 1所述熵循环发动机, 其特征在于: 所述内燃燃烧室 (4)排出的物质 的质量流量大于从所述工质闭合回路外导入所述内燃燃烧室 (4) 的物质的质量流量。
41、 如权利要求 1 所述熵循环发动机, 其特征在于: 所述工质闭合回路的承压能力大 于 2MPa。
PCT/CN2012/001618 2011-12-01 2012-12-03 熵循环发动机 WO2013078773A1 (zh)

Applications Claiming Priority (42)

Application Number Priority Date Filing Date Title
CN201110392947 2011-12-01
CN201110392947.8 2011-12-01
CN201110397711 2011-12-03
CN201110397711.3 2011-12-03
CN201110398349.1 2011-12-05
CN201110398349 2011-12-05
CN201110413450.X 2011-12-10
CN201110413450 2011-12-10
CN201110426769 2011-12-19
CN201110426769.6 2011-12-19
CN201110444350 2011-12-27
CN201110444350.3 2011-12-27
CN201210039407.6 2012-02-21
CN201210039407 2012-02-21
CN201210042186 2012-02-22
CN201210042186.8 2012-02-22
CN201210045600 2012-02-24
CN201210045600.0 2012-02-24
CN201210048964.4 2012-02-28
CN201210048964 2012-02-28
CN201210054459 2012-03-03
CN201210054459.0 2012-03-03
CN201210054562 2012-03-04
CN201210054562.5 2012-03-04
CN201210060399.3 2012-03-08
CN201210060399 2012-03-08
CN201210130328.6 2012-04-27
CN201210130328 2012-04-27
CN201210193287.5 2012-06-12
CN201210193287 2012-06-12
CN201210199483 2012-06-14
CN201210199483.3 2012-06-14
CN201210204335.6 2012-06-15
CN201210204335 2012-06-15
CN201210217984 2012-06-27
CN201210217984.X 2012-06-27
CN201210233108.6 2012-07-05
CN201210233108 2012-07-05
CN201210299717.1 2012-08-21
CN201210299717 2012-08-21
CN201210307059 2012-08-24
CN201210307059.6 2012-08-24

Publications (1)

Publication Number Publication Date
WO2013078773A1 true WO2013078773A1 (zh) 2013-06-06

Family

ID=48534662

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/001618 WO2013078773A1 (zh) 2011-12-01 2012-12-03 熵循环发动机

Country Status (1)

Country Link
WO (1) WO2013078773A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4364233A (en) * 1980-12-31 1982-12-21 Cummins Engine Company, Inc. Fluid engine
CN1243562A (zh) * 1997-01-22 2000-02-02 居伊·内格尔 用于配有二次压缩空气的无污染发动机的车辆的回收热能的方法和装置
CN2511795Y (zh) * 2001-12-19 2002-09-18 周义农 直流底聚扫气变废气比容式二行程内燃机
CN2881124Y (zh) * 2005-10-31 2007-03-21 李建锋 一种新型的活塞式发动机
CN101418716A (zh) * 2007-10-23 2009-04-29 赵元藩 高效集成式热机
CN101512105A (zh) * 2006-09-05 2009-08-19 Mdi-汽车发展国际股份公司 改进的具有主动膨胀室的压缩空气或气体和/或附加能量发动机

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4364233A (en) * 1980-12-31 1982-12-21 Cummins Engine Company, Inc. Fluid engine
CN1243562A (zh) * 1997-01-22 2000-02-02 居伊·内格尔 用于配有二次压缩空气的无污染发动机的车辆的回收热能的方法和装置
CN2511795Y (zh) * 2001-12-19 2002-09-18 周义农 直流底聚扫气变废气比容式二行程内燃机
CN2881124Y (zh) * 2005-10-31 2007-03-21 李建锋 一种新型的活塞式发动机
CN101512105A (zh) * 2006-09-05 2009-08-19 Mdi-汽车发展国际股份公司 改进的具有主动膨胀室的压缩空气或气体和/或附加能量发动机
CN101418716A (zh) * 2007-10-23 2009-04-29 赵元藩 高效集成式热机

Similar Documents

Publication Publication Date Title
CN103133178B (zh) 双通道熵循环发动机
CN102312725A (zh) 临界低熵混燃循环热动力系统
CN102536427B (zh) 低熵混燃充气爆排发动机
CN111997747A (zh) 一种可回收氧气的零排放压燃式二冲程转子机及其控制方法
CN103195607A (zh) 热源做功热气机
WO2011088752A1 (zh) 低熵混燃循环热动力系统
CN202811060U (zh) 门控同缸u流活塞热动力系统
CN103089486A (zh) 三类门热气发动机
CN103104374B (zh) 气缸内燃斯特林发动机
CN103306846A (zh) 气流相循环发动机
CN103216358A (zh) 热缸门控热气机
CN202811049U (zh) 单工质连续燃烧室活塞热动力系统
CN103206316A (zh) 做功单元热气机
CN102454419A (zh) 传统活塞单热源开路发动机
WO2013078773A1 (zh) 熵循环发动机
CN103133177B (zh) 往复通道熵循环发动机
CN103089482B (zh) 压气单元热气机
CN106988943A (zh) 一种高压共轨式柴油机及其设计方法
CN202442546U (zh) 液体活塞单热源制冷系统
WO2013078775A1 (zh) 双通道熵循环发动机
CN103089484A (zh) 三类门热气发动机
WO2013078772A1 (zh) 单缸u流熵循环发动机
CN105240154A (zh) 往复通道熵循环发动机
CN103195606B (zh) 做功单元热气机
CN202431306U (zh) 传统活塞单热源闭合循环发动机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12854136

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12854136

Country of ref document: EP

Kind code of ref document: A1