WO2013078745A1 - 一种能降低铝电解槽阴极铝液内水平电流的阴极炭块结构 - Google Patents

一种能降低铝电解槽阴极铝液内水平电流的阴极炭块结构 Download PDF

Info

Publication number
WO2013078745A1
WO2013078745A1 PCT/CN2011/084592 CN2011084592W WO2013078745A1 WO 2013078745 A1 WO2013078745 A1 WO 2013078745A1 CN 2011084592 W CN2011084592 W CN 2011084592W WO 2013078745 A1 WO2013078745 A1 WO 2013078745A1
Authority
WO
WIPO (PCT)
Prior art keywords
cathode
carbon block
cathode carbon
boss
aluminum
Prior art date
Application number
PCT/CN2011/084592
Other languages
English (en)
French (fr)
Inventor
冯乃祥
Original Assignee
沈阳北冶冶金科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 沈阳北冶冶金科技有限公司 filed Critical 沈阳北冶冶金科技有限公司
Publication of WO2013078745A1 publication Critical patent/WO2013078745A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/06Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
    • C25C3/08Cell construction, e.g. bottoms, walls, cathodes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/06Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
    • C25C3/16Electric current supply devices, e.g. bus bars

Definitions

  • Cathode carbon block structure capable of reducing horizontal current in cathode aluminum liquid of aluminum electrolytic cell
  • the invention belongs to the technical field of aluminum electrolysis, and particularly relates to a cathode carbon block structure capable of reducing horizontal current in a cathode aluminum liquid of an aluminum electrolytic cell.
  • the horizontal current in the cathode aluminum liquid in the current industrial aluminum electrolytic cell especially the horizontal current in the longitudinal direction of the cathode carbon block of the electrolytic cell and the vertical magnetic field in the electrolytic cell are the important reasons for the instability of the cathode aluminum liquid level in the electrolytic cell.
  • Due to the instability of the aluminum liquid level in the electrolytic bath not only the dissolution loss of aluminum in the electrolytic bath is increased, the current efficiency is lowered, and the effective pole distance between the cathode and the cathode of the electrolytic cell is lowered.
  • the present invention provides a cathode carbon block structure capable of reducing the horizontal current in the aluminum liquid of the aluminum electrolytic cell, and the structure of the upper surface of the cathode carbon block is changed to make the electrolysis process
  • the electrolysis current from the electrolyte can enter the cathode carbon block vertically through the aluminum liquid to achieve the effect of eliminating or reducing the horizontal current in the aluminum liquid.
  • the cathode carbon block structure capable of reducing the horizontal current in the cathode aluminum liquid of the aluminum electrolytic cell comprises a cathode carbon block and a cathode steel rod, wherein the longitudinal section of the top surface of the cathode carbon block has an inverted trapezoidal structure or an inverted triangular structure, and the cathode carbon block top There is a boss on the surface or no boss; when the longitudinal section of the top surface of the cathode carbon block has an inverted trapezoidal structure, the top surface of the cathode carbon block is divided into three sections, wherein the middle section is parallel to the bottom surface of the cathode carbon block, and the middle section The two sides are symmetric inclined sections, and the vertical height difference between the two ends of the inclined section is 1% ⁇ 6% of the axial length of the cathode carbon block; when the longitudinal section of the top surface of the cathode carbon block is an inverted triangle structure, the top surface of the cathode carbon block is divided into Two symmetrical inclined sections,
  • each of the inclined sections is provided with a long boss, or each of the inclined sections is provided with 2 to 5 short bosses, or each Each of the inclined sections is provided with 2 to 5 cylindrical bosses having a diameter of 20 to 30 cm, or each of the inclined sections is provided with 2 to 5 square-shaped bosses having a side length of 20 to 30 cm; the same inclined section There are 2 When the boss is raised, the bosses are evenly distributed along the axis of the inclined section.
  • the longitudinal length direction of the long boss is parallel to the longitudinal direction of the inclined section, and the distance between the end of the long boss and the end of the cathode carbon block is 5 to 30 cm.
  • the distance between the two long bosses on the same cathode carbon block is 3 ⁇ 20cm, and the distance between the two sides of the long boss and the sides of the cathode carbon block is 10 ⁇ 20cm.
  • the axis of the short boss in the longitudinal direction is perpendicular to the axis of the cathode carbon block in the longitudinal direction, and the pitch of the adjacent two short bosses in the middle of the cathode carbon block 5 to 20 cm, the distance between the ends of the short boss and the side of the cathode carbon block is 10 to 20 cm, and the width of the short boss is 20 to 30 cm.
  • the intermediate section has a length of 20 cm.
  • the height of the boss is 9 to 15 cm.
  • the bottom of the cathode carbon block is provided with two through steel rod grooves or four steel rod grooves arranged in two rows, and each steel rod groove is provided with a cathode steel rod; a cathode steel rod and a steel rod
  • the gap between the grooves is tamped with a tamping paste.
  • the longitudinal section of the top surface of the cathode carbon block has an inverted trapezoidal structure or an inverted triangular structure; and when the longitudinal section of the top surface of the cathode carbon block has an inverted trapezoidal structure, the length of the middle section is 20 cm; When the length is 0, the longitudinal section of the top surface of the cathode carbon block has a triangular structure.
  • the boss and the cathode carbon block are integrated or embedded on the top surface of the cathode carbon block; when the boss is embedded in the top surface of the cathode carbon block, the cathode carbon
  • the surface of the block is provided with a mounting groove, and the boss is fixed in the setting groove by the tamping paste.
  • the cathode carbon block structure capable of reducing the horizontal current in the aluminum liquid of the aluminum electrolytic cell adopts a pit-shaped surface which is gradually inclined toward the center of the upper surface of the cathode carbon block, and replaces the traditional horizontal surface, so that the electrolytic cell is in the electrolysis process.
  • the vertical electrolysis current from the electrolyte passes through the aluminum liquid vertically into the cathode carbon block, thereby achieving the purpose of eliminating or greatly reducing the horizontal current in the cathode aluminum liquid of the electrolytic cell.
  • the invention is applicable not only to the electrolytic cell having no boss on the surface of the cathode carbon block, but also to the cathode carbon block of the shaped cathode structure electrolytic cell having the boss on the surface of the cathode carbon block, and is also suitable for the TiB2/C composite material on the surface of the cathode carbon block.
  • a coated cathode structure electrolytic cell is also applicable not only to the electrolytic cell having no boss on the surface of the cathode carbon block, but also to the cathode carbon block of the shaped cathode structure electrolytic cell having the boss on the surface of the cathode carbon block, and is also suitable for the TiB2/C composite material on the surface of the cathode carbon block.
  • FIG. 1 is a schematic cross-sectional view showing a structure of a cathode carbon block structure capable of reducing a horizontal current in a cathode aluminum liquid of an aluminum electrolytic cell according to Embodiment 1 of the present invention
  • Figure 2 is a schematic view showing the structure of the B-B surface of Figure 1;
  • Figure 3 is a schematic view showing the structure of the A-A surface of Figure 1;
  • FIG. 4 is a schematic front view showing a structure of a cathode carbon block structure capable of reducing a horizontal current in a cathode aluminum liquid of an aluminum electrolytic cell according to Embodiment 2 of the present invention
  • Figure 5 is a top plan view of Figure 4;
  • Figure 6 is a schematic view showing the structure of the A-A surface of Figure 4.
  • FIG. 7 is a schematic cross-sectional view showing a structure of a cathode carbon block structure capable of reducing a horizontal current in a cathode aluminum liquid of an aluminum electrolytic cell according to Embodiment 3 of the present invention
  • Figure 8 is a top plan view of Figure 7;
  • Figure 9 is a schematic view showing the structure of the A-A surface of Figure 7;
  • FIG. 10 is a schematic cross-sectional view showing a structure of a cathode carbon block structure capable of reducing a horizontal current in a cathode aluminum liquid of an aluminum electrolytic cell according to Embodiment 4 of the present invention
  • Figure 11 is a top plan view of Figure 10;
  • Figure 12 is a schematic view showing the structure of the A-A surface of Figure 10;
  • cathode carbon block 2, cathode steel rod, 3, tamping paste, 4, cylindrical boss.
  • the cathode carbon block used in the embodiment of the present invention has a length of 3,300 mm, a width of 515 mm, and a height of 450 to 550 mm.
  • the two sides of the cathode steel rod are tamped with the carbon rod groove of the cathode carbon block, and the upper surface of the cathode steel rod and the bottom of the cathode steel rod groove are tamped with carbon paste or filled with graphite powder.
  • the thickness of the tamping paste is 10 to 20 mm, and the thickness of the graphite powder when filling the graphite powder is 5 to 10 mm.
  • the cathode carbon block structure capable of reducing the horizontal current in the aluminum liquid of the aluminum electrolytic cell is shown in Fig. 1.
  • the BB surface structure is shown in Fig. 2, and the AA surface structure is shown in Fig. 3, including the cathode carbon block 1 and the cathode steel rod 2.
  • the bottom of the cathode carbon block 1 is provided with four steel rod slots arranged in two rows, and each of the steel rod slots is provided with a cathode steel rod 2; the gap between the cathode steel rod 2 and the steel rod groove is used for tamping paste 3 ⁇ Solid
  • the longitudinal section of the top surface of the cathode carbon block has an inverted trapezoidal structure.
  • the top surface of the cathode carbon block is divided into three sections.
  • the middle section is parallel to the bottom surface of the cathode carbon block, and the two sides of the middle section are symmetric inclined sections.
  • the vertical height difference between the two ends of the inclined section is the cathode. 3% of the axial length of the carbon block; the length of the middle section is 10 cm;
  • the aluminum cathode electrolysis using the above cathode carbon block structure can significantly reduce the horizontal current distribution in the longitudinal direction of the cathode carbon block in the electrolytic cell cathode aluminum liquid, and effectively reduce the liquid level of the cathode aluminum liquid in the electrolytic cell. Fluctuation can not only reduce the dissolution loss of aluminum, but also improve the current efficiency, and can lower the cell voltage to reduce the power consumption of aluminum electrolysis.
  • the cathode carbon block structure capable of reducing the horizontal current in the aluminum liquid of the aluminum electrolytic cell is shown in Fig. 4, and the top view is as shown in Fig. 5.
  • the structure of the AA surface is as shown in FIG. 6, and includes a cathode carbon block 1 and a cathode steel rod 2.
  • the cathode carbon block 1 has two through-hole steel rod grooves at the bottom, and each of the steel rod grooves is provided with a cathode steel rod 2;
  • the gap between the rod 2 and the steel rod groove is tamped with the tamping paste 3;
  • the longitudinal section of the top surface of the cathode carbon block has an inverted trapezoidal structure, and the top surface of the cathode carbon block is provided with a boss;
  • the top surface of the cathode carbon block is divided into three a section, wherein the middle section is parallel to the bottom surface of the cathode carbon block, and the two sides of the middle section are symmetric inclined sections, and the vertical height difference between the two ends of the inclined section is 1% of the axial length of the cathode carbon block; the length of the middle section is 20 cm;
  • Each inclined section is provided with a long boss, two long bosses are symmetrically arranged, and the longitudinal length direction (axial direction) of the long boss is parallel with the longitudinal length direction (axial direction) of the inclined section, and two long bosses
  • the spacing is 20cm, the distance between the side of each long boss near the end of the cathode carbon block and the end of the cathode carbon block is 10cm; the distance between the sides of the long boss and the sides of the cathode carbon block is 20cm;
  • the height of the table is 9cm; the long boss and the cathode carbon block are integrated;
  • the aluminum cathode electrolysis using the above cathode carbon block structure can significantly reduce the horizontal current distribution in the longitudinal direction of the cathode carbon block in the electrolytic cell cathode aluminum liquid, and effectively reduce the liquid level of the cathode aluminum liquid in the electrolytic cell. Fluctuation can not only reduce the dissolution loss of aluminum, but also improve the current efficiency, and can lower the cell voltage to reduce the power consumption of aluminum electrolysis.
  • the cathode carbon block structure capable of reducing the horizontal current in the aluminum liquid of the aluminum electrolytic cell is shown in Fig. 7.
  • the top view is shown in Fig. 8.
  • the AA surface structure is shown in Fig. 9, including the cathode carbon block 1 and the cathode steel rod 2, and the cathode.
  • the bottom of the carbon block 1 is provided with two through steel rod slots, and each steel rod groove is provided with a cathode steel rod 2; the gap between the cathode steel rod 2 and the steel rod groove is tamped with the tamping paste 3; the cathode carbon block
  • the longitudinal section of the top surface has an inverted trapezoidal structure, and the top surface of the cathode carbon block is provided with a boss; the top surface of the cathode carbon block is divided into three sections, wherein the middle section is parallel to the bottom surface of the cathode carbon block, and the two sides of the middle section are symmetric inclined sections.
  • the vertical height difference between the two ends of the inclined section is 5% of the axial length of the cathode carbon block; the length of the intermediate section is 3 cm;
  • Each inclined section is provided with a long boss, two long bosses are symmetrically arranged, and the longitudinal length direction (axial direction) of the long boss is parallel with the longitudinal length direction (axial direction) of the inclined section, and two long bosses
  • the spacing is 3cm, the distance between the side of each long boss near the end of the cathode carbon block and the end of the cathode carbon block is 20cm; the distance between the two sides of the long boss and the sides of the cathode carbon block is 10cm;
  • the height of the table is 12cm; the long boss and the cathode carbon block are integrated;
  • the aluminum cathode electrolysis using the above cathode carbon block structure can significantly reduce the horizontal current distribution in the longitudinal direction of the cathode carbon block in the electrolytic cell cathode aluminum liquid, and effectively reduce the liquid level of the cathode aluminum liquid in the electrolytic cell. Fluctuation can not only reduce the dissolution loss of aluminum, but also improve the current efficiency, and can lower the cell voltage to reduce the power consumption of aluminum electrolysis.
  • the cathode carbon block structure capable of reducing the horizontal current in the aluminum liquid of the aluminum electrolytic cell is shown in Fig. 10, and the top view is as shown in Fig. 11.
  • the structure of the AA surface includes a cathode carbon block 1 and a cathode steel rod 2.
  • the bottom of the cathode carbon block 1 is provided with four steel rod slots arranged in two rows, and each steel rod groove is provided with a cathode steel.
  • Rod 2; the gap between the cathode steel rod 2 and the steel rod groove is tamped with the tamping paste 3;
  • the longitudinal section of the top surface of the cathode carbon block has an inverted trapezoidal structure, and the top surface of the cathode carbon block is provided with a boss.
  • the top surface of the cathode carbon block is divided into three sections, wherein the middle section is parallel to the bottom surface of the cathode carbon block, and the two sides of the middle section are symmetrical.
  • the inclined section, the vertical height difference between the two ends of the inclined section is 6% of the axial length of the cathode carbon block; the length of the middle section is 5 cm;
  • Each of the inclined sections is provided with two cylindrical bosses 4 having a diameter of 20 to 30 cm, and the cylindrical bosses 4 are evenly distributed along the axis of the inclined section, and the height is 15 cm ;
  • the cylindrical boss 4 is embedded on the top surface of the cathode carbon block, and the surface of the cathode carbon block is provided with a mounting groove, and the cylindrical boss 4 is fixed in the mounting groove by the tamping paste;
  • the aluminum cathode electrolysis using the above cathode carbon block structure can significantly reduce the horizontal current distribution in the longitudinal direction of the cathode carbon block in the electrolytic cell cathode aluminum liquid, and effectively reduce the liquid level of the cathode aluminum liquid in the electrolytic cell. Fluctuation can not only reduce the dissolution loss of aluminum, but also improve the current efficiency, and can lower the cell voltage to reduce the power consumption of aluminum electrolysis.
  • the cathode carbon block structure capable of reducing the horizontal current in the aluminum liquid of the aluminum electrolytic cell comprises a cathode carbon block and a cathode steel rod, and four cathode rod grooves arranged in two rows are arranged at the bottom of the cathode carbon block, and a cathode is arranged in each steel rod groove.
  • Steel bar; the gap between the cathode steel bar and the steel bar groove is tamped with a tamping paste;
  • the top surface of the cathode carbon block is divided into two symmetrical inclined sections, and the vertical height difference between the two ends of the inclined section is 6% of the axial length of the cathode carbon block.
  • the cathode carbon block structure capable of reducing the horizontal current in the aluminum liquid of the aluminum electrolytic cell comprises a cathode carbon block and a cathode steel rod, wherein the bottom of the cathode carbon block is provided with two through steel rod grooves, and each steel rod groove is provided with a cathode steel rod.
  • the gap between the cathode steel rod and the steel rod groove is tamped with a tamping paste;
  • the top surface of the cathode carbon block is divided into two symmetrical inclined sections, and the vertical height difference between the two ends of the inclined section is 1% of the axial length of the cathode carbon block.
  • the cathode carbon block structure capable of reducing the horizontal current in the cathode aluminum liquid of the aluminum electrolytic cell is the same as that in the fourth embodiment, except that: each of the inclined sections is provided with three cylindrical bosses each having a diameter of 25 cm.
  • Example 8 The cathode carbon block structure capable of reducing the horizontal current in the aluminum liquid of the aluminum electrolytic cell is the same as that in the fourth embodiment, except that: each inclined section is provided with five cylindrical bosses each having a diameter of 30 cm.
  • each of the inclined sections is provided with two square-shaped bosses each having a side length of 20 cm.
  • the structure of the cathode carbon block capable of reducing the horizontal current in the aluminum liquid of the aluminum electrolytic cell is the same as that in the fourth embodiment, and the difference is that each of the inclined sections is provided with four square-shaped bosses each having a side length of 30 cm.
  • the cathode carbon block structure capable of reducing the horizontal current in the aluminum liquid of the aluminum electrolytic cell is the same as that in the fourth embodiment, and the difference is that: each of the inclined sections is provided with five square-shaped bosses each having a side length of 25 cm.
  • the cathode carbon block structure capable of reducing the horizontal current in the aluminum liquid of the aluminum electrolytic cell is the same as that in the second embodiment, and the difference is that: each of the inclined sections is provided with two short bosses, the axis of the short boss in the longitudinal direction and the cathode The carbon block is perpendicular to the axis in the longitudinal direction, the distance between two adjacent short bosses in the middle of the cathode carbon block is 5 cm, the distance between the ends of the short boss and the side of the cathode carbon block is 10 cm, and the width of the short boss is 20cm; each short boss on the same inclined section is evenly distributed along the axis of the inclined section, and each of the bosses and the cathode carbon block are integrated.
  • each of the inclined sections is provided with four short bosses, and the axis of the short boss in the longitudinal direction and the cathode
  • the carbon block is perpendicular to the axis in the longitudinal direction, the distance between two adjacent short bosses in the middle of the cathode carbon block is 10 cm, the distance between the ends of the short boss and the side of the cathode carbon block is 15 cm, and the width of the short boss is 25cm; each short boss on the same inclined section is evenly distributed along the axis of the inclined section, and each of the bosses and the cathode carbon block are integrated.
  • the cathode carbon block structure capable of reducing the horizontal current in the aluminum liquid of the aluminum electrolytic cell is the same as that in the second embodiment, and the difference is that: each of the inclined sections is provided with five short bosses, and the axis of the short boss in the longitudinal direction and the cathode The carbon block is perpendicular to the axis in the longitudinal direction, the distance between two adjacent short bosses in the middle of the cathode carbon block is 20 cm, the distance between the ends of the short boss and the side of the cathode carbon block is 20 cm, and the width of the short boss is 30cm; each short boss on the same inclined section is evenly distributed along the axis of the inclined section, and each of the bosses and the cathode carbon block are integrated.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrolytic Production Of Metals (AREA)

Abstract

一种能降低铝电解槽阴极铝液内水平电流的阴极炭块结构,属于铝电解技术领域,包括阴极炭块和阴极钢棒,阴极炭块顶面的纵向截面呈倒梯形结构或倒三角形结构,阴极炭块顶面分为两段或三段,倾斜段两端的垂直高度差为阴极炭块轴向长度的1%~6%。本发明的阴极炭块结构能使电解过程中电解槽内经由电解质出来的垂直方向的电解电流再垂直地通过铝液进入阴极炭块,从而达到消除或大大减少电解槽阴极铝液内水平电流的目的。适用于阴极炭块表面没有凸台的电解槽、阴极炭块表面有凸台的异形阴极结构电解槽、阴极表面有TiB2/C复合材料涂层的阴极结构电解槽。

Description

一种能降低铝电解槽阴极铝液内水平电流的阴极炭块结构 技术领域
本发明属于铝电解技术领域, 特别涉及一种能降低铝电解槽阴极铝液内水平电流的阴极 炭块结构。
背景技术
现行工业铝电解槽内阴极铝液中的水平电流, 特别是沿电解槽阴极炭块纵向方向的水平 电流与电解槽内垂直磁场的作用是导致电解槽内阴极铝液面不稳定的重要原因之一。 由于电 解槽阴极铝液面的不稳定, 不仅增加电解槽内铝的溶解损失, 使电流效率降低, 而且使电解 槽阴极和阴极之间的有效极距降低。
为了减少电解槽内阴极铝液中的水平电流, 人们不仅在提高电解槽母线的设计水平, 尽可能降低电解槽内的垂直磁场方面作了很多工作, 而且在改变电解槽阴极钢棒和阴极钢棒 与阴极炭块的连接结构也都作了很多工作。 其中比较有代表性的是中国专利 "一种大幅度降 低铝电解槽铝液中水平电流的结构"(杨晓东等, 申请号为 201020566373 ) 提出的一种铝电 解槽阴极钢棒结构, 该结构具有能改进和降低电解槽内铝液水平电流, 提高电解槽稳定性的 效果; 然而该技术操作复杂, 阴极钢棒内分割缝内所使用的分隔材料和靠近阴极炭块边部的 阴极钢棒的下部分所使用的绝缘材料的抗电解槽的磨蚀性是一个未经实践检验的问题, 一旦 电解质或铝液渗入或漏入这些部位可能会对阴极钢棒的破坏和电解槽的寿命产生影响。 发明内容
针对现有阴极炭块结构存在的上述问题, 本发明提供一种能降低铝电解槽阴极铝液内水 平电流的阴极炭块结构, 通过阴极炭块的上表面结构的改变, 使电解过程中由电解质出来的 电解电流能够垂直经由铝液进入阴极炭块, 达到消除或减少铝液内水平电流的效果。
本发明的能降低铝电解槽阴极铝液内水平电流的阴极炭块结构包括阴极炭块和阴极钢 棒, 其中阴极炭块顶面的纵向截面呈倒梯形结构或倒三角形结构, 阴极炭块顶面上设有凸台 或不设有凸台; 当阴极炭块顶面的纵向截面呈倒梯形结构时, 阴极炭块顶面分为三段, 其中 中间段与阴极炭块底面平行, 中间段两边为对称的倾斜段, 倾斜段两端的垂直高度差为阴极 炭块轴向长度的 1%〜6%; 当阴极炭块顶面的纵向截面呈倒三角形结构时, 阴极炭块顶面分 为两个对称的倾斜段, 倾斜段两端的垂直高度差为阴极炭块轴向长度的 1%〜6%。
上述结构中, 当阴极炭块顶面上设有凸台时, 每个倾斜段上各设有一个长凸台, 或每个 倾斜段上各设有 2〜5 个短凸台, 或每个倾斜段上各设有 2〜5 个直径在 20〜30cm 圆柱形凸 台, 或每个倾斜段上各设有 2〜5个边长在 20〜30cm方柱形凸台; 同一个倾斜段上有 2个以 上的凸台时, 各凸台沿倾斜段的轴线均匀分布。
上述结构中, 当每个倾斜段上设有一个长凸台时, 长凸台的纵向长度方向与倾斜段的纵 向长度方向平行, 长凸台端部与阴极炭块端部的距离为 5〜30cm, 同一阴极炭块上两个长凸 台的间距为 3〜20cm, 长凸台的两侧与阴极炭块两侧的距离为 10〜20cm。
上述结构中, 当每个倾斜上设有短凸台时, 短凸台在长度方向上的轴线与阴极炭块在长 度方向的轴线垂直, 阴极炭块中部的相邻两个短凸台的间距为 5〜20cm, 短凸台的两端与阴 极炭块的侧边的间距为 10〜20cm, 短凸台的宽度为 20〜30cm。
上述结构中, 所述的中间段的长度 20cm。
上述结构中, 当阴极炭块顶面设有凸台时, 凸台的高度为 9〜15cm。
上述结构中, 所述的阴极炭块底部开设有 2个贯通的钢棒槽或 4个排成两排的钢棒槽, 每个钢棒槽内设有阴极钢棒; 阴极钢棒和钢棒槽之间的空隙用捣固糊捣固。
上述结构中, 所述的阴极炭块顶面的纵向截面呈倒梯形结构或倒三角形结构; 且当阴极 炭块顶面的纵向截面呈倒梯形结构时, 其中间段的长度 20cm; 当中间段的长度为 0 时, 阴极炭块顶面的纵向截面即成为三角形结构。
上述结构中, 当阴极炭块顶面设有凸台时, 凸台与阴极炭块为一体结构或镶嵌在阴极炭 块的顶面上; 当凸台镶嵌在阴极炭块顶面时, 阴极炭块表面设有镶嵌槽, 凸台通过捣固糊固 定在镶嵌槽内。
本发明的能降低铝电解槽阴极铝液内水平电流的阴极炭块结构采用的阴极炭块上表面的 两端向中心逐渐倾斜的坑形面, 取代传统的水平面, 使电解过程中电解槽内经由电解质出来 的垂直方向的电解电流再垂直地通过铝液进入阴极炭块, 从而达到消除或大大减少电解槽阴 极铝液内水平电流的目的。 本发明不仅适用于阴极炭块表面没有凸台的电解槽, 也适用于阴 极炭块表面有凸台的异形阴极结构电解槽的阴极炭块, 还适用于阴极炭块表面有 TiB2/C 复 合材料涂层的阴极结构电解槽。
附图说明
图 1 为本发明实施例 1 的能降低铝电解槽阴极铝液内水平电流的阴极炭块结构正视剖面结 构示意图;
图 2为图 1的 B-B面结构示意图;
图 3为图 1的 A-A面结构示意图;
图 4为本发明实施例 2的能降低铝电解槽阴极铝液内水平电流的阴极炭块结构正视剖面结构 示意图; 图 5为图 4的俯视结构示意图;
图 6为图 4的 A-A面结构示意图;
图 7 为本发明实施例 3 的能降低铝电解槽阴极铝液内水平电流的阴极炭块结构正视剖面结 构示意图;
图 8为图 7的俯视结构示意图;
图 9为图 7的 A-A面结构示意图;
图 10为本发明实施例 4 的能降低铝电解槽阴极铝液内水平电流的阴极炭块结构正视剖面结 构示意图;
图 11为图 10的俯视结构示意图;
图 12为图 10的 A-A面结构示意图;
图中 1、 阴极炭块, 2、 阴极钢棒, 3、 捣固糊, 4、 圆柱形凸台。
具体实施方式
本发明实施例中采用的阴极炭块长度为 3300mm, 宽为 515mm, 高为 450〜550mm。 阴极钢棒的两个侧面与阴极炭块的钢棒槽之间用炭素捣固糊捣固, 阴极钢棒上表面与阴 极钢棒槽底部之间用炭素捣固糊捣固或者用石墨粉填充, 捣固糊的厚度为 10〜20mm, 填充 石墨粉时石墨粉的厚度为 5〜10mm。
实施例 1
能降低铝电解槽阴极铝液内水平电流的阴极炭块结构如图 1所示, B-B面结构如图 2所 示, A-A面结构如图 3所示, 包括阴极炭块 1和阴极钢棒 2, 阴极炭块 1底部开设有 4个排 成两排的钢棒槽, 每个钢棒槽内设有阴极钢棒 2; 阴极钢棒 2和钢棒槽之间的空隙用捣固糊 3捣固;
阴极炭块顶面的纵向截面呈倒梯形结构, 阴极炭块顶面分为三段, 中间段与阴极炭块底 面平行, 中间段两边为对称的倾斜段, 倾斜段两端的垂直高度差为阴极炭块轴向长度的 3%; 中间段的长度 10cm;
经过实验和计算, 采用上述阴极炭块结构进行铝电解, 能够显著地降低电解槽阴极铝液 内在沿电解槽阴极炭块纵向方向上的水平电流分布, 有效地减少电解槽阴极铝液的液面波 动, 不仅可以减少铝的溶解损失, 使电流效率提高, 而且可以使槽电压降低, 达到降低铝电 解电能消耗的目的。
实施例 2
能降低铝电解槽阴极铝液内水平电流的阴极炭块结构如图 4所示, 俯视图如图 5所示, A-A面结构如图 6所示, 包括阴极炭块 1和阴极钢棒 2, 阴极炭块 1底部开设有 2个贯通的 钢棒槽, 每个钢棒槽内设有阴极钢棒 2; 阴极钢棒 2和钢棒槽之间的空隙用捣固糊 3捣固; 阴极炭块顶面的纵向截面呈倒梯形结构, 阴极炭块顶面上设有凸台; 阴极炭块顶面分为 三段, 其中中间段与阴极炭块底面平行, 中间段两边为对称的倾斜段, 倾斜段两端的垂直高 度差为阴极炭块轴向长度的 1%; 中间段的长度 20cm;
每个倾斜段上各设有一个长凸台, 两个长凸台对称设置, 长凸台的纵向长度方向 (轴 向) 与倾斜段的纵向长度方向 (轴向) 平行, 两个长凸台的间距为 20cm, 每个长凸台的靠 近阴极炭块端部的一侧与阴极炭块端部的距离为 10cm; 长凸台的两侧与阴极炭块两侧的距 离为 20cm; 长凸台的高度为 9cm; 长凸台与阴极炭块为一体结构;
经过实验和计算, 采用上述阴极炭块结构进行铝电解, 能够显著地降低电解槽阴极铝液 内在沿电解槽阴极炭块纵向方向上的水平电流分布, 有效地减少电解槽阴极铝液的液面波 动, 不仅可以减少铝的溶解损失, 使电流效率提高, 而且可以使槽电压降低, 达到降低铝电 解电能消耗的目的。
实施例 3
能降低铝电解槽阴极铝液内水平电流的阴极炭块结构如图 7所示, 俯视图如图 8所示, A-A面结构如图 9所示, 包括阴极炭块 1和阴极钢棒 2, 阴极炭块 1底部开设有 2个贯通的 钢棒槽, 每个钢棒槽内设有阴极钢棒 2; 阴极钢棒 2和钢棒槽之间的空隙用捣固糊 3捣固; 阴极炭块顶面的纵向截面呈倒梯形结构, 阴极炭块顶面上设有凸台; 阴极炭块顶面分为 三段, 其中中间段与阴极炭块底面平行, 中间段两边为对称的倾斜段, 倾斜段两端的垂直高 度差为阴极炭块轴向长度的 5%; 中间段的长度 3cm;
每个倾斜段上各设有一个长凸台, 两个长凸台对称设置, 长凸台的纵向长度方向 (轴 向) 与倾斜段的纵向长度方向 (轴向) 平行, 两个长凸台的间距为 3cm, 每个长凸台的靠近 阴极炭块端部的一侧与阴极炭块端部的距离为 20cm; 长凸台的两侧与阴极炭块两侧的距离 为 10cm; 长凸台的高度为 12cm; 长凸台与阴极炭块为一体结构;
经过实验和计算, 采用上述阴极炭块结构进行铝电解, 能够显著地降低电解槽阴极铝液内在 沿电解槽阴极炭块纵向方向上的水平电流分布, 有效地减少电解槽阴极铝液的液面波动, 不 仅可以减少铝的溶解损失, 使电流效率提高, 而且可以使槽电压降低, 达到降低铝电解电能 消耗的目的。
实施例 4
能降低铝电解槽阴极铝液内水平电流的阴极炭块结构如图 10 所示, 俯视图如图 11 所 示, A-A面结构如图 12所示, 包括阴极炭块 1和阴极钢棒 2, 阴极炭块 1底部开设有 4个 排成两排的钢棒槽, 每个钢棒槽内设有阴极钢棒 2; 阴极钢棒 2和钢棒槽之间的空隙用捣固 糊 3捣固;
阴极炭块顶面的纵向截面呈倒梯形结构, 阴极炭块顶面上设有凸台, 阴极炭块顶面分为 三段, 其中中间段与阴极炭块底面平行, 中间段两边为对称的倾斜段, 倾斜段两端的垂直高 度差为阴极炭块轴向长度的 6%; 中间段的长度 5cm;
每个倾斜段上各设有 2个直径在 20〜30cm圆柱形凸台 4, 各圆柱形凸台 4沿倾斜段的轴 线均匀分布, 高度为 15cm;
圆柱形凸台 4镶嵌在阴极炭块的顶面上, 阴极炭块表面设有镶嵌槽, 圆柱形凸台 4通过 捣固糊固定在镶嵌槽内;
经过实验和计算, 采用上述阴极炭块结构进行铝电解, 能够显著地降低电解槽阴极铝液 内在沿电解槽阴极炭块纵向方向上的水平电流分布, 有效地减少电解槽阴极铝液的液面波 动, 不仅可以减少铝的溶解损失, 使电流效率提高, 而且可以使槽电压降低, 达到降低铝电 解电能消耗的目的。
实施例 5
能降低铝电解槽阴极铝液内水平电流的阴极炭块结构包括阴极炭块和阴极钢棒, 阴极炭 块底部开设 4个排成两排的钢棒槽, 每个钢棒槽内设有阴极钢棒; 阴极钢棒和钢棒槽之间的 空隙用捣固糊捣固;
阴极炭块顶面的纵向截面呈倒三角形结构时, 阴极炭块顶面分为两个对称的倾斜段, 倾 斜段两端的垂直高度差为阴极炭块轴向长度的 6%。
实施例 ό
能降低铝电解槽阴极铝液内水平电流的阴极炭块结构包括阴极炭块和阴极钢棒, 阴极炭 块底部开设有 2个贯通的钢棒槽, 每个钢棒槽内设有阴极钢棒; 阴极钢棒和钢棒槽之间的空 隙用捣固糊捣固;
阴极炭块顶面的纵向截面呈倒三角形结构时, 阴极炭块顶面分为两个对称的倾斜段, 倾 斜段两端的垂直高度差为阴极炭块轴向长度的 1%。
实施例 7
能降低铝电解槽阴极铝液内水平电流的阴极炭块结构同实施例 4, 不同点在于: 每个倾 斜段上各设有 3个直径在 25cm圆柱形凸台。
实施例 8 能降低铝电解槽阴极铝液内水平电流的阴极炭块结构同实施例 4, 不同点在于: 每个倾 斜段上各设有 5个直径在 30cm圆柱形凸台。
实施例 9
能降低铝电解槽阴极铝液内水平电流的阴极炭块结构同实施例 4, 不同点在于: 每个倾 斜段上各设有 2个边长在 20cm方柱形凸台。
实施例 10
能降低铝电解槽阴极铝液内水平电流的阴极炭块结构同实施例 4, 不同点在于: 每个倾 斜段上各设有 4个边长在 30cm方柱形凸台。
实施例 11
能降低铝电解槽阴极铝液内水平电流的阴极炭块结构同实施例 4, 不同点在于: 每个倾 斜段上各设有 5个边长在 25cm方柱形凸台。
实施例 12
能降低铝电解槽阴极铝液内水平电流的阴极炭块结构同实施例 2, 不同点在于: 每个倾 斜段上各设有 2个短凸台, 短凸台在长度方向上的轴线与阴极炭块在长度方向的轴线垂直, 阴极炭块中部的相邻两个短凸台的间距为 5cm, 短凸台的两端与阴极炭块的侧边的间距为 10cm, 短凸台的宽度为 20cm; 同一倾斜段上各短凸台沿倾斜段的轴线均匀分布, 各凸台与 阴极炭块为一体结构。
实施例 13
能降低铝电解槽阴极铝液内水平电流的阴极炭块结构同实施例 2, 不同点在于: 每个倾 斜段上各设有 4个短凸台, 短凸台在长度方向上的轴线与阴极炭块在长度方向的轴线垂直, 阴极炭块中部的相邻两个短凸台的间距为 10cm, 短凸台的两端与阴极炭块的侧边的间距为 15cm, 短凸台的宽度为 25cm; 同一倾斜段上各短凸台沿倾斜段的轴线均匀分布, 各凸台与 阴极炭块为一体结构。
实施例 14
能降低铝电解槽阴极铝液内水平电流的阴极炭块结构同实施例 2, 不同点在于: 每个倾 斜段上各设有 5个短凸台, 短凸台在长度方向上的轴线与阴极炭块在长度方向的轴线垂直, 阴极炭块中部的相邻两个短凸台的间距为 20cm, 短凸台的两端与阴极炭块的侧边的间距为 20cm, 短凸台的宽度为 30cm; 同一倾斜段上各短凸台沿倾斜段的轴线均匀分布, 各凸台与 阴极炭块为一体结构。

Claims

权利要求书
1. 一种能降低铝电解槽阴极铝液内水平电流的阴极炭块结构, 包括阴极炭块和阴极钢棒, 其特征在于: 阴极炭块顶面的纵向截面呈倒梯形结构或倒三角形结构, 阴极炭块顶面上设有 凸台或不设有凸台; 当阴极炭块顶面的纵向截面呈倒梯形结构时, 阴极炭块顶面分为三段, 其中中间段与阴极炭块底面平行, 中间段两边为对称的倾斜段, 倾斜段两端的垂直高度差为 阴极炭块轴向长度的 1%〜6%; 当阴极炭块顶面的纵向截面呈倒三角形结构时, 阴极炭块顶 面分为两个对称的倾斜段, 倾斜段两端的垂直高度差为阴极炭块轴向长度的 1%〜6%。
2. 根据权利要求 1 所述的能降低铝电解槽阴极铝液内水平电流的阴极炭块结构, 其特征在 于当阴极炭块顶面上设有凸台时, 每个倾斜段上各设有一个长凸台, 或每个倾斜段上各设有 2〜5个短凸台, 或每个倾斜段上各设有 2〜5个直径在 20〜30cm圆柱形凸台, 或每个倾斜段上 各设有 2〜5个边长在 20〜30cm方柱形凸台; 同一个倾斜段上有 2个以上的凸台时, 各凸台 沿倾斜段的轴线均匀分布。
3. 根据权利要求 2 所述的能降低铝电解槽阴极铝液内水平电流的阴极炭块结构, 其特征在 于当每个倾斜段上设有一个长凸台时, 长凸台的纵向长度方向与倾斜段的纵向长度方向平 行, 长凸台端部与阴极炭块端部的距离为 5〜30cm, 同一阴极炭块上两个长凸台的间距为 3〜20cm, 长凸台的两侧与阴极炭块两侧的距离为 10〜20cm。
4. 根据权利要求 2 所述的能降低铝电解槽阴极铝液内水平电流的阴极炭块结构, 其特征在 于当每个倾斜上设有短凸台时, 短凸台在长度方向上的轴线与阴极炭块在长度方向的轴线垂 直, 阴极炭块中部的相邻两个短凸台的间距为 5〜20cm, 短凸台的两端与阴极炭块的侧边的 间距为 10〜20cm, 短凸台的宽度为 20〜30cm。
5. 根据权利要求 1 所述的能降低铝电解槽阴极铝液内水平电流的阴极炭块结构, 其特征在 于所述的中间段的宽度 20cm。
6. 根据权利要求 1 所述的能降低铝电解槽阴极铝液内水平电流的阴极炭块结构, 其特征在 于当阴极炭块顶面设有凸台时, 凸台的高度为 9〜15cm。
7. 根据权利要求 1 所述的能降低铝电解槽阴极铝液内水平电流的阴极炭块结构, 其特征在 于所述的阴极炭块底部开设有 2个贯通的钢棒槽或 4个排成两排的钢棒槽, 每个钢棒槽内设 有阴极钢棒; 阴极钢棒和钢棒槽之间的空隙用捣固糊捣固。
PCT/CN2011/084592 2011-11-29 2011-12-24 一种能降低铝电解槽阴极铝液内水平电流的阴极炭块结构 WO2013078745A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110385777.0A CN102400177B (zh) 2011-11-29 2011-11-29 一种能降低铝电解槽阴极铝液内水平电流的阴极炭块结构
CN201110385777.0 2011-11-29

Publications (1)

Publication Number Publication Date
WO2013078745A1 true WO2013078745A1 (zh) 2013-06-06

Family

ID=45882804

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/084592 WO2013078745A1 (zh) 2011-11-29 2011-12-24 一种能降低铝电解槽阴极铝液内水平电流的阴极炭块结构

Country Status (2)

Country Link
CN (1) CN102400177B (zh)
WO (1) WO2013078745A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102719849A (zh) * 2012-06-20 2012-10-10 索通发展股份有限公司 一种带盆状结构的阴极炭块
CN102995057B (zh) * 2012-12-05 2015-09-02 中电投宁夏青铜峡能源铝业集团有限公司 表面为平面或v形面且有交错炭碗的阴极碳块及制备方法
CN112877732B (zh) * 2021-01-13 2022-02-22 东北大学 一种减少铝电解槽沉淀形成的阴极结构

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101864580A (zh) * 2010-07-08 2010-10-20 沈阳北冶冶金科技有限公司 一种阴极碳块上表面镶嵌柱形凸起的铝电解槽
CN101899677A (zh) * 2009-05-26 2010-12-01 沈阳铝镁设计研究院 一种铝电解槽复合阴极炭块结构
CN101942676A (zh) * 2010-09-30 2011-01-12 湖南晟通科技集团有限公司 一种异型阴极结构铝电解槽
CN102220604A (zh) * 2010-04-15 2011-10-19 山西晋阳碳素股份有限公司 一种电解槽异型阴极碳块

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101899677A (zh) * 2009-05-26 2010-12-01 沈阳铝镁设计研究院 一种铝电解槽复合阴极炭块结构
CN102220604A (zh) * 2010-04-15 2011-10-19 山西晋阳碳素股份有限公司 一种电解槽异型阴极碳块
CN101864580A (zh) * 2010-07-08 2010-10-20 沈阳北冶冶金科技有限公司 一种阴极碳块上表面镶嵌柱形凸起的铝电解槽
CN101942676A (zh) * 2010-09-30 2011-01-12 湖南晟通科技集团有限公司 一种异型阴极结构铝电解槽

Also Published As

Publication number Publication date
CN102400177A (zh) 2012-04-04
CN102400177B (zh) 2014-03-26

Similar Documents

Publication Publication Date Title
CN102453927B (zh) 一种大幅降低铝电解槽铝液中水平电流的方法
CN201809448U (zh) 一种同一阴极碳块上设有两排相互交错凸起的铝电解槽
CN201367472Y (zh) 槽底出电铝电解槽阴极结构
WO2013078745A1 (zh) 一种能降低铝电解槽阴极铝液内水平电流的阴极炭块结构
CN101775621B (zh) 一种铝电解槽阴极结构
CN101054690B (zh) 一种铝电解槽
CN103014765B (zh) 减小铝液中水平电流的阴极结构
CN101503809A (zh) 一种具有倒角开槽阴极的新型节能铝电解槽
CN201367467Y (zh) 节能降耗型铝电解槽
CN101775622B (zh) 一种节能型铝电解槽阴极结构
CN102121118A (zh) 一种电解槽的槽底结构
CN201416035Y (zh) 节能型铝电解槽阴极结构
CN201390784Y (zh) 一种铝电解槽阴极结构
CN201883156U (zh) 一种铝电解槽的阳极结构
CN109763145A (zh) 一种降低铝电解槽中水平电流的阴极结构
CN201367471Y (zh) 阴极炭块结构
CN201065435Y (zh) 铝电解槽
CN101781773A (zh) 一种水平出电铝电解槽阴极结构
SA08290057B1 (ar) خلية تحليل كهربي للألومنيوم
CN103243350B (zh) 一种降低铝液水平电流的铝电解槽侧部导电阴极结构
RU2303654C2 (ru) Способ монтажа катодной секции
CN102560544B (zh) 渗流式铝电解槽及稳定铝电解槽中铝液的方法
CN101899677A (zh) 一种铝电解槽复合阴极炭块结构
CN102392272B (zh) 能降低电压和改善电流分布的铝电解槽阴极结构
CN101768759B (zh) 一种铝电解槽节能降耗的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11876742

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11876742

Country of ref document: EP

Kind code of ref document: A1