WO2013077681A1 - Transdermal delivery system of bioactive molecules of skin using intracellular molecule delivery peptides - Google Patents

Transdermal delivery system of bioactive molecules of skin using intracellular molecule delivery peptides Download PDF

Info

Publication number
WO2013077681A1
WO2013077681A1 PCT/KR2012/009998 KR2012009998W WO2013077681A1 WO 2013077681 A1 WO2013077681 A1 WO 2013077681A1 KR 2012009998 W KR2012009998 W KR 2012009998W WO 2013077681 A1 WO2013077681 A1 WO 2013077681A1
Authority
WO
WIPO (PCT)
Prior art keywords
skin
peptide
composition
vitamin
group
Prior art date
Application number
PCT/KR2012/009998
Other languages
French (fr)
Korean (ko)
Inventor
이강진
임선희
신기덕
이병규
Original Assignee
주식회사 프로셀제약
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 프로셀제약 filed Critical 주식회사 프로셀제약
Priority to KR1020127031205A priority Critical patent/KR101393397B1/en
Publication of WO2013077681A1 publication Critical patent/WO2013077681A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • A61Q19/08Anti-ageing preparations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/62Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/33Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing oxygen
    • A61K8/36Carboxylic acids; Salts or anhydrides thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/33Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing oxygen
    • A61K8/37Esters of carboxylic acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/64Proteins; Peptides; Derivatives or degradation products thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/67Vitamins
    • A61K8/671Vitamin A; Derivatives thereof, e.g. ester of vitamin A acid, ester of retinol, retinol, retinal
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/67Vitamins
    • A61K8/676Ascorbic acid, i.e. vitamin C
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • A61Q19/007Preparations for dry skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • A61Q19/02Preparations for care of the skin for chemically bleaching or whitening the skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/74Biological properties of particular ingredients
    • A61K2800/78Enzyme modulators, e.g. Enzyme agonists
    • A61K2800/782Enzyme inhibitors; Enzyme antagonists

Definitions

  • the present invention relates to a transdermal delivery composition
  • a transdermal delivery composition comprising a skin bioactive molecule to which intracellular molecular transport peptides are bound, a transdermal delivery system using the skin bioactive molecule, and a method for intracellular skin delivery of the skin bioactive molecule.
  • the skin is a tissue that is always in contact with the outside environment. Its main function is to protect body fluids from leakage and infection, as well as act as a protective barrier against water loss.
  • the stratum corneum of the epidermis is located on the outermost surface of the skin and prevents the loss of moisture and electrolytes outside the skin, preventing the drying of the skin and providing an environment for normal biochemical metabolism of the skin. It protects the human body from humans and plays an important role in preventing bacteria, fungi, viruses, etc. from invading the skin (Bouwstra J. A, Honeywell-Nguyen PL Gooris GS and Ponec M. Prog Lipid Res. 42: 1-36 (2003)).
  • the stratum corneum of the skin is the natural constituent of the keratinocyte (keratinocyte) is a natural death and forms a dense structure in the outermost layer of the skin, not only evaporation of moisture but also inhibits the penetration of foreign substances, sweat and various lipid components Due to the acidity is showing around pH 5.
  • the molecular weight In order to penetrate the stratum corneum barrier, the molecular weight must be as small as 1,000 or less and possess lipophilic properties (Metha R. C. and Fitzpatrick R. E. Dermatol. Ther. 20: 350-359 (2007)).
  • TDD transdermal drug delivery
  • peptides having cell permeability has several advantages, mainly due to the various modifications that can be made to the peptide sequence at all times. It can designate different subcellular domains and allows manipulation of carriers that can carry various forms of cargo molecules.
  • Representative cell membrane permeable peptides are as follows.
  • the transcriptional protein Tat of HIV-1 a virus that causes acquired immune deficiency syndrome (AIDS)
  • AIDS acquired immune deficiency syndrome
  • the cell permeable Tat domain is the 48th to 57th basic amino acid sequence (GRKKRRQRRR) of the Tat protein, which has been found to play an important role in the passage of cell membranes (Vives et al., J. Biol. Chem.
  • RQIKIYFQNRRMKWKK consisting of 16 amino acids derived from the antennapedia homeodomain of Drosophila (Joliot et al., Proc Natl Acad Sci USA 88: 1864-1868 (1991) Derossi et al., J Biol Chem 269, 10444-10450 (1994); Joliot, A. and A. Prochiantz, Nat. Cell Biol. 6 (3): 189-96 (2004).
  • a peptide based on a membrane translocating sequence (MTS) or signal sequence which is a receptor protein that helps to move a newly synthesized protein by RNA to the biofilm of suitable intracellular organelles in vivo.
  • MTS membrane translocating sequence
  • NLS nuclear localization signals
  • peptides bind to a cargo molecule and act as an import signal when in close proximity to the cell, inducing the influx of the cargo molecule into the cell. Accordingly, attempts have been actively made to link cell membrane permeable peptides with proteins originally present in cells to be applied to biological research and disease treatment (F. Milletti, Drug Discovery Today 17: 850-860 (2012)). If cell membrane-penetrating peptides are derived from viruses such as Tat or VP22, there is a possibility of inducing an immune response in vivo, and thus, new membrane-penetrating peptides are mainly identified from secreted proteins found in humans (Eguchi). , A. and Dowdy, SF Trends Pharmacol.Sci.
  • TAT proteins do not actually undergo metastasis, but rather strongly induce electrostatic interactions with the cell surface, causing inclusions and accumulating inside the endosome, and endosomes are fused with lysosomes. It is suggested that peptides are easily degraded by proteolytic enzymes present in lysosomes.
  • a substance transport carrier composed of a basic amino acid such as TAT to deliver a specific active ingredient into the cell, it is difficult to directly access to the target in the cytoplasm and high concentration treatment to deliver the active ingredient to a level that can exhibit the desired activity. There is a problem in that it is not possible to obtain the expected effect when applying it (JS Wadia, et al., Nat. Med.
  • MTD has a higher delivery efficiency of cargo material, which can be selected from compounds, peptides, and proteins, and has the advantage of cell-to-cell delivery, compared to the conventional cell membrane permeable peptide, TAT. Its applicability is highly appreciated in the development of cosmetics.
  • the present inventors apply an improved MTD peptide having better cell permeability by modifying the amino acid sequence of the macromolecular transport domain (MTD) to the intracellular molecular transport peptide of the present invention.
  • MTD macromolecular transport domain
  • the present invention is designed to efficiently introduce skin bioactive molecules into the skin cells, which are difficult to deliver through the skin due to the size of the molecular weight or the intrinsic properties of the stratum corneum as described above, the cell improved cell permeability compared to the existing MTD peptide
  • a transdermal delivery composition comprising a skin bioactive molecule to which an intramolecular transport peptide is bound, a transdermal delivery system using a skin bioactive molecule to which the peptide is bound, and a skin bioactive molecule to which an intracellular molecular transport peptide is bound Or to provide a method for delivery into the stratum corneum of the skin.
  • the present invention provides a composition for transdermal delivery comprising a skin bioactive molecule to which an intracellular molecular transport peptide is bound, wherein the peptide has an amino acid sequence selected from the group consisting of SEQ ID NOs: 15 to 35. .
  • the composition is characterized in that the cosmetic composition.
  • the peptide is characterized in that it is encoded from a polynucleotide sequence selected from the group consisting of SEQ ID NOs: 36 to 56.
  • amino acid sequence of SEQ ID NO: 15 may be encoded by the polynucleotide sequence of SEQ ID NO: 36, but is not limited thereto.
  • amino acid sequence of SEQ ID NO: 16 may be encoded by the polynucleotide sequence of SEQ ID NO: 37, but is not limited thereto.
  • amino acid sequence of SEQ ID NO: 17 may be encoded by the polynucleotide sequence of SEQ ID NO: 38, but is not limited thereto.
  • amino acid sequence of SEQ ID NO: 18 may be encoded by the polynucleotide sequence of SEQ ID NO: 39, but is not limited thereto.
  • amino acid sequence of SEQ ID NO: 19 may be encoded by a polynucleotide sequence of SEQ ID NO: 40, but is not limited thereto.
  • amino acid sequence of SEQ ID NO: 20 may be encoded by a polynucleotide sequence of SEQ ID NO: 41, but is not limited thereto.
  • amino acid sequence of SEQ ID NO: 21 may be encoded by the polynucleotide sequence of SEQ ID NO: 42, but is not limited thereto.
  • amino acid sequence of SEQ ID NO: 22 may be encoded by the polynucleotide sequence of SEQ ID NO: 43, but is not limited thereto.
  • amino acid sequence of SEQ ID NO: 23 may be encoded by the polynucleotide sequence of SEQ ID NO: 44, but is not limited thereto.
  • amino acid sequence of SEQ ID NO: 24 may be encoded by the polynucleotide sequence of SEQ ID NO: 45, but is not limited thereto.
  • amino acid sequence of SEQ ID NO: 25 may be encoded by a polynucleotide sequence of SEQ ID NO: 46, but is not limited thereto.
  • amino acid sequence of SEQ ID NO: 26 may be encoded by a polynucleotide sequence of SEQ ID NO: 47, but is not limited thereto.
  • amino acid sequence of SEQ ID NO: 27 may be encoded by a polynucleotide sequence of SEQ ID NO: 48, but is not limited thereto.
  • amino acid sequence of SEQ ID NO: 28 may be encoded by a polynucleotide sequence of SEQ ID NO: 49, but is not limited thereto.
  • amino acid sequence of SEQ ID NO: 29 may be encoded by a polynucleotide sequence of SEQ ID NO: 50, but is not limited thereto.
  • amino acid sequence of SEQ ID NO: 30 may be encoded by the polynucleotide sequence of SEQ ID NO: 51, but is not limited thereto.
  • amino acid sequence of SEQ ID NO: 31 may be encoded by the polynucleotide sequence of SEQ ID NO: 52, but is not limited thereto.
  • amino acid sequence of SEQ ID NO: 32 may be encoded by the polynucleotide sequence of SEQ ID NO: 53, but is not limited thereto.
  • amino acid sequence of SEQ ID NO: 33 may be encoded by the polynucleotide sequence of SEQ ID NO: 54, but is not limited thereto.
  • amino acid sequence of SEQ ID NO: 34 may be encoded by the polynucleotide sequence of SEQ ID NO: 55, but is not limited thereto.
  • amino acid sequence of SEQ ID NO: 35 may be encoded by a polynucleotide sequence of SEQ ID NO: 56, but is not limited thereto.
  • the composition is characterized in that it penetrates the stratum corneum.
  • the skin bioactive molecule is characterized by binding to the N-terminus, C-terminus or sock end of the intracellular molecular transport peptide.
  • the skin bioactive molecule is characterized in that the binding of the amino acid of the intracellular molecule transfer peptide in the form arranged in reverse order.
  • the linkage is characterized by a peptide bond or a chemical bond.
  • the chemical bonds are disulfide bonds, diamine bonds, sulfide-amine bonds, carboxyl-amine bonds, ester bonds and covalent bonds. Characterized in that selected from the group consisting of.
  • the vitamin is vitamin A, vitamin B1, vitamin B2, vitamin B3, vitamin B5, vitamin B6, vitamin B7, vitamin B9, vitamin B12, vitamin C, vitamin D1, vitamin D2, vitamin D3 , Vitamin D4, vitamin D5, vitamin E and vitamin K is selected from the group consisting of.
  • the retinoid is characterized in that it is selected from the group consisting of retinol, retinol mutated and synthetic analogues, retinal, trans, 9-cis, and 13-cis retinoic acid and etretinate.
  • the fatty acid is characterized in that selected from the group consisting of lauric acid, stearic acid, palmitic acid, undecylenic acid, paritoleic acid, oleic acid, linoleic acid, linolenic acid, arachidonic acid and erucin acid .
  • the skin bioactive molecule is characterized in that it is selected from the group consisting of anti-wrinkle agent, whitening agent, antioxidant and moisturizer.
  • the anti-wrinkle agent is selected from the group consisting of a skin functioning growth factor peptide or protein, retinol, retinyl palmitate, adenosine and polyethoxylateddretinamide.
  • the whitening agent is characterized in that it is selected from the group consisting of a whitening peptide, niacinamide, turmeric extract, arbutin, ethylascomilletel, licorice extract, ascorbyl glucoside, and magnesium ascorbyl phosphate It is done.
  • the skin bioactive molecule is characterized in that it is selected from the group consisting of coumaric acid (coumaric acid) or acetyl pentapeptide and acetyl hexapeptide (Acetyl Hexapeptide).
  • the composition is characterized in that it is prepared in a formulation selected from the group consisting of emulsions, creams, essences, skins, liposomes, microcapsules, composite particles, shampoos and rinses.
  • the present invention also provides transdermal delivery of skin bioactive molecules into skin cells, wherein the intracellular molecular transport peptides having an amino acid sequence selected from the group consisting of SEQ ID NOs: 15 to 35 are delivered in combination with a skin bioactive molecule.
  • the intracellular molecular transport peptides having an amino acid sequence selected from the group consisting of SEQ ID NOs: 15 to 35 are delivered in combination with a skin bioactive molecule.
  • the peptide is characterized in that encoded from a polynucleotide selected from the group consisting of SEQ ID NO: 36 to 56.
  • the present invention provides a method for delivering the skin bioactive molecules into the skin cells comprising the step of binding and delivering the intracellular molecular transport peptide having an amino acid sequence selected from the group consisting of SEQ ID NO: 15 to 35 with the skin bioactive molecules Provide a method.
  • the present invention is to deliver the skin bioactive molecules into the stratum corneum of the skin comprising the step of delivering the intracellular molecular transport peptide having an amino acid sequence selected from the group consisting of SEQ ID NO: 15 to 35 in combination with the skin bioactive molecules.
  • the intracellular molecular transport peptide having an amino acid sequence selected from the group consisting of SEQ ID NO: 15 to 35 in combination with the skin bioactive molecules.
  • composition for transdermal delivery of the present invention binds a peptide having excellent molecular transport ability in vivo to the skin bioactive molecules that are not easily permeable to the stratum corneum due to the size and physical properties of the skin stratum corneum, thereby allowing the skin bioactive molecules to be transferred to skin cells or skin Up to the stratum corneum.
  • the compositions of the present invention have the advantages of antioxidant efficacy, increased angiogenesis, reduced acne symptoms, decreased line secretion, decreased aging effects, reduced wrinkles, reduced melanogenesis, lessened skin inflammation or improved skin dryness. Not only can the compound be effectively delivered to the skin tissue depth, but also can be formulated in various forms, it can be usefully used as a functional cosmetic raw material.
  • 1 to 4 show the results of analyzing the secondary structure of the intracellular molecular transport peptide of the present invention using the PEP FOLD server program.
  • 5 is a flow cytometry analysis result for measuring the skin cell permeability of the intracellular molecular transport peptide of the present invention.
  • 6 to 8 are the results of observation with confocal microscopy to measure the skin cell permeability of the intracellular molecular transport peptide of the present invention:
  • MR-form improved MTD in the form A1-A2-MTD wherein A1 is methionine and A2 is arginine;
  • MH-form improved MTD in the form A1-A2-MTD, wherein A1 is methionine and A2 is histidine;
  • MK-form Enhanced MTD of the form wherein A1 is methionine and A2 is lysine in the formula A1-A2-MTD.
  • Figure 9 is a photograph of the intracellular molecular transmission peptide of the intracellular molecular transmission peptide in the EpiOral artificial tissue model visualized by confocal microscopy.
  • FIG. 10 is a confocal microscope picture of the permeability in the stratum corneum and skin tissue of intracellular molecular transport peptides in an EpiDerm artificial skin model.
  • Figure 13 is the result confirming the inhibitory effect of the intracellular melanin production of the coumalic acid derivative coupled to the intracellular molecular transport peptides.
  • 15 is a flow cytometry analysis for measuring skin cell permeability of intracellular molecular transport peptides and acetylhexapeptide binding derivatives.
  • Figure 16 shows the results of confirming the skin cell permeation position of intracellular molecular transport peptides and acetylhexapeptide binding derivatives by confocal microscopy.
  • the stratum corneum of the skin is keratinocyte (the major constituent cell of the skin) is a natural death and forms a dense structure in the outermost layer of the skin, inhibits the evaporation of moisture as well as the penetration of foreign substances, sweat and various lipid components Due to its acidic region near pH 5.
  • the molecular weight In order to penetrate the stratum corneum, the molecular weight must be less than 1,000 and possess lipophilic properties (Metha R. C. and Fitzpatrick R. E. Dermatol. Ther. 20: 350-359 (2007)).
  • Macromolecules such as proteins, peptides and nucleic acids are difficult to penetrate into cell membranes having a double lipid membrane structure due to their molecular weight.
  • stratum corneum which constitutes the skin barrier, they are known to have extremely low permeation efficiency of low molecular weight materials and lower permeation efficiency of high molecular weight materials.
  • Macromolecule Intracellular Transduction Technologiy can be used as a method for amplifying the efficiency of the small molecules and macromolecules through the plasma membrane of the cell.
  • a negative charge is applied to the hydrophobic domain by applying one or two hydrophilic (polar) amino acids having a positive charge to the hydrophobic macromolecular transfer domain (MTD) that has been invented (Korean Patent Publication No. 10-2009-0103957).
  • MTD macromolecular transfer domain
  • the improved MTD peptide is a peptide described by the following Formula 1,
  • a 1 is methionine (M, Met);
  • A2 is an amino acid selected from the group consisting of arginine (R, Arg), histidine (H, His) and lysine (K, Lys);
  • MTD characterized in that having an amino acid sequence selected from the group consisting of SEQ ID NOs: 1-7;
  • the peptide is a peptide capable of mediating the delivery of a biologically active molecule into cells, and is a peptide that exhibits superior cell permeability compared to the MTD peptide described in Korean Patent Application Laid-Open No. 10-2009-0103957. My molecular transport peptide ".
  • the peptide may have an amino acid sequence selected from the group consisting of SEQ ID NOs: 15 to 35, but is not limited thereto.
  • the peptide is preferably a sequence satisfying the following conditions among quantified and comparatively comparable sequences. It is not limited to:
  • the instability index assessed using the Protparam program is evaluated to a value between 30 and 60;
  • amino acid sequence of SEQ ID NO: 1 may be encoded by the polynucleotide sequence of SEQ ID NO: 8, but is not limited thereto.
  • amino acid sequence of SEQ ID NO: 2 may be encoded by the polynucleotide sequence of SEQ ID NO: 9, but is not limited thereto.
  • amino acid sequence of SEQ ID NO: 3 may be encoded by the polynucleotide sequence of SEQ ID NO: 10, but is not limited thereto.
  • amino acid sequence of SEQ ID NO: 4 may be encoded by the polynucleotide sequence of SEQ ID NO: 11, but is not limited thereto.
  • amino acid sequence of SEQ ID NO: 5 may be encoded by the polynucleotide sequence of SEQ ID NO: 12, but is not limited thereto.
  • amino acid sequence of SEQ ID NO: 6 may be encoded by the polynucleotide sequence of SEQ ID NO: 13, but is not limited thereto.
  • amino acid sequence of SEQ ID NO: 7 may be encoded by the polynucleotide sequence of SEQ ID NO: 14, but is not limited thereto.
  • Synthesis of the peptides of the present invention and the synthesis of peptides containing cargo, which is a skin bioactive molecule, can be carried out, for example, using a device or using genetic engineering techniques.
  • topical application of compositions comprising them can provide a beneficial effect on the skin.
  • the beneficial effect is to reduce or prevent damage caused by sunlight, to provide antioxidant activity, to reduce the appearance of wrinkles, including fine wrinkles on the skin, to reduce gland secretion, the aging effect It includes, but is not limited to, reducing acne, treating acne, inducing angiogenesis in hair follicles, hair growth, conducive to skin moisturizing, and inhibiting melanin production to brighten skin color.
  • the active ingredient deliverable into the skin cells by the intracellular molecular transfer peptide may be a compound or a protein or fragments thereof, further providing additional benefits for the skin. They are non-toxic, non-allergic and non-irritating and therefore friendly with skin tissue.
  • suitable active cars may include, but are not limited to, vitamins and derivatives thereof, retinoids and fatty acids.
  • vitamin C ascorbic acid
  • vitamin E alpha-tocopherol
  • vitamin A retinoid
  • Ascorbic acid stimulates the synthesis of connective tissue and is particularly involved in the stimulation and regulation of collagen production. It helps to prevent or minimize other types of cellular damage due to fatty oxidation and UV exposure (Varani, J. et al., J. Invest. Dermatol. 114: 480-486 (2000), Offord, EA et al, Free, Radical Biol. & Med. 32: 1293-1303, (2002)).
  • Ascorbic acid helps to inhibit melanin formation and histamine secretion of cell membranes, compensates for vitamin E deficiency in the skin, is involved in preventing depigmentation of the skin, and has anti-free radical activity.
  • Alpha-tocopherol is an antioxidant that prevents the deleterious effects of phospholipids and free radicals on cell membranes (J.B Chazan et al. Free Radicals and Vitamin E. Cah. Nutr. Diet. 1987 22 (l): 66-76).
  • Retinoids block the mediators of inflammation in the skin and increase the production of procollagen, allowing for more production of type I and type III collagen.
  • the cargo compound of the present invention is vitamin A, vitamin Bl, vitamin B2, vitamin B3, vitamin B5, vitamin B6, vitamin B7, vitamin B9, vitamin B12, vitamin C, vitamin Dl, vitamin D2, vitamin D3, vitamin D4, Vitamins such as vitamin D5, vitamin E, and vitamin K.
  • Yet another cargo compound of the present invention is a retinoid.
  • Retinoids are retinol, natural and synthetic analogues of vitamin A (retinol), vitamin A aldehydes (retinal), all trans, 9-cis, and 13-cis retinoic acid, etretinate and vitamins described in several prior documents.
  • the cargo compounds of the invention comprise fatty acids.
  • Fatty acids are monocarboxylic acids with saturated or unsaturated fatty tails. As defined in the International Cosmetic Ingredient Dictionary and Handbook, 7th Ed. (1997) volume 2, page 1567 (the disclosure is incorporated herein by reference), Having at least about 7 carbon atoms.
  • palmitic acid is the most abundant natural fatty acid, a saturated fatty acid found in palm oil and other fats. Palmitic acid is also one of the major fatty acids of the skin produced by the sebaceous gland and is used in skin care and cosmetic preparations as a moisturizer. It stabilizes the oil balance to keep the skin normal and healthy, softens the skin and reacts like an anti-keratinizing agent.
  • Esters of palmitic acid are used to provide silky silkiness to the skin and hair.
  • the palmitic acid acts as a carrier that can penetrate the pentapeptide into the skin, is widely used as a lubricant, and is used as an emulsifier, surfactant, and formula texturizer.
  • suitable fatty acids of the present invention include, but are not limited to, lauric acid, stearic acid, palmitic acid, undecylenic acid, palmitoleic acid, oleic acid, linoleic acid, linoleic acid, arachidonic acid, and erucic acid. Additional suitable fatty acids are disclosed in the International Cosmetic Ingredient Dictionary and Handbook, 7th Ed. (1997) volume 2, page 1567.
  • the intracellular molecular transport peptide and the cargo compound, ie, the skin bioactive molecule, are bound by covalent bonds, and include, but are not limited to, ester, amide, ether and carbamide bonds.
  • Embodiments of the invention include, but are not limited to, coumalic acid, acetylpentapeptide or acetylhexapeptide and selected intracellular molecular transport peptides.
  • the compounds of the present invention can be used in many cosmetic or dermatological compositions intended for topical application. Since intracellular molecular transport peptides and cargo compounds can penetrate the skin and stimulate angiogenesis in hair follicles, these compositions can be used to prevent hair loss or to improve hair growth. If a compound is used that affects hair growth, it is applied to the scalp, eyebrows or eyelashes. In addition, when applied to the skin, the intracellular molecular transport peptides and cargo compounds may reduce skin texture to reduce the appearance of fine lines and wrinkles, to improve skin elasticity, and to reduce puffiness.
  • To soften to provide a silky texture to the skin, to provide a moisturizing effect, to provide lubricity, to provide a bright complexion through inhibition of melanin production, to reduce the aging effect, or to other cosmetics It can be used to provide benefits.
  • skin bioactive molecules are defined as “cosmetically or dermatologically acceptable molecules” and contact physiological tissue without excessive toxicity, incompatibility, instability, etc. And suitable compositions or compounds for use.
  • composition of the present invention may further comprise a pharmacologically or physiologically acceptable carrier, excipient, diluent.
  • compositions examples include lactose, dextrose, sucrose, sorbitol, mannitol, xylitol, erythritol, maltitol, starch, acacia rubber, alginate, gelatin, calcium phosphate, calcium silicate, cellulose, Methyl cellulose, amorphous cellulose, polyvinylpyrrolidone, water, methylhydroxybenzoate, propylhydroxybenzoate, talc, magnesium stearate, mineral oil and the like.
  • the composition may further include conventional fillers, extenders, binders, disintegrants, surfactants, anticoagulants, lubricants, wetting agents, fragrances, emulsifiers, preservatives, and the like.
  • compositions of the invention may be solutions, emulsions (including microemulsions), suspensions, creams, lotions, gels, powders, or other typical solids used for application to the skin and other tissues to which the compositions can be applied.
  • emulsions including microemulsions
  • suspensions creams, lotions, gels, powders, or other typical solids used for application to the skin and other tissues to which the compositions can be applied.
  • compositions may comprise additional antimicrobial, moisturizing and hydrating agents, penetration agents, preservatives, emulsifiers, natural or synthetic oils, solvents, surfactants, detergents, gelling agents ( may include gelling agents, emollients, antioxidants, fragrances, fillers, thickeners, waxes, odor absorbers, dyestuffs, colorants, powders, viscosity-controlling agents and water And optionally, anesthetics, anti-itch actives, botanical extracts, conditioning agents, darkening or lightening agents, glitters, wetting agents ( humectant, mica, minerals, polyphenols, silicones or derivatives thereof, sunblocks, vitamins, and phytomedicinal.
  • the compositions of the present invention are formulated with the aforementioned ingredients to be stable for long periods of time, which may be useful if continuous or long term use is intended.
  • the composition is used to treat, ameliorate or prevent skin aging.
  • Skin damage from aging can include fine and deep wrinkles, skin lines, crevices, bumps, large holes, scalyness, loss of skin elasticity, sagging, loss of skin firmness or tautness, and discoloration.
  • Hyperpigmented areas such as age spots and freckles, keratosis, abnormal differentiation, hyperkeratinization, elastic fibrosis, collagen breakdown, stratum corneum, dermis, epidermis, skin vascular system, And other histological changes in underlying tissues particularly in proximity to the skin.
  • skin aging is aging due to external factors such as chronological aging or continuous exposure to sunlight, the compositions of the present invention disclose methods for treating, ameliorating or preventing such skin aging and other types of skin damage.
  • the present inventors treated the skin cells at a constant concentration using a complex in which the FITC fluorescent substance was linked to the intracellular molecular transport peptide to quantitatively determine the cell permeability of the intracellular molecular transport peptide. Afterwards, fluorescence intensity was measured using flow cytometry, and as a result, several sequences were confirmed by intracellular molecular transport peptides that delivered FITC into cells more efficiently than known protein transduction domains (PTDs). The invasion effect of the intracellular molecular transport peptides in skin cells was demonstrated.
  • PTDs protein transduction domains
  • the inventors have performed cell permeability and intracellular localization through confocal microscope analysis using a complex linking FITC fluorescent material to intracellular molecular transport peptides. The results can be visually confirmed. As a result, as shown in the flow cytometry results, it was confirmed that exhibited high skin cell permeability in the improved intracellular molecular transport peptide than the existing MTD peptide. In addition, it was confirmed that the intracellular molecular transport peptide has a higher cell permeability than Tat, which is known to have a relatively excellent intracellular transport efficiency among known protein transduction domains (PTDs).
  • PTDs protein transduction domains
  • the peptide having a cargo having a skin physiological activity was confirmed to increase the physiological activity through skin permeation, thereby demonstrating that it can be used as a cosmetic raw material having a whitening or wrinkle improvement effect.
  • the inventors of the present invention among the 193 MTD peptides developed in Korean Patent Application Publication No. 110-2009-0103957), which have been developed by the present inventors, are quantified and transmitted in a sequence that satisfies the following conditions among relative comparable sequences. Subject MTD peptide sequences were selected for ability improvement.
  • sequences having a high possibility of inducing extracellular secretion are selected.
  • sequences of the macromolecular delivery domain a sequence satisfying a specific level of the aliphatic index, which is an element that determines the physicochemical properties of the macromolecular delivery domain, is selected.
  • sequences of the macromolecular delivery domain a sequence that satisfies a certain level of flexibility, which is a factor that determines the physicochemical properties of the macromolecular delivery domain, is selected.
  • sequences of the macromolecular delivery domain a sequence that satisfies a certain level of hydropathicity, which is a factor that determines the physicochemical properties of the macromolecular delivery domain, is selected.
  • a sequence that satisfies a specific level is selected for the instability index, which is a factor that determines the physicochemical properties of the macromolecular delivery domain.
  • sequences of the macromolecular delivery domain a sequence is selected in which polarity, an element that determines the physicochemical properties of the macromolecular delivery domain, satisfies a certain level.
  • representative sequences were determined based on the presence and location of proline, as described in step 1) above.
  • the amino acids alanine, valine, proline, leucine, and isoleucine that make up the sequence of the macromolecular delivery domain.
  • the shorter and smaller size of the proximal side affects the degree of freedom of secondary structure formation of the amino acid sequence, which is the macromolecular delivery domain. Contributes to cell membrane permeation.
  • MTDs macromolecular delivery domains known in the Republic of Korea Publication No.
  • 10-2009-0103957 Novel macromolecular delivery domains and methods and uses thereof, proline is present on the sequences constituting it and the Forty-nine macromolecular delivery domains were determined, whose positions were located in the middle of the amino acid sequence of the macromolecular delivery domain and were classified as having high degree of freedom of secondary structure formation of the amino acid sequence.
  • sequences with high possibility of extracellular secretion were selected from the macromolecular delivery domains selected in step 1).
  • Some water-soluble proteins have signals that can interact with receptors that mediate transport.
  • signal mediated transport a protein has one or more signal sequences that specify the target to which it is delivered. Therefore, under the assumption that the similarity with the extracellular secretion inducing sequence can improve the transmission ability, the possibility of inducing extracellular secretion was evaluated using the Signal P program. Probability between 10% and 90% is assessed for each domain, with sequences rated at least 60% of the macromolecular delivery domains determined in step 1) selected as improved subject sequences.
  • step 3 sequences satisfying a specific level of the aliphatic index, which is an element that determines the physicochemical properties of the macromolecular delivery domain, were selected.
  • Aliphatic index is a physical feature that determines the volume of the entire molecule, which is determined by the carbon chain of the side chain of amino acids, and is evaluated as a feature that modifies the structure of the cell membrane as the macromolecular delivery domain penetrates the cell membrane.
  • Aliphatic index is determined by the unique value of each amino acid sequence of the macromolecular delivery domain and the average of the entire sequence, and was determined using the Protparam program (see http://web.expasy.org/protparam/).
  • the Protparam program is a useful tool that quantifies the physical properties of proteins or peptides consisting of amino acids.
  • the aliphatic index was selected from 100 to 300 as the representative sequence for improving the transfer capacity.
  • step 4 among the macromolecular delivery domains selected in step 3), a sequence was selected in which flexibility, an element that determines the physicochemical properties of the macromolecular delivery domain, satisfies a certain level.
  • Flexibility is a physicochemical feature that represents the degree of freedom and degrees of freedom between the N- and C-terminal amino acids of the macromolecular delivery domain, and provides structural flexibility and is associated with affinity for cell membranes. Flexibility was evaluated according to the length of the amino acid sequence and the composition of the side chain sequence of the amino acid, and evaluated using the Protscale (Average flexibility) program (see http://web.expasy.org/protscale/).
  • the Protscale program was used as a tool to quantify the physical properties of proteins or peptides consisting of amino acids.
  • the evaluation result of flexibility using the Protscale (Average flexibility) program was 0.36 or higher. Selected sequences were selected as representative sequences for improving transmission capacity.
  • hydropathicity which is a factor determining the physicochemical properties of the macromolecular delivery domain, satisfies a certain level.
  • Hydropathicity is a physical property determined by the unique properties of amino acids and is considered to be a property that determines physical properties. It is known to cause severe entanglement at 3.0 or higher. Hydropathicity was also determined by the unique value of each of the amino acid sequences of the macromolecular delivery domain and the average of the entire sequence, and evaluated using the Protparam program. Therefore, among the hydropathicity results of 1.3 to 3.8, a sequence whose hydropathicity was evaluated to 3.0 or less in the macromolecular delivery domain selected in step 4) was determined as a representative sequence for improvement.
  • step 6 a sequence was determined in which the instability index of the macromolecular delivery domain satisfies a certain level.
  • Instability index is a property that indicates the stability of the amino acid sequence is determined by the sequence of amino acids on the sequence, the higher the value has instability. This is a factor that determines the physicochemical properties of the macromolecular delivery domain and is considered to be a characteristic that affects the intracellular stability of the domain and was evaluated using the Protparam program.
  • a sequence having an instability index of 30 to 60 within the macromolecular delivery domain determined in step 5) among the macromolecular delivery domains represented by instability index 0 to 130 was selected as a representative sequence for improvement.
  • a sequence was determined in which Polarity, an element that determines the physicochemical properties of the macromolecular delivery domain, satisfies a certain level.
  • Polarity is a measure of the affinity for water as judged by the length of the carbon chain and the presence or absence of hydroxyl groups among the components of amino acids. This, together with hydropathicity, determines the properties of the macromolecular transport domain and is thought to affect affinity to cell membranes.
  • Polarity is determined by the unique value of each of the amino acid sequences of the macromolecular delivery domain and the average of the entire sequence, and was evaluated using the Protscale (polarity) program. Accordingly, among the macromolecular transfer domains determined in step 6), sequences whose evaluation results were greater than 0.1 using the Protscale (polarity) program were selected as representative sequences for improvement.
  • JO-103 SEQ ID NO: 3
  • JO-103 SEQ ID NO: 3
  • JO-103 consists of the sequence of LALPVLLLA;
  • JO-103 determined as a target sequence for improving transmission capacity is a target domain that satisfies all seven steps.
  • the selected target MTD peptides were MTD JO-18 (SEQ ID NO: 1), MTD JO-067 (SEQ ID NO: 2), MTD JO-103 (SEQ ID NO: 3), MTD JO-159 (SEQ ID NO: 4), and MTD JO-173 (SEQ ID NO: 5).
  • the MTD 173A peptide (SEQ ID NO: 7), which is an intermediate peptide, was prepared.
  • the MTD 173A peptide thus prepared also satisfies the selection conditions of the above seven steps, and was included in the target MTD sequence for designing an improved MTD peptide.
  • intermediate peptide MTD 18m (SEQ ID NO: 6) was derived to improve the physical properties by substituting the amino acid with low hydropathicity for the JO-18 No. among the selected MTD. Satisfaction was included in the subject MTD sequence for the design of the improved MTD peptide.
  • a 1 is methionine (M, Met);
  • A2 is an amino acid selected from the group consisting of positively charged arginine (R, Arg), histidine (H, His) and lysine (K, Lys);
  • MTD is 7 amino acid sequence selected from the group consisting of SEQ ID NO: 1 to 7 selected in Example 1.
  • the sequence of the improved MTD peptide designed through Equation 1 is the same as the amino acid sequence shown in SEQ ID NOs: 15 to 35, and the peptide was synthesized based on the designed amino acid sequence to confirm its cell permeability.
  • the improved MTD peptide designed in Example 2 was applied to intracellular molecular transport peptides fused to the skin bioactive molecules of the present invention, and for the synthesis thereof, C-term using a general Fmoc solid phase peptide synthesis (SPPS) method. Coupling one by one from (coupling).
  • SPPS general Fmoc solid phase peptide synthesis
  • the C-terminal first amino acid of the peptide was attached to the resin.
  • Resin that can be used is NH 2 -Lys (Dde) -2-chloro-Trityl resin, NH 2 -Met-2-chloro-Trityl resin, or NH 2 -Ser (tBu) -2-chloro-Trityl resin as needed. Appropriate resins were selected and used for peptide synthesis.
  • Fmoc was removed by reacting twice at room temperature for 5 minutes using 20% piperidine in DMF.
  • TFA trifluoroacetic acid
  • EDT 1,2-ethanedithiol
  • TIS triisopropylsilane.
  • the molecular weight was confirmed by a mass spectrometer (mass spectrometer) and lyophilized to obtain an intracellular molecule transfer peptide synthesis product.
  • intracellular molecular transport peptides were synthesized by the above synthesis method, and finally, lysine (K, Lysine) was added to proceed with peptide synthesis. FITC was then bound to the free amine residue of lysine.
  • the synthesized intracellular molecular transfer peptide-FITC peptide was separated from the resin and purified by HPLC, and then the molecular weight of the peptide was confirmed by mass spectrometer and lyophilized to obtain intracellular molecular transfer peptide fluorescent substance.
  • the synthesized intracellular molecular transport peptide phosphor was dissolved in DMSO so as to have a concentration of 1 mM in a light shielding state, and then aliquoted in a small amount in a 1.5 mL centrifuge container and stored frozen until just before use.
  • MTD-FITC intracellular molecular transport peptide phosphor
  • MTD-FITC peptide was applied to a flow cytometer (FACS Calibur, Beckton-Dickinson, San Diego CA, USA). For each sample, cells (1 ⁇ 10 4 ) were analyzed using CellQuest Pro cytometric analysis software, and each experiment was performed three or more times. Cell permeability of each of the intracellular molecular transport peptides applied to the present invention was quantitatively analyzed for cell permeation efficiency using the existing MTD-FITC as a control.
  • FIG. 5 shows the results of flow cytometry analysis.
  • the cell influx of each intracellular molecular transport peptide treated in the cell was measured using the CellQues Pro cytometric analysis software.
  • Cell influx efficiency was compared by relatively evaluating the change in fluorescence.
  • the intracellular molecular transport peptide shows the excellent cell inflow efficiency of the existing MTD peptide, and also shows the cell inflow efficiency higher by at least 140% to up to 400% than the known PTD.
  • Intracellular Molecular Transport Peptides and PTD (Tat) Proteins Known to Be Permeable to Cells were Treated at a Concentration of 3 ⁇ M in HaCaT cells, immortalized human keratinocytes, Cat No. 300493, CLS, Germany 37 After incubation for 1 hour at °C, it was visually observed using a confocal microscope (confocal microscopy, Nikon, Germany). The day before the experiment, HaCaT cells were incubated for 24 hours in a 12-well culture plate containing glass coverslips.
  • HaCaT cells were maintained in DMEM medium containing 10% Fetal Bovine Serum (FBS), and 1% penicillin / streptomycin (10,000 units penicillin and 10,000 ⁇ g / mL streptomycin, Invitrogen, USA), and 5% CO Incubated at 37 ° C. under a humidified atmosphere of 2 .
  • HaCaT cells were treated with scrambled peptide, MTD-FITC and PTD-FITC peptide for 1 hour at a concentration of 3 ⁇ M.
  • One hour after the treatment cells were fixed for 20 minutes with 4% paraformaldehyde solution (paraformaldehyde, PFA) at room temperature for observation.
  • the cells were washed three times with PBS for direct detection of internalized FITC-peptide and counterstained with 5 mM concentration of DAPI (4 ', 6-diamidino-2-phenylindole), a nuclear fluorescence staining solution. Was performed. After 10 minutes of DAPI staining, the cells were washed three times with PBS and 20 ⁇ l of mounting media were dropped onto the slides and observed to preserve the fluorescent label of the protein. Cells treated with the intracellular molecular transport peptides were transferred to the nucleus through DAPI staining for easy identification of intracellular delivery sites of FITC-peptides and confirmed cell permeability.
  • the confocal microscope is a Normaski filter.
  • the prototype of the cells was observed using FITC fluorescence and DAPI fluorescence with a filter suitable for each fluorochrome. As shown in Figures 6 to 8, it was confirmed that all of the intracellular molecular transport peptides to be applied to the present invention was clearly transmitted into the cell compared to the PTD (Tat) attached to the outside of the cell membrane, and improved intracellular molecular transport It was demonstrated that the peptide has good cell permeability for skin cells.
  • MTD M18m, M173
  • M1018m, M1173A intracellular molecular transport peptide
  • FITC FITC
  • EpiOral skin model MatTek, MA, USA
  • confocal microscopy confocal microscopy, Carl Zeisse, Germany
  • EpiOral artificial tissue model was incubated at 37 ° C. for 15 hours under a humidified atmosphere of 5% CO 2 in a 12-well plate containing 0.5 mL of the test medium provided by MatTek.
  • an epiderm skin model (MatTek, MA, USA) was used to select and process intracellular molecular transport peptides (M1067) and Tat peptides conjugated to FITC. confocal microscopy, Carl Zeiss, Germany).
  • EpiDerm skin models were incubated at 37 ° C. for 15 hours under a humidified atmosphere of 5% CO 2 in a 12-well plate containing 0.5 ml of the test medium provided by MatTek. The next day it was exchanged with fresh medium and 40 ⁇ l of 100 ⁇ M peptide was treated over EpiDerm skin and incubated at 37 ° C. under a humidified atmosphere of 5% CO 2 for 24 hours.
  • cryosections (6 ⁇ m) were prepared using a Microm HM520 cryostat, Thermo. This was put on a glass slide. The prepared slides were stained with PBS buffer for 10 minutes and stained with cell nuclei in tissues by exposure to 0.5 mM DAPI solution for 5 minutes. The stained tissues were washed with PBS buffer three times for 10 minutes, and then fixed with a mounting medium, and observed with a confocal microscope. The results are shown in FIG. 10.
  • Sections were obtained to produce slides.
  • the prepared slides were washed with PBS buffer for 10 minutes, and then exposed to 0.5 mM DAPI solution for 5 minutes to stain the cell nuclei in tissues.
  • the stained tissues were washed again with PBS buffer three times for 10 minutes, and then fixed by using a mounting medium, followed by confocal microscopy, shown in FIG. 11.
  • a 20% piperidine / N-methylpyrrolidone solution was added to the intracellular molecular transfer peptides M1067 and M2067 synthesized in Example 4 coupled to the N-terminal amino acid to remove the Fmoc group. After washing with N-methylpyrrolidone and dichloromethane (coumaric acid, Sigma, USA) commercially available was coupled. After coupling, the mixture was washed several times with N-methylpyrrolidone and dichloromethane and dried with nitrogen gas.
  • N-methylpyrrolidone and dichloromethane coumaric acid, Sigma, USA
  • Trifluoroacetic acid phenol: thioanisole: water: trifluoroacetic acid (phenol: thioanisole: water: triisopropylsilane) 90: 2.5: 2.5: 2.5: 2.5 (v / v) solution of 2 to The reaction was carried out for 3 hours to remove the peptide protecting group, and the peptide-bound coumalic acid was separated from the resin, and the peptide was precipitated with diethyl ether. 10% Pd / C was added to methanol to remove the benzyl group protecting the alcohol group bonded to carbon 9 of the coumalic acid, stirred at room temperature for about 1 hour under hydrogen, and then Pd using Celite. / C was removed and the filtrate was concentrated under reduced pressure.
  • the intracellular molecular transport peptide-coumaric acid derivative thus obtained was purified with acetonitrile containing 0.1% trifluoroacetic acid as a gradient, followed by a purified reverse phase high performance liquid chromatography column (Zobax, C8 300 ⁇ , 21.1). mm ⁇ 25 cm) to obtain intracellular molecular transport peptide-coumaric acid derivatives in which coumaric acid is bound to M1067 or M2067 intracellular molecular transport peptides having the amino acid sequence of SEQ ID NO: 16 or 23, as shown in Equation 2 below. Synthesized.
  • the inhibitory effect of tyrosinase activity was measured using the intracellular molecule transfer peptide-coumaric acid, a compound synthesized in Example 10-1.
  • Tyrosinase was isolated and purified from mushrooms and purchased from Sigma, USA.
  • Tyrosine, a substrate was dissolved in 0.05 M potassium phosphate buffer (pH6.8) and used as a 0.3 mg / mL solution.
  • the compound was dissolved in distilled water at a concentration of 100 mg / mL, and the coumalic acid was dissolved in ethyl alcohol at a concentration of 100 mg / mL, and diluted again to an appropriate concentration.
  • A is the absorbance at 450 nm of no inhibitor added
  • B is the absorbance at 450 nm of the inhibitor added.
  • Intracellular melanocyte production was compared using the intracellular molecular transfer peptide-coumaric acid compound synthesized in Example 10-1.
  • Mouse-derived melanoma cells murine melanoma, B16F1, Korea Cell Line Bank KCLB No.80007
  • DMEM Dubelcco's modified eagle medium
  • FBS fetal bovine serum
  • the medium is removed, the sample is replaced with medium diluted to an appropriate concentration (1, 10, 100 ⁇ g / mL), and then incubated for 3 days with changing medium every day under 5% CO 2 , 37 ° C.
  • the day after the 3 day culture the cells from which the medium was removed are washed with PBS (phosphated buffer saline), and the cells are recovered by treating with trypsin.
  • the recovered cells were centrifuged at 10,000 rpm for 10 minutes, and then the supernatant was removed to obtain cell pellets.
  • the cell pellets were dried at 60 ° C., and 200 ⁇ L of 1M sodium hydroxide solution containing 10% DMSO was dissolved at 60 ° C ..
  • the intracellular molecular transport peptide and intracellular molecular transport peptide-coumaric acid were identified as substances in the hypoallergenic category in terms of human skin primary stimulation. As a result, it was proved that the intracellular molecular transport peptides can be safely used in the human body while maintaining the functions of the skin bioactive molecules through clinical trials of specialized test institutes. Giving.
  • compositions containing intracellular molecular transfer peptide-coumaric acid or intracellular molecular transfer peptide were formulated as follows with the composition of Table 3 above.
  • Comparative Example 1 1 to 6 in the water melting tank and completely dissolved while warming up to 70 °C and put into the emulsion tank. 7 to 11 is added to the oil-dissolving tank and dissolved completely while warming up to 70 ° C. After the contents were cooled to 40 ° C., raw materials 12 to 14 were added to an emulsification tank, mixed, and the contents were cooled to room temperature to prepare a composition containing an intracellular molecular transfer peptide.
  • Comparative Example 2 1 to 6 in the water melting tank and completely dissolved while warming up to 70 °C and put into the emulsion tank. 7 to 11 and 16 are added to the oil-dissolving tank, dissolved completely while warming up to 70 ° C, and then mixed in an emulsifying tank. After the contents were cooled to 40 ° C., raw materials 12 and 13 were added to an emulsification tank, mixed, and the contents were cooled to room temperature to prepare a composition containing kumaric acid.
  • Trifluoroacetic acid phenol: phenol (phenol): thioanisole (thioanisole): water (water): triisopropylsilane (triisopropylsilane) 90: 2.5: 2.5: 2.5: 2.5 (v / v)
  • the mixture was reacted for 2 hours to 3 hours to remove the peptide protecting group, the peptide was separated from the resin, and the peptide was precipitated with diethyl ether.
  • the MTD peptide-acetylpentapeptide derivatives thus obtained were purified by reverse phase high performance liquid chromatography column (Zobax, C8 300 ⁇ , 21.1 mm X) with acetonitrile containing 0.1% trifluoroacetic acid as a gradient. 25 cm) was used to synthesize an acetyl pentapeptide derivative in which an acetyl pentapeptide was bound to an M1067 intracellular molecular transport peptide having the amino acid sequence of SEQ ID
  • the inhibitory effect of collagenase activity in human normal skin fibroblasts was tested using the intracellular molecule transfer peptide-acetylpentapeptide, a compound synthesized in Example 11-1. Intracellular collagenase activity inhibition was measured by the method of Baeer EA et al, J Invest Dermatol, 82 (2): 162-9, 1983, and 100% of the sample was not added. .
  • Detailed experimental method is as follows. Human normal dermal fibroblasts were dispensed into 6-well plates for cell culture and inoculated with a certain number of cells, treated with intracellular molecule transfer peptide-acetylpentapeptides at a constant concentration and incubated for 24 hours, followed by 100 ⁇ l of culture solution.
  • the amount of collagenase in the culture was measured using the method described in Matrix metalloproteinase-1 (MMP-1) human biotrak ELISA system (GEHealthcare, USA).
  • MMP-1 Matrix metalloproteinase-1
  • GEHealthcare USA
  • 100 ⁇ l of the quantitative buffer solution 2 was placed in a 96-well plate, and 100 ⁇ l of the culture solution and the standard solution diluted to 1/10 were added thereto, and the cells were incubated at room temperature for 2 hours. Remove the culture medium from the well plate, wash three times with 400 ⁇ l of wash buffer, add 100 ⁇ l of antibody solution, react at room temperature for 2 hours, and wash three times with 400 ⁇ l of wash buffer.
  • A is the absorbance at 450 nm of no sample added
  • B is the absorbance at 450 nm of the sample added.
  • the intracellular molecular transport peptide and the intracellular molecular transport peptide-acetylpentapeptide were shown to be substances in the hypoallergenic category in terms of human skin primary stimulation.
  • clinical trials of specialized test institutes demonstrated that intracellular molecular transport peptides can be safely used in the human body while maintaining the function of skin bioactive molecules. It can be said that the results indicate that the value of use is remarkably superior.
  • Comparative Example 1 1 to 5 in the water melting tank and completely dissolved while warming up to 70 °C and put into the emulsion tank. 6 to 10 is added to the oil-dissolving tank, dissolved completely while warming up to 70 ° C, and then mixed in an emulsifying tank. After the contents were cooled to 40 ° C., raw materials 11 to 13 were added to an emulsifying tank, mixed, and the contents were cooled to room temperature to prepare a composition containing intracellular molecular transfer peptides.
  • Comparative Example 2 1 to 5 in the water melting tank and completely dissolved while warming up to 70 °C and put into the emulsion tank. 6 to 10 is added to the oil-dissolving tank, dissolved completely while warming up to 70 ° C, and then mixed in an emulsifying tank. After the contents were cooled to 40 ° C., raw materials 11, 12, and 15 were added to an emulsification tank, mixed, and the contents were cooled to room temperature to prepare a composition containing acetylpentapeptide.
  • Percutaneous absorption experiments were performed in accordance with published guidelines to confirm penetration of the material obtained in the present invention into skin tissue (commonly referred to as transdermal absorption) (Test Guideline 428: Skin absroption: in vitro Method, OECD, Paris, (2004), In Vitro Skin Absorption Test Guidelines, Korea Food and Drug Administration (2010)).
  • Percutaneous absorption experiments were used by thawing frozen stored body skin (cadaver skin, Cat No. SK11122, Hans Biomed) in PBS warmed to 32 °C.
  • the thawed cadaveric skin has the epidermis upward (in the direction of the donor) between the donor and the receptor of a vertical diffusion cell (Logan FDC-6, Logan instrument Corp. Somerset, NJ, USA).
  • the receptor was then filled with PBS solution (phosphate-buffered saline, pH 7.4, 32 ° C.) and left for 1 hour to allow the cadaveric skin to equilibrate with the PBS solution. Thereafter, 1 mg of 1% DMSO was added to the intracellular molecular transfer peptide, intracellular molecular transfer peptide-coumaric acid, and intracellular molecular transfer peptide-acetylpentapeptipeptides prepared in Examples 4, 10-1, and 11-1, respectively.
  • PBS solution phosphate-buffered saline, pH 7.4, 32 ° C.
  • the solution was sufficiently dissolved in 1 mL of the contained PBS solution and applied to the epidermis (1.7 cm 3 coated area), and the donor was sealed with parafilm to prevent the sample from evaporating. After 24 hours, 0.2 mL of sample was taken from the receptor and mass spectrometer was used to determine the amount of intracellular molecular transport peptide, intracellular molecular transport peptide-coumaric acid, and intracellular molecular transport peptide-acetylpentapeptipeptide. Analyze and quantify the molecular weight as shown in Table 7 below.
  • the intracellular molecular transport peptide alone had a relatively high skin permeability of 11.8%.
  • the intracellular molecular transport peptide combined with a skin physiologically active substance, it was able to penetrate the stratum corneum of its own skin.
  • the intracellular molecular transport peptide-bound coumalic acid was confirmed to have doubled the permeation rate.
  • the skin permeability increased by 28 times when binding to the intracellular molecular transport peptide.
  • acetyl hexapeptide acetyl-Glu Glu Met Gln Arg Arg
  • peptides were synthesized by adding lysine (K, lysine) and then free of lysine.
  • FITC was bound to the amine residue.
  • the synthesized peptide-FITC was removed by adding 20% piperidine / N-methylpyrrolidone solution to remove the Fmoc group and washed several times with N-methylpyrrolidone and dichloromethane. Dry with nitrogen gas.
  • Trifluoroacetic acid phenol: phenol (phenol): thioanisole (thioanisole): water (water): triisopropylsilane (triisopropylsilane) 90: 2.5: 2.5: 2.5: 2.5: 2.5 (v / v)
  • the mixture was reacted for 2 hours to 3 hours to remove the peptide protecting group, the peptide was separated from the resin, and the peptide was precipitated with diethyl ether.
  • the intracellular molecular transport peptide-acetylhexapeptide fluorescent derivative thus obtained was purified with acetonitrile containing 0.1% trifluoroacetic acid as a gradient, followed by purified reverse phase high performance liquid chromatography column (Zobax, C8 300 ⁇ ). , 21.1 mm X 25 cm) to the intracellular molecular transport peptide having an amino acid sequence of SEQ ID NO: 16 or 48 as shown in the following formula 4 acetyl hexapeptide and FITC combined intracellular molecular transport peptide-acetylhexa Peptide fluorescent derivatives were synthesized.
  • the synthesized peptide-FITC was dissolved in DMSO so as to have a concentration of 1 mM in a light-shielded state, and then aliquoted in small amounts in a 1.5 ml centrifuge container and stored frozen until just before use.
  • intracellular molecule transfer peptide-acetylhexapeptide phosphor (MTD-AH-FTIC) at a concentration of 3 ⁇ M was applied to human keratinocyte cells (Human Keratinocyte cell line, HaCaT cell, Order No. 300493, CLS cell line). service, Germany) and incubated for 1 hour.
  • human keratinocyte cells Human Keratinocyte cell line, HaCaT cell, Order No. 300493, CLS cell line). service, Germany
  • the HaCaT cells were maintained in DMED (Dubelcco's modified eagle medium) medium containing 10% Fetal bovine serum (FBS) and 1% penicillin / streptomycin (10,000 units penicillin and 10,000 ⁇ g / mL streptomycin, invitrogen) , Incubated at 37 ° C.
  • DMED Dubelcco's modified eagle medium
  • FBS Fetal bovine serum
  • penicillin / streptomycin 10,000 units penicillin and 10,000 ⁇
  • the prepared MTD-AH-FITC peptide was applied to a flow cytometer (FACS Calibur, Beckton-Dickinson, San Diego CA, USA), and for each sample, cells (1 ⁇ 10 4 ) were analyzed for CellQuest Pro cytometric analysis (CellQues Pro cytometric). analysis) The software was analyzed and each experiment was performed three or more times.
  • Cell permeability of each intracellular molecule transfer peptide applied to the present invention was quantitatively analyzed for cell permeability efficiency using acetylhexapeptide itself, a skin bioactive substance as a control.
  • the results were compared with the fluorescence change of each experimental group by the geometric mean in the CellQues Pro cytometric analysis software as shown in FIG. 15 to show the cellular influx of the intracellular molecular transport peptides.
  • the cell inflow efficiency of the acetylhexapeptide to which the intracellular molecular transport peptide is bound shows a high cell inflow efficiency from 200% to up to 400% compared to the efficiency of the acetylpexapeptide itself.
  • the cells were treated at 3 ⁇ M concentrations in HaCaT cells, immortalized human keratinocytes, Cat No. 300493, CLS, Germany. After incubation for 1 hour at 37 °C, it was visually observed using a confocal microscope (confocal microscopy, Nikon, Germany). The day before the experiment, HaCaT cells were incubated for 24 hours in a 12-well culture plate containing glass coverslips.
  • HaCaT cells were maintained in DMEM medium containing 10% Fetal Bovine Serum (FBS), and 1% penicillin / streptomycin (10,000 units penicillin and 10,000 ⁇ g / mL streptomycin, Invitrogen, USA), and 5% CO Incubated at 37 ° C. under a humidified atmosphere of 2 .
  • HaCaT cells were treated with scrambled peptides, MTD-FITC and PTD-FITC peptides for 1 hour at a concentration of 5 ⁇ M.
  • the cells were fixed for 20 minutes with 4% paraformaldehyde solution (paraformaldehyde, PFA) at room temperature for observation, and washed three times with PBS, followed by DAPI (4 ', 6-diamidino-) at 5 mM concentration. Counterstain was performed with 2-phenylindole). After 10 minutes of DAPI staining, it was washed three times again with PBS, and 20 ⁇ l of mounting medium was dropped and observed on the slide to preserve the fluorescent label of the protein.
  • paraformaldehyde paraformaldehyde

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Birds (AREA)
  • Dermatology (AREA)
  • Emergency Medicine (AREA)
  • Gerontology & Geriatric Medicine (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Cosmetics (AREA)

Abstract

The present invention relates to a composition for transdermal delivery containing bioactive molecules of skin in which intracellular molecule delivery peptides are fused. More particularly, the composition is one in which peptides having superior in vivo molecular delivery ability are fused to bioactive molecules of skin which may not be easily permeated into the stratum corneum of skin due to molecular size and physical properties. The composition may exhibit excellent in vitro and in vivo skin permeability, and therefore, can be valuably used in delivering compounds having various advantages into skin cells and formulated into various forms. Thus, the composition can be valuably used as a material for functional cosmetics.

Description

세포내 분자 전송 펩티드를 이용한 피부 생리 활성 분자의 경피 전달시스템Transdermal Delivery System of Skin Bioactive Molecules Using Intracellular Molecular Transfer Peptides
본 발명은 세포내 분자 전송 펩티드가 결합된 피부 생리 활성 분자를 포함하는 경피 전달용 조성물, 상기 피부 생리 활성 분자를 이용한 경피 전달 시스템, 및 상기 피부 생리 활성 분자의 피부 세포내 전달 방법에 관한 것이다. The present invention relates to a transdermal delivery composition comprising a skin bioactive molecule to which intracellular molecular transport peptides are bound, a transdermal delivery system using the skin bioactive molecule, and a method for intracellular skin delivery of the skin bioactive molecule.
피부는 외부의 환경과 항상 접하고 있는 조직으로, 주된 기능은 체액 누출 및 감염 방지, 수분 소실을 막는 보호장벽으로서의 역할이다. 표피의 각질층은 피부에서도 가장 바깥쪽에 존재하면서 피부 밖으로의 수분과 전해질의 소실을 억제함으로써 피부의 건조를 막고, 피부의 정상적인 생화학적 대사를 할 수 있는 환경을 제공하여, 외부의 물리적 손상과 화학물질로부터의 인체를 보호하고, 세균, 곰팡이, 바이러스 등이 피부로 침범하는 것을 방지하는 중요한 역할을 한다(Bouwstra J. A, Honeywell-Nguyen P. L. Gooris G. S. and Ponec M. Prog Lipid Res. 42:1-36(2003)). The skin is a tissue that is always in contact with the outside environment. Its main function is to protect body fluids from leakage and infection, as well as act as a protective barrier against water loss. The stratum corneum of the epidermis is located on the outermost surface of the skin and prevents the loss of moisture and electrolytes outside the skin, preventing the drying of the skin and providing an environment for normal biochemical metabolism of the skin. It protects the human body from humans and plays an important role in preventing bacteria, fungi, viruses, etc. from invading the skin (Bouwstra J. A, Honeywell-Nguyen PL Gooris GS and Ponec M. Prog Lipid Res. 42: 1-36 (2003)).
이러한 피부를 통한 흡수 경로는 각질층을 통한 흡수, 모낭과 피지선을 통한 흡수, 땀샘을 통한 흡수 등 3가지 경로가 있다(Prausnitz M. R. and Langer R. Nat Biotech. 26:1261-1268 (2008)). 피부를 통한 생리 활성 분자의 전달은 피부의 구조적, 물리적 특성상 여러 가지 제한을 받으며, 현재까지 알려진 바로는 각질층을 통한 흡수가 가장 중요한 흡수 경로로 알려져 있다. 특히, 피부 각질층은 피부의 주요 구성 세포인 각질형성세포(keratinocyte)가 자연사 되어 피부의 최외각층에 치밀한 구조를 이루고 있으며, 수분의 증발뿐만 아니라 외부 물질의 침투를 억제하며, 땀과 각종 지질 성분으로 인하여 pH 5 부근의 산성도를 보이고 있다. 이러한 각질층 장벽을 투과하기 위해서는 분자량이 1,000 이하로 작아야 하고, 친지질 특성을 보유하고 있어야 가능하다(Metha R. C. and Fitzpatrick R.E. Dermatol. Ther. 20:350-359 (2007)).There are three pathways for absorption through the skin, through the stratum corneum, through the hair follicle and sebaceous glands, and through the sweat glands (Prausnitz M. R. and Langer R. Nat Biotech. 26: 1261-1268 (2008)). The delivery of physiologically active molecules through the skin is subject to various limitations due to the structural and physical properties of the skin. To date, absorption through the stratum corneum is known as the most important absorption pathway. In particular, the stratum corneum of the skin is the natural constituent of the keratinocyte (keratinocyte) is a natural death and forms a dense structure in the outermost layer of the skin, not only evaporation of moisture but also inhibits the penetration of foreign substances, sweat and various lipid components Due to the acidity is showing around pH 5. In order to penetrate the stratum corneum barrier, the molecular weight must be as small as 1,000 or less and possess lipophilic properties (Metha R. C. and Fitzpatrick R. E. Dermatol. Ther. 20: 350-359 (2007)).
화장품 원료로 빈번하게 사용되는 분자량 1,000 이하의 저분자 합성 화합물이나 천연 화합물들은 쉽게 세포 내로 전달 될 수 있다고 알려져 있으나, 분자량 1,000 이상의 단백질, 펩티드 및 핵산과 같은 거대 분자들은 분자량의 크기 때문에 이중 지질막 구조로 되어 있는 세포막 안으로 투과하기 어렵다. 이들은 실제적으로 피부 장벽을 구성하는 각질층의 고유 특성으로 인하여 저분자량 물질들의 투과 효율이 극히 낮으며, 고분자량 물질들의 투과 효율은 더욱 낮은 것으로 알려져 있다. 이러한 저분자 및 거대 분자들이 세포의 원형질막을 통과하는 효율을 증폭시키기 위한 방법으로서, 최근 관심이 고조되고 있는 것이 피부를 통한 투여 방법(Transdermal drug delivery, TDD)이다(Prausnitz M. R. and Langer R. Nat Biotech. 26:1261-1268 (2008)). 그러나, 피부를 통한 투여 방법의 가장 큰 장벽은 각질층 내의 각질형성세포와 이들 사이의 각질세포간 지질이다. 대부분의 피부에서 생리학적으로 활성을 나타내는 분자(이하, 피부 생리 활성 분자)들은 피부 각질층의 저항성 때문에 경피 투과율이 낮아지게 된다.  It is known that low molecular weight synthetic compounds and natural compounds with a molecular weight of 1,000 or less that are frequently used as cosmetic ingredients can be easily transferred into cells, but macromolecules such as proteins, peptides and nucleic acids with molecular weight of 1,000 or more have a double lipid membrane structure due to their molecular weight. It is difficult to penetrate into the cell membrane. In fact, due to the intrinsic properties of the stratum corneum, which constitutes the skin barrier, they are known to have extremely low permeation efficiency of low molecular weight materials and lower permeation efficiency of high molecular weight materials. As a method for amplifying the efficiency of such small molecules and macromolecules to cross the plasma membrane of the cell, a recent interest is the method of transdermal drug delivery (TDD) (Prausnitz MR and Langer R. Nat Biotech. 26: 1261-1268 (2008). However, the biggest barrier of the method of administration through the skin is keratinocytes in the stratum corneum and keratinocyte lipids therebetween. In most skin physiologically active molecules (hereinafter, skin bioactive molecules), the percutaneous permeability is lowered due to the resistance of the stratum corneum.
이러한 피부 생리 활성 분자의 경피 투과율을 촉진시킬 수 있는 다양한 방법들이 연구되어 왔는데, 크게 물리적, 생화학적, 화학적 방법 등으로 나눌 수 있다. 물리적인 방법은 주로 전기(iontophoresis, electroporation), 초음파(sonophoresis), 열(thermal ablation)을 이용하는 방법이고, 생화학적인 방법은 전구체를 이용하여 유효성분이 피부 통과 중이나 통과 후에 활성화되어 작용을 나타낼 수 있는 성분의 형태로 변환되어 활성을 나타내게 하는 것이며, 화학적인 방법은 업계에서 가장 많이 활용되는 방법으로 다양한 종류의 기제, 계면활성제, 용매류 및 지방산류 등이 주로 생리 활성 분자를 담지하고 있는 복합체의 형태인 담체-매개 전달 시스템(carrier-mediated delivery systems)이 사용되고 있다(Prausnitz M. R. and Langer R. Nat Biotech. 26:1261-1268 (2008)). 이들 중에서 최근 펩티드계(peptide-base) 전달 시스템의 활용에 많은 관심이 집중되고 있다.Various methods for promoting the percutaneous permeability of such skin bioactive molecules have been studied, which can be roughly divided into physical, biochemical, and chemical methods. The physical method is mainly using iontophoresis, electroporation, sonophoresis, and thermal ablation. The biochemical method uses precursors to activate active ingredients during and after the skin. The chemical method is the most widely used method in the industry, and various kinds of bases, surfactants, solvents, and fatty acids are mainly in the form of complexes carrying bioactive molecules. Carrier-mediated delivery systems are being used (Prausnitz MR and Langer R. Nat Biotech. 26: 1261-1268 (2008)). Among these, much attention has recently been focused on the use of peptide-based delivery systems.
세포 투과성을 갖는 펩티드의 사용은 여러 장점을 갖는데, 이는 주로 상시 펩티드 서열에 이루어질 수 있는 다양한 변형에 기인한다. 이는 다른 세포 하부 도메인을 지정할 수 있으며, 다양한 형태의 화물 분자들(cargo molecules)을 운반할 수 있는 담체의 조작을 가능케 한다. 대표적인 세포막 투과성 펩티드를 예로 들면 다음과 같다. The use of peptides having cell permeability has several advantages, mainly due to the various modifications that can be made to the peptide sequence at all times. It can designate different subcellular domains and allows manipulation of carriers that can carry various forms of cargo molecules. Representative cell membrane permeable peptides are as follows.
맨 처음 발견된 전송 도메인은 1988년 Green 과 Loewenstein 그룹(Green 및 Loewenstein. Cell 55, 1179-1188(188))과 Frankel과 Pabo 그룹(Frankel 및 Pabo. Cell 55, 1189-1193(188))이 각각 별도로 후천성 면역 결핍증후군(acquired immune deficiency syndrome, AIDS)을 발생시키는 바이러스인 HIV-1의 전사관련 단백질 Tat가 세포막을 투과하고 바이러스 유전자를 교차-활성화(trans-activation)시키는 것을 발견하였다. 세포 투과성을 보이는 Tat 도메인은 Tat 단백질의 48번부터 57번째의 염기성 아미노산 서열(GRKKRRQRRR)로서, 이 서열이 세포막을 통과하는데 중요한 역할을 한다는 것이 밝혀졌다(Vives et al., J. Biol. Chem. 272, 16010-16017 (1997); Futaki 등, J. Biol. Chem. 276, 5836-5840 (2001); Wadia, J.S. 및 S.F. Dowdy, Cum Opin. Biotechnolol. 13(1): 52-6 (2002); Wadia 등, Nature Medicine 10(3), 310-315(2004)). The first transport domains discovered were the Green and Loewenstein groups (Green and Loewenstein. Cell 55, 1179-1188 (188)) and the Frankel and Pabo groups (Frankel and Pabo. Cell 55, 1189-1193 (188)) in 1988, respectively. Separately, the transcriptional protein Tat of HIV-1, a virus that causes acquired immune deficiency syndrome (AIDS), has been found to penetrate the cell membrane and trans-activate (trans-activation) viral genes. The cell permeable Tat domain is the 48th to 57th basic amino acid sequence (GRKKRRQRRR) of the Tat protein, which has been found to play an important role in the passage of cell membranes (Vives et al., J. Biol. Chem. 272, 16010-16017 (1997); Futaki et al., J. Biol. Chem. 276, 5836-5840 (2001); Wadia, JS and SF Dowdy, Cum Opin.Biotechnolol. 13 (1): 52-6 (2002) Wadia et al., Nature Medicine 10 (3), 310-315 (2004)).
둘째, 초파리의 안테나페디아 (antennapedia) 호메오도메인(homeodomain) 유래 16개의 아미노산으로 이루어진 페네트라틴(RQIKIYFQNRRMKWKK)을 들 수 있다 (Joliot et al., Proc Natl Acad Sci USA 88: 1864-1868 (1991); Derossi et al., J Biol Chem 269, 10444-10450 (1994); Joliot, A. 및 A. Prochiantz, Nat. Cell Biol. 6(3): 189-96 (2004)). Second, RQIKIYFQNRRMKWKK consisting of 16 amino acids derived from the antennapedia homeodomain of Drosophila (Joliot et al., Proc Natl Acad Sci USA 88: 1864-1868 (1991) Derossi et al., J Biol Chem 269, 10444-10450 (1994); Joliot, A. and A. Prochiantz, Nat. Cell Biol. 6 (3): 189-96 (2004).
셋째, 생체막 전위 서열(membrane translocating sequence, MTS) 또는 신호 서열(signal sequences)에 기반한 펩티드로서, 이는 RNA에 의해 새로이 합성된 단백질을 생체 내의 적합한 세포 내 소기관들의 생체막으로 이동시켜주는 것을 돕는 수용체 단백질에 의해 인식되며, 핵 위치화 신호(nuclear localization signal, NLS)와 결합된 생체막 전위 서열은 몇 가지 종류의 세포에서 세포막을 통과하여 세포핵에 축적된다는 것이 알려졌다(J.S. Wadia, et al., Nat.Med. 10: 310?315 (2004); I. Nakase, et.al. Biochemistry 46: 492-501 (2007); H.L. Amand, et al., Biochim. Biophys. Acta (2011)). 이러한 펩티드들은 화물(cargo) 분자와 결합하여 세포에 근접하였을 경우에 내재 시그널(import signal)로 작용하고, 화물 분자의 세포 내로의 유입을 유도한다. 이에 따라, 세포막 투과성 펩티드를 본래 세포내에 존재하는 단백질과 연결하여 생물학적 연구 및 질병치료에 적용하려는 시도가 활발히 진행되고 있다 (F. Milletti, Drug Discovery Today 17: 850-860 (2012)). 세포막 투과성 펩티드가 Tat 이나 VP22와 같이 바이러스로부터 유도된 경우에서는 생체 내에서 면역반응을 유도할 가능성이 있어서, 인간에게서 발견되는 분비 단백질(secreted protein)에서 새로운 세포막 투과성 펩티드들을 주로 동정하는 상황이다 (Eguchi, A. and Dowdy, S.F. Trends Pharmacol. Sci. 30: 341-345 (2009);Mae, M. and Langel, U. Curr. Opin. Pharmacol. 6: 509- 514 (2006); Jarver, P. et al., Trends Pharmacol. Sci. 31: 528-535 (2010)). 또한 세포막 투과성을 높이기 위해서 아미노산 서열상의 결실(deletion) 및 변형(modification), 키메라 융합(chimeric fusion)등의 방법으로 새로운 세포막 투과성 펩티드를 개발하고 있다 (Taylor, B.N. et al., Cancer Res. 69: 537-546 (2009); Johansson, H.J. et al., Mol. Ther. 16: 115-123 (2007)).Third, a peptide based on a membrane translocating sequence (MTS) or signal sequence, which is a receptor protein that helps to move a newly synthesized protein by RNA to the biofilm of suitable intracellular organelles in vivo. It is known that biomembrane translocation sequences, coupled with nuclear localization signals (NLS), accumulate in the cell nucleus across cell membranes in several types of cells (JS Wadia, et al., Nat. Med. 10: 310-315 (2004); I. Nakase, et. Al. Biochemistry 46: 492-501 (2007); HL Amand, et al., Biochim. Biophys. Acta (2011)). These peptides bind to a cargo molecule and act as an import signal when in close proximity to the cell, inducing the influx of the cargo molecule into the cell. Accordingly, attempts have been actively made to link cell membrane permeable peptides with proteins originally present in cells to be applied to biological research and disease treatment (F. Milletti, Drug Discovery Today 17: 850-860 (2012)). If cell membrane-penetrating peptides are derived from viruses such as Tat or VP22, there is a possibility of inducing an immune response in vivo, and thus, new membrane-penetrating peptides are mainly identified from secreted proteins found in humans (Eguchi). , A. and Dowdy, SF Trends Pharmacol.Sci. 30: 341-345 (2009); Mae, M. and Langel, U. Curr. Opin.Pharmacol. 6: 509-514 (2006); Jarver, P. et al., Trends Pharmacol. Sci. 31: 528-535 (2010)). In addition, in order to increase cell membrane permeability, new cell membrane-penetrating peptides have been developed by methods such as deletion, modification, and chimeric fusion on amino acid sequences (Taylor, BN et al., Cancer Res. 69: 537-546 (2009); Johansson, HJ et al., Mol. Ther. 16: 115-123 (2007).
현재 공지된 담체-매개 전달 시스템은 효율이 떨어지거나 자체의 독성으로 인해 그 활용도가 제한적이며, 전달 메커니즘은 논란의 소지가 많다. 담체의 세포내 물질 전송 기전에 대해 내포작용(endocytosis)인지의 여부에 대해서는 정확한 대답을 얻지 못했지만 다양한 메커니즘이 제안되었다. 수용체가 관여하지 않고 반전된 미셀(inverted micelle)을 형성하여 전이된다는 주장이 있으며, 또 다른 의견으로는 세포 표면의 프로테오글리칸(proteoglycan)이 전달에 중요한 역할을 한다는 의견과 세포막 투과성 펩티드와 정전기적 상호작용 외에 큰 역할을 하지 못한다는 의견도 제시되었다. 몇몇 연구는 TAT 단백질이 실제로 전이가 일어나는 것이 아니라, 세포 표면과 정전기적 상호작용을 강하게 일으켜 내포작용을 일으키고 엔도솜(endosome) 내부에 축적된다는 주장도 있으며, 엔도솜이 라이소좀(lysosome)과 융합되어 라이소좀내에 존재하는 단백질 가수분해 효소에 의해 펩티드가 쉽게 분해됨을 제시하고 있다. TAT과 같은 염기성 아미노산으로 구성된 물질 수송 담체를 이용하여 특정 유효성분을 세포 내로 전달하고자 할 경우 세포질 내의 표적으로 직접적으로 접근하기가 어렵고 원하는 활성을 보일 수 있는 수준으로 유효성분을 전달하기 위해서는 고농도의 처리가 요구되어 이를 응용할 시에 기대하는 효과를 얻을 수 없다는 문제점이 있다(J.S. Wadia, et al., Nat.Med. 10: 310-315 (2004); I. Nakase, et.al. Biochemistry 46: 492-501 (2007); H.L. Amand, et.al. Biochim. Biophys. Acta (2011), F. Milletti, Drug Discovery Today 17: 850-860 (2012)). 이와 같이, 외부 물질의 공지된 매개 전달 시스템의 경우 세포 내 유입 기전에 대해서는 논란의 여지가 많이 남아 있는 상태이다(F. Milletti, Drug Discovery Today 17: 850-860 (2012)). 또한, 이들 기존의 개발된 펩티드의 경우 현재까지 피부 각질층을 투과하여 피부 세포까지 전달이 가능함을 보여준 예가 없다. Currently known carrier-mediated delivery systems have limited utility due to inefficiency or their toxicity, and delivery mechanisms are controversial. Although no exact answer has been obtained as to whether the carrier is endocytosis in the intracellular mass transfer mechanism, various mechanisms have been proposed. There is a claim that receptors do not participate and are transferred by the formation of inverted micelles. Another opinion is that proteoglycans on the cell surface play an important role in the transfer and electrostatic interactions with cell membrane-penetrating peptides. In addition, it was suggested that it does not play a big role. Some research suggests that TAT proteins do not actually undergo metastasis, but rather strongly induce electrostatic interactions with the cell surface, causing inclusions and accumulating inside the endosome, and endosomes are fused with lysosomes. It is suggested that peptides are easily degraded by proteolytic enzymes present in lysosomes. When using a substance transport carrier composed of a basic amino acid such as TAT to deliver a specific active ingredient into the cell, it is difficult to directly access to the target in the cytoplasm and high concentration treatment to deliver the active ingredient to a level that can exhibit the desired activity. There is a problem in that it is not possible to obtain the expected effect when applying it (JS Wadia, et al., Nat. Med. 10: 310-315 (2004); I. Nakase, et. Al. Biochemistry 46: 492). -501 (2007); HL Amand, et.al.Biochim.Biophys.Acta (2011), F. Milletti, Drug Discovery Today 17: 850-860 (2012)). As such, in the known mediated delivery system of foreign substances, there is much controversy about the inflow mechanism of cells (F. Milletti, Drug Discovery Today 17: 850-860 (2012)). In addition, in the case of these conventionally developed peptides to date, there is no example showing that it is possible to transmit to skin cells through the stratum corneum.
최근 연구에 따르면 담체-매개 전달 시스템은 하나 이상의 메커니즘을 통해 전이가 일어나고 거대분자의 경우 에너지 의존적 대음세포작용(macropinocytosis)을 일으키고 세포막 투과성 펩티드 자체나 세포막 투과성 펩티드와 결합된 작은 분자들은 정전기적 인력이나 수소결합에 의해 에너지 비의존적 투과 메커니즘을 갖는다고 가정한다. 어떤 경우에라도 세포막 또는 세포막에 존재하는 프로테오글리칸과 세포막 투과성 펩티드의 직접적인 접촉이 세포 내 전달의 성공에 필수적이다. β-cyclodextrin 처리, cytochalasin D 처리, 혹은 dominant-negative dynamine (DynK44A) 발현 등의 실험으로 볼 때 lipid raft-mediated 대음세포작용이 주요한 기전임을 알 수 있다(Wadia JS, Stan RV, Dowdy SF. Nat Med. 2004 Mar;10(3):310-5.).Recent studies have shown that carrier-mediated delivery systems undergo metastasis through one or more mechanisms, and in the case of macromolecules, produce energy-dependent macropinocytosis, and small molecules associated with membrane permeable peptides or membrane permeable peptides may be It is assumed to have an energy independent transmission mechanism by hydrogen bonding. In any case, direct contact of the proteoglycans and cell membrane permeable peptides present in the cell membrane or cell membrane is essential for the success of intracellular delivery. Experiments such as β-cyclodextrin treatment, cytochalasin D treatment, or dominant-negative dynamine (DynK44A) expression suggest that lipid raft-mediated plenomegaly is the main mechanism (Wadia JS, Stan RV, Dowdy SF. Nat Med). 2004 Mar; 10 (3): 310-5.).
이후, 2000년도에 들어서 세포 내 전달 효율이 향상되고, 구조 및 정전기적 특성이 다른 새로운 세포막 투과성 펩티드가 개발되었으며, 그 중 프로셀 제약이 개발한 ‘거대분자 세포 내 전송 기술(Macromolecule Intracelular Tranduction Technology: MITT)은 세포내 전송과정에는 HIV-TAT 세포 내 전송과정에 필요한 내포작용 및 에너지는 필요로 하지 않지만 세포막의 강직성(rigidity)과 완전성(integrity)이 중요 요소로 작용하기 때문에 세포막과의 직접적인 상호작용(direct interaction)이 중요하다고 제안되었다(WO2008/093982). MTD는 기존의 세포막 투과성 펩티드인 TAT에 비하여 화합물, 펩티드 및 단백질 중에서 선택할 수 있는 일명 화물(cargo material)의 전달효율이 높고, 세포간 전달(cell-to-cell delivery)의 장점을 가지고 있어 치료제 및 화장품 개발에 그 활용성이 높이 평가되고 있다. Later, in 2000, new cell membrane-penetrating peptides with improved intracellular delivery efficiency and different structural and electrostatic properties were developed. Among them, Procell Pharmaceuticals developed 'Macromolecule Intracelular Tranduction Technology: MITT) does not require the encapsulation and energy required for intracellular transfer in HIV-TAT cells, but directly interacts with the cell membrane because rigidity and integrity of the cell membrane are important factors. Direct interaction has been proposed as important (WO2008 / 093982). MTD has a higher delivery efficiency of cargo material, which can be selected from compounds, peptides, and proteins, and has the advantage of cell-to-cell delivery, compared to the conventional cell membrane permeable peptide, TAT. Its applicability is highly appreciated in the development of cosmetics.
이에, 본 발명자들은 상기의 거대분자 전송 도메인(MTD)의 아미노산 서열을 변형하여 보다 우수한 세포 투과능을 갖는 개량형 MTD 펩티드를 본 발명의 세포내 분자 전송 펩티드에 적용하고, 이러한 세포 내 분자 전송 펩티드가 피부 투과가 용이하지 않은 피부 생리 활성 분자에게 피부 각질층 내, 또는 피부 세포 내 전달 효능을 부여함을 증명함으로써, 본 발명을 완성하였다. Accordingly, the present inventors apply an improved MTD peptide having better cell permeability by modifying the amino acid sequence of the macromolecular transport domain (MTD) to the intracellular molecular transport peptide of the present invention. The present invention has been completed by demonstrating that the skin bioactive molecules which do not readily penetrate the skin are endowed with the effect of delivery in the stratum corneum or in the skin cells.
본 발명은 상기와 같이 분자량의 크기 또는 피부 각질층의 고유 특성으로 인해 피부를 통해 전달되기 어려운 피부 생리 활성 분자를 피부 세포 내로 효율적으로 도입하기 위해 고안된 것으로, 기존 MTD 펩티드에 비해 세포 투과능이 개선된 세포내 분자 전송 펩티드가 결합된 피부 생리 활성 분자를 포함하는 경피 전달용 조성물, 상기 펩티드가 결합된 피부 생리 활성 분자를 이용한 경피 전달시스템, 및 세포내 분자 전송 펩티드가 결합된 피부 생리 활성 분자를 피부 세포 또는 피부 각질층 내로 전달하는 방법을 제공하는 것을 목적으로 한다. The present invention is designed to efficiently introduce skin bioactive molecules into the skin cells, which are difficult to deliver through the skin due to the size of the molecular weight or the intrinsic properties of the stratum corneum as described above, the cell improved cell permeability compared to the existing MTD peptide A transdermal delivery composition comprising a skin bioactive molecule to which an intramolecular transport peptide is bound, a transdermal delivery system using a skin bioactive molecule to which the peptide is bound, and a skin bioactive molecule to which an intracellular molecular transport peptide is bound Or to provide a method for delivery into the stratum corneum of the skin.
그러나, 본 발명이 이루고자 하는 기술적 과제는 이상에서 언급한 과제에 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다. However, the technical problem to be achieved by the present invention is not limited to the above-mentioned problem, another task that is not mentioned will be clearly understood by those skilled in the art from the following description.
상기 목적을 달성하기 위하여, In order to achieve the above object,
본 발명은 세포내 분자 전송 펩티드가 결합된 피부 생리 활성 분자를 포함하는 경피 전달용 조성물로서, 상기 펩티드가 서열번호 15 내지 35로 이루어진 군으로부터 선택되는 아미노산 서열을 갖는 것을 특징으로 하는 조성물을 제공한다.The present invention provides a composition for transdermal delivery comprising a skin bioactive molecule to which an intracellular molecular transport peptide is bound, wherein the peptide has an amino acid sequence selected from the group consisting of SEQ ID NOs: 15 to 35. .
본 발명의 일 구현예로, 상기 조성물은 화장용 조성물인 것을 특징으로 한다. In one embodiment of the invention, the composition is characterized in that the cosmetic composition.
본 발명의 또 다른 구현예로, 상기 펩티드는 서열번호 36 내지 56으로 이루어진 군으로부터 선택되는 폴리뉴클레오티드 서열로부터 인코딩되는 것을 특징으로 한다. In another embodiment of the present invention, the peptide is characterized in that it is encoded from a polynucleotide sequence selected from the group consisting of SEQ ID NOs: 36 to 56.
본 발명의 일 구체예에서, 상기 서열번호 15의 아미노산 서열은 서열번호 36의 폴리뉴클레오티드 서열에 의해 인코딩될 수 있으나, 이에 한정되지 않는다. In one embodiment of the present invention, the amino acid sequence of SEQ ID NO: 15 may be encoded by the polynucleotide sequence of SEQ ID NO: 36, but is not limited thereto.
본 발명의 다른 구체예에서, 상기 서열번호 16의 아미노산 서열은 서열번호 37의 폴리뉴클레오티드 서열에 의해 인코딩될 수 있으나, 이에 한정되지 않는다. In another embodiment of the present invention, the amino acid sequence of SEQ ID NO: 16 may be encoded by the polynucleotide sequence of SEQ ID NO: 37, but is not limited thereto.
본 발명의 또 다른 구체예에서, 상기 서열번호 17의 아미노산 서열은 서열번호 38의 폴리뉴클레오티드 서열에 의해 인코딩될 수 있으나, 이에 한정되지 않는다. In another embodiment of the present invention, the amino acid sequence of SEQ ID NO: 17 may be encoded by the polynucleotide sequence of SEQ ID NO: 38, but is not limited thereto.
본 발명의 또 다른 구체예에서, 상기 서열번호 18의 아미노산 서열은 서열번호 39의 폴리뉴클레오티드 서열에 의해 인코딩될 수 있으나, 이에 한정되지 않는다. In another embodiment of the present invention, the amino acid sequence of SEQ ID NO: 18 may be encoded by the polynucleotide sequence of SEQ ID NO: 39, but is not limited thereto.
본 발명의 또 다른 구체예에서, 상기 서열번호 19의 아미노산 서열은 서열번호 40의 폴리뉴클레오티드 서열에 의해 인코딩될 수 있으나, 이에 한정되지 않는다. In another embodiment of the present invention, the amino acid sequence of SEQ ID NO: 19 may be encoded by a polynucleotide sequence of SEQ ID NO: 40, but is not limited thereto.
본 발명의 또 다른 구체예에서, 상기 서열번호 20의 아미노산 서열은 서열번호 41의 폴리뉴클레오티드 서열에 의해 인코딩될 수 있으나, 이에 한정되지 않는다. In another embodiment of the present invention, the amino acid sequence of SEQ ID NO: 20 may be encoded by a polynucleotide sequence of SEQ ID NO: 41, but is not limited thereto.
본 발명의 또 다른 구체예에서, 상기 서열번호 21의 아미노산 서열은 서열번호 42의 폴리뉴클레오티드 서열에 의해 인코딩될 수 있으나, 이에 한정되지 않는다. In another embodiment of the present invention, the amino acid sequence of SEQ ID NO: 21 may be encoded by the polynucleotide sequence of SEQ ID NO: 42, but is not limited thereto.
본 발명의 또 다른 구체예에서, 상기 서열번호 22의 아미노산 서열은 서열번호 43의 폴리뉴클레오티드 서열에 의해 인코딩될 수 있으나, 이에 한정되지 않는다. In another embodiment of the present invention, the amino acid sequence of SEQ ID NO: 22 may be encoded by the polynucleotide sequence of SEQ ID NO: 43, but is not limited thereto.
본 발명의 또 다른 구체예에서, 상기 서열번호 23의 아미노산 서열은 서열번호 44의 폴리뉴클레오티드 서열에 의해 인코딩될 수 있으나, 이에 한정되지 않는다. In another embodiment of the present invention, the amino acid sequence of SEQ ID NO: 23 may be encoded by the polynucleotide sequence of SEQ ID NO: 44, but is not limited thereto.
본 발명의 또 다른 구체예에서, 상기 서열번호 24의 아미노산 서열은 서열번호 45의 폴리뉴클레오티드 서열에 의해 인코딩될 수 있으나, 이에 한정되지 않는다. In another embodiment of the present invention, the amino acid sequence of SEQ ID NO: 24 may be encoded by the polynucleotide sequence of SEQ ID NO: 45, but is not limited thereto.
본 발명의 또 다른 구체예에서, 상기 서열번호 25의 아미노산 서열은 서열번호 46의 폴리뉴클레오티드 서열에 의해 인코딩될 수 있으나, 이에 한정되지 않는다. In another embodiment of the present invention, the amino acid sequence of SEQ ID NO: 25 may be encoded by a polynucleotide sequence of SEQ ID NO: 46, but is not limited thereto.
본 발명의 또 다른 구체예에서, 상기 서열번호 26의 아미노산 서열은 서열번호 47의 폴리뉴클레오티드 서열에 의해 인코딩될 수 있으나, 이에 한정되지 않는다. In another embodiment of the present invention, the amino acid sequence of SEQ ID NO: 26 may be encoded by a polynucleotide sequence of SEQ ID NO: 47, but is not limited thereto.
본 발명의 또 다른 구체예에서, 상기 서열번호 27의 아미노산 서열은 서열번호 48의 폴리뉴클레오티드 서열에 의해 인코딩될 수 있으나, 이에 한정되지 않는다. In another embodiment of the present invention, the amino acid sequence of SEQ ID NO: 27 may be encoded by a polynucleotide sequence of SEQ ID NO: 48, but is not limited thereto.
본 발명의 또 다른 구체예에서, 상기 서열번호 28의 아미노산 서열은 서열번호 49의 폴리뉴클레오티드 서열에 의해 인코딩될 수 있으나, 이에 한정되지 않는다. In another embodiment of the present invention, the amino acid sequence of SEQ ID NO: 28 may be encoded by a polynucleotide sequence of SEQ ID NO: 49, but is not limited thereto.
본 발명의 또 다른 구체예에서, 상기 서열번호 29의 아미노산 서열은 서열번호 50의 폴리뉴클레오티드 서열에 의해 인코딩될 수 있으나, 이에 한정되지 않는다. In another embodiment of the present invention, the amino acid sequence of SEQ ID NO: 29 may be encoded by a polynucleotide sequence of SEQ ID NO: 50, but is not limited thereto.
본 발명의 또 다른 구체예에서, 상기 서열번호 30의 아미노산 서열은 서열번호 51의 폴리뉴클레오티드 서열에 의해 인코딩될 수 있으나, 이에 한정되지 않는다. In another embodiment of the present invention, the amino acid sequence of SEQ ID NO: 30 may be encoded by the polynucleotide sequence of SEQ ID NO: 51, but is not limited thereto.
본 발명의 또 다른 구체예에서, 상기 서열번호 31의 아미노산 서열은 서열번호 52의 폴리뉴클레오티드 서열에 의해 인코딩될 수 있으나, 이에 한정되지 않는다. In another embodiment of the present invention, the amino acid sequence of SEQ ID NO: 31 may be encoded by the polynucleotide sequence of SEQ ID NO: 52, but is not limited thereto.
본 발명의 또 다른 구체예에서, 상기 서열번호 32의 아미노산 서열은 서열번호 53의 폴리뉴클레오티드 서열에 의해 인코딩될 수 있으나, 이에 한정되지 않는다. In another embodiment of the present invention, the amino acid sequence of SEQ ID NO: 32 may be encoded by the polynucleotide sequence of SEQ ID NO: 53, but is not limited thereto.
본 발명의 또 다른 구체예에서, 상기 서열번호 33의 아미노산 서열은 서열번호 54의 폴리뉴클레오티드 서열에 의해 인코딩될 수 있으나, 이에 한정되지 않는다. In another embodiment of the present invention, the amino acid sequence of SEQ ID NO: 33 may be encoded by the polynucleotide sequence of SEQ ID NO: 54, but is not limited thereto.
본 발명의 또 다른 구체예에서, 상기 서열번호 34의 아미노산 서열은 서열번호 55의 폴리뉴클레오티드 서열에 의해 인코딩될 수 있으나, 이에 한정되지 않는다. In another embodiment of the present invention, the amino acid sequence of SEQ ID NO: 34 may be encoded by the polynucleotide sequence of SEQ ID NO: 55, but is not limited thereto.
본 발명의 또 다른 구체예에서, 상기 서열번호 35의 아미노산 서열은 서열번호 56의 폴리뉴클레오티드 서열에 의해 인코딩될 수 있으나, 이에 한정되지 않는다. In another embodiment of the present invention, the amino acid sequence of SEQ ID NO: 35 may be encoded by a polynucleotide sequence of SEQ ID NO: 56, but is not limited thereto.
본 발명의 또 다른 구현예로, 상기 조성물은 피부 각질층을 투과하는 것을 특징으로 한다.In another embodiment of the invention, the composition is characterized in that it penetrates the stratum corneum.
본 발명의 또 다른 구현예로, 상기 피부 생리 활성 분자는 상기 세포내 분자 전송 펩티드의 N-말단, C-말단 또는 양말단에 결합하는 것을 특징으로 한다.In another embodiment of the present invention, the skin bioactive molecule is characterized by binding to the N-terminus, C-terminus or sock end of the intracellular molecular transport peptide.
본 발명의 또 다른 구현예로, 상기 피부 생리 활성 분자에 상기 세포내 분자 전송 펩티드의 아미노산이 역순으로 배열된 형태로 결합하는 것을 특징으로 한다.In another embodiment of the present invention, the skin bioactive molecule is characterized in that the binding of the amino acid of the intracellular molecule transfer peptide in the form arranged in reverse order.
본 발명의 또 다른 구현예로, 상기 결합은 펩티드 결합 또는 화학적 결합에 의해 이루어지는 것을 특징으로 한다.In another embodiment of the present invention, the linkage is characterized by a peptide bond or a chemical bond.
본 발명의 또 다른 구현예로, 상기 화학적 결합은 이황화 결합, 디아민 결합, 황화-아민 결합(sulfde-amine bonds), 카르복시-아민 결합(carboxyl-amine bonds), 에스테르 결합(ester bonds) 및 공유 결합으로 이루어진 군으로부터 선택된 것을 특징으로 한다.In another embodiment of the invention, the chemical bonds are disulfide bonds, diamine bonds, sulfide-amine bonds, carboxyl-amine bonds, ester bonds and covalent bonds. Characterized in that selected from the group consisting of.
본 발명의 또 다른 구현예로, 상기 비타민, 레티노이드 및 지방산으로 이루어진 군으로부터 선택된 것을 특징으로 한다.In another embodiment of the invention, it is characterized in that selected from the group consisting of vitamins, retinoids and fatty acids.
본 발명의 또 다른 구현예로, 상기 비타민은 비타민 A, 비타민 B1, 비타민 B2, 비타민 B3, 비타민 B5, 비타민 B6, 비타민 B7, 비타민 B9, 비타민 B12, 비타민 C, 비타민 D1, 비타민 D2, 비타민 D3, 비타민 D4, 비타민 D5, 비타민 E 및 비타민 K로 이루어진 군으로부터 선택된 것을 특징으로 한다.In another embodiment of the present invention, the vitamin is vitamin A, vitamin B1, vitamin B2, vitamin B3, vitamin B5, vitamin B6, vitamin B7, vitamin B9, vitamin B12, vitamin C, vitamin D1, vitamin D2, vitamin D3 , Vitamin D4, vitamin D5, vitamin E and vitamin K is selected from the group consisting of.
본 발명의 또 다른 구현예로, 상기 레티노이드는 레티놀, 레티놀의 천열 및 합성 아날로그, 레티날, 트랜스, 9-시스, 및 13-시스 레티놀산 및 에트레티네이트로 이루어진 군으로부터 선택된 것을 특징으로 한다. In another embodiment of the invention, the retinoid is characterized in that it is selected from the group consisting of retinol, retinol mutated and synthetic analogues, retinal, trans, 9-cis, and 13-cis retinoic acid and etretinate.
본 발명의 또 다른 구현예로, 상기 지방산은 라우린산, 스테아린산, 팔미틱산, 운데실렌산, 팔리톨레산, 올레산, 리놀산, 리놀렌산, 아라키돈산 및 에루신산으로 이루어진 군으로부터 선택된 것을 특징으로 한다.In another embodiment of the invention, the fatty acid is characterized in that selected from the group consisting of lauric acid, stearic acid, palmitic acid, undecylenic acid, paritoleic acid, oleic acid, linoleic acid, linolenic acid, arachidonic acid and erucin acid .
본 발명의 또 다른 구현예로, 상기 피부 생리 활성 분자는 주름 개선제, 미백제, 항산화제 및 보습제로 이루어진 군으로부터 선택된 것을 특징으로 한다.In another embodiment of the invention, the skin bioactive molecule is characterized in that it is selected from the group consisting of anti-wrinkle agent, whitening agent, antioxidant and moisturizer.
본 발명의 또 다른 구현예로, 상기 주름 개선제는 피부 작용 성장인자 펩타이드 또는 단백질, 레티놀, 레티닐팔미테이트, 아데노신 및 폴리에톡실레이티드레틴아미드로 이루어진 군으로부터 선택된 것을 특징으로 한다.In another embodiment of the present invention, the anti-wrinkle agent is selected from the group consisting of a skin functioning growth factor peptide or protein, retinol, retinyl palmitate, adenosine and polyethoxylateddretinamide.
본 발명의 또 다른 구현예로, 상기 미백제는 미백 펩타이드, 니아신아마이드, 닥나무 추출물, 알부틴, 에칠아스코밀에텔, 감초 추출물, 아스코빌글루코사이드, 및 마그네슘 아스코빌포스페이트로 이루어진 군으로부터 선택된 것을 특징으로 하는 특징으로 한다.In another embodiment of the present invention, the whitening agent is characterized in that it is selected from the group consisting of a whitening peptide, niacinamide, turmeric extract, arbutin, ethylascomilletel, licorice extract, ascorbyl glucoside, and magnesium ascorbyl phosphate It is done.
본 발명의 또 다른 구현예로, 상기 피부 생리 활성 분자는 쿠마릭산(coumaric acid) 또는 아세틸펜타펩티드(Acetyl pentapeptide) 및 아세틸헥사펩티드(Acetyl Hexapeptide)로 이루어진 군으로부터 선택되는 것을 특징으로 한다. In another embodiment of the invention, the skin bioactive molecule is characterized in that it is selected from the group consisting of coumaric acid (coumaric acid) or acetyl pentapeptide and acetyl hexapeptide (Acetyl Hexapeptide).
본 발명의 또 다른 구현예로, 상기 조성물은 에멀젼, 크림, 에센스, 스킨, 리포솜, 마이크로캡슐, 복합 입자, 샴푸 및 린스로 이루어진 군으로부터 선택된 제형으로 제조되는 것을 특징으로 한다.In another embodiment of the invention, the composition is characterized in that it is prepared in a formulation selected from the group consisting of emulsions, creams, essences, skins, liposomes, microcapsules, composite particles, shampoos and rinses.
또한, 본 발명은 서열번호 15 내지 35로 이루어지는 군으로부터 선택되는 아미노산 서열을 갖는 세포내 분자 전송 펩티드를 피부 생리 활성 분자와 결합시켜 전달하는 것을 특징으로 하는 피부 생리 활성 분자를 피부 세포 내로 전달하는 경피 전달시스템을 제공한다. The present invention also provides transdermal delivery of skin bioactive molecules into skin cells, wherein the intracellular molecular transport peptides having an amino acid sequence selected from the group consisting of SEQ ID NOs: 15 to 35 are delivered in combination with a skin bioactive molecule. Provide a delivery system.
본 발명의 일 구현예로, 상기 펩티드는 서열번호 36 내지 56으로 이루어진 군으로부터 선택된 폴리뉴클레오티드로부터 인코딩되는 것을 특징으로 한다.In one embodiment of the invention, the peptide is characterized in that encoded from a polynucleotide selected from the group consisting of SEQ ID NO: 36 to 56.
또한, 본 발명은 서열번호 15 내지 35로 이루어지는 군으로부터 선택되는 아미노산 서열을 갖는 세포내 분자 전송 펩티드를 피부 생리 활성 분자와 결합시켜 전달하는 단계를 포함하는 상기 피부 생리 활성 분자를 피부 세포 내로 전달하는 방법을 제공한다. In addition, the present invention provides a method for delivering the skin bioactive molecules into the skin cells comprising the step of binding and delivering the intracellular molecular transport peptide having an amino acid sequence selected from the group consisting of SEQ ID NO: 15 to 35 with the skin bioactive molecules Provide a method.
아울러, 본 발명은 서열번호 15 내지 35로 이루어지는 군으로부터 선택되는 아미노산 서열을 갖는 세포내 분자 전송 펩티드를 피부 생리 활성 분자와 결합시켜 전달하는 단계를 포함하는 상기 피부 생리 활성 분자를 피부 각질층 내로 전달하는 방법을 제공한다. In addition, the present invention is to deliver the skin bioactive molecules into the stratum corneum of the skin comprising the step of delivering the intracellular molecular transport peptide having an amino acid sequence selected from the group consisting of SEQ ID NO: 15 to 35 in combination with the skin bioactive molecules. Provide a method.
본 발명의 경피 전달용 조성물은 분자량의 크기 및 물성으로 인해 피부 각질층의 투과가 용이하지 않은 피부 생리 활성 분자에 생체내 분자 전송능이 탁월한 펩티드를 결합시켜, 이를 통해 피부 생리 활성 분자를 피부 세포 또는 피부 각질층 내까지 전달할 수 있다. 따라서, 본 발명의 조성물은 항산화제 효능, 혈관 신생 증대, 여드름 증상의 감소, 선분비의 감소, 노화 효과의 감소, 주름 감소, 멜라닌 생성 감소, 피부 염증 완화 또는 피부 건조함 개선과 같은 잇점이 있는 화합물 등을피부 조직 깊이 효과적으로 전달할 수 있을 뿐 아니라, 다양한 형태로 제형화할 수 있어, 기능성 화장료 원료로 유용하게 이용될 수 있다. The composition for transdermal delivery of the present invention binds a peptide having excellent molecular transport ability in vivo to the skin bioactive molecules that are not easily permeable to the stratum corneum due to the size and physical properties of the skin stratum corneum, thereby allowing the skin bioactive molecules to be transferred to skin cells or skin Up to the stratum corneum. Accordingly, the compositions of the present invention have the advantages of antioxidant efficacy, increased angiogenesis, reduced acne symptoms, decreased line secretion, decreased aging effects, reduced wrinkles, reduced melanogenesis, lessened skin inflammation or improved skin dryness. Not only can the compound be effectively delivered to the skin tissue depth, but also can be formulated in various forms, it can be usefully used as a functional cosmetic raw material.
도 1 내지 도 4는 본 발명의 세포내 분자 전송 펩티드의 2차 구조를 PEP FOLD server 프로그램을 이용하여 분석한 결과이다.1 to 4 show the results of analyzing the secondary structure of the intracellular molecular transport peptide of the present invention using the PEP FOLD server program.
도 5는 본 발명의 세포내 분자 전송 펩티드의 피부 세포 투과능을 측정하기 위한 유세포측정 분석 결과이다.5 is a flow cytometry analysis result for measuring the skin cell permeability of the intracellular molecular transport peptide of the present invention.
도 6 내지 도 8은 본 발명의 세포내 분자 전송 펩티드의 피부세포 투과능을 측정하기 위하여 공초점 현미경으로 관찰한 결과이다:6 to 8 are the results of observation with confocal microscopy to measure the skin cell permeability of the intracellular molecular transport peptide of the present invention:
MR-form: A1-A2-MTD의 식에서, A1이 메티오닌이고, A2가 아르기닌인 형태의 개량형 MTD;MR-form: improved MTD in the form A1-A2-MTD wherein A1 is methionine and A2 is arginine;
MH-form: A1-A2-MTD의 식에서, A1이 메티오닌이고, A2가 히스티딘인 형태의 개량형 MTD; 및MH-form: improved MTD in the form A1-A2-MTD, wherein A1 is methionine and A2 is histidine; And
MK-form: A1-A2-MTD의 식에서, A1이 메티오닌이고, A2가 라이신인 형태의 개량형 MTD.MK-form: Enhanced MTD of the form wherein A1 is methionine and A2 is lysine in the formula A1-A2-MTD.
도 9는 EpiOral 인공 조직 모델에서 세포내 분자 전송 펩티드의 세포 조직 내 투과능을 공초점 현미경으로 시각화한 사진이다.Figure 9 is a photograph of the intracellular molecular transmission peptide of the intracellular molecular transmission peptide in the EpiOral artificial tissue model visualized by confocal microscopy.
도 10은 EpiDerm 인공 피부 모델에서 세포내 분자 전송 펩티드의 각질층 및 피부 조직내 투과능을 공초점 현미경으로 시각화한 사진이다.FIG. 10 is a confocal microscope picture of the permeability in the stratum corneum and skin tissue of intracellular molecular transport peptides in an EpiDerm artificial skin model.
도 11은 세포내 분자 전송 펩티드의 생체 내(in vivo)에서 피부 투과능을 공초점 현미경으로 확인한 결과이다11 is a result of confirming the skin permeability of the intracellular molecular transport peptide in vivo by confocal microscopy.
도 12는 세포내 분자 전송 펩티드를 결합한 쿠마릭산 유도체의 티로시나제 활성 저해 효과를 확인한 결과이다.12 is a result confirming the inhibitory effect of tyrosinase activity of the coumalic acid derivative bound to intracellular molecular transport peptides.
도 13은 세포내 분자 전송 펩티드를 결합한 쿠마릭산 유도체의 세포 내 멜라닌 생성 저해 효과를 확인한 결과이다.Figure 13 is the result confirming the inhibitory effect of the intracellular melanin production of the coumalic acid derivative coupled to the intracellular molecular transport peptides.
도 14는 세포내 분자 전송 펩티드와 아세틸펜타펩티드 결합 유도체의 인간 정상 피부 섬유아세포에서의 콜라게나제 활성 억제 효과를 확인한 결과이다.14 is a result confirming the inhibitory effect of collagenase activity in human normal dermal fibroblasts of intracellular molecular transport peptides and acetyl pentapeptide binding derivatives.
도 15는 세포내 분자 전송 펩티드와 아세틸헥사펩티드 결합 유도체의 피부세포 투과능을 측정하기 위한 유세포측정 분석 결과이다.15 is a flow cytometry analysis for measuring skin cell permeability of intracellular molecular transport peptides and acetylhexapeptide binding derivatives.
도 16은 세포내 분자 전송 펩티드와 아세틸헥사펩티드 결합 유도체의 피부세포 투과 위치를 공촛점 현미경으로 확인한 결과이다.Figure 16 shows the results of confirming the skin cell permeation position of intracellular molecular transport peptides and acetylhexapeptide binding derivatives by confocal microscopy.
피부를 통한 활성물질의 전달은 피부의 구조적, 물리적 특성상 여러 가지 제한이 있다. 특히, 피부 각질층은 피부의 주요 구성 세포인 각질형성세포 (keratinocyte)가 자연사 되어 피부의 최외각층에 치밀한 구조를 이루고 있으며, 수분의 증발뿐만 아니라 외부 물질의 침투를 억제하며, 땀과 각종 지질 성분으로 인하여 pH 5 부근의 산성 영역에 있다. 이러한 각질층을 투과하기 위해서는 분자량이 1,000 이하로 작아야 하고, 친지질 특성을 보유하고 있어야 가능하다(Metha R. C. and Fitzpatrick R.E. Dermatol. Ther. 20:350-359 (2007)).Delivery of active substances through the skin has several limitations due to the structural and physical properties of the skin. In particular, the stratum corneum of the skin is keratinocyte (the major constituent cell of the skin) is a natural death and forms a dense structure in the outermost layer of the skin, inhibits the evaporation of moisture as well as the penetration of foreign substances, sweat and various lipid components Due to its acidic region near pH 5. In order to penetrate the stratum corneum, the molecular weight must be less than 1,000 and possess lipophilic properties (Metha R. C. and Fitzpatrick R. E. Dermatol. Ther. 20: 350-359 (2007)).
화장품 원료로 빈번하게 사용되는 저분자 합성 화합물이나 또는 천연화합물들은 쉽게 세포 내로 전달 될 수 있다고 알려져 있으며 단백질, 펩티드 및 핵산과 같은 거대분자들은 분자량의 크기 때문에 이중 지질막 구조로 되어 있는 세포막 안으로 투과하기 어렵다. 이들은 실제적으로 피부 장벽을 구성하는 각질층의 고유 특성으로 인하여 저분자량 물질들의 투과 효율이 극히 낮으며, 고분자량 물질들의 투과 효율은 더욱 낮은 것으로 알려져 있다. 이러한 저분자 및 거대분자들이 세포의 원형질막을 통과하는 효율을 증폭시키기 위한 방법으로서 ‘거대분자 세포 내 전송 기술(Macromolecule Intracellular Transduction Technologiy: MITT)’을 이용할 수 있다. Low molecular synthetic compounds or natural compounds frequently used as cosmetic ingredients are known to be easily transferred into cells. Macromolecules such as proteins, peptides and nucleic acids are difficult to penetrate into cell membranes having a double lipid membrane structure due to their molecular weight. In fact, due to the intrinsic properties of the stratum corneum, which constitutes the skin barrier, they are known to have extremely low permeation efficiency of low molecular weight materials and lower permeation efficiency of high molecular weight materials. Macromolecule Intracellular Transduction Technologiy (MITT) can be used as a method for amplifying the efficiency of the small molecules and macromolecules through the plasma membrane of the cell.
이에, 본 발명에서는 기존에 발명된(대한민국 공개특허 제10-2009-0103957호) 소수성 거대분자 전달 도메인(MTD)에 양전하를 띄는 1~2개의 친수성(극성) 아미노산을 소수성 도메인에 적용하여 음전하를 띄고 있는 세포막으로의 접근성을 높임으로써, 효율적으로 생물학적 활성 분자를 세포 내로 전달하는 개량형 MTD 펩티드를 개발하고, 이를 이용하여 피부 생리 활성 분자를 보다 효율적으로 피부 세포 안으로 전달할 수 있는 경피 전달용 조성물, 경피 전달시스템 및 피부 생리 활성 분자를 피부 세포 또는 피부 각질층 내로 전달하는 방법을 제공한다. Accordingly, in the present invention, a negative charge is applied to the hydrophobic domain by applying one or two hydrophilic (polar) amino acids having a positive charge to the hydrophobic macromolecular transfer domain (MTD) that has been invented (Korean Patent Publication No. 10-2009-0103957). By improving accessibility to the prominent cell membranes, we have developed an improved MTD peptide that efficiently delivers biologically active molecules into cells, and by using them, transdermal delivery compositions and transdermals that can deliver skin bioactive molecules into skin cells more efficiently. Delivery systems and methods of delivering skin bioactive molecules into skin cells or the stratum corneum of the skin.
상기 개량형 MTD 펩티드는 하기 식 1로 기재되는 펩티드로서,The improved MTD peptide is a peptide described by the following Formula 1,
A1은 메티오닌(M, Met)이고; A 1 is methionine (M, Met);
A2는 아르기닌(R, Arg), 히스티딘(H, His) 및 라이신(K, Lys)으로 이루어진 군으로부터 선택되는 아미노산이며; A2 is an amino acid selected from the group consisting of arginine (R, Arg), histidine (H, His) and lysine (K, Lys);
MTD는 서열번호 1 내지 7로 이루어진 군으로부터 선택되는 아미노산 서열을 갖는 것을 특징으로 하는, 펩티드:MTD, characterized in that having an amino acid sequence selected from the group consisting of SEQ ID NOs: 1-7;
[식 1][Equation 1]
A1-A2-MTD이다. A1-A2-MTD.
상기 펩티드는 생물학적 활성 분자의 세포 내로의 운반을 매개할 수 있는 펩티드로서, 대한민국 공개특허 제 10-2009-0103957호에 기재된 MTD 펩티드에 비해 우수한 세포 투과능을 나타내는 펩티드이며, 본 발명에서는 이를 "세포내 분자 전송 펩티드"라 명명하였다.The peptide is a peptide capable of mediating the delivery of a biologically active molecule into cells, and is a peptide that exhibits superior cell permeability compared to the MTD peptide described in Korean Patent Application Laid-Open No. 10-2009-0103957. My molecular transport peptide ".
상기 펩티드는 서열번호 15 내지 35로 이루어진 군으로부터 선택되는 아미노산 서열을 가질 수 있으나, 이에 한정되는 것은 아니다.The peptide may have an amino acid sequence selected from the group consisting of SEQ ID NOs: 15 to 35, but is not limited thereto.
상기 펩티드는 대한민국 공개특허 제 10-2009-0103957호에서 개발된 193개의 거대분자 전달 도메인(MTD) 펩타이드 중에서, 정량화되어 상대 비교가 가능한 서열 중, 하기의 조건을 충족하는 서열인 것이 바람직하나, 이에 한정되는 것은 아니다:Among the 193 macromolecular delivery domain (MTD) peptides developed in Korean Patent Application Publication No. 10-2009-0103957, the peptide is preferably a sequence satisfying the following conditions among quantified and comparatively comparable sequences. It is not limited to:
1) Proline의 위치가 서열의 중앙에 위치하고;1) the position of Proline is located in the center of the sequence;
2) Signal P 프로그램을 이용한 세포 외 분비 유도 가능성 평가 결과 값이, 각 도메인에 대해 60% 이상으로 평가되며;2) the result of evaluating the possibility of extracellular secretion using the Signal P program is evaluated as 60% or more for each domain;
3) Protparam 프로그램(http://web.expasy.org/protparam/ 참조)을 이용하여 평가된 aliphatic index가 100 내지 300 사이의 값으로 평가되고;3) the aliphatic index evaluated using the Protparam program (see http://web.expasy.org/protparam/) is evaluated to a value between 100 and 300;
4) Protscale (Average flexibility) 프로그램(http://web.expasy.org/protscale/ 참조)을 이용하여 평가된 flexibility가 0.36 이상으로 평가되며;4) The flexibility evaluated using the Protscale (Average flexibility) program (see http://web.expasy.org/protscale/) is evaluated to be 0.36 or higher;
5) Protparam 프로그램을 이용하여 평가된 hydropathicity가 3.0 이하로 평가되고;5) the hydropathicity assessed using the Protparam program is assessed below 3.0;
6) Protparam 프로그램을 이용하여 평가된 instability index가 30 내지 60사이의 값으로 평가되며; 6) the instability index assessed using the Protparam program is evaluated to a value between 30 and 60;
7) Protscale (polarity) 프로그램을 이용한 polarity의 평가 결과가 0.1 이상으로 평가되는 서열.7) Sequence where the evaluation result of polarity using Protscale (polarity) program is evaluated to 0.1 or more.
상기 서열번호 1의 아미노산 서열은 서열번호 8의 폴리뉴클레오티드 서열에 의해 인코딩될 수 있으나, 이에 한정되지 않는다. The amino acid sequence of SEQ ID NO: 1 may be encoded by the polynucleotide sequence of SEQ ID NO: 8, but is not limited thereto.
상기 서열번호 2의 아미노산 서열은 서열번호 9의 폴리뉴클레오티드 서열에 의해 인코딩될 수 있으나, 이에 한정되지 않는다. The amino acid sequence of SEQ ID NO: 2 may be encoded by the polynucleotide sequence of SEQ ID NO: 9, but is not limited thereto.
상기 서열번호 3의 아미노산 서열은 서열번호 10의 폴리뉴클레오티드 서열에 의해 인코딩될 수 있으나, 이에 한정되지 않는다. The amino acid sequence of SEQ ID NO: 3 may be encoded by the polynucleotide sequence of SEQ ID NO: 10, but is not limited thereto.
상기 서열번호 4의 아미노산 서열은 서열번호 11의 폴리뉴클레오티드 서열에 의해 인코딩될 수 있으나, 이에 한정되지 않는다. The amino acid sequence of SEQ ID NO: 4 may be encoded by the polynucleotide sequence of SEQ ID NO: 11, but is not limited thereto.
상기 서열번호 5의 아미노산 서열은 서열번호 12의 폴리뉴클레오티드 서열에 의해 인코딩될 수 있으나, 이에 한정되지 않는다. The amino acid sequence of SEQ ID NO: 5 may be encoded by the polynucleotide sequence of SEQ ID NO: 12, but is not limited thereto.
상기 서열번호 6의 아미노산 서열은 서열번호 13의 폴리뉴클레오티드 서열에 의해 인코딩될 수 있으나, 이에 한정되지 않는다. The amino acid sequence of SEQ ID NO: 6 may be encoded by the polynucleotide sequence of SEQ ID NO: 13, but is not limited thereto.
상기 서열번호 7의 아미노산 서열은 서열번호 14의 폴리뉴클레오티드 서열에 의해 인코딩될 수 있으나, 이에 한정되지 않는다. The amino acid sequence of SEQ ID NO: 7 may be encoded by the polynucleotide sequence of SEQ ID NO: 14, but is not limited thereto.
본 발명의 펩티드의 합성 및 피부 생리 활성 분자인 화물(cargo)을 함유하는 펩티드의 합성은 예를 들어 기기를 이용하거나 유전 공학 기법을 이용하여 수행할 수 있다.Synthesis of the peptides of the present invention and the synthesis of peptides containing cargo, which is a skin bioactive molecule, can be carried out, for example, using a device or using genetic engineering techniques.
상기의 세포내 분자 전송 펩티드를 이용하여 피부 세포 내로 항산화제 효능, 혈관 신생 증대, 여드름 증상의 감소, 선분비의 감소, 노화 효과의 감소, 주름 감소, 멜라닌 생성 감소, 피부 염증 완화 또는 피부 건조함 개선과 같은 잇점이 있는 화합물을 전달할 수 있다. 또한, 이들을 포함하는 조성물을 국소적으로 적용함으로써 피부에 유익한 효과를 제공할 수 있다. 상기 유익한 효과는 태양광에 의해 야기되는 손상을 감소시키거나 예방하는 것, 항산화제 활성을 제공하는 것, 피부에 미세 주름을 포함한 주름의 출현을 감소시키는 것, 선 분비를 감소시키는 것, 노화 효과를 감소시키는 것, 여드름을 치료하는 것, 모낭에서 혈관 신생을 유도하여 모발이 자라는 것, 피부 보습에 도움이 되는 것 및 멜라닌 생성을 억제하여 피부색을 환하게 하는 것을 포함하나, 이에 한정되는 것은 아니다.Antioxidant efficacy, angiogenesis, decreased acne symptoms, decreased line secretion, decreased aging effects, reduced wrinkles, decreased melanin production, alleviated skin inflammation or dried skin using the intracellular molecular transport peptides It is possible to deliver compounds that have advantages such as improvement. In addition, topical application of compositions comprising them can provide a beneficial effect on the skin. The beneficial effect is to reduce or prevent damage caused by sunlight, to provide antioxidant activity, to reduce the appearance of wrinkles, including fine wrinkles on the skin, to reduce gland secretion, the aging effect It includes, but is not limited to, reducing acne, treating acne, inducing angiogenesis in hair follicles, hair growth, conducive to skin moisturizing, and inhibiting melanin production to brighten skin color.
또한, 세포내 분자 전송 펩티드에 의해 피부 세포 내로 전달 가능한 유효성분은 화합물이거나 단백질 또는 그의 단편들로 이루어 질 수 있으며, 피부에 대한 추가적인 이점을 더 제공한다. 이들은 비독성, 비알레르기성 및 비자극성이므로 피부 조직과 친화적인 특징을 갖는다. 적절한 활성 분자(cargo)의 예로서 비타민 및 그의 유도체들, 레티노이드 및 지방산을 포함할 수 있으나, 이에 한정하는 것은 아니다.In addition, the active ingredient deliverable into the skin cells by the intracellular molecular transfer peptide may be a compound or a protein or fragments thereof, further providing additional benefits for the skin. They are non-toxic, non-allergic and non-irritating and therefore friendly with skin tissue. Examples of suitable active cars may include, but are not limited to, vitamins and derivatives thereof, retinoids and fatty acids.
본 발명에 의하면, 아스코르브산(비타민 C), 알파-토코페롤(비타민 E) 및 레티노이드(비타민 A)는 피부에 유익한 특성을 제공할 수 있다. 아스코르브산은 결합 조직의 합성을 자극하고, 특히 콜라겐 생성의 자극 및 조절에 관여한다. 그것은 지방 산화 및 자외선에 지속적으로 노출됨으로 인한 다른 유형의 세포 손상을 예방하거나 최소화하는 것을 돕는다 (Varani, J. et al., J. Invest. Dermatol. 114: 480-486 (2000), Offord, E. A. et al, Free, Radical Biol. & Med. 32:1293-1303, (2002)). 아스코르브산은 세포막의 멜라닌 형성 및 히스타민 분비를 억제하는 것을 도우며, 피부 내의 비타민 E 결핍을 보상하고, 피부의 탈색화 방지에 관여하고, 항-자유 라디칼(anti-free radical) 활성을 가진다. 알파-토코페롤은 세포막의 인지질 및 자유 라디칼의 해로운 효과를 방지하는 항산화제이다 (J.B Chazan 등. Free Radicals and Vitamin E. Cah. Nutr. Diet. 1987 22(l):66-76). 레티노이드는 피부 내 염증의 중개자를 차단하고, 프로콜라겐의 생성을 증가시킴으로써 타입 I 및 타입 III 콜라겐이 더 많이 생산되도록 한다.According to the invention, ascorbic acid (vitamin C), alpha-tocopherol (vitamin E) and retinoid (vitamin A) can provide beneficial properties to the skin. Ascorbic acid stimulates the synthesis of connective tissue and is particularly involved in the stimulation and regulation of collagen production. It helps to prevent or minimize other types of cellular damage due to fatty oxidation and UV exposure (Varani, J. et al., J. Invest. Dermatol. 114: 480-486 (2000), Offord, EA et al, Free, Radical Biol. & Med. 32: 1293-1303, (2002)). Ascorbic acid helps to inhibit melanin formation and histamine secretion of cell membranes, compensates for vitamin E deficiency in the skin, is involved in preventing depigmentation of the skin, and has anti-free radical activity. Alpha-tocopherol is an antioxidant that prevents the deleterious effects of phospholipids and free radicals on cell membranes (J.B Chazan et al. Free Radicals and Vitamin E. Cah. Nutr. Diet. 1987 22 (l): 66-76). Retinoids block the mediators of inflammation in the skin and increase the production of procollagen, allowing for more production of type I and type III collagen.
구체적으로 본 발명의 cargo 화합물은 비타민 A, 비타민 Bl, 비타민 B2, 비타민 B3, 비타민 B5, 비타민 B6, 비타민 B7, 비타민 B9, 비타민 B12, 비타민 C, 비타민 Dl, 비타민 D2, 비타민 D3, 비타민 D4, 비타민 D5, 비타민 E, 및 비타민 K와 같은 비타민을 포함한다.Specifically, the cargo compound of the present invention is vitamin A, vitamin Bl, vitamin B2, vitamin B3, vitamin B5, vitamin B6, vitamin B7, vitamin B9, vitamin B12, vitamin C, vitamin Dl, vitamin D2, vitamin D3, vitamin D4, Vitamins such as vitamin D5, vitamin E, and vitamin K.
또한 본 발명의 또다른 cargo 화합물은 레티노이드이다. 레티노이드는 레티놀, 비타민 A(레티놀)의 천연 및 합성 아날로그, 비타민 A 알데히드(레티날), 모든 트랜스, 9-시스, 및 13-시스 레티놀산, 에트레티네이트(etretinate) 및 여러 선행문헌에 기재된 비타민 A 산(레티놀산) 뿐만 아니라 다양한 합성 레티토이드 및 레티노이드 활성을 갖는 화합물을 포함한다.Yet another cargo compound of the present invention is a retinoid. Retinoids are retinol, natural and synthetic analogues of vitamin A (retinol), vitamin A aldehydes (retinal), all trans, 9-cis, and 13-cis retinoic acid, etretinate and vitamins described in several prior documents. A acids (retinolic acid) as well as compounds having various synthetic retinoid and retinoid activities.
또한, 본 발명의 cargo 화합물은 지방산을 포함한다. 지방산은 포화 또는 불포화 지방성 꼬리를 갖는 모노카복시산이다. 국제 화장품용 성분 사전 및 핸드북(the International Cosmetic Ingredient Dictionary and Handbook, 7th Ed. (1997) volume 2, page 1567)에서 정의된 바와 같이(상기 개시물은 참조에 의하여 본 명세서에 포함된다), 지방산은 약 7 이상의 탄소 원자를 가진다. 예를 들어, 팔미트산은 가장 풍부한 천연 지방산으로서, 팜 오일 및 다른 지방에서 발견되는 포화 지방산이다. 팔미트산은 또한 피지선(sebaceous gland)에 의해 생성되는 피부의 주요 지방산 중에 하나이며, 보습제로서 피부 관리 및 화장품 제제에 사용된다. 그것은 오일 균형을 안정화시킴으로써 피부를 정상적이고, 건강한 상태로 유지할 수 있게 하며, 피부를 부드럽게 하고 항 케라틴화제처럼 반응한다. 팔미트산의 에스테르는 피부 및 모발에 비단결 같은 부드러움(silkiness)을 공급하는데 사용된다. 상기 팔미트산은 펜타펩티드를 피부 내로 투과시킬 수 있는 담체로서 작용하며, 윤활제로서 광범위하게 사용되고, 유화제, 계면활성제 및 제형 조직화제(formula texturizer)로 사용된다. In addition, the cargo compounds of the invention comprise fatty acids. Fatty acids are monocarboxylic acids with saturated or unsaturated fatty tails. As defined in the International Cosmetic Ingredient Dictionary and Handbook, 7th Ed. (1997) volume 2, page 1567 (the disclosure is incorporated herein by reference), Having at least about 7 carbon atoms. For example, palmitic acid is the most abundant natural fatty acid, a saturated fatty acid found in palm oil and other fats. Palmitic acid is also one of the major fatty acids of the skin produced by the sebaceous gland and is used in skin care and cosmetic preparations as a moisturizer. It stabilizes the oil balance to keep the skin normal and healthy, softens the skin and reacts like an anti-keratinizing agent. Esters of palmitic acid are used to provide silky silkiness to the skin and hair. The palmitic acid acts as a carrier that can penetrate the pentapeptide into the skin, is widely used as a lubricant, and is used as an emulsifier, surfactant, and formula texturizer.
또한, 본 발명의 적절한 지방산은 라우린산, 스테아린산, 팔미틱산, 운데실렌산, 팔미톨레산, 올레산, 리놀산, 리놀레산, 아라키돈산 및 에루신산을 포함하나, 이에 한정하는 것은 아니다. 추가적인 적절한 지방산은 국제 화장품용 성분 사전 및 핸드북(the International Cosmetic Ingredient Dictionary and Handbook, 7th Ed. (1997) volume 2, page 1567)에 개시되어 있다.In addition, suitable fatty acids of the present invention include, but are not limited to, lauric acid, stearic acid, palmitic acid, undecylenic acid, palmitoleic acid, oleic acid, linoleic acid, linoleic acid, arachidonic acid, and erucic acid. Additional suitable fatty acids are disclosed in the International Cosmetic Ingredient Dictionary and Handbook, 7th Ed. (1997) volume 2, page 1567.
상기 세포내 분자 전송 펩티드와 cargo 화합물, 즉 피부 생리 활성 분자는 공유 결합에 의해 결합되며, 에스테르, 아미드, 에테르 및 카르바미드 결합을 포함하나, 이에 한정되는 것은 아니다. 본 발명의 구체예는 쿠마릭산, 아세틸펜타펩티드 또는 아세틸헥사펩티드와 선별된 세포내 분자 전송 펩티드를 포함하나, 이에 한정되는 것은 아니다.The intracellular molecular transport peptide and the cargo compound, ie, the skin bioactive molecule, are bound by covalent bonds, and include, but are not limited to, ester, amide, ether and carbamide bonds. Embodiments of the invention include, but are not limited to, coumalic acid, acetylpentapeptide or acetylhexapeptide and selected intracellular molecular transport peptides.
본 발명의 화합물은 국소 적용하기 위해 의도된 많은 화장품용 또는 피부학적(dermatological) 조성물에 사용될 수 있다. 세포내 분자 전송 펩티드와 cargo 화합물은 피부 투과되어 모낭에서 혈관 신생을 자극할 수 있기 때문에, 이들 조성물은 모발 손실 방지 또는 모발 성장 개선을 위해 사용될 수 있다. 모발 성장에 영향을 미치는 화합물을 사용하는 경우, 두피, 눈썹 또는 속눈썹에 적용된다. 또한 피부에 적용되는 경우, 상기 세포내 분자 전송 펩티드와 cargo 화합물은 미세 라인 및 주름의 출현을 감소시키기 위해, 피부 탄력을 개선하기 위해, 부풀림(puffiness)을 감소시키기 위해, 피부 질감(texture)을 부드럽게 하기 위해, 피부에 비단결 같은 감촉을 제공하기 위해, 보습 효과를 제공하기 위해, 윤활성을 제공하기 위해, 멜라닌 생성 억제를 통한 환한 안색을 제공하기 위해, 노화 효과를 감소시키기 위해, 또는 다른 화장품용 잇점을 제공하기 위해 사용될 수 있다.The compounds of the present invention can be used in many cosmetic or dermatological compositions intended for topical application. Since intracellular molecular transport peptides and cargo compounds can penetrate the skin and stimulate angiogenesis in hair follicles, these compositions can be used to prevent hair loss or to improve hair growth. If a compound is used that affects hair growth, it is applied to the scalp, eyebrows or eyelashes. In addition, when applied to the skin, the intracellular molecular transport peptides and cargo compounds may reduce skin texture to reduce the appearance of fine lines and wrinkles, to improve skin elasticity, and to reduce puffiness. To soften, to provide a silky texture to the skin, to provide a moisturizing effect, to provide lubricity, to provide a bright complexion through inhibition of melanin production, to reduce the aging effect, or to other cosmetics It can be used to provide benefits.
본 명세서에서 사용되는, “피부 생리 활성 분자”는 "화장품 용도로 또는 피부학적으로 허용 가능한(cosmetically or dermatologically acceptable) 분자"로 정의되며, 과도한 독성, 비양립성, 불안정성 등이 없이 생리학적인 조직에 접촉하여 사용되기 위한 적절한 조성물 또는 화합물을 포함한다.As used herein, “skin bioactive molecules” are defined as “cosmetically or dermatologically acceptable molecules” and contact physiological tissue without excessive toxicity, incompatibility, instability, etc. And suitable compositions or compounds for use.
본 발명의 조성물은 약리학적으로나 생리학적으로 허용되는 담체, 부형제, 희석제를 추가로 포함할 수 있다.The composition of the present invention may further comprise a pharmacologically or physiologically acceptable carrier, excipient, diluent.
이러한 조성물에 포함될 수 있는 적합한 담체, 부형제 및 희석제의 예로는 락토오스, 덱스트로스, 수크로스, 솔비톨, 만니톨, 자일리톨, 에리스리톨, 말티톨, 전분, 아카시아 고무, 알지네이트, 젤라틴, 칼슘 포스페이트, 칼슘 실리케이트, 셀룰로즈, 메틸 셀룰로즈, 비정질 셀룰로즈, 폴리비닐피롤리돈, 물, 메틸하이드록시벤조에이트, 프로필하이드록시벤조에이트, 탈크, 마그네슘 스테아레이트 및 광물유 등을 들 수 있다. 상기 조성물은 약제화 하는 경우, 통상의 충진제, 증량제, 결합제, 붕해제, 계면활성제, 항응집제, 윤활제, 습윤제, 향료, 유화제, 방부제 등을 추가로 포함할 수 있다.Examples of suitable carriers, excipients and diluents that may be included in such compositions include lactose, dextrose, sucrose, sorbitol, mannitol, xylitol, erythritol, maltitol, starch, acacia rubber, alginate, gelatin, calcium phosphate, calcium silicate, cellulose, Methyl cellulose, amorphous cellulose, polyvinylpyrrolidone, water, methylhydroxybenzoate, propylhydroxybenzoate, talc, magnesium stearate, mineral oil and the like. When formulated, the composition may further include conventional fillers, extenders, binders, disintegrants, surfactants, anticoagulants, lubricants, wetting agents, fragrances, emulsifiers, preservatives, and the like.
제형의 측면에서, 본 발명의 조성물은 용액, 에멀션(마이크로에멀션 포함), 현탁액, 크림, 로션, 겔, 분말, 또는 본 조성물이 적용될 수 있는 피부 및 기타 조직에 적용하기 위해 이용되는 기타 전형적인 고체 또는 액체 조성물을 포함할 수 있다. 그와 같은 조성물은 추가적인 항미생물제(antimicrobial), 보습제 및 수화제(hydration agent), 투과제(penetration agent), 보존제, 유화제, 천연 오일 또는 합성 오일, 용매, 계면활성제, 세정제(detergent), 겔화제(gelling agent), 연화제(emollient), 항산화제, 향료, 충진제, 증점제(thickener), 왁스, 냄새 흡수제, 염료(dyestuff), 착색제, 분말, 점도-조절제(viscosity-controlling agent) 및 물을 포함할 수 있고, 선택적으로, 마취제, 항-가려움 활성제(anti-itch active), 식물 추출물(botanical extract), 컨디셔닝제(conditioning agent), 흑화제 또는 미백제(darkening or lightening agent), 글리터(glitter), 습윤제(humectant), 운모, 미네랄, 폴리페놀, 실리콘 또는 그의 유도체, 일광 차단제(sunblock), 비타민, 및 약용식물(phytomedicinal)을 포함할 수 있다. 일부 구체예에서, 본 발명의 조성물은 장기간 동안 안정적이게 하기 위해, 전술된 성분들과 함께 제제화 되며, 이는 지속적인 또는 장기간의 사용이 의도되는 경우 유용할 수 있다.In terms of formulation, the compositions of the invention may be solutions, emulsions (including microemulsions), suspensions, creams, lotions, gels, powders, or other typical solids used for application to the skin and other tissues to which the compositions can be applied. Liquid compositions. Such compositions may comprise additional antimicrobial, moisturizing and hydrating agents, penetration agents, preservatives, emulsifiers, natural or synthetic oils, solvents, surfactants, detergents, gelling agents ( may include gelling agents, emollients, antioxidants, fragrances, fillers, thickeners, waxes, odor absorbers, dyestuffs, colorants, powders, viscosity-controlling agents and water And optionally, anesthetics, anti-itch actives, botanical extracts, conditioning agents, darkening or lightening agents, glitters, wetting agents ( humectant, mica, minerals, polyphenols, silicones or derivatives thereof, sunblocks, vitamins, and phytomedicinal. In some embodiments, the compositions of the present invention are formulated with the aforementioned ingredients to be stable for long periods of time, which may be useful if continuous or long term use is intended.
본 발명의 일부 구체예에서, 상기 조성물은 피부 노화를 치료, 개선 또는 예방하기 위하여 사용된다. 노화에 의한 피부 손상은 미세하고 깊은 주름, 피부 라인, 틈(crevice), 혹(bump), 큰 구멍, 비늘(scaliness), 피부 탄력의 손실, 늘어짐(sagging), 피부 견고성 또는 팽팽함의 손실, 탈색, 노화 반점(age spot) 및 주근깨와 같은 과색화된(hyperpigmented) 부위, 각화증(keratosis), 비정상 분화, 과각화현상(hyperkeratinization), 탄력섬유증, 콜라겐 붕괴, 각질층, 진피, 표피, 피부의 관다발계, 피부에 특히 근접하는 하부 조직에서의 다른 조직학적 변화를 포함할 수 있으나 이에 한정되는 것은 아니다. 피부 노화는 연대기적 노화 또는 태양광에 지속적인 노출과 같은 외부 요인에 의한 노화가 있으나, 본 발명의 조성물은 상기 피부 노화 및 다른 유형의 피부 손상을 치료, 개선 또는 방지하는 방법이 개시된다.In some embodiments of the invention, the composition is used to treat, ameliorate or prevent skin aging. Skin damage from aging can include fine and deep wrinkles, skin lines, crevices, bumps, large holes, scalyness, loss of skin elasticity, sagging, loss of skin firmness or tautness, and discoloration. Hyperpigmented areas such as age spots and freckles, keratosis, abnormal differentiation, hyperkeratinization, elastic fibrosis, collagen breakdown, stratum corneum, dermis, epidermis, skin vascular system, And other histological changes in underlying tissues particularly in proximity to the skin. Although skin aging is aging due to external factors such as chronological aging or continuous exposure to sunlight, the compositions of the present invention disclose methods for treating, ameliorating or preventing such skin aging and other types of skin damage.
본 발명의 구체적인 실시예에서, 본 발명자들은 세포내 분자 전송 펩티드의 세포 투과성을 정량적으로 결정하기 위하여, 세포내 분자 전송 펩티드에 FITC 형광물질을 연결한 복합체를 사용하여 피부세포에 일정 농도로 처리한 후, 유세포분석기(flow cytometry)를 이용하여 형광세기를 측정하였으며, 그 결과 세포내 분자 전송 펩티드가 공지된 PTD (protein transduction domain)에 비해 매우 효율적으로 FITC를 세포내로 전달하였음을 확인함으로써, 여러 서열의 세포내 분자 전송 펩티드의 피부 세포 내 침투 효과를 입증하였다.In a specific embodiment of the present invention, the present inventors treated the skin cells at a constant concentration using a complex in which the FITC fluorescent substance was linked to the intracellular molecular transport peptide to quantitatively determine the cell permeability of the intracellular molecular transport peptide. Afterwards, fluorescence intensity was measured using flow cytometry, and as a result, several sequences were confirmed by intracellular molecular transport peptides that delivered FITC into cells more efficiently than known protein transduction domains (PTDs). The invasion effect of the intracellular molecular transport peptides in skin cells was demonstrated.
본 발명의 또 다른 구체적인 실시예에서, 본 발명자들은 세포내 분자 전송 펩티드에 FITC 형광물질을 연결한 복합체를 사용하여 공초점 현미경(confocal microscope) 분석을 통하여 세포 투과성 및 세포내 전달(intracellular localization)을 시각적으로 확인할 수 있는 결과를 제시하였다. 그 결과, 유세포측정 결과와 동일하게 기존의 MTD 펩티드보다 개선된 세포내 분자 전송 펩티드에서 높은 피부 세포 투과성을 나타냄을 확인하였다. 또한 세포내 분자 전송 펩티드가 공지된 PTD (protein transduction domain) 중 세포내 전송 효율이 비교적 우수한 것으로 알려진 Tat에 비해 세포투과도가 높음을 확인할 수 있었다.In another specific embodiment of the present invention, the inventors have performed cell permeability and intracellular localization through confocal microscope analysis using a complex linking FITC fluorescent material to intracellular molecular transport peptides. The results can be visually confirmed. As a result, as shown in the flow cytometry results, it was confirmed that exhibited high skin cell permeability in the improved intracellular molecular transport peptide than the existing MTD peptide. In addition, it was confirmed that the intracellular molecular transport peptide has a higher cell permeability than Tat, which is known to have a relatively excellent intracellular transport efficiency among known protein transduction domains (PTDs).
뿐만 아니라, 피부 생리 활성을 갖는 화물(cargo)을 보유한 펩티드를 이용하여 피부 투과를 통한 생리활성이 증대됨을 확인하여 미백 또는 주름 개선 효능을 갖는 화장품 원료로 사용될 수 있음을 입증하였다.In addition, the peptide having a cargo having a skin physiological activity (cargo) was confirmed to increase the physiological activity through skin permeation, thereby demonstrating that it can be used as a cosmetic raw material having a whitening or wrinkle improvement effect.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐, 하기 실시예에 의해 본 발명의 내용이 한정되는 것은 아니다. Hereinafter, preferred examples are provided to aid in understanding the present invention. However, the following examples are merely provided to more easily understand the present invention, and the contents of the present invention are not limited by the following examples.
실시예 1. 개량형 MTD 펩티드의 고안을 위한, 대상 MTD 펩티드의 선별Example 1 Screening of Subject MTD Peptides for Design of Improved MTD Peptides
본 발명자들은 기존에 본 발명자들에 의해 개발된 기술인 대한민국 공개특허 제110-2009-0103957호)에서 개발된 193개의 MTD 펩타이드 중에서, 정량화되어 상대 비교가 가능한 서열 중 하기의 조건을 충족하는 서열에서 전송능 개량을 위한 대상 MTD 펩티드 서열을 선별하였다. The inventors of the present invention, among the 193 MTD peptides developed in Korean Patent Application Publication No. 110-2009-0103957), which have been developed by the present inventors, are quantified and transmitted in a sequence that satisfies the following conditions among relative comparable sequences. Subject MTD peptide sequences were selected for ability improvement.
상기 선별을 위한 조건은 하기와 같다. Conditions for the screening are as follows.
1) 거대분자 전달 도메인의 서열 중, proline의 위치가 서열의 중앙에 위치하는 서열을 선별한다.1) In the sequence of the macromolecular delivery domain, the sequence whose proline position is located in the center of the sequence is selected.
2) 거대분자 전달 도메인의 서열 중, 세포 외 분비 유도 가능성이 높은 서열을 선별한다.2) From the sequences of the macromolecular delivery domain, sequences having a high possibility of inducing extracellular secretion are selected.
3) 거대분자 전달 도메인의 서열 중, 거대분자 전달 도메인의 물리화학적 특성을 결정하는 요소인 aliphatic index의 특정 수준을 만족하는 서열을 선별한다.3) Among the sequences of the macromolecular delivery domain, a sequence satisfying a specific level of the aliphatic index, which is an element that determines the physicochemical properties of the macromolecular delivery domain, is selected.
4) 거대분자 전달 도메인의 서열 중, 거대분자 전달 도메인의 물리화학적 특성을 결정하는 요소인 flexibility가 특정 수준을 만족하는 서열을 선별한다.4) Among the sequences of the macromolecular delivery domain, a sequence that satisfies a certain level of flexibility, which is a factor that determines the physicochemical properties of the macromolecular delivery domain, is selected.
5) 거대분자 전달 도메인의 서열 중, 거대분자 전달 도메인의 물리화학적 특성을 결정하는 요소인 hydropathicity가 특정 수준을 만족하는 서열을 선별한다.5) Among the sequences of the macromolecular delivery domain, a sequence that satisfies a certain level of hydropathicity, which is a factor that determines the physicochemical properties of the macromolecular delivery domain, is selected.
6) 거대분자 전달 도메인의 서열 중, 거대분자 전달 도메인의 물리화학적 특성을 결정하는 요소인 instability index가 특정 수준을 만족하는 서열을 선별한다.6) Among the sequences of the macromolecular delivery domain, a sequence that satisfies a specific level is selected for the instability index, which is a factor that determines the physicochemical properties of the macromolecular delivery domain.
7) 거대분자 전달 도메인의 서열 중, 거대분자 전달 도메인의 물리화학적 특성을 결정하는 요소인 polarity가 특정 수준을 만족하는 서열을 선별한다. 7) Among the sequences of the macromolecular delivery domain, a sequence is selected in which polarity, an element that determines the physicochemical properties of the macromolecular delivery domain, satisfies a certain level.
이를 구체적으로 설명하면 하기와 같다. This will be described in detail below.
특정한 대표 서열을 선별하기 위하여, 상기 단계 1)에 기술된 바와 같이, 프롤린의 유무와 그 위치에 근거하여 대표 서열을 결정하였다. 거대 분자 전달 도메인의 서열을 구성하는 아미노산인 알라닌, 발린, 프롤린, 류신 및 아이소류신 중, 곁가지의 서열이 짧고 크기가 작은 프롤린은 아미노산 서열의 이차구조 형성의 자유도에 영향을 미치며 이는 거대분자 전달 도메인의 세포막 투과에 기여한다. ‘대한민국 공개번호 제10-2009-0103957호: 신규한 거대분자 전달 도메인 및 이의 동정 방법 및 용도’에 공지된 거대 분자 전달 도메인 (MTD) 중, 이를 구성하는 서열 상에 프롤린이 존재하며 그 프롤린의 위치가 거대분자 전달 도메인의 아미노산 서열의 중앙에 위치하여 아미노산 서열의 이차구조 형성의 자유도가 높을 것으로 분류되는 49개 거대분자 전달 도메인을 결정하였다.To select specific representative sequences, representative sequences were determined based on the presence and location of proline, as described in step 1) above. Among the amino acids alanine, valine, proline, leucine, and isoleucine that make up the sequence of the macromolecular delivery domain, the shorter and smaller size of the proximal side affects the degree of freedom of secondary structure formation of the amino acid sequence, which is the macromolecular delivery domain. Contributes to cell membrane permeation. Among the macromolecular delivery domains (MTDs) known in the Republic of Korea Publication No. 10-2009-0103957: Novel macromolecular delivery domains and methods and uses thereof, proline is present on the sequences constituting it and the Forty-nine macromolecular delivery domains were determined, whose positions were located in the middle of the amino acid sequence of the macromolecular delivery domain and were classified as having high degree of freedom of secondary structure formation of the amino acid sequence.
이어서, 단계 1)에서 선별된 거대분자 전달 도메인 중에서 세포 외 분비 가능성이 높은 서열을 선별하였다. 일부 수용성 단백질은 수송을 매개하는 수용체와 상호작용 할 수 있는 신호를 갖고 있는데, 신호 매개 수송에서 단백질은 전달되는 타겟을 지정하는 하나 또는 그 이상의 신호서열을 가지고 있다. 따라서, 세포 외 분비 유도 서열과 유사성이 높으면 전송능을 향상시킬 수 있다는 가정 하에 Signal P 프로그램을 이용하여 세포 외 분비 유도 가능성을 평가하였다. 각 도메인에 대해 10 % 에서 90 % 사이의 가능성이 평가되는데, 단계 1)에서 결정된 거대분자 전달 도메인 중, 60 % 이상으로 평가된 서열을 개량형 대상 서열로 선별하였다.Subsequently, sequences with high possibility of extracellular secretion were selected from the macromolecular delivery domains selected in step 1). Some water-soluble proteins have signals that can interact with receptors that mediate transport. In signal mediated transport, a protein has one or more signal sequences that specify the target to which it is delivered. Therefore, under the assumption that the similarity with the extracellular secretion inducing sequence can improve the transmission ability, the possibility of inducing extracellular secretion was evaluated using the Signal P program. Probability between 10% and 90% is assessed for each domain, with sequences rated at least 60% of the macromolecular delivery domains determined in step 1) selected as improved subject sequences.
이어서, 단계 2)에서 선별된 거대분자 전달 도메인 중에서 단계 3)에 기술된 바와 같이, 거대분자 전달 도메인의 물리화학적 특성을 결정하는 요소인 aliphatic index의 특정 수준을 만족하는 서열을 선별하였다. Aliphatic index는 아미노산의 곁가지의 탄소 체인에 의해 결정되는 전체 분자의 부피를 결정하는 물리적 특징으로 거대분자 전달 도메인이 세포막을 투과할 때 세포막의 구조를 변형하는 특징으로서 평가된다. Aliphatic index는 거대분자 전달 도메인의 아미노산 서열의 각각의 고유한 값과 전체 서열의 평균으로 결정되며, Protparam 프로그램(http://web.expasy.org/protparam/ 참조)을 이용하여 결정되었다. Protparam 프로그램은 아미노산으로 구성되는 단백질 내지 펩티드의 물리적 특성을 수치화하여 나타내는 유용한 도구로써 aliphatic index는 100에서 300 사이로 평가된 서열을 전송능 개량을 위한 대표 서열로 선별하였다.Next, as described in step 3), among the macromolecular delivery domains selected in step 2), sequences satisfying a specific level of the aliphatic index, which is an element that determines the physicochemical properties of the macromolecular delivery domain, were selected. Aliphatic index is a physical feature that determines the volume of the entire molecule, which is determined by the carbon chain of the side chain of amino acids, and is evaluated as a feature that modifies the structure of the cell membrane as the macromolecular delivery domain penetrates the cell membrane. Aliphatic index is determined by the unique value of each amino acid sequence of the macromolecular delivery domain and the average of the entire sequence, and was determined using the Protparam program (see http://web.expasy.org/protparam/). The Protparam program is a useful tool that quantifies the physical properties of proteins or peptides consisting of amino acids. The aliphatic index was selected from 100 to 300 as the representative sequence for improving the transfer capacity.
이어서, 단계 3)에서 선별된 거대분자 전달 도메인 중에서 단계 4)에 기술된 바와 같이, 거대분자 전달 도메인의 물리화학적 특성을 결정하는 요소인 flexibility가 특정 수준을 만족하는 서열을 선별하였다. Flexibility는 거대분자 전달 도메인의 N 말단의 아미노산과 C 말단의 아미노산 사이의 상관 정도 및 자유도를 의미하는 물리화학적 특징으로 구조적으로 유연성을 부여하고, 세포막에 대한 친화력과 연관되어 있다. Flexibility는 아미노산 서열의 길이와 아미노산의 곁가지 서열의 구성에 따라 평가되며, Protscale (Average flexibility) 프로그램(http://web.expasy.org/protscale/ 참조)을 이용하여 평가되었다. Protscale 프로그램은 아미노산으로 구성되는 단백질 내지 펩티드의 물리적 특성을 수치화하여 나타내는 도구로 이용되었으며, 단계 3)에서 결정된 거대분자 전달 도메인 중, Protscale (Average flexibility) 프로그램을 이용한 flexibility의 평가 결과가 0.36 이상으로 평가된 서열을 전송능 개량을 위한 대표 서열로 선별하였다.Subsequently, as described in step 4), among the macromolecular delivery domains selected in step 3), a sequence was selected in which flexibility, an element that determines the physicochemical properties of the macromolecular delivery domain, satisfies a certain level. Flexibility is a physicochemical feature that represents the degree of freedom and degrees of freedom between the N- and C-terminal amino acids of the macromolecular delivery domain, and provides structural flexibility and is associated with affinity for cell membranes. Flexibility was evaluated according to the length of the amino acid sequence and the composition of the side chain sequence of the amino acid, and evaluated using the Protscale (Average flexibility) program (see http://web.expasy.org/protscale/). The Protscale program was used as a tool to quantify the physical properties of proteins or peptides consisting of amino acids. Among the macromolecular delivery domains determined in step 3), the evaluation result of flexibility using the Protscale (Average flexibility) program was 0.36 or higher. Selected sequences were selected as representative sequences for improving transmission capacity.
이어서, 단계 4)에서 선별된 거대분자 전달 도메인 중에서 단계 5)에 기술된 바와 같이, 거대분자 전달 도메인의 물리화학적 특성을 결정하는 요소인 hydropathicity가 특정 수준을 만족하는 서열을 선별하였다. Hydropathicity는 아미노산의 고유한 특징에 의해 결정되는 물리적 특징으로 물성을 결정하는 특징으로 여겨지며, 3.0 이상에서 심각한 엉김현상을 초래하는 것으로 알려져 있다. 또한, Hydropathicity는 거대분자 전달 도메인의 아미노산 서열의 각각의 고유한 값과 전체 서열의 평균으로 결정되며, Protparam 프로그램을 이용하여 평가하였다. 이에 1.3 에서 3.8 사이의 값으로 나타나는 hydropathicity 결과 중 단계 4)에서 선별한 거대분자 전달 도메인 내에서 hydropathicity가 3.0 이하로 평가된 서열을 개량을 위한 대표 서열로 결정하였다.Next, as described in step 5), among the macromolecular delivery domains selected in step 4), a sequence was selected in which hydropathicity, which is a factor determining the physicochemical properties of the macromolecular delivery domain, satisfies a certain level. Hydropathicity is a physical property determined by the unique properties of amino acids and is considered to be a property that determines physical properties. It is known to cause severe entanglement at 3.0 or higher. Hydropathicity was also determined by the unique value of each of the amino acid sequences of the macromolecular delivery domain and the average of the entire sequence, and evaluated using the Protparam program. Therefore, among the hydropathicity results of 1.3 to 3.8, a sequence whose hydropathicity was evaluated to 3.0 or less in the macromolecular delivery domain selected in step 4) was determined as a representative sequence for improvement.
이어서, 단계 5)에서 선별된 거대분자 전달 도메인 중에서 단계 6)에 기술된 바와 같이, 거대분자 전달 도메인의 instability index가 특정 수준을 만족하는 서열을 결정하였다. Instability index는 아미노산 서열의 안정성을 의미하는 특성으로 서열 상의 아미노산의 배열 순서에 의해 결정되며 그 수치가 높을수록 불안정성을 갖는다. 이는 거대분자 전달 도메인의 물리화학적 특성을 결정하는 요소로 도메인의 세포내 안정성에 영향을 미치는 특징으로 여겨지며, Protparam 프로그램을 이용하여 평가하였다. 이에 분석결과 instability index 0 에서 130 사이의 값으로 나타나는 거대분자 전달 도메인중 단계 5)에서 결정된 거대분자 전달 도메인 내에서 instability index가 30 에서 60 사이에 위치한 서열을 개량을 위한 대표 서열로 선별하였다.Then, as described in step 6) among the macromolecular delivery domains selected in step 5), a sequence was determined in which the instability index of the macromolecular delivery domain satisfies a certain level. Instability index is a property that indicates the stability of the amino acid sequence is determined by the sequence of amino acids on the sequence, the higher the value has instability. This is a factor that determines the physicochemical properties of the macromolecular delivery domain and is considered to be a characteristic that affects the intracellular stability of the domain and was evaluated using the Protparam program. As a result, a sequence having an instability index of 30 to 60 within the macromolecular delivery domain determined in step 5) among the macromolecular delivery domains represented by instability index 0 to 130 was selected as a representative sequence for improvement.
이어서 단계 6)에서 선별된 거대분자 전달 도메인 중에서 단계 7)에 기술된 바와 같이, 거대분자 전달 도메인의 물리화학적 특성을 결정하는 요소인 Polarity가 특정 수준을 만족하는 서열을 결정하였다. Polarity는 아미노산의 구성 성분 중 탄소 사슬의 길이 및 수산기의 유무로 판단되는 것으로 물에 대한 친화도를 나타내는 척도이다. 이는 hydropathicity와 함께 거대분자 전달 도메인의 물성을 결정하는 특징이며 세포막에 대한 친화도에도 영향을 미치는 것으로 생각된다. Polarity는 거대분자 전달 도메인의 아미노산 서열 각각의 고유한 값과 전체 서열의 평균으로 결정되며, Protscale (polarity) 프로그램을 이용하여 평가되었다. 이에 단계 6)에서 결정된 거대분자 전달 도메인 중, Protscale (polarity) 프로그램을 이용한 polarity의 평가 결과가 0.1 이상으로 평가된 서열을 개량을 위한 대표 서열로 선별하였다. Subsequently, among the macromolecular delivery domains selected in step 6), as described in step 7), a sequence was determined in which Polarity, an element that determines the physicochemical properties of the macromolecular delivery domain, satisfies a certain level. Polarity is a measure of the affinity for water as judged by the length of the carbon chain and the presence or absence of hydroxyl groups among the components of amino acids. This, together with hydropathicity, determines the properties of the macromolecular transport domain and is thought to affect affinity to cell membranes. Polarity is determined by the unique value of each of the amino acid sequences of the macromolecular delivery domain and the average of the entire sequence, and was evaluated using the Protscale (polarity) program. Accordingly, among the macromolecular transfer domains determined in step 6), sequences whose evaluation results were greater than 0.1 using the Protscale (polarity) program were selected as representative sequences for improvement.
구체적으로, 대한민국 공개특허 제10-2009-0103957호에 기재된 거대 분자 전송 도메인 중 개량형 MTD 펩티드의 고안을 위한 대상 MTD인 JO-103(서열번호 3)는 하기 과정에 의해 결정되었다.Specifically, JO-103 (SEQ ID NO: 3), which is a target MTD for designing an improved MTD peptide in the macromolecular transport domain described in Korean Patent Application Publication No. 10-2009-0103957, was determined by the following procedure.
i) ‘대한민국 공개특허 10-2009-0103957: 신규한 거대분자 전달 도메인 및 이의 동정 방법 및 용도’에 공지된 거대 분자 전달 도메인 (MTD) 중, JO-103은 LALPVLLLA의 서열로 구성되어 있고;i) Of the macromolecular transfer domains (MTD) known in the Republic of Korea Patent Publication No. 10-2009-0103957: Novel macromolecular delivery domains and methods and uses thereof, JO-103 consists of the sequence of LALPVLLLA;
ii) Singal P 프로그램을 이용한 세포 외 분비 가능성 평가에서 90 %의 가능성을 보이며;ii) a 90% chance of assessing the possibility of extracellular secretion using the Singal P program;
iii) Protparam 프로그램을 이용한 aliphatic index 평가에서 271의 값을 나타내고;iii) exhibited a value of 271 in the aliphatic index evaluation using the Protparam program;
iv) Protscale 프로그램을 이용한 flexibility 평가에서 0.38로 평가되며;iv) assessed as 0.38 in the flexibility assessment using the Protscale program;
v) Protparam 프로그램을 이용한 hydrophobicity 결정에서 2.8로 결정되고;v) determined to be 2.8 in hydrophobicity determination using the Protparam program;
vi) Protparam 프로그램을 이용한 instability index 결정에서 52로 결정되며;vi) determined to be 52 in instability index determination using the Protparam program;
vii) Protscale 프로그램을 이용한 polarity 평가에서 0.13으로 평가되므로,vii) is estimated to be 0.13 in the polarity evaluation using the Protscale program,
따라서, 전송능 개선을 위한 대상 서열로 결정된 JO-103은 상기 7단계를 모두 만족하는 대상 도메인임을 알 수 있다. Therefore, it can be seen that JO-103 determined as a target sequence for improving transmission capacity is a target domain that satisfies all seven steps.
동일한 방식을 통해, 개량형 MTD 펩티드의 고안을 위한 5개의 대상 MTD 펩티드가 선별되었으며, 구체적으로, 선별된 대상 MTD 펩티드는 MTD JO-18(서열번호 1), MTD JO-067(서열번호 2), MTD JO-103(서열번호 3), MTD JO-159(서열번호 4) 및 MTD JO-173(서열번호 5)이다. In the same manner, five target MTD peptides were selected for the design of the improved MTD peptide, specifically, the selected target MTD peptides were MTD JO-18 (SEQ ID NO: 1), MTD JO-067 (SEQ ID NO: 2), MTD JO-103 (SEQ ID NO: 3), MTD JO-159 (SEQ ID NO: 4), and MTD JO-173 (SEQ ID NO: 5).
이중 MTD JO-173번 펩티드에 대하여 프롤린의 위치를 변경하여 추가적인 유연성을 확보하고; 중간단계 펩티드인 MTD 173A 펩티드(서열번호 7)를 제작하였으며, 이렇게 제작된 MTD 173A 펩티드도 상기 7단계의 선별 조건을 모두 만족하므로, 개량형 MTD 펩티드의 고안을 위한 대상 MTD 서열에 포함하였다. Repositioning proline for double MTD JO-173 peptide to gain additional flexibility; The MTD 173A peptide (SEQ ID NO: 7), which is an intermediate peptide, was prepared. The MTD 173A peptide thus prepared also satisfies the selection conditions of the above seven steps, and was included in the target MTD sequence for designing an improved MTD peptide.
또한, 대상으로 선별된 MTD 중 JO-18번에 대하여 서열을 hydropathicity가 낮은 아미노산으로 치환하여 물성을 개선하고자 중간단계 펩티드 MTD 18m(서열번호 6)을 도출하였으며, 이 역시 상기 7단계의 선별 조건을 만족하고 있어, 개량형 MTD 펩티드의 고안을 위한 대상 MTD 서열에 포함하였다. In addition, the intermediate peptide MTD 18m (SEQ ID NO: 6) was derived to improve the physical properties by substituting the amino acid with low hydropathicity for the JO-18 No. among the selected MTD. Satisfaction was included in the subject MTD sequence for the design of the improved MTD peptide.
실시예 2. 개량형 MTD 펩티드의 고안Example 2 Design of Improved MTD Peptides
상기 실시예 1에서 선별된 7개의 대상 MTD를 토대로, 1~2개의 친수성(극성) 아미노산을 첨가하여 소수성 도메인에 적용하여 세포막으로의 접근성을 높임으로써, 보다 효율적으로 생물학적 활성 분자를 세포내로 전달하는 새로운 개량형 MTD 펩티드를 제작하고자 하였으며, 이를 통해 하기의 식 1로 기재되는 펩티드를 고안하였다;Based on the seven target MTDs selected in Example 1, by adding one or two hydrophilic (polar) amino acids to the hydrophobic domain to increase the access to the cell membrane, more efficiently deliver the biologically active molecules into the cell A new modified MTD peptide was intended to be made, through which the peptide described by Equation 1 was devised;
[식 1][Equation 1]
A1-A2-MTD:A1-A2-MTD:
A1은 메티오닌(M, Met)이고; A 1 is methionine (M, Met);
A2는 양전하를 띠는 아르기닌(R, Arg), 히스티딘(H, His) 및 라이신(K, Lys)으로 이루어진 군으로부터 선택되는 아미노산이며; A2 is an amino acid selected from the group consisting of positively charged arginine (R, Arg), histidine (H, His) and lysine (K, Lys);
MTD는 상기 실시예 1에서 선별된 서열번호 1 내지 7로 이루어진 군으로부터 선택되는 7개의 아미노산 서열.MTD is 7 amino acid sequence selected from the group consisting of SEQ ID NO: 1 to 7 selected in Example 1.
상기 식 1을 통해 고안된 개량형 MTD 펩티드의 서열은 서열번호 15 내지 35에 기재된 아미노산 서열과 같으며, 고안된 아미노산 서열을 토대로 펩티드를 합성하여 그 세포 투과능을 확인하였다.The sequence of the improved MTD peptide designed through Equation 1 is the same as the amino acid sequence shown in SEQ ID NOs: 15 to 35, and the peptide was synthesized based on the designed amino acid sequence to confirm its cell permeability.
실시예 3. 개량형 MTD 펩티드의 2차구조 분석Example 3 Secondary Structure Analysis of Enhanced MTD Peptides
상기 실시예 2에서 고안된 개량형 MTD 펩티드의 서열에 대하여, PEP FOLD server 서비스 프로그램을 이용하여 2차 구조를 분석하였다. For the sequence of the improved MTD peptide designed in Example 2, the secondary structure was analyzed using the PEP FOLD server service program.
그 결과, 도 1 내지 도 4에서 보는 바와 같이, 상기 실시예 2에서 고안된 개량형 MTD 펩티드에 EGFP 형광 단백질의 N-말단 서열을 결합한 서열은 대한민국 공개특허 제10-2009-0103957호(신규한 거대분자 전달 도메인 및 이의 동정 방법 및 용도)에 공지된 거대 분자 전달 도메인(MTD) 펩티드의 구조적 특징을 훼손시키지 않고, 세포막의 투과성을 높일 수 있는 α-helix 구조를 유지하고 있음을 확인하였다. As a result, as shown in Figures 1 to 4, the sequence of binding the N-terminal sequence of the EGFP fluorescent protein to the improved MTD peptide designed in Example 2 is disclosed in Korea Patent Publication No. 10-2009-0103957 (New macromolecule) It was confirmed that the α-helix structure that can enhance the permeability of the cell membrane is maintained without impairing the structural characteristics of the large molecule transfer domain (MTD) peptide known in the delivery domain and its identification method and use.
실시예 4. 세포내 분자 전송 펩티드 및 FITC 융합 형광체의 합성Example 4. Synthesis of Intracellular Molecular Transfer Peptides and FITC Fusion Phosphors
상기 실시예 2에서 고안된 개량형 MTD 펩티드를 본 발명의 피부 생리 활성 분자에 융합되는 세포내 분자 전송 펩티드에 적용하였으며, 이들의 합성을 위해 일반적인 Fmoc SPPS(solid phase peptide synthesis) 방법을 이용하여 C-term부터 하나씩 커플링(coupling) 하였다. The improved MTD peptide designed in Example 2 was applied to intracellular molecular transport peptides fused to the skin bioactive molecules of the present invention, and for the synthesis thereof, C-term using a general Fmoc solid phase peptide synthesis (SPPS) method. Coupling one by one from (coupling).
구체적으로 먼저, 펩티드의 C-말단 첫 번째 아미노산이 레진(resin)에 부착된(attached) 것을 사용하였다. 사용가능한 레진은 NH2-Lys(Dde)-2-chloro-Trityl 레진, NH2-Met-2-chloro-Trityl 레진, 또는 NH2-Ser(tBu)-2-chloro-Trityl 레진 중에서 필요에 따라 적절한 레진을 선정하여 펩티드 합성에 사용하였다.Specifically, first, the C-terminal first amino acid of the peptide was attached to the resin. Resin that can be used is NH 2 -Lys (Dde) -2-chloro-Trityl resin, NH 2 -Met-2-chloro-Trityl resin, or NH 2 -Ser (tBu) -2-chloro-Trityl resin as needed. Appropriate resins were selected and used for peptide synthesis.
둘째, 펩티드 합성에 사용하는 모든 아미노산 원료는 N-말단이 Fmoc으로 보호되고, 잔기는 모두 산에서 제거되는 Trt, Boc, t-Bu 등으로 보호된 것을 사용하였다 (Fmoc-Ala-OH, Fmoc-Val-OH, Fmoc-Arg(Pbf)-OH, Fmoc-Thr(t-Bu)-OH, Fmoc-Ser(t-Bu)-OH, Fmoc-Lys(Boc)-OH, Fmoc-Pro-OH, Fmoc-Met-OH). 특수 아미노산의 경우에는 Fmoc-Lys(Ac)-OH, Fmoc-Lys(Dde)-OH를 사용하였다. Second, all amino acid raw materials used for peptide synthesis were those protected with Tmo, N-terminus, and Trt, Boc, t-Bu, and all residues removed from acid (Fmoc-Ala-OH, Fmoc-). Val-OH, Fmoc-Arg (Pbf) -OH, Fmoc-Thr (t-Bu) -OH, Fmoc-Ser (t-Bu) -OH, Fmoc-Lys (Boc) -OH, Fmoc-Pro-OH, Fmoc-Met-OH). For special amino acids, Fmoc-Lys (Ac) -OH and Fmoc-Lys (Dde) -OH were used.
셋째, 20% piperidine in DMF를 이용하여 상온에서 5분간 2회 반응하여 Fmoc을 제거하였다.Third, Fmoc was removed by reacting twice at room temperature for 5 minutes using 20% piperidine in DMF.
넷째, DMF, MeOH, MC, DMF 순으로 세척하였다.Fourth, it was washed in the order of DMF, MeOH, MC, DMF.
다섯째, 합성된 펩티드를 Resin에서 분리 및 잔기의 보호기 제거에는 TFA/EDT/Thioanisole/TIS/H2O=90/2.5/2.5/2.5/2.5을 사용한다 (TFA = trifluoroacetic acid, EDT = 1,2-ethanedithiol, TIS = triisopropylsilane). 마지막으로 HPLC로 정제 후, 질량분석기(mass spectrometer)로 분자량을 확인하고 동결건조하여 세포내 분자 전송 펩티드 합성품을 얻었다.Fifth, TFA / EDT / Thioanisole / TIS / H2O = 90 / 2.5 / 2.5 / 2.5 / 2.5 is used to isolate the synthesized peptide from Resin and remove the protecting group of residues (TFA = trifluoroacetic acid, EDT = 1,2-ethanedithiol , TIS = triisopropylsilane). Finally, after purification by HPLC, the molecular weight was confirmed by a mass spectrometer (mass spectrometer) and lyophilized to obtain an intracellular molecule transfer peptide synthesis product.
또한, 형광표시자(FITC)이 붙은 세포내 분자 전송 펩티드를 합성하기 위하여 세포내 분자 전송 펩티드는 상기의 합성방법으로 합성을 진행한 후에 마지막으로 라이신(K, Lysine)을 추가하여 펩티드 합성을 진행한 후 라이신의 프리 아민 잔기에 FITC를 결합시켰다. 합성된 세포내 분자 전송 펩티드-FITC 펩티드를 레진에서 분리하고 HPLC로 정제 후, 질량분석기(mass spectrometer)로 펩티드의 분자량을 확인하고 동결건조하여 세포 내 분자 전송 펩티드 형광체를 얻었다. 이후, 합성된 세포내 분자 전송 펩티드 형광체는 차광 상태에서 1 mM 농도가 되도록 DMSO로 녹인 후 1.5 mL 원심분리용 용기에 소량으로 분주하고 사용직전까지 냉동보관 하였다.In addition, in order to synthesize intracellular molecular transport peptides with fluorescence markers (FITC), intracellular molecular transport peptides were synthesized by the above synthesis method, and finally, lysine (K, Lysine) was added to proceed with peptide synthesis. FITC was then bound to the free amine residue of lysine. The synthesized intracellular molecular transfer peptide-FITC peptide was separated from the resin and purified by HPLC, and then the molecular weight of the peptide was confirmed by mass spectrometer and lyophilized to obtain intracellular molecular transfer peptide fluorescent substance. Subsequently, the synthesized intracellular molecular transport peptide phosphor was dissolved in DMSO so as to have a concentration of 1 mM in a light shielding state, and then aliquoted in a small amount in a 1.5 mL centrifuge container and stored frozen until just before use.
실시예 5. 피부 각질 형성세포에서 유세포 측정 (Flow Cytometry)을 이용한 세포내 분자 전송 펩티드 형광체(MTD-FITC)의 Example 5 Intracellular Molecular Transport Peptide Phosphors (MTD-FITC) Using Flow Cytometry in Skin Keratinocytes in vitroin vitro 세포투과능 확인 Cell Permeability Check
세포 투과능을 검증하기 위해 3 μM 농도의 세포내 분자 전송 펩티드 형광체(MTD-FITC)를 피부각질형성세포 (Human Keratinocyte cell line, HaCaT cell, Order No. 300493, CLS cell line service, Germany)에 처리하고, 1시간 동안 배양하였다. 상기 HaCaT 세포를 10% 우태아 혈청(Fetal bovine serum: FBS) 및 1% 페니실린/스트렙토마이신(10,000 units penicillin 및 10,000 μg/mL streptomycin, invitrogen)을 함유하는 DMED (Dubelcco’s modified eagle medium) 배지에서 유지하고, 5% CO2의 습윤(humidified) 대기 하에서 37℃로 배양하였다. 배양이 종결된 후, 단백질이 처리된 HaCaT 세포의 세포막에 노출되어 있는 유리 MTD-FITC를 제거하기 위해 트립신을 처리하고, 냉장 보관한 PBS로 3번 세척하였다. In order to verify cell permeability, 3 μM concentration of intracellular molecular transport peptide phosphor (MTD-FITC) was treated to human keratinocyte cells (Human Keratinocyte cell line, HaCaT cell, Order No. 300493, CLS cell line service, Germany). And incubated for 1 hour. The HaCaT cells were maintained in DMED (Dubelcco's modified eagle medium) medium containing 10% Fetal bovine serum (FBS) and 1% penicillin / streptomycin (10,000 units penicillin and 10,000 μg / mL streptomycin, invitrogen) , Incubated at 37 ° C. under a humidified atmosphere of 5% CO 2 . After the incubation was terminated, trypsin was treated to remove free MTD-FITC exposed to the cell membranes of the protein-treated HaCaT cells and washed three times with refrigerated PBS.
MTD-FITC 펩티드를 유세포 분석기 (FACS Calibur , Beckton-Dickinson, San Diego CA, USA)에 적용하였다. 각각의 시료에 대하여, 세포(1X104)를 셀퀘스트 프로 세포측정 분석(CellQues Pro cytometric analysis) 소프트웨어를 이용하여 분석하였으며, 각각의 실험을 3회 이상 수행하였다. 본 발명에 적용되는 세포내 분자 전송 펩티드 각각의 세포투과성을 기존 MTD-FITC를 대조군으로 사용하여 세포투과 효율을 정량적으로 비교분석 하였다. MTD-FITC peptide was applied to a flow cytometer (FACS Calibur, Beckton-Dickinson, San Diego CA, USA). For each sample, cells (1 × 10 4 ) were analyzed using CellQuest Pro cytometric analysis software, and each experiment was performed three or more times. Cell permeability of each of the intracellular molecular transport peptides applied to the present invention was quantitatively analyzed for cell permeation efficiency using the existing MTD-FITC as a control.
도 5는 유세포 측정(flow cytometry) 분석 결과를 나타낸 것으로, 세포에 처리된 각각의 세포내 분자 전송 펩티드의 세포 유입 효율은 셀퀘스트 프로 세포측정 분석(CellQues Pro cytometric analysis) 소프트웨어로 기하 평균(Geometric mean) 형광의 변화를 상대적으로 평가함으로써, 세포 유입 효율을 비교하였다. FIG. 5 shows the results of flow cytometry analysis. The cell influx of each intracellular molecular transport peptide treated in the cell was measured using the CellQues Pro cytometric analysis software. ) Cell influx efficiency was compared by relatively evaluating the change in fluorescence.
그 결과, 세포내 분자 전송 펩티드(MTD-FITC)가 기존 MTD 펩티드의 우수한 세포 유입 효율을 나타내며, 또한 공지의 PTD 보다 최소 140%에서 최대 400%까지 높은 세포 유입 효율을 나타냄을 확인하였다. As a result, it was confirmed that the intracellular molecular transport peptide (MTD-FITC) shows the excellent cell inflow efficiency of the existing MTD peptide, and also shows the cell inflow efficiency higher by at least 140% to up to 400% than the known PTD.
실시예 6. 공초점현미경을 이용한 세포내 분자 전송 펩티드 형광체(MTD-FITC) 의 피부 세포 투과능 확인Example 6 Verification of Skin Cell Permeability of Intracellular Molecular Transport Peptide Phosphor (MTD-FITC) Using Confocal Microscopy
세포내 분자 전송 펩티드와 기존에 세포 투과가 되는 것으로 알려진 PTD (Tat) 단백질을 피부유래 각질형성세포 (HaCaT cell, immortalized human keratinocyte, Cat No. 300493, CLS, Germany)에 3 μM 농도로 처리하고 37℃에서 1시간 동안 배양한 후, 공초점현미경 (confocal microscopy, Nikon, Germany)을 이용하여 가시적으로 관찰하였다. 실험 전일 HaCaT 세포를 글래스 커버슬립이 들어있는 12-웰 플레이트(12-well culture plate) 내에서 24시간 동안 배양하였다. HaCaT 세포는 10% 우태아혈청(Fetal Bovine Serum: FBS), 및 1% 페니실린/스트렙토마이신(10,000 units penicillin 및 10,000 μg/mL streptomycin, Invitrogen, USA)을 함유하는 DMEM 배지에서 유지하고, 5% CO2의 습윤(humidified) 대기 하에서 37℃로 배양하였다. HaCaT 세포에 3 μM의 농도로 scrambled 펩티드, MTD-FITC 및 PTD-FITC 펩티드를 1시간 동안 처리하였다. 상기 처리 1시간 후, 관찰을 위하여 세포를 실온에서 4% 파라포름알데하이드 용액 (paraformaldehyde, PFA)로 20 분간 고정하였다. Intracellular Molecular Transport Peptides and PTD (Tat) Proteins Known to Be Permeable to Cells were Treated at a Concentration of 3 μM in HaCaT cells, immortalized human keratinocytes, Cat No. 300493, CLS, Germany 37 After incubation for 1 hour at ℃, it was visually observed using a confocal microscope (confocal microscopy, Nikon, Germany). The day before the experiment, HaCaT cells were incubated for 24 hours in a 12-well culture plate containing glass coverslips. HaCaT cells were maintained in DMEM medium containing 10% Fetal Bovine Serum (FBS), and 1% penicillin / streptomycin (10,000 units penicillin and 10,000 μg / mL streptomycin, Invitrogen, USA), and 5% CO Incubated at 37 ° C. under a humidified atmosphere of 2 . HaCaT cells were treated with scrambled peptide, MTD-FITC and PTD-FITC peptide for 1 hour at a concentration of 3 μM. One hour after the treatment, cells were fixed for 20 minutes with 4% paraformaldehyde solution (paraformaldehyde, PFA) at room temperature for observation.
내재화된(internalzed) FITC-펩티드의 직접적인 검출을 위하여 상기 세포를 PBS로 3회 세척하고 핵 형광 염색 용액인 5 mM 농도의 DAPI (4',6-diamidino-2-phenylindole)로 대조염색(counterstain)을 수행하였다. 10분 간의 DAPI 염색 후, 상기 세포를 PBS로 3회 세척하고 단백질의 형광표지를 보존하기 위해 20 ㎕의 중첩배지(mounting media)를 슬라이드 위에 점적하고 관찰하였다. 상기 세포내 분자 전송 펩티드가 처리된 세포는 FITC-펩티드의 세포 내 전달부위의 구별이 용이하도록 DAPI 염색을 통해 핵으로 전달 및 세포투과성 여부를 확인하였으며, 공초점 현미경은 노마스키 필터(normaski filter)를 이용하여 세포의 원형을 관찰하고, FITC 형광 및 DAPI 형광을 각각의 플루오로크롬(fluorochrome)에 맞는 필터로 관찰하였다. 도 6 내지 도 8에 나타난 바와 같이, 본 발명에 적용되는 세포내 분자 전송 펩티드 모두에서 세포막 바깥에 부착되어 있는 PTD (Tat)에 비해 분명하게 세포 내로 전송된 것을 확인하였으며, 개량된 세포 내 분자 전송 펩티드가 피부 세포에 대해 우수한 세포 투과능을 가지고 있음을 입증하였다. The cells were washed three times with PBS for direct detection of internalized FITC-peptide and counterstained with 5 mM concentration of DAPI (4 ', 6-diamidino-2-phenylindole), a nuclear fluorescence staining solution. Was performed. After 10 minutes of DAPI staining, the cells were washed three times with PBS and 20 μl of mounting media were dropped onto the slides and observed to preserve the fluorescent label of the protein. Cells treated with the intracellular molecular transport peptides were transferred to the nucleus through DAPI staining for easy identification of intracellular delivery sites of FITC-peptides and confirmed cell permeability. The confocal microscope is a Normaski filter. The prototype of the cells was observed using FITC fluorescence and DAPI fluorescence with a filter suitable for each fluorochrome. As shown in Figures 6 to 8, it was confirmed that all of the intracellular molecular transport peptides to be applied to the present invention was clearly transmitted into the cell compared to the PTD (Tat) attached to the outside of the cell membrane, and improved intracellular molecular transport It was demonstrated that the peptide has good cell permeability for skin cells.
실시예 7. 세포내 분자 전송 펩티드의 인공 피부 조직 투과능 확인Example 7 Confirmation of Artificial Skin Tissue Permeability of Intracellular Molecular Transfer Peptides
Ex vivo 조직 분포 능력의 분석을 위하여 EpiOral 피부모델 (MatTek, MA, USA)을 사용하여 FITC를 접합시킨 종래의 MTD (M18m, M173)와 세포내 분자 전송 펩티드 (M1018m, M1173A)를 선별하여 처리하고, 공초점현미경(confocal microscopy, Carl Zeisse , Germany)을 이용하여 가시적으로 관찰하였다. 실험전일 MatTek사에서 제공하는 실험 배지가 0.5 mL 들어있는 12-웰 플레이트(12-well plate)에 EpiOral 인공 조직 모델을 15시간 동안 5% CO2의 습윤(humidified) 대기 하에서 37℃로 배양하였다. 다음날 새로운 배지로 교환하고, 50 μM 농도의 펩티드 40 ㎕를 EpiOral 인공 조직 위쪽에 처리하고 5시간 동안 5% CO2의 습윤(humidified) 대기 하에서 37℃로 배양하였다. 4% 파라포름알데하이드(paraformaldehyde, PFA)에 15시간 이상 넣어 EpiOral 인공 조직 모델을 고정한 후, 마이크롬 냉동박절기(Microm HM520 cryostat, Thermo)를 이용하여 동결절편(Cryosection)(6 μm)을 제조한 뒤, 이를 유리 슬라이드 위에 올려 제작하였다. 제작된 슬라이드는 10분 동안 PBS 완충용액으로 절편을 세척하고 0.5 mM DAPI 용액에 5분 간 노출하여 조직 내 세포핵을 염색하였다. 염색된 조직을 다시 10분 간 3번씩 PBS 완충용액으로 세척한 후, 중첩배지(mounting media)를 이용하여 슬라이드에 고정한 후에 공초점 현미경으로 관찰하였고 그 결과를 도 9에 나타내었다. For analysis of ex vivo tissue distribution ability, the conventional MTD (M18m, M173) and intracellular molecular transport peptide (M1018m, M1173A), which were conjugated with FITC, were selected and processed using EpiOral skin model (MatTek, MA, USA). , Visual observation using confocal microscopy (confocal microscopy, Carl Zeisse, Germany). EpiOral artificial tissue model was incubated at 37 ° C. for 15 hours under a humidified atmosphere of 5% CO 2 in a 12-well plate containing 0.5 mL of the test medium provided by MatTek. The next day it was exchanged with fresh medium, 40 μl of 50 μM peptide was treated on top of EpiOral artificial tissue and incubated at 37 ° C. under a humidified atmosphere of 5% CO 2 for 5 hours. After fixing the EpiOral artificial tissue model in 4% paraformaldehyde (PFA) for more than 15 hours, cryosections (6 μm) were prepared using a Microm HM520 cryostat (thermo). It was produced on a glass slide. The prepared slides were stained with PBS buffer for 10 minutes and stained with cell nuclei in tissues by exposure to 0.5 mM DAPI solution for 5 minutes. The stained tissue was washed with PBS buffer three times again for 10 minutes, fixed on a slide using a mounting medium, and observed under a confocal microscope. The results are shown in FIG. 9.
도 9에 나타난 바와 같이, 음성대조군(vehicle)에서는 어떠한 유의미한 수준의 형광도 관찰되지 않았다. 하지만, 실험에 사용한 세포내 분자 전송 펩티드의 경우 시간이 경과함에 따라 EpiOral 인공 조직 모델 안쪽으로 투과가 일어나는 것을 확인하였다. 또한 실험에 사용한 종래의 MTD 펩티드(18m, 및 173) 보다 세포내 분자 전송 펩티드(1018m, 및 1173A)에서 심부 조직까지 보다 효과적으로 전달되는 것을 확인할 수 있었으며 형광의 밝기도 증가되는 것을 확인하였다. 이로서 개량된 세포 내 분자 전송 펩티드가 피부 조직에 대해서도 우수한 조직 투과능을 가지고 있음을 입증하였다. As shown in Figure 9, no significant level of fluorescence was observed in the negative vehicle. However, in the case of the intracellular molecular transfer peptide used in the experiment it was confirmed that permeation occurs inside the EpiOral artificial tissue model over time. In addition, it was confirmed that the intracellular molecular transport peptides (1018m, and 1173A) were more effectively delivered to the deeper tissue than the conventional MTD peptides (18m, and 173) used in the experiment, and the brightness of fluorescence was also increased. This demonstrates that the improved intracellular molecular transport peptides also have excellent tissue penetrating ability to skin tissue.
실시예 8. 세포내 분자 전송 펩티드의 인공 피부 조직 투과능 확인Example 8. Confirmation of Artificial Skin Tissue Permeability of Intracellular Molecular Transfer Peptides
Ex vivo 조직에서의 각질층 투과 능력의 분석을 위하여 EpiDerm 피부모델 (MatTek, MA, USA)을 사용하여 FITC를 접합시킨 세포내 분자 전송 펩티드 (M1067)와 Tat 펩티드를 선별하여 처리하고, 공초점현미경(confocal microscopy, Carl Zeiss , Germany)을 이용하여 가시적으로 관찰하였다. 실험전일 MatTek사에서 제공하는 실험 배지가 0.5 ml 들어있는 12-웰 플레이트(12-well plate)에 EpiDerm 피부모델을 15시간 동안 5% CO2의 습윤(humidified) 대기 하에서 37℃로 배양하였다. 다음날 새로운 배지로 교환하고, 100 μM 농도의 펩티드 40 ㎕를 EpiDerm 피부 위쪽에 처리하고 24시간 동안 5% CO2의 습윤(humidified) 대기 하에서 37℃로 배양하였다. 4% 파라포름알데하이드(paraformaldehyde, PFA)에 15시간 이상 넣어 EpiDerm 피부모델을 고정한 후, 마이크롬 냉동박절기(Microm HM520 cryostat, Thermo)를 이용하여 동결절편(Cryosection)(6 μm)을 제조한 뒤, 이를 글래스 슬라이드 위에 올려 제작하였다. 제작된 슬라이드는 10분 동안 PBS 완충용액으로 절편을 세척하고 0.5 mM DAPI 용액에 5분 간 노출하여 조직 내 세포핵을 염색하였다. 염색된 조직은 다시 10분 간 3번씩 PBS 완충용액으로 세척을 한 후, 중첩배지(mounting media)를 이용하여 고정한 후에 공초점 현미경으로 관찰하였고 그 결과를 도 10에 나타내었다. For the analysis of stratum corneum penetrating ability in ex vivo tissues, an epiderm skin model (MatTek, MA, USA) was used to select and process intracellular molecular transport peptides (M1067) and Tat peptides conjugated to FITC. confocal microscopy, Carl Zeiss, Germany). EpiDerm skin models were incubated at 37 ° C. for 15 hours under a humidified atmosphere of 5% CO 2 in a 12-well plate containing 0.5 ml of the test medium provided by MatTek. The next day it was exchanged with fresh medium and 40 μl of 100 μM peptide was treated over EpiDerm skin and incubated at 37 ° C. under a humidified atmosphere of 5% CO 2 for 24 hours. After fixing the EpiDerm skin model in 4% paraformaldehyde (PFA) for at least 15 hours, cryosections (6 μm) were prepared using a Microm HM520 cryostat, Thermo. This was put on a glass slide. The prepared slides were stained with PBS buffer for 10 minutes and stained with cell nuclei in tissues by exposure to 0.5 mM DAPI solution for 5 minutes. The stained tissues were washed with PBS buffer three times for 10 minutes, and then fixed with a mounting medium, and observed with a confocal microscope. The results are shown in FIG. 10.
도 10에 나타난 바와 같이, 음성대조군(vehicle)에서는 어떠한 유의미한 수준의 형광도 관찰되지 않았으며, Tat 펩티드의 경우는 최상층의 각질층에 처리된 Tat-FITC가 조직 내로 투과되지 못하고 머물러 있는 것으로 나타났지만, 세포 내 분자 전송 펩티드 (M1067)의 경우 시간이 경과함에 따라 최상층의 각질층을 투과하여 Epiderm 피부 모델 안쪽으로 현저히 투과가 일어나는 것을 확인하였다. 이로써 세포 내 분자 전송 펩티드 (M1067)는 피부 흡수에 있어 최대 장벽으로 알려진 각질층을 통과하고, 우수한 피부 조직 투과능을 보유하고 있음을 입증하였다. As shown in FIG. 10, no significant level of fluorescence was observed in the negative vehicle, and in the case of the Tat peptide, Tat-FITC treated in the stratum corneum of the uppermost layer was found to remain impermeable to tissue. In the case of intracellular molecular transport peptide (M1067) it was confirmed that the permeation of the stratum corneum of the uppermost layer to significantly penetrate into the Epiderm skin model over time. This demonstrated that intracellular molecular transport peptides (M1067) pass through the stratum corneum, known as the maximum barrier to skin uptake, and possess good skin tissue permeability.
실시예 9. 동물 모델을 이용한 세포 내 분자 전송 펩티드의 Example 9 Intracellular Molecular Transfer Peptides Using Animal Models in vivoin vivo 피부 조직 투과능 확인 Skin Tissue Permeability Check
세포내 분자 전송 펩티드의 in vivo 피부 조직 투과능을 검증하기 위하여, 동물모델을 이용하여 실험하였다. 8주령의 암컷 ICR 마우스 (오리엔트바이오, 한국)를 대상으로 개체당 2.5 cm X 2.5 cm 크기의 멸균거즈에 형광표시자 (FITC)가 부착된 세포내 분자 전송 펩티드(M1067), Tat-FITC 및 FITC 단독을 각각 100 ㎍ 점적하여 마우스 등 부위에 Tegarderm (3M, USA)를 이용하여 고정시켰다. 1, 3, 6, 12 시간 경과 후, 마우스를 경추탈골의 방법으로 희생시키고, 약물이 도포된 부위의 피부를 적출하여, 4% paraformaldehyde에 24시간 이상 넣어 조직을 고정한 후, 6 ㎛ 두께로 냉동 절편을 얻어 슬라이드를 제작하였다. 제작된 슬라이드는 10분 동안 PBS 완충용액으로 절편을 세척하여 0.5 mM DAPI 용액에 5분 간 노출하여 조직 내 세포핵을 염색하였다. 염색된 조직을 다시 10분 간 3번씩 PBS 완충용액으로 세척을 한 후, 중첩배지 (mounting media)를 이용하여 고정한 후에 공초점 현미경으로 관찰하였으며, 이를 도 11에 나타내었다.In order to verify the in vivo skin tissue permeability of intracellular molecular transport peptides, experiments were carried out using animal models. Intracellular Molecular Transfer Peptides (M1067), Tat-FITC and FITC with fluorescent markers (FITC) attached to sterile gauze 2.5 cm x 2.5 cm per individual in 8-week-old female ICR mice (Oriental Bio, Korea). 100 μg of each alone was added and fixed to the back of the mouse using Tegarderm (3M, USA). After 1, 3, 6, 12 hours, the mouse was sacrificed by the method of cervical distal bone, the skin of the drug-coated area was extracted, and the tissue was fixed in 4% paraformaldehyde for at least 24 hours, and then frozen to a thickness of 6 μm. Sections were obtained to produce slides. The prepared slides were washed with PBS buffer for 10 minutes, and then exposed to 0.5 mM DAPI solution for 5 minutes to stain the cell nuclei in tissues. The stained tissues were washed again with PBS buffer three times for 10 minutes, and then fixed by using a mounting medium, followed by confocal microscopy, shown in FIG. 11.
도 11에 나타난 바와 같이, 음성대조군 (vehicle)에서는 형광신호가 전혀 검출되지 않았으며, FITC 단독 및 Tat-FITC 처리군에서는 피부 최상위층인 각질층에 형광신호가 특이적으로 관찰되는 것으로 보아 피부투과가 일어나지 않았음을 확인하였다. 그러나, 실험에 사용한 세포내 분자 전송 펩티드(M1067)의 경우, 도포 시간이 경과함에 따라 피부의 깊은 조직까지 투과가 일어나며, 투과된 세포내 분자 전송 펩티드(M1067)는 각질층을 통과하여 피부 조직 및 피부 모낭세포의 세포질에도 특이적으로 존재하는 것을 확인하였다.As shown in FIG. 11, no fluorescence signal was detected in the negative control group, and in the FITC alone and Tat-FITC treatment groups, the fluorescence signal was specifically observed in the stratum corneum, which is the top layer of the skin, so that skin permeation did not occur. It was confirmed that no. However, in the case of the intracellular molecular transfer peptide (M1067) used in the experiment, permeation occurs to the deep tissue of the skin as the application time passes, and the permeated intracellular molecular transfer peptide (M1067) passes through the stratum corneum and the skin tissue and skin It was confirmed that the hair follicle cells also specifically present in the cytoplasm.
실시예 10. 피부 생리 활성이 물질이 결합된 세포내 분자 전송 펩티드의 미백 효능 확인Example 10 Confirmation of Whitening Efficacy of Intracellular Molecular Transfer Peptides with Skin Biological Activity
10-1. 세포내 분자 전송 펩티드-쿠마릭산의 합성10-1. Synthesis of Intracellular Molecular Transport Peptide-coumaric Acid
N-말단의 아미노산까지 커플링 된 상기 실시예 4에서 합성된 세포내 분자 전송 펩티드 M1067 및 M2067에 20% 피페리딘/N-메틸피롤리돈(Piperidine/N-methylpyrrolidone) 용액을 가하여 Fmoc기를 제거하고 N-메틸피롤리돈과 디클로로메탄(dichloromethane)으로 세척한 다음 상업적으로 판매되고 있는 쿠마릭산(coumaric acid, Sigma, USA)을 커플링시켰다. 커플링이 끝난 후 N-메틸피롤리돈과 디클로로메탄(dichlorometnane)으로 여러 번 세척한 다음 질소 가스로 건조시켰다. 여기에 트리플루오로아세트산 : 페놀 :치오아니솔 : 물 : 트리이소프로필실란 (trifluoroacetic acid: phenol: thioanisole: water: triisopropylsilane)의 90 : 2.5 : 2.5 : 2.5 : 2.5 (v/v) 용액으로 2 내지 3시간 반응시켜 펩타이드 보호기를 제거하고, 레진으로부터 펩타이드가 결합된 쿠마릭산을 분리시킨 다음, 디에틸에테르로 펩티드를 침전시켰다. 쿠마릭산의 C의 9번 탄소에 결합된 알코올기를 보호하고 있는 벤질기를 제거하기 위하여 10% Pd/C을 메탄올에 첨가하고, 수소 하에서 약 1시간 동안 실온에서 교반한 후, 셀라이트를 사용하여 Pd/C를 제거하고 얻은 여액을 감압 농축하였다. 이렇게 얻은 세포내 분자 전송 펩티드-쿠마릭산 유도체는 0.1% 트리플루오로아세트산이 포함된 아세토나이트릴를 구배로 하여 정제 역상 고성능 액체 크로마토그래피 컬럼(purified reverse phase high performance liquid chromatography column, Zobax, C8 300Å, 21.1mm X 25cm)을 이용하여 정제함으로써 하기 식 2에서와 같이 서열번호 16번 또는 23번의 아미노산 서열을 갖는 M1067 또는 M2067 세포 내 분자 전송 펩티드에 쿠마릭산이 결합된 세포내 분자 전송 펩티드-쿠마릭산 유도체를 합성하였다.A 20% piperidine / N-methylpyrrolidone solution was added to the intracellular molecular transfer peptides M1067 and M2067 synthesized in Example 4 coupled to the N-terminal amino acid to remove the Fmoc group. After washing with N-methylpyrrolidone and dichloromethane (coumaric acid, Sigma, USA) commercially available was coupled. After coupling, the mixture was washed several times with N-methylpyrrolidone and dichloromethane and dried with nitrogen gas. Trifluoroacetic acid: phenol: thioanisole: water: trifluoroacetic acid (phenol: thioanisole: water: triisopropylsilane) 90: 2.5: 2.5: 2.5: 2.5 (v / v) solution of 2 to The reaction was carried out for 3 hours to remove the peptide protecting group, and the peptide-bound coumalic acid was separated from the resin, and the peptide was precipitated with diethyl ether. 10% Pd / C was added to methanol to remove the benzyl group protecting the alcohol group bonded to carbon 9 of the coumalic acid, stirred at room temperature for about 1 hour under hydrogen, and then Pd using Celite. / C was removed and the filtrate was concentrated under reduced pressure. The intracellular molecular transport peptide-coumaric acid derivative thus obtained was purified with acetonitrile containing 0.1% trifluoroacetic acid as a gradient, followed by a purified reverse phase high performance liquid chromatography column (Zobax, C8 300Å, 21.1). mm × 25 cm) to obtain intracellular molecular transport peptide-coumaric acid derivatives in which coumaric acid is bound to M1067 or M2067 intracellular molecular transport peptides having the amino acid sequence of SEQ ID NO: 16 or 23, as shown in Equation 2 below. Synthesized.
[식 2][Equation 2]
(4-Hydroxycinnamoyl) Ala Ala Val Ala Pro Ala Ala Ala Arg Met(4-Hydroxycinnamoyl) Ala Ala Val Ala Pro Ala Ala Ala Arg Met
(4-Hydroxycinnamoyl) Ala Ala Val Ala Pro Ala Ala Ala His Met(4-Hydroxycinnamoyl) Ala Ala Val Ala Pro Ala Ala Ala His Met
10-2. 세포내 분자 전송 펩티드-쿠마릭산의 티로시나제 저해 활성 확인10-2. Confirmation of Tyrosinase Inhibitory Activity of Intracellular Molecular Transport Peptide-coumaric Acid
상기 실시예 10-1에서 합성된 화합물인 세포내 분자 전송 펩티드-쿠마릭산을 사용하여 티로시나제 활성 저해 효과를 측정하였다. 티로시나제는 버섯에서 분리 및 정제된 것으로 시그마사(Sigma, USA)에서 구입하여 사용하였다. 기질인 티로신은 0.05 M 인산칼륨 완충용액(pH6.8)에 녹여 0.3 mg/mL 용액으로 만들어 사용하였다. 화합물은 증류수에 100 mg/mL 농도로, 쿠마릭산은 에틸알코올에 100 mg/mL 농도로 용해시키고 다시 적당한 농도로 희석하여 사용하였다. 시료 티로신 용액과 완충용액을 각각 0.5 mL씩 시험관에 넣고 여기에 상기 화합물 용액을 0.5 mL을 가하여 37℃ 항온기에서 10분 간 방치한 후 2,000 U/mL 티로시나제 0.05 mL을 넣고 37℃에서 10분 간 반응시켰다. 이때 대조군은 각 화합물 대신 증류수 0.5 mL을 넣은 것이다. 반응액이 든 시험관을 항온기에서 꺼내 분광광도계 (spectrophotometer)로 파장 450 nm에서 흡광도를 측정하여 티로시나제 활성 저해율을 구하였다. 저해율을 하기 수학식 1에 따라 구하였으며, 그 결과는 도 12에 나타내였다.The inhibitory effect of tyrosinase activity was measured using the intracellular molecule transfer peptide-coumaric acid, a compound synthesized in Example 10-1. Tyrosinase was isolated and purified from mushrooms and purchased from Sigma, USA. Tyrosine, a substrate, was dissolved in 0.05 M potassium phosphate buffer (pH6.8) and used as a 0.3 mg / mL solution. The compound was dissolved in distilled water at a concentration of 100 mg / mL, and the coumalic acid was dissolved in ethyl alcohol at a concentration of 100 mg / mL, and diluted again to an appropriate concentration. 0.5 mL of each sample tyrosine solution and buffer solution were added to the test tube, and 0.5 mL of the compound solution was added thereto, and the resultant was allowed to stand at 37 ° C. for 10 minutes. Then, 0.05 mL of 2,000 U / mL tyrosinase was added thereto and reacted at 37 ° C. for 10 minutes. I was. In this case, 0.5 mL of distilled water was added instead of each compound. The test tube containing the reaction solution was taken out of the incubator and the absorbance was measured at a wavelength of 450 nm with a spectrophotometer to determine the inhibition rate of tyrosinase activity. The inhibition rate was calculated according to Equation 1 below, and the results are shown in FIG. 12.
[수학식 1][Equation 1]
저해율 (%) = (A-B)/A X 100 % Inhibition = (A-B) / A X 100
상기 수학식 1에서,In Equation 1,
A는 저해제가 첨가되지 않은 것의 450nm에서의 흡광도이며,A is the absorbance at 450 nm of no inhibitor added,
B는 저해제가 첨가된 것의 450nm에서의 흡광도이다.B is the absorbance at 450 nm of the inhibitor added.
그 결과 도 12에 나타낸 바와 같이, 기존에 티로시나제 저해 활성이 높은 것으로 알려진 쿠마릭산에 비해 본 발명의 세포내 분자 전송 펩티드와 결합한 화합물의 경우, 효소 저해 활성이 통계적으로 유의하게 증가한 것을 확인할 수 있었다.As a result, as shown in FIG. 12, it was confirmed that the enzyme inhibitory activity was statistically significantly increased in the case of the compound conjugated with the intracellular molecular transport peptide of the present invention, compared to the coumalic acid known to have high tyrosinase inhibitory activity.
10-3. 세포내 분자 전송 펩티드-쿠마릭산의 세포내 멜라닌 생성 저해 활성 확인10-3. Inhibition of Intracellular Melanin Production by Intracellular Molecular Transport Peptide-Cumaric Acid
상기 실시예 10-1에서 합성된 화합물인 세포내 분자 전송 펩티드-쿠마릭산을 사용하여 세포 배양시 세포내의 멜라닌 생성양을 비교하였다. 마우스 유래 멜라노마 세포(murine melanoma, B16F1, 한국세포주은행 KCLB No.80007)를 10% FBS (fetal bovine serum)이 함유된 DMEM (Dubelcco's modified eagle medium) 배지로 6-well plate에 well당 1 X 105개로 접종한 후 5% CO2, 37℃ 하에서 세포가 well 바닥에 약 80% 이상 부착될 때까지 배양한다. 배양 후 배지를 제거하고 시료가 적당 농도 (1, 10, 100 ㎍/mL)로 희석된 배지로 교체한 후 5% CO2, 37℃ 하에서 매일 배지를 교환하면서 3일 동안 배양한다. 3일 배양 다음날 배지를 제거한 세포를 PBS (phosphated buffer saline)으로 세척하고, 이것을 트립신으로 처리하여 세포를 회수한다. 회수된 세포는 10,000 rpm으로 10분간 원심분리한 다음 상등액을 제거하여 cell pellet을 얻고, 이 세포 pellet은 60℃에서 건조한 후 10% DMSO가 함유된 1M 수산화나트륨용액 200 uL를 넣어 60℃에서 충분히 녹여 세포내 멜라닌을 얻는다. 이 액을 가지고 microplate reader로 490 nm에서 흡광도를 측정하고 일부는 단백질 양을 특정하여 일정 단백질당 멜라닌양을 구한다. 공시험하여 보정한다.Intracellular melanocyte production was compared using the intracellular molecular transfer peptide-coumaric acid compound synthesized in Example 10-1. Mouse-derived melanoma cells (murine melanoma, B16F1, Korea Cell Line Bank KCLB No.80007) with DMEM (Dubelcco's modified eagle medium) medium containing 10% FBS (fetal bovine serum) 1 X 10 per well in a 6-well plate It was inoculated into 5 pieces and cultured in the 5% CO 2, 37 ℃ until the cell is attached to at least about 80% of the well bottom. After incubation, the medium is removed, the sample is replaced with medium diluted to an appropriate concentration (1, 10, 100 μg / mL), and then incubated for 3 days with changing medium every day under 5% CO 2 , 37 ° C. The day after the 3 day culture, the cells from which the medium was removed are washed with PBS (phosphated buffer saline), and the cells are recovered by treating with trypsin. The recovered cells were centrifuged at 10,000 rpm for 10 minutes, and then the supernatant was removed to obtain cell pellets. The cell pellets were dried at 60 ° C., and 200 μL of 1M sodium hydroxide solution containing 10% DMSO was dissolved at 60 ° C .. Obtain intracellular melanin. With this solution, the absorbance is measured at 490 nm with a microplate reader, and some of them determine the amount of melanin per protein by specifying the amount of protein. Calibrate by blank test.
그 결과 도 13에 나타낸 바와 같이, 기존에 세포내 멜라닌 생성 저해 효능이 있는 것으로 알려진 알부틴 (arbutin) 및 쿠마릭산 (coumaric acid)에 비해 본 발명의 세포내 분자 전송 펩티드와 결합한 화합물의 경우, 세포내 멜라닌 생성 저해 효능이 통계적으로 유의하게 증가한 것을 확인할 수 있었다.As a result, as shown in Figure 13, in the case of a compound bound to the intracellular molecular transport peptide of the present invention compared to arbutin (coutinic acid) and arbutin (coutinic acid) known to inhibit the intracellular melanin production previously, intracellular It was confirmed that the melanin production inhibitory effect significantly increased.
10-4. 세포내 분자 전송 펩티드-쿠마릭산의 피부 안전성 평가10-4. Skin Safety Assessment of Intracellular Molecular Transport Peptide-coumaric Acid
상기 실시예 10-1에서 합성된 화합물 세포내 분자 전송 펩티드-쿠마릭산과 세포내 분자 전송 펩티드(M1067)의 인체 피부를 이용한 일차자극 시험을 통하여 화장품 원료로서의 안전성을 확인하기 위하여 전문 임상 시험 기관인 (주)더마프로에 의뢰하여 수행하였다. 임상용 화장품 조성물은 하기에 기재된 바와 같이 준비하였다.In order to confirm the safety as a cosmetic raw material through the primary stimulation test using the human skin of the compound intracellular molecular transfer peptide-coumaric acid and intracellular molecular transfer peptide (M1067) synthesized in Example 10-1, Note) It was performed by requesting DERMAPRO. The clinical cosmetic composition was prepared as described below.
10-4-1.인체 피부 일차 자극 시험 10-4-1.Human Skin Primary Stimulation Test
임상 시험 선정 기준에 부합하고 제외기준에 해당되지 않는 피험자 30명 이상을 선정하였다. 피험자를 대상으로 등 부위에 시료물질을 도포한 후 48시간 후에 제거하였다. 제거 후 30분, 24시간 후에 시험부위를 관찰하였다. 피부 평가는 Frosch & Kligman 법(Frosch P.J and Kligman A.M. J Am Acad Dermatol, 1(1):35-41 (1979))과 The Cosmetic, Toiletry, and Frangrance Association (CTFA) guideline (The Cosmetic, Toiletry and Frangrance Association, Inc. Washington, D.C. 20005 (1981))을 반영한 표 1의 기준으로 평가하였고, 48시간 및 72시간의 평균 반응도를 비교하였으며, 각 조성물에 대한 평균 반응도를 기준으로 하여 그 결과를 판정하였다. More than 30 subjects were selected who met the criteria for clinical trial selection and did not meet the exclusion criteria. Subjects were removed 48 hours after application of sample material to their backs. The test site was observed 30 minutes and 24 hours after removal. Skin assessments include the Frosch & Kligman Act (Frosch PJ and Kligman AM J Am Acad Dermatol, 1 (1): 35-41 (1979)) and The Cosmetic, Toiletry, and Frangrance Association (CTFA) guideline (The Cosmetic, Toiletry and Frangrance Association, Inc. Washington, DC 20005 (1981)) was evaluated on the basis of Table 1, and the average reactivity of 48 and 72 hours was compared, and the results were determined based on the average reactivity for each composition.
표 1 Recording of patch test reactions
Symbol Grade Clinical Description
+ 1 Slight erythema, either spotty or diffuse
++ 2 Moderate uniform erythema
+++ 3 Intense erythema with edema
++++ 4 Intense erythema with edema & vesicles
Table 1 Recording of patch test reactions
Symbol Grade Clinical Description
+ One Slight erythema, either spotty or diffuse
++ 2 Moderate uniform erythema
+++ 3 Intense erythema with edema
++++ 4 Intense erythema with edema & vesicles
표 2 인체 피부 일차 자극 시험 결과(n=30)
번호 시험물질명 No. of responder 48시간 72시간 반응도
1+ 2+ 3+ 1+ 2+ 3+ 47h 72h Mean
1 세포내 분자전송 펩티드 1% 함유 0 - - - - - - 0.0 0.0 0.0
2 세포내 분자 전송 펩티드-쿠마릭산 1% 함유 0 - - - - - - 0.0 0.0 0.0
3 쿠마릭산 1% 함유 0 - - - - - - 0.0 0.0 0.0
4 대조군 (Squalane) 0 - - - - - - 0.0 0.0 0.0
TABLE 2 Human skin primary irritation test result (n = 30)
number Test substance name No. of responder 48 hours 72 hours Responsiveness
1+ 2+ 3+ 1+ 2+ 3+ 47h 72h Mean
One Contains 1% intracellular molecular transport peptide 0 - - - - - - 0.0 0.0 0.0
2 Contains 1% intracellular molecular transport peptide-coumaric acid 0 - - - - - - 0.0 0.0 0.0
3 Contains 1% coumalic acid 0 - - - - - - 0.0 0.0 0.0
4 Squalane 0 - - - - - - 0.0 0.0 0.0
상기 표 2에 나타난 바와 같이 세포내 분자 전송 펩티드 및 세포내 분자 전송 펩티드-쿠마릭산은 인체 피부 일차 자극 측면에서 저자극 범주의 물질로 확인되었다. 이로써, 전문시험기관의 임상시험을 통해 세포내 분자 전송 펩티드가 피부 생리 활성 분자의 기능을 유지시키면서도, 인체에 대해서 안전하게 이용될 수 있음을 입증하였으며, 이는 화장용 조성물로서 이용가치가 현저히 우수함을 보여주고 있다. As shown in Table 2, the intracellular molecular transport peptide and intracellular molecular transport peptide-coumaric acid were identified as substances in the hypoallergenic category in terms of human skin primary stimulation. As a result, it was proved that the intracellular molecular transport peptides can be safely used in the human body while maintaining the functions of the skin bioactive molecules through clinical trials of specialized test institutes. Giving.
10-4-2. 세포내 분자 전송 펩티드-쿠마릭산 함유 화장료 조성물의 제조10-4-2. Preparation of intracellular molecular transport peptide-coumaric acid-containing cosmetic composition
세포내 분자 전송 펩티드-쿠마릭산 또는 세포내 분자 전송 펩티드를 함유한 에센스 조성물은 상기 표 3의 조성으로 아래와 같이 제형화하였다.Essence compositions containing intracellular molecular transfer peptide-coumaric acid or intracellular molecular transfer peptide were formulated as follows with the composition of Table 3 above.
수상용해조에 1 ~ 6을 넣고 70℃까지 가온하면서 완전 용해시킨 뒤 유화조로 투입한다. 유상용해조에 7 ~ 11을 넣고 70℃까지 가온하면서 완전 용해시킨 후 유화조에 넣고 혼합한다. 내용물을 40℃까지 냉각한 뒤 원료 12, 13, 15을 유화조로 투입한 뒤 혼합한 후 내용물을 실온까지 냉각시켜 세포내 분자 전송 펩티드-쿠마릭산을 함유하는 피부 미백용 조성물을 제조하였다.1 to 6 is added to the water-dissolving tank, dissolved completely while warming up to 70 ℃, and then put into the emulsifying tank. 7 to 11 is added to the oil-dissolving tank and dissolved completely while warming up to 70 ° C. The contents were cooled to 40 ° C., and then the raw materials 12, 13, and 15 were added to an emulsification tank, mixed, and the contents were cooled to room temperature to prepare a composition for skin whitening containing intracellular molecule transfer peptide-coumaric acid.
비교예 1 : 수상용해조에 1 ~ 6을 넣고 70℃까지 가온하면서 완전 용해시킨 뒤 유화조로 투입한다. 유상용해조에 7 ~ 11을 넣고 70℃까지 가온하면서 완전 용해시킨 후 유화조에 넣고 혼합한다. 내용물을 40℃까지 냉각한 뒤 원료 12 ~ 14을 유화조로 투입한 뒤 혼합한 후 내용물을 실온까지 냉각시켜 세포내 분자 전송 펩티드를 함유하는 조성물을 제조하였다.Comparative Example 1: 1 to 6 in the water melting tank and completely dissolved while warming up to 70 ℃ and put into the emulsion tank. 7 to 11 is added to the oil-dissolving tank and dissolved completely while warming up to 70 ° C. After the contents were cooled to 40 ° C., raw materials 12 to 14 were added to an emulsification tank, mixed, and the contents were cooled to room temperature to prepare a composition containing an intracellular molecular transfer peptide.
비교예 2 : 수상용해조에 1 ~ 6을 넣고 70℃까지 가온하면서 완전 용해시킨 뒤 유화조로 투입한다. 유상용해조에 7 ~ 11과 16을 넣고 70℃까지 가온하면서 완전 용해시킨 후 유화조에 넣고 혼합한다. 내용물을 40℃까지 냉각한 뒤 원료 12, 13을 유화조로 투입한 뒤 혼합한 후 내용물을 실온까지 냉각시켜 쿠마릭산을 함유하는 조성물을 제조하였다.Comparative Example 2: 1 to 6 in the water melting tank and completely dissolved while warming up to 70 ℃ and put into the emulsion tank. 7 to 11 and 16 are added to the oil-dissolving tank, dissolved completely while warming up to 70 ° C, and then mixed in an emulsifying tank. After the contents were cooled to 40 ° C., raw materials 12 and 13 were added to an emulsification tank, mixed, and the contents were cooled to room temperature to prepare a composition containing kumaric acid.
표 3 세포내 분자 전송 펩티드-쿠마릭산 함유 에센스 조성(단위 : 중량 %)
No 원 료 실시예 10-1 비교예 1 비교예 2
1 정제수 84.480 84.480 64.480
2 알코올 0.000 0.000 20.000
3 글리세린 5.000 5.000 5.000
4 디프로필렌 글리콜 3.000 3.000 3.000
5 알라토인 0.100 0.100 0.100
6 다이소디움 이디티에이 0.020 0.020 0.020
7 올리브 오일 2.000 2.000 2.000
8 카프릭/카프릭 트리글리세라이드 2.000 2.000 2.000
9 소디움 아크릭레이드/소디움 아크릭디메틸 타우레이트 코폴리머 0.667 0.667 0.667
10 이소헥사데칸 0.667 0.667 0.667
11 폴리소르베이트 80 0.667 0.667 0.667
12 클로르페네신 0.250 0.250 0.250
13 메칠파라벤 0.150 0.150 0.150
14 세포내 분자 전송 펩티드 0.000 1.000 0.000
15 세포내 분자 전송 펩티드-쿠마릭산 1.000 0.000 0.000
16 쿠마릭산 0.000 0.000 1.000
TABLE 3 Intracellular Molecular Transport Peptide-coumaric Acid-Containing Essence Composition (Unit: Weight%)
No Raw material Example 10-1 Comparative Example 1 Comparative Example 2
One Purified water 84.480 84.480 64.480
2 Alcohol 0.000 0.000 20.000
3 glycerin 5.000 5.000 5.000
4 Dipropylene glycol 3.000 3.000 3.000
5 Allatoin 0.100 0.100 0.100
6 Disodium ID 0.020 0.020 0.020
7 Olive oil 2.000 2.000 2.000
8 Capric / Capric Triglycerides 2.000 2.000 2.000
9 Sodium Acre-Reid / Sodium Aricdimethyl Taurate Copolymer 0.667 0.667 0.667
10 Isohexadecane 0.667 0.667 0.667
11 Polysorbate 80 0.667 0.667 0.667
12 Chlorphenesin 0.250 0.250 0.250
13 Methylparaben 0.150 0.150 0.150
14 Intracellular molecular transport peptides 0.000 1.000 0.000
15 Intracellular Molecular Transfer Peptides-coumaric Acid 1.000 0.000 0.000
16 Coumaric acid 0.000 0.000 1.000
실시예 11. 피부 생리 활성 물질이 결합된 세포내 분자 전송 펩티드의 주름개선 효능 확인Example 11 Confirmation of Wrinkle Improvement Efficacy of Intracellular Molecular Transport Peptides Conjugate with Skin Bioactive Substances
11-1. 세포내 분자 전송 펩티드-아세틸펜타펩티드의 합성11-1. Synthesis of Intracellular Molecular Transport Peptide-acetylpentapeptide
N-말단의 아미노산까지 커플링 된 상기 실시예 4에서 합성된 서열번호 16번의 아미노산 서열을 갖는 M1067 펩티드에 화장품업계에서 상업적으로 사용되고 있는 아세틸펜타펩티드 (acetylated Lys Ther Ther Lys Ser)를 순차적으로 합성하고, 20% 피페리딘/N-메틸피롤리돈(Piperidine/N-methylpyrrolidone) 용액을 가하여 Fmoc기를 제거하고 N-메틸피롤리돈과 디클로로메탄(dichloromethane)으로 여러 번 세척한 다음 질소 가스로 건조시켰다. 여기에 트리플루오로아세트산(trifluoroacetic acid) : 페놀(phenol) : 치오아니솔(thioanisole) : 물(water) : 트리이소프로필실란(triisopropylsilane)을 90 : 2.5 : 2.5 : 2.5 : 2.5 (v/v) 비율로 혼합한 용액으로 2 내지 3시간 반응시켜 펩티드 보호기를 제거하고, 레진으로부터 펩티드를 분리시킨 다음, 디에틸에테르로 펩티드를 침전시켰다. 이렇게 얻은 MTD 펩티드-아세틸펜타펩티드 유도체는 0.1% 트리플루오로아세트산이 포함된 아세토나이트릴를 구배로 하여 정제 역상 고성능 액체 크로마토그래피 컬럼(purified reverse phase high performance liquid chromatography column, Zobax, C8 300Å, 21.1mm X 25cm)을 이용하여 정제함으로써 하기 식 3에서와 같이 서열번호 16번의 아미노산 서열을 갖는 M1067 세포내 분자 전송 펩티드에 아세틸펜타펩티드가 결합된 아세틸펜다펩티드 유도체를 합성하였다.To the M1067 peptide having the amino acid sequence of SEQ ID NO: 16 synthesized in Example 4 coupled to the N-terminal amino acid sequentially synthesized acetyl penta peptide (acetylated Lys Ther Ther Lys Ser) commercially used in the cosmetic industry , 20% piperidine / N-methylpyrrolidone solution was added to remove the Fmoc group, washed several times with N-methylpyrrolidone and dichloromethane, and dried with nitrogen gas. . Trifluoroacetic acid (phenol): phenol (phenol): thioanisole (thioanisole): water (water): triisopropylsilane (triisopropylsilane) 90: 2.5: 2.5: 2.5: 2.5 (v / v) The mixture was reacted for 2 hours to 3 hours to remove the peptide protecting group, the peptide was separated from the resin, and the peptide was precipitated with diethyl ether. The MTD peptide-acetylpentapeptide derivatives thus obtained were purified by reverse phase high performance liquid chromatography column (Zobax, C8 300Å, 21.1 mm X) with acetonitrile containing 0.1% trifluoroacetic acid as a gradient. 25 cm) was used to synthesize an acetyl pentapeptide derivative in which an acetyl pentapeptide was bound to an M1067 intracellular molecular transport peptide having the amino acid sequence of SEQ ID NO.
[식 3][Equation 3]
Met Arg Ala Ala Ala Pro Ala Val Ala Ala Lys* Ther Ther Lys SerMet Arg Ala Ala Ala Pro Ala Val Ala Ala Lys * Ther Ther Lys Ser
* : acetylated lysine*: acetylated lysine
11-2. 세포내 분자 전송 펩티드-아세틸펜타펩티드의 세포 내 콜라게나제 활성 억제 효과 확인11-2. Inhibition of Intracellular Collagenase Activity of Intracellular Molecular Transport Peptide-acetylpentapeptide
상기 실시예 11-1에서 합성된 화합물인 세포내 분자 전송 펩티드-아세틸펜타펩티드를 사용하여 사람 정상피부 섬유아세포 내 콜라게나제 활성 저해 효과를 시험하였다. 세포 내 콜라게나제 활성 억제의 측정은 문헌(Bauer EA et al, J Invest Dermatol, 82(2):162-9, 1983)의 방법을 응용하여 측정하였으며, 시료를 첨가하지 않은 것을 100%로 하였다. 상세한 실험방법은 다음과 같다. 사람의 정상 피부 섬유아세포를 세포 배양용 6-웰 플레이트에 분주하고 일정 수의 세포를 접종한 후, 일정한 농도로 세포내 분자 전송 펩티드-아세틸펜타펩티드를 처리하고 24시간 배양한 후, 배양액 100 ㎕를 취하여 Matrix metalloproteinase-1 (MMP-1) human biotrak ELISA system (GEHealthcare, USA)에 기재된 방법대로 배양액 내 콜라게나제의 양을 측정하였다. ELISA 방법은 2번 정량용 완충액 100 ㎕를 96웰 플레이트에 넣은 다음 1/10으로 희석한 배양액 및 표준액을 각각 100 ㎕을 넣고 상온에서 2시간 배양한다. 웰 플레이트에서 배양액을 제거한 다음 세척용 완충액 400 ㎕로 3회 세척 후 항체액 100 ㎕를 넣고 상온에서 2시간 반응시킨 다음 세척용 완충액 400 ㎕로 3회 세척한다. 이후, Peroxidase conjugate solution 100 ㎕을 넣고 상온에서 2시간 반응시킨 다음 인산염완충액 (PBS) 400 ㎕로 3회 세척하고, TMB substrate 100 ㎕를 넣고 상온에서 30분간 반응시킨다. 1M 황산 용액 100 ㎕를 넣고 450 nm에서 ELISA Reader로 측정하며, 표준액은 Huamn pro MMP-1에 정량용 완충액을 넣어 녹인 후, 각각 0, 3.13, 6.25, 12.5, 25, 50 ng/mL이 되도록 희석하여 사용한다. 저해율을 수학식 2에 따라 구하였으며, 그 결과는 도 14에 나타내었다.The inhibitory effect of collagenase activity in human normal skin fibroblasts was tested using the intracellular molecule transfer peptide-acetylpentapeptide, a compound synthesized in Example 11-1. Intracellular collagenase activity inhibition was measured by the method of Baeer EA et al, J Invest Dermatol, 82 (2): 162-9, 1983, and 100% of the sample was not added. . Detailed experimental method is as follows. Human normal dermal fibroblasts were dispensed into 6-well plates for cell culture and inoculated with a certain number of cells, treated with intracellular molecule transfer peptide-acetylpentapeptides at a constant concentration and incubated for 24 hours, followed by 100 μl of culture solution. The amount of collagenase in the culture was measured using the method described in Matrix metalloproteinase-1 (MMP-1) human biotrak ELISA system (GEHealthcare, USA). In the ELISA method, 100 μl of the quantitative buffer solution 2 was placed in a 96-well plate, and 100 μl of the culture solution and the standard solution diluted to 1/10 were added thereto, and the cells were incubated at room temperature for 2 hours. Remove the culture medium from the well plate, wash three times with 400 μl of wash buffer, add 100 μl of antibody solution, react at room temperature for 2 hours, and wash three times with 400 μl of wash buffer. Then, 100 μl of Peroxidase conjugate solution was added and reacted at room temperature for 2 hours. After washing three times with 400 μl of phosphate buffer (PBS), 100 μl of TMB substrate was added and reacted at room temperature for 30 minutes. 100 μl of 1M sulfuric acid solution was added and measured by ELISA Reader at 450 nm. The standard solution was dissolved in Huamn pro MMP-1 by quantitative buffer, and diluted to 0, 3.13, 6.25, 12.5, 25, 50 ng / mL, respectively. Use it. Inhibition rate was calculated according to Equation 2, the results are shown in FIG.
[수학식 2][Equation 2]
저해율 (%) = (A-B)/A X 100 % Inhibition = (A-B) / A X 100
상기 수학식 2에서,In Equation 2,
A는 시료가 첨가되지 않은 것의 450 nm에서의 흡광도이며,A is the absorbance at 450 nm of no sample added,
B는 시료가 첨가된 것의 450 nm에서의 흡광도이다.B is the absorbance at 450 nm of the sample added.
그 결과 도 14에 나타낸 바와 같이, 세포내 분자 전송 펩티드-아세틸펜타펩티드를 처리한 군에서 농도 의존적으로 세포 내 콜라게나제의 활성억제를 유의하게 함을 확인하였다. As a result, as shown in Figure 14, it was confirmed that in the group treated with intracellular molecule transfer peptide-acetylpentapeptide significantly inhibit the activity of intracellular collagenase in a concentration-dependent manner.
11-3. 세포내 분자 전송 펩티드-아세틸펜타펩티드의 피부 안전성 확인11-3. Skin Safety Verification of Intracellular Molecular Transport Peptide-Acetylpentapeptide
상기 실시예 11-1에서 합성된 화합물인 세포내 분자 전송 펩티드-아세틸펜타펩타이드의 인체 피부를 이용한 일차자극 시험을 통하여 화장품 원료로서의 안전성을 확인하기 위하여 전문 임상 시험 기관인 (주)더마프로에 의뢰하여 수행하였다. 임상용 화장품 조성물은 하기에 기재된 바와 같이 준비하였다.In order to confirm the safety as a cosmetic raw material through the first stimulation test using the human skin of the intracellular molecular transfer peptide-acetylpentapeptide, which is the compound synthesized in Example 11-1, Was performed. The clinical cosmetic composition was prepared as described below.
11-3-1. 인체 피부 일차 자극 시험 11-3-1. Human skin primary irritation test
임상 시험 선정 기준에 부합하고 제외기준에 해당되지 않는 18세 ~ 60세의 남성 또는 여성 피험자 30명 이상을 선정하였다. 피험자를 대상으로 등 부위에 시료물질을 도포한 후 48시간 후에 제거하였다. 제거 후 30분, 24시간 후에 시험부위를 관찰하였다. 피부 평가는 Frosch & Kligman 법(Frosch P.J and Kligman A.M. J Am Acad Dermatol, 1(1):35-41 (1979))과 The Cosmetic, Toiletry, and Frangrance Association (CTFA) guideline (The Cosmetic, Toiletry and Frangrance Association, Inc. Washington, D.C. 20005 (1981))을 반영한 표 4의 기준으로 평가하였고, 48시간 및 72시간의 평균 반응도를 비교하였으며, 각 조성물에 대한 평균 반응도를 기준으로 하여 그 결과를 판정하였다. More than 30 male or female subjects aged 18 to 60 who met the criteria for clinical trial selection and did not qualify for exclusion were selected. Subjects were removed 48 hours after application of sample material to their backs. The test site was observed 30 minutes and 24 hours after removal. Skin assessments include the Frosch & Kligman Act (Frosch PJ and Kligman AM J Am Acad Dermatol, 1 (1): 35-41 (1979)) and The Cosmetic, Toiletry, and Frangrance Association (CTFA) guideline (The Cosmetic, Toiletry and Frangrance Association, Inc. Washington, DC 20005 (1981)) was evaluated based on the criteria in Table 4, and the average reactivity of 48 and 72 hours was compared and the results were determined based on the average reactivity for each composition.
표 4 Recording of patch test reactions
Symbol Grade Clinical Description
+ 1 Slight erythema, either spotty or diffuse
++ 2 Moderate uniform erythema
+++ 3 Intense erythema with edema
++++ 4 Intense erythema with edema & vesicles
Table 4 Recording of patch test reactions
Symbol Grade Clinical Description
+ One Slight erythema, either spotty or diffuse
++ 2 Moderate uniform erythema
+++ 3 Intense erythema with edema
++++ 4 Intense erythema with edema & vesicles
표 5 인체 피부 일차 자극 시험 결과(n=30)
번호 시험물질명 No. of responder 48시간 72시간 반응도
1+ 2+ 3+ 1+ 2+ 3+ 47h 72h Mean
1 세포내 분자 전송 펩티드 0.1% 함유 0 - - - - - - 0.0 0.0 0.0
2 세포내 분자 전송 펩티드-아세틸펜타펩타이드 0.1% 함유 0 - - - - - - 0.0 0.0 0.0
3 아세틸펜타펩타이드 0.1% 함유 0 - - - - - - 0.0 0.0 0.0
4 대조군 (Squalane) 0 - - - - - - 0.0 0.0 0.0
Table 5 Human skin primary irritation test result (n = 30)
number Test substance name No. of responder 48 hours 72 hours Responsiveness
1+ 2+ 3+ 1+ 2+ 3+ 47h 72h Mean
One Contains 0.1% intracellular molecular transfer peptide 0 - - - - - - 0.0 0.0 0.0
2 Contains 0.1% of intracellular molecular transport peptide-acetylpentapeptide 0 - - - - - - 0.0 0.0 0.0
3 0.1% Acetylpentapeptide 0 - - - - - - 0.0 0.0 0.0
4 Squalane 0 - - - - - - 0.0 0.0 0.0
상기 표 5에 나타난 바와 같이 세포내 분자 전송 펩티드 및 세포내 분자 전송 펩티드-아세틸펜타펩타이드는 인체 피부 일차 자극 측면에서 저자극 범주의 물질로 나타났다. 이로써, 전문시험기관의 임상시험을 통해 세포내 분자 전송 펩티드가 피부 생리 활성 분자의 기능을 유지시키면서, 인체에 대해서 안전하게 이용될 수 있음을 입증하였으며, 이는 세포내 분자 전송 펩티드가 화장물 조성물로서 그 이용가치가 현저히 우수함을 나타내는 결과라 할 수 있을 것이다. As shown in Table 5 above, the intracellular molecular transport peptide and the intracellular molecular transport peptide-acetylpentapeptide were shown to be substances in the hypoallergenic category in terms of human skin primary stimulation. As a result, clinical trials of specialized test institutes demonstrated that intracellular molecular transport peptides can be safely used in the human body while maintaining the function of skin bioactive molecules. It can be said that the results indicate that the value of use is remarkably superior.
11-3-2. 세포내 분자 전송 펩티드-아세틸펜타펩타이드 함유 화장료 조성물의 제조11-3-2. Preparation of Intracellular Molecular Transfer Peptide-Acetylpentapeptide-Containing Cosmetic Composition
세포내 분자 전송 펩티드-아세틸펜타펩타이드 또는 세포내 분자 전송 펩티드(M1067)를 함유한 에센스 조성물은 표 6의 조성으로 아래와 같이 제형화하였다.Essence compositions containing intracellular molecular transfer peptide-acetylpentapeptide or intracellular molecular transfer peptide (M1067) were formulated as follows with the composition of Table 6.
수상용해조에 1 ~ 5을 넣고 70℃까지 가온하면서 완전 용해시킨 뒤 유화조로 투입한다. 유상용해조에 6 ~ 10을 넣고 70℃까지 가온하면서 완전 용해시킨 후 유화조에 넣고 혼합한다. 내용물을 40℃까지 냉각한 뒤 원료 11, 12, 14을 유화조로 투입한 뒤 혼합한 후 내용물을 실온까지 냉각시켜 세포내 분자 전송 펩티드-아세틸펜타펩타이드를 함유하는 피부 주름개선용 조성물을 제조하였다.Add 1 to 5 to the water-dissolving tank, dissolve completely while warming up to 70 ℃, and put it into the emulsifying tank. 6 to 10 is added to the oil-dissolving tank, dissolved completely while warming up to 70 ° C, and then mixed in an emulsifying tank. After the contents were cooled to 40 ° C., raw materials 11, 12, and 14 were added to an emulsification tank, mixed, and the contents were cooled to room temperature to prepare a composition for improving skin wrinkles containing intracellular molecular transfer peptide-acetylpentapeptide.
비교예 1 : 수상용해조에 1 ~ 5을 넣고 70℃까지 가온하면서 완전 용해시킨 뒤 유화조로 투입한다. 유상용해조에 6 ~ 10을 넣고 70℃까지 가온하면서 완전 용해시킨 후 유화조에 넣고 혼합한다. 내용물을 40℃까지 냉각한 뒤 원료 11 ~ 13을 유화조로 투입한 뒤 혼합한 후 내용물을 실온까지 냉각시켜 세포내 분자 전송 펩티드을 함유하는 조성물을 제조하였다.Comparative Example 1: 1 to 5 in the water melting tank and completely dissolved while warming up to 70 ℃ and put into the emulsion tank. 6 to 10 is added to the oil-dissolving tank, dissolved completely while warming up to 70 ° C, and then mixed in an emulsifying tank. After the contents were cooled to 40 ° C., raw materials 11 to 13 were added to an emulsifying tank, mixed, and the contents were cooled to room temperature to prepare a composition containing intracellular molecular transfer peptides.
비교예 2 : 수상용해조에 1 ~ 5을 넣고 70℃까지 가온하면서 완전 용해시킨 뒤 유화조로 투입한다. 유상용해조에 6 ~ 10을 넣고 70℃까지 가온하면서 완전 용해시킨 후 유화조에 넣고 혼합한다. 내용물을 40℃까지 냉각한 뒤 원료 11, 12, 15를 유화조로 투입한 뒤 혼합한 후 내용물을 실온까지 냉각시켜 아세틸펜타펩타이드를 함유하는 조성물을 제조하였다.Comparative Example 2: 1 to 5 in the water melting tank and completely dissolved while warming up to 70 ℃ and put into the emulsion tank. 6 to 10 is added to the oil-dissolving tank, dissolved completely while warming up to 70 ° C, and then mixed in an emulsifying tank. After the contents were cooled to 40 ° C., raw materials 11, 12, and 15 were added to an emulsification tank, mixed, and the contents were cooled to room temperature to prepare a composition containing acetylpentapeptide.
표 6 세포내 분자 전송 펩티드-아세틸펜타펩타이드 함유 에센스 조성(단위 : 중량 %)
No 원 료 실시예 11-1 비교예 1 비교예 2
1 정제수 100까지 100까지 100까지
2 글리세린 5.000 5.000 5.000
3 디프로필렌 글리콜 3.000 3.000 3.000
4 알라토인 0.100 0.100 0.100
5 다이소디움 이디티에이 0.020 0.020 0.020
6 올리브 오일 2.000 2.000 2.000
7 카프릭/카프릭 트리글리세라이드 2.000 2.000 2.000
8 소디움 아크릭레이드/소디움 아크릭디메틸 타우레이트 코폴리머 0.667 0.667 0.667
9 이소헥사데칸 0.667 0.667 0.667
10 폴리소르베이트 80 0.667 0.667 0.667
11 클로르페네신 0.250 0.250 0.250
12 메칠파라벤 0.150 0.150 0.150
13 세포내 분자 전송 펩티드 0.000 0.100 0.000
14 세포내 분자 전송 펩티드-아세틸펜타펩타이드 0.100 0.000 0.000
15 아세틸펜타펩타이드 0.000 0.000 0.100
Table 6 Essence Composition Containing Intracellular Molecular Transport Peptide-acetylpentapeptide (Unit: weight%)
No Raw material Example 11-1 Comparative Example 1 Comparative Example 2
One Purified water Up to 100 Up to 100 Up to 100
2 glycerin 5.000 5.000 5.000
3 Dipropylene glycol 3.000 3.000 3.000
4 Allatoin 0.100 0.100 0.100
5 Disodium ID 0.020 0.020 0.020
6 Olive oil 2.000 2.000 2.000
7 Capric / Capric Triglycerides 2.000 2.000 2.000
8 Sodium Acre-Reid / Sodium Aricdimethyl Taurate Copolymer 0.667 0.667 0.667
9 Isohexadecane 0.667 0.667 0.667
10 Polysorbate 80 0.667 0.667 0.667
11 Chlorphenesin 0.250 0.250 0.250
12 Methylparaben 0.150 0.150 0.150
13 Intracellular molecular transport peptides 0.000 0.100 0.000
14 Intracellular Molecular Transfer Peptide-Acetylpentapeptide 0.100 0.000 0.000
15 Acetyl pentapeptide 0.000 0.000 0.100
실시예 12. 세포내 분자 전송 펩티드와 피부 생리 활성 분자가 결합된 화장료 조성물의 경피 흡수 확인Example 12 Confirmation of Transdermal Absorption of Cosmetic Composition Combining Intracellular Molecular Transfer Peptide and Skin Bioactive Molecules
본 발명에서 획득된 물질의 피부 조직 내 침투 (이를 통상적으로 경피흡수라 한다)를 확인하기 위하여 공시된 가이드라인에 따라 경피흡수 실험을 수행하였다(Test Guideline 428 : Skin absroption: in vitro Method, OECD, Paris, (2004), 생체외 피부흡수시험 가이드라인, 한국식품의약품안전청 (2010)). 경피 흡수 실험은 냉동 보관된 사체 피부 (cadaver skin, Cat No. SK11122, 한스바이오메드)를 32℃로 가온된 PBS에 해동하여 이를 이용하였다. 해동된 사체 피부는 수직형의 확산셀(Franz diffusion cell, Logan FDC-6, Logan instrument Corp. Somerset, NJ, USA)의 도너 (donor)과 리셉터 (receptor) 사이에 표피가 위로 (donor 방향으로) 향하게 하고 진피는 아래로 (receptor 방향으로) 장착하였다. 그런 다음 리셉터에 PBS 용액 (phosphate-buffered saline, pH 7.4, 32℃)을 채우고 사체 피부가 PBS 용액과 평형상태가 되도록 1시간 동안 방치하였다. 이후, 상기 실시예 4, 10-1 및 11-1에서 제조된 세포내 분자 전송 펩티드, 세포내 분자 전송 펩티드-쿠마릭산 및 세포내 분자 전송 펩티드-아세틸펜타펩타이드를 각각 1 mg을 1% DMSO가 함유된 PBS 용액 1mL에 충분히 녹여 표피에 도포하고(도포 면적 1.7 ㎤) 파라필름으로 도너를 봉쇄하여 시료가 증발되지 않도록 하였다. 24 시간 후 리셉터에서 0.2 mL의 시료를 채취하여 피부를 통해서 투과되어 나온 세포내 분자 전송 펩티드, 세포내 분자 전송 펩티드-쿠마릭산 및 세포내 분자 전송 펩티드-아세틸펜타펩타이드의 양을 질량분석기(mass spectrometer)로 분자량을 분석 및 정량하여 그 결과를 하기 표 7에 나타내었다. Percutaneous absorption experiments were performed in accordance with published guidelines to confirm penetration of the material obtained in the present invention into skin tissue (commonly referred to as transdermal absorption) (Test Guideline 428: Skin absroption: in vitro Method, OECD, Paris, (2004), In Vitro Skin Absorption Test Guidelines, Korea Food and Drug Administration (2010)). Percutaneous absorption experiments were used by thawing frozen stored body skin (cadaver skin, Cat No. SK11122, Hans Biomed) in PBS warmed to 32 ℃. The thawed cadaveric skin has the epidermis upward (in the direction of the donor) between the donor and the receptor of a vertical diffusion cell (Logan FDC-6, Logan instrument Corp. Somerset, NJ, USA). Faced and the dermis mounted down (receptor direction). The receptor was then filled with PBS solution (phosphate-buffered saline, pH 7.4, 32 ° C.) and left for 1 hour to allow the cadaveric skin to equilibrate with the PBS solution. Thereafter, 1 mg of 1% DMSO was added to the intracellular molecular transfer peptide, intracellular molecular transfer peptide-coumaric acid, and intracellular molecular transfer peptide-acetylpentapeptipeptides prepared in Examples 4, 10-1, and 11-1, respectively. The solution was sufficiently dissolved in 1 mL of the contained PBS solution and applied to the epidermis (1.7 cm 3 coated area), and the donor was sealed with parafilm to prevent the sample from evaporating. After 24 hours, 0.2 mL of sample was taken from the receptor and mass spectrometer was used to determine the amount of intracellular molecular transport peptide, intracellular molecular transport peptide-coumaric acid, and intracellular molecular transport peptide-acetylpentapeptipeptide. Analyze and quantify the molecular weight as shown in Table 7 below.
표 7
구분 피부 투과율 (%)
실시예 1의 MTD 펩타이드 11.8
실시예 10의 MTD 펩타이드-쿠마릭산 32.7
실시예 10의 비교예 2의 쿠마릭산 17.7
실시예 11의 MTD 펩타이드-아세틸펜타펩타이드 14.2
실시예 11의 비교예 2의 아세틸펜타펩타이드 0.5
TABLE 7
division Skin transmittance (%)
MTD Peptides of Example 1 11.8
MTD Peptide-Cumaric Acid of Example 10 32.7
Coumaric acid of Comparative Example 2 of Example 10 17.7
MTD Peptide-Acetylpentapeptide of Example 11 14.2
Acetylpentapeptide of Comparative Example 2 of Example 11 0.5
상기 표 7에서와 같이 세포내 분자 전송 펩티드 단독의 피부 투과율도 11.8%도 상대적으로 높은 것을 알 수 있었으며, 피부생리활성 물질을 결합한 세포내 분자 전송 펩티드의 경우, 자체적으로 피부 각질층 투과 효능이 있는 쿠마릭산의 피부 투과율에 비해 세포내 분자 전송 펩티드이 결합된 쿠마릭산이 투과율이 2배 증가한 것을 확인할 수 있었다. 또한, 피부 각질층 투과가 어려운 아세틸펜타펩타이드의 경우는 세포내 분자 전송 펩티드와의 결합 시 피부 투과율이 28배까지 증가되는 것을 확인할 수 있었다. 이로써 인간 피부에 대한 경피흡수 실험에서도 세포내 분자 전송 펩티드와 피부 생리 활성 분자가 결합된 화장료 조성물의 투과능이 현저히 우수함을 다시한번 입증하였으며, 이로써 세포내 분자 전송 펩티드의 산업적 이용가치가 상당함을 확인할 수 있었다. As shown in Table 7 above, it was found that the intracellular molecular transport peptide alone had a relatively high skin permeability of 11.8%. In the case of the intracellular molecular transport peptide combined with a skin physiologically active substance, it was able to penetrate the stratum corneum of its own skin. Compared to the skin permeation rate of lyxic acid, the intracellular molecular transport peptide-bound coumalic acid was confirmed to have doubled the permeation rate. In addition, in the case of acetyl pentapeptide, which is difficult to penetrate the stratum corneum, it was confirmed that the skin permeability increased by 28 times when binding to the intracellular molecular transport peptide. Thus, in the transdermal absorption experiments on human skin, it was again proved that the permeability of the cosmetic composition in which the intracellular molecular transport peptide and the skin bioactive molecule were combined was remarkably excellent, thereby confirming that the industrial use value of the intracellular molecular transport peptide was significant. Could.
실시예 13. 피부 생리 활성 물질이 결합된 세포내 분자 전송 펩티드의 피부세포 투과능 확인Example 13 Verification of Skin Cell Permeability of Intracellular Molecular Transport Peptides Conjugated with Skin Bioactive Substances
13-1. 세포내 분자 전송 펩티드-아세틸헥사펩티드 형광유도체의 합성13-1. Synthesis of Intracellular Molecular Transport Peptide-Acetylhexapeptide Fluorescent Compounds
N-말단의 아미노산까지 커플링 된 상기 실시예 4에서 합성된 서열 번호 16번 아미노산 서열을 갖는 M1067, 서열 번호 23번 아미노산 서열을 갖는 M2067 및 서열 번호 28번 아미노산 서열을 갖는 M2173A의 세포내 분자 전송 펩티드에 화장품업계에서 상업적으로 사용되고 있는 아세틸헥사펩티드 (acetyl-Glu Glu Met Gln Arg Arg)를 순차적으로 합성을 진행한 후에 마지막으로 라이신(K, lysine)을 추가하여 펩티드합성을 진행한 다음 라이신의 프리 아민 잔기에 FITC를 결합시켰다. 합성된 펩티드-FITC는 20% 피페리딘/N-메틸피롤리돈(Piperidine/N-methylpyrrolidone) 용액을 가하여 Fmoc기를 제거하고 N-메틸피롤리돈과 디클로로메탄(dichloromethane)으로 여러 번 세척한 다음 질소 가스로 건조시켰다. 여기에 트리플루오로아세트산(trifluoroacetic acid) : 페놀(phenol) : 치오아니솔(thioanisole) : 물(water) : 트리이소프로필실란(triisopropylsilane)을 90 : 2.5 : 2.5 : 2.5 : 2.5 (v/v) 비율로 혼합한 용액으로 2 내지 3시간 반응시켜 펩티드 보호기를 제거하고, 레진으로부터 펩티드를 분리시킨 다음, 디에틸에테르로 펩티드를 침전시켰다. 이렇게 얻은 세포내 분자 전송 펩티드-아세틸헥사펩티드 형광 유도체는 0.1% 트리플루오로아세트산이 포함된 아세토나이트릴를 구배로 하여 정제 역상 고성능 액체 크로마토그래피 컬럼(purified reverse phase high performance liquid chromatography column, Zobax, C8 300Å, 21.1mm X 25cm)을 이용하여 정제함으로써 하기 식 4에서와 같이 서열번호 16번 또는 48번의 아미노산 서열을 갖는 세포내 분자 전송 펩티드에 아세틸헥사펩티드와 FITC가 결합된 세포내 분자 전송 펩티드-아세틸헥사펩티드 형광 유도체를 합성하였다. 이후, 합성된 펩티드-FITC는 차광 상태에서 1 mM 농도가 되도록 DMSO로 녹인 후, 1.5ml 원심분리용 용기에 소량으로 분주하고 사용직전까지 냉동보관 하였다.Intracellular molecular transport of M1067 having the amino acid sequence of SEQ ID NO: 16, M2067 having the amino acid sequence of SEQ ID NO: 23, and M2173A having the amino acid sequence of SEQ ID NO: 28, coupled to the N-terminal amino acid After sequential synthesis of acetyl hexapeptide (acetyl-Glu Glu Met Gln Arg Arg), which is commercially used in the cosmetic industry, peptides were synthesized by adding lysine (K, lysine) and then free of lysine. FITC was bound to the amine residue. The synthesized peptide-FITC was removed by adding 20% piperidine / N-methylpyrrolidone solution to remove the Fmoc group and washed several times with N-methylpyrrolidone and dichloromethane. Dry with nitrogen gas. Trifluoroacetic acid (phenol): phenol (phenol): thioanisole (thioanisole): water (water): triisopropylsilane (triisopropylsilane) 90: 2.5: 2.5: 2.5: 2.5 (v / v) The mixture was reacted for 2 hours to 3 hours to remove the peptide protecting group, the peptide was separated from the resin, and the peptide was precipitated with diethyl ether. The intracellular molecular transport peptide-acetylhexapeptide fluorescent derivative thus obtained was purified with acetonitrile containing 0.1% trifluoroacetic acid as a gradient, followed by purified reverse phase high performance liquid chromatography column (Zobax, C8 300Å). , 21.1 mm X 25 cm) to the intracellular molecular transport peptide having an amino acid sequence of SEQ ID NO: 16 or 48 as shown in the following formula 4 acetyl hexapeptide and FITC combined intracellular molecular transport peptide-acetylhexa Peptide fluorescent derivatives were synthesized. Thereafter, the synthesized peptide-FITC was dissolved in DMSO so as to have a concentration of 1 mM in a light-shielded state, and then aliquoted in small amounts in a 1.5 ml centrifuge container and stored frozen until just before use.
[식 4][Equation 4]
Met Arg Ala Ala Ala Pro Ala Val Ala Ala Glu* Glu Met Gln Arg ArgMet Arg Ala Ala Ala Pro Ala Val Ala Ala Glu * Glu Met Gln Arg Arg
Met His Ala Ala Ala Pro Ala Val Ala Ala Glu* Glu Met Gln Arg ArgMet His Ala Ala Ala Pro Ala Val Ala Ala Glu * Glu Met Gln Arg Arg
Met His Pro Ala Val Ile Pro Ile Leu Ala Val Glu* Glu Met Gln Arg ArgMet His Pro Ala Val Ile Pro Ile Leu Ala Val Glu * Glu Met Gln Arg Arg
* : acetylated glutamic acid*: acetylated glutamic acid
13-2. 유세포 측정을 이용한 세포내 분자 전송 펩티드-아세틸헥사펩티드의 13-2. Intracellular Molecular Transport Peptide-Acetylhexapeptide Using Flow Cytometry in vitroin vitro 세포 투과능 확인 Check cell permeability
세포투과능을 검증하기 위해 3 μM 농도의 세포내 분자 전송 펩티드-아세틸헥사펩티드 형광체(MTD-AH-FTIC)를 피부각질형성세포 (Human Keratinocyte cell line, HaCaT cell, Order No. 300493, CLS cell line service, Germany)에 처리하고, 1시간 동안 배양하였다. 상기 HaCaT 세포를 10% 우태아 혈청(Fetal bovine serum: FBS) 및 1% 페니실린/스트렙토마이신(10,000 units penicillin 및 10,000 μg/mL streptomycin, invitrogen)을 함유하는 DMED (Dubelcco’s modified eagle medium) 배지에서 유지하고, 5% CO2의 습윤(humidified) 대기 하에서 37℃로 배양하였다. 배양이 종결된 후, 단백질이 처리된 HaCaT 세포의 세포막에 노출되어 있는 유리 MTD-AH-FITC를 제거하기 위해 트립신을 처리하고, 냉장 보관한 PBS로 3번 세척하였다. In order to verify cell permeability, intracellular molecule transfer peptide-acetylhexapeptide phosphor (MTD-AH-FTIC) at a concentration of 3 μM was applied to human keratinocyte cells (Human Keratinocyte cell line, HaCaT cell, Order No. 300493, CLS cell line). service, Germany) and incubated for 1 hour. The HaCaT cells were maintained in DMED (Dubelcco's modified eagle medium) medium containing 10% Fetal bovine serum (FBS) and 1% penicillin / streptomycin (10,000 units penicillin and 10,000 μg / mL streptomycin, invitrogen) , Incubated at 37 ° C. under a humidified atmosphere of 5% CO 2 . After the incubation was terminated, trypsin was treated to remove free MTD-AH-FITC exposed to the cell membrane of the protein-treated HaCaT cells, and washed three times with cold-stored PBS.
준비된 MTD-AH-FITC 펩티드는 유세포 분석기 (FACS Calibur , Beckton-Dickinson, San Diego CA, USA)에 적용하였고, 각각의 시료에 대하여, 세포(1X104)를 셀퀘스트 프로 세포측정 분석(CellQues Pro cytometric analysis) 소프트웨어로 분석하였으며 각각의 실험을 3회 이상 수행하였다. 본 발명에 적용되는 세포내 분자 전송 펩티드 각각의 세포투과성은 피부 생리활성 물질인 아세틸헥사펩티드 자체를 대조군으로 사용하여 세포투과성 효율을 정량적으로 비교분석 하였다. The prepared MTD-AH-FITC peptide was applied to a flow cytometer (FACS Calibur, Beckton-Dickinson, San Diego CA, USA), and for each sample, cells (1 × 10 4 ) were analyzed for CellQuest Pro cytometric analysis (CellQues Pro cytometric). analysis) The software was analyzed and each experiment was performed three or more times. Cell permeability of each intracellular molecule transfer peptide applied to the present invention was quantitatively analyzed for cell permeability efficiency using acetylhexapeptide itself, a skin bioactive substance as a control.
그 결과를 도 15와 같이 셀퀘스트 프로 세포측정 분석(CellQues Pro cytometric analysis) 소프트웨어에서 각 실험군의 형광 변화를 기하 평균(Geometric mean)으로 비교하여 세포내 분자 전송 펩티드의 세포 유입 효율을 나타내었다. 그 결과, 세포내 분자 전송 펩티드가 결합된 아세틸헥사펩티드의 세포 유입 효율이 아세틸펙사펩티드 자체의 효율에 비하여, 200%에서 최대 400%까지 높은 세포 유입 효율을 나타냄을 확인하였다. The results were compared with the fluorescence change of each experimental group by the geometric mean in the CellQues Pro cytometric analysis software as shown in FIG. 15 to show the cellular influx of the intracellular molecular transport peptides. As a result, it was confirmed that the cell inflow efficiency of the acetylhexapeptide to which the intracellular molecular transport peptide is bound shows a high cell inflow efficiency from 200% to up to 400% compared to the efficiency of the acetylpexapeptide itself.
13-3. 공초점현미경을 이용한 세포내 분자 전송 펩티드-아세틸헥사펩티드의 가시적 피부 세포 투과능 확인13-3. Confirmation of Visible Skin Cell Permeability of Intracellular Molecular Transport Peptide-Acetylhexapeptide Using Confocal Microscopy
내재화된(internalized) 세포내 분자 전송 펩티드-아세틸헥사펩티드 형광 유도체의 직접적인 검출을 위하여 피부유래 각질형성세포 (HaCaT cell, immortalized human keratinocyte, Cat No. 300493, CLS, Germany)에 3 μM 농도로 처리하고 37℃에서 1시간 동안 배양한 후, 공초점현미경 (confocal microscopy, Nikon, Germany)을 이용하여 가시적으로 관찰하였다. 실험 전일 HaCaT 세포를 글래스 커버슬립이 들어있는 12-웰 플레이트(12-well culture plate) 내에서 24시간 동안 배양하였다. HaCaT 세포는 10% 우태아혈청(Fetal Bovine Serum: FBS), 및 1% 페니실린/스트렙토마이신(10,000 units penicillin 및 10,000 μg/mL streptomycin, Invitrogen, USA)을 함유하는 DMEM 배지에서 유지하고, 5% CO2의 습윤(humidified) 대기 하에서 37℃로 배양하였다. HaCaT 세포에 5 μM의 농도로 scrambled 펩티드, MTD-FITC 및 PTD-FITC 펩티드를 1시간 동안 처리하였다. 이후, 관찰을 위하여 세포를 실온에서 4% 파라포름알데하이드 용액 (paraformaldehyde, PFA)로 20 분간 고정하고, PBS로 3회 세척 후 핵 형광 염색 용액인 5 mM 농도의 DAPI (4',6-diamidino-2-phenylindole)로 대조염색(counterstain)을 수행하였다. 10분 간의 DAPI 염색 후, 다시 PBS로 3회 세척하고, 단백질의 형광표지를 보존하기 위해 20 ㎕의 중첩배지(mounting media)를 슬라이드 위에 점적하고 관찰하였다. 상기 세포내 분자 전송 펩티드 유도체가 처리된 세포는 세포 내 전달부위의 구별이 용이하도록 DAPI 염색을 통해 핵으로의 전달 및 투과성 여부를 확인하였으며, 공초점 현미경은 노마스키 필터(normaski filter)를 이용하여 세포의 원형을 관찰하고, FITC 형광 및 DAPI 형광을 각각의 플루오로크롬(fluorochrome)에 맞는 필터로 관찰하였다. 그 결과, 도 16에 나타난 바와 같이, 피부 생리활성 물질인 아세틸헥사펩티드 자체를 사용한 대조군과 대비하여, 세포내 분자 전송 펩티드가 결합된 아세틸헥사펩티드가 전송펩티드에 의하여, 전송능력이 현저하게 향상되었음을 확인하였다.For direct detection of internalized intracellular molecular transport peptide-acetylhexapeptide fluorescent derivatives, the cells were treated at 3 μM concentrations in HaCaT cells, immortalized human keratinocytes, Cat No. 300493, CLS, Germany. After incubation for 1 hour at 37 ℃, it was visually observed using a confocal microscope (confocal microscopy, Nikon, Germany). The day before the experiment, HaCaT cells were incubated for 24 hours in a 12-well culture plate containing glass coverslips. HaCaT cells were maintained in DMEM medium containing 10% Fetal Bovine Serum (FBS), and 1% penicillin / streptomycin (10,000 units penicillin and 10,000 μg / mL streptomycin, Invitrogen, USA), and 5% CO Incubated at 37 ° C. under a humidified atmosphere of 2 . HaCaT cells were treated with scrambled peptides, MTD-FITC and PTD-FITC peptides for 1 hour at a concentration of 5 μM. Then, the cells were fixed for 20 minutes with 4% paraformaldehyde solution (paraformaldehyde, PFA) at room temperature for observation, and washed three times with PBS, followed by DAPI (4 ', 6-diamidino-) at 5 mM concentration. Counterstain was performed with 2-phenylindole). After 10 minutes of DAPI staining, it was washed three times again with PBS, and 20 μl of mounting medium was dropped and observed on the slide to preserve the fluorescent label of the protein. Cells treated with the intracellular molecular transport peptide derivatives were identified for delivery and permeability to the nucleus through DAPI staining for easy identification of intracellular delivery sites, and confocal microscopy was performed using a normaski filter. The prototype of the cells was observed, and FITC fluorescence and DAPI fluorescence were observed with a filter suitable for each fluorochrome. As a result, as shown in Figure 16, compared to the control using the acetyl hexapeptide itself, a skin bioactive substance, the transfer peptide, the acetyl hexapeptide to which the intracellular molecular transport peptide is bound, significantly improved the transfer capacity Confirmed.
전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.The foregoing description of the present invention is intended for illustration, and it will be understood by those skilled in the art that the present invention may be easily modified in other specific forms without changing the technical spirit or essential features of the present invention. will be. Therefore, it should be understood that the embodiments described above are exemplary in all respects and not restrictive.
<110> PROCELL THERAPEUTICS INC.<110> PROCELL THERAPEUTICS INC.
<120> Transdermal delivery system of dermatological active ingredients<120> Transdermal delivery system of dermatological active ingredients
using cellular transduction peptides         using cellular transduction peptides
<130> PCT01614<130> PCT01614
<150> US 61/563,113<150> US 61 / 563,113
<151> 2011-11-23<151> 2011-11-23
<160> 56<160> 56
<170> KopatentIn 2.0<170> KopatentIn 2.0
<210> 1<210> 1
<211> 14<211> 14
<212> PRT<212> PRT
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> MTD JO-018 amino acid sequenceMTD JO-018 amino acid sequence
<400> 1<400> 1
Ala Ala Leu Ile Gly Ala Val Leu Ala Pro Val Val Ala ValAla Ala Leu Ile Gly Ala Val Leu Ala Pro Val Val Ala Val
1 5 10   1 5 10
<210> 2<210> 2
<211> 8<211> 8
<212> PRT<212> PRT
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> MTD JO-067 Amino Acid sequenceMTD JO-067 Amino Acid sequence
<400> 2<400> 2
Ala Ala Ala Pro Ala Val Ala AlaAla Ala Ala Pro Ala Val Ala Ala
1 5   1 5
<210> 3<210> 3
<211> 9<211> 9
<212> PRT<212> PRT
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> MTD JO-103 Amino Acid sequenceMTD JO-103 Amino Acid sequence
<400> 3<400> 3
Leu Ala Leu Pro Val Leu Leu Leu AlaLeu Ala Leu Pro Val Leu Leu Leu Ala
1 5   1 5
<210> 4<210> 4
<211> 12<211> 12
<212> PRT<212> PRT
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> MTD JO-159 Amino Acid sequenceMTD JO-159 Amino Acid sequence
<400> 4<400> 4
Ile Ala Ile Ala Ala Ile Pro Ala Ile Leu Ala LeuIle Ala Ile Ala Ala Ile Pro Ala Ile Leu Ala Leu
1 5 10   1 5 10
<210> 5<210> 5
<211> 9<211> 9
<212> PRT<212> PRT
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> MTD JO-173 Amino Acid sequenceMTD JO-173 Amino Acid sequence
<400> 5<400> 5
Ala Val Ile Pro Ile Leu Ala Val ProAla Val Ile Pro Ile Leu Ala Val Pro
1 5   1 5
<210> 6<210> 6
<211> 14<211> 14
<212> PRT<212> PRT
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> MTD 18m Amino Acid Sequence<223> MTD 18m Amino Acid Sequence
<400> 6<400> 6
Pro Ala Ala Leu Ala Ala Leu Pro Val Ala Val Val Ala ValPro Ala Ala Leu Ala Ala Leu Pro Val Ala Val Val Ala Val
1 5 10   1 5 10
<210> 7<210> 7
<211> 9<211> 9
<212> PRT<212> PRT
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> MTD 173A Amino Acid Sequence MTD 173A Amino Acid Sequence
<400> 7<400> 7
Pro Ala Val Ile Pro Ile Leu Ala ValPro Ala Val Ile Pro Ile Leu Ala Val
1 5   1 5
<210> 8<210> 8
<211> 42<211> 42
<212> DNA<212> DNA
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> MTD JO-018 polynucleotide Sequence<223> MTD JO-018 polynucleotide Sequence
<400> 8<400> 8
gcggcgctga ttggcgcggt gctggcgccg gtggtggcgg tg 42gcggcgctga ttggcgcggt gctggcgccg gtggtggcgg tg 42
<210> 9<210> 9
<211> 24<211> 24
<212> DNA<212> DNA
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> MTD JO-067 polynucleotide SequenceMT223 JO-067 Polynucleotide Sequence
<400> 9<400> 9
gcggcggcgc cggcggtggc ggcg 24gcggcggcgc cggcggtggc ggcg 24
<210> 10<210> 10
<211> 27<211> 27
<212> DNA<212> DNA
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> MTD JO-103 polynucleotide Sequence<223> MTD JO-103 polynucleotide Sequence
<400> 10<400> 10
ctggcgctgc cggtgctgct gctggcg 27ctggcgctgc cggtgctgct gctggcg 27
<210> 11<210> 11
<211> 36<211> 36
<212> DNA<212> DNA
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> MTD JO-159 polynucleotide SequenceMTD JO-159 polynucleotide sequence
<400> 11<400> 11
aatgcgaatg cggcgaatcc ggcgaatctg gcgctg 36aatgcgaatg cggcgaatcc ggcgaatctg gcgctg 36
<210> 12<210> 12
<211> 27<211> 27
<212> DNA<212> DNA
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> MTD JO-173 polynucleotide Sequence<223> MTD JO-173 polynucleotide Sequence
<400> 12<400> 12
gcggtgaatc cgaatctggc ggtgccg 27gcggtgaatc cgaatctggc ggtgccg 27
<210> 13<210> 13
<211> 42<211> 42
<212> DNA<212> DNA
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> MTD JO-018m polynucleotide Sequence<223> MTD JO-018m polynucleotide Sequence
<400> 13<400> 13
ccggcggcgc tggcggcgct gccggtggcg gtggtggcgg tg 42ccggcggcgc tggcggcgct gccggtggcg gtggtggcgg tg 42
<210> 14<210> 14
<211> 27<211> 27
<212> DNA<212> DNA
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> MTD JO-173A polynucleotide Sequence<223> MTD JO-173A polynucleotide Sequence
<400> 14<400> 14
ccggcggtga atccgaatct ggcggtg 27ccggcggtga atccgaatct ggcggtg 27
<210> 15<210> 15
<211> 16<211> 16
<212> PRT<212> PRT
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> MTD 1018 Amino Acid Sequence MTD 1018 Amino Acid Sequence
<400> 15<400> 15
Met Arg Ala Ala Leu Ile Gly Ala Val Leu Ala Pro Val Val Ala ValMet Arg Ala Ala Leu Ile Gly Ala Val Leu Ala Pro Val Val Ala Val
1 5 10 15   1 5 10 15
<210> 16<210> 16
<211> 10<211> 10
<212> PRT<212> PRT
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> MTD 1067 Amino Acid Sequence MTD 1067 Amino Acid Sequence
<400> 16<400> 16
Met Arg Ala Ala Ala Pro Ala Val Ala AlaMet Arg Ala Ala Ala Pro Ala Val Ala Ala
1 5 10  1 5 10
<210> 17<210> 17
<211> 11<211> 11
<212> PRT<212> PRT
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> MTD 1103 Amino Acid Sequence MTD 1103 Amino Acid Sequence
<400> 17<400> 17
Met Arg Leu Ala Leu Pro Val Leu Leu Leu AlaMet Arg Leu Ala Leu Pro Val Leu Leu Leu Ala
1 5 10   1 5 10
<210> 18<210> 18
<211> 14<211> 14
<212> PRT<212> PRT
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> MTD 1159 Amino Acid Sequence MTD 1159 Amino Acid Sequence
<400> 18<400> 18
Met Arg Ile Ala Ile Ala Ala Ile Pro Ala Ile Leu Ala LeuMet Arg Ile Ala Ile Ala Ala Ile Pro Ala Ile Leu Ala Leu
1 5 10   1 5 10
<210> 19<210> 19
<211> 11<211> 11
<212> PRT<212> PRT
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> MTD 1173 Amino Acid Sequence MTD 1173 Amino Acid Sequence
<400> 19<400> 19
Met Arg Ala Val Ile Pro Ile Leu Ala Val ProMet Arg Ala Val Ile Pro Ile Leu Ala Val Pro
1 5 10   1 5 10
<210> 20<210> 20
<211> 16<211> 16
<212> PRT<212> PRT
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> MTD 1018m Amino Acid Sequence MT223 1018m Amino Acid Sequence
<400> 20<400> 20
Met Arg Pro Ala Ala Leu Ala Ala Leu Pro Val Ala Val Val Ala ValMet Arg Pro Ala Ala Leu Ala Ala Leu Pro Val Ala Val Val Ala Val
1 5 10 15   1 5 10 15
<210> 21<210> 21
<211> 11<211> 11
<212> PRT<212> PRT
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> MTD 1173A Amino Acid Sequence MTD 1173A Amino Acid Sequence
<400> 21<400> 21
Met Arg Pro Ala Val Ile Pro Ile Leu Ala ValMet Arg Pro Ala Val Ile Pro Ile Leu Ala Val
1 5 10   1 5 10
<210> 22<210> 22
<211> 16<211> 16
<212> PRT<212> PRT
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> MTD 2018 Amino Acid Sequence<223> MTD 2018 Amino Acid Sequence
<400> 22<400> 22
Met His Ala Ala Leu Ile Gly Ala Val Leu Ala Pro Val Val Ala ValMet His Ala Ala Leu Ile Gly Ala Val Leu Ala Pro Val Val Ala Val
1 5 10 15   1 5 10 15
<210> 23<210> 23
<211> 10<211> 10
<212> PRT<212> PRT
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> MTD 2067 Amino Acid Sequence MTD 2067 Amino Acid Sequence
<400> 23<400> 23
Met His Ala Ala Ala Pro Ala Val Ala AlaMet His Ala Ala Ala Pro Ala Val Ala Ala
1 5 10  1 5 10
<210> 24<210> 24
<211> 11<211> 11
<212> PRT<212> PRT
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> MTD 2103 Amino Acid Sequence MTD 2103 Amino Acid Sequence
<400> 24<400> 24
Met His Leu Ala Leu Pro Val Leu Leu Leu AlaMet His Leu Ala Leu Pro Val Leu Leu Leu Ala
1 5 10   1 5 10
<210> 25<210> 25
<211> 14<211> 14
<212> PRT<212> PRT
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> MTD 2159 Amino Acid Sequence MTD 2159 Amino Acid Sequence
<400> 25<400> 25
Met His Ile Ala Ile Ala Ala Ile Pro Ala Ile Leu Ala LeuMet His Ile Ala Ile Ala Ala Ile Pro Ala Ile Leu Ala Leu
1 5 10   1 5 10
<210> 26<210> 26
<211> 11<211> 11
<212> PRT<212> PRT
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> MTD 2173 Amino Acid Sequence MTD 2173 Amino Acid Sequence
<400> 26<400> 26
Met His Ala Val Ile Pro Ile Leu Ala Val ProMet His Ala Val Ile Pro Ile Leu Ala Val Pro
1 5 10   1 5 10
<210> 27<210> 27
<211> 16<211> 16
<212> PRT<212> PRT
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> MTD 2018m Amino Acid Sequence<223> MTD 2018 m Amino Acid Sequence
<400> 27<400> 27
Met His Pro Ala Ala Leu Ala Ala Leu Pro Val Ala Val Val Ala ValMet His Pro Ala Ala Leu Ala Ala Leu Pro Val Ala Val Val Ala Val
1 5 10 15   1 5 10 15
<210> 28<210> 28
<211> 11<211> 11
<212> PRT<212> PRT
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> MTD 2173A Amino Acid Sequence MTD 2173A Amino Acid Sequence
<400> 28<400> 28
Met His Pro Ala Val Ile Pro Ile Leu Ala ValMet His Pro Ala Val Ile Pro Ile Leu Ala Val
1 5 10   1 5 10
<210> 29<210> 29
<211> 16<211> 16
<212> PRT<212> PRT
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> MTD 3018 Amino Acid Sequence MT223 3018 Amino Acid Sequence
<400> 29<400> 29
Met Lys Ala Ala Leu Ile Gly Ala Val Leu Ala Pro Val Val Ala ValMet Lys Ala Ala Leu Ile Gly Ala Val Leu Ala Pro Val Val Ala Val
1 5 10 15   1 5 10 15
<210> 30<210> 30
<211> 10<211> 10
<212> PRT<212> PRT
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> MTD 3067 Amino Acid Sequence MT223 3067 Amino Acid Sequence
<400> 30<400> 30
Met Lys Ala Ala Ala Pro Ala Val Ala AlaMet Lys Ala Ala Ala Pro Ala Val Ala Ala
1 5 10  1 5 10
<210> 31<210> 31
<211> 11<211> 11
<212> PRT<212> PRT
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> MTD 3103 Amino Acid Sequence MTD 3103 Amino Acid Sequence
<400> 31<400> 31
Met Lys Leu Ala Leu Pro Val Leu Leu Leu AlaMet Lys Leu Ala Leu Pro Val Leu Leu Leu Ala
1 5 10   1 5 10
<210> 32<210> 32
<211> 14<211> 14
<212> PRT<212> PRT
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> MTD 3159 Amino Acid Sequence MTD 3159 Amino Acid Sequence
<400> 32<400> 32
Met Lys Ile Ala Ile Ala Ala Ile Pro Ala Ile Leu Ala LeuMet Lys Ile Ala Ile Ala Ala Ile Pro Ala Ile Leu Ala Leu
1 5 10   1 5 10
<210> 33<210> 33
<211> 11<211> 11
<212> PRT<212> PRT
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> MTD 3173 Amino Acid Sequence MTD 3173 Amino Acid Sequence
<400> 33<400> 33
Met Lys Ala Val Ile Pro Ile Leu Ala Val ProMet Lys Ala Val Ile Pro Ile Leu Ala Val Pro
1 5 10   1 5 10
<210> 34<210> 34
<211> 16<211> 16
<212> PRT<212> PRT
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> MTD 3018m Amino Acid Sequence<223> MTD 3018m Amino Acid Sequence
<400> 34<400> 34
Met Lys Pro Ala Ala Leu Ala Ala Leu Pro Val Ala Val Val Ala ValMet Lys Pro Ala Ala Leu Ala Ala Leu Pro Val Ala Val Val Ala Val
1 5 10 15   1 5 10 15
<210> 35<210> 35
<211> 11<211> 11
<212> PRT<212> PRT
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> MTD 3173A Amino Acid Sequence MTD 3173A Amino Acid Sequence
<400> 35<400> 35
Met Lys Pro Ala Val Ile Pro Ile Leu Ala ValMet Lys Pro Ala Val Ile Pro Ile Leu Ala Val
1 5 10   1 5 10
<210> 36<210> 36
<211> 48<211> 48
<212> DNA<212> DNA
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> MTD 1018 polynucleotide sequence MTD 1018 polynucleotide sequence
<400> 36<400> 36
atgagggcgg cgctgattgg cgcggtgctg gcgccggtgg tggcggtg 48atgagggcgg cgctgattgg cgcggtgctg gcgccggtgg tggcggtg 48
<210> 37<210> 37
<211> 30<211> 30
<212> DNA<212> DNA
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> MTD 1067 polynucleotide Sequence<223> MTD 1067 polynucleotide Sequence
<400> 37<400> 37
atgagggcgg cggcgccggc ggtggcggcg 30atgagggcgg cggcgccggc ggtggcggcg 30
<210> 38<210> 38
<211> 33<211> 33
<212> DNA<212> DNA
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> MTD 1103 polynucleotide Sequence<223> MTD 1103 polynucleotide Sequence
<400> 38<400> 38
atgaggctgg cgctgccggt gctgctgctg gcg 33atgaggctgg cgctgccggt gctgctgctg gcg 33
<210> 39<210> 39
<211> 42<211> 42
<212> DNA<212> DNA
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> MTD 1159 polynucleotide Sequence MTD 1159 polynucleotide Sequence
<400> 39<400> 39
atgaggattg cgattgcggc gattccggcg attctggcgc tg 42atgaggattg cgattgcggc gattccggcg attctggcgc tg 42
<210> 40<210> 40
<211> 33<211> 33
<212> DNA<212> DNA
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> MTD 1173 polynucleotide Sequence MTD 1173 polynucleotide Sequence
<400> 40<400> 40
atgagggcgg tgattccgat tctggcggtg ccg 33atgagggcgg tgattccgat tctggcggtg ccg 33
<210> 41<210> 41
<211> 48<211> 48
<212> DNA<212> DNA
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> MTD 1018m polynucleotide Sequence<223> MTD 1018m polynucleotide Sequence
<400> 41<400> 41
atgaggccgg cggcgctggc ggcgctgccg gtggcggtgg tggcggtg 48atgaggccgg cggcgctggc ggcgctgccg gtggcggtgg tggcggtg 48
<210> 42<210> 42
<211> 33<211> 33
<212> DNA<212> DNA
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> MTD 1173A polynucleotide Sequence MTD 1173A polynucleotide Sequence
<400> 42<400> 42
atgaggccgg cggtgattcc gattctggcg gtg 33atgaggccgg cggtgattcc gattctggcg gtg 33
<210> 43<210> 43
<211> 48<211> 48
<212> DNA<212> DNA
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> MTD 2018 polynucleotide sequence<223> MTD 2018 polynucleotide sequence
<400> 43<400> 43
atgcacgcgg cgctgattgg cgcggtgctg gcgccggtgg tggcggtg 48atgcacgcgg cgctgattgg cgcggtgctg gcgccggtgg tggcggtg 48
<210> 44<210> 44
<211> 30<211> 30
<212> DNA<212> DNA
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> MTD 2067 polynucleotide Sequence MT223 2067 polynucleotide Sequence
<400> 44<400> 44
atgcacgcgg cggcgccggc ggtggcggcg 30atgcacgcgg cggcgccggc ggtggcggcg 30
<210> 45<210> 45
<211> 33<211> 33
<212> DNA<212> DNA
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> MTD 2103 polynucleotide Sequence MTD 2103 polynucleotide Sequence
<400> 45<400> 45
atgcacctgg cgctgccggt gctgctgctg gcg 33atgcacctgg cgctgccggt gctgctgctg gcg 33
<210> 46<210> 46
<211> 42<211> 42
<212> DNA<212> DNA
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> MTD 2159 polynucleotide Sequence<223> MTD 2159 polynucleotide Sequence
<400> 46<400> 46
atgcacattg cgattgcggc gattccggcg attctggcgc tg 42atgcacattg cgattgcggc gattccggcg attctggcgc tg 42
<210> 47<210> 47
<211> 33<211> 33
<212> DNA<212> DNA
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> MTD 2173 polynucleotide Sequence MTD 2173 polynucleotide Sequence
<400> 47<400> 47
atgcacgcgg tgattccgat tctggcggtg ccg 33atgcacgcgg tgattccgat tctggcggtg ccg 33
<210> 48<210> 48
<211> 48<211> 48
<212> DNA<212> DNA
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> MTD 2018m polynucleotide Sequence<223> MTD 2018 m polynucleotide Sequence
<400> 48<400> 48
atgcacccgg cggcgctggc ggcgctgccg gtggcggtgg tggcggtg 48atgcacccgg cggcgctggc ggcgctgccg gtggcggtgg tggcggtg 48
<210> 49<210> 49
<211> 33<211> 33
<212> DNA<212> DNA
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> MTD 2173A polynucleotide Sequence<223> MTD 2173A polynucleotide Sequence
<400> 49<400> 49
atgcacccgg cggtgattcc gattctggcg gtg 33atgcacccgg cggtgattcc gattctggcg gtg 33
<210> 50<210> 50
<211> 48<211> 48
<212> DNA<212> DNA
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> MTD 3018 polynucleotide sequence MTD 3018 polynucleotide sequence
<400> 50<400> 50
atgaaggcgg cgctgattgg cgcggtgctg gcgccggtgg tggcggtg 48atgaaggcgg cgctgattgg cgcggtgctg gcgccggtgg tggcggtg 48
<210> 51<210> 51
<211> 30<211> 30
<212> DNA<212> DNA
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> MTD 3067 polynucleotide Sequence MT223 3067 Polynucleotide Sequence
<400> 51<400> 51
atgaaggcgg cggcgccggc ggtggcggcg 30atgaaggcgg cggcgccggc ggtggcggcg 30
<210> 52<210> 52
<211> 33<211> 33
<212> DNA<212> DNA
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> MTD 3103 polynucleotide Sequence MTD 3103 polynucleotide Sequence
<400> 52<400> 52
atgaagctgg cgctgccggt gctgctgctg gcg 33atgaagctgg cgctgccggt gctgctgctg gcg 33
<210> 53<210> 53
<211> 42<211> 42
<212> DNA<212> DNA
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> MTD 3159 polynucleotide Sequence MT223 3159 polynucleotide Sequence
<400> 53<400> 53
atgaagattg cgattgcggc gattccggcg attctggcgc tg 42atgaagattg cgattgcggc gattccggcg attctggcgc tg 42
<210> 54<210> 54
<211> 33<211> 33
<212> DNA<212> DNA
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> MTD 3173 polynucleotide Sequence MTD 3173 polynucleotide Sequence
<400> 54<400> 54
atgaaggcgg tgattccgat tctggcggtg ccg 33atgaaggcgg tgattccgat tctggcggtg ccg 33
<210> 55<210> 55
<211> 48<211> 48
<212> DNA<212> DNA
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> MTD 3018m polynucleotide Sequence<223> MTD 3018m polynucleotide Sequence
<400> 55<400> 55
atgaagccgg cggcgctggc ggcgctgccg gtggcggtgg tggcggtg 48atgaagccgg cggcgctggc ggcgctgccg gtggcggtgg tggcggtg 48
<210> 56<210> 56
<211> 33<211> 33
<212> DNA<212> DNA
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> MTD 3173A polynucleotide Sequence<223> MTD 3173A polynucleotide Sequence
<400> 56<400> 56
atgaagccgg cggtgattcc gattctggcg gtg 33atgaagccgg cggtgattcc gattctggcg gtg 33

Claims (21)

  1. 세포내 분자 전송 펩티드가 결합된 피부 생리 활성 분자를 포함하는 경피 전달용 조성물로서, 상기 펩티드가 서열번호 15 내지 35로 이루어진 군으로부터 선택되는 아미노산 서열을 갖는 것을 특징으로 하는, 조성물.A composition for transdermal delivery comprising a skin physiologically active molecule to which an intracellular molecule transfer peptide is bound, wherein the peptide has an amino acid sequence selected from the group consisting of SEQ ID NOs: 15 to 35.
  2. 제 1항에 있어서, 상기 조성물은 화장용 조성물인 것을 특징으로 하는 경피 전달용 조성물.The composition for transdermal delivery according to claim 1, wherein the composition is a cosmetic composition.
  3. 제 1항에 있어서, 상기 펩티드는 서열번호 36 내지 56으로 이루어진 군으로부터 선택되는 폴리뉴클레오티드 서열로부터 인코딩되는 것을 특징으로 하는 경피 전달용 조성물.The composition for transdermal delivery according to claim 1, wherein the peptide is encoded from a polynucleotide sequence selected from the group consisting of SEQ ID NOs: 36 to 56.
  4. 제 1항에 있어서, 상기 조성물은 피부 각질층을 투과하는 것을 특징으로 하는 경피 전달용 조성물.The composition for transdermal delivery according to claim 1, wherein the composition penetrates the stratum corneum.
  5. 제 1항에 있어서, 상기 피부 생리 활성 분자는 상기 세포내 분자 전송 펩티드의 N-말단, C-말단 또는 양말단에 결합하는 것을 특징으로 하는 경피 전달용 조성물. The composition for transdermal delivery according to claim 1, wherein the skin bioactive molecule binds to the N-terminus, C-terminus or sock end of the intracellular molecular transport peptide.
  6. 제 1항에 있어서, 상기 피부 생리 활성 분자에 상기 세포내 분자 전송 펩티드의 아미노산이 역순으로 배열된 형태로 결합하는 것을 특징으로 하는 경피 전달용 조성물. The composition for transdermal delivery according to claim 1, wherein the skin bioactive molecule binds the amino acids of the intracellular molecule transfer peptide in a reverse order.
  7. 제 1항에 있어서, 상기 결합은 펩티드 결합 또는 화학적 결합에 의해 이루어지는 것을 특징으로 하는 경피 전달용 조성물.The composition for transdermal delivery according to claim 1, wherein the binding is achieved by peptide bond or chemical bond.
  8. 제 7항에 있어서, 상기 화학적 결합은 이황화 결합, 디아민 결합, 황화-아민 결합(sulfde-amine bonds), 카르복시-아민 결합(carboxyl-amine bonds), 에스테르 결합(ester bonds) 및 공유 결합으로 이루어진 군으로부터 선택된 것을 특징으로 하는 경피 전달용 조성물.8. The group of claim 7 wherein the chemical bond is a group consisting of disulfide bonds, diamine bonds, sulfide-amine bonds, carboxyl-amine bonds, ester bonds and covalent bonds. A composition for transdermal delivery, characterized in that selected from.
  9. 제 1항에 있어서, 상기 피부 생리 활성 분자는 비타민, 레티노이드 및 지방산으로 이루어진 군으로부터 선택된 것을 특징으로 하는 경피 전달용 조성물.According to claim 1, wherein the skin bioactive molecule is a composition for transdermal delivery, characterized in that selected from the group consisting of vitamins, retinoids and fatty acids.
  10. 제 9항에 있어서, 상기 비타민은 비타민 A, 비타민 B1, 비타민 B2, 비타민 B3, 비타민 B5, 비타민 B6, 비타민 B7, 비타민 B9, 비타민 B12, 비타민 C, 비타민 D1, 비타민 D2, 비타민 D3, 비타민 D4, 비타민 D5, 비타민 E 및 비타민 K로 이루어진 군으로부터 선택된 것을 특징으로 하는 경피 전달용 조성물.The method of claim 9, wherein the vitamin is vitamin A, vitamin B1, vitamin B2, vitamin B3, vitamin B5, vitamin B6, vitamin B7, vitamin B9, vitamin B12, vitamin C, vitamin D1, vitamin D2, vitamin D3, vitamin D4 Percutaneous delivery composition, characterized in that selected from the group consisting of vitamin D5, vitamin E and vitamin K.
  11. 제 9항에 있어서, 상기 레티노이드는 레티놀, 레티놀의 천열 및 합성 아날로그, 레티날, 트랜스, 9-시스, 및 13-시스 레티놀산 및 에트레티네이트로 이루어진 군으로부터 선택된 것을 특징으로 하는 경피 전달용 조성물.10. The composition for transdermal delivery according to claim 9, wherein the retinoid is selected from the group consisting of retinol, retinol mutant and synthetic analogues, retinal, trans, 9-cis, and 13-cis retinolic acid and etretinate. .
  12. 제 9항에 있어서, 상기 지방산은 라우린산, 스테아린산, 팔미틱산, 운데실렌산, 팔리톨레산, 올레산, 리놀산, 리놀렌산, 아라키돈산 및 에루신산으로 이루어진 군으로부터 선택된 것을 특징으로 하는 경피 전달용 조성물.10. The method of claim 9, wherein the fatty acid is for transdermal delivery, characterized in that selected from the group consisting of lauric acid, stearic acid, palmitic acid, undecylenic acid, paritoleic acid, oleic acid, linoleic acid, linolenic acid, arachidonic acid and erucic acid. Composition.
  13. 제 1항에 있어서, 상기 피부 생리 활성 분자는 주름 개선제, 미백제, 항산화제 및 보습제로 이루어진 군으로부터 선택된 것을 특징으로 하는 경피 전달용 조성물.According to claim 1, wherein the skin bioactive molecule is a composition for transdermal delivery, characterized in that selected from the group consisting of anti-wrinkle agent, whitening agent, antioxidant and moisturizer.
  14. 제 13항에 있어서, 상기 주름 개선제는 피부 작용 성장인자 펩타이드 또는 단백질, 레티놀, 레티닐팔미테이트, 아데노신 및 폴리에톡실레이티드레틴아미드로 이루어진 군으로부터 선택된 것을 특징으로 하는 경피 전달용 조성물.The composition for transdermal delivery according to claim 13, wherein the anti-wrinkle agent is selected from the group consisting of dermal action growth factor peptide or protein, retinol, retinyl palmitate, adenosine and polyethoxylatedretinamide.
  15. 제 13항에 있어서, 상기 미백제는 미백 펩타이드, 니아신아마이드, 닥나무 추출물, 알부틴, 에칠아스코밀에텔, 감초 추출물, 아스코빌글루코사이드, 및 마그네슘 아스코빌포스페이트로 이루어진 군으로부터 선택된 것을 특징으로 하는 경피 전달용 조성물.The composition for transdermal delivery according to claim 13, wherein the whitening agent is selected from the group consisting of a whitening peptide, niacinamide, a mulberry extract, arbutin, echyl ascormyl ether, licorice extract, ascorbyl glucoside, and magnesium ascorbyl phosphate. .
  16. 제 1항에 있어서, 상기 피부 생리 활성 분자는 쿠마릭산(coumaric acid) 또는 아세틸펜타펩티드(Acetyl pentapeptide) 및 아세틸헥사펩티드(Acetyl Hexapeptide)로 이루어진 군으로부터 선택되는 것을 특징으로 하는 경피 전달용 조성물.The method of claim 1, wherein the skin bioactive molecule is selected from the group consisting of coumaric acid (coumaric acid) or acetyl pentapeptide (Acetyl pentapeptide) and acetyl hexapeptide (Acetyl Hexapeptide).
  17. 제 1항에 있어서, 상기 조성물은 에멀젼, 크림, 에센스, 스킨, 리포솜, 마이크로캡슐, 복합 입자, 샴푸 및 린스로 이루어진 군으로부터 선택된 제형으로 제조되는 것을 특징으로 하는 경피 전달용 조성물.The composition for transdermal delivery according to claim 1, wherein the composition is prepared in a formulation selected from the group consisting of emulsions, creams, essences, skins, liposomes, microcapsules, composite particles, shampoos and rinses.
  18. 피부 생리 활성 분자를 피부 세포 내로 전달하는 경피 전달시스템으로서, 상기 시스템은 서열번호 15 내지 35로 이루어지는 군으로부터 선택되는 아미노산 서열을 갖는 세포내 분자 전송 펩티드를 피부 생리 활성 분자와 결합시켜 전달하는 것을 특징으로 하는, 시스템.A transdermal delivery system for delivering a skin bioactive molecule into skin cells, wherein the system binds and delivers an intracellular molecular transfer peptide having an amino acid sequence selected from the group consisting of SEQ ID NOs: 15-35 with a skin bioactive molecule. System.
  19. 제 18항에 있어서, 상기 펩티드는 서열번호 36 내지 56으로 이루어진 군으로부터 선택된 폴리뉴클레오티드로부터 인코딩되는 것을 특징으로 하는 경피 전달시스템.The transdermal delivery system of claim 18, wherein the peptide is encoded from a polynucleotide selected from the group consisting of SEQ ID NOs: 36-56.
  20. 피부 생리 활성 분자를 피부 세포 내로 전달하는 방법으로서, 상기 방법은 서열번호 15 내지 35로 이루어지는 군으로부터 선택되는 아미노산 서열을 갖는 세포내 분자 전송 펩티드를 피부 생리 활성 분자와 결합시켜 전달하는 단계를 포함하는 것을 특징으로 하는, 방법. A method of delivering a skin bioactive molecule into skin cells, the method comprising binding and delivering an intracellular molecular transport peptide having an amino acid sequence selected from the group consisting of SEQ ID NOs: 15-35 with a skin bioactive molecule Characterized in that, the method.
  21. 피부 생리 활성 분자를 피부 각질층 내로 전달하는 방법으로서, 상기 방법은 서열번호 15 내지 35로 이루어지는 군으로부터 선택되는 아미노산 서열을 갖는 세포내 분자 전송 펩티드를 피부 생리 활성 분자와 결합시켜 전달하는 단계를 포함하는 것을 특징으로 하는, 방법.A method of delivering a skin bioactive molecule into the stratum corneum, the method comprising the step of combining and delivering an intracellular molecular transfer peptide having an amino acid sequence selected from the group consisting of SEQ ID NOs: 15 to 35 with a skin bioactive molecule. Characterized in that, the method.
PCT/KR2012/009998 2011-11-23 2012-11-23 Transdermal delivery system of bioactive molecules of skin using intracellular molecule delivery peptides WO2013077681A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020127031205A KR101393397B1 (en) 2011-11-23 2012-11-23 Transdermal delivery system of dermatological active ingredients using cellular transduction peptides

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201161563113P 2011-11-23 2011-11-23
US61/563,113 2011-11-23

Publications (1)

Publication Number Publication Date
WO2013077681A1 true WO2013077681A1 (en) 2013-05-30

Family

ID=48470057

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/009998 WO2013077681A1 (en) 2011-11-23 2012-11-23 Transdermal delivery system of bioactive molecules of skin using intracellular molecule delivery peptides

Country Status (2)

Country Link
KR (1) KR101393397B1 (en)
WO (1) WO2013077681A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022090413A1 (en) * 2020-10-28 2022-05-05 Follicum Ab Peptides for use in skin and hair pigmentation
CN114432176A (en) * 2021-12-28 2022-05-06 云南云科特色植物提取实验室有限公司 Targeting peptide modified cosmetic peptide composition
EP4141020A4 (en) * 2020-04-23 2024-06-26 ImNewRun, Inc. Novel cell-penetrating peptide and use thereof

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108350030B (en) 2015-09-10 2022-12-13 汉阳大学校产学协力团 Skin permeable peptides and methods of use thereof
WO2017082690A1 (en) * 2015-11-12 2017-05-18 주식회사 펩트론 Multifunctional skin-permeating peptide having whitening, skin elasticity, wrinkle improvement, and wound healing activities
KR101746787B1 (en) 2015-11-12 2017-06-13 주식회사 펩트론 Multifunctional skin penetration peptide with whitening, skin elasticity, wrinkle improvement and wound healing ability
KR101944388B1 (en) 2016-09-09 2019-04-17 한양대학교 산학협력단 Skin penetrating peptide and method of use thereof
JP7362113B2 (en) * 2017-06-28 2023-10-17 エルジー ハウスホールド アンド ヘルスケア リミテッド Cosmetic composition for skin improvement containing a fusion protein bound to a peptide for promoting skin permeation
JP2024515921A (en) * 2022-03-31 2024-04-11 セリコン ラボ インコーポレイテッド Novel skin-permeable peptide, composition for skin and mucous membranes containing the same, and use thereof
KR102459219B1 (en) * 2022-03-31 2022-10-26 주식회사 셀아이콘랩 Novel skin penetrating peptides, composition for skin and mucosal treatment, including the same, and their uses
WO2024048890A1 (en) * 2022-08-31 2024-03-07 주식회사 레메디 Composition containing peptides having skin-lightening effect

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090103957A (en) * 2007-01-29 2009-10-01 주식회사 프로셀제약 Novel macromolecule transduction domains and methods for identification and uses thereof
KR20100076964A (en) * 2007-09-04 2010-07-06 주식회사 프로셀제약 Cell permeable nm23 recombinant proteins, polynucleotides encoding the same, and anti-metastatic composition comprising the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090103957A (en) * 2007-01-29 2009-10-01 주식회사 프로셀제약 Novel macromolecule transduction domains and methods for identification and uses thereof
KR20100076964A (en) * 2007-09-04 2010-07-06 주식회사 프로셀제약 Cell permeable nm23 recombinant proteins, polynucleotides encoding the same, and anti-metastatic composition comprising the same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PINAKI DESAI ET AL.: "Interaction ofnanoparticles and cell-penetrating peptides with skin for transdermal drug delivery", MOLECULAR MEMBRANE BIOLOGY, vol. 27, no. 7, October 2010 (2010-10-01), pages 247 - 259, XP055069899 *
YU-WUN HOU ET AL.: "Transdermal Delivery of proteins mediated by non-covalently associated arginine-rich intracellular delivery peptides", EXPERIMENTAL DERMATOLOGY, vol. 16, no. 12, December 2007 (2007-12-01), pages 999 - 1006, XP055069898 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4141020A4 (en) * 2020-04-23 2024-06-26 ImNewRun, Inc. Novel cell-penetrating peptide and use thereof
WO2022090413A1 (en) * 2020-10-28 2022-05-05 Follicum Ab Peptides for use in skin and hair pigmentation
CN114432176A (en) * 2021-12-28 2022-05-06 云南云科特色植物提取实验室有限公司 Targeting peptide modified cosmetic peptide composition

Also Published As

Publication number Publication date
KR20130070607A (en) 2013-06-27
KR101393397B1 (en) 2014-05-14

Similar Documents

Publication Publication Date Title
WO2013077681A1 (en) Transdermal delivery system of bioactive molecules of skin using intracellular molecule delivery peptides
US8431523B2 (en) Oligomeric biosurfactants in dermatocosmetic compositions
WO2019004758A2 (en) Cosmetic composition containing fusion protein with skin penetration enhancing peptide conjugated thereto for skin improvement
WO2013077680A1 (en) Development of novel macromolecule transduction domain with improved cell permeability and method for using same
US8044028B2 (en) Oligopeptides and their use in cosmetics
WO2013129801A1 (en) Tripeptide, and cosmetic composition comprising same and having anti-aging, anti-wrinkle, whitening, and anti-inflammatory effects
WO2016108669A1 (en) Composition, containing rgd motif-containing peptide or fragment thereof, for treating burns and glaucoma, alleviating skin wrinkles, and promoting hair growth
KR20040062602A (en) Dermopharmaceutically and cosmetically active oligopeptides
WO2019240430A1 (en) Fusion protein bound to cell-permeable peptide, and composition comprising fusion protein or cell-permeable peptide and epithelial cell growth factor as active ingredients
KR101573745B1 (en) Peptides for promoting synthesis of collagen, method for preparing thereof, and, composition comprising thereof
WO2017043920A1 (en) Skin permeable peptide and method for using same
KR20180108974A (en) Cosmetic composition containing anti-aging and wrinkle preventing pentapeptide and pentapeptide dimer production method
KR20130108828A (en) Composition for skin lightening comprising oligopeptide
WO2019054822A1 (en) Active substance-hexapeptide complex and cosmetic composition containing same
KR20100025430A (en) Novel cinnamoyl peptide derivative having 4-hydroxy substituent, method for preparing the same and cosmetic composition comprising the same
WO2020180059A1 (en) Composition for producing melanin containing plasma activated medium and use thereof
WO2023229102A1 (en) Novel whitening peptide and cosmetic composition containing same
WO2022050634A1 (en) Peptide, and cosmetic composition and pharmaceutical composition comprising same
KR102382937B1 (en) Novel Peptide Derivative and Composition Comprising the Same for Tightening Skin and Improving Face Line
WO2023191148A1 (en) Novel skin-penetrating peptide, dermal and mucosal composition comprising same, and use thereof
WO2017018847A1 (en) Composition for inhibiting formation of snare complex, containing myricetin derivatives
EP2280988B1 (en) Angiogenic peptide
WO2019231175A1 (en) Peptide with amidated carboxy terminus having melanogenesis inhibitory activity and composition comprising same
WO2021006511A1 (en) Composition for prevention or treatment of hypopigmentation disorder
WO2015093661A1 (en) Long-lasting derivative through lauric acid fusion of antibacterial peptide beta-defensin 3 and 3h, development of skin permeable derivative through cell transmissive peptide fusion, and cosmetic composition containing same

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20127031205

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12851970

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12851970

Country of ref document: EP

Kind code of ref document: A1