WO2013077319A1 - Method for removing impurities - Google Patents

Method for removing impurities Download PDF

Info

Publication number
WO2013077319A1
WO2013077319A1 PCT/JP2012/080062 JP2012080062W WO2013077319A1 WO 2013077319 A1 WO2013077319 A1 WO 2013077319A1 JP 2012080062 W JP2012080062 W JP 2012080062W WO 2013077319 A1 WO2013077319 A1 WO 2013077319A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
distillation column
packed bed
distillation
impurities
Prior art date
Application number
PCT/JP2012/080062
Other languages
French (fr)
Japanese (ja)
Inventor
雅志 横田
小林 由典
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to CN201280057251.2A priority Critical patent/CN103946212B/en
Publication of WO2013077319A1 publication Critical patent/WO2013077319A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D201/00Preparation, separation, purification or stabilisation of unsubstituted lactams
    • C07D201/16Separation or purification
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/14Fractional distillation or use of a fractionation or rectification column
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/14Fractional distillation or use of a fractionation or rectification column
    • B01D3/16Fractionating columns in which vapour bubbles through liquid
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D201/00Preparation, separation, purification or stabilisation of unsubstituted lactams
    • C07D201/02Preparation of lactams
    • C07D201/04Preparation of lactams from or via oximes by Beckmann rearrangement
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D223/00Heterocyclic compounds containing seven-membered rings having one nitrogen atom as the only ring hetero atom
    • C07D223/02Heterocyclic compounds containing seven-membered rings having one nitrogen atom as the only ring hetero atom not condensed with other rings
    • C07D223/06Heterocyclic compounds containing seven-membered rings having one nitrogen atom as the only ring hetero atom not condensed with other rings with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D223/08Oxygen atoms
    • C07D223/10Oxygen atoms attached in position 2

Definitions

  • the present invention relates to a method for removing impurities when an object is separated by distillation.
  • This application claims priority based on Japanese Patent Application No. 2011-257557 for which it applied to Japan on November 25, 2011, and uses the content here.
  • the mixed gas When separating the target product from the mixed gas discharged from the reactor, such as when performing a gas phase reaction, supply the mixed gas to the distillation tower of the distillation device to adjust the temperature, and use the difference in boiling points.
  • the separation method is applied. For example, a component having a boiling point higher than that of the target product is condensed by cooling and removed as a liquid from the lower part of the distillation column, and in some cases, the extracted liquid is returned to the distillation column and brought into contact with the mixed gas. Sometimes reused to promote condensation.
  • Patent Document 1 when an unsaturated nitrile is produced by an ammoxidation reaction of an organic compound, a mixed gas obtained by the reaction is brought into contact with a circulating liquid containing a reaction product, and a polymer, a catalyst, etc. It is disclosed that impurities are captured and removed with a circulating fluid.
  • Patent Document 1 does not disclose a specific configuration necessary for removing impurities with the circulating liquid, and an effective method for removing impurities such as a polymer and a catalyst from the inside of the distillation column is as follows. It is not substantially disclosed.
  • an object of the present invention is to provide an impurity removal method capable of removing a component capable of forming a solid content by polymerization as an impurity from the inside of a distillation column.
  • At least a part of the liquid extracted from the extraction site is supplied to the bottom packed bed as a circulating liquid from above, and the bottom packed with the circulating liquid and the reflux liquid from the upper part of the distillation column.
  • the fault trapped in the layer Rinse things, the liquid containing the impurities provides a method of removing impurities, characterized in that withdrawing from the site extraction of the lower.
  • the specific surface area of the filler in the lowermost packed bed is 70 to 300 m 2 / m 3 .
  • the total flow rate of the circulating liquid and the reflux liquid in the plane perpendicular to the height direction of the distillation column of the bottom packed bed is 1.5 ⁇ 10 4. It is preferably ⁇ 1.2 ⁇ 10 5 kg / m 2 / h.
  • the circulating liquid and the reflux liquid are filtered to remove solids, and then supplied to the bottom packed bed.
  • the mixed gas is preferably a gas after a gas phase reaction in which ⁇ -caprolactam is generated from cyclohexanone oxime using a solid acid catalyst in the presence of a lower alcohol.
  • the present invention relates to the following.
  • a method of removing impurities from the inside of a distillation column that performs distillation when a target product is separated by distillation from a mixed gas containing solids or components capable of forming solids by polymerization as impurities.
  • the distillation column is at least one layer provided in the height direction of the distillation column, a packed bed filled with a filler, a gas supply unit provided in a portion below the bottom packed bed, It has a first extraction site provided above the uppermost packed bed and a second extraction site provided below the gas supply unit, and is lower than the lower packed bed.
  • a method for removing the impurities described in the paragraph, (6) Before supplying at least a part of the liquid extracted from the second extraction site as a circulating liquid to the lowermost packed bed from above, the liquid extracted from the second extraction site is filtered.
  • the method for removing impurities according to any one of (1) to (6) which is a gas obtained by a gas phase reaction in which ⁇ -caprolactam is produced from cyclohexanone oxime using an acid catalyst.
  • the removal method of the impurity which can remove the solid content or the component which can form solid content by superposition
  • distillation is performed when a target product is separated by distillation from a mixed gas containing solids or components capable of forming solids by polymerization (polymerizable components) as impurities.
  • a method for removing the impurities from the inside of a column wherein the distillation column comprises at least one packed bed filled with a filler provided in the height direction of the distillation column, and the packed bed at the bottom.
  • a gas supply section installed at a lower position than the gas supply section, a first extraction section provided above the uppermost packed bed, and a second extraction section provided below the gas supply section.
  • Extracting the contained liquid supplying at least a part of the extracted liquid to the bottom packed bed as a circulating liquid from above, the circulating liquid and the reflux liquid from the upper part of the distillation column, Washing off the impurities trapped in the bottom packed bed to obtain a liquid containing the impurities, and removing the liquid containing the impurities from the lower extraction site (second extraction site) to the distillation column. Including extraction outside.
  • FIG. 1 is a schematic view for explaining an impurity removal method according to the first embodiment of the present invention.
  • the distillation apparatus 1 shown here includes a first packed bed 12 and a second packed bed 13 filled with a filler inside a distillation column 11 that performs distillation.
  • the first packed bed 12 and the second packed bed 13 are spaced apart from each other in this order from below in the height direction of the distillation column 11.
  • the first packed bed 12 contributes to the separation of the target product from the mixed gas to be distilled and captures a solid content or a polymerizable component in the mixed gas.
  • the second packed bed 13 mainly promotes separation of the target product from the mixed gas, and is configured to capture a solid content or a polymerizable component in the same manner as the first packed bed 12. May be.
  • filled with filler means a direction perpendicular to the height direction of the distillation column (the direction of arrow Z in FIG. 1) (for example, when the distillation column is cylindrical). Indicates that the filler is spread in the radial direction).
  • first discharge line 14 Connected to the top of the distillation column 11 is a first discharge line 14 that is a first extraction site for extracting a gas containing the target substance to be separated, and a bottom for extracting a liquid.
  • a second discharge line 15 which is a second extraction portion is connected.
  • the first discharge line 14 is provided with a cooler 140 in the middle, and a reflux line 141 is branched from the cooler 140 separately from the first discharge line.
  • the cooler 140 of the reflux line 141 is branched.
  • the end not connected to is connected above the second packed bed 13 which is the packed bed of the uppermost layer (uppermost part) in the distillation column 11.
  • Examples of the cooler 140 include known ones such as a heat exchange type.
  • a circulation line 151 is branched from a middle portion of the second discharge line 15, and the end of the circulation line 151 not connected to the second discharge line 15 is the first packed bed in the distillation column 11. 12 above and below the second packed bed 13. That is, the circulation line 151 connects the space between the first packed bed 12 and the second packed bed 13 inside the distillation column 11 and the second discharge line 15.
  • the specific surface area of the filler in the first packed bed 12 is preferably 70 to 300 m 2 / m 3 , more preferably 70 to 260 m 2 / m 3 , and 70 to 160 m 2 / m 3 . More preferably.
  • the specific surface area of the filler in the second packed bed 13 may be appropriately adjusted according to the purpose, but is preferably 70 to 270 m 2 / m 3 , more preferably 90 to 260 m 2 / m 3. preferable.
  • the lower limit value or more By setting the lower limit value or more, the effect of separating the target product from the mixed gas is further improved.
  • the mixed gas that has passed through the first packed bed 12 has a solid content or a polymerizable component. Can be captured and washed out more effectively.
  • the height H 2 of the second packed bed 13 is preferably 20 to 30% with respect to the height H 0 of the distillation column 11.
  • distillation is performed in the distillation column 11, and when the target product in the mixed gas is separated, the inside of the distillation column 11 Remove impurities. Specifically, it is as follows.
  • Suitable examples of the gas phase reaction include, but are not limited to, a reaction in which ⁇ -caprolactam is produced from cyclohexanone oxime using a solid acid catalyst in the presence of a lower alcohol.
  • a lower alcohol methanol, ethanol, 1-propanol (n-propyl alcohol), 2-propanol (isopropyl alcohol), 1-butanol (n-butyl alcohol), 2-butanol (sec-butyl alcohol), 1 to 1 carbon atoms such as 2-methyl-1-propanol (isobutyl alcohol), 1-pentanol (n-pentyl alcohol), 1-hexanol (n-hexyl alcohol), 2,2,2-trifluoroethanol, etc.
  • alcohols can be exemplified.
  • the lower alcohol methanol, ethanol, 1-propanol, 2-propanol, and 1-butanol are preferable, and methanol and ethanol are more preferable.
  • the solid acid catalyst include a pentasil-type zeolite catalyst.
  • the condensed liquid is extracted from the second discharge line 15 to the outside of the distillation column 11. Then, at least a part of the extracted liquid is separated, returned to the inside of the distillation column 11 through the circulation line 151, and supplied to the first packed bed 12 from above. In this way, the impurities trapped in the first packed bed 12 are washed away by the liquid (circulating liquid) passing through the first packed bed 12 from the upper side to the lower side. At this time, a part of the gas extracted from the first discharge line 14 is cooled by the cooler 140, or the gas is cooled above the first packed bed 12 inside the distillation column 11.
  • a part of the gas is condensed above the first packed bed 12 to become a liquid and flow down. That is, as another aspect of the present invention, a part of the gas containing the target object extracted from the first extraction part (first discharge line 14) is cooled and condensed to form a liquid, Is preferably further refluxed from the top of the distillation column.
  • the cooling by the cooler 140 is performed by setting the temperature so that a gas having a boiling point higher than that of the object out of the gas including the object extracted from the first discharge line 14 is condensed to become a liquid. It is preferable to do.
  • the impurities trapped in the first packed bed 12 are also washed away by the liquid (reflux) supplied from the upper part of the distillation column by this reflux.
  • the mixed gas supplied from the gas supply unit 111 is in gas-liquid contact with the circulating liquid and the reflux liquid.
  • the solid content in the mixed gas and the solid content captured by the first packed bed 12 move to the bottom of the distillation column 11.
  • the polymerizable component captured by the first packed bed 12 moves to the bottom of the column before becoming a polymer. Therefore, not only the impurities move to the bottom of the column, but also polymerization of the polymerizable component is suppressed, so that the total amount of solids in the distillation column 11 can be significantly reduced.
  • the washed liquid containing the impurities is extracted from the second discharge line 15 to the outside of the distillation column 11. A part of the extracted liquid is used for washing away the impurities trapped in the first packed bed 12 in the same manner.
  • the impurities are extracted from the second discharge line 15 to the outside of the distillation column 11 and are not returned to the inside of the distillation column 11 except for a part, so that the impurities are removed from the inside of the distillation column 11. To go.
  • the removal of the impurities suppresses the adhesion and accumulation of solids in each part of the distillation apparatus 1 including the distillation column 11, the first discharge line 14 and the second discharge line 15. Blockage in the interior of the is suppressed.
  • the flow rate of the liquid passing through the first packed bed 12, that is, the total flow rate of the circulating liquid and the reflux liquid is 1.5 ⁇ in the plane perpendicular to the height direction Z of the distillation column 11. It is preferably 10 4 to 1.2 ⁇ 10 5 kg / m 2 / h.
  • the lower limit value or more By setting the lower limit value or more, the effect of washing out the impurities in the first packed bed 12 is further improved.
  • by setting it as the said upper limit or less while separating efficiency of a target object improves more, installation of the excessive pump for obtaining the said predetermined total flow rate is avoided.
  • the flow rate of the circulating liquid can be adjusted, for example, by adjusting the amount of liquid separated from the second discharge line 15 to the circulating line 151.
  • the flow rate of the reflux liquid can be adjusted by adjusting the temperature of the distillation column 11 or the temperature of the cooler 140, for example.
  • the total flow rate is measured by a method such as measurement by a flow meter installed in a pipe through which each liquid flows.
  • the packing material for the distillation column according to the present invention is not particularly limited as long as it can capture impurities, and examples thereof include irregular packing such as cascade mini-ring, or regular packing.
  • irregular packing such as cascade mini-ring, or regular packing.
  • the packing material is an irregular packing such as a cascade miniring, Or a regular packing etc. are mentioned.
  • the packing materials may be the same or different.
  • FIG. 2 is a schematic view for explaining an impurity removal method according to the second embodiment of the present invention. 2 that are the same as those shown in FIG. 1 are denoted by the same reference numerals as those in FIG. 1 and will not be described in detail. The same applies to the subsequent drawings.
  • the distillation apparatus 2 shown in FIG. 2 includes a first filtration unit 16 in the middle of the reflux line 141, and a second filtration unit 17 in the middle of the second discharge line 15. Except for these points, This is the same as the distillation apparatus 1 shown in FIG.
  • the method for removing impurities according to the second embodiment of the present invention further includes removing the solid content by filtering the condensed liquid before refluxing the reflux liquid from the upper part of the distillation column 11. Including. That is, the first filtration unit 16 is arranged between the cooler 140 and the connection part of the reflux line 141 to the distillation column 11, and solids are mixed in the liquid condensed by the cooler 140. Even if this is done, it is possible to filter this off and allow the liquid not containing solids (reflux) to be refluxed to the distillation column 11. In this way, after removing the solid content, by supplying a reflux liquid to the second packed bed 13 and the first packed bed 12, the effect of washing away the impurities trapped in the first packed bed 12 is obtained. It can be improved further.
  • the method for removing impurities according to the second embodiment of the present invention is a method for supplying at least a part of the liquid extracted from the second extraction site to the lowermost packed bed as a circulating liquid from above. And further filtering the liquid extracted from the second extraction site to remove the solid content. That is, the second filtration unit 17 is arranged in the second discharge line 15 between the connection part with the distillation column 11 and the branch part with the circulation line 151, and is extracted from the distillation column 11. It is possible to filter the solid content contained in the liquid and to circulate the liquid not containing the solid content (circulating liquid) in the distillation column 1. In this way, by removing the solid content and then supplying the circulating liquid to the first packed bed 12, the effect of washing out the impurities trapped in the first packed bed 12 can be further improved.
  • the 1st filtration part 16 and the 2nd filtration part 17 will not be specifically limited if solid content can be filtered, Well-known filter filtration apparatuses, such as a strainer, can be illustrated. What is necessary is just to adjust suitably the filtration capability of the 1st filtration part 16 and the 2nd filtration part 17 according to the kind of mixed gas of distillation object, respectively.
  • the first filtration unit 16 and the second filtration unit 17 may be the same or different from each other.
  • the 2nd filtration part 17 has shown the example arrange
  • the distillation apparatus according to the present invention is not limited to this.
  • the distillation apparatus may be disposed between the connection part with the distillation column 11 and the branch part from the second discharge line 15.
  • Well not shown, in this case, the same effect as described above can be obtained.
  • 1 and 2 show a distillation apparatus provided with two layers of a first packed bed 12 and a second packed bed 13 as packed beds, but the distillation apparatus used in the present invention is not limited to these, and packing is performed. It is sufficient that at least one layer is provided.
  • the number of packed layers is preferably one or more and three or less, more preferably one or more and two or less.
  • distillation apparatus having further seen a packed bed, for example, the height of the packed bed, the height H 1 of the first filling layer 12, the high H 2 of the second filling layer 13 It is preferable to be equal to or greater than the total value. And the other end of the circulation line branched from the 2nd discharge line and the other end of the recirculation
  • the second inside the distillation column 11 and above the second packed bed 13 the second One or more packed layers may be disposed apart from the packed layer 13, and these one or more packed layers may be disposed apart from each other.
  • These filling layers above the second filling layer 13 may be the same as the second filling layer 13, for example.
  • the distillation apparatus according to the present invention has a packed bed as shown in FIGS. 1 and 2 in consideration of the separation effect of the target product, the removal effect of the solid content and the polymerizable component, the handleability, or the cost. Those having two layers are particularly preferred.
  • the target product when the target product is separated by distillation in the distillation column, even if the mixed gas supplied to the inside of the distillation column contains solids or polymerizable components as impurities, These impurities can be effectively removed from the inside. Therefore, solid content adhesion and accumulation are suppressed in the distillation apparatus such as each part in the distillation column and the piping connected to the distillation tower, and the clogging of the distillation apparatus is suppressed. And the distillation apparatus can be stably operated for a long period of time.
  • a target gas ⁇ -caprolactam is obtained using a mixed gas obtained by a reaction for producing ⁇ -caprolactam from cyclohexanone oxime using a solid acid catalyst in a distillation apparatus shown in FIG. During the separation, impurities were removed. Specifically, it is as follows.
  • the reaction was carried out using methanol as the lower alcohol and a pentasil-type zeolite catalyst as the solid acid catalyst.
  • the obtained mixed gas contains methanol at an average temperature of 379 ° C., about 60% by mass of methanol, about 6% by mass of inert gas containing water, and about 34% by mass of ⁇ -caprolactam containing reaction byproducts. It was.
  • those having a specific surface area of 257 m 2 / m 3 (cascade mini ring 1 P) are used as the fillers of the first packed bed 12 and the second packed bed 13, respectively.
  • the height H 1 and the height H 2 of the second packed bed 13 were 22% with respect to the height H 0 of the distillation column 11, respectively.
  • the mixed gas is supplied to the inside of the distillation column 11 set at a pressure of 97.3 kPa (730 Torr) and a temperature of 200 to 220 ° C., and with respect to ⁇ -caprolactam containing a reaction by-product in the supplied mixed gas, An amount of liquid corresponding to about 14% by mass is extracted from the second discharge line 15 connected to the bottom of the column with a liquid level control valve (hereinafter referred to as LCV), and the remaining portion of the mixed gas has an average temperature of 178
  • LCV liquid level control valve
  • the distillation apparatus 8 shown in FIG. 3 is different from the distillation apparatus 2 shown in FIG. 2 in that the other end of the circulation line 151 is replaced with a space between the first packed bed 12 and the second packed bed 13 inside the distillation column 11.
  • the gas supply unit 111 is connected to a supply line for supplying a mixed gas connected to the upstream side of the gas supply unit 111. That is, in the distillation apparatus 8, the circulation line 158 is connected to the supply line 18 so that the mixed gas before being supplied into the distillation column 11 and the circulating liquid come into gas-liquid contact and the mixed gas is cooled. ing. Except for this point, the distillation apparatus 8 is the same as the distillation apparatus 2 shown in FIG.
  • the reaction was carried out using methanol as the lower alcohol and a pentasil-type zeolite catalyst as the solid acid catalyst.
  • the obtained mixed gas contains methanol at an average temperature of 390 ° C., about 61% by mass of methanol, about 4% by mass of inert gas containing water, and about 35% by mass of ⁇ -caprolactam containing reaction byproducts. It was.
  • the mixed gas is supplied to the inside of the distillation column 11 set at a pressure of 97.3 kPa (730 Torr) and a temperature of 200 to 220 ° C., and with respect to ⁇ -caprolactam containing a reaction by-product in the supplied mixed gas, An amount of liquid corresponding to about 7% by mass is extracted by LCV from the second discharge line 15 connected to the bottom of the column, and the remaining portion of the mixed gas is condensed at an average temperature of 184 ° C. Was extracted from the first discharge line 14 connected to the top of the column.
  • the distillation apparatus 9 shown in FIG. 4 is different from the distillation apparatus 8 shown in FIG. 3 in that the second cooler 150 (hereinafter referred to as the second cooler 150 in order to distinguish the first discharge line 14 in the middle of the supply line 18).
  • the circulation line 158 is connected to the supply line 18 on the distillation column 11 side (downstream side) with respect to the second cooler 150. It is composed. That is, in the distillation apparatus 9, the circulation line 158 is connected to the supply line 18 so that the cooled mixed gas before being supplied into the distillation column 11 and the circulating liquid come into contact with each other and the mixed gas is further cooled. It is connected.
  • the second cooler 150 is the same as the first cooler 140. Except for these points, the distillation apparatus 9 is the same as the distillation apparatus 8 shown in FIG.
  • the reaction was carried out using methanol as the lower alcohol and a pentasil-type zeolite catalyst as the solid acid catalyst.
  • the obtained mixed gas contains methanol at an average temperature of 387 ° C., about 61% by mass of methanol, about 3% by mass of inert gas containing water, and about 36% by mass of ⁇ -caprolactam containing reaction byproducts. It was.
  • the mixed gas was cooled to an average of 320 ° C. with an indirect heat exchange type second cooler 150 using a high-temperature gas of 160 ° C., and further brought into contact with a circulating liquid described later.
  • a target gas ⁇ -caprolactam is obtained using a mixed gas obtained by a reaction for producing ⁇ -caprolactam from cyclohexanone oxime using a solid acid catalyst in a distillation apparatus shown in FIG. During the separation, impurities were removed. Specifically, it is as follows. The reaction was carried out using methanol as the lower alcohol and a pentasil-type zeolite catalyst as the solid acid catalyst. The obtained mixed gas contains methanol at an average temperature of 376 ° C., about 61% by mass of methanol, about 8% by mass of inert gas containing water, and about 31% by mass of ⁇ -caprolactam containing reaction byproducts.
  • the first packing layer 12 has a specific surface area of 90 m 2 / m 3 (“Melgrid 90X” manufactured by Sulzer) and the second packing layer 13 has a specific surface area.
  • 125 m 2 / m 3 (“Merapack 125X” manufactured by Sulzer) is used, the height H 1 of the first packed bed 12 is set to 25% with respect to the height H 0 of the distillation column 11, and the second The height H 2 of the packed bed 13 was 20% with respect to the height H 0 of the distillation column 11.
  • the mixed gas is supplied to the inside of the distillation column 11 set to a pressure of 96.1 kPa (721 Torr) and a temperature of 200 to 220 ° C., and with respect to ⁇ -caprolactam containing a reaction by-product in the supplied mixed gas, An amount of liquid corresponding to about 8% by mass is extracted by LCV from the second discharge line 15 connected to the bottom of the column, and the remaining amount of the mixed gas is condensed at an average temperature of 185 ° C. Was extracted from the first discharge line 14 connected to the top of the column.
  • the total flow rate of the circulating liquid and the reflux liquid in the radial direction of the first packed bed 12 was 2.9 ⁇ 10 4 kg / m 2 / h.
  • As the circulating liquid a liquid obtained by filtering the solid content through a strainer provided as the second filtration unit 17 in the second discharge line 15 was extracted into the circulation line 151 and used.
  • the LCV valve opening data at this time is shown in FIG.
  • the horizontal axis indicates the number of operating days of the distillation apparatus 2
  • the vertical axis indicates the difference between the LCV valve opening degree at an arbitrary time after the start of operation of the distillation apparatus 2 and the LCV valve opening degree on the first operation day. ([LCV valve opening at an arbitrary time after the start of operation] ⁇ [LCV valve opening on the first day of operation]).
  • the distillation apparatus 2 could be stably operated continuously.
  • a target gas ⁇ -caprolactam is obtained using a mixed gas obtained by a reaction for producing ⁇ -caprolactam from cyclohexanone oxime using a solid acid catalyst, using the distillation apparatus shown in FIG. During the separation, impurities were removed. Specifically, it is as follows. The reaction was carried out using methanol as the lower alcohol and a pentasil-type zeolite catalyst as the solid acid catalyst. The obtained mixed gas contains methanol at an average temperature of 378 ° C., about 60% by mass of methanol, about 9% by mass of inert gas containing water, and about 31% by mass of ⁇ -caprolactam containing reaction byproducts.
  • the mixed gas is supplied to the inside of the distillation column 11 set to a pressure of 92.0 kPa (690 Torr) and a temperature of 200 to 220 ° C., and with respect to ⁇ -caprolactam containing a reaction by-product in the supplied mixed gas, An amount of liquid corresponding to about 9% by mass is extracted by LCV from the second discharge line 15 connected to the bottom of the column, and the remaining amount of the mixed gas is condensed at an average temperature of 184 ° C. Was extracted from the first discharge line 14 connected to the top of the column.
  • the total flow rate of the circulating liquid and the reflux liquid in the radial direction of the first packed bed 12 is 3.1 ⁇ 10 4 kg / m 2 / h.
  • the liquid extracted from the second discharge line 15 is used. Extracted into the circulation line 151 and used.
  • a target gas ⁇ -caprolactam is obtained using a mixed gas obtained by a reaction for producing ⁇ -caprolactam from cyclohexanone oxime using a solid acid catalyst in a distillation apparatus shown in FIG. During the separation, impurities were removed. Specifically, it is as follows. The reaction was carried out using methanol as the lower alcohol and a pentasil-type zeolite catalyst as the solid acid catalyst. The obtained mixed gas contains methanol at an average temperature of 375 ° C., about 60% by mass of methanol, about 5% by mass of inert gas containing water, and about 35% by mass of ⁇ -caprolactam containing reaction byproducts.
  • the present invention can be used in all purification processes in which a target product is separated from a mixed gas by distillation.

Abstract

The present invention pertains to a method for removing impurities, the method comprising: providing a first filled layer and a second filled layer that are filled with a filler material and supplying, through a gas supply unit that is located below the first filling layer, a mixed gas containing as an impurity either solid matter or a component capable of forming solid matter by polymerization; distilling in a distillation column and extracting a gas that contains a target matter from a first discharge line; extracting a liquid that contains the impurity from a second discharge line to the exterior of the distillation column; supplying at least some of the extracted liquid to the first filling layer from above as a circulated liquid; rinsing away the impurity captured in the first filling layer by using the circulated liquid as well as a reflux liquid from the top of the distillation column, to obtain a liquid that contains the impurity; and extracting the liquid that contains the impurity through the first discharge line. According to the present invention, it is possible to provide a method for removing impurities whereby solid matter or a component capable of forming solid matter by polymerization can be removed as an impurity from the interior of a distillation column when a target matter is being isolated by distillation in the distillation column.

Description

不純物の除去方法How to remove impurities
 本発明は、蒸留によって目的物を分離する際の不純物の除去方法に関する。
 本願は2011年11月25日に日本に出願された、特願2011-257557号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a method for removing impurities when an object is separated by distillation.
This application claims priority based on Japanese Patent Application No. 2011-257557 for which it applied to Japan on November 25, 2011, and uses the content here.
 気相反応を行ったときなど、反応器から排出される混合ガスから目的物を分離する際には、混合ガスを蒸留装置の蒸留塔に供給して温度調節を行い、沸点の相違を利用して分離する手法が適用される。例えば、目的物よりも沸点が高い成分は、冷却によって凝縮させ、蒸留塔の下部から液体として抜き出すことで除去され、場合によっては、抜き出した液体を蒸留塔内に戻して混合ガスと接触させ、凝縮の促進に再利用されることもある。 When separating the target product from the mixed gas discharged from the reactor, such as when performing a gas phase reaction, supply the mixed gas to the distillation tower of the distillation device to adjust the temperature, and use the difference in boiling points. The separation method is applied. For example, a component having a boiling point higher than that of the target product is condensed by cooling and removed as a liquid from the lower part of the distillation column, and in some cases, the extracted liquid is returned to the distillation column and brought into contact with the mixed gas. Sometimes reused to promote condensation.
 一方、例えば、流動層形式の反応器を用いた場合には、反応で用いた触媒、反応副生成物、反応副生成物に由来する成分等の固形分が、反応器から排出される混合ガスに含まれると、この固形分は凝縮により除去できず、蒸留塔内の各部又は蒸留塔に接続されている配管の内部等、蒸留装置の内部に付着して堆積し、蒸留装置を閉塞させてしまうことがある。そこで、固形分の蒸留塔内への混入を抑制する手法が検討されている。例えば、反応副生成物の反応時における副生を抑制するための反応条件が検討されることがある。 On the other hand, for example, when a fluidized bed type reactor is used, a mixed gas in which solid components such as the catalyst, reaction by-products, and components derived from the reaction by-products used in the reaction are discharged from the reactor. This solid content cannot be removed by condensation, adheres to and accumulates within the distillation apparatus, such as inside the distillation column or inside the piping connected to the distillation tower, and closes the distillation apparatus. It may end up. Therefore, a technique for suppressing the mixing of solid content into the distillation tower has been studied. For example, reaction conditions for suppressing by-products during reaction of reaction by-products may be studied.
 しかし、固形分の蒸留塔内への混入は、完全には抑制できない。また、特に沸点が高い高沸点成分のうち、重合により固形分を形成し得る成分(以下、「重合性成分」ということがある。)は、蒸留塔内への導入直後にはガス状であっても、蒸留装置の内部に付着して重合物を生成し、固形化するものがある。すると、上記の固形分と同様に、蒸留装置を閉塞させてしまうことがある。上記の反応副生成物としては、このような重合性成分を生じるものがある。
 以上のように、混合ガス中の固形分及び重合性成分は、蒸留装置を閉塞させて、蒸留装置の安定した連続運転の妨げとなり得る。そこで、蒸留塔内に混入した固形分及び重合性成分を蒸留塔内から除去する手法が検討されている。
However, mixing of solid content into the distillation tower cannot be completely suppressed. In addition, among the high boiling components having a particularly high boiling point, components capable of forming solids by polymerization (hereinafter sometimes referred to as “polymerizable components”) are in a gaseous state immediately after introduction into the distillation column. However, some of them adhere to the inside of the distillation apparatus to produce a polymer and solidify. Then, like the above solid content, the distillation apparatus may be blocked. Some of the above reaction by-products generate such polymerizable components.
As described above, the solid content and the polymerizable component in the mixed gas can block the distillation apparatus and hinder stable continuous operation of the distillation apparatus. Therefore, a technique for removing the solid content and polymerizable components mixed in the distillation column from the distillation column has been studied.
 例えば、特許文献1には、有機化合物のアンモ酸化反応によって不飽和ニトリルを製造する際に、反応で得られた混合ガスを、反応生成物を含む循環液と接触させ、重合物及び触媒等の不純物を循環液で捕捉して除去することが開示されている。 For example, in Patent Document 1, when an unsaturated nitrile is produced by an ammoxidation reaction of an organic compound, a mixed gas obtained by the reaction is brought into contact with a circulating liquid containing a reaction product, and a polymer, a catalyst, etc. It is disclosed that impurities are captured and removed with a circulating fluid.
日本国特許第3270479号公報Japanese Patent No. 3270479
 しかし、特許文献1には、循環液で不純物を除去するために必要な具体的な構成が開示されておらず、蒸留塔の内部から重合物及び触媒等の不純物を除去する有効な方法は、実質的に開示されていない。 However, Patent Document 1 does not disclose a specific configuration necessary for removing impurities with the circulating liquid, and an effective method for removing impurities such as a polymer and a catalyst from the inside of the distillation column is as follows. It is not substantially disclosed.
 本発明は、上記事情に鑑みてなされたものであり、蒸留塔での蒸留によって、固形分又は重合により固形分を形成し得る成分を含有する混合ガスから目的物を分離する際に、固形分又は重合により固形分を形成し得る成分を、蒸留塔の内部から不純物として除去できる、不純物の除去方法を提供することを課題とする。 The present invention has been made in view of the above circumstances, and when separating an object from a mixed gas containing a solid content or a component capable of forming a solid content by polymerization by distillation in a distillation column, Alternatively, an object of the present invention is to provide an impurity removal method capable of removing a component capable of forming a solid content by polymerization as an impurity from the inside of a distillation column.
 上記課題を解決するため、
 本発明は、固形分又は重合により固形分を形成し得る成分を不純物として含有する混合ガスから、蒸留によって目的物を分離する際に、蒸留を行う蒸留塔の内部から、前記不純物を除去する方法であって、前記蒸留塔の内部に、充填材で満たされた充填層を、前記蒸留塔の高さ方向に一層以上設け、最下部の前記充填層よりも下方の部位に、前記蒸留塔の外部から前記混合ガスを供給して、蒸留を行い、前記蒸留塔のうち、最上部の前記充填層よりも上方から、目的物を含有するガスを抜き出すと共に、前記混合ガスの供給部よりも下方の抜き出し部位から抜き出した液体の少なくとも一部を、循環液として最下部の前記充填層に上方から供給し、前記循環液と、前記蒸留塔の上部からの還流液とで、最下部の前記充填層に捕捉された前記不純物を洗い流して、前記不純物を含有する液体を、前記下方の抜き出し部位から抜き出すことを特徴とする不純物の除去方法を提供する。
 本発明の不純物の除去方法においては、最下部の前記充填層における充填材の比表面積を70~300m/mとすることが好ましい。
 本発明の不純物の除去方法においては、最下部の前記充填層の、前記蒸留塔の高さ方向に対して垂直な面における、前記循環液及び還流液の合計流量が、1.5×10~1.2×10kg/m/hであることが好ましい。
 本発明の不純物の除去方法においては、前記循環液及び還流液を、フィルターろ過して固形分を除去してから、最下部の前記充填層に供給することが好ましい。
 本発明の不純物の除去方法においては、前記混合ガスが、低級アルコールの共存下、固体酸触媒を用いて、シクロヘキサノンオキシムからε-カプロラクタムを生成させる気相反応後のガスであることが好ましい。
To solve the above problem,
The present invention relates to a method for removing impurities from the inside of a distillation column for distillation when a target product is separated by distillation from a solid gas or a mixed gas containing components that can form solids by polymerization as impurities. In the distillation column, one or more packed beds filled with a filler are provided in the height direction of the distillation column, and the lower portion of the packed bed has a lower portion than the packed bed. The mixed gas is supplied from the outside to perform distillation, and the gas containing the target product is extracted from above the uppermost packed bed in the distillation column and below the mixed gas supply unit. At least a part of the liquid extracted from the extraction site is supplied to the bottom packed bed as a circulating liquid from above, and the bottom packed with the circulating liquid and the reflux liquid from the upper part of the distillation column. The fault trapped in the layer Rinse things, the liquid containing the impurities, provides a method of removing impurities, characterized in that withdrawing from the site extraction of the lower.
In the impurity removal method of the present invention, it is preferable that the specific surface area of the filler in the lowermost packed bed is 70 to 300 m 2 / m 3 .
In the impurity removal method of the present invention, the total flow rate of the circulating liquid and the reflux liquid in the plane perpendicular to the height direction of the distillation column of the bottom packed bed is 1.5 × 10 4. It is preferably ˜1.2 × 10 5 kg / m 2 / h.
In the impurity removal method of the present invention, it is preferable that the circulating liquid and the reflux liquid are filtered to remove solids, and then supplied to the bottom packed bed.
In the impurity removal method of the present invention, the mixed gas is preferably a gas after a gas phase reaction in which ε-caprolactam is generated from cyclohexanone oxime using a solid acid catalyst in the presence of a lower alcohol.
 すなわち、本発明は以下に関する。
(1)固形分又は重合により固形分を形成し得る成分を不純物として含有する混合ガスから、蒸留によって目的物を分離する際に、蒸留を行う蒸留塔の内部から、前記不純物を除去する方法であって前記蒸留塔は、前記蒸留塔の高さ方向に設けられた少なくとも一層の、充填材で満たされた充填層、最下部の前記充填層よりも下方の部位に設けられたガス供給部、最上部の前記充填層よりも上方に設けられた第一の抜き出し部位、及び前記ガス供給部よりも下方に設けられた第二の抜き出し部位を有しており、最下部の前記充填層よりも下方の部位に、前記蒸留塔の外部から内部へ前記混合ガスを供給すること、前記蒸留塔において蒸留を行い、最上部の前記充填層よりも上方に設けられた前記第一の抜き出し部位から、目的物を含有するガスを前記蒸留塔の外部へ抜き出すこと、前記ガス供給部よりも下方に設けられた第二の抜き出し部位から前記蒸留塔の外部へ前記不純物を含有する液体を抜き出すこと、前記抜き出した液体の少なくとも一部を、循環液として前記最下部の充填層に上方から供給すること、前記循環液と、前記蒸留塔の上部からの還流液により、前記最下部の充填層に捕捉された前記不純物を洗い流して、前記不純物を含有する液体を得ること、前記不純物を含有する液体を、前記第二の抜き出し部位から前記蒸留塔の外部へ抜き出すことを含む、前記不純物を除去する方法、
(2)前記最下部の充填層における充填材の比表面積が70~300m/mである(1)に記載の不純物を除去する方法、
(3)前記最下部の充填層の、前記蒸留塔の高さ方向に対して垂直な任意の面における、前記循環液及び前記還流液の合計流量が、1.5×10~1.2×10kg/m/hである(1)又は(2)に記載の不純物を除去する方法、
(4)前記第一の抜き出し部位から抜き出された、目的物を含有するガスの一部を冷却して凝縮させ液体とし、前記液体を前記蒸留塔の上部から還流させることを更に含む、(1)~(3)のいずれか一項に記載の不純物を除去する方法、
(5)前記蒸留塔の上部から前記液体を還流させることの前に、前記凝縮された液体をフィルターろ過して固形分を除去することを更に含む、(1)~(4)のいずれか一項に記載の不純物を除去する方法、
(6)前記第二の抜き出し部位から抜き出した液体の少なくとも一部を、循環液として前記最下部の充填層に上方から供給することの前に、前記第二の抜き出し部位から抜き出した液体をフィルターろ過して固形分を除去することを更に含む、(1)~(5)のいずれか一項に記載の不純物を除去する方法、及び
(7)前記混合ガスが、低級アルコールの共存下、固体酸触媒を用いて、シクロヘキサノンオキシムからε-カプロラクタムを生成させる気相反応で得られたガスである(1)~(6)のいずれか一項に記載の不純物を除去する方法。
That is, the present invention relates to the following.
(1) A method of removing impurities from the inside of a distillation column that performs distillation when a target product is separated by distillation from a mixed gas containing solids or components capable of forming solids by polymerization as impurities. The distillation column is at least one layer provided in the height direction of the distillation column, a packed bed filled with a filler, a gas supply unit provided in a portion below the bottom packed bed, It has a first extraction site provided above the uppermost packed bed and a second extraction site provided below the gas supply unit, and is lower than the lower packed bed. Supplying the mixed gas from the outside to the inside of the distillation column to the lower site, performing distillation in the distillation column, from the first extraction site provided above the packed bed at the top, Gas containing the object Is extracted to the outside of the distillation column, the liquid containing the impurities is extracted to the outside of the distillation column from a second extraction site provided below the gas supply unit, and at least one of the extracted liquids Supplying the lower part of the packed bed as a circulating liquid from above, and washing the impurities trapped in the lower packed bed with the circulating liquid and the reflux liquid from the upper part of the distillation column. Obtaining a liquid containing the impurities, and extracting the liquid containing the impurities from the second extraction site to the outside of the distillation column,
(2) The method for removing impurities according to (1), wherein a specific surface area of the filler in the lowermost packed bed is 70 to 300 m 2 / m 3 ,
(3) The total flow rate of the circulating liquid and the reflux liquid in an arbitrary plane perpendicular to the height direction of the distillation column in the lowermost packed bed is 1.5 × 10 4 to 1.2. A method for removing impurities according to (1) or (2), which is × 10 5 kg / m 2 / h,
(4) The method further includes cooling and condensing a part of the gas containing the target product extracted from the first extraction site to form a liquid, and refluxing the liquid from the upper part of the distillation column. 1) a method for removing impurities according to any one of (3),
(5) The method according to any one of (1) to (4), further comprising: filtering the condensed liquid to remove solids before refluxing the liquid from the upper part of the distillation column. A method for removing the impurities described in the paragraph,
(6) Before supplying at least a part of the liquid extracted from the second extraction site as a circulating liquid to the lowermost packed bed from above, the liquid extracted from the second extraction site is filtered. (1) The method for removing impurities according to any one of (1) to (5), further comprising removing solids by filtration, and (7) the mixed gas is a solid in the presence of a lower alcohol. The method for removing impurities according to any one of (1) to (6), which is a gas obtained by a gas phase reaction in which ε-caprolactam is produced from cyclohexanone oxime using an acid catalyst.
 本発明によれば、蒸留塔での蒸留によって目的物を分離する際に、固形分又は重合により固形分を形成し得る成分を、蒸留塔の内部から不純物として除去できる、不純物の除去方法を提供できる。 ADVANTAGE OF THE INVENTION According to this invention, when separating a target object by distillation in a distillation column, the removal method of the impurity which can remove the solid content or the component which can form solid content by superposition | polymerization as an impurity from the inside of a distillation column is provided. it can.
本発明の第一の実施形態に係る不純物の除去方法を説明するための概略図である。It is the schematic for demonstrating the removal method of the impurity which concerns on 1st embodiment of this invention. 本発明の第二の実施形態に係る不純物の除去方法を説明するための概略図である。It is the schematic for demonstrating the removal method of the impurity which concerns on 2nd embodiment of this invention. 従来の不純物の除去方法を説明するための概略図である。It is the schematic for demonstrating the removal method of the conventional impurity. 従来の他の不純物の除去方法を説明するための概略図である。It is the schematic for demonstrating the conventional removal method of other impurities. 実施例2~4におけるLCVの弁開度のデータを示すグラフである。6 is a graph showing LCV valve opening data in Examples 2 to 4.
 本発明に係る不純物の除去方法は、固形分又は重合により固形分を形成し得る成分(重合性成分)を不純物として含有する混合ガスから、蒸留によって目的物を分離する際に、蒸留を行う蒸留塔の内部から、前記不純物を除去する方法であって、前記蒸留塔は、前記蒸留塔の高さ方向に設けられた少なくとも一層の、充填材で満たされた充填層、最下部の前記充填層よりも下方の部位に設置されたガス供給部、最上部の前記充填層よりも上方に設けられた第一の抜き出し部位、及び前記ガス供給部よりも下方に設けられた第二の抜き出し部位を有しており、最下部の前記充填層よりも下方の部位に、前記蒸留塔の外部から内部へ前記混合ガスを供給すること、前記蒸留塔において蒸留を行い、最上部の前記充填層よりも上方に設けられた前記第一の抜き出し部位から、目的物を含有するガスを前記蒸留塔の外部へ抜き出すこと、前記ガス供給部よりも下方の抜き出し部位(前記第二の抜き出し部位)から前記蒸留塔の外部へ前記不純物を含有する液体を抜き出すこと、前記抜き出した液体の少なくとも一部を、循環液として前記最下部の充填層に上方から供給すること、前記循環液と、前記蒸留塔の上部からの還流液により、前記最下部の充填層に捕捉された前記不純物を洗い流して、前記不純物を含有する液体を得ること、前記不純物を含有する液体を、前記下方の抜き出し部位(前記第二の抜き出し部位)から前記蒸留塔の外部へ抜き出すことを含む。
 以下、図面を参照しながら本発明について、詳細に説明する。
In the method for removing impurities according to the present invention, distillation is performed when a target product is separated by distillation from a mixed gas containing solids or components capable of forming solids by polymerization (polymerizable components) as impurities. A method for removing the impurities from the inside of a column, wherein the distillation column comprises at least one packed bed filled with a filler provided in the height direction of the distillation column, and the packed bed at the bottom. A gas supply section installed at a lower position than the gas supply section, a first extraction section provided above the uppermost packed bed, and a second extraction section provided below the gas supply section. And supplying the mixed gas from the outside to the inside of the distillation column to the lower part of the packed bed at the bottom, performing distillation in the distillation column, and more than the packed bed at the top. Provided above Extracting the gas containing the target product from one extraction site to the outside of the distillation column, and extracting the impurities from the extraction site (the second extraction site) below the gas supply unit to the outside of the distillation column. Extracting the contained liquid, supplying at least a part of the extracted liquid to the bottom packed bed as a circulating liquid from above, the circulating liquid and the reflux liquid from the upper part of the distillation column, Washing off the impurities trapped in the bottom packed bed to obtain a liquid containing the impurities, and removing the liquid containing the impurities from the lower extraction site (second extraction site) to the distillation column. Including extraction outside.
Hereinafter, the present invention will be described in detail with reference to the drawings.
 図1は、本発明の第一の実施形態に係る不純物の除去方法を説明するための概略図である。
 ここに示す蒸留装置1は、蒸留を行う蒸留塔11の内部に、充填材で満たされた第一の充填層12及び第二の充填層13を備えたものである。第一の充填層12及び第二の充填層13は、蒸留塔11の高さ方向において、下方からこの順に離間して配置されている。
 第一の充填層12は、蒸留対象の混合ガスからの目的物の分離に寄与すると共に、前記混合ガス中の固形分又は重合性成分を捕捉するものである。また、第二の充填層13は、主として前記混合ガスからの目的物の分離を促進するものであるが、第一の充填層12と同様に、固形分又は重合性成分を捕捉するように構成してもよい。
 本明細書において、「充填材で満たされている」とは、蒸留塔の高さ方向(図1中の矢印Zの方向)に対して垂直な方向(例えば、蒸留塔が円筒状の場合にはその径方向)に、充填材が敷き詰められていることを指す。
FIG. 1 is a schematic view for explaining an impurity removal method according to the first embodiment of the present invention.
The distillation apparatus 1 shown here includes a first packed bed 12 and a second packed bed 13 filled with a filler inside a distillation column 11 that performs distillation. The first packed bed 12 and the second packed bed 13 are spaced apart from each other in this order from below in the height direction of the distillation column 11.
The first packed bed 12 contributes to the separation of the target product from the mixed gas to be distilled and captures a solid content or a polymerizable component in the mixed gas. The second packed bed 13 mainly promotes separation of the target product from the mixed gas, and is configured to capture a solid content or a polymerizable component in the same manner as the first packed bed 12. May be.
In this specification, “filled with filler” means a direction perpendicular to the height direction of the distillation column (the direction of arrow Z in FIG. 1) (for example, when the distillation column is cylindrical). Indicates that the filler is spread in the radial direction).
 蒸留塔11の下部には、最下層(最下部)の充填層である第一の充填層12よりも下方に、蒸留塔11の外部から内部へガスを供給するためのガス供給部111が設けられている。このように、蒸留塔11の内部には、ガス供給部111よりも下方(塔底部側)に、充填材で満たされたその他の充填層は設けられていない。すなわち、前記充填層12は、ガス供給部111よりも上方に設けられている。 A gas supply unit 111 for supplying gas from the outside to the inside of the distillation column 11 is provided below the distillation column 11 below the first packed layer 12 which is the lowermost layer (lowermost) packed layer. It has been. Thus, the other packed bed filled with the filler is not provided inside the distillation column 11 below the gas supply unit 111 (on the column bottom side). That is, the packed bed 12 is provided above the gas supply unit 111.
 蒸留塔11の塔頂部には、分離対象の目的物を含有するガスを抜き出すための第一の抜き出し部位である第一の排出ライン14が接続され、塔底部には、液体を抜き出すための第二の抜き出し部位である第二の排出ライン15が接続されている。 Connected to the top of the distillation column 11 is a first discharge line 14 that is a first extraction site for extracting a gas containing the target substance to be separated, and a bottom for extracting a liquid. A second discharge line 15 which is a second extraction portion is connected.
 第一の排出ライン14には、途中に冷却器140が設けられ、冷却器140からは前記第一の排出ラインとは別に還流ライン141が分岐されており、前記還流ライン141の前記冷却器140と接続されていない端は蒸留塔11のうち、最上層(最上部)の充填層である第二の充填層13の上方に接続されている。冷却器140としては、熱交換式のもの等、公知のものが例示できる。 The first discharge line 14 is provided with a cooler 140 in the middle, and a reflux line 141 is branched from the cooler 140 separately from the first discharge line. The cooler 140 of the reflux line 141 is branched. The end not connected to is connected above the second packed bed 13 which is the packed bed of the uppermost layer (uppermost part) in the distillation column 11. Examples of the cooler 140 include known ones such as a heat exchange type.
 第二の排出ライン15の途中の部分からは、循環ライン151が分岐され、前記循環ライン151の前記第二の排出ライン15と接続されていない端は蒸留塔11のうち、第一の充填層12の上方で且つ第二の充填層13の下方に接続されている。すなわち、循環ライン151は、蒸留塔11内部の第一の充填層12及び第二の充填層13間の空間と、第二の排出ライン15とを接続している。 A circulation line 151 is branched from a middle portion of the second discharge line 15, and the end of the circulation line 151 not connected to the second discharge line 15 is the first packed bed in the distillation column 11. 12 above and below the second packed bed 13. That is, the circulation line 151 connects the space between the first packed bed 12 and the second packed bed 13 inside the distillation column 11 and the second discharge line 15.
 第一の充填層12における充填材の比表面積は、70~300m/mであることが好ましく、70~260m/mであることがより好ましく、70~160m/mであることが更に好ましい。前記下限値以上とすることで、混合ガスからの目的物の分離効果がより向上し、前記上限値以下とすることで、捕捉した固形分又は重合性成分の洗い流し効果がより向上する。 The specific surface area of the filler in the first packed bed 12 is preferably 70 to 300 m 2 / m 3 , more preferably 70 to 260 m 2 / m 3 , and 70 to 160 m 2 / m 3 . More preferably. By setting it as the said lower limit or more, the separation effect of the target object from mixed gas improves more, and the washing | cleaning effect of the capture | acquired solid content or polymeric component improves more by setting it as the said upper limit or less.
 第二の充填層13における充填材の比表面積は、目的に応じて適宜調節すればよいが、70~270m/mであることが好ましく、90~260m/mであることがより好ましい。前記下限値以上とすることで、混合ガスからの目的物の分離効果がより向上し、前記上限値以下とすることで、第一の充填層12を通過した混合ガスに固形分又は重合性成分が含まれていても、これらを捕捉して、より効果的に洗い流すことができる。 The specific surface area of the filler in the second packed bed 13 may be appropriately adjusted according to the purpose, but is preferably 70 to 270 m 2 / m 3 , more preferably 90 to 260 m 2 / m 3. preferable. By setting the lower limit value or more, the effect of separating the target product from the mixed gas is further improved. By setting the lower limit value or less, the mixed gas that has passed through the first packed bed 12 has a solid content or a polymerizable component. Can be captured and washed out more effectively.
 第一の充填層12の高さHは、蒸留塔11の高さHに対して20~30%であることが好ましい。前記下限値以上とすることで、混合ガス中の固形分又は重合性成分の捕捉効果がより向上し、前記上限値以下とすることで、混合ガスから目的物をより効率よく分離できる。 The height H 1 of the first packed bed 12 is preferably 20 to 30% with respect to the height H 0 of the distillation column 11. By setting it as the said lower limit or more, the capture | acquisition effect of the solid content or polymeric component in mixed gas improves more, By making it into the said upper limit or less, the target object can be isolate | separated more efficiently from mixed gas.
 第二の充填層13の高さHは、蒸留塔11の高さHに対して20~30%であることが好ましい。前記下限値以上とすることで、混合ガスからの目的物の分離効果がより向上し、前記上限値以下とすることで、混合ガスから目的物をより効率的に分離できる。 The height H 2 of the second packed bed 13 is preferably 20 to 30% with respect to the height H 0 of the distillation column 11. By setting it as the said lower limit or more, the separation effect of the target object from mixed gas improves more, and by setting it as the said upper limit or less, a target object can be isolate | separated more efficiently.
 本発明においては、固形分又は重合性成分を不純物として含有する混合ガスを用いて、蒸留塔11で蒸留を行い、混合ガス中の目的物を分離する際に、蒸留塔11の内部から、前記不純物を除去する。具体的には以下の通りである。 In the present invention, using a mixed gas containing a solid component or a polymerizable component as an impurity, distillation is performed in the distillation column 11, and when the target product in the mixed gas is separated, the inside of the distillation column 11 Remove impurities. Specifically, it is as follows.
 まず、ガス供給部111より蒸留塔11の内部に前記混合ガスを供給する。
 前記混合ガスは、固形分又は重合性成分を不純物として含有するものであれば特に限定されず、好適なものとしては、気相反応後のガスが例示でき、流動層形式の反応器から移送されたものが例示できる。ここで、固形分としては、触媒;重合性成分の重合物、若しくは前記重合物以外の化合物等の反応副生成物;又は前記反応副生成物に由来する成分が例示できる。前記重合性成分としては、反応中に生じた反応副生成物が例示できる。
 好適な前記気相反応としては、低級アルコールの共存下、固体酸触媒を用いて、シクロヘキサノンオキシムからε-カプロラクタムを生成させる反応が例示できるが、これに限定されない。ここで前記低級アルコールとしては、メタノール、エタノール、1-プロパノール(n-プロピルアルコール)、2-プロパノール(イソプロピルアルコール)、1-ブタノール(n-ブチルアルコール)、2-ブタノール(sec-ブチルアルコール)、2-メチル-1-プロパノール(イソブチルアルコール)、1-ペンタノール(n-ペンチルアルコール)、1-ヘキサノール(n-ヘキシルアルコール)、又は2,2,2-トリフルオロエタノール等の炭素数が1~6のアルコールが例示できる。前記低級アルコールとしては、メタノール、エタノール、1-プロパノール、2-プロパノール、及び1-ブタノールが好ましく、メタノール、及びエタノールがより好ましい。
 前記固体酸触媒としては、ペンタシル型ゼオライト触媒等が挙げられる。
First, the mixed gas is supplied from the gas supply unit 111 into the distillation column 11.
The mixed gas is not particularly limited as long as it contains a solid content or a polymerizable component as an impurity, and a preferable example is a gas after a gas phase reaction, which is transferred from a fluidized bed type reactor. Can be exemplified. Here, examples of the solid content include a catalyst; a polymer of a polymerizable component, or a reaction by-product such as a compound other than the polymer; or a component derived from the reaction by-product. Examples of the polymerizable component include reaction by-products generated during the reaction.
Suitable examples of the gas phase reaction include, but are not limited to, a reaction in which ε-caprolactam is produced from cyclohexanone oxime using a solid acid catalyst in the presence of a lower alcohol. Here, as the lower alcohol, methanol, ethanol, 1-propanol (n-propyl alcohol), 2-propanol (isopropyl alcohol), 1-butanol (n-butyl alcohol), 2-butanol (sec-butyl alcohol), 1 to 1 carbon atoms such as 2-methyl-1-propanol (isobutyl alcohol), 1-pentanol (n-pentyl alcohol), 1-hexanol (n-hexyl alcohol), 2,2,2-trifluoroethanol, etc. 6 alcohols can be exemplified. As the lower alcohol, methanol, ethanol, 1-propanol, 2-propanol, and 1-butanol are preferable, and methanol and ethanol are more preferable.
Examples of the solid acid catalyst include a pentasil-type zeolite catalyst.
 そして、蒸留を行うことにより、第一の排出ライン14から蒸留塔11の外部へ、目的物を含有するガスを抜き出す。このとき、供給された混合ガス中の固形分又は重合性成分(不純物)は、第一の充填層12で捕捉され、蒸留塔11の内部において、第一の充填層12よりも上方への混入(移動)が抑制される。 Then, by performing distillation, a gas containing the target product is extracted from the first discharge line 14 to the outside of the distillation column 11. At this time, solid components or polymerizable components (impurities) in the supplied mixed gas are captured by the first packed bed 12 and mixed in the distillation column 11 above the first packed bed 12. (Movement) is suppressed.
 一方、蒸留塔11の内部においては、混合ガスの一部が凝縮されるので、第二の排出ライン15から蒸留塔11の外部へ、凝縮された液体を抜き出す。そして、抜き出した液体の少なくとも一部を分離して、循環ライン151を介して蒸留塔11の内部へ戻し、第一の充填層12に上方から供給する。このようにすることで、第一の充填層12を上方から下方へ通過する前記液体(循環液)によって、第一の充填層12で捕捉された前記不純物を洗い流す。このとき、第一の排出ライン14から抜き出されたガスの一部が冷却器140で冷却されたり、蒸留塔11の内部で第一の充填層12よりも上方においてガスが冷却されたりすることで、蒸留塔11の内部では、第一の充填層12よりも上方で一部のガスが凝縮して液体となり、流れ落ちる。すなわち、本発明の別の側面としては、第一の抜き出し部位(第一の排出ライン14)から抜き出された、目的物を含有するガスの一部を冷却して凝縮させ液体とし、前記液体を前記蒸留塔の上部から還流させることを更に含むことが好ましい。
 前記冷却器140による冷却は、前記第一の排出ライン14から抜き出された目的物を含むガスのうち、目的物よりも沸点が高いガスを凝縮させ液体となるように温度が設定されて冷却することが好ましい。
 この還流により前記蒸留塔の上部から供給される液体(還流液)によっても、第一の充填層12で捕捉された前記不純物を洗い流す。このとき、ガス供給部111から供給された混合ガスは、前記循環液及び還流液と気液接触する。このように前記不純物を洗い流すことで、混合ガス中の固形分及び第一の充填層12で捕捉された固形分は、蒸留塔11の塔底部へ移動する。同様に、第一の充填層12で捕捉された重合性成分は、重合物となる前に塔底部へ移動する。したがって、不純物が塔底部へ移動するだけでなく、重合性成分の重合が抑制されるので、蒸留塔11の内部における固形分の総量を顕著に低減できる。
On the other hand, since a part of the mixed gas is condensed inside the distillation column 11, the condensed liquid is extracted from the second discharge line 15 to the outside of the distillation column 11. Then, at least a part of the extracted liquid is separated, returned to the inside of the distillation column 11 through the circulation line 151, and supplied to the first packed bed 12 from above. In this way, the impurities trapped in the first packed bed 12 are washed away by the liquid (circulating liquid) passing through the first packed bed 12 from the upper side to the lower side. At this time, a part of the gas extracted from the first discharge line 14 is cooled by the cooler 140, or the gas is cooled above the first packed bed 12 inside the distillation column 11. Thus, inside the distillation column 11, a part of the gas is condensed above the first packed bed 12 to become a liquid and flow down. That is, as another aspect of the present invention, a part of the gas containing the target object extracted from the first extraction part (first discharge line 14) is cooled and condensed to form a liquid, Is preferably further refluxed from the top of the distillation column.
The cooling by the cooler 140 is performed by setting the temperature so that a gas having a boiling point higher than that of the object out of the gas including the object extracted from the first discharge line 14 is condensed to become a liquid. It is preferable to do.
The impurities trapped in the first packed bed 12 are also washed away by the liquid (reflux) supplied from the upper part of the distillation column by this reflux. At this time, the mixed gas supplied from the gas supply unit 111 is in gas-liquid contact with the circulating liquid and the reflux liquid. By washing away the impurities in this manner, the solid content in the mixed gas and the solid content captured by the first packed bed 12 move to the bottom of the distillation column 11. Similarly, the polymerizable component captured by the first packed bed 12 moves to the bottom of the column before becoming a polymer. Therefore, not only the impurities move to the bottom of the column, but also polymerization of the polymerizable component is suppressed, so that the total amount of solids in the distillation column 11 can be significantly reduced.
 洗い流した前記不純物を含有する液体は、第二の排出ライン15から蒸留塔11の外部へ抜き出される。抜き出された液体の一部は、以降同様に、第一の充填層12で捕捉された前記不純物の洗い流しに利用される。以上のプロセスにより、前記不純物は、第二の排出ライン15から蒸留塔11の外部へ抜き出され、一部を除いて蒸留塔11の内部へは戻らないので、蒸留塔11の内部から除去されていく。 The washed liquid containing the impurities is extracted from the second discharge line 15 to the outside of the distillation column 11. A part of the extracted liquid is used for washing away the impurities trapped in the first packed bed 12 in the same manner. By the above process, the impurities are extracted from the second discharge line 15 to the outside of the distillation column 11 and are not returned to the inside of the distillation column 11 except for a part, so that the impurities are removed from the inside of the distillation column 11. To go.
 前記不純物の除去により、蒸留塔11、第一の排出ライン14及び第二の排出ライン15をはじめとする蒸留装置1内の各部において、固形分の付着及び堆積が抑制されるので、蒸留装置1の内部における閉塞が抑制される。 The removal of the impurities suppresses the adhesion and accumulation of solids in each part of the distillation apparatus 1 including the distillation column 11, the first discharge line 14 and the second discharge line 15. Blockage in the interior of the is suppressed.
 本発明においては、第一の充填層12を通過する液体の流量、すなわち前記循環液及び還流液の合計流量を、蒸留塔11の高さ方向Zに対して垂直な面において、1.5×10~1.2×10kg/m/hとすることが好ましい。前記下限値以上することで、第一の充填層12における前記不純物の洗い流し効果がより向上する。また、前記上限値以下とすることで、目的物の分離効率がより向上すると共に、所定の前記合計流量を得るための、過大なポンプの設置が避けられる。前記循環液の流量は、例えば、第二の排出ライン15から循環ライン151へ分離する液体の量を調節することで、調節できる。また、前記還流液の流量は、例えば、蒸留塔11の温度、又は冷却器140の温度等を調節することで、調節できる。
 前記合計流量は、それぞれの液が流れる配管に設置された流量計による計測などの方法により測定する。
In the present invention, the flow rate of the liquid passing through the first packed bed 12, that is, the total flow rate of the circulating liquid and the reflux liquid is 1.5 × in the plane perpendicular to the height direction Z of the distillation column 11. It is preferably 10 4 to 1.2 × 10 5 kg / m 2 / h. By setting the lower limit value or more, the effect of washing out the impurities in the first packed bed 12 is further improved. Moreover, by setting it as the said upper limit or less, while separating efficiency of a target object improves more, installation of the excessive pump for obtaining the said predetermined total flow rate is avoided. The flow rate of the circulating liquid can be adjusted, for example, by adjusting the amount of liquid separated from the second discharge line 15 to the circulating line 151. Further, the flow rate of the reflux liquid can be adjusted by adjusting the temperature of the distillation column 11 or the temperature of the cooler 140, for example.
The total flow rate is measured by a method such as measurement by a flow meter installed in a pipe through which each liquid flows.
 本発明に係る蒸留塔の充填材は、不純物を捕捉できるものであれば特に限定されず、カスケードミニリングのような不規則充填物、又は規則充填物等が挙げられる。低級アルコールの共存下、固体酸触媒を用いて、シクロヘキサノンオキシムからε-カプロラクタムを生成させる気相反応後のガスを蒸留する場合は、前記充填材としてはカスケードミニリングのような不規則充填物、又は規則充填物等が挙げられる。前記蒸留塔が2以上の充填層を備える場合、前記充填材は、同じものでもよいし、異なるものでもよい。 The packing material for the distillation column according to the present invention is not particularly limited as long as it can capture impurities, and examples thereof include irregular packing such as cascade mini-ring, or regular packing. When distilling the gas after the gas phase reaction for producing ε-caprolactam from cyclohexanone oxime using a solid acid catalyst in the presence of a lower alcohol, the packing material is an irregular packing such as a cascade miniring, Or a regular packing etc. are mentioned. When the distillation column includes two or more packed beds, the packing materials may be the same or different.
 図2は、本発明の第二の実施形態に係る不純物の除去方法を説明するための概略図である。図2に示す構成のうち、図1に示す構成と同じものについては、図1の場合と同じ符号を付し、その詳細な説明は省略する。これは、さらに以降の図においても同様である。
 図2に示す蒸留装置2は、還流ライン141の途中に第一のろ過部16を備え、第二の排出ライン15の途中に第二のろ過部17を備えており、これらの点以外は、図1に示す蒸留装置1と同じものである。
FIG. 2 is a schematic view for explaining an impurity removal method according to the second embodiment of the present invention. 2 that are the same as those shown in FIG. 1 are denoted by the same reference numerals as those in FIG. 1 and will not be described in detail. The same applies to the subsequent drawings.
The distillation apparatus 2 shown in FIG. 2 includes a first filtration unit 16 in the middle of the reflux line 141, and a second filtration unit 17 in the middle of the second discharge line 15. Except for these points, This is the same as the distillation apparatus 1 shown in FIG.
 本発明の第二の実施形態に係る不純物を除去する方法は、蒸留塔11の上部から還流液を還流させることの前に、凝縮された液体をフィルターろ過して固形分を除去することを更に含む。
 すなわち、第一のろ過部16は、冷却器140と、還流ライン141の蒸留塔11との接続部と、の間に配置されており、冷却器140で凝縮された液体中に固形分が混入していても、これをろ別して、固形分を含まない液体(還流液)を蒸留塔11に還流させることが可能となっている。このように、固形分を除去してから、第二の充填層13及び第一の充填層12に還流液を供給することで、第一の充填層12で捕捉された不純物の洗い流し効果を、より向上させることができる。
The method for removing impurities according to the second embodiment of the present invention further includes removing the solid content by filtering the condensed liquid before refluxing the reflux liquid from the upper part of the distillation column 11. Including.
That is, the first filtration unit 16 is arranged between the cooler 140 and the connection part of the reflux line 141 to the distillation column 11, and solids are mixed in the liquid condensed by the cooler 140. Even if this is done, it is possible to filter this off and allow the liquid not containing solids (reflux) to be refluxed to the distillation column 11. In this way, after removing the solid content, by supplying a reflux liquid to the second packed bed 13 and the first packed bed 12, the effect of washing away the impurities trapped in the first packed bed 12 is obtained. It can be improved further.
 また、本発明の第二の実施形態に係る不純物を除去する方法は、第二の抜き出し部位から抜き出した液体の少なくとも一部を、循環液として最下部の充填層に上方から供給することの前に、前記第二の抜き出し部位から抜き出した液体をフィルターろ過して固形分を除去することを更に含む。
 すなわち、第二のろ過部17は、第二の排出ライン15において、蒸留塔11との接続部と、循環ライン151との分岐部と、の間に配置されており、蒸留塔11から抜き出した液体中に含まれる固形分をろ別して、固形分を含まない液体(循環液)を蒸留塔1に循環させることが可能となっている。このように、固形分を除去してから、第一の充填層12に循環液を供給することで、第一の充填層12で捕捉された不純物の洗い流し効果を、より向上させることができる。
In addition, the method for removing impurities according to the second embodiment of the present invention is a method for supplying at least a part of the liquid extracted from the second extraction site to the lowermost packed bed as a circulating liquid from above. And further filtering the liquid extracted from the second extraction site to remove the solid content.
That is, the second filtration unit 17 is arranged in the second discharge line 15 between the connection part with the distillation column 11 and the branch part with the circulation line 151, and is extracted from the distillation column 11. It is possible to filter the solid content contained in the liquid and to circulate the liquid not containing the solid content (circulating liquid) in the distillation column 1. In this way, by removing the solid content and then supplying the circulating liquid to the first packed bed 12, the effect of washing out the impurities trapped in the first packed bed 12 can be further improved.
 第一のろ過部16及び第二のろ過部17は、固形分をろ過できるものであれば特に限定されず、ストレーナ等の公知のフィルターろ過装置が例示できる。
 第一のろ過部16及び第二のろ過部17のろ過能力は、それぞれ蒸留対象の混合ガスの種類に応じて、適宜調節すればよい。第一のろ過部16及び第二のろ過部17は、互いに同じものでもよいし、異なるものでもよい。
The 1st filtration part 16 and the 2nd filtration part 17 will not be specifically limited if solid content can be filtered, Well-known filter filtration apparatuses, such as a strainer, can be illustrated.
What is necessary is just to adjust suitably the filtration capability of the 1st filtration part 16 and the 2nd filtration part 17 according to the kind of mixed gas of distillation object, respectively. The first filtration unit 16 and the second filtration unit 17 may be the same or different from each other.
 図2では、第二のろ過部17が、第二の排出ライン15において、蒸留塔11との接続部と、循環ライン151の分岐部と、の間に配置された例を示しているが、本発明に係る蒸留装置においてはこれに限定されず、例えば、循環ライン151において、蒸留塔11との接続部と、第二の排出ライン15からの分岐部と、の間に配置されていてもよく(図示略)、この場合でも上記と同様の効果が得られる。 In FIG. 2, although the 2nd filtration part 17 has shown the example arrange | positioned in the 2nd discharge line 15 between the connection part with the distillation column 11, and the branch part of the circulation line 151, The distillation apparatus according to the present invention is not limited to this. For example, in the circulation line 151, the distillation apparatus may be disposed between the connection part with the distillation column 11 and the branch part from the second discharge line 15. Well (not shown), in this case, the same effect as described above can be obtained.
 図1及び2では、充填層として第一の充填層12及び第二の充填層13の二層を備えた蒸留装置を示しているが、本発明で用いる蒸留装置はこれらに限定されず、充填層を少なくとも一層備えていればよい。充填層の数は、一層以上三層以下が好ましく、一層以上二層以下がより好ましい。 1 and 2 show a distillation apparatus provided with two layers of a first packed bed 12 and a second packed bed 13 as packed beds, but the distillation apparatus used in the present invention is not limited to these, and packing is performed. It is sufficient that at least one layer is provided. The number of packed layers is preferably one or more and three or less, more preferably one or more and two or less.
 充填層を一層のみ備えた蒸留装置の場合には、例えば、充填層の高さを、前記第一の充填層12の高さHと、第二の充填層13の高さHとの合計値に対して、同等以上とすることが好ましい。そして、第二の排出ラインから分岐された循環ラインの他端と、冷却器140から分岐された還流ライン141の他端とが、いずれも充填層の上方に接続されていればよい。このような蒸留装置を用いて、図1及び2で示す蒸留装置を用いた場合と同様の方法で、不純物を分離できる。 In the case of distillation apparatus having further seen a packed bed, for example, the height of the packed bed, the height H 1 of the first filling layer 12, the high H 2 of the second filling layer 13 It is preferable to be equal to or greater than the total value. And the other end of the circulation line branched from the 2nd discharge line and the other end of the recirculation | reflux line 141 branched from the cooler 140 should just be connected above the packed bed. By using such a distillation apparatus, impurities can be separated by the same method as in the case of using the distillation apparatus shown in FIGS.
 一方、充填層を三層以上備えた蒸留装置の場合には、例えば、図1及び2で示した蒸留装置において、蒸留塔11の内部の、第二の充填層13よりも上方に、第二の充填層13と離間して一層以上の充填層が配置され、これら一層以上の充填層も互いに離間して配置されていればよい。第二の充填層13よりも上方のこれら充填層は、例えば、第二の充填層13と同様のものとすればよい。このような蒸留装置を用いて、図1及び2で示す蒸留装置を用いた場合と同様の方法で、不純物を分離できる。 On the other hand, in the case of a distillation apparatus having three or more packed beds, for example, in the distillation apparatus shown in FIGS. 1 and 2, the second inside the distillation column 11 and above the second packed bed 13, the second One or more packed layers may be disposed apart from the packed layer 13, and these one or more packed layers may be disposed apart from each other. These filling layers above the second filling layer 13 may be the same as the second filling layer 13, for example. By using such a distillation apparatus, impurities can be separated by the same method as in the case of using the distillation apparatus shown in FIGS.
 ただし、本発明に係る蒸留装置は、目的物の分離効果、固形分及び重合性成分の除去効果、取り扱い性、又はコスト等を総合的に考慮すると、図1及び2に示すように、充填層を二層備えたものが特に好ましい。 However, the distillation apparatus according to the present invention has a packed bed as shown in FIGS. 1 and 2 in consideration of the separation effect of the target product, the removal effect of the solid content and the polymerizable component, the handleability, or the cost. Those having two layers are particularly preferred.
 また、図1及び2では、第一の排出ライン14が蒸留塔11の塔頂部に接続され、第二の排出ライン15が蒸留塔11の塔底部に接続された例を示しているが、本発明に係る蒸留装置ではこれに限定されず、第一の排出ライン14は第二の充填層13よりも上方に接続され、第二の排出ライン15はガス供給部111よりも下方に接続されていればよい。すなわち、蒸留塔11において、最上部の充填層よりも上方に位置する第一の抜き出し部位から、目的物を含有するガスを抜き出し、ガス供給部111よりも下方に位置する第二の抜き出し部位から、不純物を含有する液体を抜き出すようにすればよい。 1 and 2 show an example in which the first discharge line 14 is connected to the top of the distillation column 11 and the second discharge line 15 is connected to the bottom of the distillation column 11. The distillation apparatus according to the invention is not limited to this, and the first discharge line 14 is connected to the upper side of the second packed bed 13, and the second discharge line 15 is connected to the lower side of the gas supply unit 111. Just do it. That is, in the distillation column 11, the gas containing the target product is extracted from the first extraction site located above the uppermost packed bed, and from the second extraction site located below the gas supply unit 111. The liquid containing impurities may be extracted.
 本発明によれば、蒸留塔での蒸留によって目的物を分離する際に、蒸留塔の内部に供給された混合ガスが、不純物として固形分又は重合性成分を含有していても、蒸留塔の内部からこれら不純物を効果的に除去できる。したがって、蒸留塔内の各部や蒸留塔に接続されている配管の内部等、蒸留装置の内部において、固形分の付着及び堆積が抑制され、蒸留装置の閉塞が抑制される。そして、蒸留装置を安定して長期間連続運転できる。 According to the present invention, when the target product is separated by distillation in the distillation column, even if the mixed gas supplied to the inside of the distillation column contains solids or polymerizable components as impurities, These impurities can be effectively removed from the inside. Therefore, solid content adhesion and accumulation are suppressed in the distillation apparatus such as each part in the distillation column and the piping connected to the distillation tower, and the clogging of the distillation apparatus is suppressed. And the distillation apparatus can be stably operated for a long period of time.
 以下、具体的実施例により、本発明についてさらに詳しく説明する。ただし、本発明は、以下に示す実施例に何ら限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to specific examples. However, the present invention is not limited to the following examples.
[実施例1]
 低級アルコールの共存下、固体酸触媒を用いて、シクロヘキサノンオキシムからε-カプロラクタムを生成させる反応で得られた混合ガスを用い、図2に示す蒸留装置を用いて、目的物であるε-カプロラクタムを分離する際に、不純物の除去を行った。具体的には、以下の通りである。
[Example 1]
In the presence of a lower alcohol, a target gas ε-caprolactam is obtained using a mixed gas obtained by a reaction for producing ε-caprolactam from cyclohexanone oxime using a solid acid catalyst in a distillation apparatus shown in FIG. During the separation, impurities were removed. Specifically, it is as follows.
 低級アルコールとしてはメタノールを、固体酸触媒としてはペンタシル型ゼオライト触媒をそれぞれ用いて反応を行った。そして、得られた混合ガスは、平均温度379℃で、メタノールを約60質量%、水を含むイナートガスを約6質量%、反応副生成物を含むε-カプロラクタムを約34質量%、それぞれ含んでいた。
 蒸留装置2において、第一の充填層12及び第二の充填層13の充填材として比表面積が257m/mのもの(カスケードミニリング1P)をそれぞれ用い、第一の充填層12の高さH、及び第二の充填層13の高さHをそれぞれ蒸留塔11の高さHに対して22%とした。
 前記混合ガスを、圧力97.3kPa(730Torr)、温度200~220℃に設定された蒸留塔11の内部に供給し、供給した混合ガス中の反応副生成物を含むε-カプロラクタムに対して、約14質量%に相当する量の液体を、塔底部に接続された第二の排出ライン15から、液位調節弁(以下LCVと称する)で抜き出し、混合ガスの残りの分は、平均温度178℃で凝縮する量を蒸留塔11の内部で還流させながら、塔頂部に接続された第一の排出ライン14から抜き出した。第一の充填層12の径方向における循環液及び還流液の合計流量は、2.4×10kg/m/hとした。循環液としては、第二の排出ライン15に第二のろ過部17として設けたストレーナを介して固形分をフィルターろ過した液体を循環ライン151に抜き出して用いた。
The reaction was carried out using methanol as the lower alcohol and a pentasil-type zeolite catalyst as the solid acid catalyst. The obtained mixed gas contains methanol at an average temperature of 379 ° C., about 60% by mass of methanol, about 6% by mass of inert gas containing water, and about 34% by mass of ε-caprolactam containing reaction byproducts. It was.
In the distillation apparatus 2, those having a specific surface area of 257 m 2 / m 3 (cascade mini ring 1 P) are used as the fillers of the first packed bed 12 and the second packed bed 13, respectively. The height H 1 and the height H 2 of the second packed bed 13 were 22% with respect to the height H 0 of the distillation column 11, respectively.
The mixed gas is supplied to the inside of the distillation column 11 set at a pressure of 97.3 kPa (730 Torr) and a temperature of 200 to 220 ° C., and with respect to ε-caprolactam containing a reaction by-product in the supplied mixed gas, An amount of liquid corresponding to about 14% by mass is extracted from the second discharge line 15 connected to the bottom of the column with a liquid level control valve (hereinafter referred to as LCV), and the remaining portion of the mixed gas has an average temperature of 178 The amount condensed at 0 ° C. was withdrawn from the first discharge line 14 connected to the top of the column while being refluxed inside the distillation column 11. The total flow rate of the circulating liquid and the reflux liquid in the radial direction of the first packed bed 12 was 2.4 × 10 4 kg / m 2 / h. As the circulating liquid, a liquid obtained by filtering the solid content through a strainer provided as the second filtration unit 17 in the second discharge line 15 was extracted into the circulation line 151 and used.
 上記条件で蒸留及び不純物の除去を行ったところ、約30日間に渡って、第二の排出ライン15から抜き出す液体の量と、LCVの弁開度が安定し、蒸留装置2の内部で固形分の付着がほとんど見られず、閉塞が抑制されたことを確認できた。このように、蒸留装置2を安定して連続運転できた。 When distillation and removal of impurities were performed under the above conditions, the amount of liquid withdrawn from the second discharge line 15 and the valve opening of the LCV were stabilized over about 30 days, and the solid content in the distillation apparatus 2 was stable. It was confirmed that occlusion was suppressed. Thus, the distillation apparatus 2 could be stably operated continuously.
[比較例1]
 低級アルコールの共存下、固体酸触媒を用いて、シクロヘキサノンオキシムからε-カプロラクタムを生成させる反応で得られた混合ガスを用い、図3に示す蒸留装置を用いて、目的物であるε-カプロラクタムを分離する際に、従来の方法で不純物の除去を行った。具体的には、以下の通りである。
[Comparative Example 1]
Using the mixed gas obtained by the reaction for producing ε-caprolactam from cyclohexanone oxime using a solid acid catalyst in the presence of a lower alcohol, the target product ε-caprolactam was obtained using the distillation apparatus shown in FIG. At the time of separation, impurities were removed by a conventional method. Specifically, it is as follows.
 図3に示す蒸留装置8は、図2に示す蒸留装置2において、循環ライン151の他端を、蒸留塔11内部の第一の充填層12及び第二の充填層13間の空間に代えて、ガス供給部111の上流側に連結された混合ガス供給用の供給ラインに接続するようにして、構成したものである。すなわち、蒸留装置8においては、蒸留塔11の内部に供給される前の混合ガスと循環液とが気液接触し、混合ガスが冷却されるように、循環ライン158が供給ライン18に接続されている。この点以外は、蒸留装置8は、図2に示す蒸留装置2と同じものである。 The distillation apparatus 8 shown in FIG. 3 is different from the distillation apparatus 2 shown in FIG. 2 in that the other end of the circulation line 151 is replaced with a space between the first packed bed 12 and the second packed bed 13 inside the distillation column 11. The gas supply unit 111 is connected to a supply line for supplying a mixed gas connected to the upstream side of the gas supply unit 111. That is, in the distillation apparatus 8, the circulation line 158 is connected to the supply line 18 so that the mixed gas before being supplied into the distillation column 11 and the circulating liquid come into gas-liquid contact and the mixed gas is cooled. ing. Except for this point, the distillation apparatus 8 is the same as the distillation apparatus 2 shown in FIG.
 低級アルコールとしてはメタノールを、固体酸触媒としてはペンタシル型ゼオライト触媒をそれぞれ用いて反応を行った。そして、得られた混合ガスは、平均温度390℃で、メタノールを約61質量%、水を含むイナートガスを約4質量%、反応副生成物を含むε-カプロラクタムを約35質量%、それぞれ含んでいた。
 前記混合ガスを、圧力97.3kPa(730Torr)、温度200~220℃に設定された蒸留塔11の内部に供給し、供給した混合ガス中の反応副生成物を含むε-カプロラクタムに対して、約7質量%に相当する量の液体を、塔底部に接続された第二の排出ライン15から、LCVで抜き出し、混合ガスの残りの分は、平均温度184℃で凝縮する量を蒸留塔11の内部で還流させながら、塔頂部に接続された第一の排出ライン14から抜き出した。そして、第一の充填層12の径方向における通過液の流量に換算して2×10kg/m/hの流量の循環液を、供給ライン18に供給した。循環液としては、第二の排出ライン15に第二のろ過部17として設けたストレーナを介して固形分をフィルターろ過した液体を循環ライン158に抜き出して用いた。
The reaction was carried out using methanol as the lower alcohol and a pentasil-type zeolite catalyst as the solid acid catalyst. The obtained mixed gas contains methanol at an average temperature of 390 ° C., about 61% by mass of methanol, about 4% by mass of inert gas containing water, and about 35% by mass of ε-caprolactam containing reaction byproducts. It was.
The mixed gas is supplied to the inside of the distillation column 11 set at a pressure of 97.3 kPa (730 Torr) and a temperature of 200 to 220 ° C., and with respect to ε-caprolactam containing a reaction by-product in the supplied mixed gas, An amount of liquid corresponding to about 7% by mass is extracted by LCV from the second discharge line 15 connected to the bottom of the column, and the remaining portion of the mixed gas is condensed at an average temperature of 184 ° C. Was extracted from the first discharge line 14 connected to the top of the column. Then, a circulating fluid having a flow rate of 2 × 10 4 kg / m 2 / h in terms of the flow rate of the passing liquid in the radial direction of the first packed bed 12 was supplied to the supply line 18. As the circulating liquid, a liquid obtained by filtering the solid content through a strainer provided as the second filtration unit 17 in the second discharge line 15 was extracted into the circulation line 158 and used.
 上記条件で蒸留及び不純物の除去を約30日間に渡って行ったところ、第二のろ過部17として設けたストレーナの閉塞が頻発し、第二の排出ライン15から抜き出す液体の量と、LCVの弁開度が、いずれも不安定となり、蒸留装置8の内部において、固形分の付着と閉塞が生じたことが示唆された。これは、不純物である固形分の除去が不十分となり、さらに重合性成分が洗い流されずに、蒸留塔11の内部各所に付着し、重合して重合物の量が増加することで、固形分の総量が顕著に増加してしまったためであると推測される。 When distillation and removal of impurities were performed for about 30 days under the above conditions, the strainer provided as the second filtration unit 17 was frequently clogged, the amount of liquid withdrawn from the second discharge line 15, and the LCV It was suggested that the valve opening became unstable, and solid content was adhered and blocked inside the distillation apparatus 8. This is because the solid content as impurities is insufficiently removed, and the polymerizable component is not washed away, but adheres to various places inside the distillation column 11 and polymerizes to increase the amount of the polymer. This is presumably because the total amount has increased significantly.
[比較例2]
 低級アルコールの共存下、固体酸触媒を用いて、シクロヘキサノンオキシムからε-カプロラクタムを生成させる反応で得られた混合ガスを用い、図4に示す蒸留装置を用いて、目的物であるε-カプロラクタムを分離する際に、従来の方法で不純物の除去を行った。具体的には、以下の通りである。
[Comparative Example 2]
Using the mixed gas obtained by the reaction for producing ε-caprolactam from cyclohexanone oxime using a solid acid catalyst in the presence of a lower alcohol, the target ε-caprolactam was obtained using the distillation apparatus shown in FIG. At the time of separation, impurities were removed by a conventional method. Specifically, it is as follows.
 図4に示す蒸留装置9は、図3に示す蒸留装置8において、供給ライン18の途中に第二の冷却器150(以降、第二の冷却器150と区別するため、第一の排出ライン14に設けられた冷却器140を「第一の冷却器140」という。)を設け、循環ライン158を第二の冷却器150よりも蒸留塔11側(下流側)の供給ライン18に接続して構成したものである。すなわち、蒸留装置9においては、蒸留塔11の内部に供給される前の冷却された混合ガスと循環液とが接触し、混合ガスがさらに冷却されるように、循環ライン158が供給ライン18に接続されている。また、第二の冷却器150は、第一の冷却器140と同様のものである。これらの点以外は、蒸留装置9は、図3に示す蒸留装置8と同じものである。 The distillation apparatus 9 shown in FIG. 4 is different from the distillation apparatus 8 shown in FIG. 3 in that the second cooler 150 (hereinafter referred to as the second cooler 150 in order to distinguish the first discharge line 14 in the middle of the supply line 18). And the circulation line 158 is connected to the supply line 18 on the distillation column 11 side (downstream side) with respect to the second cooler 150. It is composed. That is, in the distillation apparatus 9, the circulation line 158 is connected to the supply line 18 so that the cooled mixed gas before being supplied into the distillation column 11 and the circulating liquid come into contact with each other and the mixed gas is further cooled. It is connected. The second cooler 150 is the same as the first cooler 140. Except for these points, the distillation apparatus 9 is the same as the distillation apparatus 8 shown in FIG.
 低級アルコールとしてはメタノールを、固体酸触媒としてはペンタシル型ゼオライト触媒をそれぞれ用いて反応を行った。そして、得られた混合ガスは、平均温度387℃で、メタノールを約61質量%、水を含むイナートガスを約3質量%、反応副生成物を含むε-カプロラクタムを約36質量%、それぞれ含んでいた。
 前記混合ガスを、160℃の高温ガスを用いた間接熱交換式の第二の冷却器150で、平均320℃まで冷却し、さらに後述する循環液と接触させた。次いで、圧力97.3kPa(730Torr)、温度200~220℃に設定された蒸留塔11の内部に、冷却した混合ガスを供給し、供給した混合ガス中の反応副生成物を含むε-カプロラクタムに対して、約7質量%に相当する量の液体を、塔底部に接続された第二の排出ライン15から、LCVで抜き出し、混合ガスの残りの分は、平均温度185℃で凝縮する量を蒸留塔11の内部で還流させながら、塔頂部に接続された第一の排出ライン14から抜き出した。そして、第一の充填層12の径方向における通過液の流量に換算して2×10kg/m/hの流量の循環液を、供給ライン18に供給した。循環液としては、第二の排出ライン15に第二のろ過部17として設けたストレーナを介して固形分をフィルターろ過した液体を循環ライン158に抜き出して用い、この循環液を冷却器150で冷却した混合ガスと接触するようにした。
The reaction was carried out using methanol as the lower alcohol and a pentasil-type zeolite catalyst as the solid acid catalyst. The obtained mixed gas contains methanol at an average temperature of 387 ° C., about 61% by mass of methanol, about 3% by mass of inert gas containing water, and about 36% by mass of ε-caprolactam containing reaction byproducts. It was.
The mixed gas was cooled to an average of 320 ° C. with an indirect heat exchange type second cooler 150 using a high-temperature gas of 160 ° C., and further brought into contact with a circulating liquid described later. Next, the cooled mixed gas is supplied to the inside of the distillation column 11 set to a pressure of 97.3 kPa (730 Torr) and a temperature of 200 to 220 ° C., and ε-caprolactam containing reaction by-products in the supplied mixed gas is supplied. On the other hand, an amount of liquid corresponding to about 7% by mass is extracted by LCV from the second discharge line 15 connected to the bottom of the column, and the remaining amount of the mixed gas is condensed at an average temperature of 185 ° C. While refluxing inside the distillation column 11, it was extracted from the first discharge line 14 connected to the top of the column. Then, a circulating fluid having a flow rate of 2 × 10 4 kg / m 2 / h in terms of the flow rate of the passing liquid in the radial direction of the first packed bed 12 was supplied to the supply line 18. As the circulating liquid, the liquid obtained by filtering the solid content through the strainer provided as the second filtration unit 17 in the second discharge line 15 is extracted and used in the circulation line 158, and this circulating liquid is cooled by the cooler 150. In contact with the mixed gas.
 上記条件で蒸留及び不純物の除去を約30日間に渡って行ったところ、比較例1の場合と同様に、第二のろ過部17として設けたストレーナの閉塞が頻発し、第二の排出ライン15から抜き出す液体の量と、LCVの弁開度が、いずれも不安定となり、蒸留装置9の内部において、固形分の付着と閉塞が生じたことが示唆された。 When distillation and removal of impurities were performed for about 30 days under the above conditions, as in the case of Comparative Example 1, the strainer provided as the second filtration unit 17 was frequently clogged, and the second discharge line 15 Both the amount of liquid extracted from the liquid and the valve opening of the LCV became unstable, suggesting that solid content adhered and clogged inside the distillation apparatus 9.
[実施例2]
 低級アルコールの共存下、固体酸触媒を用いて、シクロヘキサノンオキシムからε-カプロラクタムを生成させる反応で得られた混合ガスを用い、図2に示す蒸留装置を用いて、目的物であるε-カプロラクタムを分離する際に、不純物の除去を行った。具体的には、以下の通りである。
 低級アルコールとしてはメタノールを、固体酸触媒としてはペンタシル型ゼオライト触媒をそれぞれ用いて反応を行った。そして、得られた混合ガスは、平均温度376℃で、メタノールを約61質量%、水を含むイナートガスを約8質量%、反応副生成物を含むε-カプロラクタムを約31質量%、それぞれ含んでいた。
 蒸留装置2において、第一の充填層12の充填材として比表面積が90m/mのもの(スルザー社製「メラグリッド90X」)、及び第二の充填層13の充填材として比表面積が125m/mのもの(スルザー社製「メラパック125X」)をそれぞれ用い、第一の充填層12の高さHを蒸留塔11の高さHに対して25%とし、第二の充填層13の高さHを蒸留塔11の高さHに対して20%とした。
 前記混合ガスを、圧力96.1kPa(721Torr)、温度200~220℃に設定された蒸留塔11の内部に供給し、供給した混合ガス中の反応副生成物を含むε-カプロラクタムに対して、約8質量%に相当する量の液体を、塔底部に接続された第二の排出ライン15から、LCVで抜き出し、混合ガスの残りの分は、平均温度185℃で凝縮する量を蒸留塔11の内部で還流させながら、塔頂部に接続された第一の排出ライン14から抜き出した。第一の充填層12の径方向における循環液及び還流液の合計流量は、2.9×10kg/m/hとした。循環液としては、第二の排出ライン15に第二のろ過部17として設けたストレーナを介して固形分をフィルターろ過した液体を循環ライン151に抜き出して用いた。
[Example 2]
In the presence of a lower alcohol, a target gas ε-caprolactam is obtained using a mixed gas obtained by a reaction for producing ε-caprolactam from cyclohexanone oxime using a solid acid catalyst in a distillation apparatus shown in FIG. During the separation, impurities were removed. Specifically, it is as follows.
The reaction was carried out using methanol as the lower alcohol and a pentasil-type zeolite catalyst as the solid acid catalyst. The obtained mixed gas contains methanol at an average temperature of 376 ° C., about 61% by mass of methanol, about 8% by mass of inert gas containing water, and about 31% by mass of ε-caprolactam containing reaction byproducts. It was.
In the distillation apparatus 2, the first packing layer 12 has a specific surface area of 90 m 2 / m 3 (“Melgrid 90X” manufactured by Sulzer) and the second packing layer 13 has a specific surface area. 125 m 2 / m 3 ("Merapack 125X" manufactured by Sulzer) is used, the height H 1 of the first packed bed 12 is set to 25% with respect to the height H 0 of the distillation column 11, and the second The height H 2 of the packed bed 13 was 20% with respect to the height H 0 of the distillation column 11.
The mixed gas is supplied to the inside of the distillation column 11 set to a pressure of 96.1 kPa (721 Torr) and a temperature of 200 to 220 ° C., and with respect to ε-caprolactam containing a reaction by-product in the supplied mixed gas, An amount of liquid corresponding to about 8% by mass is extracted by LCV from the second discharge line 15 connected to the bottom of the column, and the remaining amount of the mixed gas is condensed at an average temperature of 185 ° C. Was extracted from the first discharge line 14 connected to the top of the column. The total flow rate of the circulating liquid and the reflux liquid in the radial direction of the first packed bed 12 was 2.9 × 10 4 kg / m 2 / h. As the circulating liquid, a liquid obtained by filtering the solid content through a strainer provided as the second filtration unit 17 in the second discharge line 15 was extracted into the circulation line 151 and used.
 その結果、120日以上に渡って、第二の排出ライン15から抜き出す液体の量と、LCVの弁開度が安定し、蒸留装置2の内部で固形分の付着がほとんど見られず、閉塞が抑制されたことを確認できた。このときのLCVの弁開度のデータを図5に示す。図5中、横軸は蒸留装置2の運転日数を示し、縦軸は蒸留装置2の、運転開始後の任意の時点におけるLCVの弁開度と、運転初日におけるLCVの弁開度との差([運転開始後の任意の時点におけるLCVの弁開度]-[運転初日におけるLCVの弁開度])を示す。このように、蒸留装置2を安定して連続運転できた。 As a result, the amount of liquid withdrawn from the second discharge line 15 and the valve opening of the LCV are stabilized for 120 days or more, solid matter is hardly observed inside the distillation apparatus 2, and the blockage is not observed. It was confirmed that it was suppressed. The LCV valve opening data at this time is shown in FIG. In FIG. 5, the horizontal axis indicates the number of operating days of the distillation apparatus 2, and the vertical axis indicates the difference between the LCV valve opening degree at an arbitrary time after the start of operation of the distillation apparatus 2 and the LCV valve opening degree on the first operation day. ([LCV valve opening at an arbitrary time after the start of operation] − [LCV valve opening on the first day of operation]). Thus, the distillation apparatus 2 could be stably operated continuously.
[実施例3]
 低級アルコールの共存下、固体酸触媒を用いて、シクロヘキサノンオキシムからε-カプロラクタムを生成させる反応で得られた混合ガスを用い、図1に示す蒸留装置を用いて、目的物であるε-カプロラクタムを分離する際に、不純物の除去を行った。具体的には、以下の通りである。
 低級アルコールとしてはメタノールを、固体酸触媒としてはペンタシル型ゼオライト触媒をそれぞれ用いて反応を行った。そして、得られた混合ガスは、平均温度378℃で、メタノールを約60質量%、水を含むイナートガスを約9質量%、反応副生成物を含むε-カプロラクタムを約31質量%、それぞれ含んでいた。
 蒸留装置1において、第一の充填層12及び第二の充填層13の充填材として、それぞれ比表面積が90m/mのもの(スルザー社製「メラグリッド90X」)を用い、第一の充填層12の高さHを蒸留塔11の高さHに対して25%とし、第二の充填層13の高さHを蒸留塔11の高さHに対して20%とした。
 前記混合ガスを、圧力92.0kPa(690Torr)、温度200~220℃に設定された蒸留塔11の内部に供給し、供給した混合ガス中の反応副生成物を含むε-カプロラクタムに対して、約9質量%に相当する量の液体を、塔底部に接続された第二の排出ライン15から、LCVで抜き出し、混合ガスの残りの分は、平均温度184℃で凝縮する量を蒸留塔11の内部で還流させながら、塔頂部に接続された第一の排出ライン14から抜き出した。第一の充填層12の径方向における循環液及び還流液の合計流量を、3.1×10kg/m/hとし、循環液としては、第二の排出ライン15から抜き出した液体を循環ライン151に抜き出して用いた。
[Example 3]
In the presence of a lower alcohol, a target gas ε-caprolactam is obtained using a mixed gas obtained by a reaction for producing ε-caprolactam from cyclohexanone oxime using a solid acid catalyst, using the distillation apparatus shown in FIG. During the separation, impurities were removed. Specifically, it is as follows.
The reaction was carried out using methanol as the lower alcohol and a pentasil-type zeolite catalyst as the solid acid catalyst. The obtained mixed gas contains methanol at an average temperature of 378 ° C., about 60% by mass of methanol, about 9% by mass of inert gas containing water, and about 31% by mass of ε-caprolactam containing reaction byproducts. It was.
In the distillation apparatus 1, as the fillers of the first packed bed 12 and the second packed bed 13, those having a specific surface area of 90 m 2 / m 3 (“Melgrid 90X” manufactured by Sulzer) are used. the height H 1 of the filling layer 12 was 25% relative to the height H 0 of the distillation column 11, and 20% the height of H 2 second fill layer 13 relative to the height H 0 of the distillation column 11 did.
The mixed gas is supplied to the inside of the distillation column 11 set to a pressure of 92.0 kPa (690 Torr) and a temperature of 200 to 220 ° C., and with respect to ε-caprolactam containing a reaction by-product in the supplied mixed gas, An amount of liquid corresponding to about 9% by mass is extracted by LCV from the second discharge line 15 connected to the bottom of the column, and the remaining amount of the mixed gas is condensed at an average temperature of 184 ° C. Was extracted from the first discharge line 14 connected to the top of the column. The total flow rate of the circulating liquid and the reflux liquid in the radial direction of the first packed bed 12 is 3.1 × 10 4 kg / m 2 / h. As the circulating liquid, the liquid extracted from the second discharge line 15 is used. Extracted into the circulation line 151 and used.
 その結果、150日以上に渡って、第二の排出ライン15から抜き出す液体の量と、LCVの弁開度が安定し、蒸留装置2の内部で固形分の付着がほとんど見られず、閉塞が抑制されたことを確認できた。このときのLCVの弁開度のデータを図5に示す。このように、蒸留装置2を安定して連続運転できた。 As a result, the amount of liquid withdrawn from the second discharge line 15 and the valve opening of the LCV are stabilized for 150 days or more, and almost no solid content is observed inside the distillation apparatus 2, resulting in blockage. It was confirmed that it was suppressed. The LCV valve opening data at this time is shown in FIG. Thus, the distillation apparatus 2 could be stably operated continuously.
[実施例4]
 低級アルコールの共存下、固体酸触媒を用いて、シクロヘキサノンオキシムからε-カプロラクタムを生成させる反応で得られた混合ガスを用い、図2に示す蒸留装置を用いて、目的物であるε-カプロラクタムを分離する際に、不純物の除去を行った。具体的には、以下の通りである。
 低級アルコールとしてはメタノールを、固体酸触媒としてはペンタシル型ゼオライト触媒をそれぞれ用いて反応を行った。そして、得られた混合ガスは、平均温度375℃で、メタノールを約60質量%、水を含むイナートガスを約5質量%、反応副生成物を含むε-カプロラクタムを約35質量%、それぞれ含んでいた。
 蒸留装置2において、第一の充填層12及び第二の充填層13の充填材として、それぞれ比表面積が257m/mのものを用い、第一の充填層12の高さHは蒸留塔11の高さHに対して22%とし、第二の充填層13の高さHは蒸留塔11の高さHに対して22%とした。
 前記混合ガスを、圧力97.3kPa(730Torr)、温度200~220℃に設定された蒸留塔11の内部に供給し、供給した混合ガス中の反応副生成物を含むε-カプロラクタムに対して、約16質量%に相当する量の液体を、塔底部に接続された第二の排出ライン15から、LCVで抜き出し、混合ガスの残りの分は、平均温度174℃で凝縮する量を蒸留塔11の内部で還流させながら、塔頂部に接続された第一の排出ライン14から抜き出した。第一の充填層12の径方向における循環液及び還流液の合計流量は、2.6×10kg/m/hとし、循環液としては、第二の排出ライン15に第二のろ過部17として設けたストレーナを介して固形分をフィルターろ過した液体を循環ライン151に抜き出して用いた。
[Example 4]
In the presence of a lower alcohol, a target gas ε-caprolactam is obtained using a mixed gas obtained by a reaction for producing ε-caprolactam from cyclohexanone oxime using a solid acid catalyst in a distillation apparatus shown in FIG. During the separation, impurities were removed. Specifically, it is as follows.
The reaction was carried out using methanol as the lower alcohol and a pentasil-type zeolite catalyst as the solid acid catalyst. The obtained mixed gas contains methanol at an average temperature of 375 ° C., about 60% by mass of methanol, about 5% by mass of inert gas containing water, and about 35% by mass of ε-caprolactam containing reaction byproducts. It was.
In the distillation apparatus 2, those having a specific surface area of 257 m 2 / m 3 are used as fillers for the first packed bed 12 and the second packed bed 13, respectively, and the height H 1 of the first packed bed 12 is distilled. and 22% of the height H 0 of the tower 11, the height H 2 of the second fill layer 13 was 22% relative to the height H 0 of the distillation column 11.
The mixed gas is supplied to the inside of the distillation column 11 set at a pressure of 97.3 kPa (730 Torr) and a temperature of 200 to 220 ° C., and with respect to ε-caprolactam containing a reaction by-product in the supplied mixed gas, An amount of liquid corresponding to about 16% by mass is extracted by LCV from the second discharge line 15 connected to the bottom of the column, and the remaining amount of the mixed gas is condensed at an average temperature of 174 ° C. Was extracted from the first discharge line 14 connected to the top of the column. The total flow rate of the circulating liquid and the reflux liquid in the radial direction of the first packed bed 12 is 2.6 × 10 4 kg / m 2 / h. As the circulating liquid, the second filtration is performed in the second discharge line 15. A liquid obtained by filtering the solid content through a strainer provided as the section 17 was extracted into the circulation line 151 and used.
 その結果、80日以上に渡って、蒸留装置2の内部で固形分の付着がほとんど見られず、閉塞が抑制されたことを確認できた。この間、第一の充填層12又は第二の充填層13に対する若干の固形分の付着とその崩落、それに伴うLCVの弁開度の上昇が複数回発生したが、蒸留装置2の連続運転に支障はなかった。このときのLCVの弁開度のデータを図5に示す。 As a result, almost 80% of solid matter was not observed inside the distillation apparatus 2 over 80 days, and it was confirmed that the blockage was suppressed. During this time, a slight amount of solid matter adhered to the first packed bed 12 or the second packed bed 13 and collapsed, and the accompanying increase in the valve opening of the LCV occurred several times, but this hindered continuous operation of the distillation apparatus 2. There was no. The LCV valve opening data at this time is shown in FIG.
 本発明は、混合ガスから目的物を蒸留で分離する精製工程全般で利用可能である。 The present invention can be used in all purification processes in which a target product is separated from a mixed gas by distillation.
 1,2・・・蒸留装置、11・・・蒸留塔、111・・・ガス供給部、12・・・第一の充填層、13・・・第二の充填層、14・・・第一の排出ライン、141・・・還流ライン、15・・・第二の排出ライン、151・・・循環ライン、16・・・第一のろ過部、17・・・第二のろ過部、Z・・・蒸留塔の高さ方向 DESCRIPTION OF SYMBOLS 1, 2 ... Distillation apparatus, 11 ... Distillation tower, 111 ... Gas supply part, 12 ... 1st packed bed, 13 ... 2nd packed bed, 14 ... 1st Discharge line, 141 ... reflux line, 15 ... second discharge line, 151 ... circulation line, 16 ... first filtration part, 17 ... second filtration part, Z · ..Height direction of distillation tower

Claims (7)

  1.  固形分又は重合により固形分を形成し得る成分を不純物として含有する混合ガスから、蒸留によって目的物を分離する際に、蒸留を行う蒸留塔の内部から、前記不純物を除去する方法であって、
     前記蒸留塔は、前記蒸留塔の高さ方向に設けられた少なくとも一層の、充填材で満たされた充填層、
     最下部の前記充填層よりも下方の部位に設けられたガス供給部、
     最上部の前記充填層よりも上方に設けられた第一の抜き出し部位、及び
     前記ガス供給部よりも下方に設けられた第二の抜き出し部位を有しており、
     最下部の前記充填層よりも下方の部位に、前記蒸留塔の外部から内部へ前記混合ガスを供給すること、
     前記蒸留塔において蒸留を行い、最上部の前記充填層よりも上方に設けられた前記第一の抜き出し部位から、目的物を含有するガスを前記蒸留塔の外部へ抜き出すこと、
     前記ガス供給部よりも下方に設けられた第二の抜き出し部位から前記蒸留塔の外部へ前記不純物を含有する液体を抜き出すこと、
     前記抜き出した液体の少なくとも一部を、循環液として前記最下部の充填層に上方から供給すること、前記循環液と、前記蒸留塔の上部からの還流液により、前記最下部の充填層に捕捉された前記不純物を洗い流して、前記不純物を含有する液体を得ること、
     前記不純物を含有する液体を、前記第二の抜き出し部位から前記蒸留塔の外部へ抜き出すことを含む、前記不純物を除去する方法。
    A method of removing impurities from the inside of a distillation column that performs distillation when a target product is separated by distillation from a mixed gas containing solids or components capable of forming solids by polymerization as impurities,
    The distillation column is a packed bed filled with at least one layer provided in the height direction of the distillation column,
    A gas supply unit provided in a lower part of the lowermost packed bed,
    A first extraction site provided above the uppermost packed bed, and a second extraction site provided below the gas supply unit,
    Supplying the mixed gas from the outside to the inside of the distillation column to a portion below the packed bed at the bottom;
    Performing distillation in the distillation column, and extracting the gas containing the target product from the first extraction site provided above the packed bed at the top, to the outside of the distillation column;
    Extracting the liquid containing the impurities from the second extraction site provided below the gas supply unit to the outside of the distillation column;
    At least a part of the extracted liquid is supplied to the bottom packed bed as a circulating liquid from above, and trapped in the bottom packed bed by the circulating liquid and a reflux liquid from the upper part of the distillation column. Washing away the impurities, to obtain a liquid containing the impurities;
    A method for removing the impurity, comprising extracting the liquid containing the impurity from the second extraction site to the outside of the distillation column.
  2.  前記最下部の充填層における充填材の比表面積が70~300m/mである請求項1に記載の不純物を除去する方法。 The method for removing impurities according to claim 1, wherein a specific surface area of the filler in the lowermost packed bed is 70 to 300 m 2 / m 3 .
  3.  前記最下部の充填層の、前記蒸留塔の高さ方向に対して垂直な任意の面における、前記循環液及び前記還流液の合計流量が、1.5×10~1.2×10kg/m/hである請求項1又は2に記載の不純物を除去する方法。 The total flow rate of the circulating liquid and the reflux liquid in an arbitrary plane perpendicular to the height direction of the distillation column of the lowermost packed bed is 1.5 × 10 4 to 1.2 × 10 5. The method for removing impurities according to claim 1, wherein the impurity is kg / m 2 / h.
  4.  前記第一の抜き出し部位から抜き出された、目的物を含有するガスの一部を冷却して凝縮させ液体とし、前記液体を前記蒸留塔の上部から還流させることを更に含む、請求項1~3のいずれか一項に記載の不純物を除去する方法。 The method further comprises cooling a part of the gas containing the target substance extracted from the first extraction site to condense into a liquid, and refluxing the liquid from the upper part of the distillation column. 4. A method for removing the impurity according to any one of 3 above.
  5.  前記蒸留塔の上部から前記液体を還流させることの前に、前記凝縮された液体をフィルターろ過して固形分を除去することを更に含む、請求項1~4のいずれか一項に記載の不純物を除去する方法。 The impurity according to any one of claims 1 to 4, further comprising filtering the condensed liquid to remove solids before refluxing the liquid from the top of the distillation column. How to remove.
  6.  前記第二の抜き出し部位から抜き出した液体の少なくとも一部を、循環液として前記最下部の充填層に上方から供給することの前に、前記第二の抜き出し部位から抜き出した液体をフィルターろ過して固形分を除去することを更に含む、請求項1~5のいずれか一項に記載の不純物を除去する方法。 Before supplying at least a part of the liquid extracted from the second extraction site to the bottom packed bed as a circulating liquid from above, the liquid extracted from the second extraction site is filtered. The method for removing impurities according to any one of claims 1 to 5, further comprising removing solids.
  7.  前記混合ガスが、低級アルコールの共存下、固体酸触媒を用いて、シクロヘキサノンオキシムからε-カプロラクタムを生成させる気相反応で得られたガスである請求項1~6のいずれか一項に記載の不純物を除去する方法。 The mixed gas according to any one of claims 1 to 6, wherein the mixed gas is a gas obtained by a gas phase reaction in which ε-caprolactam is generated from cyclohexanone oxime using a solid acid catalyst in the presence of a lower alcohol. A method for removing impurities.
PCT/JP2012/080062 2011-11-25 2012-11-20 Method for removing impurities WO2013077319A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201280057251.2A CN103946212B (en) 2011-11-25 2012-11-20 The removing method of impurity

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-257557 2011-11-25
JP2011257557 2011-11-25

Publications (1)

Publication Number Publication Date
WO2013077319A1 true WO2013077319A1 (en) 2013-05-30

Family

ID=48469763

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/080062 WO2013077319A1 (en) 2011-11-25 2012-11-20 Method for removing impurities

Country Status (3)

Country Link
JP (1) JP2013128919A (en)
CN (1) CN103946212B (en)
WO (1) WO2013077319A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106251620B (en) * 2016-09-26 2019-01-25 北京东土科技股份有限公司 Centring system based on intelligent transportation cloud control system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05230015A (en) * 1992-02-19 1993-09-07 Mitsubishi Kasei Corp Purification of caprolactam
JP2001019655A (en) * 1999-07-06 2001-01-23 Nippon Shokubai Co Ltd Method and apparatus for absorbing (meth)acrylic acid and/or (meth)acrolein
JP2007223906A (en) * 2006-02-21 2007-09-06 Sumitomo Chemical Co Ltd Method for purifying caprolactam

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3811607B2 (en) * 2000-09-20 2006-08-23 Ykk株式会社 Adjustable hook for clothes

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05230015A (en) * 1992-02-19 1993-09-07 Mitsubishi Kasei Corp Purification of caprolactam
JP2001019655A (en) * 1999-07-06 2001-01-23 Nippon Shokubai Co Ltd Method and apparatus for absorbing (meth)acrylic acid and/or (meth)acrolein
JP2007223906A (en) * 2006-02-21 2007-09-06 Sumitomo Chemical Co Ltd Method for purifying caprolactam

Also Published As

Publication number Publication date
CN103946212A (en) 2014-07-23
CN103946212B (en) 2016-06-29
JP2013128919A (en) 2013-07-04

Similar Documents

Publication Publication Date Title
JP6290266B2 (en) Separation techniques optimized for the post-treatment of homogeneously catalyzed hydroformylation mixtures
JP4558870B2 (en) Tower-type processing method and apparatus
KR100932467B1 (en) Method of producing acrylic acid
CN1867539A (en) Method for the distillative separation of mixtures containing ethyleneamines
EP3606903B1 (en) Process for purifying (meth)acrylic acid including a dividing-wall distillation column
EP3480183B1 (en) Production method for (meth)acrylic acid or ester thereof
JP2010241742A (en) Method for recovering (meth)acrylonitrile
JP2018517558A (en) Distillation equipment
JP6865039B2 (en) Off-gas treatment method and equipment in acetic acid production unit
US9718756B2 (en) Method for continuously recovering (meth)acrylic acid and apparatus for the method
WO2013077319A1 (en) Method for removing impurities
KR20170110139A (en) Methods for controlling the HI concentration in the residue stream
KR101435569B1 (en) Method for recovering acetic acid in preparing aromatic carboxylic acid
CN107311856A (en) A kind of purification recovery system of acetic acid waste liquid
JP5755995B2 (en) Reaction process using supercritical water
US20130098752A1 (en) Process and Apparatus for the Distillation of Polymerization-Prone Compounds
TW201634436A (en) Method for purifying easily polymerizable substance
JP2016506969A (en) Separation of acrolein from process gas of oxidation by heterogeneous catalysis of propene
JP4300224B2 (en) Acrylic acid production method
US9861908B2 (en) Process for continuous recovering (meth)acrylic acid and apparatus for the process
JP4802446B2 (en) Apparatus and method for producing diphenyl carbonate or aromatic polycarbonate using the apparatus
JP2009275019A (en) Method for refining water-alcohol composition
JP2005145880A (en) Method and apparatus for producing vinyl aromatic compound
JP6036401B2 (en) Method for producing (meth) acrylic acid ester
TWI630174B (en) Method and apparatus for production of silane and hydrohalosilanes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12851158

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12851158

Country of ref document: EP

Kind code of ref document: A1