WO2013077117A1 - Resolver holder, motor unit, and method for manufacturing motor unit - Google Patents

Resolver holder, motor unit, and method for manufacturing motor unit Download PDF

Info

Publication number
WO2013077117A1
WO2013077117A1 PCT/JP2012/076777 JP2012076777W WO2013077117A1 WO 2013077117 A1 WO2013077117 A1 WO 2013077117A1 JP 2012076777 W JP2012076777 W JP 2012076777W WO 2013077117 A1 WO2013077117 A1 WO 2013077117A1
Authority
WO
WIPO (PCT)
Prior art keywords
resolver
motor
holder
stator
rotor
Prior art date
Application number
PCT/JP2012/076777
Other languages
French (fr)
Japanese (ja)
Inventor
福井健太郎
佐藤博之
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Publication of WO2013077117A1 publication Critical patent/WO2013077117A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K24/00Machines adapted for the instantaneous transmission or reception of the angular displacement of rotating parts, e.g. synchro, selsyn
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/20Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature
    • G01D5/204Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the mutual induction between two or more coils
    • G01D5/2046Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the mutual induction between two or more coils by a movable ferromagnetic element, e.g. a core
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/18Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures
    • H02K1/185Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures to outer stators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof

Definitions

  • the present invention relates to a resolver holder or resolver holder for holding a resolver rotor for detecting a rotation angle of a motor, a motor unit having the resolver holder, and a method for manufacturing the motor unit.
  • JP 2010-154710 A JP 2010-154710 A
  • JP 2001-231218 JP 2001-231218 A
  • JP 2002-233109 A JP 2002-233109 A
  • JP ⁇ 2010-154710 A aims to reduce the influence of the resolver on magnetic flux leaking from the motor body in the motor with resolver (summary).
  • the motor 10 with a resolver of JP152010-154710 A is disposed on the motor rotor 22 side at a predetermined interval from the resolver 16 and has a retainer 34 that induces a magnetic flux leaking from the motor body 14 ( wrap up).
  • the retainer 34 prevents leakage magnetic flux from entering the resolver 16 (summary).
  • JP 232001-231218 A is to provide a rotating electrical machine that can prevent the influence of leakage magnetic flux generated between the armature winding and the rotor on the resolver rotation detector and that the resolver rotation detector can be easily attached and detached. (Summary).
  • the resolver rotation detector 9 is disposed outside the bearing 4 that rotatably supports the output shaft 1 and the end bracket 6 that holds the bearing 4, and the end bracket 6 is configured such that the leakage flux 11 does not affect the resolver rotation detector 9 (summary).
  • the resolver rotation detector 9 is magnetically separated from the rotor 3 and the stator 8 by the end bracket 6 (and the partition and the non-output side bearing 4b formed integrally with the end bracket 6). Is prevented from entering the leakage magnetic flux 11 ([0028]).
  • JP ⁇ 2002-233109 A aims to provide a vehicle motor that can be easily assembled while improving the detection accuracy of the rotational position of the motor by a resolver (summary).
  • JP 2002-233109 A includes a rotor 3, a stator core 32 disposed opposite to the rotor 3, and a stator 2 including a stator winding 33 provided on the stator core 32.
  • a resolver 1S having a resolver rotor 103 interlocked with the rotor 3 and a resolver stator 102 disposed opposite to the resolver rotor 103, and a frame 4 supporting the rotor 3 and the stator 2.
  • the resolver 1 ⁇ / b> S is provided at the axial end 4 br of the frame 4 and is arranged at a predetermined interval from the rotor 3 and the stator 2 (summary). That is, by separating the resolver 1S from the rotor 3 and the stator 2, leakage magnetic flux can be prevented from entering the resolver 1S ([0007]).
  • JP2006-152882 A Japanese Patent Laid-Open No. 2006-152882
  • JP 2010-154710 A, JP 2001-231218 A, and JP 2002-233109 A still have room for improvement in terms of improving the accuracy of the resolver.
  • JP 2010-154710JA, JP 2001-231218 A, and JP 2002-233109 A are intended to reduce the influence of leakage magnetic flux from the motor to the resolver. This is a technique based on the idea of preventing leakage magnetic flux from entering the resolver, and requires additional parts or additional space.
  • the space-saving requirement for the resolver is not limited to hybrid vehicles, but is common to all devices or devices using other vehicles and motors.
  • the present invention has been made in view of such problems, and provides a resolver holder, a motor unit, and a method for manufacturing the motor unit that can realize at least one of improvement in accuracy and space saving of the resolver. With the goal.
  • a resolver holder holds a resolver stator or resolver rotor of a resolver that detects a rotation angle of a motor, and the shape of the resolver holder is set to leak from at least one of a motor stator and a motor rotor.
  • the magnetic resistance against the magnetic flux is configured to be uniform.
  • the shape of the resolver holder is configured such that the magnetic resistance against the leakage magnetic flux of each phase from at least one of the motor stator or the motor rotor is equal.
  • the resolver holder includes an annular part for attaching the resolver stator or the resolver rotor, and a plurality of projecting parts projecting radially outward or radially inward from the annular part, and an external attachment part for attaching the resolver holder On the other hand, it may be attached via the plurality of protrusions.
  • the number of the plurality of protrusions is the same as or a multiple of the phase number of the motor, each of the plurality of protrusions has the same shape or a different shape, and the plurality of protrusions are in each phase of the motor.
  • the same number is allocated, and the arrangement of the protrusions in each phase may be equal.
  • the number of the plurality of protrusions may be different from the number of phases of the motor and a multiple thereof.
  • the motor unit according to the present invention includes the resolver holder and the external mounting portion, and at least one of a convex portion and a concave portion is provided on the mounting surface to which the protruding portion is mounted among the external mounting portions.
  • the plurality of projecting portions are formed and attached to the mounting surface at positions other than the convex portions and the concave portions.
  • a motor unit includes a motor and a resolver that detects a rotation angle of the motor, and the resolver includes a resolver stator or a resolver holder that holds a resolver rotor, and the motor stator of the motor
  • the resolver holder is arranged so that the magnetic resistance against the leakage magnetic flux from each phase in at least one of the motor rotor is equal.
  • a method of manufacturing a motor unit according to the present invention is a method of manufacturing a motor unit that includes a motor and a resolver that detects a rotation angle of the motor, and the resolver includes a resolver holder that holds a resolver stator or a resolver rotor.
  • the resolver holder has an annular part to which the resolver stator or the resolver rotor is attached, and a plurality of projecting parts projecting radially outward from the annular part, and the resolver holder is provided from at least one of the motor stator and the motor rotor.
  • the resolver holder is arranged so that the magnetic resistance against the leakage magnetic flux of each phase is uniform.
  • FIG. 6 is a sectional view taken along line VI-VI in FIG. 5.
  • FIG. 7 is a sectional view taken along line VII-VII in FIG. 5.
  • FIG. 6 is a sectional view taken along line VIII-VIII in FIG. 5.
  • FIG. 1 is a perspective view schematically showing the external appearance of a driving force generation unit 12 constituting an electric vehicle 10 (hereinafter also referred to as “vehicle 10”) equipped with a motor unit 16 according to an embodiment of the present invention.
  • vehicle 10 is a so-called hybrid vehicle
  • the driving force generation unit 12 includes an engine 14 and a motor unit 16 as driving sources.
  • the motor unit 16 includes a motor 18 and a resolver 20.
  • the vehicle 10 may be a vehicle other than a hybrid vehicle as long as it has a motor 18 and a resolver 20.
  • the engine 14 is a main driving source for generating the driving force F [N] (or torque [N ⁇ m]) of the vehicle 10.
  • Insert holes (not shown) for inserting positioning pins as jigs when the engine 14 is assembled to a vehicle body (not shown) on both sides of the engine block 32 (external mounting portion) of the engine 14. Is formed on the bottom surface side of the engine 14.
  • a plurality of convex portions 34 are formed on both side surfaces of the engine block 32.
  • the motor 18 is a secondary driving source for generating the driving force F of the vehicle 10.
  • the motor 18 is a three-phase AC brushless type, and generates a driving force F of the vehicle 10 based on electric power supplied from a battery (not shown) via an inverter (not shown). Further, the motor 18 charges the battery by outputting electric power (regenerative power Preg) [W] generated by performing regeneration to the battery.
  • the regenerative power Preg may be output to a 12 volt system or an auxiliary machine (not shown).
  • the motor 18 includes a motor rotor 40, a motor stator 42, and an output shaft portion 44 (FIG. 4).
  • a motor similar to that described in JP2006-152882 A can be used.
  • the resolver 20 detects a rotation angle of the motor 18 and includes a resolver rotor 50, a first resolver holder 52, a resolver stator 54, and a second resolver holder 56 (hereinafter also referred to as “resolver holder 56”).
  • the resolver rotor 50 is attached to the output shaft portion 44 of the motor 18 and rotates together with the motor rotor 40.
  • FIG. 2 is a perspective view showing how the resolver stator 54 is attached to the second resolver holder 56. As shown in FIG. 2, the resolver stator 54 is press-fitted into the resolver holder 56 in the direction of the arrow X1 in FIG.
  • the resolver stator 54 includes an annular portion 60 made of a magnetic material (hereinafter referred to as “stator annular portion 60”), and a plurality of resolver coils formed integrally with the stator annular portion 60 and projecting radially inward from the stator annular portion 60. It has a winding part 62 and a plurality of resolver coils 64 wound around the resolver coil winding part 62.
  • the resolver holder 56 is for fixing the resolver stator 54 to the engine block 32, and is made of a metallic ⁇ for example, iron (particularly, cold rolled steel plate) ⁇ annular portion 70 (hereinafter referred to as "holder annular portion 70"). )) And a plurality of bolt fastening portions 72a to 72c (hereinafter, referred to as “fastening portions 72a to 72c”) that are integrally formed with the holder annular portion 70 and project radially outward from the holder annular portion 70. Are collectively referred to as “.”.
  • the resolver holder 56 is fixed to the engine block 32 by fastening bolts 78 (FIG. 1) at fastening portions 72a to 72c as projecting portions.
  • the engine block 32 also functions as an attachment portion of the second resolver holder 56. It should be noted that the shape of the second resolver holder 56 in FIG. 2 is simplified, and the cross section in the radial direction is a shape as shown in FIGS.
  • the resolver holder 56 has the above-described configuration, so that the influence of the leakage magnetic flux ⁇ generated from the motor stator 42 can be reduced. .
  • FIG. 3 is a diagram for explaining the leakage magnetic flux ⁇ generated from the motor stator 42 to the resolver stator 54.
  • Ax indicates an output shaft (axis line) of the motor 18.
  • the leakage flux ⁇ from the motor stator 42 enters the resolver stator 54.
  • the leakage magnetic flux ⁇ is also generated from the motor rotor 40.
  • the value is small, and the description is omitted in FIG.
  • FIG. 4 is a diagram showing a positional relationship between the motor 18 and the resolver 20 according to the present embodiment.
  • FIG. 4 is a view seen from the engine 14 side toward the motor 18 side.
  • FIG. 4 is a view seen from the direction of the output shaft Ax of the motor 18 (a view seen in the direction of the arrow X1 in FIG. 1).
  • the magnetic resistance Rm with respect to the leakage magnetic flux ⁇ entering the resolver stator 54 from the motor stator 42 becomes equal in each phase. For this reason, the leakage magnetic flux ⁇ from each phase cancels out, and the error of the resolver 20 can be suppressed.
  • FIG. 5 is a view as seen in the direction of the output shaft Ax of the motor 18 from the engine 14 side toward the motor 18 side (a view seen in the direction of the arrow X2 in FIG. 1). It is. 6 is a cross-sectional view taken along line VI-VI in FIG. 7 is a cross-sectional view taken along line VII-VII in FIG. 8 is a cross-sectional view taken along line VIII-VIII in FIG.
  • the bolt fastening portions 72a to 72c protrude outward from the holder annular portion 70 in the radial direction. For this reason, even if the surface 90 (hereinafter referred to as “mounting surface 90”) to which the resolver holder 56 is attached in the engine block 32 has irregularities, the bolt fastening portions 72a to 72c are formed or arranged avoiding the irregularities. Thus, the resolver holder 56 can be attached to the engine block 32.
  • the resolver holder 56 can be arranged avoiding the convex portion 34 existing on the mounting surface 90 of the engine block 32. That is, in FIG. 6, the length D1 from the axis Ax of the output shaft portion 44 to the tip of the fastening portion 72b is longer than the length D2 from the axis Ax to the convex portion 34, but in the direction of the arrow X2 in FIG. When viewed, the phases of the fastening portions 72a to 72c and the convex portion 34 of the engine block 32 are different.
  • the convex portion 34 does not exist on the half line from the axis Ax to the tips of the fastening portions 72a to 72c. For this reason, it is possible to arrange the resolver holder 56 (and the resolver stator 54) while avoiding buffering with respect to the engine block 32.
  • the resolver holder 56 can be arranged avoiding the hole 92 (a kind of recess) present in the mounting surface 90 of the engine block 32. That is, in FIG. 7, since the hole 92 exists, the fastening portions 72a to 72c cannot be provided at positions corresponding to the hole 92 in the resolver holder 56, but the fastening portion 72a is avoided so as to avoid the hole 92. 72c can be formed. For this reason, it is possible to arrange the resolver holder 56 (and the resolver stator 54) while avoiding buffering with respect to the engine block 32.
  • the resolver holder 56 can be arranged avoiding the concave portion 94 present on the mounting surface 90 of the engine block 32. That is, in FIG. 8, since the concave portion 94 exists, it is difficult to fasten the fastening portions 72 a to 72 c at the position corresponding to the concave portion 94 in the resolver holder 56, but the fastening portions 72 a to 72 c are formed so as to avoid the concave portion 94. Can do. Therefore, it is easy to secure the positions of the fastening portions 72a to 72c with respect to the engine block 32.
  • FIG. 9 is a diagram illustrating a positional relationship between the motor 118 and the resolver 120 of the motor unit 116 according to the comparative example.
  • the motor 118 according to the comparative example has the same configuration as the motor 18 in the present embodiment.
  • the resolver holder 156 has a shape shown in FIG. 9 in order to avoid the convex portion 34, the hole portion 92, and the concave portion 94 in the engine 14.
  • the holder fastening portions 172a to 172d have different magnetic resistances Rm with respect to the leakage magnetic flux ⁇ in each phase.
  • FIG. 10 is a diagram for explaining an example of the leakage flux ⁇ from the motors 18 and 118 to the resolvers 20 and 120 in the present embodiment and the comparative example.
  • the horizontal axis represents the rotational frequency of the motors 18 and 118 (hereinafter referred to as “motor frequency f”) [Hz]
  • the vertical axis represents the leakage magnetic flux ⁇ [Wb] entering the resolvers 20 and 120.
  • the leakage flux ⁇ 1 relates to the present embodiment
  • the leakage flux ⁇ 2 relates to a comparative example.
  • both the leakage flux ⁇ 1 of the present embodiment and the leakage flux ⁇ 2 of the comparative example are relatively large, but this embodiment is compared with the leakage flux ⁇ 2 of the comparative example.
  • the leakage magnetic flux ⁇ 1 of the form is about half and greatly reduced.
  • the shape of the resolver holder 56 is set so that the magnetic resistance Rm with respect to the leakage flux ⁇ of each phase from the motor stator 42 (and the motor rotor 40) is equal. Constitute.
  • the leakage magnetic flux ⁇ from each phase cancels out, so that the influence of the leakage magnetic flux ⁇ from the motor 18 to the resolver 20 can be suppressed, and the accuracy of the resolver 20 can be improved.
  • the leakage flux ⁇ from each phase is canceled out, the influence of the leakage flux ⁇ can be suppressed even when the leakage flux ⁇ from each phase is relatively strong. Therefore, the distance between the motor 18 and the resolver 20 can be made relatively short, and space can be saved.
  • the resolver holder 56 includes an annular portion 70 to which the resolver stator 54 is attached, and a plurality of fastening portions 72a to 72c (protruding portions) that protrude radially outward from the annular portion 70, with respect to the engine block 32. These are attached via a plurality of fastening portions 72a to 72c.
  • the number of the plurality of fastening portions 72a to 72c is “3”, which is the same as the number of phases of the motor 18.
  • the fastening portions 72a to 72c have the same shape, and the three fastening portions 72a to 72c And W-phase motor coils 80, U-phase and V-phase motor coils 80, and V-phase and W-phase motor coils 80.
  • the mounting surface 90 of the engine block 32 is formed with a convex portion 34, a hole portion 92 (a kind of concave portion) and a concave portion 94, and the fastening portions 72a to 72c are provided with the convex portion 34, the hole portion 92 and the concave portion. It is attached to the attachment surface 90 at a position other than 94. Thereby, even if the convex part 34, the hole part 92, and the recessed part 94 exist in the attachment surface 90, it becomes possible to arrange
  • the motor unit 16 is mounted on the electric vehicle 10 that is a hybrid vehicle.
  • the present invention is not limited to this and can be applied to any application that uses the motor 18 and the resolver 20.
  • the motor 18 is used for driving the vehicle 10, but may be used for other applications in the vehicle 10 (for example, an electric power steering, an air conditioner, an air compressor, etc.).
  • it may be applied to another electric vehicle 10 using the motor unit 16 (for example, an electric vehicle or a fuel cell vehicle using only the motor 18 as a drive source).
  • the motor unit 16 can also be used for apparatuses, such as an industrial machine and household appliances.
  • the number of motor coils 80 of the motor stator 42 is 24 (see FIG. 4).
  • the number of motor coils 80 may be 21 or 27.
  • the motor coils 80 are preferably equally spaced when viewed in the axial direction (for example, when viewed in the direction of the arrow X1 or X2 in FIG. 1).
  • the motor 18 is an alternating current system, it will not be restricted to a 3 phase alternating current system.
  • the motor 18 is a brushless type, but may be a brush type.
  • the current from the battery (battery current) is flowed to the motor stator 42 side, but the battery current may be flowed to the motor rotor 40 side.
  • the motor stator 42 is disposed on the radially outer side of the motor rotor 40 (see FIG. 1). However, the motor stator 42 may be disposed on the radially inner side of the motor rotor 40.
  • the motor coil of the motor stator 42 is disposed between the first fastening portion 72a and the second fastening portion 72b and between the second fastening portion 72b and the third fastening portion 72c in the direction of the axis Ax.
  • Each fastening portion 72 is arranged so that there are four 80s (see FIG. 4).
  • the arrangement of the fastening portions 72a to 72c is not limited to this as long as the magnetic resistance Rm with respect to the leakage flux ⁇ of each phase is equal.
  • the direction of the axis Ax (in FIG. In the direction of the arrow X1 or X2), between the first fastening portion 72a and the second fastening portion 72b, between the second fastening portion 72b and the third fastening portion 72c, and between the first fastening portion 72a and the third fastening portion 72b.
  • the fastening portions 72a to 72c may be arranged between the fastening portions 72c so that there are eight motor coils 80 of the motor stator 42, respectively. In other words, the fastening portions 72a to 72c may be formed so that the intervals between the adjacent fastening portions 72a to 72c are equal.
  • the angle between the 1st fastening part 72a and the 2nd fastening part 72b, and the 2nd fastening part 72b and 3rd are equal, but the angles may be varied as long as the magnetic resistance Rm with respect to the leakage flux ⁇ of each phase is equal.
  • the number of motor coils 80 between the first fastening portion 72a and the second fastening portion 72b in the direction of the axis Ax is 4, whereas the second fastening portion 72b and the third fastening portion 72c
  • the number of motor coils 80 in between may be set to 7, 10, 13, 16, or 19.
  • the fastening portions 72a to 72c are arranged so as to come to the boundaries of the motor coils 80 when viewed in the direction of the axis Ax.
  • the positions of the fastening portions 72a to 72c with respect to the motor coil 80 are not limited to this.
  • the fastening portions 72a to 72c are positioned at the center of each motor coil 80 (for example, the positional relationship between the fastening portion 172c of the resolver holder 156 and the motor coil 80 according to the comparative example of FIG. ) You may arrange.
  • the number of bolt fastening portions 72a to 72c is set to 3, which is the same as the number of phases of the motor 18, but two or four if the magnetic resistance Rm with respect to the leakage magnetic flux ⁇ of each phase is equal. There may be more than one. However, it is more likely that design or positioning is easier when the number of phases is a multiple (for example, 3, 6, 9, etc.).
  • the three bolt fastening portions 72a to 72c have the same shape. However, as long as the magnetic resistance Rm with respect to the leakage magnetic flux ⁇ of each phase of the motor 18 is equal, the shapes are different. There may be.
  • the protrusions formed on the resolver holder 56 are all bolt fastening parts 72a to 72c.
  • a protrusion that is not a bolt fastening part is provided. You can also.
  • the resolver holder 56 is attached to the engine block 32, but the object to which the resolver holder 56 is attached is not limited to this.
  • a part such as a case of the motor 18 or a mission block may be used.
  • the resolver holder 56 is attached to the engine block 32 with the bolt 78, but the attaching means or attaching method of the resolver holder 56 is not limited to this.
  • attachment methods such as welding and adhesion
  • the description has been given with particular attention to the leakage magnetic flux ⁇ from the motor stator 42, but the shape of the resolver holder 56 is a magnetic field for the leakage magnetic flux ⁇ of each phase from at least one of the motor stator 42 and the motor rotor 40. If resistance Rm becomes equal, it will not restrict to this.
  • the second resolver holder 56 for the resolver stator 54 has been described with particular attention to the configuration and arrangement. However, a similar configuration (a configuration in which the magnetic resistance Rm with respect to the leakage flux ⁇ of each phase is equal)
  • the first resolver holder 52 for the resolver rotor 50 may be used.

Abstract

Provided are a resolver holder, a motor unit, and a method for manufacturing a motor unit, whereby the precision of a resolver can be enhanced and/or the space requirements of the resolver can be reduced. In a resolver holder (56), a motor unit (16), and a method for manufacturing a motor unit, the shape of the resolver holder (56) is configured so that the magnetic reluctance of the leakage flux of each phase from a motor stator (42) and/or a motor rotor (40) is uniform.

Description

レゾルバホルダ、モータユニット及びモータユニットの製造方法Resolver holder, motor unit, and method of manufacturing motor unit
 この発明は、モータの回転角度を検出するレゾルバのレゾルバステータ又はレゾルバロータを保持するレゾルバホルダ、前記レゾルバホルダを有するモータユニット及び前記モータユニットの製造方法に関する。 The present invention relates to a resolver holder or resolver holder for holding a resolver rotor for detecting a rotation angle of a motor, a motor unit having the resolver holder, and a method for manufacturing the motor unit.
 モータからレゾルバへの漏れ磁束の影響を軽減するための技術が提案されている{特開2010―154710号公報(以下「JP 2010―154710 A」という。)、特開2001―231218号公報(以下「JP 2001―231218 A」という。)及び特開2002―233109号公報(以下「JP 2002―233109 A」という。)}。 Techniques for reducing the influence of magnetic flux leakage from the motor to the resolver have been proposed {JP 2010-154710 A (hereinafter referred to as “JP と い う 2010-154710 A”), JP 2001-231218 (hereinafter referred to as “JP”). “JP 2001-231218 A”) and JP-A-2002-233109 (hereinafter referred to as “JP 2002-233109 A”)}.
 JP 2010―154710 Aでは、レゾルバ付モータにおいて、モータ本体から漏洩する磁束によりレゾルバが受ける影響をより少なくすることを課題とする(要約)。この課題を解決するため、JP 2010―154710 Aのレゾルバ付モータ10は、レゾルバ16と所定の間隔を空けてモータロータ22側に配置され、モータ本体14から漏洩する磁束を誘導するリテーナ34を有する(要約)。当該リテーナ34により、レゾルバ16への漏れ磁束の侵入を防止する(要約)。 JP ―2010-154710 A aims to reduce the influence of the resolver on magnetic flux leaking from the motor body in the motor with resolver (summary). In order to solve this problem, the motor 10 with a resolver of JP152010-154710 A is disposed on the motor rotor 22 side at a predetermined interval from the resolver 16 and has a retainer 34 that induces a magnetic flux leaking from the motor body 14 ( wrap up). The retainer 34 prevents leakage magnetic flux from entering the resolver 16 (summary).
 JP 2001―231218 Aでは、電機子巻線と回転子との間で発生する漏れ磁束のレゾルバ回転検出器への影響を防止でき、且つレゾルバ回転検出器が容易に着脱できる回転電機を提供することを課題とする(要約)。この課題を解決するため、JP 2001―231218 Aでは、レゾルバ回転検出器9を、出力軸1を回転可能に支持する軸受4及び該軸受4を保持するエンドブラケット6の外側に配置し、エンドブラケット6を、漏れ磁束11がレゾルバ回転検出器9へ影響しないように構成する(要約)。すなわち、エンドブラケット6(並びにこれと一体で形成された隔壁及び反出力側軸受4b)により回転子3及び固定子8からレゾルバ回転検出器9を磁気的に分離することにより、レゾルバ回転検出器9への漏れ磁束11の侵入を防止する([0028])。 JP 232001-231218 A is to provide a rotating electrical machine that can prevent the influence of leakage magnetic flux generated between the armature winding and the rotor on the resolver rotation detector and that the resolver rotation detector can be easily attached and detached. (Summary). In order to solve this problem, in JP 2001-231218 A, the resolver rotation detector 9 is disposed outside the bearing 4 that rotatably supports the output shaft 1 and the end bracket 6 that holds the bearing 4, and the end bracket 6 is configured such that the leakage flux 11 does not affect the resolver rotation detector 9 (summary). That is, the resolver rotation detector 9 is magnetically separated from the rotor 3 and the stator 8 by the end bracket 6 (and the partition and the non-output side bearing 4b formed integrally with the end bracket 6). Is prevented from entering the leakage magnetic flux 11 ([0028]).
 JP 2002―233109 Aでは、レゾルバによる電動機の回転位置の検出精度を向上させつつ、組付け容易な車両用電動機を提供することを課題とする(要約)。この課題を解決するため、JP 2002―233109 Aでは、回転子3と、回転子3に対向配置された固定子鉄心32及び固定子鉄心32に装備された固定子巻線33を備える固定子2と、回転子3と固定子2を支持するフレーム4と、回転子3に連動するレゾルバ回転子103及びレゾルバ回転子103に対向配置されたレゾルバ固定子102を有するレゾルバ1Sとを備えた車両用電動機1において、レゾルバ1Sは、フレーム4の軸方向端部4brに設けられ、回転子3及び固定子2から所定の間隔をおいて配置される(要約)。すなわち、回転子3及び固定子2からレゾルバ1Sを引き離すことにより、レゾルバ1Sへの漏れ磁束の侵入を防止する([0007])。 JP ―2002-233109 A aims to provide a vehicle motor that can be easily assembled while improving the detection accuracy of the rotational position of the motor by a resolver (summary). In order to solve this problem, JP 2002-233109 A includes a rotor 3, a stator core 32 disposed opposite to the rotor 3, and a stator 2 including a stator winding 33 provided on the stator core 32. And a resolver 1S having a resolver rotor 103 interlocked with the rotor 3 and a resolver stator 102 disposed opposite to the resolver rotor 103, and a frame 4 supporting the rotor 3 and the stator 2. In the electric motor 1, the resolver 1 </ b> S is provided at the axial end 4 br of the frame 4 and is arranged at a predetermined interval from the rotor 3 and the stator 2 (summary). That is, by separating the resolver 1S from the rotor 3 and the stator 2, leakage magnetic flux can be prevented from entering the resolver 1S ([0007]).
 ところで、車両の駆動源として、エンジンとモータの両方を備えるハイブリッド車両が開発されている{特開2006―152882号公報(以下「JP2006-152882 A」という。)}。 Incidentally, a hybrid vehicle including both an engine and a motor has been developed as a vehicle drive source {Japanese Patent Laid-Open No. 2006-152882 (hereinafter referred to as “JP2006-152882 A”)}.
 JP 2010―154710 A、JP 2001―231218 A及びJP 2002―233109 Aにおける技術には、レゾルバの精度向上の点で未だ改善の余地がある。また、上記のように、JP 2010―154710 A、JP 2001―231218 A及びJP 2002―233109 Aでは、モータからレゾルバへの漏れ磁束の影響を軽減することが企図されているが、いずれの文献も、レゾルバに漏れ磁束が入り込むのを防止するという発想からの技術であり、追加的な部品の付加又は追加的な空間を要するものである。 The technologies in JP 2010-154710 A, JP 2001-231218 A, and JP 2002-233109 A still have room for improvement in terms of improving the accuracy of the resolver. In addition, as described above, JP 2010-154710JA, JP 2001-231218 A, and JP 2002-233109 A are intended to reduce the influence of leakage magnetic flux from the motor to the resolver. This is a technique based on the idea of preventing leakage magnetic flux from entering the resolver, and requires additional parts or additional space.
 しかしながら、例えば、ハイブリッド車両の場合、エンジンとモータの2つの駆動源を車両に搭載する関係上、追加的な空間を確保できる余地が少ないため、レゾルバに対する省スペース化の要求が存在する。また、レゾルバに対する省スペース化の要求は、ハイブリッド車両に限った話ではなく、その他の車両及びモータを用いる全ての装置又は機器に共通することである。 However, for example, in the case of a hybrid vehicle, there is little room for securing an additional space because two drive sources of an engine and a motor are mounted on the vehicle, and there is a demand for space saving for the resolver. Further, the space-saving requirement for the resolver is not limited to hybrid vehicles, but is common to all devices or devices using other vehicles and motors.
 この発明はこのような課題を考慮してなされたものであり、レゾルバの精度向上及び省スペース化の少なくとも一方を実現することが可能なレゾルバホルダ、モータユニット及びモータユニットの製造方法を提供することを目的とする。 The present invention has been made in view of such problems, and provides a resolver holder, a motor unit, and a method for manufacturing the motor unit that can realize at least one of improvement in accuracy and space saving of the resolver. With the goal.
 この発明に係るレゾルバホルダは、モータの回転角度を検出するレゾルバのレゾルバステータ又はレゾルバロータを保持するものであって、前記レゾルバホルダの形状を、モータステータ及びモータロータの少なくとも一方からの各相の漏れ磁束に対する磁気抵抗が均等となるように構成することを特徴とする。 A resolver holder according to the present invention holds a resolver stator or resolver rotor of a resolver that detects a rotation angle of a motor, and the shape of the resolver holder is set to leak from at least one of a motor stator and a motor rotor. The magnetic resistance against the magnetic flux is configured to be uniform.
 この発明によれば、レゾルバホルダの形状を、モータステータ又はモータロータの少なくとも一方からの各相の漏れ磁束に対する磁気抵抗が均等となるように構成する。これにより、各相からの漏れ磁束が打ち消し合うため、モータからレゾルバへの漏れ磁束の影響を抑制することが可能となり、レゾルバの精度を向上することが可能となる。また、各相からの漏れ磁束を打ち消すため、各相からの漏れ磁束が比較的強い場合であっても、漏れ磁束の影響を抑制することが可能となる。従って、モータとレゾルバの距離を比較的短くすることが可能となり、省スペース化を実現することも可能となる。 According to this invention, the shape of the resolver holder is configured such that the magnetic resistance against the leakage magnetic flux of each phase from at least one of the motor stator or the motor rotor is equal. Thereby, since the leakage magnetic flux from each phase cancels out, the influence of the leakage magnetic flux from the motor to the resolver can be suppressed, and the accuracy of the resolver can be improved. Further, since the leakage magnetic flux from each phase is canceled out, the influence of the leakage magnetic flux can be suppressed even when the leakage magnetic flux from each phase is relatively strong. Therefore, the distance between the motor and the resolver can be made relatively short, and space saving can be realized.
 前記レゾルバホルダは、前記レゾルバステータ又は前記レゾルバロータを取り付ける環状部と、前記環状部から径方向外側又は径方向内側に突出する複数の突出部とを備え、前記レゾルバホルダを取り付けるための外部取付部に対し、前記複数の突出部を介して取り付けられてもよい。 The resolver holder includes an annular part for attaching the resolver stator or the resolver rotor, and a plurality of projecting parts projecting radially outward or radially inward from the annular part, and an external attachment part for attaching the resolver holder On the other hand, it may be attached via the plurality of protrusions.
 前記複数の突出部の数は、前記モータの相数と同じ又はその倍数であり、前記複数の突出部それぞれは、同一形状又は異なる形状であり、前記複数の突出部が前記モータの各相で同数振り分けられ、各相における各突出部の配置が等しくされてもよい。これにより、複数の突出部それぞれが同一形状である場合、各相の漏れ磁束に対する磁気抵抗が均等となる構成を比較的簡易に設計することが可能になる。また、複数の突出部それぞれが異なる形状である場合、レゾルバホルダをその取付部の形状に応じた形状とすることが容易となる。 The number of the plurality of protrusions is the same as or a multiple of the phase number of the motor, each of the plurality of protrusions has the same shape or a different shape, and the plurality of protrusions are in each phase of the motor. The same number is allocated, and the arrangement of the protrusions in each phase may be equal. Thereby, when each of the plurality of projecting portions has the same shape, it is possible to design a configuration in which the magnetic resistance to the leakage magnetic flux of each phase is uniform relatively easily. In addition, when each of the plurality of projecting portions has a different shape, the resolver holder can be easily shaped according to the shape of the mounting portion.
 或いは、前記複数の突出部の数は、前記モータの相数及びその倍数と異なる数としてもよい。 Alternatively, the number of the plurality of protrusions may be different from the number of phases of the motor and a multiple thereof.
 この発明に係るモータユニットは、前記レゾルバホルダと、前記外部取付部とを備えるものであって、前記外部取付部のうち前記突出部が取り付けられる取付面には、凸部及び凹部の少なくとも一方が形成され、前記複数の突出部は、前記凸部及び前記凹部以外の位置で前記取付面に取り付けられることを特徴とする。これにより、取付面に凸部又は凹部が存在しても、当該凸部及び凹部を避けてレゾルバホルダを配置することが可能となる。従って、レゾルバホルダの存在に伴う寸法の増大を避け易くなる。 The motor unit according to the present invention includes the resolver holder and the external mounting portion, and at least one of a convex portion and a concave portion is provided on the mounting surface to which the protruding portion is mounted among the external mounting portions. The plurality of projecting portions are formed and attached to the mounting surface at positions other than the convex portions and the concave portions. Thereby, even if a convex part or a recessed part exists in an attachment surface, it becomes possible to arrange | position a resolver holder avoiding the said convex part and recessed part. Therefore, it becomes easy to avoid an increase in size due to the presence of the resolver holder.
 この発明に係るモータユニットは、モータと、前記モータの回転角度を検出するレゾルバとを備えるものであって、前記レゾルバは、レゾルバステータ又はレゾルバロータを保持するレゾルバホルダを備え、前記モータのモータステータ及びモータロータの少なくとも一方における各相からの漏れ磁束に対する磁気抵抗が均等となるように前記レゾルバホルダを配置したことを特徴とする。 A motor unit according to the present invention includes a motor and a resolver that detects a rotation angle of the motor, and the resolver includes a resolver stator or a resolver holder that holds a resolver rotor, and the motor stator of the motor In addition, the resolver holder is arranged so that the magnetic resistance against the leakage magnetic flux from each phase in at least one of the motor rotor is equal.
 この発明に係るモータユニットの製造方法は、モータと、前記モータの回転角度を検出するレゾルバとを備え、前記レゾルバが、レゾルバステータ又はレゾルバロータを保持するレゾルバホルダを有するモータユニットの製造方法であって、前記レゾルバホルダは、前記レゾルバステータ又は前記レゾルバロータを取り付ける環状部と、前記環状部から径方向外側に突出する複数の突出部とを有し、モータステータ及びモータロータの少なくとも一方から前記レゾルバホルダへの各相の漏れ磁束に対する磁気抵抗が均等となるように前記レゾルバホルダを配置することを特徴とする。 A method of manufacturing a motor unit according to the present invention is a method of manufacturing a motor unit that includes a motor and a resolver that detects a rotation angle of the motor, and the resolver includes a resolver holder that holds a resolver stator or a resolver rotor. The resolver holder has an annular part to which the resolver stator or the resolver rotor is attached, and a plurality of projecting parts projecting radially outward from the annular part, and the resolver holder is provided from at least one of the motor stator and the motor rotor. The resolver holder is arranged so that the magnetic resistance against the leakage magnetic flux of each phase is uniform.
この発明の一実施形態に係るモータユニットを搭載した電動車両を構成する駆動力生成部の外観を簡略的に示した斜視図である。It is the perspective view which showed simply the external appearance of the drive force production | generation part which comprises the electric vehicle carrying the motor unit which concerns on one Embodiment of this invention. レゾルバステータを第2レゾルバホルダに取り付ける様子を示す斜視図である。It is a perspective view which shows a mode that a resolver stator is attached to a 2nd resolver holder. モータステータから前記レゾルバステータに対して発生する漏れ磁束を説明するための図である。It is a figure for demonstrating the leakage magnetic flux which generate | occur | produces with respect to the said resolver stator from a motor stator. 前記実施形態に係るモータとレゾルバの位置関係を示す図である。It is a figure which shows the positional relationship of the motor and resolver which concern on the said embodiment. 前記モータ側からエンジン側に向かって前記モータの出力軸の方向に見た図である。It is the figure seen in the direction of the output shaft of the said motor toward the engine side from the said motor side. 図5のVI-VI線断面図である。FIG. 6 is a sectional view taken along line VI-VI in FIG. 5. 図5のVII-VII線断面図である。FIG. 7 is a sectional view taken along line VII-VII in FIG. 5. 図5のVIII-VIII線断面図である。FIG. 6 is a sectional view taken along line VIII-VIII in FIG. 5. 比較例に係るモータユニットのモータとレゾルバの位置関係を示す図である。It is a figure which shows the positional relationship of the motor and resolver of the motor unit which concerns on a comparative example. 前記実施形態及び前記比較例におけるモータからレゾルバへの漏れ磁束の例を説明するための図である。It is a figure for demonstrating the example of the leakage magnetic flux from the motor in the said embodiment and the said comparative example to a resolver. この発明の第1変形例に係るモータユニットのモータとレゾルバの位置関係を示す図である。It is a figure which shows the positional relationship of the motor and resolver of the motor unit which concerns on the 1st modification of this invention. この発明の第2変形例に係るモータユニットのモータとレゾルバの位置関係を示す図である。It is a figure which shows the positional relationship of the motor and resolver of the motor unit which concerns on the 2nd modification of this invention.
A.一実施形態
1.全体的な構成の説明
[1-1.全体構成]
 図1は、この発明の一実施形態に係るモータユニット16を搭載した電動車両10(以下「車両10」ともいう。)を構成する駆動力生成部12の外観を簡略的に示した斜視図である。車両10は、いわゆるハイブリッド車両であり、駆動力生成部12は、駆動源としてエンジン14とモータユニット16とを有する。モータユニット16は、モータ18及びレゾルバ20を有する。後述するように、車両10は、モータ18及びレゾルバ20を有するものであれば、ハイブリッド車両以外の車両であってもよい。
A. Embodiment 1 FIG. Explanation of overall configuration [1-1. overall structure]
FIG. 1 is a perspective view schematically showing the external appearance of a driving force generation unit 12 constituting an electric vehicle 10 (hereinafter also referred to as “vehicle 10”) equipped with a motor unit 16 according to an embodiment of the present invention. is there. The vehicle 10 is a so-called hybrid vehicle, and the driving force generation unit 12 includes an engine 14 and a motor unit 16 as driving sources. The motor unit 16 includes a motor 18 and a resolver 20. As will be described later, the vehicle 10 may be a vehicle other than a hybrid vehicle as long as it has a motor 18 and a resolver 20.
[1-2.エンジン14]
 エンジン14は、車両10の駆動力F[N](又はトルク[N・m])を生成するための主たる駆動源である。エンジン14のエンジンブロック32(外部取付部)の両側面には、エンジン14を車体(図示せず)に組み付ける際に、治具としての位置決め用ピンを挿入するための挿入穴(図示せず)がエンジン14の底面側に形成されている。当該挿入穴を形成することに伴い、エンジンブロック32の両側面には、複数の凸部34(リブ)が形成されている。
[1-2. Engine 14]
The engine 14 is a main driving source for generating the driving force F [N] (or torque [N · m]) of the vehicle 10. Insert holes (not shown) for inserting positioning pins as jigs when the engine 14 is assembled to a vehicle body (not shown) on both sides of the engine block 32 (external mounting portion) of the engine 14. Is formed on the bottom surface side of the engine 14. Along with the formation of the insertion hole, a plurality of convex portions 34 (ribs) are formed on both side surfaces of the engine block 32.
[1-3.モータユニット16]
(1-3-1.モータ18)
 モータ18は、車両10の駆動力Fを生成するための従たる駆動源である。モータ18は、3相交流ブラシレス式であり、図示しないインバータを介して図示しないバッテリから供給される電力に基づいて車両10の駆動力Fを生成する。また、モータ18は、回生を行うことで生成した電力(回生電力Preg)[W]を前記バッテリに出力することで前記バッテリを充電する。回生電力Pregは、図示しない12ボルト系又は補機に対して出力してもよい。
[1-3. Motor unit 16]
(1-3-1. Motor 18)
The motor 18 is a secondary driving source for generating the driving force F of the vehicle 10. The motor 18 is a three-phase AC brushless type, and generates a driving force F of the vehicle 10 based on electric power supplied from a battery (not shown) via an inverter (not shown). Further, the motor 18 charges the battery by outputting electric power (regenerative power Preg) [W] generated by performing regeneration to the battery. The regenerative power Preg may be output to a 12 volt system or an auxiliary machine (not shown).
 図1に示すように、モータ18は、モータロータ40、モータステータ42及び出力軸部44(図4)を有する。なお、モータ18としては、例えば、JP2006-152882 Aに記載したものと同様のものを用いることができる。 As shown in FIG. 1, the motor 18 includes a motor rotor 40, a motor stator 42, and an output shaft portion 44 (FIG. 4). As the motor 18, for example, a motor similar to that described in JP2006-152882 A can be used.
(1-3-2.レゾルバ20)
 レゾルバ20は、モータ18の回転角度を検出するものであり、レゾルバロータ50、第1レゾルバホルダ52、レゾルバステータ54及び第2レゾルバホルダ56(以下「レゾルバホルダ56」ともいう。)を有する。レゾルバロータ50は、モータ18の出力軸部44に取り付けられ、モータロータ40と共に回転する。
(1-3-2. Resolver 20)
The resolver 20 detects a rotation angle of the motor 18 and includes a resolver rotor 50, a first resolver holder 52, a resolver stator 54, and a second resolver holder 56 (hereinafter also referred to as “resolver holder 56”). The resolver rotor 50 is attached to the output shaft portion 44 of the motor 18 and rotates together with the motor rotor 40.
 図2は、レゾルバステータ54を第2レゾルバホルダ56に取り付ける様子を示す斜視図である。図2に示すように、レゾルバステータ54は、図2中、矢印X1の方向にレゾルバホルダ56に圧入される。 FIG. 2 is a perspective view showing how the resolver stator 54 is attached to the second resolver holder 56. As shown in FIG. 2, the resolver stator 54 is press-fitted into the resolver holder 56 in the direction of the arrow X1 in FIG.
 レゾルバステータ54は、磁性体からなる環状部60(以下「ステータ環状部60」という。)と、ステータ環状部60と一体的に形成されステータ環状部60から径方向内側に突出した複数のレゾルバコイル巻付部62と、レゾルバコイル巻付部62に巻き付けられた複数のレゾルバコイル64とを有する。 The resolver stator 54 includes an annular portion 60 made of a magnetic material (hereinafter referred to as “stator annular portion 60”), and a plurality of resolver coils formed integrally with the stator annular portion 60 and projecting radially inward from the stator annular portion 60. It has a winding part 62 and a plurality of resolver coils 64 wound around the resolver coil winding part 62.
 レゾルバホルダ56は、レゾルバステータ54をエンジンブロック32に固定するためのものであり、金属性{例えば、鉄製(特に、冷間圧延鋼板製)}の環状部70(以下「ホルダ環状部70」という。)と、ホルダ環状部70と一体的に形成されホルダ環状部70から径方向外側に突出した複数のボルト締結部72a~72c(以下「締結部72a~72c」ともいうと共に、「締結部72」と総称する。)とを有する。レゾルバホルダ56は、突出部としての締結部72a~72cにおいてボルト78(図1)を締結することにより、エンジンブロック32に固定される。 The resolver holder 56 is for fixing the resolver stator 54 to the engine block 32, and is made of a metallic {for example, iron (particularly, cold rolled steel plate)} annular portion 70 (hereinafter referred to as "holder annular portion 70"). )) And a plurality of bolt fastening portions 72a to 72c (hereinafter, referred to as “fastening portions 72a to 72c”) that are integrally formed with the holder annular portion 70 and project radially outward from the holder annular portion 70. Are collectively referred to as “.”. The resolver holder 56 is fixed to the engine block 32 by fastening bolts 78 (FIG. 1) at fastening portions 72a to 72c as projecting portions.
 図1等に示すように、本実施形態のボルト締結部72a~72cは、同一形状のものが3箇所存在する(締結部72のより具体的な構成及び配置については後述する。)。 As shown in FIG. 1 and the like, there are three bolt fastening portions 72a to 72c of the present embodiment having the same shape (more specific configuration and arrangement of the fastening portion 72 will be described later).
 なお、上記のように、エンジンブロック32は、第2レゾルバホルダ56の取付部としても機能する。また、図2における第2レゾルバホルダ56の形状は、簡略化してあり、径方向の断面は、後述する図6~図8に示すような形状であることに留意されたい。 Note that, as described above, the engine block 32 also functions as an attachment portion of the second resolver holder 56. It should be noted that the shape of the second resolver holder 56 in FIG. 2 is simplified, and the cross section in the radial direction is a shape as shown in FIGS.
2.漏れ磁束を打ち消すための構成
 本実施形態に係るモータユニット16では、レゾルバホルダ56が上記のような構成を有することにより、モータステータ42から発生する漏れ磁束Φの影響を軽減することが可能となる。
2. Configuration for Canceling Leakage Magnetic Flux In the motor unit 16 according to the present embodiment, the resolver holder 56 has the above-described configuration, so that the influence of the leakage magnetic flux Φ generated from the motor stator 42 can be reduced. .
[2-1.漏れ磁束Φの発生]
 図3は、モータステータ42からレゾルバステータ54に対して発生する漏れ磁束Φを説明するための図である。図3において、Axは、モータ18の出力軸(軸線)を示す。図3に示すように、モータ18が作動すると、モータステータ42からの漏れ磁束Φがレゾルバステータ54に入り込む。なお、レゾルバステータ54には、モータロータ40からも漏れ磁束Φが発生するが、本実施形態では、その値が小さいため、図3では記載を省略している。
[2-1. Generation of leakage flux Φ]
FIG. 3 is a diagram for explaining the leakage magnetic flux Φ generated from the motor stator 42 to the resolver stator 54. In FIG. 3, Ax indicates an output shaft (axis line) of the motor 18. As shown in FIG. 3, when the motor 18 operates, the leakage flux Φ from the motor stator 42 enters the resolver stator 54. In the resolver stator 54, the leakage magnetic flux Φ is also generated from the motor rotor 40. However, in the present embodiment, the value is small, and the description is omitted in FIG.
[2-2.漏れ磁束Φの影響を軽減するための構成]
 本実施形態では、レゾルバ20に漏れ磁束Φが入り込むのを防止するというよりはむしろ、漏れ磁束Φが入り込んでもその影響を軽減するという発想で漏れ磁束Φの問題に対応する。
[2-2. Configuration to reduce the effect of leakage flux Φ]
In this embodiment, rather than preventing the leakage flux Φ from entering the resolver 20, the problem of the leakage flux Φ is addressed by the idea of reducing the influence even if the leakage flux Φ enters.
 図4は、本実施形態に係るモータ18とレゾルバ20の位置関係を示す図である。図4は、エンジン14側からモータ18側に向かって見た図である。換言すると、図4は、モータ18の出力軸Axの方向から見た図(図1中、矢印X1の方向に見た図)である。 FIG. 4 is a diagram showing a positional relationship between the motor 18 and the resolver 20 according to the present embodiment. FIG. 4 is a view seen from the engine 14 side toward the motor 18 side. In other words, FIG. 4 is a view seen from the direction of the output shaft Ax of the motor 18 (a view seen in the direction of the arrow X1 in FIG. 1).
 図4において、「U」「V」「W」は、それぞれモータ18のU相、V相、W相を示す。従って、本実施形態のレゾルバホルダ56では、3つの締結部72a~72cのうち第1の締結部72aは、U相及びW相のモータコイル80の間に配置され、第2の締結部72bは、U相及びV相のモータコイル80の間に配置され、第3の締結部72cは、V相及びW相のモータコイル80の間に配置される。なお、図4では、全ての相について「U」、「V」、「W」を示してはいないが、図4中、時計回りにU、V、Wの組合せが繰り返される。また、前述の通り、各締結部72は、同一形状である。 4, “U”, “V”, and “W” indicate the U phase, V phase, and W phase of the motor 18, respectively. Therefore, in the resolver holder 56 of the present embodiment, the first fastening portion 72a among the three fastening portions 72a to 72c is disposed between the U-phase and W-phase motor coils 80, and the second fastening portion 72b is The third fastening portion 72 c is disposed between the V-phase and W-phase motor coils 80. In FIG. 4, “U”, “V”, and “W” are not shown for all phases, but the combination of U, V, and W is repeated clockwise in FIG. Moreover, as above-mentioned, each fastening part 72 is the same shape.
 各締結部72a~72cが上記のように構成及び配置されることにより、モータステータ42からレゾルバステータ54に入り込む漏れ磁束Φに対する磁気抵抗Rmは、各相で均等となる。このため、各相からの漏れ磁束Φは打ち消し合い、レゾルバ20の誤差を抑制することが可能となる。 By configuring and arranging the fastening portions 72a to 72c as described above, the magnetic resistance Rm with respect to the leakage magnetic flux Φ entering the resolver stator 54 from the motor stator 42 becomes equal in each phase. For this reason, the leakage magnetic flux Φ from each phase cancels out, and the error of the resolver 20 can be suppressed.
3.エンジンブロック32の凸部34との関係
 図5は、エンジン14側からモータ18側に向かってモータ18の出力軸Axの方向に見た図(図1中、矢印X2の方向に見た図)である。図6は、図5のVI-VI線断面図である。図7は、図5のVII-VII線断面図である。図8は、図5のVIII-VIII線断面図である。
3. FIG. 5 is a view as seen in the direction of the output shaft Ax of the motor 18 from the engine 14 side toward the motor 18 side (a view seen in the direction of the arrow X2 in FIG. 1). It is. 6 is a cross-sectional view taken along line VI-VI in FIG. 7 is a cross-sectional view taken along line VII-VII in FIG. 8 is a cross-sectional view taken along line VIII-VIII in FIG.
 上記のように、本実施形態のレゾルバホルダ56では、ボルト締結部72a~72cは、ホルダ環状部70から径方向外側に向かって突出している。このため、エンジンブロック32のうちレゾルバホルダ56を取り付ける面90(以下「取付面90」という。)に凹凸があったとしても、ボルト締結部72a~72cが当該凹凸を避けて形成又は配置することで、レゾルバホルダ56をエンジンブロック32に取り付けることができる。 As described above, in the resolver holder 56 of the present embodiment, the bolt fastening portions 72a to 72c protrude outward from the holder annular portion 70 in the radial direction. For this reason, even if the surface 90 (hereinafter referred to as “mounting surface 90”) to which the resolver holder 56 is attached in the engine block 32 has irregularities, the bolt fastening portions 72a to 72c are formed or arranged avoiding the irregularities. Thus, the resolver holder 56 can be attached to the engine block 32.
 従って、図6に示すように、レゾルバホルダ56は、エンジンブロック32の取付面90に存在する凸部34を避けて配置することができる。すなわち、図6では、出力軸部44の軸線Axから締結部72bの先端までの長さD1は、軸線Axから凸部34までの長さD2よりも長いが、図1の矢印X2の方向に見たとき、各締結部72a~72cと、エンジンブロック32の凸部34とは位相が異なる。換言すると、矢印X2の方向に見たとき、軸線Axから各締結部72a~72cの先端に向かう半直線上に凸部34は存在しない。このため、エンジンブロック32に対する緩衝を避けつつ、レゾルバホルダ56(及びレゾルバステータ54)を配置することが可能となる。 Therefore, as shown in FIG. 6, the resolver holder 56 can be arranged avoiding the convex portion 34 existing on the mounting surface 90 of the engine block 32. That is, in FIG. 6, the length D1 from the axis Ax of the output shaft portion 44 to the tip of the fastening portion 72b is longer than the length D2 from the axis Ax to the convex portion 34, but in the direction of the arrow X2 in FIG. When viewed, the phases of the fastening portions 72a to 72c and the convex portion 34 of the engine block 32 are different. In other words, when viewed in the direction of the arrow X2, the convex portion 34 does not exist on the half line from the axis Ax to the tips of the fastening portions 72a to 72c. For this reason, it is possible to arrange the resolver holder 56 (and the resolver stator 54) while avoiding buffering with respect to the engine block 32.
 同様に、図7に示すように、レゾルバホルダ56は、エンジンブロック32の取付面90に存在する穴部92(凹部の一種)を避けて配置することができる。すなわち、図7では、穴部92が存在するため、レゾルバホルダ56のうち穴部92に対応する位置には締結部72a~72cを設けることができないが、穴部92を避けるように締結部72a~72cを形成することができる。このため、エンジンブロック32に対する緩衝を避けつつ、レゾルバホルダ56(及びレゾルバステータ54)を配置することが可能となる。 Similarly, as shown in FIG. 7, the resolver holder 56 can be arranged avoiding the hole 92 (a kind of recess) present in the mounting surface 90 of the engine block 32. That is, in FIG. 7, since the hole 92 exists, the fastening portions 72a to 72c cannot be provided at positions corresponding to the hole 92 in the resolver holder 56, but the fastening portion 72a is avoided so as to avoid the hole 92. 72c can be formed. For this reason, it is possible to arrange the resolver holder 56 (and the resolver stator 54) while avoiding buffering with respect to the engine block 32.
 同様に、図8に示すように、レゾルバホルダ56は、エンジンブロック32の取付面90に存在する凹部94を避けて配置することができる。すなわち、図8では、凹部94が存在するため、レゾルバホルダ56のうち凹部94に対応する位置では締結部72a~72cを締め難いが、凹部94を避けるように締結部72a~72cを形成することができる。このため、エンジンブロック32に対する締結部72a~72cの位置を確保することが容易となる。 Similarly, as shown in FIG. 8, the resolver holder 56 can be arranged avoiding the concave portion 94 present on the mounting surface 90 of the engine block 32. That is, in FIG. 8, since the concave portion 94 exists, it is difficult to fasten the fastening portions 72 a to 72 c at the position corresponding to the concave portion 94 in the resolver holder 56, but the fastening portions 72 a to 72 c are formed so as to avoid the concave portion 94. Can do. Therefore, it is easy to secure the positions of the fastening portions 72a to 72c with respect to the engine block 32.
4.比較例との対比
 図9は、比較例に係るモータユニット116のモータ118とレゾルバ120の位置関係を示す図である。比較例に係るモータ118は、本実施形態におけるモータ18と同一の構成を有する。比較例に係るレゾルバ120では、エンジン14における凸部34、穴部92及び凹部94を避けるため、レゾルバホルダ156が図9に示す形状となっている。本実施形態と異なり、比較例のレゾルバホルダ156では、ホルダ締結部172a~172dが、漏れ磁束Φに対する磁気抵抗Rmは各相で異なる。
4). Comparison with Comparative Example FIG. 9 is a diagram illustrating a positional relationship between the motor 118 and the resolver 120 of the motor unit 116 according to the comparative example. The motor 118 according to the comparative example has the same configuration as the motor 18 in the present embodiment. In the resolver 120 according to the comparative example, the resolver holder 156 has a shape shown in FIG. 9 in order to avoid the convex portion 34, the hole portion 92, and the concave portion 94 in the engine 14. Unlike the present embodiment, in the resolver holder 156 of the comparative example, the holder fastening portions 172a to 172d have different magnetic resistances Rm with respect to the leakage magnetic flux Φ in each phase.
 図10は、本実施形態及び比較例におけるモータ18、118からレゾルバ20、120への漏れ磁束Φの例を説明するための図である。図10において、横軸は、モータ18、118の回転周波数(以下「モータ周波数f」という。)[Hz]であり、縦軸は、レゾルバ20、120に侵入する漏れ磁束Φ[Wb]である。図10中、漏れ磁束Φ1は、本実施形態に係るものであり、漏れ磁束Φ2は、比較例に係るものである。 FIG. 10 is a diagram for explaining an example of the leakage flux Φ from the motors 18 and 118 to the resolvers 20 and 120 in the present embodiment and the comparative example. In FIG. 10, the horizontal axis represents the rotational frequency of the motors 18 and 118 (hereinafter referred to as “motor frequency f”) [Hz], and the vertical axis represents the leakage magnetic flux Φ [Wb] entering the resolvers 20 and 120. . In FIG. 10, the leakage flux Φ1 relates to the present embodiment, and the leakage flux Φ2 relates to a comparative example.
 図10において、モータ周波数fがf1であるとき、本実施形態の漏れ磁束Φ1及び比較例の漏れ磁束Φ2のいずれも相対的に大きくなるが、比較例の漏れ磁束Φ2と比較して、本実施形態の漏れ磁束Φ1は約半分であり、大幅に減少している。 In FIG. 10, when the motor frequency f is f1, both the leakage flux Φ1 of the present embodiment and the leakage flux Φ2 of the comparative example are relatively large, but this embodiment is compared with the leakage flux Φ2 of the comparative example. The leakage magnetic flux Φ1 of the form is about half and greatly reduced.
5.本実施形態の効果
 以上のように、本実施形態によれば、レゾルバホルダ56の形状を、モータステータ42(及びモータロータ40)からの各相の漏れ磁束Φに対する磁気抵抗Rmが均等となるように構成する。これにより、各相からの漏れ磁束Φが打ち消し合うため、モータ18からレゾルバ20への漏れ磁束Φの影響を抑制することが可能となり、レゾルバ20の精度を向上することが可能となる。また、各相からの漏れ磁束Φを打ち消すため、各相からの漏れ磁束Φが比較的強い場合であっても、漏れ磁束Φの影響を抑制することが可能となる。従って、モータ18とレゾルバ20の距離を比較的短くすることが可能となり、省スペース化を実現することも可能となる。
5. As described above, according to the present embodiment, the shape of the resolver holder 56 is set so that the magnetic resistance Rm with respect to the leakage flux Φ of each phase from the motor stator 42 (and the motor rotor 40) is equal. Constitute. As a result, the leakage magnetic flux Φ from each phase cancels out, so that the influence of the leakage magnetic flux Φ from the motor 18 to the resolver 20 can be suppressed, and the accuracy of the resolver 20 can be improved. Further, since the leakage flux Φ from each phase is canceled out, the influence of the leakage flux Φ can be suppressed even when the leakage flux Φ from each phase is relatively strong. Therefore, the distance between the motor 18 and the resolver 20 can be made relatively short, and space can be saved.
 本実施形態において、レゾルバホルダ56は、レゾルバステータ54を取り付ける環状部70と、環状部70から径方向外側に突出する複数の締結部72a~72c(突出部)とを備え、エンジンブロック32に対し、複数の締結部72a~72cを介して取り付けられる。また、複数の締結部72a~72cの数は、モータ18の相数と同じ「3」であり、締結部72a~72cそれぞれは、同一形状であり、3つの締結部72a~72cは、U相とW相のモータコイル80の間、U相とV相のモータコイル80の間及びV相とW相のモータコイル80の間に配置されている。換言すると、締結部72a~72cは、モータ18の各相で同数振り分けられ、各相における各締結部72a~72cの配置が等しくされている。これにより、各相の漏れ磁束Φに対する磁気抵抗Rmが均等となる構成を比較的簡易に設計することが可能になる。 In the present embodiment, the resolver holder 56 includes an annular portion 70 to which the resolver stator 54 is attached, and a plurality of fastening portions 72a to 72c (protruding portions) that protrude radially outward from the annular portion 70, with respect to the engine block 32. These are attached via a plurality of fastening portions 72a to 72c. The number of the plurality of fastening portions 72a to 72c is “3”, which is the same as the number of phases of the motor 18. The fastening portions 72a to 72c have the same shape, and the three fastening portions 72a to 72c And W-phase motor coils 80, U-phase and V-phase motor coils 80, and V-phase and W-phase motor coils 80. In other words, the same number of fastening portions 72a to 72c are distributed in each phase of the motor 18, and the arrangement of the fastening portions 72a to 72c in each phase is made equal. As a result, it is possible to design a configuration in which the magnetic resistance Rm with respect to the leakage magnetic flux Φ of each phase is uniform relatively easily.
 本実施形態では、エンジンブロック32の取付面90には、凸部34、穴部92(凹部の一種)及び凹部94が形成され、締結部72a~72cは、凸部34、穴部92及び凹部94以外の位置で取付面90に取り付けられる。これにより、取付面90に凸部34、穴部92及び凹部94が存在しても、凸部34、穴部92及び凹部94を避けてレゾルバホルダ56を配置することが可能となる。従って、レゾルバホルダ56の存在に伴う寸法の増大を避け易くなる。 In the present embodiment, the mounting surface 90 of the engine block 32 is formed with a convex portion 34, a hole portion 92 (a kind of concave portion) and a concave portion 94, and the fastening portions 72a to 72c are provided with the convex portion 34, the hole portion 92 and the concave portion. It is attached to the attachment surface 90 at a position other than 94. Thereby, even if the convex part 34, the hole part 92, and the recessed part 94 exist in the attachment surface 90, it becomes possible to arrange | position the resolver holder 56 avoiding the convex part 34, the hole part 92, and the recessed part 94. Therefore, it becomes easy to avoid an increase in size due to the presence of the resolver holder 56.
B.変形例
 なお、この発明は、上記実施形態に限らず、この明細書の記載内容に基づき、種々の構成を採り得ることはもちろんである。例えば、以下の構成を採用することができる。
B. Modifications It should be noted that the present invention is not limited to the above-described embodiment, and it is needless to say that various configurations can be adopted based on the contents described in this specification. For example, the following configuration can be adopted.
1.適用対象
 上記実施形態では、モータユニット16を、ハイブリッド車両である電動車両10に搭載したが、これに限らず、モータ18及びレゾルバ20を用いるあらゆる用途に適用することができる。例えば、上記実施形態では、モータ18を、車両10の駆動用に用いたが、車両10におけるその他の用途(例えば、電動パワーステアリング、エアコンディショナ、エアコンプレッサ等)に用いてもよい。或いは、モータユニット16を用いる別の電動車両10(例えば、モータ18のみを駆動源とする電気自動車又は燃料電池車両)に適用してもよい。或いは、モータユニット16を、産業機械、家電製品等の機器に用いることもできる。
1. Applicable object In the above-described embodiment, the motor unit 16 is mounted on the electric vehicle 10 that is a hybrid vehicle. However, the present invention is not limited to this and can be applied to any application that uses the motor 18 and the resolver 20. For example, in the above embodiment, the motor 18 is used for driving the vehicle 10, but may be used for other applications in the vehicle 10 (for example, an electric power steering, an air conditioner, an air compressor, etc.). Alternatively, it may be applied to another electric vehicle 10 using the motor unit 16 (for example, an electric vehicle or a fuel cell vehicle using only the motor 18 as a drive source). Or the motor unit 16 can also be used for apparatuses, such as an industrial machine and household appliances.
2.モータ18
 上記実施形態では、モータステータ42のモータコイル80の数を24としたが(図4参照)、3相交流方式のものであれば、モータコイル80の数は、これに限らない。例えば、モータコイル80の数を21、27にしてもよい。なお、モータコイル80は、軸方向に見たとき(例えば、図1の矢印X1又はX2の方向で見たとき)、等間隔となっていることが好ましい。また、モータ18は、交流方式のものであれば、3相交流方式に限らない。上記実施形態では、モータ18をブラシレス式としたが、ブラシ式としてもよい。上記実施形態では、モータステータ42側に前記バッテリからの電流(バッテリ電流)を流す構成としたが、モータロータ40側にバッテリ電流を流す構成としてもよい。上記実施形態では、モータステータ42がモータロータ40の径方向外側に配置されていたが(図1参照)、これに限らず、モータステータ42がモータロータ40の径方向内側に配置されてもよい。
2. Motor 18
In the above-described embodiment, the number of motor coils 80 of the motor stator 42 is 24 (see FIG. 4). For example, the number of motor coils 80 may be 21 or 27. The motor coils 80 are preferably equally spaced when viewed in the axial direction (for example, when viewed in the direction of the arrow X1 or X2 in FIG. 1). Moreover, if the motor 18 is an alternating current system, it will not be restricted to a 3 phase alternating current system. In the above embodiment, the motor 18 is a brushless type, but may be a brush type. In the above embodiment, the current from the battery (battery current) is flowed to the motor stator 42 side, but the battery current may be flowed to the motor rotor 40 side. In the above-described embodiment, the motor stator 42 is disposed on the radially outer side of the motor rotor 40 (see FIG. 1). However, the motor stator 42 may be disposed on the radially inner side of the motor rotor 40.
3.レゾルバ20
 上記実施形態では、軸線Axの方向において第1の締結部72aと第2の締結部72bの間及び第2の締結部72b及び第3の締結部72cの間には、モータステータ42のモータコイル80が4つ存在するように各締結部72を配置させた(図4参照)。しかしながら、各相の漏れ磁束Φに対する磁気抵抗Rmが均等となるものであれば、各締結部72a~72cの配置は、これに限らない。
3. Resolver 20
In the above embodiment, the motor coil of the motor stator 42 is disposed between the first fastening portion 72a and the second fastening portion 72b and between the second fastening portion 72b and the third fastening portion 72c in the direction of the axis Ax. Each fastening portion 72 is arranged so that there are four 80s (see FIG. 4). However, the arrangement of the fastening portions 72a to 72c is not limited to this as long as the magnetic resistance Rm with respect to the leakage flux Φ of each phase is equal.
 例えば、図11に示す第1変形例に係るモータユニット16aを構成するレゾルバ20aの第2レゾルバホルダ56a(以下「レゾルバホルダ56a」ともいう。)のように、軸線Axの方向(図1中、矢印X1又はX2の方向)において第1の締結部72aと第2の締結部72bの間、第2の締結部72b及び第3の締結部72cの間及び第1の締結部72a及び第3の締結部72cの間には、モータステータ42のモータコイル80がそれぞれ8つ存在するように各締結部72a~72cを配置させてもよい。換言すると、隣り合う各締結部72a~72cの間隔が等しくなるように各締結部72a~72cを形成してもよい。 For example, as in the second resolver holder 56a of the resolver 20a constituting the motor unit 16a according to the first modification shown in FIG. 11 (hereinafter also referred to as “resolver holder 56a”), the direction of the axis Ax (in FIG. In the direction of the arrow X1 or X2), between the first fastening portion 72a and the second fastening portion 72b, between the second fastening portion 72b and the third fastening portion 72c, and between the first fastening portion 72a and the third fastening portion 72b. The fastening portions 72a to 72c may be arranged between the fastening portions 72c so that there are eight motor coils 80 of the motor stator 42, respectively. In other words, the fastening portions 72a to 72c may be formed so that the intervals between the adjacent fastening portions 72a to 72c are equal.
 或いは、上記実施形態に係るレゾルバホルダ56及び上記第1変形例に係るレゾルバホルダ56aでは、第1の締結部72aと第2の締結部72bの間の角度及び第2の締結部72bと第3の締結部72cの間の角度を等しくしたが、各相の漏れ磁束Φに対する磁気抵抗Rmが均等となるものであれば、当該角度を異ならせてもよい。例えば、軸線Axの方向において第1の締結部72aと第2の締結部72bの間のモータコイル80の数が4であるのに対し、第2の締結部72b及び第3の締結部72cの間のモータコイル80の数が7、10、13、16又は19となるようにしてもよい。 Or in the resolver holder 56 which concerns on the said embodiment, and the resolver holder 56a which concerns on the said 1st modification, the angle between the 1st fastening part 72a and the 2nd fastening part 72b, and the 2nd fastening part 72b and 3rd The angles between the fastening portions 72c of the two are equal, but the angles may be varied as long as the magnetic resistance Rm with respect to the leakage flux Φ of each phase is equal. For example, the number of motor coils 80 between the first fastening portion 72a and the second fastening portion 72b in the direction of the axis Ax is 4, whereas the second fastening portion 72b and the third fastening portion 72c The number of motor coils 80 in between may be set to 7, 10, 13, 16, or 19.
 上記実施形態に係るレゾルバホルダ56及び上記第1変形例に係るレゾルバホルダ56aでは、軸線Axの方向に見たとき、各締結部72a~72cを各モータコイル80の境界に来るように配置したが(図4参照)、各相の漏れ磁束Φに対する磁気抵抗Rmが均等となるものであれば、モータコイル80に対する締結部72a~72cの位置は、これに限らない。例えば、各締結部72a~72cを各モータコイル80の中央に来るように(例えば、図9の比較例に係るレゾルバホルダ156の締結部172cとモータコイル80との間の位置関係となるように)配置してもよい。 In the resolver holder 56 according to the embodiment and the resolver holder 56a according to the first modification, the fastening portions 72a to 72c are arranged so as to come to the boundaries of the motor coils 80 when viewed in the direction of the axis Ax. As long as the magnetic resistance Rm with respect to the leakage flux Φ of each phase is equal (see FIG. 4), the positions of the fastening portions 72a to 72c with respect to the motor coil 80 are not limited to this. For example, the fastening portions 72a to 72c are positioned at the center of each motor coil 80 (for example, the positional relationship between the fastening portion 172c of the resolver holder 156 and the motor coil 80 according to the comparative example of FIG. ) You may arrange.
 上記実施形態では、ボルト締結部72a~72cの数を、モータ18の相数と同じ3にしたが、各相の漏れ磁束Φに対する磁気抵抗Rmが均等となるものであれば、2つ又は4つ以上であってもよい。但し、相数の倍数(例えば、3、6、9等)である方が設計又は位置決めが容易である可能性が高い。 In the above embodiment, the number of bolt fastening portions 72a to 72c is set to 3, which is the same as the number of phases of the motor 18, but two or four if the magnetic resistance Rm with respect to the leakage magnetic flux Φ of each phase is equal. There may be more than one. However, it is more likely that design or positioning is easier when the number of phases is a multiple (for example, 3, 6, 9, etc.).
 上記実施形態及び上記第1変形例では3つのボルト締結部72a~72cを同一形状としたが、モータ18の各相の漏れ磁束Φに対する磁気抵抗Rmが均等となるものであれば、異なる形状であってもよい。 In the above embodiment and the first modification, the three bolt fastening portions 72a to 72c have the same shape. However, as long as the magnetic resistance Rm with respect to the leakage magnetic flux Φ of each phase of the motor 18 is equal, the shapes are different. There may be.
 例えば、図12に示す第2変形例に係るモータユニット16bを構成するレゾルバ20bの第2レゾルバホルダ56bのように、軸線Axの方向(図1中、矢印X1又はX2の方向)において、V-W相間及びU-W相間にはそれぞれ同一形状のボルト締結部72a~72d(突出部)が2つずつ配置されるが、U-V相間には1つのボルト締結部72e(突出部)のみが配置される。このボルト締結部72eをボルト締結部72a~72dよりも大きくすること(ここでは2倍の大きさ)及び形状を変更することにより各相の漏れ磁束Φに対する磁気抵抗Rmが均等とすることもできる。 For example, in the direction of the axis Ax (in the direction of the arrow X1 or X2 in FIG. 1) like the second resolver holder 56b of the resolver 20b constituting the motor unit 16b according to the second modification shown in FIG. Two bolt fastening portions 72a to 72d (protruding portions) having the same shape are arranged between the W phase and the U-W phase, respectively, but only one bolt fastening portion 72e (protruding portion) is provided between the U and V phases. Be placed. By making the bolt fastening portion 72e larger than the bolt fastening portions 72a to 72d (here, twice as large) and changing the shape, the magnetic resistance Rm with respect to the leakage flux Φ of each phase can be made equal. .
 上記実施形態では、レゾルバホルダ56に形成した突出部を全てボルト締結部72a~72cとしたが、各相の漏れ磁束Φに対する磁気抵抗Rmを均等とするため、ボルト締結部でない突出部を設けることもできる。 In the above embodiment, the protrusions formed on the resolver holder 56 are all bolt fastening parts 72a to 72c. However, in order to make the magnetic resistance Rm with respect to the leakage flux Φ of each phase uniform, a protrusion that is not a bolt fastening part is provided. You can also.
 上記実施形態では、レゾルバホルダ56をエンジンブロック32に取り付けたが、レゾルバホルダ56を取り付ける対象は、これに限らない。例えば、モータ18のケース又はミッションブロック等の部位であってもよい。 In the above embodiment, the resolver holder 56 is attached to the engine block 32, but the object to which the resolver holder 56 is attached is not limited to this. For example, a part such as a case of the motor 18 or a mission block may be used.
 上記実施形態では、エンジンブロック32に対するレゾルバホルダ56の取付けをボルト78により行ったが、レゾルバホルダ56の取付け手段又は取付け方法は、これに限らない。例えば、溶接、接着剤による接着等の取付け方法を用いてもよい。 In the above embodiment, the resolver holder 56 is attached to the engine block 32 with the bolt 78, but the attaching means or attaching method of the resolver holder 56 is not limited to this. For example, you may use attachment methods, such as welding and adhesion | attachment by an adhesive agent.
 上記実施形態では、モータステータ42からの漏れ磁束Φに特に着目して説明を行ったが、レゾルバホルダ56の形状は、モータステータ42及びモータロータ40の少なくとも一方からの各相の漏れ磁束Φに対する磁気抵抗Rmが均等となるものであれば、これに限らない。 In the above embodiment, the description has been given with particular attention to the leakage magnetic flux Φ from the motor stator 42, but the shape of the resolver holder 56 is a magnetic field for the leakage magnetic flux Φ of each phase from at least one of the motor stator 42 and the motor rotor 40. If resistance Rm becomes equal, it will not restrict to this.
 上記実施形態では、レゾルバステータ54用の第2レゾルバホルダ56の構成及び配置に特に着目して説明したが、同様の構成(各相の漏れ磁束Φに対する磁気抵抗Rmが均等となる構成)を、レゾルバロータ50用の第1レゾルバホルダ52に用いてもよい。 In the above embodiment, the second resolver holder 56 for the resolver stator 54 has been described with particular attention to the configuration and arrangement. However, a similar configuration (a configuration in which the magnetic resistance Rm with respect to the leakage flux Φ of each phase is equal) The first resolver holder 52 for the resolver rotor 50 may be used.

Claims (6)

  1.  モータ(18)の回転角度を検出するレゾルバ(20、20a、20b)のレゾルバステータ(54)又はレゾルバロータ(50)を保持するレゾルバホルダ(52、56、56a、56b)であって、
     前記レゾルバホルダ(52、56、56a、56b)の形状を、モータステータ(42)及びモータロータ(40)の少なくとも一方からの各相の漏れ磁束に対する磁気抵抗が均等となるように構成する
     ことを特徴とするレゾルバホルダ(52、56、56a、56b)。
    A resolver holder (52, 56, 56a, 56b) for holding a resolver stator (54) or a resolver rotor (50) of a resolver (20, 20a, 20b) for detecting a rotation angle of a motor (18),
    The resolver holder (52, 56, 56a, 56b) is configured such that the magnetic resistance against the leakage magnetic flux of each phase from at least one of the motor stator (42) and the motor rotor (40) is equal. Resolver holder (52, 56, 56a, 56b).
  2.  請求項1記載のレゾルバホルダ(52、56、56a、56b)において、
     前記レゾルバホルダ(52、56、56a、56b)は、
     前記レゾルバステータ(54)又は前記レゾルバロータ(50)を取り付ける環状部(70)と、
     前記環状部(70)から径方向外側又は径方向内側に突出する複数の突出部(72a~72e)と
     を備え、
     前記レゾルバホルダ(52、56、56a、56b)を取り付けるための外部取付部(32)に対し、前記複数の突出部(72a~72e)を介して取り付けられる
     ことを特徴とするレゾルバホルダ(52、56、56a、56b)。
    Resolver holder (52, 56, 56a, 56b) according to claim 1,
    The resolver holder (52, 56, 56a, 56b)
    An annular portion (70) to which the resolver stator (54) or the resolver rotor (50) is attached;
    A plurality of projecting portions (72a to 72e) projecting radially outward or radially inward from the annular portion (70),
    Resolver holders (52, 52, 72a to 72e) are attached to the external attachment part (32) for attaching the resolver holders (52, 56, 56a, 56b) through the plurality of protrusions (72a to 72e). 56, 56a, 56b).
  3.  請求項2記載のレゾルバホルダ(52、56、56a、56b)において、
     前記複数の突出部(72a~72e)の数は、前記モータ(18)の相数と同じ又はその倍数であり、
     前記複数の突出部(72a~72e)それぞれは、同一形状又は異なる形状であり、
     前記複数の突出部(72a~72e)が前記モータ(18)の各相で同数振り分けられ、各相における各突出部(72a~72e)の配置が等しくされる
     ことを特徴とするレゾルバホルダ(52、56、56a、56b)。
    Resolver holder (52, 56, 56a, 56b) according to claim 2,
    The number of the plurality of protrusions (72a to 72e) is the same as or a multiple of the number of phases of the motor (18),
    Each of the plurality of protrusions (72a to 72e) has the same shape or a different shape,
    The resolver holder (52) is characterized in that the plurality of protrusions (72a to 72e) are distributed in the same number in each phase of the motor (18), and the arrangement of the protrusions (72a to 72e) in each phase is equal. 56, 56a, 56b).
  4.  請求項2又は3記載のレゾルバホルダ(52、56、56a、56b)と、
     前記外部取付部(32)と
     を備えるモータユニット(16、16a、16b)であって、
     前記外部取付部(32)のうち前記突出部(72a~72e)が取り付けられる取付面(90)には、凸部(34)及び凹部(92、94)の少なくとも一方が形成され、前記複数の突出部(72a~72e)は、前記凸部(34)及び前記凹部(92、94)以外の位置で前記取付面(90)に取り付けられる
     ことを特徴とするモータユニット(16、16a、16b)。
    Resolver holder (52, 56, 56a, 56b) according to claim 2 or 3,
    A motor unit (16, 16a, 16b) comprising the external mounting portion (32),
    At least one of a convex part (34) and a concave part (92, 94) is formed on the attachment surface (90) to which the protruding parts (72a to 72e) are attached among the external attachment part (32), The protrusions (72a to 72e) are attached to the attachment surface (90) at positions other than the protrusions (34) and the recesses (92, 94). The motor unit (16, 16a, 16b) .
  5.  モータ(18)と、
     前記モータ(18)の回転角度を検出するレゾルバ(20、20a、20b)と
     を備えるモータユニット(16、16a、16b)であって、
     前記レゾルバ(20、20a、20b)は、レゾルバステータ(54)又はレゾルバロータ(50)を保持するレゾルバホルダ(52、56、56a、56b)を備え、
     前記モータ(18)のモータステータ(42)及びモータロータ(40)の少なくとも一方における各相からの漏れ磁束に対する磁気抵抗が均等となるように前記レゾルバホルダ(52、56、56a、56b)を配置した
     ことを特徴とするモータユニット(16、16a、16b)。
    A motor (18);
    A motor unit (16, 16a, 16b) comprising a resolver (20, 20a, 20b) for detecting a rotation angle of the motor (18),
    The resolver (20, 20a, 20b) includes a resolver holder (52, 56, 56a, 56b) for holding a resolver stator (54) or a resolver rotor (50),
    The resolver holder (52, 56, 56a, 56b) is arranged so that the magnetic resistance against the leakage magnetic flux from each phase in at least one of the motor stator (42) and the motor rotor (40) of the motor (18) is uniform. A motor unit (16, 16a, 16b) characterized by that.
  6.  モータ(18)と、前記モータ(18)の回転角度を検出するレゾルバ(20、20a、20b)とを備え、前記レゾルバ(20、20a、20b)が、レゾルバステータ(54)又はレゾルバロータ(50)を保持するレゾルバホルダ(52、56、56a、56b)を有するモータユニット(16、16a、16b)の製造方法であって、
     前記レゾルバホルダ(52、56、56a、56b)は、前記レゾルバステータ(54)又は前記レゾルバロータ(50)を取り付ける環状部(70)と、前記環状部(70)から径方向外側に突出する複数の突出部(72a~72e)とを有し、
     モータステータ(42)及びモータロータ(40)の少なくとも一方から前記レゾルバホルダ(52、56、56a、56b)への各相の漏れ磁束に対する磁気抵抗が均等となるように前記レゾルバホルダ(52、56、56a、56b)を配置する
     ことを特徴とするモータユニット(16、16a、16b)の製造方法。
    A motor (18) and a resolver (20, 20a, 20b) for detecting a rotation angle of the motor (18) are provided, and the resolver (20, 20a, 20b) is a resolver stator (54) or a resolver rotor (50). A motor unit (16, 16a, 16b) having a resolver holder (52, 56, 56a, 56b) for holding
    The resolver holder (52, 56, 56a, 56b) includes an annular portion (70) to which the resolver stator (54) or the resolver rotor (50) is attached, and a plurality of radially protruding outer portions from the annular portion (70). Projecting portions (72a to 72e),
    The resolver holders (52, 56, 52) are arranged so that the magnetic resistance against the leakage magnetic flux of each phase from at least one of the motor stator (42) and the motor rotor (40) to the resolver holders (52, 56, 56a, 56b) becomes equal. 56a, 56b) is disposed. A method for manufacturing a motor unit (16, 16a, 16b).
PCT/JP2012/076777 2011-11-22 2012-10-17 Resolver holder, motor unit, and method for manufacturing motor unit WO2013077117A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-254500 2011-11-22
JP2011254500 2011-11-22

Publications (1)

Publication Number Publication Date
WO2013077117A1 true WO2013077117A1 (en) 2013-05-30

Family

ID=48469569

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/076777 WO2013077117A1 (en) 2011-11-22 2012-10-17 Resolver holder, motor unit, and method for manufacturing motor unit

Country Status (1)

Country Link
WO (1) WO2013077117A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006094678A (en) * 2004-09-27 2006-04-06 Asmo Co Ltd Brushless motor
JP2008220114A (en) * 2007-03-07 2008-09-18 Mitsuba Corp Resolver holder and brushless motor
JP2009050056A (en) * 2007-08-16 2009-03-05 Toyota Motor Corp Resolver for automobile drive motor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006094678A (en) * 2004-09-27 2006-04-06 Asmo Co Ltd Brushless motor
JP2008220114A (en) * 2007-03-07 2008-09-18 Mitsuba Corp Resolver holder and brushless motor
JP2009050056A (en) * 2007-08-16 2009-03-05 Toyota Motor Corp Resolver for automobile drive motor

Similar Documents

Publication Publication Date Title
US10236757B2 (en) Rotating electric machine and method for manufacturing the rotating electric machine
US20110006631A1 (en) Rotor for an electrical machine
US20120080977A1 (en) Multi-gap electric rotating machine
US9379589B2 (en) Stator
US9906086B2 (en) Rotating electric machine including a stator with a connection portion having a corner portion and method for manufacturing same
JP2008187804A (en) Rotor and rotary electric machine equipped with rotor
JP6561692B2 (en) Rotating electric machine
WO2015151344A1 (en) Permanent magnet brushless motor
JP6569396B2 (en) Rotating electric machine
JP2008199845A (en) Stator attachment structure
JP2007306751A (en) Structure for fixing stator and vehicle
CN110816289A (en) Control device and vehicle drive system
JP6593038B2 (en) Rotating electric machine
JP2008289244A (en) Cooling structure of rotary electric machine
JP2013207946A (en) Rotary electric machine
JP6592525B2 (en) Magnet rotor, rotating electric machine including magnet rotor, and electric vehicle including rotating electric machine
JP2001268866A (en) Rotating electric machine for vehicle
JP7028147B2 (en) Rotating machine
JP2017050942A (en) Rotary electric machine
JP2019205241A (en) Three-phase permanent magnet synchronous motor, vehicle power device including the same, and generator and generator-equipped wheel bearing including the same
WO2019044206A1 (en) Dynamo-electric machine
WO2013077117A1 (en) Resolver holder, motor unit, and method for manufacturing motor unit
KR20170027541A (en) Electric motor for vehicle
WO2013121755A1 (en) Divided stator core for motor
JP6451990B2 (en) Rotating electric machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12851660

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12851660

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP