WO2013075425A1 - 上行参考信号传输方法、终端和多天线通信系统 - Google Patents

上行参考信号传输方法、终端和多天线通信系统 Download PDF

Info

Publication number
WO2013075425A1
WO2013075425A1 PCT/CN2012/071926 CN2012071926W WO2013075425A1 WO 2013075425 A1 WO2013075425 A1 WO 2013075425A1 CN 2012071926 W CN2012071926 W CN 2012071926W WO 2013075425 A1 WO2013075425 A1 WO 2013075425A1
Authority
WO
WIPO (PCT)
Prior art keywords
uplink
reference signal
power
terminal
feedback information
Prior art date
Application number
PCT/CN2012/071926
Other languages
English (en)
French (fr)
Inventor
毕奇
刘洋
Original Assignee
中国电信股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国电信股份有限公司 filed Critical 中国电信股份有限公司
Publication of WO2013075425A1 publication Critical patent/WO2013075425A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/241TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account channel quality metrics, e.g. SIR, SNR, CIR, Eb/lo
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/32TPC of broadcast or control channels
    • H04W52/325Power control of control or pilot channels

Definitions

  • the present invention relates to the field of wireless communication technologies, and in particular, to an uplink reference signal transmission method, a terminal, and a multi-antenna communication system. Background technique
  • LTE Long Term Evolution
  • wireless spectrum resources are becoming increasingly scarce as a large number of wireless systems continue to emerge.
  • LTE network deployments are likely to occur in high-band frequencies above 2G Hz.
  • the higher the frequency the greater the propagation loss of radio waves in free space, the worse the diffraction capability and the greater the penetration loss. Therefore, the deployment of LTE networks is based on the deployment of high frequency bands, and the coverage is very high. Big challenge. Especially in the uplink, the coverage problem is more prominent because the transmit power of the UE is limited.
  • the reference signal (Reference Signal, RS) is used for data demodulation and channel sounding, and the functions include channel estimation required for the user to perform coherent demodulation, channel quality detection for uplink scheduling, Power control, timing estimation, etc.
  • RS Reference Signal
  • DM-RS Demodulation Reference Signal
  • PUCCH Physical Uplink Control Channel
  • SRS Sounding Reference Signal
  • the two RS powers defined in the existing LTE uplink are fixed and consistent with the data power.
  • multi-antenna deployment at the base station side is one of the most effective means to solve the uplink coverage problem.
  • multiple antennas (such as 8 antennas) are received in the uplink, which will have a performance gain of about 6 dB compared to conventional 2 antenna reception:
  • the present invention has been made in view of the above problems.
  • an uplink reference signal transmission method including: determining, by a base station, uplink feedback information according to channel state information or data detection result of a previous frame uplink; and determining, by the base station or the terminal, the uplink
  • the road feedback information determines the uplink reference signal power of the current frame; the terminal adjusts the transmission power of the current frame uplink reference signal based on the uplink reference signal power of the current frame and transmits the uplink reference signal.
  • determining, by the base station or the terminal, the uplink reference signal power of the current frame according to the uplink feedback information where: the base station or the terminal queries the uplink feedback information and The correspondence table of reference signal power obtains uplink reference signal power corresponding to the previous frame uplink feedback information.
  • the uplink feedback information includes a signal to noise ratio of the uplink of the previous frame.
  • SNR channel quality information
  • CQI channel quality information
  • BLER transmission frame error rate
  • the base station determining, by the base station or the terminal, the uplink reference signal power of the current frame according to the uplink feedback information, the base station determining, according to the previous frame uplink feedback information, the uplink reference signal power of the current frame; The uplink reference signal power is sent to the terminal.
  • the base station determines, by the base station or the terminal, the uplink reference signal power of the current frame according to the uplink feedback information, where: the base station sends the previous frame uplink feedback information to the terminal; the terminal determines, according to the previous frame uplink feedback information.
  • the upstream reference signal power of the current frame
  • the base station sends the uplink reference signal power of the current frame or the previous frame uplink feedback information to the terminal by using downlink control information or an upper layer command.
  • the method further includes: determining a location of a resource block used by the uplink to transmit an uplink reference signal that requires power adjustment.
  • a terminal including: a power acquisition module, configured to acquire an uplink reference signal power of a current frame, where an uplink reference signal power of the current frame is determined according to previous frame uplink feedback information, where The previous frame uplink feedback information is obtained by the base station by using the channel state information of the uplink of the previous frame or by the data after the data is detected; the power adjustment module is configured to adjust the current frame based on the uplink reference signal power of the current frame. a transmission power of the uplink reference signal; a signal transmission module, configured to transmit the uplink reference signal.
  • the power obtaining module receives the uplink reference signal power of the current frame from the base station, where the uplink reference signal power of the current frame is determined by the base station according to the previous frame uplink feedback information.
  • the power obtaining module includes: a feedback information receiving unit, configured to receive the previous frame uplink feedback information from the base station, and send the previous frame uplink feedback And a power determining unit, configured to receive the previous frame uplink feedback information from the feedback information receiving unit, and determine an uplink reference signal power of the current frame according to the previous frame uplink feedback information.
  • the uplink feedback information includes a signal to noise ratio of a previous frame uplink.
  • SNR channel quality information
  • CQI channel quality information
  • BLER transmission frame error rate
  • the power acquiring module receives the uplink reference signal power of the current frame/the previous frame uplink feedback information by using downlink control information or an upper layer command sent by the base station.
  • the method further includes: a correspondence table storage module: a correspondence table for storing uplink feedback information and reference signal power; the power acquisition module receiving the previous frame uplink feedback information, by querying uplink feedback information And a correspondence table of reference signal powers determines uplink reference signal power corresponding to the previous frame uplink feedback information.
  • a correspondence table storage module a correspondence table for storing uplink feedback information and reference signal power
  • the power acquisition module receiving the previous frame uplink feedback information, by querying uplink feedback information
  • a correspondence table of reference signal powers determines uplink reference signal power corresponding to the previous frame uplink feedback information.
  • the method further includes: a resource block location obtaining module, configured to acquire a location of a resource block on the uplink for transmitting an uplink reference signal that requires power adjustment.
  • a resource block location obtaining module configured to acquire a location of a resource block on the uplink for transmitting an uplink reference signal that requires power adjustment.
  • a multi-antenna communication system including the above-described terminal and base station is provided.
  • An advantage of the present disclosure is that the base station or the terminal determines the uplink reference signal power of the current frame according to the previous frame uplink feedback information, and adjusts the uplink reference signal power according to the channel environment, thereby improving channel estimation accuracy.
  • Figure 1 shows a schematic diagram of channel estimation error
  • 2 is a system diagram showing an embodiment of a multi-antenna wireless communication system
  • FIG. 3 is a flow chart showing an embodiment of an uplink reference signal transmission method of the present invention
  • Figure 4 is a flow chart showing another embodiment of the uplink reference signal transmission method of the present invention.
  • Figure 5 is a flow chart showing still another embodiment of the uplink reference signal transmission method of the present invention.
  • Figure 6 is a flow chart showing still another embodiment of the uplink reference signal transmission method of the present invention.
  • Figure 7 is a flow chart showing still another embodiment of the uplink reference signal transmission method of the present invention.
  • Figure 8 is a block diagram showing the structure of an embodiment of the terminal of the present invention.
  • Figure 9 is a block diagram showing the structure of one embodiment of the wireless communication system of the present invention.
  • Figure 10 is a block diagram showing the structure of another embodiment of the terminal of the present invention. detailed description
  • RS occupies a fixed number of resource elements (Resource Element, RE).
  • RE Resource Element
  • the determined channel estimation algorithm for example, LS (Least Square) channel estimation algorithm, LMMSE (Linear Minimum Mean Square Error) algorithm, etc.
  • the channel fading value of the RE is then subjected to interpolation estimation, for example, by interpolation, to obtain channel fading of all REs required, thereby obtaining complete channel information.
  • the channel matrix estimated by the RS channel is A (generalized channel estimation value, which is generally referred to as the equivalent channel for demodulation and channel fading for scheduling), then the power of the channel estimation error.
  • the trend of the mean ⁇ (i 7 ⁇ ) can be represented by Figure 1.
  • Curve 1 represents the channel estimation error at the level of the signal to noise ratio at different power mean (SNR), when the SNR increases, the channel estimation error decreases, FIG. 1 ⁇ . It is indicated that the channel estimation error will tend to a constant value when the SNR is high, that is, the error due to the interpolation estimation.
  • the channel estimation accuracy is different under different SNRs.
  • the power of the RS is fixed, which makes the channel estimation error at a low SNR large, and affects the overall system performance, including data demodulation performance and frequency selective scheduling capability.
  • the static RS power configuration strategy adopted in the uplink of the existing LTE system and if the multi-antenna receiving technology is adopted, the working point can be in a lower SNR range (for example, less than -10 dB), and the channel estimation error at this time.
  • a new RS power configuration strategy needs to be defined in terms of improving system performance.
  • the present invention provides a technical method, terminal and system suitable for uplink RS power adjustment of the LTE multi-antenna system. Adjustment refers to real-time through the channel
  • the state information obtains the power of the RS. Generally, the power of the RS is higher under low SNR conditions, and the RS power is lowered under high SNR conditions.
  • the multi-antenna wireless communication system includes a base station 21 and a terminal 22.
  • the base station 22 is, for example, an LTE functional base station, and the present invention does not limit the base station.
  • the terminal 22 includes, for example, a processor 201, a memory 202, a transmitting unit 203, and a transmitting antenna 204.
  • the base station 21 transmits the required information of the RS power adjustment in the uplink, such as the signal characterizing the uplink feedback information or the power directly to the RS, to the terminal 22 in the downlink;
  • the terminal 22 performs power adjustment on the RS (for example, SRS and DM-RS, or one of them) according to the obtained information, and the processing may be performed in the processor 201 or the memory 202, and then the transmitting unit 203 will adjust the RS of the power adjustment.
  • Other data is transmitted through the transmit antenna 204.
  • Fig. 3 is a flow chart showing an embodiment of an uplink reference signal transmission method of the present invention.
  • the base station determines uplink feedback information according to the channel state information of the previous frame uplink or the data detection result of the previous frame uplink.
  • the previous frame link may include the previous frame or multiple frames of the uplink.
  • the uplink feedback information includes, for example, a signal to noise ratio (SNR) of a previous frame uplink, channel quality information (CQI), a transmission frame error rate (BLER) level, a number of retransmissions, and the like, and combinations thereof.
  • SNR signal to noise ratio
  • CQI channel quality information
  • BLER transmission frame error rate
  • Step 304 The base station or the terminal determines the uplink reference signal power of the current frame according to the uplink feedback information. For example, the correspondence between the uplink feedback information and the reference signal power is set in advance through the test data or the actual network experience value, and the uplink reference signal power corresponding to the uplink feedback information is obtained according to the correspondence.
  • Step 306 The terminal adjusts the transmission power of the current frame uplink reference signal and transmits the uplink reference signal according to the uplink reference signal power of the current frame. Before transmitting the uplink reference signal of the current frame, the terminal adjusts the transmission power of the uplink reference signal according to the obtained uplink reference signal power, and sends the uplink reference signal with the adjusted power.
  • the base station determines uplink feedback information according to the previous frame uplink channel state, and the terminal adjusts the work of the uplink reference signal according to the uplink feedback information.
  • Rate in the uplink, the terminal can change the RS power in real time according to the channel environment, adjust the RS power in different channel states to improve the channel estimation accuracy, can effectively improve the uplink data demodulation performance, or/and improve the uplink
  • the scheduling result can be improved by adjusting the uplink RS power.
  • dynamically controlling the RS power can flexibly control the cell coverage radius under the premise that the total transmission power of the terminal is certain, and meet the basic requirements of LTE coverage enhancement. .
  • the uplink feedback information is an example of a channel signal to noise ratio SNR
  • the "SNR - P ⁇ pair table" can be set based on experimental data or actual network experience values.
  • the different SNR ranges in the correspondence table correspond to different RS power boost levels (dB) and the table is placed in the user terminal or base station.
  • dB RS power boost levels
  • the correspondence table can be determined through detailed simulation analysis, and there is no limitation on the content of the table in the present invention.
  • RS occupies different resource units (Recourse Element, RE), and its minimum scheduling unit is Resource Block (RB). Different resource units occupy different time-frequency positions.
  • the channel environment may be different at different time-frequency positions. Therefore, the SNR may be different on different REs, and the RS functions on different RBs may be different.
  • the rate may vary. In one embodiment, for RBs at different locations, the SNR on different RBs is calculated and the location of the RB is determined.
  • Fig. 4 is a flow chart showing another embodiment of the uplink reference signal transmission method of the present invention.
  • the above-mentioned uplink feedback information is an example of a channel signal-to-noise ratio SNR.
  • the base station feeds back the SNR information of the channel in the uplink to the terminal through control signaling or other high-layer signaling in the downlink, and the terminal passes the self.
  • the configured correspondence table obtains the RS power boost level.
  • a correspondence table of 1 ⁇ - ⁇ is configured in the terminal.
  • the " ⁇ - ⁇ correspondence table” is set according to the actual network experience value, and the table corresponds to different RS power improvement levels (dB) according to different SNR ranges, and the table is placed in the user terminal.
  • Step 404 The base station calculates a channel SNR by using channel state information of a previous frame uplink, and acquires a resource block (RB) position that needs to change RS power.
  • RB resource block
  • Step 406 The base station feeds back the SNR and the downlink control information/upper layer signaling to the user terminal in the downlink transmission.
  • Step 408 The terminal queries the "" ⁇ - ⁇ correspondence table" according to the SNR to obtain the RS power upgrade level of the corresponding RB position.
  • Step 410 The terminal adjusts the RS power of the current frame and starts the uplink reference signal DM-RS and SRS and data transmission.
  • the SNR and the RS location information may be transmitted through the downlink control information, or may be directly indicated by the upper layer signaling, which is not limited in the present invention.
  • calculating the SNR by the base station can reduce the requirement for the computing capability of the terminal, and the terminal can obtain the RS power corresponding to the SNR by obtaining the RS power by looking up the table, and setting a correspondence table for each terminal, thereby making the RS power adjustment more Accurate and effective.
  • FIG. 5 is a flow chart showing still another embodiment of the uplink reference signal transmission method of the present invention.
  • the above-mentioned uplink feedback information is an example of a channel signal-to-noise ratio (SNR) SNR.
  • the base station acquires a power boosting level of the terminal RS according to the SNR in the previous uplink and the self-configured correspondence table.
  • the base station The power boost level is fed back to the terminal through control signaling or other high layer signaling.
  • a correspondence table of 1 ⁇ - ⁇ is configured in the base station.
  • the " ⁇ - ⁇ correspondence table" is set according to the actual network experience value, and the table corresponds to different RS power levels (dB) according to different SNR ranges, and the table is placed in the base station.
  • Step 504 The base station calculates the SNR by using the channel state information detected by the uplink of the previous frame, and obtains a specific RB position that the user needs to increase the RS power.
  • Step 506 The base station queries the "" ⁇ - ⁇ correspondence table" information by using the calculated SNR, and obtains an RS power boost level corresponding to the SNR.
  • Step 508 In the downlink, the base station sends the acquired and the downlink control information (DCI)/upper layer signaling to the user terminal.
  • DCI downlink control information
  • Step 510 The terminal performs the corresponding location based on the uplink of the current frame.
  • RS power is configured and data transfer begins.
  • the RS location information and the information may be transmitted through the control information in the PDCCH, or may be directly indicated by the upper layer signaling, which is not limited in the present invention.
  • the SNR is calculated by the base station and the RS power is obtained by looking up the table, which can reduce the requirement of the terminal capability.
  • the base station obtains the RS power by looking up the table to quickly obtain the RS power corresponding to the SNR.
  • the RS power adjustment technical scheme of the uplink of the LTE multi-antenna system is introduced.
  • the location of the " ⁇ - ⁇ correspondence table" is different, the feedback content between the base station and the terminal is different, and the transmission mechanism is different.
  • the above embodiment can also be combined with the RS power static/semi-static configuration, that is, the RS power boost/control switch method.
  • the switch is configured by the upper layer of the system to determine RS power dynamic adjustment or static / semi-static configuration.
  • the typical signaling width of the switch is, for example, 1 bit, which is configured by upper layer signaling.
  • Fig. 6 is a flow chart showing still another embodiment of the uplink reference signal transmission method of the present invention.
  • the base station acquires uplink feedback information from the previous frame uplink.
  • the previous frame may be one or more frames of the previous frame.
  • the feedback information may be a signal to noise ratio (SNR), a channel quality information (CQI), a transmission frame error rate (BLER) level, and a number of retransmissions of the previous frame uplink, etc., This judges the power of the uplink reference signal.
  • SNR signal to noise ratio
  • CQI channel quality information
  • BLER transmission frame error rate
  • Step 604 The base station feeds back uplink feedback information to the user terminal by using downlink control information/upper layer signaling in the downlink transmission.
  • Step 606 The terminal determines, according to uplink feedback information from the base station, an uplink reference signal power of the current frame.
  • the base station will feed back the SNR of the previous frame uplink, and the terminal selects the uplink reference signal to be adjusted in the " SNR - P 4 should be” table configured by the terminal.
  • the power level used to determine the upstream reference signal power of the current frame.
  • the base station will feed back the CQI calculated by the base station after the previous frame is transmitted, and the terminal determines the power level of the boost reference signal while selecting the MCS level according to different CQIs, for example, the MCS is 0 ⁇ 3.
  • the RS power is increased by 6dB.
  • the MCS selects 4-7 the RS power is increased by 4dB.
  • the MCS selects 8 ⁇ 11 the RS power is increased by 2dB.
  • the base station will feed back the BLER indicator after the previous frame transmission, and the terminal adjusts the reference signal power according to the indicator. For example, boost the RS power when the BLER indicator is below 10%.
  • the base station will feedback whether the previous frame transmits the correct ACK/NACK signaling, and the terminal collects and records the number of consecutive NACKs, and adjusts the reference signal power according to the number of times. For example, when the number of times is 4, the RS power is increased by 6dB, when the number of times is 3, the RS power is increased by 4dB, and when the number of times is 2, the RS power is increased by 2dB.
  • Step 608 The terminal adjusts the transmission power of the current frame uplink reference signal and transmits the uplink reference signal according to the uplink reference signal power of the current frame. Before transmitting the uplink reference signal of the current frame, the terminal adjusts the transmission power of the uplink reference signal according to the obtained uplink reference signal power, and sends the uplink reference signal with the adjusted power.
  • FIG. 7 shows a flow of still another embodiment of the uplink reference signal transmission method of the present invention. Cheng Tu.
  • the base station acquires uplink feedback information from the previous frame uplink according to different judgment criteria.
  • the previous frame can be one or more frames of the previous frame.
  • the required related information may be the signal-to-noise ratio (SNR), channel quality information (CQI), transmission frame error rate (BLER) level, and number of retransmissions of the previous frame uplink.
  • Step 704 The base station calculates, according to the uplink feedback information, the uplink reference signal power of the terminal.
  • the base station selects a power level to be adjusted for the reference signal according to the measured SNR of the previous frame uplink in the self-configured correspondence table.
  • the base station selects the MCS level according to the calculated CQI and determines the power level of the reference signal at the same time, for example, the MCS boosts the RS power by 6 dB when the MCS is 0 ⁇ 3, and the MCS selects the boost when it is 4-7.
  • the RS power is 4dB.
  • the MCS selects 8-11, the RS power is increased by 2dB.
  • the base station obtains the reference signal power level according to the BLER indicator obtained after the previous frame transmission. For example, increase the RS power when the BLER indicator is below 10%.
  • the base station collects and records the number of consecutive NACKs, and obtains the reference signal power level according to the number of times. For example, when the number of times is 4, the RS power is increased by 6 dB, the number of times is 3 times, and the RS power is increased by 4 dB, and when the number of times is 2, the RS power is increased by 2 dB.
  • Step 706 The base station feeds back the obtained uplink reference signal power level to the terminal, so that the terminal determines the reference signal power when the current frame is transmitted.
  • Step 708 The terminal determines, according to the reference signal power indicator fed back by the base station, the uplink reference signal power of the current frame.
  • Step 710 The terminal adjusts the transmission power of the current frame uplink reference signal and transmits the uplink reference signal according to the uplink reference signal power of the current frame. Before transmitting the uplink reference signal of the current frame, the terminal sends the uplink reference signal according to the obtained uplink reference signal power pair. The transmission power is adjusted to transmit the uplink reference signal with the adjusted power.
  • the technical solution disclosed by the present invention can adjust the RS power according to the transmission channel environment, improve channel estimation accuracy, and effectively improve system data demodulation performance and uplink scheduling capability.
  • the above specific embodiments define different feedback contents, and respectively set the "reference signal power correspondence table" to the terminal or the base station, and define different feedback mechanisms for applying the RS power adjustment technique.
  • the uplink RS power adjustment technical solution proposed by the present invention is a technical solution of the system, which can be applied to the uplink of the existing LTE system to form an LTE multi-antenna coverage enhancement system.
  • Fig. 8 is a block diagram showing the structure of an embodiment of the terminal of the present invention.
  • the terminal 80 in this embodiment includes a power acquisition module 801, a power adjustment module 802, and a signal transmission module 803.
  • the power acquisition module 801 acquires the uplink reference signal power of the current frame, where the uplink reference signal power of the current frame is determined according to the uplink feedback information of the previous frame link, and the previous frame uplink feedback information is used by the base station to pass the uplink of the previous frame.
  • the channel state information is calculated and obtained.
  • the uplink feedback information includes, for example, a signal to noise ratio (SNR) of a previous frame uplink, channel quality information (CQI), a transmission frame error rate (BLER) level, a number of retransmissions, or a combination of two or more of the above information.
  • SNR signal to noise ratio
  • CQI channel quality information
  • BLER transmission frame error rate
  • the uplink reference signal power of the current frame may be determined by the base station or the terminal according to the previous frame uplink feedback information. If the base station determines the uplink reference signal power of the current frame, the power acquisition module 801 receives the uplink reference signal power from the base station. The power acquisition module 801 sends the acquired uplink reference signal power to the power adjustment module 802.
  • the power adjustment module 802 receives the uplink reference signal power, and adjusts the transmission power of the current frame uplink reference signal based on the uplink reference signal power of the current frame; the signal transmission module 803 transmits the uplink reference signal.
  • the terminal determines the uplink reference signal power of the current frame according to the uplink feedback information fed back by the base station, and the terminal 80 further includes a correspondence table storage module 804, configured to store the correspondence between the uplink feedback information and the reference signal power.
  • Table The fetching module 801 receives the previous frame uplink feedback information, and determines the uplink reference signal power corresponding to the previous frame uplink feedback information by querying the correspondence table of the uplink feedback information and the reference signal power stored by the correspondence table storage module 804.
  • the power adjustment module improves the RS power according to the real-time channel environment obtained by the power acquisition module, which can effectively improve channel estimation accuracy, improve system data demodulation capability, and uplink scheduling result.
  • FIG. 9 is a block diagram showing the structure of an embodiment of the wireless communication system of the present invention.
  • the system in this embodiment includes a base station 91 and a terminal 90.
  • the base station 91 calculates the previous frame uplink feedback information by calculating the channel state information of the uplink of the previous frame.
  • the terminal 90 includes a power acquisition module 901, a power adjustment module 802, and a signal transmission module 803.
  • the power adjustment module 802 and the signal transmission module 803 can be referred to the corresponding description of the above embodiments, and will not be described in detail herein for the sake of brevity.
  • the power acquisition module 901 includes a feedback information receiving unit 9011 and a power determining unit 9012.
  • the feedback information receiving unit 9011 receives the previous frame uplink feedback information from the base station
  • the power determining unit 9012 receives the previous frame uplink feedback information from the feedback information receiving unit 9011, and determines the uplink reference of the current frame according to the previous frame uplink feedback information.
  • the signal power is sent to the power adjustment module 902 for the determined uplink reference signal power of the current frame.
  • the feedback information receiving unit receives the previous frame uplink feedback information from the base station, and the power determining unit determines the uplink reference signal power of the current frame according to the previous frame uplink feedback information, and dynamically increases the RS power according to the real-time channel environment. The channel estimation accuracy can be effectively improved.
  • the previous frame uplink feedback information is calculated by the base station, which can reduce the performance requirements for the terminal.
  • FIG. 10 is a block diagram showing the structure of another embodiment of the terminal of the present invention.
  • the terminal 100 in this embodiment includes a power acquisition module 801, a power adjustment module 802, a signal transmission module 803, and a location acquisition module 1004.
  • the power acquisition module 801, the power adjustment module 802, and the signal transmission module 803 can be referred to the corresponding descriptions of the foregoing embodiments, and will not be described in detail herein for the sake of brevity.
  • the location obtaining module 1004 acquires a location of a resource block on the uplink for transmitting an uplink reference signal that requires power adjustment, and transmits an uplink reference signal according to the location of the resource block and the power of the corresponding RS.
  • the present invention provides a technical solution for adjusting RS power applicable to an LTE uplink, which can enable a terminal to change RS power in real time according to a channel environment in an uplink, and adjust RS power in different channel environments to improve channel estimation accuracy. Can effectively improve uplink data demodulation performance or / and improve uplink scheduling results.
  • the system coverage can be improved by improving the uplink RS power.
  • the dynamic control RS power can flexibly control the cell coverage radius under the premise that the total transmission power of the terminal is certain, and meet the basic requirements of LTE coverage enhancement.
  • the low-cube metric is an important indicator to measure the peak-to-average ratio of the transmitted data of the system. This indicator plays an important role in the uplink design.
  • the low-cubic metric of the RS in the uplink is lower than the data, which is beneficial to the The RS performs a certain amount of power boost.
  • the RS power adjustment method of the LTE uplink is a technical solution applicable to the uplink of the LTE multi-antenna system, and meets the technical requirements of the LTE coverage enhancement.
  • the methods and systems of the present invention may be implemented in a number of ways.
  • the methods and systems of the present invention can be implemented in software, hardware, firmware, or any combination of software, hardware, or firmware.
  • the above-described sequence of steps for the method is for illustrative purposes only, and the steps of the method of the present invention are not limited to the order specifically described above unless otherwise specifically stated.
  • the present invention may also be embodied as programs recorded in a recording medium, the programs including machine readable instructions for implementing the method in accordance with the present invention.
  • the present invention also covers a recording medium storing a program for executing the method according to the present invention.
  • FIGS. 8 to 10 can be implemented by a separate computing processing device or integrated into a single device. Now. They are shown in boxes in Figures 8 to 10 to illustrate their function. These functional blocks can be implemented in hardware, software, firmware, middleware, microcode, hardware description speech, or any combination thereof. For example, one or both of the functional blocks can be implemented by code running on a microprocessor, digital signal processor (DSP), or any other suitable computing device.
  • a code can represent a procedure, a function, a subprogram, a program, a routine, a subroutine, a module, or any combination of instructions, data structures, or program statements.
  • the code can be located on a computer readable medium.
  • the computer readable medium can include one or more storage devices including, for example, RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, mobile hard disk, CD-ROM, or any other form known in the art. Storage medium.
  • the computer readable medium can also include a carrier wave that encodes the data signal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种用于LTE系统的上行参考信号传输方法、终端和多天线通信系统。该方法包括:基站根据先前帧上行链路的信道状态信息确定上行链路反馈信息;基站或者终端根据上行链路反馈信息确定当前帧的上行参考信号功率;终端基于当前帧的上行参考信号功率调整当前帧上行参考信号的传输功率并传输所述上行参考信号。该方法、终端和系统,终端根据信道实时状态信息对上行参考信号的功率进行调整,从而控制上行参考信号的传输,可以有效解决LTE多天线系统上行链路中由于信道估计误差较大带来的整体系统性能损失的问题,有效提高信道估计精度,提升系统数据解调能力及上行链路调度能力,由此提升系统覆盖范围,达到LTE覆盖增强系统的效果。

Description

上行参考信号传输方法、 终端和多天线通信系统 技术领域
本发明涉及无线通信技术领域, 特别涉及一种上行参考信号传 输方法、 终端和多天线通信系统。 背景技术
随着无线通信技术的飞速发展, 以图像、 视频以及互联网浏览 等为主的多媒体业务成为当前移动用户的主要业务需求, 其数据流 量需求与日剧增, 因此, 如何为用户提供速度更快、 数量更多、 画 面更优和音质更好的连接成为 B3G/4G 时代移动通信系统演进的主 要目标。 LTE ( Long Term Evolution,长期演进)作为一种高速数 据网络, 以其高速率、 低延时和扁平的网络架构等优势, 可以满足 用户不断增长的速率传输需求, 为用户提供接近于当前家庭 xDSL 和光纤到户所能达到的移动宽带用户体验。 在 LTE 网络成为运营商 部署下一代网络首要选择的同时, 无线频谱资源随着大量无线系统 的不断涌现而变得越来越稀缺, LTE的网络部署很可能会出现在 2G Hz 以上的高频段, 频率越高, 无线电波在自由空间的传播损耗就越 大, 绕射能力越差, 穿透损耗也越大, 因此, LTE 网络的部署, 由 于是基于高频段的部署, 在覆盖范围上有很大挑战。 尤其在上行链 路中, 因为用户端发射功率受限, 所以覆盖的问题更为突出。
现有 LTE 系统的上行链路中, 利用参考信号 ( Reference Signal, RS )进行数据解调和信道探测, 其作用包括用户进行相干 解调所需的信道估计, 用于上行调度的信道质量探测、 功率控制、 定时估计等, 为实现这两方面功能, 上行链路支持两种 RS:
( 1 ) 解调参考信号 ( Demodulation Reference Signal , DM- RS ) , 在 PUSCH ( Physical Uplink Shared Channel, 上行共享信 道) /PUCCH ( Physical Uplink Control Channel, 上行控制信道) 上与上行链路数据的传输相关联, 用于数据中的相干解调。 ( 2 )探测参考信号 ( Sounding Reference Signal, SRS ) , 不与 上行数据和控制传输相关联, 主要用于确定信道质量, 使得在上行 链路中能够进行频率选择性调度。
现有 LTE上行链路中定义的两种 RS功率固定、 且与数据功率 一致。
从物理层传输技术上分析, 基站端多天线部署是解决上行覆盖 问题最有效的手段之一。 基于理想信道估计的假设, 上行链路中采 用多天线 (如 8天线)接收, 相比于传统 2天线接收将有约 6dB的 性能增益:
G = 101g(8) - 101g(2) ^ 6dB ( l ) 然而, 在实际 LTE 系统中, 多天线接收的性能增益难以达到理 论预期结果, 这是因为系统采用基于 RS的信道估计算法用以数据解 调和信道探测, 需要对传播信道进行准确的估计, 当 RS的接收信噪 比 (Signal noise ratio, SNR )较低时, 信道估计误差较大, 使得上 行共享信道上的数据解调性能下降, 最后导致多天线接收的性能增 益有所损失。 发明内容
鉴于以上问题提出本发明。
本发明的一个目的是提供一种用于上行参考信号传输的技术方 案。
根据本发明的第一方面, 提供了一种上行参考信号传输方法, 包括: 基站根据先前帧上行链路的信道状态信息或数据检测结果确 定上行链路反馈信息; 基站或者终端根据所述上行链路反馈信息确 定当前帧的上行参考信号功率; 终端基于所述当前帧的上行参考信 号功率调整当前帧上行参考信号的传输功率并传输所述上行参考信 号。
可选的, 基站或者终端根据所述上行链路反馈信息确定当前帧 的上行参考信号功率包括: 基站或者终端查询上行链路反馈信息和 参考信号功率的对应表获得与所述先前帧上行链路反馈信息对应的 上行参考信号功率。
可选的, 上行链路反馈信息包括先前帧上行链路的信噪比
( SNR ) 、 信道质量信息 (CQI ) 、 传输误帧率 (BLER )级别、 重 传次数、 或上述信息两者或者多个的组合。
可选的, 基站或者终端根据所述上行链路反馈信息确定当前帧 的上行参考信号功率包括: 基站根据先前帧上行链路反馈信息确定 当前帧的上行参考信号功率; 基站将所述当前帧的上行参考信号功 率发送给终端。
可选的, 基站或者终端根据所述上行链路反馈信息确定当前帧 的上行参考信号功率包括: 基站将所述先前帧上行链路反馈信息发 送给终端; 终端根据先前帧上行链路反馈信息确定当前帧的上行参 考信号功率。
可选的, 基站通过下行控制信息或上层指令向终端发送所述当 前帧的上行参考信号功率或所述先前帧上行链路反馈信息。
可选的, 还包括: 确定上行链路用于传输需要功率调整的上行 参考信号的资源块的位置。
根据本发明的另一方面, 提供一种终端, 包括: 功率获取模 块, 用于获取当前帧的上行参考信号功率, 所述当前帧的上行参考 信号功率根据先前帧上行链路反馈信息确定, 所述先前帧上行链路 反馈信息由基站通过先前帧的上行链路的信道状态信息计算获得或 者通过数据检测后统计获得; 功率调整模块, 用于基于所述当前帧 的上行参考信号功率调整当前帧上行参考信号的传输功率; 信号传 输模块, 用于传输所述上行参考信号。
可选地, 功率获取模块从基站接收所述当前帧的上行参考信号 功率, 所述当前帧的上行参考信号功率由基站根据先前帧上行链路 反馈信息确定。
可选地, 功率获取模块包括: 反馈信息接收单元, 用于从基站 接收所述先前帧上行链路反馈信息, 发送所述先前帧上行链路反馈 信息; 功率确定单元, 用于接收来自所述反馈信息接收单元的所述 先前帧上行链路反馈信息, 根据所述先前帧上行链路反馈信息确定 所述当前帧的上行参考信号功率。
可选地, 所述上行链路反馈信息包括先前帧上行链路的信噪比
( SNR ) 、 信道质量信息 (CQI ) 、 传输误帧率 (BLER )级别、 重 传次数、 或上述信息两者或者多个的组合。
可选地, 所述功率获取模块通过基站发送的下行控制信息或上 层指令接收所述当前帧的上行参考信号功率 /所述先前帧上行链路反 馈信息。
可选地, 还包括对应表存储模块: 用于存储上行链路反馈信息 和参考信号功率的对应表; 所述功率获取模块接收所述先前帧上行 链路反馈信息, 通过查询上行链路反馈信息和参考信号功率的对应 表确定与所述先前帧上行链路反馈信息对应的上行参考信号功率。
可选地, 还包括: 资源块位置获取模块, 用于获取上行链路上 用于传输需要功率调整的上行参考信号的资源块的位置。
根据本发明的又一方面, 提供一种多天线通信系统, 包括上述 终端和基站。
本公开的一个优点在于, 基站或者终端根据先前帧上行链路反 馈信息确定当前帧的上行参考信号功率, 根据信道环境调整上行参 考信号功率, 能够提高信道估计精度。
通过以下参照附图对本发明的示例性实施例的详细描述, 本发 明的其它特征及其优点将会变得清楚。 附图说明
构成说明书的一部分的附图描述了本发明的实施例, 并且连同 说明书一起用于解幹本发明的原理。
参照附图, 根据下面的详细描述, 可以更加清楚地理解本发 明, 其中:
图 1示出信道估计误差示意图; 图 2示出多天线无线通信系统的一个实施例的系统示意图; 图 3 示出本发明的上行参考信号传输方法的一个实施例的流程 图;
图 4 示出本发明的上行参考信号传输方法的另一个实施例的流 程图;
图 5 示出本发明的上行参考信号传输方法的又一个实施例的流 程图;
图 6 示出本发明的上行参考信号传输方法的再一个实施例的流 程图;
图 7 示出本发明的上行参考信号传输方法的再一个实施例的流 程图;
图 8示出本发明的终端的一个实施例的结构框图;
图 9示出本发明的无线通信系统的一个实施例的结构框图; 图 10示出本发明的终端的另一个实施例的结构框图。 具体实施方式
现在将参照附图来详细描述本发明的各种示例性实施例。 应注 意到: 除非另外具体说明, 否则在这些实施例中阐述的部件和步骤 的相对布置、 数字表达式和数值不限制本发明的范围。
同时, 应当明白, 为了便于描述, 附图中所示出的各个部分的 尺寸并不是按照实际的比例关系绘制的。
以下对至少一个示例性实施例的描述实际上仅仅是说明性的, 决不作为对本发明及其应用或使用的任何限制。
对于相关领域普通技术人员已知的技术、 方法和设备可能不作 详细讨论, 但在适当情况下, 技术、 方法和设备应当被视为授权说 明书的一部分。
在这里示出和讨论的所有示例中, 任何具体值应被解释为仅仅 是示例性的, 而不是作为限制。 因此, 示例性实施例的其它示例可 以具有不同的值。 应注意到: 相似的标号和字母在下面的附图中表示类似项, 因 此, 一旦某一项在一个附图中被定义, 则在随后的附图中不需要对 其进行进一步讨论。
在现有的 LTE 系统上行 RS传输机制中, 对于 DM-RS和 SRS 都采用固定 RS 功率的传输, RS 占用固定数量的资源单位 ( Resource Element , RE ) 。 对于信道估计, 首先利用确定的信道 估计算法 (例如 LS ( Least Square, 最小二乘法)信道估计算法、 LMMSE ( Linear minimum mean square error, 线性最小均方误差 估计)算法等)获得被 RS所占用的 RE的信道衰落值; 然后例如通 过插值的方法将不配置 RS的 RE进行插值估计, 以便获得所需所有 RE的信道衰落, 从而获得完整的信道信息。
假设系统实际经历信道矩阵为 , 通过 RS信道估计得出的信道 矩阵为 A (广义信道估计值, 泛指用以解调的等效信道和用以调度 的信道衰落) , 则信道估计误差的功率均值 ^(i7^^ )的趋势可以 通过图 1 表示。 图 1 中曲线表示在不同信噪比 (SNR )级别上的信 道估计误差的功率均值, 当 SNR增高时, 信道估计误差随之减小, 图 1 ψ。表示当 SNR很高的情况下信道估计误差将趋于一个恒定的 值, 即表示由于插值估计带来的误差。
由此可知, 不同的 SNR 下的信道估计精度不同。 在现有 LTE 上行链路中, RS 的功率固定不变, 使得在低 SNR 时信道估计误差 较大, 而影响整体系统性能, 包括数据解调性能和频率选择性调度 能力。
综上所述, 现有 LTE 系统上行链路中采用的静态 RS功率配置 策略, 同时若采用多天线接收技术, 工作点能够处于较低 SNR范围 (例如低于 -10dB ) , 此时信道估计误差明显, 所以, 在提升系统性 能方面需要定义新的 RS功率配置策略。
针对目前 LTE 系统上行链路中 RS功率静态配置影响信道估计 精度的问题, 本发明公开提出一种适合于 LTE 多天线系统的上行链 路 RS功率调整的技术方法、 终端及系统。 调整指通过信道实时的状 态信息获取 RS的功率, 一般来讲在低 SNR条件下 RS的功率提升 更高, 在高 SNR条件下 RS功率提升降低。
图 2 示出多天线无线通信系统的一个实施例的系统示意图。 如 图 2所示, 该多天线无线通信系统包括基站 21与终端 22。 基站 22 例如为 LTE 功能基站, 本发明不对基站予以限制。 终端 22 例如包 括处理器 201、 存储器 202、 发射单元 203和发射天线 204。 在传输 过程中, 基站 21 在下行链路中将上行链路中 RS 功率调整所需信 息, 例如表征上行链路反馈信息的信号或直接为 RS的功率, 发送给 终端 22; 在上行链路中, 终端 22 根据获得的信息对 RS (例如, SRS和 DM-RS, 或者其中之一)进行功率调整, 该处理可以在处理 器 201或存储器 202中执行, 而后发射单元 203将功率调整的 RS同 其他数据通过发射天线 204—同发射出去。
图 3 示出本发明的上行参考信号传输方法的一个实施例的流程 图。
如图 3所示, 步骤 302, 基站根据先前帧上行链路的信道状态信 息或先前帧上行链路的数据检测结果确定上行链路反馈信息。 先前 帧链路可以包括上行链路的前面一帧或者多帧。 上行链路反馈信息 例如包括先前帧上行链路的信噪比 ( SNR ) 、 信道质量信息 ( CQI ) 、 传输误帧率 (BLER )级别和重传次数等及其组合。
步骤 304, 基站或者终端根据上行链路反馈信息确定当前帧的上 行参考信号功率。 例如, 预先通过试验数据或者实际网络经验值设 定上行链路反馈信息和参考信号功率的对应关系, 根据该对应关系 获得与上行链路反馈信息对应的上行参考信号功率。
步骤 306, 终端基于当前帧的上行参考信号功率调整当前帧上行 参考信号的传输功率并传输上行参考信号。 在发送当前帧的上行参 考信号前, 终端根据获得的上行参考信号功率对发送上行参考信号 的传输功率进行调整, 以调整后的功率发送上行参考信号。
上述实施例中, 基站根据先前帧上行链路信道状态确定上行链 路反馈信息, 终端根据上行链路反馈信息调整上行参考信号的功 率, 可以在上行链路中使终端根据信道环境实时改变 RS功率, 在不 同信道状态下调整 RS功率以改善信道估计精度, 能够有效提升上行 链路数据解调性能, 或 /并改善上行链路调度结果; 通过调整上行链 路 RS功率的方法, 可以提升系统覆盖范围; 此外, 动态地控制 RS 功率可以在终端传输总功率一定的前提下灵活的控制小区覆盖半 径, 满足 LTE覆盖增强的基本需求。
在一个实施例中, 以上行链路反馈信息为信道信噪比 SNR 为 例, 可以根据试验数据或者实际网络经验值设定 " SNR - P^对 表" 。 在对应表中不同的 SNR范围对应不同的 RS功率提升级别 ( dB ) , 并将该表置于用户终端或基站中。 下面是一个^ 对应 表的例子:
Figure imgf000010_0001
表 1
需要指出, 仅以上表 1 形式为例进行说明, 其中数值并不对本 发明的范围进行限定。 实际应用中可以通过详细的仿真分析来确定 该对应表, 在本发明中对该表内容没有限制。 通过设置对应表, 在 处理过程中可以快速获得 RS功率, 减轻了对终端或者基站的性能要 求, 提高了处理速度。
在 LTE 中, RS 会占用不同资源单元 ( Recourse Element , RE ) , 其最小调度单位为资源块 ( Resource Block, RB ) 。 不同资 源单元占用不同的时频位置, 在不同的时频位置上信道环境可能不 同, 因此, 在不同的 RE上的 SNR可能不同, 不同 RB上的 RS功 率就可能出现不同。 在一个实施例中, 对于不同位置的 RB, 计算不 同 RB上的 SNR, 并确定该 RB的位置, 用 表示。
图 4 示出本发明的上行参考信号传输方法的另一个实施例的流 程图。 以上行链路反馈信息为信道信噪比 SNR为例, 该实施例在下 行链路中基站通过控制信令或其他高层信令将上行链路中的信道的 SNR信息反馈给终端, 终端通过自身配置的对应表获取 RS 功率提 升级别。
如图 4 所示, 步骤 402, 在终端中配置1 ^^-^对应表。 根据实 际网络经验值设定 "^-^ ^对应表" , 表中根据不同的 SNR范围对 应不同的 RS功率提升级别 ( dB ) , 并将该表置于用户终端中。
步骤 404, 基站通过先前帧上行链路的信道状态信息计算信道 SNR、 获取需要改变 RS功率的资源块(RB )位置 。
步骤 406, 基站在下行链路传输中将 SNR和 通过下行控制信 息 /上层信令反馈给用户终端。
步骤 408, 终端根据 SNR查询 " "^^-^对应表" , 得到该 对 应 RB位置的 RS功率提升级别 。
步骤 410, 终端基于 进行当前帧的 RS功率调整并开始上行参 考信号 DM-RS和 SRS和数据传输。
在上述实施例中, SNR和 RS位置信息 可以通过下行控制信 息进行传送, 也可以通过上层信令直接指示, 本发明中不做限制。
上述实施例中, 由基站计算 SNR可以降低对终端计算能力的要 求, 终端通过查表获得 RS功率可以迅速获得与 SNR对应的 RS功 率, 可以针对各个终端设置对应表, 从而使得 RS功率的调整更准确 有效。
图 5 示出本发明的上行参考信号传输方法的又一个实施例的流 程图。 以上行链路反馈信息为信道信噪比 SNR为例, 该实施例中, 基站根据之前上行链路中的 SNR和自身配置的对应表获取终端 RS 的功率提升级别, 在下行链路中, 基站通过控制信令或其他高层信 令将该功率提升级别反馈给终端。 如图 5 所示, 步骤 502, 在基站中配置1 ^^-^ ^对应表。 根据实 际网络经验值设定 "^-^ ^对应表" , 表中根据不同的 SNR范围对 应不同的 RS功率级别 ( dB ) , 并将该表置于基站中。
步骤 504, 基站通过先前帧的上行链路探测到的信道状态信息计 算 SNR, 并获取该用户需要提升 RS功率的具体 RB位置 。
步骤 506, 基站通过计算出的 SNR 查询 " "^^-^ ^对应表" 信 息, 获得与 SNR对应的 RS功率提升级别 。
步骤 508, 在下行链路中, 基站将获取到的 和 通过下行控 制信息 (DCI ) /上层信令发送给用户终端。
步骤 510, 终端在当前帧的上行链路中基于 进行相应位置的
RS功率配置并开始数据传输。
上述实施例中, RS位置信息 和 可以通过 PDCCH中控制信 息进行传送, 也可以通过上层信令直接指示, 本发明中不做限制。
上述实施例中, 由基站计算 SNR并查表获得 RS功率, 可以降 低对终端能力的要求, 基站通过查表获得 RS 功率可以迅速获得与 SNR对应的 RS功率。
通过上面的实施例, 介绍了 LTE多天线系统上行链路的 RS功 率调整技术方案, 实施例中 " ^^-^ ^对应表" 配置位置不同、 基站 与终端之间的反馈内容不同、 传输机制不同。
以上实施例也可与 RS 功率静态 /半静态配置的方案相结合, 即 采用 RS 功率提升 /控制开关的方法。 该开关由系统上层配置, 决定 RS功率动态调整或静态 /半静态配置。 该开关的典型信令宽度例如为 1比特, 由上层信令配置。
图 6 示出本发明的上行参考信号传输方法的又一个实施例的流 程图。
如图 6所示, 步骤 602, 基站从先前帧上行链路获取上行链路反 馈信息。 先前帧可以为前面帧的一帧或者多帧。 根据判断准则不 同, 该反馈信息可以为先前帧上行链路的信噪比 (SNR ) 、 信道质 量信息 (CQI ) 、 传输误帧率 (BLER )级别和重传次数等, 终端以 此对上行参考信号功率进行判断。
步骤 604, 基站在下行链路传输中将上行链路反馈信息通过下行 控制信息 /上层信令反馈给用户终端。
步骤 606, 终端根据来自基站的上行链路反馈信息确定当前帧的 上行参考信号功率。
若依据先前帧上行链路的 SNR进行参考信号功率调整的判断, 基站将反馈先前帧上行链路的 SNR, 终端在自身配置的 "SNR-P4 应表" 中选择对上行参考信号需要调整的功率级别, 用以确定当前 帧的上行参考信号功率。
若依据 CQI 进行参考信号功率调整的判断, 基站将反馈上一帧 传输后基站计算出的 CQI, 终端则在根据不同 CQI选择 MCS级别 的同时确定提升参考信号的功率级别, 例如 MCS在 0~3时提升 RS 功率 6dB, 当 MCS选择在 4-7时提升 RS功率 4dB, 当 MCS选择 在 8~11时提升 RS功率 2dB。
若依据 BLER性能指标进行参考信号功率调整的判断, 基站将 反馈上一帧传输后的 BLER指标, 终端根据该指标对参考信号功率 进行调整。 例如, 当 BLER指标低于 10%时提升 RS功率。
若终端依据重传次数进行参考信号功率调整的判断, 基站将反 馈表征上一帧是否传输正确的 ACK/NACK信令, 终端搜集并记录 连续 NACK 次数, 并根据该次数对参考信号功率进行调整。 例如, 当次数为 4 次时提升 RS 功率 6dB, 次数为 3 次时提升 RS 功率 4dB, 次数为 2次时提升 RS功率 2dB。
步骤 608, 终端基于当前帧的上行参考信号功率调整当前帧上行 参考信号的传输功率并传输上行参考信号。 在发送当前帧的上行参 考信号前, 终端根据获得的上行参考信号功率对发送上行参考信号 的传输功率进行调整, 以调整后的功率发送上行参考信号。
需要指出, 仅以上举例中用具体数字进行说明, 其中数值并不 对本发明的范围进行限定。
图 7 示出本发明的上行参考信号传输方法的再一个实施例的流 程图。
如图 7所示, 步骤 702, 基站根据不同判断准则, 从先前帧上行 链路中获取上行链路反馈信息。 先前帧可以为前面帧的一帧或者多 帧。 根据判断准则不同, 所需相关信息可以为先前帧上行链路的信 噪比 (SNR ) 、 信道质量信息 (CQI ) 、 传输误帧率 (BLER ) 级别 和重传次数等。
步骤 704, 基站根据上行链路反馈信息计算确定终端的上行参考 信号功率。
若依据先前帧上行链路的 SNR进行参考信号功率调整的判断, 基站将根据测量得到的先前帧上行链路的 SNR, 在自身配置的 对应表" 中选择对参考信号需要调整的功率级别。 若依据 CQI 进行参考信号功率调整的判断, 基站将根据计算出 的 CQI选择 MCS级别并同时确定参考信号的功率级别, 例如 MCS 在 0~3时提升 RS功率 6dB, 当 MCS选择在 4-7时提升 RS功率 4dB, 当 MCS选择在 8-11时提升 RS功率 2dB。
若依据 BLER性能指标进行参考信号功率调整的判断, 基站将 根据上一帧传输后获得的 BLER 指标获得参考信号功率级别。 例 如, 当 BLER指标低于 10%时提升 RS功率。
若依据重传次数进行参考信号功率调整的判断, 基站将搜集并 记录连续 NACK 次数, 并根据该次数获得参考信号功率级别。 例 如, 当次数为 4次时提升 RS功率 6dB, 次数为 3次时提升 RS功率 4dB, 次数为 2次时提升 RS功率 2dB。
步骤 706, 基站将获得的上行参考信号功率级别反馈给终端, 用 以终端在当前帧传输时确定参考信号功率。
步骤 708, 终端根据基站反馈的参考信号功率指示确定当前帧的 上行参考信号功率。
步骤 710, 终端基于当前帧的上行参考信号功率调整当前帧上行 参考信号的传输功率并传输上行参考信号。 在发送当前帧的上行参 考信号前, 终端根据获得的上行参考信号功率对发送上行参考信号 的传输功率进行调整, 以调整后的功率发送上行参考信号。 需要指出, 仅以上举例中用具体数字进行说明, 其中数值并不 对本发明的范围进行限定。
本发明公开的技术方案与现有 LTE 上行链路 RS 传输方案相 比, 能够根据传输信道环境调整 RS功率, 提高信道估计精度, 有效 提升系统数据解调性能及上行链路调度能力。 此外, 上述具体实施 例针对不同的反馈内容进行定义, 分别将 "参考信号功率对应表" 置于终端或者基站, 定义了应用 RS功率调整技术的不同反馈机制。 和现有 RS传输方案相比, 能够根据信道的实时变化改变 RS的功率 配置, 是优选的传输方案。 本发明公开提出的上行链路的 RS功率调 整技术方案是一种系统的技术解决方案, 可应用于现有 LTE 系统的 上行链路中, 构成 LTE多天线覆盖增强系统。
图 8 示出本发明的终端的一个实施例的结构框图。 如图 8 所 示, 该实施例中终端 80 包括功率获取模块 801、 功率调整模块 802 和信号传输模块 803。 功率获取模块 801获取当前帧的上行参考信号 功率, 该当前帧的上行参考信号功率根据先前帧链路的上行链路反 馈信息确定, 先前帧上行链路反馈信息由基站通过先前帧的上行链 路的信道状态信息计算获得。 上行链路反馈信息例如包括先前帧上 行链路的信噪比 (SNR ) 、 信道质量信息 (CQI ) 、 传输误帧率 ( BLER )级别、 重传次数、 或者上述信息两者或者多个的组合。 可 以由基站或者终端根据先前帧上行链路反馈信息确定当前帧的上行 参考信号功率; 如果由基站确定当前帧的上行参考信号功率, 功率 获取模块 801 从基站接收该上行参考信号功率。 功率获取模块 801 将获取的上行参考信号功率发送给功率调整模块 802。 功率调整模块 802接收该上行参考信号功率, 基于该当前帧的上行参考信号功率调 整当前帧上行参考信号的传输功率; 信号传输模块 803 传输上行参 考信号。 在一个实施例中, 由终端根据基站反馈的上行链路反馈信 息确定当前帧的上行参考信号功率, 终端 80还包括对应表存储模块 804, 用于存储上行链路反馈信息和参考信号功率的对应表; 功率获 取模块 801 接收先前帧上行链路反馈信息, 通过查询对应表存储模 块 804 存储的上行链路反馈信息和参考信号功率的对应表确定与先 前帧上行链路反馈信息对应的上行参考信号功率。
上述实施例中, 功率调整模块根据功率获取模块获得的实时信 道环境提升 RS功率, 可以有效提高信道估计精度, 提升系统数据解 调能力及上行链路调度结果。
图 9 示出本发明的无线通信系统的一个实施例的结构框图。 如 图 9所示, 该实施例中系统包括基站 91和终端 90。 基站 91通过先 前帧的上行链路的信道状态信息计算获得先前帧上行链路反馈信 息。 终端 90 包括功率获取模块 901、 功率调整模块 802和信号传输 模块 803。 功率调整模块 802和信号传输模块 803可以参见上述实施 例的对应描述, 为简洁起见在此不再详细描述。 功率获取模块 901 包括反馈信息接收单元 9011和功率确定单元 9012。 反馈信息接收单 元 9011 从基站接收先前帧上行链路反馈信息, 功率确定单元 9012 接收来自反馈信息接收单元 9011 的先前帧上行链路反馈信息, 根据 先前帧上行链路反馈信息确定当前帧的上行参考信号功率, 将确定 的当前帧的上行参考信号功率发送给功率调整模块 902。 上述实施例 中, 反馈信息接收单元从基站接收先前帧上行链路反馈信息, 功率 确定单元根据先前帧上行链路反馈信息确定当前帧的上行参考信号 功率, 实现根据实时信道环境动态提升 RS功率, 可以有效提高信道 估计精度。 此外, 由基站计算先前帧上行链路反馈信息, 可以减小 对终端的性能要求。
图 10 示出本发明的终端的另一个实施例的结构框图。 如图 10 所示, 该实施例中终端 100 包括功率获取模块 801、 功率调整模块 802、 信号传输模块 803和位置获取模块 1004。 功率获取模块 801、 功率调整模块 802 和信号传输模块 803 可以参见上述实施例的对应 描述, 为简洁起见在此不再详细描述。 位置获取模块 1004获取上行 链路上用于传输需要功率调整的上行参考信号的资源块的位置, 根 据该资源块的位置以及对应的 RS的功率传输上行参考信号。 适当提升 RS传输功率可以有效提高信道估计精度, 从而提升系 统性能; 但是, 不能盲目提升 RS功率。 本发明公开提供一种适用于 LTE 上行链路的调整 RS 功率的技术方案, 可以在上行链路中使终 端根据信道环境实时改变 RS功率, 在不同信道环境下调整 RS功率 以改善信道估计精度, 能够有效提升上行链路数据解调性能或 /并改 善上行链路调度结果。 通过提升上行链路 RS功率的方法, 可以提升 系统覆盖范围, 此外, 动态的控制 RS功率可以在终端传输总功率一 定的前提下灵活的控制小区覆盖半径, 满足 LTE覆盖增强的基本需 求。 此外, 低立方度量是衡量系统传输数据峰均比的一项重要指 标, 在上行链路设计中该指标占有重要比重, 上行链路中 RS的低立 方度量相比于数据更低, 有利于对 RS进行一定程度的功率提升。 综 上所述, LTE上行链路的 RS功率调整方法是一种适用于 LTE多天 线系统上行链路的技术解决方案, 符合 LTE覆盖增强的技术需求。
至此, 已经详细描述了根据本发明的上行参考信号传输方法和终 端、 系统。 为了避免遮蔽本发明的构思, 没有描 领域所 的一些 细节。 本领域技术人员根据上面的描述, 完全可以明白如何实施t 公 开的技术方案。
可能以许多方式来实现本发明的方法和系统。 例如, 可通过软 件、 硬件、 固件或者软件、 硬件、 固件的任何组合来实现本发明的 方法和系统。 用于所述方法的步骤的上述顺序仅是为了进行说明, 本发明的方法的步骤不限于以上具体描述的顺序, 除非以其它方式 特别说明。 此外, 在一些实施例中, 还可将本发明实施为记录在记 录介质中的程序, 这些程序包括用于实现根据本发明的方法的机器 可读指令。 因而, 本发明还覆盖存储用于执行根据本发明的方法的 程序的记录介质。 对于图 4至图 6 中各个装置或单元的功能, 可以参 考上文中关于本发明方法的实施例中对应部分的说明, 为简洁起见, 在 此不再伴述。
本领域的技术人员应当理解, 对于图 8至图 10中的各个装置, 可 以通过单独的计算处理设备实现, 或者将其集成为一个独立的设备实 现。 在图 8至图 10中用框示出以说明它们的功能。 这些功能块可以用 硬件、 软件、 固件、 中间件、 微代码、 硬件描述语音或者它们的任意组 合来实现。 举例来说, 一个或者两个功能块都可以利用运行在微处理 器、 数字信号处理器(DSP )或任何其他适当计算设备上的代码实现。 代码可以表示过程、 功能、 子程序、 程序、 例行程序、 子例行程序、 模 块或者指令、 数据结构或程序语句的任意组合。 代码可以位于计算机可 读介质中。 计算机可读介质可以包括一个或者多个存储设备, 例如, 包 括 RAM 存储器、 闪存存储器、 ROM 存储器、 EPROM 存储器、 EEPROM存储器、 寄存器、 硬盘、 移动硬盘、 CD-ROM或本领域公 知的其他任何形式的存储介质。 计算机可读介质还可以包括编码数据信 号的载波。
本领域技术人员将意识到硬件、 固件和软件配置在这些情况下的可 替换性, 以及如何最好地实现每个特定应用地该功能。
本发明的描述是为了示例和描述起见而给出的, 而并不 遗漏的 或者将本发明限于所公开的形式。 很多修改和变化对于本领域的普通技 术人员而言是显然的。 选择和描述实施例是为了更好说明本发明的原理 和实际应用, 并且^ ^领域的普通技术人员能够理解本发明从而设计适 于特定用途的带有各种修改的各种实施例。

Claims

利 要 求
1. 一种上行参考信号传输方法, 其特征在于, 包括:
基站根据先前帧上行链路的信道状态信息或数据检测结果确定上行 反馈信息;
基站或者终端根据所述上行 ¼ ^反馈信息确定当前帧的上行参考信 号功率;
终端基于所述当前帧的上行参考信号功率调整当前帧上行参考信号 的传输功率并传输所述上行参考信号。
2. 根据权利要求 1 所述的方法, 其特征在于, 所述基站或者终端 根据所述上行链路反馈信息确定当前帧的上行参考信号功率包括:
基站或者终端查询上行链路反馈信息和参考信号功率的对应表获得 与所述先前帧上行链路反馈信息对应的上行参考信号功率。
3. 根据权利要求 1 所述方法, 其特征在于, 所述上行链路反馈信 息包括先前帧上行链路的信噪比(SNR )、 信道质量信息(CQI )、 传输 误帧率(BLER )级别、 重传次数、 或上述信息两者或者多个的組合。
4. 根据权利要求 3 所述的方法, 其特征在于, 所述基站或者终端 根据所述上行链路反馈信息确定当前帧的上行参考信号功率包括:
基站根据先前帧上行链路反馈信息确定当前帧的上行参考信号功 率;
基站将所述当前帧的上行参考信号功率发送给终端。
5.根据权利要求 3 所述的方法, 其特征在于, 所述基站或者终端 才艮据所述上行链路反馈信息确定当前帧的上行参考信号功率包括:
基站将所述先前帧上行链路反馈信息发送给终端;
终端根据先前帧上行链路反馈信息确定当前帧的上行参考信号功 率。
6. 根据权利要求 4或 5所述方法, 其特征在于, 基站通过下行控 制信息或上层指令向终端发送所述当前帧的上行参考信号功率或所述先 前帧上行¼ ^反馈信息。
7. 根据权利要求 1所述的方法, 其特征在于, 还包括: 确定上行链路用于传输需要功率调整的上行参考信号的资源块的位 置。
8. 一种终端, 其特征在于, 包括:
功率获^^块, 用于获取当前帧的上行参考信号功率, 所述当前帧 的上行参考信号功率根据先前帧上行链路反馈信息确定, 所述先前帧上 行链路反馈信息由基站通过先前帧的上行链路的信道状态信息计算或通 过数据检测结果获得;
功率调整模块, 用于基于所述当前帧的上行参考信号功率调整当前 帧上行参考信号的传输功率;
信号传输模块, 用于传输所述上行参考信号。
9. 根据权利要求 8 所述的终端, 其特征在于, 所述功率获取模块 接收所述当前帧的上行参考信号功率, 所述当前帧的上行参考信 号功率由基站才艮据先前帧上行链路反馈信息确定。
10. 根据权利要求 8所述的终端, 其特 于, 所述功率获^ ^块 包括:
反馈信息接收单元, 用于从基站接收所述先前帧上行链路反馈信 息, 发送所述先前帧上行链路反馈信息;
功率确定单元, 用于接收来自所述反馈信息接收单元的所述先前帧 上行 ¼ ^反馈信息, 才艮据所述先前帧上行¼ ^反馈信息确定所述当前帧 的上行参考信号功率。
11. 根据权利要求 9或 10所述的终端, 其特征在于, 所述上行链 路反馈信息包括先前帧上行链路的信噪比 (SNR )、 信道质量信息
( CQI )、 传输误帧率 (BLER )级别、 重传次数、 或上述信息两者或 者多个的組合。
12. 根据权利要求 9或 10所述的终端, 其特征在于, 所述功率获 通 发送的下行控制信息或上层指令接收所述当前帧的上行 参考信号功率 /所述先前帧上行链路反馈信息。
13. 根据权利要求 8所述的终端, 其特征在于, 还包括对应表存储 模块: 用于存储上行链路反馈信息和参考信号功率的对应表; 所述功率获取模块接收所述先前帧上行链路反馈信息, 通过查询上 行链路反馈信息和参考信号功率的对应表确定与所述先前帧上行链路反 馈信息对应的上行参考信号功率。
14. 根据权利要求 8所述的终端, 其特征在于, 还包括:
资源块位置获取模块, 用于获取上行链路上用于传输需要功率调整 的上行参考信号的资源块的位置。
15. —种多天线通信系统, 其特征在于, 包括如权利要求 8至 14 中任意一项所述的终端和基站。
16. 根据权利要求 15 所述的系统, 其特征在于, 所述多天线通信 系统为 LTE多天线通信系统。
PCT/CN2012/071926 2011-11-25 2012-03-05 上行参考信号传输方法、终端和多天线通信系统 WO2013075425A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110378916.7A CN102413557B (zh) 2011-11-25 2011-11-25 上行参考信号传输方法、终端和多天线通信系统
CN201110378916.7 2011-11-25

Publications (1)

Publication Number Publication Date
WO2013075425A1 true WO2013075425A1 (zh) 2013-05-30

Family

ID=45915322

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/071926 WO2013075425A1 (zh) 2011-11-25 2012-03-05 上行参考信号传输方法、终端和多天线通信系统

Country Status (2)

Country Link
CN (1) CN102413557B (zh)
WO (1) WO2013075425A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9674710B2 (en) * 2013-12-20 2017-06-06 Qualcomm Incorporated Channel dependent coverage enhancement techniques in LTE
CN104901787B (zh) * 2014-03-07 2018-07-10 富士通株式会社 信号传输装置以及多载波通信系统
CN108141425B (zh) * 2015-11-05 2020-06-26 华为技术有限公司 一种参考信号的传输设备、方法和系统
CN107734673B (zh) * 2016-08-12 2023-09-26 中兴通讯股份有限公司 一种信息配置方法、装置、基站和终端
CN108377491B (zh) 2016-11-11 2021-06-22 华为技术有限公司 一种上行信号的响应方法及装置
CN112398619A (zh) * 2019-08-16 2021-02-23 上海朗桦通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN113014365A (zh) * 2019-12-20 2021-06-22 中兴通讯股份有限公司 一种测量参考信号模式调整装置及方法
CN111372313B (zh) * 2020-02-14 2022-11-04 西北大学 基于LoRa上行传输系统的高能效资源分配方法
CN111313951B (zh) * 2020-02-17 2022-01-25 南京邮电大学 基于非理想csi的irs辅助安全通信无线传输方法
CN112532363B (zh) * 2020-09-14 2022-04-22 中兴通讯股份有限公司 Srs传输方法、终端及存储介质
CN115915371A (zh) * 2021-09-30 2023-04-04 南宁富联富桂精密工业有限公司 功率控制方法及系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101277132A (zh) * 2007-03-26 2008-10-01 华为技术有限公司 一种获取上行数据的发射功率的方法及设备
CN101437284A (zh) * 2008-12-24 2009-05-20 华为技术有限公司 确定物理下行链路共享信道发射功率的方法、装置及系统
CN101741437A (zh) * 2008-11-19 2010-06-16 中国移动通信集团公司 一种上行功率控制方法、系统及设备
US20110274205A1 (en) * 2009-01-30 2011-11-10 Moon Il Lee Method for transmitting reference signal in downlink multi-input multi-output system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09171545A (ja) * 1995-12-20 1997-06-30 Fujitsu Ltd Icカード,icカード読み取り/書き込み装置,icカード読み取り/書き込み装置用上位装置及びicカードシステム並びにicカードシステムにおけるマルチベンダ対応方法
US7801544B2 (en) * 2001-06-29 2010-09-21 Koninklijke Philips Electronics N.V. Noise margin information for power control and link adaptation in IEEE 802.11h WLAN
AU2003224363A1 (en) * 2002-05-09 2003-11-11 Nokia Corporation Multiple level power control command signaling
CN100370706C (zh) * 2004-10-22 2008-02-20 华为技术有限公司 一种功率控制的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101277132A (zh) * 2007-03-26 2008-10-01 华为技术有限公司 一种获取上行数据的发射功率的方法及设备
CN101741437A (zh) * 2008-11-19 2010-06-16 中国移动通信集团公司 一种上行功率控制方法、系统及设备
CN101437284A (zh) * 2008-12-24 2009-05-20 华为技术有限公司 确定物理下行链路共享信道发射功率的方法、装置及系统
US20110274205A1 (en) * 2009-01-30 2011-11-10 Moon Il Lee Method for transmitting reference signal in downlink multi-input multi-output system

Also Published As

Publication number Publication date
CN102413557A (zh) 2012-04-11
CN102413557B (zh) 2015-06-17

Similar Documents

Publication Publication Date Title
WO2013075425A1 (zh) 上行参考信号传输方法、终端和多天线通信系统
US11638247B2 (en) Physical (PHY) layer solutions to support use of mixed numerologies in the same channel
EP3641411B1 (en) Method and device for determining transmission power
US8744510B2 (en) Power control method and apparatus for wireless communications
CN111698073B (zh) 无线网络中的导频重新配置和重传
US8483742B2 (en) Method and apparatus for controlling uplink power in a wireless communication system
US20200396698A1 (en) Uplink asynchronous non-orthogonal multiple access
TWI538433B (zh) 用於無線通訊之可調適性鏈路調適
US11895718B2 (en) Method of and apparatus for transmitting data based on channel state in device-to-device communication
US10313160B2 (en) Channel estimation enhancements
EP2258051B1 (en) Rank dependent CQI back-off
KR20180038992A (ko) 무선 통신 시스템에서 업링크 기준 신호의 송신 전력을 도출하기 위한 방법 및 장치
EP2220779B1 (en) Method and arrangement for separate channel power control
WO2018202083A9 (zh) 功率余量的上报方法和装置
US9294220B2 (en) Adjusting channel quality report in a wireless communication network
WO2019065189A1 (ja) 基地局装置、端末装置および通信方法
TW201108801A (en) Over-the-air overload indicator
WO2010073936A1 (ja) 無線基地局
CN102577544B (zh) 用于在无线通信系统中控制上行链路功率的方法和装置
WO2019084711A1 (en) Methods and apparatuses for repetition transmission
JP2019062504A (ja) 基地局装置、端末装置および通信方法
WO2014044106A1 (zh) 确定信道质量指示值的方法、装置及lte终端
WO2020050000A1 (ja) 基地局装置、端末装置および通信方法
CN112423389B (zh) 一种被用于无线通信的节点中的方法和装置
JP5756823B2 (ja) 基地局装置及び通信システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12851840

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12851840

Country of ref document: EP

Kind code of ref document: A1