WO2013074603A1 - Centrifugal de-clutch - Google Patents
Centrifugal de-clutch Download PDFInfo
- Publication number
- WO2013074603A1 WO2013074603A1 PCT/US2012/064978 US2012064978W WO2013074603A1 WO 2013074603 A1 WO2013074603 A1 WO 2013074603A1 US 2012064978 W US2012064978 W US 2012064978W WO 2013074603 A1 WO2013074603 A1 WO 2013074603A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- rotor
- rotor assembly
- centrifugal
- motor
- clutch
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D43/00—Automatic clutches
- F16D43/02—Automatic clutches actuated entirely mechanically
- F16D43/04—Automatic clutches actuated entirely mechanically controlled by angular speed
- F16D43/14—Automatic clutches actuated entirely mechanically controlled by angular speed with centrifugal masses actuating the clutching members directly in a direction which has at least a radial component; with centrifugal masses themselves being the clutching members
- F16D43/18—Automatic clutches actuated entirely mechanically controlled by angular speed with centrifugal masses actuating the clutching members directly in a direction which has at least a radial component; with centrifugal masses themselves being the clutching members with friction clutching members
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C11/00—Propellers, e.g. of ducted type; Features common to propellers and rotors for rotorcraft
- B64C11/02—Hub construction
- B64C11/04—Blade mountings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C27/00—Rotorcraft; Rotors peculiar thereto
- B64C27/32—Rotors
- B64C27/46—Blades
- B64C27/473—Constructional features
- B64C27/48—Root attachment to rotor head
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C29/00—Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft
- B64C29/0008—Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft having its flight directional axis horizontal when grounded
- B64C29/0016—Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft having its flight directional axis horizontal when grounded the lift during taking-off being created by free or ducted propellers or by blowers
- B64C29/0025—Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft having its flight directional axis horizontal when grounded the lift during taking-off being created by free or ducted propellers or by blowers the propellers being fixed relative to the fuselage
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D59/00—Self-acting brakes, e.g. coming into operation at a predetermined speed
- F16D59/02—Self-acting brakes, e.g. coming into operation at a predetermined speed spring-loaded and adapted to be released by mechanical, fluid, or electromagnetic means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D43/00—Automatic clutches
- F16D43/02—Automatic clutches actuated entirely mechanically
- F16D43/04—Automatic clutches actuated entirely mechanically controlled by angular speed
- F16D43/14—Automatic clutches actuated entirely mechanically controlled by angular speed with centrifugal masses actuating the clutching members directly in a direction which has at least a radial component; with centrifugal masses themselves being the clutching members
- F16D2043/145—Automatic clutches actuated entirely mechanically controlled by angular speed with centrifugal masses actuating the clutching members directly in a direction which has at least a radial component; with centrifugal masses themselves being the clutching members the centrifugal masses being pivoting
Definitions
- This disclosure describes mechanical mechanisms that mechanically prevent a rotor from rotating below a threshold speed, but allow the rotor to rotate freely above the threshold speed.
- VTOL vertical takeoff and landing
- helicopter is one common type of vertical takeoff and landing (VTOL) aircraft.
- VTOL aircraft have large rotors that provide either or both both vertical and horizontal thrust. Often, when a rotor is not being used, the rotor is kept stationary.
- the described embodiments provide a centrifugal de-clutch.
- the centrifugal declutch is a mechanical mechanism that mechanically prevents a rotor of an aircraft from rotating.
- the centrifugal de-clutch comprises a plurality of high friction pads, a plurality of flexures, and a plurality of stop tabs according to one embodiment.
- a rotor assembly of an aircraft comprises a rotor, a motor comprising a stationary part and a rotating part, and the centrifugal de-clutch.
- the centrifugal de-clutch is coupled to the rotating part of the motor such that the flexures of the de-clutch preload the high friction pads against the stationary part of the motor.
- the high friction pads prevent the rotor from rotating until the motor generates enough torque to overcome the friction force generated by the friction pads.
- a proof mass that is mounted to or that is a part of each flexure applies a centrifugal force on the friction pads that counteracts the flexure preload. Above a certain speed threshold, the friction pads are completely disengaged from the stationary part of the motor, thereby allowing the rotor to rotate freely.
- FIG. 1 illustrates a centrifugal de-clutch in accordance with one embodiment.
- FIGs. 2 illustrates a rotor assembly including the centrifugal de-clutch in accordance with one embodiment.
- Figs. 3A and 3B respectively illustrate the centrifugal de-clutch when engaged and disengaged in accordance with one embodiment.
- FIG. 4 illustrates a view of a personal aircraft vehicle that incorporates the centrifugal de-clutch in accordance with one embodiment.
- Fig. 1 illustrates a centrifugal de-clutch 100 in accordance with one embodiment.
- the centrifugal de-clutch 100 is a mechanical mechanism that mechanically prevents a rotor of an aircraft from rotating.
- the centrifugal de-clutch is constructed out of metal (e.g., steel, titanium, or aluminum) or composite material (e.g., carbon fiber or Kevlar). Note that in other embodiments other materials may be used to construct the centrifugal de-clutch.
- the centrifugal de-clutch is a circular ring comprising a plurality of friction pads 101, a plurality of flexures 103, and a plurality of stop tabs 105.
- the friction pads 101 are composed of brake pad material (asbestos, organic, or semi-metallic formulations) that provide a high coefficient of friction such as .1 to 5. Note that other coefficients of friction may be used.
- the flexures 103 are curved arms each comprising a first end 107 and a second end 109 according to one embodiment. In one embodiment, the flexures 103 are "L" shaped. The first end 107 of a flexure 103 is connected to the centrifugal de-clutch 100.
- each flexure 103 is not connected to the centrifugal declutch and is coupled to a friction pad 101.
- a friction pad 101 may be coupled to the second end of a flexure 103 using adhesive or other mechanisms such as fasteners (e.g., screws or rivets).
- the stop tabs 105 prevent the flexures 103 from moving outside of a predefined range of movement.
- the stop tabs 105 thus prevent the flexures 103 from being damaged (i.e., breaking).
- the stop tabs 105 protrude toward the center of the centrifugal de-clutch 100.
- the stop tabs 105 are positioned on the centrifugal de-clutch 100 at a location proximate to the second end 109 of the flexures 103.
- the rotor assembly 200 includes a rotor 201 that in one embodiment has a 16 inch radius, and is made from carbon fiber composite material, and in an alternative embodiment from carbon fiber composite blades attached to an aluminum hub.
- rotor 201 is made from wood blades attached to an aluminum hub, or wood blades attached to a carbon fiber composite hub.
- the rotor may be a single piece that bolts onto the motor assembly.
- the rotor 201 may comprise blades attached to a hub, or may be manufactured as a single piece with an integral hub.
- the hub provides a central structure to which the blades of the rotor 201 connect, and in some embodiments is made in a shape that envelops the motor.
- the rotor assembly 200 also includes a motor.
- the motor includes a rotating part 203 (portion) and a stationary part 205.
- the rotating part 203 is concentric to the stationary part 205, known as a radial flux motor.
- the stationary part 205 may form the inner ring of the motor, known as an outrunner motor.
- the motor parts are low-profile so that the entire motor fits within the hub of the rotor, presenting lower resistance to the air flow when flying forward.
- the rotor 201 is attached to the rotating part 203 of the motor. Thus, when the rotating part 203 of the motor rotates, the rotor 201 also rotates.
- the stationary part 205 of the motor is attached to the propulsion boom of the aircraft.
- the motor is a permanent magnet motor and is controlled by an electronic motor controller.
- the electronic motor controller sends electrical currents to the motor in a precise sequence to allow the rotor 201 to turn at a desired speed or with a desired torque.
- the centrifugal de-clutch 100 is included in the rotor assembly 200.
- the centrifugal de-clutch 100 is coupled to the rotating part 203 of the motor via fasteners such as screws or rivets.
- the centrifugal de-clutch is mounted to the rotating part 203 of the motor such that the flexures 103 preload the high friction pads 101 against the stationary part 205 of the motor included in the rotor assembly 200.
- the rotating part 203 of the motor is stationary, the high friction pads 101 press against the stationary part 203 of the motor preventing the rotor 201 from rotating. That is, the friction provided by the friction pads 101 resists motion.
- FIG. 3A illustrates the centrifugal de-clutch 100 when engaged.
- Fig. 3A shows a flexure 103 preloading a friction pad 101 against the stationary part 205 of the motor when the rotating part 203 of the motor is not rotating or is rotating below a speed threshold.
- the rotating part 203 of the motor rotates thereby causing the rotor 201 to also rotate.
- a proof mass that is mounted to or is a part of each flexure 103 applies a centrifugal force on the high friction pad 101 mounted on each flexure 103.
- the centrifugal force counteracts the preload on the stationary part 205 provided by the flexures 103.
- the centrifugal force increases resulting in reduced friction torque because the flexures 103 begin to bend away from the stationary part 205 of the motor thereby disengaging the friction pads 101.
- the friction pads 101 are completely disengaged from the stationary part 205 of the motor allowing the rotating part 203 and rotor 201 to rotate freely without any friction torque from the friction pads 101.
- the centrifugal force at the threshold rotational speed causes the flexures 103 to bend outward thereby resulting in the friction pads 101 no longer being in contact with the stationary part 205 of the motor.
- Fig. 3B illustrates the friction pad 101 completely disengaged from the stationary part 205 of the motor. As shown in Fig. 3B, the friction pad 101 is no longer in contact with the stationary part 205 of the motor and the second end 109 of the flexure 103 is in contact with the stop tab 105. As the speed of the rotating part 203 of the motor decreases below the threshold speed, the flexures 103 begin to preload the friction pads 101 against the stationary part 205 of the motor as shown in Fig. 3A.
- a proof mass that is mounted to or is a part of each flexure 103 applies a centrifugal force on high friction pad 101 mounted on each flexure 103.
- the proof mass is calculated according to the following variables:
- the preload at 0 rpm represents the desired brake torque provided by the declutch 100.
- the centrifugal force is represented as a function of the above variables as shown below:
- ⁇ ( ⁇ ) ⁇ R(— ⁇ — 7 ⁇ ? ⁇ 2 )
- equation (2) can be simplified to determine the mass of the proof mass as represented by equation (3) shown below:
- FIG. 4 an aircraft 400 is illustrated that incorporates the rotor assembly 200 shown in Fig. 2.
- the aircraft 400 uses the rotor assemblies 200 for vertical lift. Specifically, the rotor assemblies 200 provide enough thrust to lift the aircraft 400 off the ground and maintain control. When at an appropriate altitude, in one embodiment the rotor assemblies 200 are turned off since they are used for vertical lift. Forward flight propellers 401 are used for forward propulsion. The centrifugal de-clutch 100 described above keeps the rotor assemblies 200 stationary when not in use according to the description above.
- Electronic components of the described embodiments may be specially constructed for the required purposes, or may comprise one or more general-purpose computers selectively activated or reconfigured by a computer program stored in the computer.
- a computer program may be stored in a computer readable storage medium, such as, but is not limited to, any type of disk including floppy disks, optical disks, DVDs, CD-ROMs, magnetic-optical disks, read-only memories (ROMs), random access memories (RAMs), EPROMs, EEPROMs, magnetic or optical cards, application specific integrated circuits (ASICs), or any type of media suitable for storing electronic instructions, and each coupled to a computer system bus.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Aviation & Aerospace Engineering (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- One-Way And Automatic Clutches, And Combinations Of Different Clutches (AREA)
- Mechanical Operated Clutches (AREA)
- Braking Arrangements (AREA)
Abstract
Description
Claims
Priority Applications (10)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
NZ619855A NZ619855B2 (en) | 2011-11-16 | 2012-11-14 | A rotor assembly with a centrifugal de-clutch |
BR112014005846A BR112014005846A2 (en) | 2011-11-16 | 2012-11-14 | rotor assembly |
CA2837668A CA2837668C (en) | 2011-11-16 | 2012-11-14 | Centrifugal de-clutch |
EP12849916.7A EP2718186A4 (en) | 2011-11-16 | 2012-11-14 | Centrifugal de-clutch |
JP2014530010A JP5723073B2 (en) | 2011-11-16 | 2012-11-14 | Centrifugal cutoff clutch |
KR1020147004539A KR101441281B1 (en) | 2011-11-16 | 2012-11-14 | Centrifugal de-clutch |
AU2012339688A AU2012339688B2 (en) | 2011-11-16 | 2012-11-14 | Centrifugal de-clutch |
CN201280036467.0A CN103717493B (en) | 2011-11-16 | 2012-11-14 | Centrifugal de-clutch |
IL230344A IL230344A (en) | 2011-11-16 | 2014-01-06 | Rotor assembly with a centrifugal de-clutch |
IL234536A IL234536A (en) | 2011-11-16 | 2014-09-08 | Centrifugal de-clutch |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/298,154 US8602942B2 (en) | 2011-11-16 | 2011-11-16 | Centrifugal de-clutch |
US13/298,154 | 2011-11-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013074603A1 true WO2013074603A1 (en) | 2013-05-23 |
Family
ID=48279558
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2012/064978 WO2013074603A1 (en) | 2011-11-16 | 2012-11-14 | Centrifugal de-clutch |
Country Status (10)
Country | Link |
---|---|
US (2) | US8602942B2 (en) |
EP (1) | EP2718186A4 (en) |
JP (2) | JP5723073B2 (en) |
KR (1) | KR101441281B1 (en) |
CN (1) | CN103717493B (en) |
AU (1) | AU2012339688B2 (en) |
BR (1) | BR112014005846A2 (en) |
CA (1) | CA2837668C (en) |
IL (2) | IL230344A (en) |
WO (1) | WO2013074603A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10994836B2 (en) | 2015-12-11 | 2021-05-04 | Amazon Technologies, Inc. | Feathering propeller clutch mechanisms |
Families Citing this family (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9540103B2 (en) * | 2014-06-24 | 2017-01-10 | Kitty Hawk Corporation | Passive deployment mechanism for lift fan |
DE102015001704B4 (en) * | 2015-02-13 | 2017-04-13 | Airbus Defence and Space GmbH | Vertical launching aircraft |
DE102015106833A1 (en) | 2015-04-30 | 2016-11-03 | Johnson Electric Germany GmbH & Co. KG | Centrifugal brake for Venetian blind drives |
EP3096150B1 (en) * | 2015-05-12 | 2018-12-19 | Rolls-Royce Corporation | Speed sensing system |
US10329120B2 (en) | 2015-09-12 | 2019-06-25 | Otis Elevator Company | Elevator overspeed governor |
EP3184425B1 (en) | 2015-12-21 | 2018-09-12 | AIRBUS HELICOPTERS DEUTSCHLAND GmbH | Multirotor aircraft |
US10208818B2 (en) * | 2016-11-17 | 2019-02-19 | Caterpillar Inc. | Apparatus having automatic centrifugal brakes for wheels |
US9783288B1 (en) * | 2016-12-07 | 2017-10-10 | Kitty Hawk Corporation | Lift fan position lock mechanism |
EP3354566B1 (en) | 2017-01-26 | 2019-07-03 | AIRBUS HELICOPTERS DEUTSCHLAND GmbH | A thrust producing unit with at least two rotor assemblies and a shrouding |
EP3354559B1 (en) | 2017-01-26 | 2019-04-03 | AIRBUS HELICOPTERS DEUTSCHLAND GmbH | A thrust producing unit with at least two rotor assemblies and a shrouding |
EP3366586B1 (en) | 2017-02-27 | 2020-08-19 | AIRBUS HELICOPTERS DEUTSCHLAND GmbH | A thrust producing unit with at least two rotor assemblies and a shrouding |
EP3366582B1 (en) | 2017-02-28 | 2019-07-24 | AIRBUS HELICOPTERS DEUTSCHLAND GmbH | A multirotor aircraft with an airframe and a thrust producing units arrangement |
US10558219B2 (en) | 2017-09-21 | 2020-02-11 | Loon Llc | Systems and methods for controlling an aerial vehicle using lateral propulsion and vertical movement |
EP3470332B1 (en) | 2017-10-13 | 2020-04-22 | AIRBUS HELICOPTERS DEUTSCHLAND GmbH | A multirotor aircraft with an airframe and at least one wing |
US11174019B2 (en) | 2017-11-03 | 2021-11-16 | Joby Aero, Inc. | VTOL M-wing configuration |
US10495659B2 (en) * | 2017-11-06 | 2019-12-03 | Rolls-Royce Corporation | Speed and position sensing systems |
FR3075862B1 (en) * | 2017-12-22 | 2020-08-28 | Safran Aircraft Engines | TURBOMACHINE BLOWER BRAKE DEVICE |
EP3581491B1 (en) | 2018-06-13 | 2020-06-24 | AIRBUS HELICOPTERS DEUTSCHLAND GmbH | A multirotor aircraft with a thrust producing unit that comprises an aerodynamically optimized shrouding |
EP3656669B1 (en) | 2018-11-26 | 2021-01-13 | AIRBUS HELICOPTERS DEUTSCHLAND GmbH | A vertical take-off and landing multirotor aircraft with at least eight thrust producing units |
EP3702276B1 (en) | 2019-02-27 | 2021-01-13 | AIRBUS HELICOPTERS DEUTSCHLAND GmbH | A multirotor joined-wing aircraft with vtol capabilities |
PL3702277T3 (en) | 2019-02-27 | 2021-07-19 | Airbus Helicopters Deutschland GmbH | A multirotor aircraft that is adapted for vertical take-off and landing (vtol) |
US11220320B2 (en) | 2019-07-17 | 2022-01-11 | Aerostar International, Inc. | Lateral propulsion systems and architectures for high altitude balloons |
CN114607714B (en) * | 2022-05-12 | 2022-08-23 | 上海航天壹亘智能科技有限公司 | Magnetic clutch for wind power generation |
CN115016291B (en) * | 2022-07-13 | 2023-11-10 | 西北工业大学 | Wind field information-based anti-interference attitude control system and method for aircraft |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04312218A (en) * | 1991-04-05 | 1992-11-04 | Toyota Motor Corp | Centrifugal clutch |
US5280828A (en) * | 1992-02-07 | 1994-01-25 | Mattel, Inc. | Speed governor for rotational drive |
US20020125368A1 (en) * | 2001-02-14 | 2002-09-12 | Phelps Arthur E. | Ultralight coaxial rotor aircraft |
KR100887836B1 (en) * | 2007-11-22 | 2009-03-09 | 현대자동차주식회사 | Hub for clutch disk of vehicle and clutch dist including the same |
US20100065392A1 (en) * | 2008-07-09 | 2010-03-18 | Mohan Sankar K | Pump assembly with radial clutch for use in power transmission assemblies |
Family Cites Families (43)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1425555A (en) | 1922-08-15 | Airship | ||
GB391548A (en) | 1932-01-20 | 1933-05-04 | Stuart Turner Ltd | Improvements in and relating to clutch couplings for power transmission purposes, particularly the starting of engines and variable speed ratio transmission |
US2295503A (en) * | 1940-09-19 | 1942-09-08 | Hydraulic Brake Co | Brake |
US2806569A (en) * | 1953-11-09 | 1957-09-17 | Sr Harvey A Keeling | Motor vehicle fan regulating mechanism |
US2827136A (en) * | 1955-03-11 | 1958-03-18 | Cleveland Electric Motor Compa | Drive-released brake for motors and the like |
US2951540A (en) * | 1956-11-05 | 1960-09-06 | Gen Motors Corp | Propeller brake |
GB1349748A (en) * | 1970-10-13 | 1974-04-10 | Timson E A | Reel brake |
US3856238A (en) | 1972-04-14 | 1974-12-24 | F Malvestuto | Aircraft transporter |
DE2528719A1 (en) | 1975-06-27 | 1977-01-20 | Bosch Gmbh Robert | Centrifugal clutch |
JPS5493686U (en) * | 1977-12-16 | 1979-07-03 | ||
DE2822638C2 (en) * | 1978-05-24 | 1982-05-19 | Robert Bosch Gmbh, 7000 Stuttgart | Slip clutch |
JPS58156732A (en) * | 1982-03-15 | 1983-09-17 | Mitsubishi Electric Corp | Emergency brake gear |
JPH0681395B2 (en) | 1989-08-07 | 1994-10-12 | 住友電装株式会社 | Winding type noise prevention resistance wire end processing method |
JPH0382699A (en) | 1989-08-28 | 1991-04-08 | Aretsukusu Denshi Kogyo Kk | Small-sized vertical take-off and landing aircraft |
JPH06502364A (en) | 1990-07-25 | 1994-03-17 | サドレアー・ヴィートール・エアクラフト・カンパニー・プロプライエタリー・リミテッド | Propulsion unit for VTOL aircraft |
JP2700734B2 (en) | 1991-09-20 | 1998-01-21 | 川崎重工業株式会社 | Vertical takeoff and landing aircraft |
CH685692A5 (en) | 1992-01-29 | 1995-09-15 | Sky Disc Holding Sa C O Norasi | Aircraft. |
US5601160A (en) * | 1994-10-20 | 1997-02-11 | Case Corporation | Hydraulically actuated brake assembly for an off-highway implement |
US5853145A (en) * | 1997-01-09 | 1998-12-29 | Cartercopters, Llc | Rotor head for rotary wing aircraft |
IT1293677B1 (en) * | 1997-08-01 | 1999-03-08 | Finmeccanica Spa | ROTOR BRAKE FOR A HELICOPTER. |
DE19745492B4 (en) | 1997-10-15 | 2005-06-09 | Wobben, Aloys, Dipl.-Ing. | Vertical airplane |
US5988328A (en) * | 1998-03-17 | 1999-11-23 | Dana Corporation | Spring set centrifugally released brake |
US6277463B1 (en) * | 1998-08-28 | 2001-08-21 | Mcdonnell Douglas Corporation | Composite member having increased resistance to delamination and method of making same |
JP2001322598A (en) * | 2000-05-16 | 2001-11-20 | Japan Aviation Electronics Industry Ltd | Remote control type unmanned helicopter |
US6708921B2 (en) * | 2001-04-20 | 2004-03-23 | Bell Helicopter Textron, Inc. | Composite flapping flexure |
US6568630B2 (en) | 2001-08-21 | 2003-05-27 | Urban Aeronautics Ltd. | Ducted vehicles particularly useful as VTOL aircraft |
US20030062443A1 (en) | 2001-10-02 | 2003-04-03 | Joseph Wagner | VTOL personal aircraft |
US6561456B1 (en) | 2001-12-06 | 2003-05-13 | Michael Thomas Devine | Vertical/short take-off and landing aircraft |
JP4085716B2 (en) | 2002-06-26 | 2008-05-14 | トヨタ自動車株式会社 | Vertical take-off and landing aircraft |
US6845831B2 (en) * | 2002-12-05 | 2005-01-25 | Deere & Company | PTO shaft brake |
US6969026B2 (en) | 2002-12-20 | 2005-11-29 | Tsuneo Kayama | Aircraft |
US6935470B1 (en) * | 2002-12-31 | 2005-08-30 | Robert P. Smith, Jr. | Disk brake |
US6843447B2 (en) | 2003-01-06 | 2005-01-18 | Brian H. Morgan | Vertical take-off and landing aircraft |
FR2853064B1 (en) | 2003-03-28 | 2005-06-24 | ON-BOARD FLIGHT MANAGEMENT SYSTEM FOR AIRCRAFT | |
JP2004312218A (en) | 2003-04-04 | 2004-11-04 | Fuji Photo Film Co Ltd | Digital camera and image reproducing apparatus |
FR2855811B1 (en) * | 2003-06-05 | 2005-08-05 | Eurocopter France | ROTOR BLADE WITH NOT VARIABLE, FOR ROTORS CARENES, IN PARTICULAR HELICOPTERS |
US20050217950A1 (en) * | 2004-03-11 | 2005-10-06 | Benmaxx, Llc | Lightweight reinforced brake drum and method for making same |
US7159817B2 (en) | 2005-01-13 | 2007-01-09 | Vandermey Timothy | Vertical take-off and landing (VTOL) aircraft with distributed thrust and control |
US20080054121A1 (en) | 2006-05-11 | 2008-03-06 | Urban Aeronautics Ltd. | Ducted fan VTOL vehicles |
US20080197639A1 (en) * | 2007-02-15 | 2008-08-21 | Mark Brander | Bi-directional wind turbine |
WO2008103079A1 (en) * | 2007-02-22 | 2008-08-28 | Husqvarna Aktiebolag | Retarding device for a rotational cutting machine |
US20090216392A1 (en) | 2007-07-11 | 2009-08-27 | Piasecki Aircraft Corporation | Vectored thruster augmented aircraft |
JP2009083798A (en) | 2007-10-03 | 2009-04-23 | Japan Aerospace Exploration Agency | Control method of electric vertical takeoff and landing aircraft |
-
2011
- 2011-11-16 US US13/298,154 patent/US8602942B2/en active Active
-
2012
- 2012-11-14 CN CN201280036467.0A patent/CN103717493B/en active Active
- 2012-11-14 WO PCT/US2012/064978 patent/WO2013074603A1/en active Application Filing
- 2012-11-14 KR KR1020147004539A patent/KR101441281B1/en active IP Right Grant
- 2012-11-14 EP EP12849916.7A patent/EP2718186A4/en not_active Withdrawn
- 2012-11-14 AU AU2012339688A patent/AU2012339688B2/en active Active
- 2012-11-14 BR BR112014005846A patent/BR112014005846A2/en not_active IP Right Cessation
- 2012-11-14 CA CA2837668A patent/CA2837668C/en active Active
- 2012-11-14 JP JP2014530010A patent/JP5723073B2/en active Active
-
2013
- 2013-11-04 US US14/070,820 patent/US9115774B2/en active Active
-
2014
- 2014-01-06 IL IL230344A patent/IL230344A/en active IP Right Grant
- 2014-09-08 IL IL234536A patent/IL234536A/en active IP Right Grant
-
2015
- 2015-03-26 JP JP2015064928A patent/JP2015147574A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04312218A (en) * | 1991-04-05 | 1992-11-04 | Toyota Motor Corp | Centrifugal clutch |
US5280828A (en) * | 1992-02-07 | 1994-01-25 | Mattel, Inc. | Speed governor for rotational drive |
US20020125368A1 (en) * | 2001-02-14 | 2002-09-12 | Phelps Arthur E. | Ultralight coaxial rotor aircraft |
KR100887836B1 (en) * | 2007-11-22 | 2009-03-09 | 현대자동차주식회사 | Hub for clutch disk of vehicle and clutch dist including the same |
US20100065392A1 (en) * | 2008-07-09 | 2010-03-18 | Mohan Sankar K | Pump assembly with radial clutch for use in power transmission assemblies |
Non-Patent Citations (1)
Title |
---|
See also references of EP2718186A4 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10994836B2 (en) | 2015-12-11 | 2021-05-04 | Amazon Technologies, Inc. | Feathering propeller clutch mechanisms |
Also Published As
Publication number | Publication date |
---|---|
IL234536A (en) | 2016-06-30 |
US8602942B2 (en) | 2013-12-10 |
CN103717493B (en) | 2015-12-02 |
KR101441281B1 (en) | 2014-09-17 |
CN103717493A (en) | 2014-04-09 |
JP2015147574A (en) | 2015-08-20 |
NZ704805A (en) | 2016-01-29 |
JP2014526412A (en) | 2014-10-06 |
AU2012339688B2 (en) | 2015-01-22 |
US9115774B2 (en) | 2015-08-25 |
EP2718186A1 (en) | 2014-04-16 |
US20130118856A1 (en) | 2013-05-16 |
BR112014005846A2 (en) | 2017-03-28 |
KR20140035530A (en) | 2014-03-21 |
NZ619855A (en) | 2015-12-24 |
CA2837668C (en) | 2015-07-28 |
US20140318907A1 (en) | 2014-10-30 |
CA2837668A1 (en) | 2013-05-23 |
IL230344A (en) | 2014-09-30 |
JP5723073B2 (en) | 2015-05-27 |
EP2718186A4 (en) | 2015-05-20 |
AU2012339688A1 (en) | 2014-01-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9115774B2 (en) | Centrifugal de-clutch | |
US20150132104A1 (en) | Variable geometry lift fan mechanism | |
US20150367935A1 (en) | Passive deployment mechanism for lift fan | |
CA2762247C (en) | Co-rotating stacked rotor disks for improved hover performance | |
CN101511676B (en) | Rotor drive and control system for a high speed rotary wing aircraft | |
JP2019500277A (en) | Redundant aircraft propulsion system using multiple motors per drive shaft | |
EP2865595B1 (en) | Rotor brake control system | |
JP5571672B2 (en) | Method and system for limiting blade pitch | |
US10407163B2 (en) | Aircraft control system and method | |
CN108473192A (en) | Feathering airscrew clutch mechanism | |
US11597506B2 (en) | Rotor head for aerial vehicle | |
JP2018537355A (en) | Redundant aircraft propulsion system using co-rotating propellers joined by wing tip connectors | |
US11374469B2 (en) | Electric machine with integrated controller | |
JP6216918B2 (en) | Vertical axis windmill braking device | |
NZ704805B2 (en) | Centrifugal de-clutch | |
NZ619855B2 (en) | A rotor assembly with a centrifugal de-clutch | |
US8496436B2 (en) | Torque compensation for propeller pitch change mechanism | |
US11845532B1 (en) | Propeller ground stop mechanism | |
US12103691B2 (en) | Magnetic locking system of an electric aircraft rotor and methods thereof | |
EP2865594B1 (en) | Rotor brake control system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12849916 Country of ref document: EP Kind code of ref document: A1 |
|
DPE2 | Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101) | ||
ENP | Entry into the national phase |
Ref document number: 2837668 Country of ref document: CA |
|
REEP | Request for entry into the european phase |
Ref document number: 2012849916 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2012339688 Country of ref document: AU Date of ref document: 20121114 Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20147004539 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2014530010 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112014005846 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 112014005846 Country of ref document: BR Kind code of ref document: A2 Effective date: 20140313 |