WO2013073769A1 - Rear surface electrode-type solar cell and method for manufacturing same - Google Patents

Rear surface electrode-type solar cell and method for manufacturing same Download PDF

Info

Publication number
WO2013073769A1
WO2013073769A1 PCT/KR2012/007159 KR2012007159W WO2013073769A1 WO 2013073769 A1 WO2013073769 A1 WO 2013073769A1 KR 2012007159 W KR2012007159 W KR 2012007159W WO 2013073769 A1 WO2013073769 A1 WO 2013073769A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
angle
solar cell
insulating layer
nanostructure
Prior art date
Application number
PCT/KR2012/007159
Other languages
French (fr)
Korean (ko)
Inventor
유승협
김호연
Original Assignee
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술원 filed Critical 한국과학기술원
Publication of WO2013073769A1 publication Critical patent/WO2013073769A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022441Electrode arrangements specially adapted for back-contact solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • H01L31/02363Special surface textures of the semiconductor body itself, e.g. textured active layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/035281Shape of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a back electrode solar cell and a method of manufacturing the same.
  • a solar cell that converts sunlight into electrical energy has a junction structure between a p-type semiconductor and an n-type semiconductor, like a diode. When light is incident on a solar cell, it interacts with the light and the materials that make up the semiconductor, resulting in a negative charge. Electrons and positively charged holes are generated, and as they move, current flows.
  • the structure of the back electrode solar cell has been proposed for the advantages of not using a metal grid and a transparent electrode on the front of the solar cell, and the advantage of being able to feel the neatness without wiring in the visual aspect.
  • the present invention aims to solve the above-mentioned problems of the prior art.
  • An object of the present invention is to enable the back electrode type structure to be applied to a thin film solar cell, thereby eliminating the need for a transparent electrode and removing the dead area.
  • An object of the present invention is to be able to manufacture a large area back electrode solar cell.
  • a photoelectric conversion layer which is formed on the rear surface of the substrate and has a nano-structured pattern on one surface of the two surfaces that are not in contact with the substrate; A first electrode formed in a first region on the nanostructure surface; A first insulating layer formed to cover at least a portion of the first electrode; And a second electrode formed at least partially in a second region on the surface of the nanostructure, but not formed in contact with the first electrode.
  • the nanostructure pattern may have a plurality of convex portions, at least a portion of the first electrode may be formed on a first inclined surface of the convex portion, and at least a portion of the second electrode may be formed on a second inclined surface of the convex portion.
  • the first electrode and the second electrode may include a buffer layer that determines the polarity.
  • the photoelectric conversion layer may be a photoelectric conversion layer having a bulk heterojunction structure.
  • the back electrode solar cell may further include a second insulating layer formed on an entire surface of the nanostructure pattern on which the first electrode, the first insulating layer, and the second electrode are formed.
  • the back electrode solar cell may further include a reflective layer formed on the second insulating layer.
  • forming a photoelectric conversion layer having a nanostructured pattern on the substrate Forming a first electrode on a first region on the nanostructure surface; Forming a first insulating layer to cover at least a portion of the first electrode; And forming a second electrode, wherein at least a part of the second electrode is formed in a second region on the surface of the nanostructure, and is not in contact with the first electrode.
  • the nanostructured pattern has a plurality of convex portions
  • the first electrode forming step, the first insulating layer forming step and the second electrode forming step may include the first electrode, the first insulating layer, and the second electrode. Is carried out by a gradient deposition method such that the deposition angles of the first and second deposition angles are the first, second, and third angles, respectively.
  • the deposition angle may be an acute angle among angles formed by the deposition direction and the plane including the substrate.
  • the first angle may be different from the second angle, and the third angle may be different from the second angle.
  • the second angle may be an angle between the first angle and a right angle.
  • the deposition direction of the first electrode may face the first inclined surface of the convex portion, and the deposition direction of the second electrode may face the second inclined surface of the convex portion.
  • the forming of the photoelectric conversion layer may include forming a pattern of the nanostructure by a lithography process or a stretching process after stretching.
  • the method of manufacturing the back electrode solar cell may further include forming a second insulating layer on an entire surface of the nanostructure pattern on which the first electrode, the first insulating layer, and the second electrode are formed.
  • the manufacturing method of the back electrode solar cell may further include forming a reflective layer on the second insulating layer.
  • the electrode may be formed on the nanostructure of the photoelectric conversion layer by using the gradient deposition at intervals of nanometers, and thus the rear electrode type may be used for solar cells having low electron and hole mobility.
  • the structure can be applied.
  • the back electrode type structure since the back electrode type structure is used, there is no need for the transparent electrode, thereby removing the size limitation of the unit cell in the thin film solar cell and disappearing the dead area. Eliminating the need for a transparent electrode can reduce the manufacturing cost of the solar cell, the efficiency of the solar cell can be improved by reducing the dead zone.
  • the back electrode type structure can be applied to solar cells other than crystalline silicon, the size limitation due to the silicon ingot can be eliminated, and thus a large area back electrode type solar cell can be obtained. .
  • FIG. 1 is a cross-sectional view showing the configuration of a back electrode solar cell according to an embodiment of the present invention.
  • 2 to 6 is a process chart for explaining the manufacturing process of the back-electrode solar cell according to an embodiment of the present invention.
  • nano is a concept that collectively refers to a level of several tens to hundreds of nanometers or a few micrometers.
  • interval in nanometers is a concept that encompasses the meaning of intervals of several to several hundred nanometers, intervals of several micrometers, and submicron levels. That is, in this specification, “nano” size is to be understood as a concept that includes both “nano-submicron” sizes.
  • FIG. 1 is a cross-sectional view showing the configuration of a back electrode solar cell according to an embodiment of the present invention.
  • the back electrode solar cell of the present invention is formed on the back surface of the substrate 100 and is formed on the photoresist layer 200 having a fine concavo-convex structure, and the micro concave-convex structure of the photoconversion layer 200.
  • the first electrode 300, the first insulating layer 400, the second electrode 500, the second insulating layer 600, and the reflective layer 700 may be included.
  • the photoelectric conversion layer 200 is formed on the back surface of the substrate 100, and the first electrode 300 and the second electrode are formed on the fine uneven structure formed in the photoelectric conversion layer 200. 500) are all deposited. That is, both the first electrode 300 and the second electrode 500 may be formed on the rear surface of the entire solar cell module.
  • the uneven structure formed in the photoelectric conversion layer 200 according to the embodiment of the present invention is a pattern of nano structure.
  • the interval between the unevennesses is several nanometers or less.
  • each uneven structure is formed with both the first electrode 300 and the second electrode 500, accordingly, the interval between the first electrode 300 and the second electrode 500 is several tens to Hundreds of nanometers or less.
  • the distance between the adjacent electrodes 300 and 500 may be about several tens to hundreds of nanometers, and when the inorganic solar cell is implemented, the adjacent electrodes 300 and 500 may be used. The spacing between them may be several microns.
  • the back electrode structure may be applied to solar cells having high electron and hole mobility, but as described above, since the distance between the first electrode 300 and the second electrode 500 is in nanometer units, Even a low mobility solar cell may enable a back electrode type structure.
  • the transparent electrode used in the conventional solar cell structure is lost.
  • the size limit of the unit cell due to the increase in the surface resistance is followed, whereby the portion connecting the unit cell becomes a dead zone in which no actual photoelectric conversion operation is performed.
  • the efficiency was inevitably reduced compared to the module area.
  • the embodiment of the present invention employs the rear electrode type structure, the need for the transparent electrode is eliminated, the yarn area disappears, and the decrease in efficiency relative to the area of the solar cell can be prevented.
  • the manufacturing cost can be reduced by not using the transparent electrode.
  • 2 to 6 is a process chart illustrating a manufacturing process of a back electrode solar cell according to an embodiment of the present invention.
  • the photoelectric conversion layer 200 is deposited on the substrate 100.
  • the photoelectric conversion layer 200 may preferably be an organic photoelectric conversion layer having a bulk heterojunction structure, but may also be a photoelectric conversion layer implemented in a different kind and form. Any structure that can absorb light and convert it into electrical energy can be used as the photoelectric conversion layer 200 of the present invention.
  • a nano pattern uneven structure may be formed on the photoelectric conversion layer 200. That is, the concave-convex structure is formed on the other surface of both surfaces of the photoelectric conversion layer 200 in contact with the substrate 100 at intervals of nanometers.
  • the nanostructure pattern may include a convex portion B and a concave portion O formed at predetermined intervals (constant or irregular).
  • Such nanostructured patterns may be formed by lithography processes (photolithography or soft lithography) or the like.
  • the nanostructure may be formed by stretching and relaxing the photoelectric conversion layer 200 by a different method. As the photoelectric conversion layer 200 stretched as a stretch decreases again in the relaxing process, a naturally curved structure may be formed.
  • the first electrode 300 is formed on the nanostructure of the photoelectric conversion layer 200.
  • the nanostructure of the photoelectric conversion layer 200 may include a convex portion B formed at predetermined intervals.
  • the first electrode 300 is formed on the first region of the convex portion B, and the second structure is formed on the second region. 2 electrodes 500 (see FIG. 5) should be formed. Accordingly, in order to ensure separation and dividing between the first region and the second region, the first electrode 300 is deposited using a gradient deposition method in the embodiment of the present invention.
  • the nanostructure of the photoelectric conversion layer 200 includes, for example, an inclined surface in a first direction and an inclined surface in a second direction
  • most of the first electrode 300 may be inclined. It may be formed on the inclined surface in the first direction.
  • the first electrode 300 may include a buffer layer to exhibit a first polarity.
  • the first electrode 300 may be made of a conductive material such as a conductive metal or a conductive oxide.
  • a first insulating layer 400 is formed on a nanostructure in which a first electrode 300 is formed on a first region.
  • the first insulating layer 400 is formed to insulate between the first electrode 300 and the second electrode 500 to be deposited later (see FIG. 5), and the first insulating layer 400 is formed on the nanostructure.
  • the first electrode 300 may be formed to cover at least a portion thereof. However, it is preferable to form the first electrode 300 to cover all of them. That is, all of the first electrodes 300 may be surrounded by all of the first insulating layers 400.
  • the second electrode 500 see FIG. 5 must be deposited on at least a part of the surface of the nanostructure, the surface of the nanostructure may not be covered.
  • the first insulating layer 400 is also deposited by a gradient deposition method.
  • the deposition angle during the gradient deposition for the deposition of the first insulating layer 400 may be different from that of the deposition of the first electrode 300 to cover at least some or all of the first electrodes 300, but not to cover all of the nanostructures. Can be selected in degrees.
  • the deposition angle is defined as an acute angle among angles formed by the deposition direction (arrow direction) and the plane including the substrate 100. That is, if the deposition angle when the first electrode 300 is deposited is the first angle, the deposition angle when the first insulating layer 400 is deposited may be the second angle.
  • the second angle may be an angle closer to the right angle (90 °) than the first angle.
  • the first insulating layer 400 may be made of, for example, a predetermined resin, but is not limited thereto.
  • the second electrode 500 is formed on the nanostructure on which the first insulating layer 400 is formed.
  • the second electrode 500 is formed on the nanostructure of the photoelectric conversion layer 200, and at least a part thereof should be formed on the surface of the photoelectric conversion layer 200, that is, the surface of the nanostructure. That is, at least a part of the second electrode 500 should be formed in an exposed area not covered with the first insulating layer 400 of the nanostructure surface of the photoelectric conversion layer 200.
  • the second electrode 500 should be formed so as not to contact the first electrode 300.
  • the second electrode 500 may also be deposited by a gradient deposition method.
  • the nanostructure of the photoelectric conversion layer 200 may include a convex portion B formed at predetermined intervals.
  • the deposition direction when the first electrode 300 is formed is the convex portion B.
  • the deposition angle at the time of depositing the first electrode 300 is a first angle
  • the deposition angle at the time of depositing the first insulating layer 400 is a second angle
  • the deposition angle at the time of depositing the second electrode 500 is a third angle.
  • the first angle and the second angle may be different from each other
  • the second angle and the third angle may be different from each other.
  • the first angle and the third angle may be the same or different.
  • the second electrode 500 may include a buffer layer to allow the electrode to exhibit a second polarity.
  • the second electrode 500 may be made of a conductive material such as a conductive metal or a conductive oxide.
  • a second insulating layer 600 may be further deposited on the entire surface of the nano pattern on which the first electrode 300, the first insulating layer 400, and the second electrode 500 are deposited.
  • a reflective layer 700 may be further deposited so that light incident through the substrate 100 and transmitted through the photoelectric conversion layer 200 may be reflected back to the photoelectric conversion layer 200.
  • the second insulating layer 600 may be made of a predetermined resin, preferably a resin having light transmittance. At least one of the second insulating layer 600 or the reflective layer 700 may be omitted in the solar cell according to the embodiment of the present invention.
  • the back electrode type structure has been generally applied only to crystalline silicon solar cells having good electron and hole mobility.
  • the size of the solar cell was limited by the size of a silicon ingot for forming a wafer.
  • the size of the substrate determines the size of the entire solar cell module while using the back electrode structure. Therefore, the large-area back electrode structure solar cell can be produced.
  • the present invention is applied to the manufacture of solar cells.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)

Abstract

According to the present invention, electrodes can be formed with nanometers therebetween on a nanostructure of a photoelectric transformation layer by using oblique angle deposition, which enables application of a rear electrode-type structure even on a solar cell having low electron and hole mobility. In addition, a transparent electrode becomes unnecessary due to the rear surface-type structure, which eliminates limitation on the size of a unit cell and dead space in a thin film solar cell. By eliminating the need for the transparent electrode, manufacturing cost of the solar cell can be reduced, and decreased dead space can improve efficiency of the solar cell. Also, the rear electrode-type structure can be applied to solar cells other than crystalline silicon solar cells, thereby eliminating limitation of size due to silicon ingots and thus obtaining the rear surface electrode-type solar cell having a large surface area.

Description

후면 전극형 태양전지 및 이의 제조 방법Back electrode solar cell and method for manufacturing same
본 발명은 후면 전극형 태양전지 및 이의 제조 방법에 관한 것이다.The present invention relates to a back electrode solar cell and a method of manufacturing the same.
최근 석유 또는 석탄과 같은 기존 에너지 자원에 대한 고갈이 예측되면서 이들을 대체할만한 대체 에너지에 대한 관심이 높아지고 있다. 그 중에서도 태양 에너지는 에너지 자원이 풍부하고 환경오염에 대한 문제점이 없어 특히 주목받고 있다. 태양 에너지의 이용방법으로는 태양열을 이용하여 터빈을 회전시키는 데에 필요한 증기를 발생시키는 태양열 에너지와, 반도체의 성질을 이용하여 태양광(photons)을 전기 에너지로 변환시키는 태양광 에너지가 있다.Recently, as the depletion of existing energy resources such as oil or coal is predicted, there is a growing interest in alternative energy to replace them. Among them, solar energy is particularly attracting attention because it is rich in energy resources and has no problems with environmental pollution. Solar energy uses solar energy to generate steam required to rotate a turbine using solar heat, and solar energy to convert photons into electrical energy using properties of a semiconductor.
태양광을 전기 에너지로 변환하는 태양전지는 다이오드와 같이 p형 반도체와 n형 반도체의 접합 구조를 가지며, 태양전지에 빛이 입사되면 빛과 반도체를 구성하는 물질과의 상호작용으로 (-) 전하를 띤 전자와 (+) 전하를 띤 정공이 발생하여 이들이 이동하면서 전류가 흐르게 된다.A solar cell that converts sunlight into electrical energy has a junction structure between a p-type semiconductor and an n-type semiconductor, like a diode. When light is incident on a solar cell, it interacts with the light and the materials that make up the semiconductor, resulting in a negative charge. Electrons and positively charged holes are generated, and as they move, current flows.
이를 광기전력효과(光起電力效果, photovoltaic effect)라 하는데, 태양전지를 구성하는 p형 및 n형 반도체 중 전자는 n형 반도체 쪽으로, 정공은 p형 반도체 쪽으로 끌어 당겨져 각각 n형 반도체 및 p형 반도체와 접합된 전극들로 이동하고, 이 전극들을 전선으로 연결하면 전기가 외부로 흐른다.This is called the photovoltaic effect. Among the p-type and n-type semiconductors constituting the solar cell, electrons are attracted to the n-type semiconductor and holes are pulled toward the p-type semiconductor, respectively. When they move to the electrodes bonded to the semiconductor and connect them with wires, electricity flows outward.
한편, 태양전지의 전면에 금속 그리드 및 투명 전극을 사용하지 않아도 된다는 장점, 그리고 시각적인 측면에서 배선이 없는 깔끔함을 느낄 수 있다는 장점 등의 이유로 후면 전극형 태양전지의 구조가 제안되었다. On the other hand, the structure of the back electrode solar cell has been proposed for the advantages of not using a metal grid and a transparent electrode on the front of the solar cell, and the advantage of being able to feel the neatness without wiring in the visual aspect.
그러나, 이러한 후면 전극형 태양전지는 전자, 정공의 이동도가 매우 좋은 결정질 실리콘 태양전지에만 적용될 수 있었다. 그리고, 결정질 실리콘 태양전지에 후면 전극형 구조를 적용하는 경우, 태양전지 제조를 위한 실리콘 잉곳(ingot)의 크기에 의해 전체 태양전지의 크기가 제한되는 문제점이 존재한다.However, these back electrode solar cells could be applied only to crystalline silicon solar cells with very good electron and hole mobility. In addition, when the back electrode type structure is applied to the crystalline silicon solar cell, there is a problem in that the size of the entire solar cell is limited by the size of the silicon ingot for manufacturing the solar cell.
본 발명은 상술한 종래 기술의 문제점을 해결하는 것을 그 목적으로 한다. The present invention aims to solve the above-mentioned problems of the prior art.
본 발명의 목적은 박막 태양전지에 대해서도 후면 전극형 구조를 적용할 수 있도록 하여, 투명 전극의 필요를 없애고 사 영역을 제거하는 것이다. An object of the present invention is to enable the back electrode type structure to be applied to a thin film solar cell, thereby eliminating the need for a transparent electrode and removing the dead area.
본 발명의 목적은 전자, 정공 이동도가 낮은 태양전지일지라도 큰 손실 없이 전자, 정공을 수집할 수 있도록 하는 것이다.It is an object of the present invention to collect electrons and holes without significant loss even in solar cells having low electron and hole mobility.
본 발명의 목적은 대면적의 후면 전극형 태양전지를 제조할 수 있도록 하는 것이다.An object of the present invention is to be able to manufacture a large area back electrode solar cell.
본 발명의 실시예에 따르면, 기판 후면에 형성되며, 양면 중 상기 기판과 접촉되지 않는 일면에 나노 구조의 패턴을 갖는 광전변환층; 상기 나노 구조 표면 상의 제1 영역에 형성되는 제1 전극; 상기 제1 전극 중 적어도 일부를 덮도록 형성되는 제1 절연층; 및 적어도 일부가 상기 나노 구조 표면 상의 제2 영역에 형성되되 상기 제1 전극과는 접하지 않도록 형성되는 제2 전극을 포함하는 후면 전극형 태양전지가 제공된다. According to an embodiment of the present invention, a photoelectric conversion layer which is formed on the rear surface of the substrate and has a nano-structured pattern on one surface of the two surfaces that are not in contact with the substrate; A first electrode formed in a first region on the nanostructure surface; A first insulating layer formed to cover at least a portion of the first electrode; And a second electrode formed at least partially in a second region on the surface of the nanostructure, but not formed in contact with the first electrode.
상기 나노 구조의 패턴은 복수의 볼록부를 가지며, 상기 제1 전극의 적어도 일부는 상기 볼록부의 제1 경사면에 형성되고, 상기 제2 전극의 적어도 일부는 상기 볼록부의 제2 경사면에 형성될 수 있다. The nanostructure pattern may have a plurality of convex portions, at least a portion of the first electrode may be formed on a first inclined surface of the convex portion, and at least a portion of the second electrode may be formed on a second inclined surface of the convex portion.
상기 제1 전극 및 상기 제2 전극은 극성을 결정하는 버퍼층을 포함할 수 있다.The first electrode and the second electrode may include a buffer layer that determines the polarity.
상기 광전변환층은 벌크 이종접합(bulk heterojunction) 구조의 광전변환층일 수 있다. The photoelectric conversion layer may be a photoelectric conversion layer having a bulk heterojunction structure.
상기 후면 전극형 태양전지는, 상기 제1 전극, 제1 절연층, 제2 전극이 형성된 상기 나노 구조 패턴의 전면에 형성되는 제2 절연층을 더 포함할 수 있다. The back electrode solar cell may further include a second insulating layer formed on an entire surface of the nanostructure pattern on which the first electrode, the first insulating layer, and the second electrode are formed.
상기 후면 전극형 태양전지는, 상기 제2 절연층 상에 형성되는 반사층을 더 포함할 수 있다. The back electrode solar cell may further include a reflective layer formed on the second insulating layer.
한편, 본 발명의 다른 실시예에 따르면, 기판 상에 나노 구조의 패턴을 갖는 광전변환층을 형성하는 단계; 상기 나노 구조 표면 상의 제1 영역 상에 제1 전극을 형성하는 단계; 상기 제1 전극 중 적어도 일부를 덮도록 제1 절연층을 형성하는 단계; 및 제2 전극을 형성하되 적어도 일부가 상기 나노 구조 표면 상의 제2 영역에 형성되되, 상기 제1 전극과는 접하지 않도록 형성하는 단계를 포함하는 후면 전극형 태양전지의 제조 방법이 제공된다.On the other hand, according to another embodiment of the present invention, forming a photoelectric conversion layer having a nanostructured pattern on the substrate; Forming a first electrode on a first region on the nanostructure surface; Forming a first insulating layer to cover at least a portion of the first electrode; And forming a second electrode, wherein at least a part of the second electrode is formed in a second region on the surface of the nanostructure, and is not in contact with the first electrode.
상기 나노 구조의 패턴은 복수의 볼록부를 가지며, 상기 제1 전극 형성 단계, 상기 제1 절연층 형성 단계 및 상기 제2 전극 형성 단계는, 상기 제1 전극, 상기 제1 절연층 및 상기 제2 전극의 증착각이 각각 제1 각도, 제2 각도 및 제3 각도를 이루도록 하는 경사 증착 방법에 의해 수행되고, 상기 증착각은 증착 방향과 상기 기판을 포함하는 평면이 이루는 각 중 예각일 수 있다. The nanostructured pattern has a plurality of convex portions, and the first electrode forming step, the first insulating layer forming step and the second electrode forming step may include the first electrode, the first insulating layer, and the second electrode. Is carried out by a gradient deposition method such that the deposition angles of the first and second deposition angles are the first, second, and third angles, respectively. The deposition angle may be an acute angle among angles formed by the deposition direction and the plane including the substrate.
상기 제1 각도는 상기 제2 각도와 상이하고, 상기 제3 각도는 상기 제2 각도와 상이할 수 있다. The first angle may be different from the second angle, and the third angle may be different from the second angle.
상기 제2 각도는 상기 제1 각도와 직각 사이의 각도일 수 있다. The second angle may be an angle between the first angle and a right angle.
상기 제1 전극의 증착 방향은 상기 볼록부의 제1 경사면을 향하고, 상기 제2 전극의 증착 방향은 상기 볼록부의 제2 경사면을 향할 수 있다. The deposition direction of the first electrode may face the first inclined surface of the convex portion, and the deposition direction of the second electrode may face the second inclined surface of the convex portion.
상기 광전변환층을 형성하는 단계는, 리소그래피 공정 또는 스트레칭 후 릴렉싱 공정에 의해 상기 나노 구조의 패턴을 형성하는 단계를 포함할 수 있다. The forming of the photoelectric conversion layer may include forming a pattern of the nanostructure by a lithography process or a stretching process after stretching.
상기 후면 전극형 태양전지의 제조 방법은, 상기 제1 전극, 제1 절연층, 제2 전극이 형성된 상기 나노 구조 패턴의 전면에 제2 절연층을 형성하는 단계를 더 포함할 수 있다. The method of manufacturing the back electrode solar cell may further include forming a second insulating layer on an entire surface of the nanostructure pattern on which the first electrode, the first insulating layer, and the second electrode are formed.
상기 후면 전극형 태양전지의 제조 방법은, 상기 제2 절연층 상에 반사층을 더 형성하는 단계를 더 포함할 수 있다. The manufacturing method of the back electrode solar cell may further include forming a reflective layer on the second insulating layer.
본 발명의 실시예에 따르면, 경사 증착을 이용하여 광전변환층의 나노 구조 상에 전극을 나노미터 단위의 간격으로 형성할 수 있으며, 이에 따라 전자, 정공 이동도가 낮은 태양전지에 대해서도 후면 전극형 구조를 적용할 수 있게 된다.   According to the embodiment of the present invention, the electrode may be formed on the nanostructure of the photoelectric conversion layer by using the gradient deposition at intervals of nanometers, and thus the rear electrode type may be used for solar cells having low electron and hole mobility. The structure can be applied.
본 발명의 실시예에 따르면, 후면 전극형 구조를 사용하기 때문에 투명 전극의 필요가 없어지게 되며, 이에 따라 박막 태양전지에서의 단위 셀의 크기 제한이 제거되고 사 영역이 사라지게 된다. 투명 전극의 필요를 없앰으로써 태양전지의 제조 단가를 절감할 수 있고, 사 영역 감소로 태양전지의 효율이 향상될 수 있다. According to the embodiment of the present invention, since the back electrode type structure is used, there is no need for the transparent electrode, thereby removing the size limitation of the unit cell in the thin film solar cell and disappearing the dead area. Eliminating the need for a transparent electrode can reduce the manufacturing cost of the solar cell, the efficiency of the solar cell can be improved by reducing the dead zone.
본 발명의 실시예에 따르면, 결정질 실리콘 외의 태양전지에도 후면 전극형 구조가 적용될 수 있기 때문에, 실리콘 잉곳으로 인한 크기 제한을 없앨 수 있고, 이에 따라 대면적화된 후면 전극형 태양전지가 얻어질 수 있다.According to the embodiment of the present invention, since the back electrode type structure can be applied to solar cells other than crystalline silicon, the size limitation due to the silicon ingot can be eliminated, and thus a large area back electrode type solar cell can be obtained. .
도 1은 본 발명의 실시예에 따른 후면 전극형 태양전지의 구성을 나타내는 단면도이다.  1 is a cross-sectional view showing the configuration of a back electrode solar cell according to an embodiment of the present invention.
도 2 내지 도 6은 본 발명의 실시예에 따른 후면 전극형 태양전지의 제조 과정을 설명하기 위한 공정도이다.2 to 6 is a process chart for explaining the manufacturing process of the back-electrode solar cell according to an embodiment of the present invention.
후술하는 본 발명에 대한 상세한 설명은, 본 발명이 실시될 수 있는 특정 실시예를 예시로서 도시하는 첨부 도면을 참조한다. 이들 실시예는 당업자가 본 발명을 실시할 수 있기에 충분하도록 상세히 설명된다. 본 발명의 다양한 실시예는 서로 다르지만 상호 배타적일 필요는 없음이 이해되어야 한다. 예를 들어, 여기에 기재되어 있는 특정 형상, 구조 및 특성은 일 실시예에 관련하여 본 발명의 정신 및 범위를 벗어나지 않으면서 다른 실시예로 구현될 수 있다. 또한, 각각의 개시된 실시예 내의 개별 구성요소의 위치 또는 배치는 본 발명의 정신 및 범위를 벗어나지 않으면서 변경될 수 있음이 이해되어야 한다. 따라서, 후술하는 상세한 설명은 한정적인 의미로서 취하려는 것이 아니며, 본 발명의 범위는, 적절하게 설명된다면, 그 청구항들이 주장하는 것과 균등한 모든 범위와 더불어 첨부된 청구항에 의해서만 한정된다. 도면에서 유사한 참조부호는 여러 측면에 걸쳐서 동일하거나 유사한 기능을 지칭한다. DETAILED DESCRIPTION The following detailed description of the invention refers to the accompanying drawings that show, by way of illustration, specific embodiments in which the invention may be practiced. These embodiments are described in sufficient detail to enable those skilled in the art to practice the invention. It should be understood that the various embodiments of the present invention are different but need not be mutually exclusive. For example, certain shapes, structures, and characteristics described herein may be embodied in other embodiments without departing from the spirit and scope of the invention with respect to one embodiment. In addition, it is to be understood that the location or arrangement of individual components within each disclosed embodiment may be changed without departing from the spirit and scope of the invention. The following detailed description, therefore, is not to be taken in a limiting sense, and the scope of the present invention, if properly described, is defined only by the appended claims, along with the full range of equivalents to which such claims are entitled. Like reference numerals in the drawings refer to the same or similar functions throughout the several aspects.
이하에서는, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명을 용이하게 실시할 수 있도록 하기 위하여, 본 발명의 바람직한 실시예들에 관하여 첨부된 도면을 참조하여 상세히 설명하기로 한다. DETAILED DESCRIPTION Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art can easily implement the present invention.
[본 발명의 바람직한 실시예] [Preferred Embodiments of the Invention]
본 명세서에서, "나노"라는 것은 수십 내지 수백 나노미터 레벨 또는 수 마이크로 미터 정도의 레벨을 통칭하는 개념이다. 예를 들어, "나노미터 단위의 간격"이라는 용어는 수 내지 수백 나노미터 간격, 수 마이크로 미터 간격, 서브 마이크론 레벨의 간격의 의미를 모두 포함하는 개념이다. 즉, 본 명세서에서, "나노" 크기라는 것은 "나노-서브 마이크론" 크기를 모두 포함하여 칭하는 개념으로 이해되어야 한다. As used herein, the term "nano" is a concept that collectively refers to a level of several tens to hundreds of nanometers or a few micrometers. For example, the term "interval in nanometers" is a concept that encompasses the meaning of intervals of several to several hundred nanometers, intervals of several micrometers, and submicron levels. That is, in this specification, "nano" size is to be understood as a concept that includes both "nano-submicron" sizes.
도 1은 본 발명의 일 실시예에 따른 후면 전극형 태양전지의 구성을 나타내는 단면도이다.1 is a cross-sectional view showing the configuration of a back electrode solar cell according to an embodiment of the present invention.
도 1을 참조하면, 본 발명의 후면 전극형 태양전지는 기판(100) 배면에 형성되며 미세 요철 구조를 갖는 광전변환층(200), 광전변환층(200)의 미세 요철 구조 상에 형성되는 제1 전극(300), 제1 절연층(400), 제2 전극(500), 제2 절연층(600), 반사층(700)을 포함할 수 있다. Referring to FIG. 1, the back electrode solar cell of the present invention is formed on the back surface of the substrate 100 and is formed on the photoresist layer 200 having a fine concavo-convex structure, and the micro concave-convex structure of the photoconversion layer 200. The first electrode 300, the first insulating layer 400, the second electrode 500, the second insulating layer 600, and the reflective layer 700 may be included.
본 발명의 후면 전극형 태양전지에 있어서는 기판(100) 배면에 광전변환층(200)이 형성되고, 광전변환층(200)에 형성된 미세 요철 구조 상에 제1 전극(300)과 제2 전극(500)이 모두 증착된다. 즉, 제1 전극(300)과 제2 전극(500)이 모두 전체 태양전지 모듈의 후면에 형성될 수 있다. In the back electrode solar cell of the present invention, the photoelectric conversion layer 200 is formed on the back surface of the substrate 100, and the first electrode 300 and the second electrode are formed on the fine uneven structure formed in the photoelectric conversion layer 200. 500) are all deposited. That is, both the first electrode 300 and the second electrode 500 may be formed on the rear surface of the entire solar cell module.
본 발명의 실시예에 따른 광전변환층(200)에 형성된 요철 구조는 나노 구조의 패턴이다. 즉, 각 요철 간의 간격은 수 나노미터 이하이다. 도면에 도시되는 바와 같이, 각 요철 구조에는 제1 전극(300)과 제2 전극(500)이 모두 형성되는데, 이에 따라, 제1 전극(300)과 제2 전극(500) 간의 간격은 수십 내지 수백 나노미터 이하가 된다. 예를 들어, 유기 태양전지로 구현되는 경우에는 인접하는 전극(300, 500) 간 간격이 약 수십 내지 수백 나노미터 수준이 될 수 있을 것이고, 무기 태양전지로 구현되는 경우에는 인접 전극(300, 500) 간 간격이 수 마이크론 정도로 될 수 있을 것이다. 통상적으로 후면 전극형 구조는 전자, 정공 이동도가 높은 태양전지에 적용할 수 있었으나, 전술한 바와 같이, 제1 전극(300)과 제2 전극(500) 간 간격이 나노미터 단위이므로 전자, 정공 이동도가 낮은 태양전지일지라도 후면 전극형 구조가 가능해질 수 있다.The uneven structure formed in the photoelectric conversion layer 200 according to the embodiment of the present invention is a pattern of nano structure. In other words, the interval between the unevennesses is several nanometers or less. As shown in the figure, each uneven structure is formed with both the first electrode 300 and the second electrode 500, accordingly, the interval between the first electrode 300 and the second electrode 500 is several tens to Hundreds of nanometers or less. For example, when the organic solar cell is implemented, the distance between the adjacent electrodes 300 and 500 may be about several tens to hundreds of nanometers, and when the inorganic solar cell is implemented, the adjacent electrodes 300 and 500 may be used. The spacing between them may be several microns. In general, the back electrode structure may be applied to solar cells having high electron and hole mobility, but as described above, since the distance between the first electrode 300 and the second electrode 500 is in nanometer units, Even a low mobility solar cell may enable a back electrode type structure.
한편, 후면 전극형 구조로 구현됨에 따라 통상적인 태양전지 구조에서 사용되었던 투명전극이 없어지게 되었다. 투명 전극이 존재하게 되면, 면 저항이 증가로 인한 단위전지의 크기 제한이 따르게 되고, 이에 의해 단위 전지를 연결하는 부분이 실제 광전변환 동작을 하지 않는 사(死) 영역이 되기 때문에, 전체 태양전지 모듈 면적 대비 그 효율이 저하될 수밖에 없었다. 그러나, 본 발명의 실시예는 후면 전극형 구조를 채용하고 있기 때문에 투명 전극의 필요가 없어지게 되고, 사 영역이 사라지게 되며, 태양전지의 면적 대비 효율 저하가 방지될 수 있다. 또한, 투명 전극의 미사용으로 제조 단가도 절감될 수 있다.Meanwhile, as the back electrode type structure is implemented, the transparent electrode used in the conventional solar cell structure is lost. When the transparent electrode is present, the size limit of the unit cell due to the increase in the surface resistance is followed, whereby the portion connecting the unit cell becomes a dead zone in which no actual photoelectric conversion operation is performed. The efficiency was inevitably reduced compared to the module area. However, since the embodiment of the present invention employs the rear electrode type structure, the need for the transparent electrode is eliminated, the yarn area disappears, and the decrease in efficiency relative to the area of the solar cell can be prevented. In addition, the manufacturing cost can be reduced by not using the transparent electrode.
이하에서는, 본 발명의 실시예에 따른 후면 전극형 태양전지의 제조 과정 및 각 구성요소에 대해 상세히 설명하기로 한다.Hereinafter, the manufacturing process and each component of the back electrode solar cell according to the embodiment of the present invention will be described in detail.
도 2 내지 도 6은 본 발명의 실시예에 따른 후면 전극형 태양전지의 제조 과정을 설명하는 공정도이다. 2 to 6 is a process chart illustrating a manufacturing process of a back electrode solar cell according to an embodiment of the present invention.
먼저, 도 2를 참조하면, 기판(100) 상에 광전변환층(200)을 증착한다. 광전변환층(200)은 바람직하게는 벌크 이종접합(bulk heterojunction) 구조의 유기 광전변환층일 수 있으나, 이와는 다른 종류 및 형태로 구현되는 광전변환층일 수도 있다. 광을 흡수하여 이를 전기 에너지로 변환할 수 있는 구조이면 본 발명의 광전변환층(200)으로 이용될 수 있다.First, referring to FIG. 2, the photoelectric conversion layer 200 is deposited on the substrate 100. The photoelectric conversion layer 200 may preferably be an organic photoelectric conversion layer having a bulk heterojunction structure, but may also be a photoelectric conversion layer implemented in a different kind and form. Any structure that can absorb light and convert it into electrical energy can be used as the photoelectric conversion layer 200 of the present invention.
도 2에 도시되는 바와 같이, 광전변환층(200) 상에는 나노 패턴의 요철 구조가 형성될 수 있다. 즉, 광전변환층(200)의 양면 중 기판(100)과 접하는 면의 타면에는 나노미터 단위 간격으로 요철 구조가 형성된다. 나노 구조의 패턴은 소정 간격(일정 또는 불일정)으로 형성되는 볼록부(B) 및 오목부(O)를 포함할 수 있다. 이러한 나노 구조의 패턴은 리소그래피 공정(포토 리소그래피 또는 소프트 리소그래피) 등에 의해 형성될 수 있다. 또한, 이와는 다른 방법으로 광전변환층(200)을 스트레칭(stretching) 후 릴렉싱(relaxing) 시키는 방식으로 해당 나노 구조를 형성시킬 수도 있다. 스트레칭으로서 늘어난 광전변환층(200)이 릴렉싱 과정에서 다시 줄어듦으로써, 자연스럽게 나노 구조의 굴곡이 형성될 수 있다.As shown in FIG. 2, a nano pattern uneven structure may be formed on the photoelectric conversion layer 200. That is, the concave-convex structure is formed on the other surface of both surfaces of the photoelectric conversion layer 200 in contact with the substrate 100 at intervals of nanometers. The nanostructure pattern may include a convex portion B and a concave portion O formed at predetermined intervals (constant or irregular). Such nanostructured patterns may be formed by lithography processes (photolithography or soft lithography) or the like. In addition, the nanostructure may be formed by stretching and relaxing the photoelectric conversion layer 200 by a different method. As the photoelectric conversion layer 200 stretched as a stretch decreases again in the relaxing process, a naturally curved structure may be formed.
도 3을 참조하면, 광전변환층(200)의 나노 구조 상에 제1 전극(300)을 형성한다. 광전변환층(200)의 나노 구조는 소정 간격으로 형성된 볼록부(B)를 포함할 수 있는데, 볼록부(B) 중 제1 영역 상에는 제1 전극(300)이 형성되고, 제2 영역 상에는 제2 전극(500; 도 5 참조)이 형성되어야 한다. 따라서, 제1 영역과 제2 영역 간의 확실한 분리 및 이분화를 위해 본 발명의 실시예에서는 경사 증착 방식을 이용하여 제1 전극(300)을 증착한다. 도 3에 도시되는 바와 같이 광전변환층(200)의 나노 구조가 예를 들어 제1 방향의 경사면과 제2 방향의 경사면을 포함하는 경우, 경사 증착 방식에 의해 제1 전극(300)의 대부분이 제1 방향의 경사면에 형성될 수 있다. 제1 전극(300)은 제1 극성을 나타나게 하는 버퍼층을 포함할 수 있다. 제1 전극(300)은 전도성 금속 또는 전도성 산화물 등의 전도성 물질로 이루어질 수 있다.Referring to FIG. 3, the first electrode 300 is formed on the nanostructure of the photoelectric conversion layer 200. The nanostructure of the photoelectric conversion layer 200 may include a convex portion B formed at predetermined intervals. The first electrode 300 is formed on the first region of the convex portion B, and the second structure is formed on the second region. 2 electrodes 500 (see FIG. 5) should be formed. Accordingly, in order to ensure separation and dividing between the first region and the second region, the first electrode 300 is deposited using a gradient deposition method in the embodiment of the present invention. As shown in FIG. 3, when the nanostructure of the photoelectric conversion layer 200 includes, for example, an inclined surface in a first direction and an inclined surface in a second direction, most of the first electrode 300 may be inclined. It may be formed on the inclined surface in the first direction. The first electrode 300 may include a buffer layer to exhibit a first polarity. The first electrode 300 may be made of a conductive material such as a conductive metal or a conductive oxide.
도 4를 참조하면, 제1 영역 상에 제1 전극(300)이 형성된 나노 구조 상에 제1 절연층(400)을 형성한다. 제1 절연층(400)은 제1 전극(300)과 추후 증착될 제2 전극(500; 도 5 참조) 간의 절연을 위해 형성되는 것으로, 제1 절연층(400)은 나노 구조 상에 형성된 제1 전극(300) 중 적어도 일부를 덮도록 형성한다. 그러나, 제1 전극(300)을 모두 덮도록 형성하는 것이 바람직하다. 즉, 제1 전극(300) 모두는 제1 절연층(400)에 의해 모두 감싸여질 수 있다. 그러나, 추후 나노 구조의 표면 중 적어도 일부에 제2 전극(500; 도 5 참조)이 증착되어야 하므로 나노 구조의 표면을 모두 덮어서는 안된다. 따라서, 제1 절연층(400) 또한 경사 증착 방법에 의해 증착되는 것이 바람직하다. 제1 절연층(400) 증착을 위한 경사 증착 시의 증착각은 제1 전극(300) 중 적어도 일부 또는 모두를 덮되, 나노 구조를 모두 덮지는 않도록 제1 전극(300)의 증착 시와는 다른 각도로 선택될 수 있다. 여기서, 증착각은 증착 방향(화살표 방향)과 기판(100)을 포함하는 평면이 이루는 각도 중 예각인 것으로 정의한다. 즉, 제1 전극(300) 증착 시의 증착각이 제1 각도였다면, 제1 절연층(400) 증착 시의 증착각은 제2 각도일 수 있다. 제2 각도는 제1 각도보다 직각(90ㅀ)에 가까운 각도일 수 있다. 그러나, 향후 제2 전극(500; 도 5 참조) 증착 시 제2 전극(500; 도 5 참조)과 광전변환층(200)의 표면간 접촉 면적이 있어야 하기 때문에, 제2 각도는 제1 각도와 직각(90ㅀ) 사이의 각도로 선택되는 것이 바람직하다. 제1 절연층(400)은 예를 들면 소정의 수지로 이루어질 수 있으나, 이에 제한되지는 않는다. Referring to FIG. 4, a first insulating layer 400 is formed on a nanostructure in which a first electrode 300 is formed on a first region. The first insulating layer 400 is formed to insulate between the first electrode 300 and the second electrode 500 to be deposited later (see FIG. 5), and the first insulating layer 400 is formed on the nanostructure. The first electrode 300 may be formed to cover at least a portion thereof. However, it is preferable to form the first electrode 300 to cover all of them. That is, all of the first electrodes 300 may be surrounded by all of the first insulating layers 400. However, since the second electrode 500 (see FIG. 5) must be deposited on at least a part of the surface of the nanostructure, the surface of the nanostructure may not be covered. Therefore, it is preferable that the first insulating layer 400 is also deposited by a gradient deposition method. The deposition angle during the gradient deposition for the deposition of the first insulating layer 400 may be different from that of the deposition of the first electrode 300 to cover at least some or all of the first electrodes 300, but not to cover all of the nanostructures. Can be selected in degrees. Here, the deposition angle is defined as an acute angle among angles formed by the deposition direction (arrow direction) and the plane including the substrate 100. That is, if the deposition angle when the first electrode 300 is deposited is the first angle, the deposition angle when the first insulating layer 400 is deposited may be the second angle. The second angle may be an angle closer to the right angle (90 °) than the first angle. However, since the contact area between the surface of the second electrode 500 (see FIG. 5) and the photoelectric conversion layer 200 should be present when the second electrode 500 (see FIG. 5) is deposited in the future, the second angle is equal to the first angle. It is preferable to select at an angle between right angles (90 degrees). The first insulating layer 400 may be made of, for example, a predetermined resin, but is not limited thereto.
도 5를 참조하면, 제1 절연층(400)이 형성된 나노 구조 상에 제2 전극(500)을 형성한다. 제2 전극(500)은 광전변환층(200)의 나노 구조 상에 형성되되, 그 적어도 일부가 광전변환층(200)의 표면, 즉, 나노 구조의 표면 상에 형성되어야 한다. 즉, 제2 전극(500)의 적어도 일부는 광전변환층(200)의 나노 구조 표면 중 제1 절연층(400)으로 덮여지지 않은 노출 영역에 형성되어야 한다. 또한, 제1 절연층(400)에 의해 제1 전극(300)이 모두 감싸여지지 않은 경우에, 제2 전극(500)은 제1 전극(300)과 접하지 않도록 형성되어야 한다. 이를 위해 제2 전극(500) 또한 경사 증착 방법에 의해 증착될 수 있다. 전술한 바와 같이, 광전변환층(200)의 나노 구조는 소정 간격으로 형성된 볼록부(B)를 포함할 수 있는데, 예를 들어, 제1 전극(300) 형성 시의 증착 방향이 볼록부(B)의 제1 경사면을 향한다면, 제2 전극(500)의 형성 시 증착 방향은 볼록부(B)의 제2 경사면을 향할 수 있다. 또한, 제1 전극(300) 증착 시의 증착각을 제1 각도, 제1 절연층(400) 증착 시의 증착각을 제2 각도, 제2 전극(500) 증착 시의 증착각을 제3 각도라고 한다면, 상기 제1 각도와 제2 각도는 서로 다르고, 제2 각도와 제3 각도는 서로 다를 수 있다. 제1 각도와 제3 각도는 동일할 수도 있고, 상이할 수도 있다. 한편, 제2 전극(500)은 전극이 제2 극성을 나타나게 하는 버퍼층을 포함할 수 있다. 제2 전극(500)은 전도성 금속 또는 전도성 산화물 등의 전도성 물질로 이루어질 수 있다.Referring to FIG. 5, the second electrode 500 is formed on the nanostructure on which the first insulating layer 400 is formed. The second electrode 500 is formed on the nanostructure of the photoelectric conversion layer 200, and at least a part thereof should be formed on the surface of the photoelectric conversion layer 200, that is, the surface of the nanostructure. That is, at least a part of the second electrode 500 should be formed in an exposed area not covered with the first insulating layer 400 of the nanostructure surface of the photoelectric conversion layer 200. In addition, when the first electrode 300 is not entirely enclosed by the first insulating layer 400, the second electrode 500 should be formed so as not to contact the first electrode 300. To this end, the second electrode 500 may also be deposited by a gradient deposition method. As described above, the nanostructure of the photoelectric conversion layer 200 may include a convex portion B formed at predetermined intervals. For example, the deposition direction when the first electrode 300 is formed is the convex portion B. FIG. If facing toward the first inclined surface, the deposition direction when forming the second electrode 500 may be directed to the second inclined surface of the convex portion (B). In addition, the deposition angle at the time of depositing the first electrode 300 is a first angle, the deposition angle at the time of depositing the first insulating layer 400 is a second angle, and the deposition angle at the time of depositing the second electrode 500 is a third angle. In this case, the first angle and the second angle may be different from each other, and the second angle and the third angle may be different from each other. The first angle and the third angle may be the same or different. Meanwhile, the second electrode 500 may include a buffer layer to allow the electrode to exhibit a second polarity. The second electrode 500 may be made of a conductive material such as a conductive metal or a conductive oxide.
도 6을 참조하면, 제1 전극(300), 제1 절연층(400), 제2 전극(500)이 증착된 나노 패턴의 전면에 제2 절연층(600)을 더 증착할 수 있다. 또한, 기판(100)을 통해 입사되어 광전변환층(200)을 투과한 광이 다시 광전변환층(200) 방향으로 반사될 수 있도록 하는 반사층(700)을 더 증착할 수도 있다. 상기 제2 절연층(600)은 소정의 수지, 바람직하게는 광투과성을 갖는 수지로 이루어질 수 있다. 제2 절연층(600) 또는 반사층(700) 중 적어도 하나는 본 발명의 실시예에 따른 태양전지에서 생략될 수도 있다. Referring to FIG. 6, a second insulating layer 600 may be further deposited on the entire surface of the nano pattern on which the first electrode 300, the first insulating layer 400, and the second electrode 500 are deposited. In addition, a reflective layer 700 may be further deposited so that light incident through the substrate 100 and transmitted through the photoelectric conversion layer 200 may be reflected back to the photoelectric conversion layer 200. The second insulating layer 600 may be made of a predetermined resin, preferably a resin having light transmittance. At least one of the second insulating layer 600 or the reflective layer 700 may be omitted in the solar cell according to the embodiment of the present invention.
전술한 바와 같이, 통상적으로 후면 전극형 구조는 전자, 정공 이동도가 좋은 결정질 실리콘 태양전지에 대해서만 적용되었었다. 이러한 태양전지에 있어서는 웨이퍼 형성을 위한 실리콘 잉곳(ingot)의 크기에 의해 태양전지의 크기가 제한되었었다. As described above, the back electrode type structure has been generally applied only to crystalline silicon solar cells having good electron and hole mobility. In such a solar cell, the size of the solar cell was limited by the size of a silicon ingot for forming a wafer.
그러나, 본 발명의 후면 전극형 태양전지에 따르면, 후면 전극 구조를 사용하면서도 기판의 크기가 전체 태양전지 모듈의 크기를 결정하게 된다. 따라서, 대면적의 후면 전극 구조 태양전지 생산이 가능해질 수 있다. However, according to the back electrode solar cell of the present invention, the size of the substrate determines the size of the entire solar cell module while using the back electrode structure. Therefore, the large-area back electrode structure solar cell can be produced.
이상에서 본 발명이 구체적인 구성요소 등과 같은 특정 사항들과 한정된 실시예 및 도면에 의해 설명되었으나, 이는 본 발명의 보다 전반적인 이해를 돕기 위해서 제공된 것일 뿐, 본 발명이 상기 실시예들에 한정되는 것은 아니며, 본 발명이 속하는 기술분야에서 통상적인 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형을 꾀할 수 있다. Although the present invention has been described by specific embodiments such as specific components and the like, but the embodiments and the drawings are provided to assist in a more general understanding of the present invention, the present invention is not limited to the above embodiments. For those skilled in the art, various modifications and variations can be made from these descriptions.
따라서, 본 발명의 사상은 상기 설명된 실시예에 국한되어 정해져서는 아니되며, 후술하는 특허청구범위뿐만 아니라 이 특허청구범위와 균등하게 또는 등가적으로 변형된 모든 것들은 본 발명의 사상의 범주에 속한다고 할 것이다.Therefore, the spirit of the present invention should not be limited to the embodiments described above, and all of the equivalents or equivalents of the claims, as well as the claims below, are included in the scope of the spirit of the present invention. I will say.
본 발명은 태양전지의 제조에 적용된다.  The present invention is applied to the manufacture of solar cells.

Claims (14)

  1. 기판 후면에 형성되며, 양면 중 상기 기판과 접촉되지 않는 일면에 나노 구조의 패턴을 갖는 광전변환층; A photoelectric conversion layer formed on a rear surface of the substrate and having a nanostructured pattern on one surface of the two surfaces that do not contact the substrate;
    상기 나노 구조 표면 상의 제1 영역에 형성되는 제1 전극; A first electrode formed in a first region on the nanostructure surface;
    상기 제1 전극 중 적어도 일부를 덮도록 형성되는 제1 절연층; 및A first insulating layer formed to cover at least a portion of the first electrode; And
    적어도 일부가 상기 나노 구조 표면 상의 제2 영역에 형성되되 상기 제1 전극과는 접하지 않도록 형성되는 제2 전극을 포함하는 후면 전극형 태양전지. And at least a portion of the second electrode formed in a second region on the surface of the nanostructure but not in contact with the first electrode.
  2. 청구항 1에 있어서,The method according to claim 1,
    상기 나노 구조의 패턴은 복수의 볼록부를 가지며, The nanostructured pattern has a plurality of convex portions,
    상기 제1 전극의 적어도 일부는 상기 볼록부의 제1 경사면에 형성되고, 상기 제2 전극의 적어도 일부는 상기 볼록부의 제2 경사면에 형성되는 후면 전극형 태양전지. At least a portion of the first electrode is formed on the first inclined surface of the convex portion, and at least a portion of the second electrode is formed on the second inclined surface of the convex portion solar cell.
  3. 청구항 1에 있어서,The method according to claim 1,
    상기 제1 전극 및 상기 제2 전극은 극성을 결정하는 버퍼층을 포함하는 후면 전극형 태양전지. The first electrode and the second electrode of the back electrode type solar cell including a buffer layer for determining the polarity.
  4. 제1항에 있어서,The method of claim 1,
    상기 광전변환층은 벌크 이종접합(bulk heterojunction) 구조의 광전변환층인 태양전지. The photovoltaic layer is a photovoltaic cell having a bulk heterojunction structure.
  5. 청구항 1에 있어서,The method according to claim 1,
    상기 제1 전극, 제1 절연층, 제2 전극이 형성된 상기 나노 구조 패턴의 전면에 형성되는 제2 절연층을 더 포함하는 후면 전극형 태양전지. And a second insulating layer formed on a front surface of the nanostructure pattern on which the first electrode, the first insulating layer, and the second electrode are formed.
  6. 청구항 5에 있어서,The method according to claim 5,
    상기 제2 절연층 상에 형성되는 반사층을 더 포함하는 후면 전극형 태양전지. A back electrode solar cell further comprising a reflective layer formed on the second insulating layer.
  7. 기판 상에 나노 구조의 패턴을 갖는 광전변환층을 형성하는 단계;Forming a photoelectric conversion layer having a nanostructured pattern on the substrate;
    상기 나노 구조 표면 상의 제1 영역 상에 제1 전극을 형성하는 단계; Forming a first electrode on a first region on the nanostructure surface;
    상기 제1 전극 중 적어도 일부를 덮도록 제1 절연층을 형성하는 단계; 및Forming a first insulating layer to cover at least a portion of the first electrode; And
    제2 전극을 형성하되 적어도 일부가 상기 나노 구조 표면 상의 제2 영역에 형성되되, 상기 제1 전극과는 접하지 않도록 형성하는 단계를 포함하는 후면 전극형 태양전지의 제조 방법. A method of manufacturing a back-electrode solar cell comprising forming a second electrode, at least a portion of which is formed in a second region on the surface of the nanostructure, but not in contact with the first electrode.
  8. 청구항 7에 있어서, The method according to claim 7,
    상기 나노 구조의 패턴은 복수의 볼록부를 가지며, The nanostructured pattern has a plurality of convex portions,
    상기 제1 전극 형성 단계, 상기 제1 절연층 형성 단계 및 상기 제2 전극 형성 단계는,The first electrode forming step, the first insulating layer forming step and the second electrode forming step,
    상기 제1 전극, 상기 제1 절연층 및 상기 제2 전극의 증착각이 각각 제1 각도, 제2 각도 및 제3 각도를 이루도록 하는 경사 증착 방법에 의해 수행되고, The deposition angle of the first electrode, the first insulating layer, and the second electrode is performed by a gradient deposition method such that the first angle, the second angle, and the third angle are respectively formed;
    상기 증착각은 증착 방향과 상기 기판을 포함하는 평면이 이루는 각 중 예각인 후면 전극형 태양전지의 제조 방법. The deposition angle is a method of manufacturing a back-electrode solar cell is an acute angle of the angle between the deposition direction and the plane comprising the substrate.
  9. 청구항 8에 있어서, The method according to claim 8,
    상기 제1 각도는 상기 제2 각도와 상이하고, 상기 제3 각도는 상기 제2 각도와 상이한 후면 전극형 태양전지의 제조 방법. And the first angle is different from the second angle, and the third angle is different from the second angle.
  10. 청구항 9에 있어서, The method according to claim 9,
    상기 제2 각도는 상기 제1 각도와 직각 사이의 각도인 후면 전극형 태양전지의 제조 방법. And the second angle is an angle between the first angle and a right angle.
  11. 청구항 8에 있어서, The method according to claim 8,
    상기 제1 전극의 증착 방향은 상기 볼록부의 제1 경사면을 향하고, 상기 제2 전극의 증착 방향은 상기 볼록부의 제2 경사면을 향하는 후면 전극형 태양전지의 제조 방법. And a deposition direction of the first electrode faces a first inclined surface of the convex portion, and a deposition direction of the second electrode faces a second inclined surface of the convex portion.
  12. 청구항 7에 있어서,The method according to claim 7,
    상기 광전변환층을 형성하는 단계는, 리소그래피 공정 또는 스트레칭 후 릴렉싱 공정에 의해 상기 나노 구조의 패턴을 형성하는 단계를 포함하는 후면 전극형 태양전지의 제조 방법. The forming of the photoelectric conversion layer may include forming the nanostructured pattern by a lithography process or a stretching process after stretching.
  13. 청구항 7에 있어서,The method according to claim 7,
    상기 제1 전극, 제1 절연층, 제2 전극이 형성된 상기 나노 구조 패턴의 전면에 제2 절연층을 형성하는 단계를 더 포함하는 후면 전극형 태양전지의 제조 방법.And forming a second insulating layer on the entire surface of the nanostructure pattern on which the first electrode, the first insulating layer, and the second electrode are formed.
  14. 청구항 13에 있어서,The method according to claim 13,
    상기 제2 절연층 상에 반사층을 더 형성하는 단계를 더 포함하는 후면 전극형 태양전지의 제조 방법. The method of manufacturing a back electrode solar cell further comprising the step of forming a reflective layer on the second insulating layer.
PCT/KR2012/007159 2011-11-18 2012-09-06 Rear surface electrode-type solar cell and method for manufacturing same WO2013073769A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020110120691A KR101218576B1 (en) 2011-11-18 2011-11-18 Back contact solar cell and method for manufacturing the same
KR10-2011-0120691 2011-11-18

Publications (1)

Publication Number Publication Date
WO2013073769A1 true WO2013073769A1 (en) 2013-05-23

Family

ID=47841184

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/007159 WO2013073769A1 (en) 2011-11-18 2012-09-06 Rear surface electrode-type solar cell and method for manufacturing same

Country Status (2)

Country Link
KR (1) KR101218576B1 (en)
WO (1) WO2013073769A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10093821B2 (en) 2013-10-22 2018-10-09 Dow Global Technologies Llc Aqueous coating composition and process of making the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106637141B (en) * 2017-01-20 2019-08-27 广东爱康太阳能科技有限公司 A kind of solar battery coated graphite boat piece and graphite boat
KR101976918B1 (en) * 2017-03-24 2019-05-10 한국과학기술원 Lossless Photovoltaic System using Patterned Array and Method of Manufacturing thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060115994A (en) * 2003-10-02 2006-11-13 슈텐 글라스 그룹 Spherical or grain-shaped semiconductor element for use in solar cells and method for producing the same method for producing a solar cell comprising said semiconductor element and solar cell
KR20110073090A (en) * 2009-12-23 2011-06-29 한국과학기술원 A method for manufacturing solar cells using silicon balls and the solar cells manufactured by the same
KR20110077769A (en) * 2009-12-30 2011-07-07 주식회사 효성 Tubular type solar cell module

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101023144B1 (en) 2004-02-26 2011-03-18 삼성에스디아이 주식회사 Solar cell using layer transfer process and fabrication method thereof
KR101437860B1 (en) * 2008-03-23 2014-09-12 주식회사 뉴파워 프라즈마 Solar cell device porous antireflection layer and method of manufacture
KR101578356B1 (en) * 2009-02-25 2015-12-17 엘지전자 주식회사 Back contact solar cell and Manufacturing method thereof
KR101153376B1 (en) * 2009-07-27 2012-06-07 주식회사 효성 Back contact solar cells and method for manufacturing thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060115994A (en) * 2003-10-02 2006-11-13 슈텐 글라스 그룹 Spherical or grain-shaped semiconductor element for use in solar cells and method for producing the same method for producing a solar cell comprising said semiconductor element and solar cell
KR20110073090A (en) * 2009-12-23 2011-06-29 한국과학기술원 A method for manufacturing solar cells using silicon balls and the solar cells manufactured by the same
KR20110077769A (en) * 2009-12-30 2011-07-07 주식회사 효성 Tubular type solar cell module

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10093821B2 (en) 2013-10-22 2018-10-09 Dow Global Technologies Llc Aqueous coating composition and process of making the same

Also Published As

Publication number Publication date
KR101218576B1 (en) 2013-01-21

Similar Documents

Publication Publication Date Title
WO2009104899A2 (en) Method of etching asymmetric wafer, solar cell including the asymmetrically etched wafer, and method of manufacturing the same
WO2011030978A1 (en) Solar cell
WO2010101350A2 (en) Solar cell and method of manufacturing the same
WO2011122853A2 (en) Solar photovoltaic device and a production method for the same
WO2011004950A1 (en) Solar cell module having interconnector and method of fabricating the same
WO2010013972A2 (en) Solar cell and method for manufacturing the same
WO2013027975A1 (en) Solar cell and method for manufacturing same
US8217259B2 (en) Enhanced efficiency solar cells and method of manufacture
WO2011136447A1 (en) Solar cell and method for manufacturing the same
WO2015119380A1 (en) Solar cell with improved visibility and method for manufacturing same
WO2012033274A1 (en) Device for generating solar power and method for manufacturing same
WO2015056934A1 (en) Solar cell module
WO2013073769A1 (en) Rear surface electrode-type solar cell and method for manufacturing same
WO2012093845A2 (en) Solar cells and manufacturing method thereof
WO2012157853A2 (en) Silicon solar cell and fabrication method thereof
WO2011129503A1 (en) Solar cell and method for manufacturing the same
WO2013055008A1 (en) Solar cell and solar cell module
WO2012015286A2 (en) Device for generating photovoltaic power and manufacturing method for same
WO2011004929A1 (en) Method for manufacturing color-design solar cell
WO2011002130A1 (en) Solar cell and method of manufacturing the same
WO2012057604A1 (en) Nanostructure-based photovoltaic cell
WO2012036364A1 (en) Solar photovoltaic device and a production method therefor
WO2011004937A1 (en) Solar cell and method of manufacturing the same
WO2012046932A1 (en) Solar cell and method for manufacturing same
WO2022114394A1 (en) Photosensor having 2d-3d heterojunction structure, and manufacturing method therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12849793

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12849793

Country of ref document: EP

Kind code of ref document: A1