WO2013073658A9 - Method for producing acetal compound - Google Patents

Method for producing acetal compound Download PDF

Info

Publication number
WO2013073658A9
WO2013073658A9 PCT/JP2012/079756 JP2012079756W WO2013073658A9 WO 2013073658 A9 WO2013073658 A9 WO 2013073658A9 JP 2012079756 W JP2012079756 W JP 2012079756W WO 2013073658 A9 WO2013073658 A9 WO 2013073658A9
Authority
WO
WIPO (PCT)
Prior art keywords
compound
carbon dioxide
group
acetal
carbonyl
Prior art date
Application number
PCT/JP2012/079756
Other languages
French (fr)
Japanese (ja)
Other versions
WO2013073658A1 (en
Inventor
卓 本九町
井上 敏夫
Original Assignee
国立大学法人長崎大学
Jx日鉱日石エネルギー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人長崎大学, Jx日鉱日石エネルギー株式会社 filed Critical 国立大学法人長崎大学
Publication of WO2013073658A1 publication Critical patent/WO2013073658A1/en
Publication of WO2013073658A9 publication Critical patent/WO2013073658A9/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C41/00Preparation of ethers; Preparation of compounds having groups, groups or groups
    • C07C41/48Preparation of compounds having groups
    • C07C41/50Preparation of compounds having groups by reactions producing groups
    • C07C41/56Preparation of compounds having groups by reactions producing groups by condensation of aldehydes, paraformaldehyde, or ketones
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D317/00Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms
    • C07D317/08Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3
    • C07D317/10Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 not condensed with other rings
    • C07D317/12Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 not condensed with other rings with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, directly attached to ring carbon atoms
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Definitions

  • the present invention relates to a method for producing an acetal compound. Specifically, the present invention relates to a method for producing an acetal compound by reacting an organic compound having a carbonyl group and an organic compound having a hydroxyl group in the presence of supercritical carbon dioxide.
  • the acetal compound is usually produced by using an organic compound such as an aldehyde having a carbonyl group or a ketone and a lower alcohol as a raw material and adding a catalyst or contacting with a specific fixed catalyst.
  • an organic compound such as an aldehyde having a carbonyl group or a ketone and a lower alcohol
  • a catalyst or contacting with a specific fixed catalyst There was a problem that the production of the catalyst was essential.
  • Patent Document 1 a production method in which an organic compound having a carbonyl group and / or a lower alcohol is brought into a supercritical state has been proposed, but both in terms of yield and selectivity of an acetal compound. There is a lot of room for improvement.
  • the reaction system is brought to an extremely high temperature and pressure in order to bring the carbonyl compound and the like into a supercritical state.
  • An object of the present invention is to provide a method for producing an acetal compound with high selectivity and high yield without requiring catalyst addition, catalyst removal and catalyst production.
  • the inventors of the present invention have made a mixed solution containing an organic compound having a carbonyl group and an organic compound containing a hydroxy group below the critical temperature of these compounds, preferably below the boiling point temperature. It was found that the above-mentioned problems could be solved by contacting with supercritical carbon dioxide or subcritical carbon dioxide while maintaining the present invention, and the present invention was completed. That is, the present invention is as follows.
  • a liquid mixture (hereinafter referred to as “mixed liquid”) containing an organic compound having a carbonyl group (hereinafter referred to as “carbonyl compound”) and an organic compound including a hydroxy group (hereinafter referred to as “hydroxy compound”). ),
  • the “mixed liquid” is brought into contact with supercritical carbon dioxide or subcritical carbon dioxide while being kept below the critical temperature of the “hydroxy compound”. .
  • 1 is a 1 H-NMR spectrum of an acetal reaction solution of benzaldehyde and methanol.
  • 1 is a 1 H-NMR spectrum of an acetal reaction solution of benzaldehyde and ethylene glycol.
  • the organic compound having a carbonyl group (hereinafter referred to as “carbonyl compound”) used in the present invention is represented by the general formula (1).
  • an organic compound that generates a carbonyl group under reaction conditions may be used as the organic compound having a carbonyl group.
  • Cyclic hemiacetals are also “carbonyl compounds” because they produce carbonyl groups under reaction conditions.
  • R 1 and R 2 each independently represent a hydrogen atom, an alkyl group (including a cycloalkyl group), or an aryl group having 6 to 10 carbon atoms. However, R 1 and R 2 are not hydrogen atoms at the same time.
  • Examples of the alkyl group represented by R 1 and R 2 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, and an n-pentyl group.
  • a linear, branched or cyclic alkyl group having 1 to 20 carbon atoms such as a group, n-decyl group, cyclopropyl group, 2,2-dimethylcyclopropyl group, cyclopentyl group, cyclohexyl group, menthyl group, etc. Can be mentioned.
  • a part of these alkyl groups may be substituted with any functional group.
  • Examples of the aryl group represented by R 1 and R 2 include aryl groups having 6 to 10 carbon atoms such as a phenyl group and a naphthyl group. A part of these alkyl groups may be substituted with any functional group.
  • the “carbonyl compound” represented by the above formula (1) may be an organic compound having two or more carbonyl groups in the molecule, and has a functional group not involved in the reaction as a substituent in addition to the carbonyl group. Also good. It may also have a cyclic structure portion atoms of R 1 and R 2 are bonded.
  • cyclic hemiacetals as “carbonyl compounds” include monosaccharides. Examples thereof include aldohexoses such as glucose, galactose and mannose, and ketoses such as fructose.
  • hydroxy compound The organic compound having a hydroxy group (hereinafter referred to as “hydroxy compound”) used in the present invention is represented by the general formula (2).
  • R 3 represents an alkyl group (including a cycloalkyl group) or an aryl group.
  • Examples of the alkyl group represented by R 3 include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, n-pentyl group, n- Examples thereof include linear, branched or cyclic alkyl groups having 1 to 20 carbon atoms such as decyl group, cyclopropyl group, 2,2-dimethylcyclopropyl group, cyclopentyl group, cyclohexyl group and menthyl group. A part of these alkyl groups may be substituted with any functional group.
  • Examples of the aryl group represented by R 3 include aryl groups having 6 to 10 carbon atoms such as a phenyl group and a naphthyl group. Any part of these aryl groups may be substituted with any functional group.
  • the “hydroxy compound” represented by the above formula (2) may be an organic compound having two or more hydroxy groups in the molecule.
  • diols such as ethylene glycol and propylene glycol
  • triols such as glycerin.
  • a functional group that does not participate in the reaction may be included as a substituent.
  • the ratio of the “carbonyl compound” and the “hydroxy compound” in the “mixed solution” is not particularly limited, but generally, the “hydroxy compound” is 2 to 500 mol per 1 mol of the “carbonyl compound”. The amount is preferably 2 to 100 mol. *
  • the “mixed liquid” at least one of the “carbonyl compound” and the “hydroxy compound” is preferably in a liquid phase. More preferably, both constitute a homogeneous phase. That is, it is preferable that liquids are mixed with each other, one of them is dissolved in the other, or both are dissolved in a solvent that is arbitrarily added.
  • Supercritical carbon dioxide refers to carbon dioxide at 7.4 MPa or higher and at 31 ° C. or higher, and subcritical carbon dioxide is carbon dioxide that does not satisfy both of these conditions but is in the vicinity.
  • supercritical carbon dioxide or subsupercritical carbon dioxide performs the following functions. That is, supercritical carbon dioxide or subcritical carbon dioxide dissolves in the “mixed liquid” and interacts with the “hydroxy compound” to cause “H + ” and “RO” represented by the following formula (3). - "it is a function to generate.
  • scCO 2 represents supercritical carbon dioxide or subcritical carbon dioxide. In order to advance this reaction, supercritical carbon dioxide is more preferable.
  • Carbon dioxide is known as a poorly reactive compound, but it is empirically known that supercritical carbon dioxide or subsupercritical carbon dioxide has a reaction or interaction with other compounds.
  • the present inventors consider that the acetal reaction starts when “H + ” generated by the formula (3) is added to oxygen in the “carbonyl compound”.
  • the “H + ” production route in the reaction system is controlled substantially only via the formula (3), and the reaction proceeding in the system is defined as an acetal reaction, and high selectivity for acetal compound synthesis is obtained. Ensure high yield.
  • the “mixed liquid” is brought into contact with supercritical carbon dioxide or subcritical carbon dioxide while being kept below the critical temperature of the “hydroxy compound”. Furthermore, preferably, the temperature of the “mixed liquid” is kept below the boiling point measured at room temperature of the “hydroxy compound”, that is, the temperature at which the “hydroxy compound” cannot reach the supercritical state even under high pressure. And kept in contact with supercritical carbon dioxide or subcritical carbon dioxide.
  • the “mixed solution” was kept below the critical temperature of the “carbonyl compound” or below the boiling point measured at room temperature. Leave it in contact with supercritical carbon dioxide or subcritical carbon dioxide.
  • the reaction time is not particularly limited, and is sufficient to produce an acetal compound.
  • it is usually 1 hour or longer, preferably 10 hours or longer, more preferably 20 hours or longer, and further preferably 30 hours or longer.
  • 240 hours or less is preferable from the viewpoint of economy.
  • an autoclave reaction container TVS-N2-200 portable reactor manufactured by pressure-resistant glass industry, stainless steel, internal volume 200 ml
  • the injection of liquefied carbon dioxide from the cylinder into the container was started, and the system was heated to 45 ° C. and 7.5 MPa to make the carbon dioxide supercritical carbon dioxide using a band heater as a heat source, and then heated and stirred for a predetermined time. After completion of the reaction, the reaction vessel was cooled to room temperature, and carbon dioxide was released outside the reaction vessel to return to normal pressure.
  • Example 2 Benzaldehyde 1.06 g (10.0 mmol) as the “carbonyl compound” and 12.00 g (200 mmol) of ethylene glycol (boiling point 197 ° C.) as the “hydroxy compound” were heated and stirred at 45 ° C., 7.5 MPa for 96 hours. Synthesized an acetal compound in the same manner as in Example 1. A small amount of the extracted reaction mixture was taken and subjected to 1 H-NMR analysis. The obtained spectrum is shown in FIG. From the signal attributed to the predetermined proton of each substance detected, the composition ratio was determined using the area percentage method, and the conversion rate was calculated as 75%.
  • the reaction solution contained only unreacted ethylene glycol, unreacted benzaldehyde, and two kinds of acetal compounds, and it was confirmed that the acetal reaction was proceeding with extremely high selectivity.
  • the two acetal compounds are an acetal compound in which 1 mol of ethylene glycol is added to 1 mol of benzaldehyde and an acetal compound in which 2 mol of ethylene glycol is added, and the ratio is about 2: 3. there were.
  • Example 3 Except that 0.129 g (10.0 mmol) of acetone (boiling point 56 ° C.) was used as the “carbonyl compound”, 5.39 g (200 mmol) of methanol was used as the “hydroxy compound”, and heating and stirring were continued at 45 ° C., 7.9 MPa for 96 hours.
  • the acetal compound was synthesized in the same manner as in Example 1. A small amount of the extracted reaction mixture was taken and subjected to 1 H-NMR analysis. From the signal attributed to the predetermined proton of each substance detected, the composition ratio was determined using the area percentage method, and the conversion rate was calculated to be 44%.
  • the reaction solution contains only unreacted methanol, unreacted acetone, and acetal compound (2,2-dimethoxypropane), confirming that the acetal reaction is proceeding at an extremely high selectivity. did.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

Provided is a high-yielding, highly selective acetal compound production method which: does not require adding, removing or manufacturing a catalyst; is a method for producing an acetal compound from a liquid mixture (hereinafter, the liquid mixture) including an organic compound (hereinafter, the carbonyl compound) having a carbonyl group, and an organic compound (hereinafter, the hydroxy compound) including a hydroxy group; and is characterized by keeping the liquid mixture below the critical temperature of the hydroxy compound, and putting the liquid mixture in contact with supercritical or subcritical carbon dioxide.

Description

アセタール化合物の製造方法Method for producing acetal compound
 本発明は、アセタール化合物の製造方法に関する。詳細には、カルボニル基を有する有機化合物と水酸基を有する有機化合物とを、超臨界二酸化炭素の存在下に反応させて、アセタール化合物を製造する方法に関する。 The present invention relates to a method for producing an acetal compound. Specifically, the present invention relates to a method for producing an acetal compound by reacting an organic compound having a carbonyl group and an organic compound having a hydroxyl group in the presence of supercritical carbon dioxide.
 アセタール化合物の製造は、カルボニル基を有するアルデヒド、ケトン等の有機化合物と低級アルコール類を原料とし、触媒添加、あるいは、特定の固定触媒との接触により行われるのが通常で、触媒除去や特定の触媒製造が必須となる問題があった。
 これら問題を解決する方法として、カルボニル基を有する有機化合物および/または低級アルコールを超臨界状態とする製造方法(特許文献1)が提案されているが、アセタール化合物の収率、選択率の両面において、改善の余地が大きい。また、カルボニル化合物等を超臨界状態とするために、反応系を極めて高温高圧とする問題がある。
The acetal compound is usually produced by using an organic compound such as an aldehyde having a carbonyl group or a ketone and a lower alcohol as a raw material and adding a catalyst or contacting with a specific fixed catalyst. There was a problem that the production of the catalyst was essential.
As a method for solving these problems, a production method (Patent Document 1) in which an organic compound having a carbonyl group and / or a lower alcohol is brought into a supercritical state has been proposed, but both in terms of yield and selectivity of an acetal compound. There is a lot of room for improvement. In addition, there is a problem that the reaction system is brought to an extremely high temperature and pressure in order to bring the carbonyl compound and the like into a supercritical state.
特開平11-217346号公報JP 11-217346 A
 本発明は、触媒添加、触媒除去、触媒製造を必要とせず、かつ高選択性、高収率でアセタール化合物を製造する方法を提供することを目的とする。 An object of the present invention is to provide a method for producing an acetal compound with high selectivity and high yield without requiring catalyst addition, catalyst removal and catalyst production.
 本発明者らは、前記課題を達成するため鋭意検討した結果、カルボニル基を有する有機化合物とヒドロキシ基を含む有機化合物とを含む混合液を、これら化合物の臨界温度未満、好ましくは沸点温度未満に保持しながら、超臨界二酸化炭素または亜臨界二酸化炭素と接触させることにより、上記課題が解決されることを見いだし、本発明を完成した。
 すなわち、本発明は以下のとおりである。
As a result of intensive investigations to achieve the above-mentioned problems, the inventors of the present invention have made a mixed solution containing an organic compound having a carbonyl group and an organic compound containing a hydroxy group below the critical temperature of these compounds, preferably below the boiling point temperature. It was found that the above-mentioned problems could be solved by contacting with supercritical carbon dioxide or subcritical carbon dioxide while maintaining the present invention, and the present invention was completed.
That is, the present invention is as follows.
[1] カルボニル基を有する有機化合物(以下、「カルボニル化合物」という。)とヒドロキシ基を含む有機化合物(以下、「ヒドロキシ化合物」という。)とを含む混合液(以下、「混合液」という。)からアセタールを製造する方法において、「混合液」を、「ヒドロキシ化合物」の臨界温度未満に保持しながら、超臨界二酸化炭素または亜臨界二酸化炭素と接触させることを特徴とするアセタール化合物の製造方法。 [1] A liquid mixture (hereinafter referred to as “mixed liquid”) containing an organic compound having a carbonyl group (hereinafter referred to as “carbonyl compound”) and an organic compound including a hydroxy group (hereinafter referred to as “hydroxy compound”). ), The “mixed liquid” is brought into contact with supercritical carbon dioxide or subcritical carbon dioxide while being kept below the critical temperature of the “hydroxy compound”. .
[2] 「混合液」を、「カルボニル化合物」の臨界温度未満に保持しながら、超臨界二酸化炭素または亜臨界二酸化炭素と接触させることを特徴とする前記[1]に記載のアセタール化合物の製造方法。 [2] The production of an acetal compound according to [1], wherein the “mixed liquid” is brought into contact with supercritical carbon dioxide or subcritical carbon dioxide while maintaining the temperature below the critical temperature of the “carbonyl compound”. Method.
[3] 「混合液」を、「ヒドロキシ化合物」の常圧下で測定される沸点未満に保持しながら、超臨界二酸化炭素または亜臨界二酸化炭素と接触させることを特徴とする前記[1]または[2]に記載のアセタール化合物の製造方法。 [3] The above-mentioned [1] or [3], wherein the “mixed liquid” is brought into contact with supercritical carbon dioxide or subcritical carbon dioxide while being kept below the boiling point measured under normal pressure of the “hydroxy compound”. [2] A method for producing an acetal compound according to [2].
[4] 「混合液」を、「カルボニル化合物」の常圧下で測定される沸点未満に保持しながら、超臨界二酸化炭素または亜臨界二酸化炭素と接触させることを特徴とする前記[1]ないし[3]のいずかに記載のアセタール化合物の製造方法。 [4] The above [1] to [1], wherein the “mixed solution” is brought into contact with supercritical carbon dioxide or subcritical carbon dioxide while being kept below the boiling point measured under normal pressure of the “carbonyl compound”. [3] The method for producing an acetal compound according to any one of [3].
 本発明の方法により、触媒添加、触媒除去、触媒製造を必要とせず、かつ高選択性、高収率でアセタール化合物を製造することができる。 According to the method of the present invention, it is possible to produce an acetal compound with high selectivity and high yield without the need for catalyst addition, catalyst removal and catalyst production.
ベンズアルデヒドとメタノールのアセタール反応液のH-NMRスペクトルである。 1 is a 1 H-NMR spectrum of an acetal reaction solution of benzaldehyde and methanol. ベンズアルデヒドとエチレングリコールのアセタール反応液のH-NMRスペクトルである。 1 is a 1 H-NMR spectrum of an acetal reaction solution of benzaldehyde and ethylene glycol.
 以下、本発明について詳述する。
 本発明で使用するカルボニル基を有する有機化合物(以下、「カルボニル化合物」という。)は、一般式(1)に示されるものである。また、カルボニル基を有する有機化合物として、反応条件下でカルボニル基を生じる有機化合物を用いても良い。環状ヘミアセタールも、反応条件下でカルボニル基を生じるので、「カルボニル化合物」である。
Hereinafter, the present invention will be described in detail.
The organic compound having a carbonyl group (hereinafter referred to as “carbonyl compound”) used in the present invention is represented by the general formula (1). Alternatively, an organic compound that generates a carbonyl group under reaction conditions may be used as the organic compound having a carbonyl group. Cyclic hemiacetals are also “carbonyl compounds” because they produce carbonyl groups under reaction conditions.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 式(1)中、RおよびRは、それぞれ個別に、水素原子、アルキル基(シクロアルキル基を含む)、または炭素数6~10のアリール基を示す。ただし、RとRが同時に水素原子とはならない。 In formula (1), R 1 and R 2 each independently represent a hydrogen atom, an alkyl group (including a cycloalkyl group), or an aryl group having 6 to 10 carbon atoms. However, R 1 and R 2 are not hydrogen atoms at the same time.
 R、Rで示されるアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、n-デシル基、シクロプロピル基、2,2-ジメチルシクロプロピル基、シクロペンチル基、シクロヘキシル基、メンチル基等の直鎖状、分枝鎖状または環状の炭素数1~20のアルキル基が挙げられる。これらアルキル基の一部は、任意の官能基に置換されていてもよい。 Examples of the alkyl group represented by R 1 and R 2 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, and an n-pentyl group. A linear, branched or cyclic alkyl group having 1 to 20 carbon atoms such as a group, n-decyl group, cyclopropyl group, 2,2-dimethylcyclopropyl group, cyclopentyl group, cyclohexyl group, menthyl group, etc. Can be mentioned. A part of these alkyl groups may be substituted with any functional group.
 また、R、Rで示されるアリール基としては、例えば、フェニル基、ナフチル基等の炭素数6~10のアリール基が挙げられる。これらアルキル基の一部は、任意の官能基に置換されていてもよい。 Examples of the aryl group represented by R 1 and R 2 include aryl groups having 6 to 10 carbon atoms such as a phenyl group and a naphthyl group. A part of these alkyl groups may be substituted with any functional group.
 上記式(1)で表わされる「カルボニル化合物」は、分子内に2つ以上のカルボニル基を有する有機化合物でもよく、カルボニル基の他に、反応に関与しない官能基を置換基として有していても良い。また、RとRの一部原子が結合した環状構造を有していても良い。 The “carbonyl compound” represented by the above formula (1) may be an organic compound having two or more carbonyl groups in the molecule, and has a functional group not involved in the reaction as a substituent in addition to the carbonyl group. Also good. It may also have a cyclic structure portion atoms of R 1 and R 2 are bonded.
 「カルボニル化合物」としての環状ヘミアセタールとしては、単糖類が挙げられる。例えば、グルコース、ガラクトース、マンノース等のアルドヘキソース、フルクトース等のケトースが挙げられる。 Examples of cyclic hemiacetals as “carbonyl compounds” include monosaccharides. Examples thereof include aldohexoses such as glucose, galactose and mannose, and ketoses such as fructose.
 本発明で使用するヒドロキシ基を有する有機化合物(以下、「ヒドロキシ化合物」という。)は、一般式(2)に示されるものである。 The organic compound having a hydroxy group (hereinafter referred to as “hydroxy compound”) used in the present invention is represented by the general formula (2).
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 式(2)中、Rは、アルキル基(シクロアルキル基を含む)またはアリール基を示す。 In formula (2), R 3 represents an alkyl group (including a cycloalkyl group) or an aryl group.
 Rで示されるアルキル基としては、例えばメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、n-デシル基、シクロプロピル基、2,2-ジメチルシクロプロピル基、シクロペンチル基、シクロヘキシル基、メンチル基等の直鎖状、分枝鎖状または環状の炭素数1~20のアルキル基が挙げられる。これらアルキル基の一部は、任意の官能基に置換されていてもよい。 Examples of the alkyl group represented by R 3 include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, n-pentyl group, n- Examples thereof include linear, branched or cyclic alkyl groups having 1 to 20 carbon atoms such as decyl group, cyclopropyl group, 2,2-dimethylcyclopropyl group, cyclopentyl group, cyclohexyl group and menthyl group. A part of these alkyl groups may be substituted with any functional group.
 また、Rで示されるアリール基としては、例えばフェニル基、ナフチル基等の炭素数6~10のアリール基が挙げられる。これらアリール基の任意の一部は、任意の官能基に置換されていてもよい。 Examples of the aryl group represented by R 3 include aryl groups having 6 to 10 carbon atoms such as a phenyl group and a naphthyl group. Any part of these aryl groups may be substituted with any functional group.
 上記式(2)で表わされる「ヒドロキシ化合物」は、分子内に2つ以上のヒドロキシ基を有する有機化合物でもよい。例えば、エチレングリコール、プロピレングリコール等のジオール類、グリセリン等のトリオール類である。ヒドロキシ基の他に、反応に関与しない官能基を置換基として有していても良い。 The “hydroxy compound” represented by the above formula (2) may be an organic compound having two or more hydroxy groups in the molecule. For example, diols such as ethylene glycol and propylene glycol, and triols such as glycerin. In addition to the hydroxy group, a functional group that does not participate in the reaction may be included as a substituent.
 「混合液」中での、「カルボニル化合物」と「ヒドロキシ化合物」との割合については特に制限は無いが、一般に「カルボニル化合物」1モルに対して「ヒドロキシ化合物」が2~500モルであり、好ましくは2~100モルである。  The ratio of the “carbonyl compound” and the “hydroxy compound” in the “mixed solution” is not particularly limited, but generally, the “hydroxy compound” is 2 to 500 mol per 1 mol of the “carbonyl compound”. The amount is preferably 2 to 100 mol. *
 「混合液」中での、「カルボニル化合物」および「ヒドロキシ化合物」は、少なくとも一方が液相であるのが好ましい。両者が均一相を構成していることがさらに好ましい。すなわち、液体同士で混合しているか、どちらか一方が他方に溶解しているか、任意に加えられる溶媒に両者が溶解していることが好ましい。 In the “mixed liquid”, at least one of the “carbonyl compound” and the “hydroxy compound” is preferably in a liquid phase. More preferably, both constitute a homogeneous phase. That is, it is preferable that liquids are mixed with each other, one of them is dissolved in the other, or both are dissolved in a solvent that is arbitrarily added.
 超臨界二酸化炭素とは、7.4MPa以上、かつ31℃以上にある二酸化炭素を指し、亜臨界二酸化炭素とは、この両条件を充足しないが、この近傍条件にある二酸化炭素のことである。 Supercritical carbon dioxide refers to carbon dioxide at 7.4 MPa or higher and at 31 ° C. or higher, and subcritical carbon dioxide is carbon dioxide that does not satisfy both of these conditions but is in the vicinity.
 本発明者らは、本発明において、超臨界二酸化炭素または亜超臨界二酸化炭素は、以下の機能を果たしていると考えている。
 すなわち、超臨界二酸化炭素または亜臨界二酸化炭素が、「混合液」中に溶解して、「ヒドロキシ化合物」との相互作用により、下記式(3)で示される「H」と「R-O」を生成させる機能である。
 なお、式(3)中、scCOは、超臨界二酸化炭素または亜臨界二酸化炭素を示す。この反応を進行させるためには、超臨界二酸化炭素がより好ましい。
In the present invention, the present inventors consider that supercritical carbon dioxide or subsupercritical carbon dioxide performs the following functions.
That is, supercritical carbon dioxide or subcritical carbon dioxide dissolves in the “mixed liquid” and interacts with the “hydroxy compound” to cause “H + ” and “RO” represented by the following formula (3). - "it is a function to generate.
In formula (3), scCO 2 represents supercritical carbon dioxide or subcritical carbon dioxide. In order to advance this reaction, supercritical carbon dioxide is more preferable.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 二酸化炭素は反応性に乏しい化合物として知られているが、超臨界二酸化炭素または亜超臨界二酸化炭素は、他の化合物と反応あるいは相互作用を有することが経験的に知られている。本発明者らは、本発明において、この式(3)により生成する「H」が、「カルボニル化合物」中の酸素に付加することで、アセタール反応が開始すると考えている。 Carbon dioxide is known as a poorly reactive compound, but it is empirically known that supercritical carbon dioxide or subsupercritical carbon dioxide has a reaction or interaction with other compounds. In the present invention, the present inventors consider that the acetal reaction starts when “H + ” generated by the formula (3) is added to oxygen in the “carbonyl compound”.
 本発明においては、反応系内の「H」生成ルートを、実質的に式(3)経由のみに制御して、系内で進行する反応をアセタール反応とし、アセタール化合物合成にかかる高選択率、高収率を確保する。 In the present invention, the “H + ” production route in the reaction system is controlled substantially only via the formula (3), and the reaction proceeding in the system is defined as an acetal reaction, and high selectivity for acetal compound synthesis is obtained. Ensure high yield.
 本発明においては、これを達成する具体的手段として、「混合液」を、「ヒドロキシ化合物」の臨界温度未満に保持したまま、超臨界二酸化炭素または亜臨界二酸化炭素に接触させる。さらに、好ましくは、「混合液」の温度を、「ヒドロキシ化合物」の常温下で測定される沸点未満に保持したまま、すなわち、「ヒドロキシ化合物」が高圧下でも超臨界状態に到達し得ない温度に保持したまま、超臨界二酸化炭素または亜臨界二酸化炭素に接触させる。 In the present invention, as a specific means for achieving this, the “mixed liquid” is brought into contact with supercritical carbon dioxide or subcritical carbon dioxide while being kept below the critical temperature of the “hydroxy compound”. Furthermore, preferably, the temperature of the “mixed liquid” is kept below the boiling point measured at room temperature of the “hydroxy compound”, that is, the temperature at which the “hydroxy compound” cannot reach the supercritical state even under high pressure. And kept in contact with supercritical carbon dioxide or subcritical carbon dioxide.
 さらには、必要に応じて、「カルボニル化合物」由来の各種イオンの発生を回避するため、「混合液」を、「カルボニル化合物」の臨界温度未満、または、常温で測定される沸点未満に保持したまま、超臨界二酸化炭素または亜臨界二酸化炭素に接触させる。 Furthermore, if necessary, in order to avoid the generation of various ions derived from the “carbonyl compound”, the “mixed solution” was kept below the critical temperature of the “carbonyl compound” or below the boiling point measured at room temperature. Leave it in contact with supercritical carbon dioxide or subcritical carbon dioxide.
 反応時間については特に限定は無く、アセタール化合物が製造されるに足る時間であり、例えば、通常1時間以上、好ましく10時間以上、より好ましくは20時間以上、さらに好ましくは30時間以上である。通常は経済性の観点から240時間以下が好ましい。 The reaction time is not particularly limited, and is sufficient to produce an acetal compound. For example, it is usually 1 hour or longer, preferably 10 hours or longer, more preferably 20 hours or longer, and further preferably 30 hours or longer. Usually, 240 hours or less is preferable from the viewpoint of economy.
 以下、実施例によって本発明をさらに具体的に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited thereto.
[実施例1]
 「カルボニル化合物」としてベンズアルデヒド(沸点179℃)1.06g(10.0mmol)、「ヒドロキシ化合物」として所定量のメタノール(臨界温度240℃、臨界圧力=8.0MPa、沸点65℃)、必要に応じて水(沸点100℃)を、ガラス容器内へ入れ、ガラス製スタラーチップとともにオートクレーブ反応容器(耐圧硝子工業製TVS-N2-200型ポータブルリアクター。ステンレス製。内部容積200ml。)内にガラス容器ごと置いた。
[Example 1]
Benzaldehyde (boiling point 179 ° C.) 1.06 g (10.0 mmol) as “carbonyl compound”, predetermined amount of methanol (critical temperature 240 ° C., critical pressure = 8.0 MPa, boiling point 65 ° C.) as “hydroxy compound”, if necessary Water (boiling point 100 ° C.) is put into a glass container, and the glass container is placed in an autoclave reaction container (TVS-N2-200 portable reactor manufactured by pressure-resistant glass industry, stainless steel, internal volume 200 ml) together with a glass stirrer chip. I put it all together.
 ボンベから容器内へ液化二酸化炭素の注入を開始し、バンドヒーターを熱源として、系内を、45℃、7.5MPaとして二酸化炭素を超臨界二酸化炭素とした後、所定時間加熱撹拌を継続した。反応終了後、反応容器を室温まで冷却し、二酸化炭素を反応容器外へ開放して常圧に戻した。 The injection of liquefied carbon dioxide from the cylinder into the container was started, and the system was heated to 45 ° C. and 7.5 MPa to make the carbon dioxide supercritical carbon dioxide using a band heater as a heat source, and then heated and stirred for a predetermined time. After completion of the reaction, the reaction vessel was cooled to room temperature, and carbon dioxide was released outside the reaction vessel to return to normal pressure.
 各反応液を少量取り、H-NMR分析を実施、検出各物質に帰属されるプロトンのケミカルシフトをもとに、面積百分率法を用いてベンズアルデヒドのアセタール化率を算出した。結果を表1に示す。
 また、反応液中には、未反応のメタノール、未反応ベンズアルデヒド、ベンズアルデヒドのアセタール化物のみが含まれており、極めて、高選択率でアセタール反応が進行していることを確認した。表1の実験番号3に対応するH-NMRスペクトルを図1に示す。
A small amount of each reaction solution was taken, 1 H-NMR analysis was performed, and the acetalization rate of benzaldehyde was calculated using the area percentage method based on the chemical shift of protons attributed to each detected substance. The results are shown in Table 1.
Further, the reaction solution contained only unreacted methanol, unreacted benzaldehyde, and acetalized benzaldehyde, and it was confirmed that the acetal reaction was proceeding at an extremely high selectivity. The 1 H-NMR spectrum corresponding to experiment number 3 in Table 1 is shown in FIG.
 H-NMRスペクトル分析用サンプル採取後の反応液をエバポレーターで余剰のメタノール、ベンズアルデヒドを留去後、さらに、真空ポンプを用いて減圧下、残存のベンズアルデヒドを除去した。残渣をクロロホルムに溶解、不溶物をろ過し、ろ液にヘキサンを加えて、アセタールを析出回収した。この回収量を収率として表1に記載した。収率は、ほぼ転化率に一致した。
 これらの結果は、本発明の方法が、高選択率、高収率で、下記式(4)に従ってアセタール化合物を製造できることを示す。
After collecting the sample for 1 H-NMR spectrum analysis, excess methanol and benzaldehyde were distilled off using an evaporator, and then the remaining benzaldehyde was removed under reduced pressure using a vacuum pump. The residue was dissolved in chloroform, insoluble matter was filtered, hexane was added to the filtrate, and acetal was precipitated and collected. This recovered amount is shown in Table 1 as a yield. The yield almost coincided with the conversion rate.
These results show that the method of the present invention can produce an acetal compound according to the following formula (4) with high selectivity and high yield.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
[実施例2]
 「カルボニル化合物」としてベンズアルデヒド1.06g(10.0mmol)、「ヒドロキシ化合物」としてエチレングリコール(沸点197℃)12.00g (200mmol)を、45℃、7.5MPa、96時間加熱撹拌を継続した以外は、実施例1と同様にアセタール化合物の合成を行った。
 取り出した反応混合物を少量取り、H-NMR分析を行った。得られたスペクトルを図2に示す。検出された各物質の所定のプロトンに帰属されるシグナルから、面積百分率法を用いて組成比を求め、転化率を75%と算出した。
 また、反応液中には、未反応のエチレングリコール、未反応ベンズアルデヒド、2種のアセタール化合物のみが含まれており、極めて、高選択率でアセタール反応が進行していることを確認した。
 なお、2種のアセタール化合物は、1モルのベンズアルデヒドに対して、1モルのエチレングリコールが付加したアセタール化合物と、2モルのエチレングリコールが付加したアセタール化合物であり、その割合は約2:3であった。
 これらの結果は、本発明の方法が、高選択率、高収率で、下記式(5)に従ってアセタール化合物を製造できることを示す。
[Example 2]
Benzaldehyde 1.06 g (10.0 mmol) as the “carbonyl compound” and 12.00 g (200 mmol) of ethylene glycol (boiling point 197 ° C.) as the “hydroxy compound” were heated and stirred at 45 ° C., 7.5 MPa for 96 hours. Synthesized an acetal compound in the same manner as in Example 1.
A small amount of the extracted reaction mixture was taken and subjected to 1 H-NMR analysis. The obtained spectrum is shown in FIG. From the signal attributed to the predetermined proton of each substance detected, the composition ratio was determined using the area percentage method, and the conversion rate was calculated as 75%.
Further, the reaction solution contained only unreacted ethylene glycol, unreacted benzaldehyde, and two kinds of acetal compounds, and it was confirmed that the acetal reaction was proceeding with extremely high selectivity.
The two acetal compounds are an acetal compound in which 1 mol of ethylene glycol is added to 1 mol of benzaldehyde and an acetal compound in which 2 mol of ethylene glycol is added, and the ratio is about 2: 3. there were.
These results show that the method of the present invention can produce an acetal compound according to the following formula (5) with high selectivity and high yield.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
[実施例3]
 「カルボニル化合物」としてアセトン(沸点56℃)0.129g(10.0mmol)、「ヒドロキシ化合物」としてメタノール5.39g (200mmol)とし、45℃、7.9MPa、96時間加熱撹拌を継続した以外は、実施例1と同様にアセタール化合物の合成を行った。
 取り出した反応混合物を少量取り、H-NMR分析を行った。検出された各物質の所定のプロトンに帰属されるシグナルから、面積百分率法を用いて組成比を求め、転化率を44%と算出した。
 また、反応液中には、未反応のメタノール、未反応アセトン、アセタール化合物(2,2-ジメトキシプロパン)のみが含まれており、極めて、高選択率でアセタール反応が進行していることを確認した。
 これらの結果は、本発明の方法が、高選択率、高収率で、下記式(6)に従ってアセタール化合物を製造できることを示す。
[Example 3]
Except that 0.129 g (10.0 mmol) of acetone (boiling point 56 ° C.) was used as the “carbonyl compound”, 5.39 g (200 mmol) of methanol was used as the “hydroxy compound”, and heating and stirring were continued at 45 ° C., 7.9 MPa for 96 hours. The acetal compound was synthesized in the same manner as in Example 1.
A small amount of the extracted reaction mixture was taken and subjected to 1 H-NMR analysis. From the signal attributed to the predetermined proton of each substance detected, the composition ratio was determined using the area percentage method, and the conversion rate was calculated to be 44%.
The reaction solution contains only unreacted methanol, unreacted acetone, and acetal compound (2,2-dimethoxypropane), confirming that the acetal reaction is proceeding at an extremely high selectivity. did.
These results indicate that the method of the present invention can produce an acetal compound according to the following formula (6) with high selectivity and high yield.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 本発明により、多様なアセタール化合物を簡便な方法で容易に製造することができるため、工業的利用価値は極めて高い。 Since various acetal compounds can be easily produced by a simple method according to the present invention, the industrial utility value is extremely high.

Claims (4)

  1.  カルボニル基を有する有機化合物(以下、「カルボニル化合物」という。)とヒドロキシ基を含む有機化合物(以下、「ヒドロキシ化合物」という。)とを含む混合液(以下、「混合液」という。)からアセタール化合物を製造する方法において、「混合液」を、「ヒドロキシ化合物」の臨界温度未満に保持しながら、超臨界二酸化炭素または亜臨界二酸化炭素と接触させることを特徴とするアセタール化合物の製造方法。 Acetal from a mixed liquid (hereinafter referred to as “mixed liquid”) containing an organic compound having a carbonyl group (hereinafter referred to as “carbonyl compound”) and an organic compound including a hydroxy group (hereinafter referred to as “hydroxy compound”). A method for producing an acetal compound, wherein the “mixed liquid” is brought into contact with supercritical carbon dioxide or subcritical carbon dioxide while maintaining the temperature below the critical temperature of the “hydroxy compound”.
  2.  「混合液」を、「カルボニル化合物」の臨界温度未満に保持しながら、超臨界二酸化炭素または亜臨界二酸化炭素と接触させることを特徴とする請求項1に記載のアセタール化合物の製造方法。 The method for producing an acetal compound according to claim 1, wherein the “mixed liquid” is brought into contact with supercritical carbon dioxide or subcritical carbon dioxide while being kept below the critical temperature of the “carbonyl compound”.
  3.  「混合液」を、「ヒドロキシ化合物」の常圧下で測定される沸点未満に保持しながら、超臨界二酸化炭素または亜臨界二酸化炭素と接触させることを特徴とする請求項1または2に記載のアセタール化合物の製造方法。 3. The acetal according to claim 1, wherein the “mixed liquid” is brought into contact with supercritical carbon dioxide or subcritical carbon dioxide while being kept below the boiling point measured under normal pressure of the “hydroxy compound”. Compound production method.
  4.  「混合液」を、「カルボニル化合物」の常圧下で測定される沸点未満に保持しながら、超臨界二酸化炭素または亜臨界二酸化炭素と接触させることを特徴とする請求項1ないし3のいずれかに記載のアセタール化合物の製造方法。 The “mixed liquid” is brought into contact with supercritical carbon dioxide or subcritical carbon dioxide while being kept below the boiling point measured under normal pressure of the “carbonyl compound”. The manufacturing method of the acetal compound of description.
PCT/JP2012/079756 2011-11-17 2012-11-16 Method for producing acetal compound WO2013073658A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011251932A JP5752013B2 (en) 2011-11-17 2011-11-17 Method for producing acetal compound
JP2011-251932 2011-11-17

Publications (2)

Publication Number Publication Date
WO2013073658A1 WO2013073658A1 (en) 2013-05-23
WO2013073658A9 true WO2013073658A9 (en) 2013-07-25

Family

ID=48429711

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/079756 WO2013073658A1 (en) 2011-11-17 2012-11-16 Method for producing acetal compound

Country Status (2)

Country Link
JP (1) JP5752013B2 (en)
WO (1) WO2013073658A1 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4104092B2 (en) * 1998-01-30 2008-06-18 独立行政法人産業技術総合研究所 Method for producing acetal
JP2006022160A (en) * 2004-07-06 2006-01-26 Sekisui Chem Co Ltd Modified polyvinyl alcohol
JP5438295B2 (en) * 2008-09-22 2014-03-12 積水化学工業株式会社 Method for producing vinyl acetal polymer

Also Published As

Publication number Publication date
JP2013107831A (en) 2013-06-06
WO2013073658A1 (en) 2013-05-23
JP5752013B2 (en) 2015-07-22

Similar Documents

Publication Publication Date Title
KR101665735B1 (en) Manufacture of gamma-delta-unsaturated ketones
HK1245240B (en) Process for production of acrylates from epoxides
JP6670108B2 (en) Complex catalysts based on amino-phosphine ligands for hydrogenation and dehydrogenation processes
AU2011275531A1 (en) Conversion of alcohols
JP2005132836A (en) Method for producing carboxylic acid compound
TWI727267B (en) Producing bdo via hydroformylation of allyl alcohol made from glycerin
CN102010447B (en) Preparation method and application of a class of ruthenium, rhodium transition metal complex functionalized ionic liquid
Yu et al. Imidazolium chiral ionic liquid derived carbene-catalyzed conjugate umpolung for synthesis of γ-butyrolactones
US9260367B2 (en) Methods of converting polyols
US9487460B2 (en) Method for producing allyl alcohol and allyl alcohol produced thereby
US9670123B2 (en) Process for preparation of unsaturated ketone
JP5752013B2 (en) Method for producing acetal compound
Tai et al. Synthesis, Crystal Structure, and Catalytic Activity of a Calcium (II) Complex with 4-Formylbenzene-1, 3-disulfonate-isonicotinic Acid Hydrazone
CN107986943B (en) Synthesis method of cyclohexanedimethanol, catalyst and application thereof
CN108238875B (en) Synthesis method of bromoisobutenyl methyl ether and application of bromoisobutenyl methyl ether in preparation of C14 aldehyde
EP3239127A1 (en) Method for producing aldehyde compound, and acetal compound
KR101602428B1 (en) Method for preparing glycidol through successive catalytic reaction
CN103232324A (en) Method for preparing (R)-3,5-bis(trifluoromethyl)benzene-ethanol
JP5103647B2 (en) Process for producing malonic ester derivative or keto ester derivative and novel compound
CN107406368B (en) Process for preparing diaminobutanes
CN112996767A (en) Method for producing esters
Sato et al. Enantioselective Michael reaction of malonates and α, β-unsaturated aldehydes using a trans-4-hydroxyproline derived organocatalyst
JP5115762B2 (en) Process for producing 4-formylpiperidine acetal derivative
JP2010180142A (en) Method for producing cyclohexanecarbonitrile
JP2014080370A (en) Sulfur-containing pseudo acetal compound and method for producing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12849961

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12849961

Country of ref document: EP

Kind code of ref document: A1