WO2013073442A1 - Steering device - Google Patents

Steering device Download PDF

Info

Publication number
WO2013073442A1
WO2013073442A1 PCT/JP2012/078963 JP2012078963W WO2013073442A1 WO 2013073442 A1 WO2013073442 A1 WO 2013073442A1 JP 2012078963 W JP2012078963 W JP 2012078963W WO 2013073442 A1 WO2013073442 A1 WO 2013073442A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
hydraulic
hydraulic circuit
steering gear
pressure
Prior art date
Application number
PCT/JP2012/078963
Other languages
French (fr)
Japanese (ja)
Inventor
大幸 野間口
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to CN201280041996.XA priority Critical patent/CN103764496B/en
Priority to KR1020147004571A priority patent/KR101547074B1/en
Publication of WO2013073442A1 publication Critical patent/WO2013073442A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H25/00Steering; Slowing-down otherwise than by use of propulsive elements; Dynamic anchoring, i.e. positioning vessels by means of main or auxiliary propulsive elements
    • B63H25/06Steering by rudders
    • B63H25/08Steering gear
    • B63H25/14Steering gear power assisted; power driven, i.e. using steering engine
    • B63H25/26Steering engines
    • B63H25/28Steering engines of fluid type
    • B63H25/30Steering engines of fluid type hydraulic

Definitions

  • the present invention relates to a steering gear that is equipped with a navigation body such as a ship to perform steering, and more particularly, to a steering gear that performs steering using power generated by hydraulic pressure.
  • steering is performed to operate the direction (angle) of a steering plate disposed at the rear of the bottom of the ship or the like.
  • a steering gear that performs such steering, an oil pressure is generated using a hydraulic pump driven by an electric motor, and an electrohydraulic system that operates a steering plate by controlling an actuator such as a hydraulic cylinder using the hydraulic pressure.
  • an actuator such as a hydraulic cylinder using the hydraulic pressure.
  • a steering gear As a steering gear of such an electrohydraulic system, it is disclosed by patent document 1 etc., for example.
  • FIG. 7 is a configuration diagram showing a configuration of a conventional steering gear employing an electrohydraulic system.
  • the conventional steering gear 100 includes the motor 110, the hydraulic pump 112, the boost pump 114, the hydraulic tank 116, the steering gear 120, the one side hydraulic circuit 130, the other side hydraulic circuit 132, and the one side return.
  • the circuit 134, the other side return circuit 136, and the control device 150 are configured.
  • the hydraulic pump 112 is driven by the electric motor 110 and discharges hydraulic fluid to one of the one side hydraulic circuit 130 and the other side hydraulic circuit 132 connected to the hydraulic pump 112.
  • the hydraulic pump 112 is, for example, a two-direction discharge swash plate type hydraulic pump, and by adjusting the inclination angle of the swash plate of the hydraulic pump 112, the discharge direction and the discharge amount of the hydraulic oil are controlled.
  • the adjustment of the inclination angle of the swash plate of the hydraulic pump 112 is performed by controlling the torque motor 152 by the control device 150 according to an instruction signal regarding steering being input from the steering 154 to the control device 150.
  • the steering gear 120 includes a steering wheel 124, two rams 126, and four cylinders 128.
  • the central portion of the steering wheel 124 is fixed to the steering shaft 122.
  • the hydraulic fluid is supplied from the one hydraulic circuit 130, the hydraulic fluid is discharged to the other hydraulic circuit 132, and the rudder shaft 122 is rotated in a predetermined direction (for example, counterclockwise).
  • the hydraulic fluid is supplied from the other hydraulic circuit 132, the hydraulic fluid is discharged to the one hydraulic circuit 130, and the rudder shaft 122 is rotated in a direction opposite to the predetermined direction (for example, clockwise).
  • FIG. 7 shows a state where hydraulic oil is supplied from the one-side hydraulic circuit 130 to the steering gear 120 and the rudder shaft 122 is turned counterclockwise by the steering angle ⁇ .
  • the hydraulic oil discharged from the steering gear 120 is returned to the hydraulic tank 116 via the one-side return circuit 134 or the other-side return circuit 136. Then, the hydraulic oil returned to the hydraulic tank 116 is sucked by the boost pump 114 and supplied to the hydraulic pump 112 and discharged again from the hydraulic pump 112.
  • Reference numeral 142 in FIG. 7 denotes a relief circuit.
  • the relief valves 144 and 146 disposed in the relief circuit 142 are opened, thereby the one side hydraulic circuit 130 and The other hydraulic circuit 132 is designed not to have a predetermined pressure or more.
  • the conventional steering gear 100 described above operates the electric motor 110 at all times and controls the hydraulic pump 112 at all times when steering is effective.
  • the boost pump 114 for supplying the hydraulic oil to the hydraulic pump 112 is also controlled to be always driven. Therefore, there is a problem that energy loss occurs and the life of sliding devices such as the motor 110, the hydraulic pump 112, and the boost pump 114 is reduced.
  • the hydraulic circuit is constituted by an open circuit, it is necessary to install a boost pump 114, a large capacity hydraulic tank 116 and the like, which requires a large space for installing hydraulic equipment. Furthermore, when the steering is turned large and fast, the supply of hydraulic oil can not catch up, negative pressure may be generated in the hydraulic circuit, and cavitation may occur.
  • the present invention is an invention made in view of the problems of the prior art, which can reduce energy loss, prolong the life of sliding devices, save space of hydraulic device installation, and generate cavitation. Aims to provide a controlled steering gear.
  • the present invention was invented to achieve the problems and objectives in the prior art as described above, In the steering gear that rotates the rudder connected to the rudder shaft by rotating the rudder shaft supported rotatably by the hull.
  • a motor that can rotate in both directions, A control device for controlling the rotational direction and the number of rotations of the motor; A hydraulic pump whose discharge direction and discharge amount of hydraulic fluid are controlled in accordance with the rotation direction and the number of revolutions of the motor;
  • One-side hydraulic circuit connected to one side of the hydraulic pump;
  • the other side hydraulic circuit connected to the other side of the hydraulic pump;
  • the hydraulic fluid is connected to the one side hydraulic circuit and the other side hydraulic circuit, and when the hydraulic fluid is supplied from the one side hydraulic circuit, the hydraulic fluid is discharged to the other side hydraulic circuit and the rudder shaft is in a predetermined direction.
  • a steering gear that rotates and discharges hydraulic oil to the one hydraulic circuit and rotates the rudder shaft in a direction opposite to the predetermined direction when hydraulic oil is supplied from the other hydraulic
  • a motor capable of rotating in both directions and a hydraulic pump whose discharge direction and discharge amount of hydraulic fluid are controlled according to the rotation direction and rotation speed of the motor are adopted.
  • the number is directly controlled by the controller. Therefore, the motor can be directly controlled to obtain only the necessary power, for example, it can be controlled to stop the operation of the motor while steering is not being performed. Therefore, compared to the conventional case, it is possible to reduce the energy loss and extend the life of the sliding devices.
  • hydraulic equipment Space saving can be achieved.
  • the pressure accumulation circuit includes a backflow prevention means for preventing the flow of hydraulic oil from the one side hydraulic circuit and the other side hydraulic circuit to the pressure accumulation circuit, and a state capable of supplying hydraulic oil pressurized to a predetermined pressure to the pressure accumulation circuit. It is desirable to have the pressure accumulation means to hold
  • the pressure accumulation circuit having the pressure accumulation means is connected to the one side hydraulic circuit and the other side hydraulic circuit, the hydraulic oil can be supplied quickly from the pressure accumulation circuit even when the rudder is turned quickly. And cavitation due to negative pressure in the hydraulic circuit can be prevented.
  • the backflow prevention means for example, a check valve provided in an accumulator circuit can be suitably adopted.
  • the pressure accumulation means for example, an accumulator can be suitably adopted.
  • a one-side return circuit that connects the one-side hydraulic circuit and the accumulator circuit by bypassing the backflow prevention means; And a second side return circuit that connects the second side hydraulic circuit and the pressure accumulation circuit by bypassing the backflow prevention means,
  • the one-side return circuit has one-side switching means for opening or closing the one-side return circuit, and
  • the other side return circuit has another side opening / closing means for opening or closing the other side return circuit,
  • When hydraulic fluid is discharged from the hydraulic pump to the one side hydraulic circuit the one side opening / closing means closes the one side return circuit, and the other side opening / closing means opens the other side return circuit
  • the other side opening / closing means closes the other side return circuit
  • the one side opening / closing means opens the one side return circuit It is desirable to be configured.
  • the other hydraulic circuit when the hydraulic fluid is discharged from the hydraulic pump to the one hydraulic circuit, the other hydraulic circuit communicates with the pressure storage circuit, and the hydraulic pump discharges the hydraulic fluid to the other hydraulic circuit.
  • the one hydraulic circuit and the accumulator circuit are communicated. That is, since the pressure in the pressure accumulation circuit can be held higher than the pressure in the hydraulic circuit on the return side, the hydraulic oil in the pressure accumulation circuit can be continuously pressurized without using a pressure pump etc. separately.
  • the one side opening / closing means and the other side opening / closing means can be configured by one or a plurality of electromagnetic switching valves.
  • the steering gear may It is desirable that a relief means be provided so that the pressure in the one side hydraulic circuit and the other side hydraulic circuit does not exceed a predetermined pressure.
  • a relief valve that allows the flow of hydraulic fluid from the one side hydraulic circuit to the pressure accumulation circuit when the pressure in the one side hydraulic circuit exceeds a predetermined pressure
  • the other side in the other side hydraulic circuit Can be constituted by a relief circuit having a relief valve that allows the flow of hydraulic fluid from the other side hydraulic circuit to the pressure accumulation circuit when the pressure of the pressure exceeds the predetermined pressure.
  • a motor capable of rotating in both directions, and a hydraulic pump whose discharge direction and discharge amount of hydraulic fluid are controlled according to the rotation direction and rotation speed of the motor are adopted, and the rotation direction and rotation speed of the motor
  • a steering gear that has less energy loss and can prolong the life of sliding devices as compared to the conventional case.
  • the pressure accumulation circuit having pressure accumulation means is connected to the one side hydraulic circuit and the other side hydraulic circuit, even when the steering is turned large and quickly, the hydraulic oil is supplied quickly from the pressure accumulation circuit. It is possible to provide a steering gear whose occurrence is suppressed.
  • FIG. 1 is a view showing an example in which a steering gear of the present invention is equipped with a hull.
  • FIG. 1 is a view showing a rear portion of a hull 2, and while a steering gear 1 is accommodated in the hull 2, a rudder shaft 22 rotated by the steering gear 1 is rotatably supported. ing. Further, a rudder plate 6 (rudder) is connected to the rudder shaft 22, and when the rudder shaft 22 is turned by the steering gear 1, the rudder plate 6 integrated therewith is turned. Then, the steering plate 6 is rotated to introduce the water flow generated by the rotation of the propeller 4 in a predetermined direction, thereby changing the traveling direction of the ship.
  • rudder plate 6 rudder
  • FIG. 2 is a configuration diagram showing the configuration of the steering gear according to the first embodiment of the present invention.
  • the steering gear 1 of the present invention comprises at least an electric motor 10, a hydraulic pump 12, a steering unit 20, a hydraulic circuit 30 on one side, a hydraulic circuit 32 on the other side, and a control device 50. There is.
  • the motor 10 is configured to be rotatable in both directions, and the control device 50 controls the rotational direction and the number of rotations.
  • the rotational direction and the number of rotations of the electric motor 10 are controlled by the control device 50 according to an instruction signal for steering from the steering 54 input to the control device 50.
  • the hydraulic pump 12 is a hydraulic pump on the two-direction discharge side, and is directly connected to the motor 10, and the discharge direction and the discharge amount of hydraulic fluid are controlled according to the rotation direction and the number of rotations of the motor 10. There is. Further, one hydraulic circuit 30 is connected to one side of the hydraulic pump 12, and the other hydraulic circuit 32 is connected to the other side of the hydraulic pump 12.
  • the steering gear 20 is distinguished from the steering wheel 24, two rams 26 (hereinafter, distinguished from 26A and 26B as required), and 4 cylinders (hereinafter referred to as 28A, 28B, 28C and 28D as required) And a central portion of the steering wheel 24 is fixed to the rudder shaft 22.
  • the one side hydraulic circuit 30 is connected to the cylinder 28A and the cylinder 28D, and the other side hydraulic circuit 32 is connected to the cylinder 28B and the cylinder 28C.
  • FIG. 2 shows a state in which the hydraulic oil is supplied from the one-side hydraulic circuit 30 to the steering gear 20 and the rudder shaft 22 is turned counterclockwise by the steering angle ⁇ .
  • the steering unit 20 is not limited to the above-described two-ram, four-cylinder rapson slide steering machine, but may be, for example, a one- ram, two-cylinder rapson slide steering machine. It may be a steering wheel of the formula.
  • the steering gear 1 of the present invention thus configured includes a motor 10 capable of rotating in both directions, and a hydraulic pump whose discharge direction and discharge amount of hydraulic fluid are controlled according to the rotation direction and rotational speed of the motor 10 12, the rotational direction and rotational speed of the motor 10 are directly controlled by the controller 50. Therefore, the motor 10 can be directly controlled to obtain only the necessary power, and for example, can be controlled to stop the operation of the motor 10 while steering is not performed. Therefore, compared to the conventional case, the energy loss is small, and the service life of the sliding devices such as the electric motor 10, the hydraulic pump 12, and the steering gear 20 can be extended.
  • the hydraulic oil discharged from the hydraulic pump 12 is configured as a so-called closed circuit, which directly returns to the hydraulic pump 12, like the conventional steering gear 100 configured as the open circuit shown in FIG. There is no need to provide the hydraulic tank 116 or the boost pump 114. For this reason, space saving of hydraulic equipment installation can be achieved.
  • FIG. 3 is a configuration diagram showing a configuration of a steering gear according to a second embodiment of the present invention.
  • the steering gear 1 of this embodiment is fundamentally the same structure as embodiment mentioned above, attaches
  • the steering gear 1 of the present embodiment differs from the above-described embodiment in that it includes an accumulator circuit 40 respectively connected to the first hydraulic circuit 30 and the second hydraulic circuit 32 as shown in FIG. 3. ing.
  • the pressure accumulation circuit 40 is provided with check valves 44 and 46 (back flow prevention means), and the check valve 44 prevents back flow of hydraulic fluid from the one-side hydraulic circuit 30 to the pressure accumulation circuit 40 and reversely
  • the stop valve 46 prevents the backflow of hydraulic fluid from the other side hydraulic circuit 32 to the pressure accumulation circuit 40.
  • an accumulator 42 (accumulation means) is connected to the pressure accumulation circuit 40.
  • the accumulator 42 holds hydraulic oil of a predetermined pressure in a state capable of being supplied to the pressure accumulation circuit 40, whereby the hydraulic oil in the pressure accumulation circuit 40 is pressurized to a predetermined pressure.
  • hydraulic fluid is supplied from the one side hydraulic circuit 30 to the steering gear 20, and the rudder shaft 22 rotates counterclockwise at a steering angle ⁇ , and from the pressure accumulation circuit 40 toward the other side hydraulic circuit 32.
  • a flow rate g of the hydraulic oil is supplied.
  • an accumulator circuit 40 having an accumulator 42 (accumulator) is connected to the one hydraulic circuit 30 and the other hydraulic circuit 32. For this reason, even when the pressure in the one hydraulic circuit 30 and the other hydraulic circuit 32 temporarily decreases when the rudder is turned large and quickly, etc., the pressure of the hydraulic oil held in the pressure accumulator circuit 40 When the pressure is reduced, the hydraulic oil is supplied from the pressure accumulation circuit 40 promptly. For this reason, in the case where the rudder is turned quickly, the occurrence of cavitation due to negative pressure in the one hydraulic circuit 30 and the other hydraulic circuit 32 can be prevented.
  • FIG. 4 is a configuration diagram showing a configuration of a steering gear according to a third embodiment of the present invention.
  • the steering gear 1 of this embodiment is fundamentally the same structure as embodiment mentioned above, attaches
  • a one-side return circuit 62 connecting the one-side hydraulic circuit 30 and the accumulator circuit 40 by bypassing the check valve 44, and the other hydraulic circuit
  • This embodiment differs from the second embodiment described above in that it includes a second return circuit 64 that connects the second and third pressure accumulators 32 and 40 with the check valve 46 bypassed.
  • the one-side return circuit 62 is provided with an electromagnetic switching valve 66 (one-side opening / closing means) for opening or closing the one-side return circuit 62. Further, in the other side return circuit 64, an electromagnetic switching valve 68 (the other side opening / closing means) for opening or closing the other side return circuit 64 is disposed.
  • the one side return circuit 62 and the other side return circuit 64 are connected to the pressure accumulation circuit 40 via check valves 67 and 69 respectively, and the pressure accumulation circuit 40 to the one side return circuit 62 and the other side return circuit 64 are connected.
  • the hydraulic oil does not flow to the
  • the one side return circuit 62 When the hydraulic fluid is discharged from the hydraulic pump 12 to the one side hydraulic circuit 30, the one side return circuit 62 is closed by the electromagnetic switching valve 66, and the other side return circuit 64 is opened by the electromagnetic switching valve 68.
  • the other side hydraulic circuit 32 and the pressure accumulator circuit 40 are communicated through the other side return circuit 64, and the pressure accumulator circuit 40 is pressurized at least to the pressure in the other side hydraulic circuit 32. .
  • the other side return circuit 64 is closed by the electromagnetic switching valve 68, and the one side return circuit 62 is opened by the electromagnetic switching valve 66.
  • the other side hydraulic circuit 32 and the pressure accumulator circuit 40 are communicated through the other side return circuit 64, and the pressure accumulator circuit 40 is pressurized at least to the pressure in the other side hydraulic circuit 32. .
  • the opening and closing of the electromagnetic switching valves 66 and 68 described above are performed by the electromagnetic switching valves 66 and 68 being energized / de-energized by a command signal from the control device 50.
  • hydraulic fluid is supplied from the one side hydraulic circuit 30 to the steering gear 20, and the rudder shaft 22 rotates counterclockwise by the steering angle ⁇ , and from the other side hydraulic circuit 32 toward the pressure accumulation circuit 40, It shows a state in which the hydraulic fluid of flow rate f is being supplied via the other side return circuit 64.
  • the steering gear 1 of the present invention thus configured can hold the pressure of the hydraulic fluid in the pressure storage circuit 40 more than the pressure in the hydraulic circuit on the return side, the pressure pump etc.
  • the hydraulic oil in the pressure accumulation circuit 40 can be continuously pressurized without using it.
  • the present invention is not limited to this, for example, one electromagnetic switching valve is connected to the one side return circuit 62 and the other side return circuit 64, and the one side switching means and the other side switching means are one electromagnetic switching valve. It may be composed of
  • FIG. 5 is a configuration diagram showing a configuration of a steering gear according to a fourth embodiment of the present invention.
  • the steering gear 1 of this embodiment is fundamentally the same structure as embodiment mentioned above, attaches
  • a relief circuit 70 (relief means) is provided so that the pressure in the one hydraulic circuit 30 and the other hydraulic circuit 32 does not exceed a predetermined pressure. Is different from the third embodiment described above.
  • the relief circuit 70 is upstream of the electromagnetic switching valve 66 of the one-side return circuit 62 (one hydraulic circuit 30 side) and upstream of the electromagnetic switching valve 68 of the other return circuit 64 (second hydraulic circuit 32). And is connected to the pressure accumulation circuit 40 via the relief valves 72 and 74.
  • the relief valve 72 is configured to be opened when the pressure in the one side hydraulic circuit 30 becomes equal to or higher than a predetermined pressure.
  • the relief valve 74 is opened when the pressure in the other hydraulic circuit 32 becomes equal to or higher than a predetermined pressure.
  • FIG. 5 shows a state where the hydraulic oil is discharged from the hydraulic pump 12 toward the one side hydraulic circuit 30 and the hydraulic oil is supplied from the one side hydraulic circuit 30 to the steering gear 20, as shown in FIG.
  • the symbol b indicates the flow rate of the hydraulic oil flowing from the one-side hydraulic circuit 30 to the pressure accumulation circuit 40 via the relief circuit 70.
  • relief circuit 70 relieves the pressure in the one hydraulic circuit 30 or the other hydraulic circuit 32 when abnormally increases, the pressure is released to the pressure accumulator circuit 40. And prevent damage to hydraulic equipment and piping.
  • the steering gear 1 of the present embodiment is provided with a leak circuit 80 that supplies the hydraulic pressure leaked in the hydraulic pump 12 to the pressure accumulation circuit 40.
  • the internally leaked hydraulic oil is configured to be collected by the pressure accumulation circuit 40.
  • a check valve 82 is disposed in the leak circuit 80 to prevent backflow of hydraulic oil from the pressure accumulation circuit 40.
  • the symbol c in the figure indicates the flow rate of the hydraulic oil collected from the hydraulic pump 12 to the pressure accumulation circuit 40 via the leak circuit 80.
  • the discharge flow rate Q from the hydraulic pump 12 is not only the flow rate a flowing through the one side hydraulic circuit 30 and the other side hydraulic circuit 32 but also the internal leak portion (flow rate b) from the relief valve 72 and the internal leak from the leak circuit 80 It becomes the flow rate which added the flow rate c). Further, the discharge flow rate Q is equal to the suction flow rate d of the hydraulic pump 12 and is expressed by the following equation (1).
  • the suction flow rate d of the hydraulic pump 12 can not be covered only by the return flow rate a from the other side hydraulic circuit 32.
  • the pressure accumulation circuit 40 of the present invention is held at least at a higher pressure than the other side hydraulic circuit 32 which is the return side circuit, as shown in the following formulas (2) and (3),
  • the flow rate g is quickly supplied from the pressure accumulation circuit 40 to the other hydraulic circuit 32 via the check valve 46.
  • This insufficient flow rate h is equal to the sum (flow rate b + flow rate c) of the internal leak flow rates recovered from the relief valve 72 and the leak circuit 80 to the pressure accumulation circuit 40.
  • d a + h ...
  • a stable flow rate can be supplied to the hydraulic pump 12 without using a pressure pump or the like separately in the closed circuit.
  • the present invention is suitably used for a general commercial vessel etc. as a steering gear equipped with a navigation body such as a ship to perform steering, more specifically, an electrohydraulic steering gear that performs steering with power generated by hydraulic pressure. Can.

Abstract

An electro-hydraulic steering device (1) is configured such that the hydraulic circuit is configured as a closed circuit and such that the steering device (1) adopts: an electric motor (10) capable of rotating in both directions; and a hydraulic pump (12) adapted so that the direction and amount of discharge of hydraulic oil from the hydraulic pump (12) are controlled according to the direction and speed of rotation of the electric motor. The electro-hydraulic steering device (1) also comprises: a pressure accumulation circuit (40) which is connected to one hydraulic circuit (30) and to the other hydraulic circuit (32) and which supplies the deficiency of the hydraulic oil to the hydraulic circuits (30, 32); and one return circuit (62) and the other return circuit (64) which each connect the pressure accumulation circuit and a return-side hydraulic circuit.

Description

舵取機Steering gear
 本発明は、船舶等の航走体に装備されて操舵を行う舵取機に関し、詳しくは、油圧によって発生した動力によって操舵を行う舵取機に関する。 The present invention relates to a steering gear that is equipped with a navigation body such as a ship to perform steering, and more particularly, to a steering gear that performs steering using power generated by hydraulic pressure.
 船舶等の航走体の進行方向を変化させる場合、船底後部等に配設される舵板の向き(角度)を操作する操舵が行われる。このような操舵を行う舵取機には、電動機により駆動される油圧ポンプを用いて油圧を発生させ、該油圧によって油圧シリンダなどのアクチュエータを制御することで舵板の操作を行う電動油圧方式の舵取機がある。かかる電動油圧方式の舵取機としては、例えば、特許文献1などに開示されている。 When changing the traveling direction of a traveling body such as a ship, steering is performed to operate the direction (angle) of a steering plate disposed at the rear of the bottom of the ship or the like. In a steering gear that performs such steering, an oil pressure is generated using a hydraulic pump driven by an electric motor, and an electrohydraulic system that operates a steering plate by controlling an actuator such as a hydraulic cylinder using the hydraulic pressure. There is a steering gear. As a steering gear of such an electrohydraulic system, it is disclosed by patent document 1 etc., for example.
 図7は、電動油圧方式を採用した従来の舵取機の構成を示した構成図である。
 図7に示したように、従来の舵取機100は、電動機110、油圧ポンプ112、ブーストポンプ114、油圧タンク116、操舵機120、一方側油圧回路130、他方側油圧回路132、一方側リターン回路134、他方側リターン回路136、および制御装置150などから構成されている。
FIG. 7 is a configuration diagram showing a configuration of a conventional steering gear employing an electrohydraulic system.
As shown in FIG. 7, the conventional steering gear 100 includes the motor 110, the hydraulic pump 112, the boost pump 114, the hydraulic tank 116, the steering gear 120, the one side hydraulic circuit 130, the other side hydraulic circuit 132, and the one side return. The circuit 134, the other side return circuit 136, and the control device 150 are configured.
 油圧ポンプ112は、電動機110によって駆動し、油圧ポンプ112に接続されている一方側油圧回路130または他方側油圧回路132のいずれか一方に作動油を吐出する。油圧ポンプ112は、例えば、2方向吐出型の斜板式油圧ポンプであり、油圧ポンプ112の斜板の傾斜角度を調節することで、作動油の吐出方向および吐出量が制御される。油圧ポンプ112の斜板の傾斜角度の調節は、ステアリング154から操舵に関する指示信号が制御装置150に入力され、該指示信号に応じて、制御装置150によってトルクモータ152を制御することで行われる。 The hydraulic pump 112 is driven by the electric motor 110 and discharges hydraulic fluid to one of the one side hydraulic circuit 130 and the other side hydraulic circuit 132 connected to the hydraulic pump 112. The hydraulic pump 112 is, for example, a two-direction discharge swash plate type hydraulic pump, and by adjusting the inclination angle of the swash plate of the hydraulic pump 112, the discharge direction and the discharge amount of the hydraulic oil are controlled. The adjustment of the inclination angle of the swash plate of the hydraulic pump 112 is performed by controlling the torque motor 152 by the control device 150 according to an instruction signal regarding steering being input from the steering 154 to the control device 150.
 操舵機120は、舵柄124、2本のラム126、および4本のシリンダ128とから構成されており、舵柄124の中心部は舵軸122に固定されている。そして、一方側油圧回路130から作動油が供給された場合には、他方側油圧回路132に作動油を排出するとともに、舵軸122を所定方向(例えば反時計回り)に回動させる。一方、他方側油圧回路132から作動油が供給された場合には、一方側油圧回路130に作動油を排出するとともに、舵軸122を所定方向とは反対方向(例えば時計回り)に回動させる。図7は、一方側油圧回路130から操舵機120に作動油が供給されて、舵軸122が反時計回りに舵角αだけ回動した状態を示している。 The steering gear 120 includes a steering wheel 124, two rams 126, and four cylinders 128. The central portion of the steering wheel 124 is fixed to the steering shaft 122. When the hydraulic fluid is supplied from the one hydraulic circuit 130, the hydraulic fluid is discharged to the other hydraulic circuit 132, and the rudder shaft 122 is rotated in a predetermined direction (for example, counterclockwise). On the other hand, when hydraulic fluid is supplied from the other hydraulic circuit 132, the hydraulic fluid is discharged to the one hydraulic circuit 130, and the rudder shaft 122 is rotated in a direction opposite to the predetermined direction (for example, clockwise). . FIG. 7 shows a state where hydraulic oil is supplied from the one-side hydraulic circuit 130 to the steering gear 120 and the rudder shaft 122 is turned counterclockwise by the steering angle α.
 操舵機120から排出された作動油は、一方側リターン回路134または他方側リターン回路136を介して、油圧タンク116に戻される。そして、油圧タンク116に戻された作動油は、ブーストポンプ114によって吸引されて油圧ポンプ112に供給され、再度油圧ポンプ112から吐出される。 The hydraulic oil discharged from the steering gear 120 is returned to the hydraulic tank 116 via the one-side return circuit 134 or the other-side return circuit 136. Then, the hydraulic oil returned to the hydraulic tank 116 is sucked by the boost pump 114 and supplied to the hydraulic pump 112 and discharged again from the hydraulic pump 112.
 なお、図7中の符号142はリリーフ回路である。一方側油圧回路130および他方側油圧回路132を流れる作動油の圧力が所定圧力以上になると、リリーフ回路142に配置されているリリーフ弁144、146が開放されることで、一方側油圧回路130および他方側油圧回路132が所定圧力以上にならないようになっている。 Reference numeral 142 in FIG. 7 denotes a relief circuit. When the pressure of the hydraulic fluid flowing through the one side hydraulic circuit 130 and the other side hydraulic circuit 132 becomes equal to or higher than the predetermined pressure, the relief valves 144 and 146 disposed in the relief circuit 142 are opened, thereby the one side hydraulic circuit 130 and The other hydraulic circuit 132 is designed not to have a predetermined pressure or more.
WO2010-052777号公報WO 2010-052777
 ところで、上述した従来の舵取機100は、操舵有効時において、電動機110を常時運転し、油圧ポンプ112を常時駆動した状態に制御する。またこれに伴い、油圧ポンプ112に作動油を供給するブーストポンプ114も常時駆動された状態に制御される。よって、エネルギーロスが生じるとともに、電動機110、油圧ポンプ112、およびブーストポンプ114等の摺動機器類の寿命が低下するとの問題があった。 By the way, the conventional steering gear 100 described above operates the electric motor 110 at all times and controls the hydraulic pump 112 at all times when steering is effective. Along with this, the boost pump 114 for supplying the hydraulic oil to the hydraulic pump 112 is also controlled to be always driven. Therefore, there is a problem that energy loss occurs and the life of sliding devices such as the motor 110, the hydraulic pump 112, and the boost pump 114 is reduced.
 また、オープン回路で油圧回路を構成しているため、ブーストポンプ114や大容量の油圧タンク116などを設置する必要があり、油圧機器の設置に大きなスペースを要していた。さらに、大きく早く舵を切った場合、作動油の供給が追いつかなくなり、油圧回路内に負圧が発生してキャビテーションが生ずることがあった。 In addition, since the hydraulic circuit is constituted by an open circuit, it is necessary to install a boost pump 114, a large capacity hydraulic tank 116 and the like, which requires a large space for installing hydraulic equipment. Furthermore, when the steering is turned large and fast, the supply of hydraulic oil can not catch up, negative pressure may be generated in the hydraulic circuit, and cavitation may occur.
 本発明はこのような従来技術の課題に鑑みなされた発明であって、エネルギーロスが少なく、摺動機器類の長寿命化、油圧機器設置の省スペース化を図ることができるとともに、キャビテーションの発生が抑制された舵取機を提供することを目的としている。 SUMMARY OF THE INVENTION The present invention is an invention made in view of the problems of the prior art, which can reduce energy loss, prolong the life of sliding devices, save space of hydraulic device installation, and generate cavitation. Aims to provide a controlled steering gear.
 本発明は、上述したような従来技術における課題及び目的を達成するために発明されたものであって、
 船体に回動可能に支持される舵軸を回動させることで、該舵軸に連結されている舵を回動させる舵取機において、
 両方向に回転可能な電動機と、
 電動機の回転方向および回転数を制御する制御装置と、
 電動機の回転方向および回転数に応じて、作動油の吐出方向および吐出量が制御される油圧ポンプと、
 前記油圧ポンプの一方側と接続された一方側油圧回路と、
 前記油圧ポンプの他方側と接続された他方側油圧回路と、
 前記一方側油圧回路および他方側油圧回路と接続され、前記一方側油圧回路から作動油が供給された場合には、前記他方側油圧回路に作動油を排出するとともに、前記舵軸を所定方向に回動させ、前記他方側油圧回路から作動油が供給された場合には、前記一方側油圧回路に作動油を排出するとともに、前記舵軸を前記所定方向とは反対方向に回動させる操舵機と、を備えたことを特徴とする。
The present invention was invented to achieve the problems and objectives in the prior art as described above,
In the steering gear that rotates the rudder connected to the rudder shaft by rotating the rudder shaft supported rotatably by the hull.
A motor that can rotate in both directions,
A control device for controlling the rotational direction and the number of rotations of the motor;
A hydraulic pump whose discharge direction and discharge amount of hydraulic fluid are controlled in accordance with the rotation direction and the number of revolutions of the motor;
One-side hydraulic circuit connected to one side of the hydraulic pump;
The other side hydraulic circuit connected to the other side of the hydraulic pump;
The hydraulic fluid is connected to the one side hydraulic circuit and the other side hydraulic circuit, and when the hydraulic fluid is supplied from the one side hydraulic circuit, the hydraulic fluid is discharged to the other side hydraulic circuit and the rudder shaft is in a predetermined direction. A steering gear that rotates and discharges hydraulic oil to the one hydraulic circuit and rotates the rudder shaft in a direction opposite to the predetermined direction when hydraulic oil is supplied from the other hydraulic circuit. And.
 このような本発明では、両方向に回転可能な電動機と、電動機の回転方向および回転数に応じて、作動油の吐出方向および吐出量が制御される油圧ポンプを採用し、電動機の回転方向および回転数を制御装置によって直接制御している。したがって、必要な動力だけを得るように電動機を直接制御することができ、例えば、操舵が行われていない間は電動機の運転を停止するように制御することができる。よって、従来と比べて、エネルギーロスが少なく、また摺動機器類の長寿命化を図ることが可能となる。 In the present invention as described above, a motor capable of rotating in both directions and a hydraulic pump whose discharge direction and discharge amount of hydraulic fluid are controlled according to the rotation direction and rotation speed of the motor are adopted. The number is directly controlled by the controller. Therefore, the motor can be directly controlled to obtain only the necessary power, for example, it can be controlled to stop the operation of the motor while steering is not being performed. Therefore, compared to the conventional case, it is possible to reduce the energy loss and extend the life of the sliding devices.
 また、油圧ポンプから吐出された作動油が直接油圧ポンプに戻ってくる、いわゆるクローズ回路に構成されており、上述した従来技術のように、油圧タンクおよびブーストポンプを設ける必要がないため、油圧機器設置の省スペース化を図ることができる。 Also, since the hydraulic oil discharged from the hydraulic pump is directly returned to the hydraulic pump, so-called a closed circuit, and there is no need to provide a hydraulic tank and a boost pump as in the prior art described above, hydraulic equipment Space saving can be achieved.
 上記発明において、
 前記一方側油圧回路および他方側油圧回路と夫々接続された蓄圧回路を備え、
前記蓄圧回路は、前記一方側油圧回路および他方側油圧回路から蓄圧回路への作動油の流れを防止する逆流防止手段と、所定圧力に加圧された作動油を蓄圧回路に供給可能な状態で保持する蓄圧手段とを有することが望ましい。
In the above invention,
It has an accumulator circuit respectively connected to the one side hydraulic circuit and the other side hydraulic circuit,
The pressure accumulation circuit includes a backflow prevention means for preventing the flow of hydraulic oil from the one side hydraulic circuit and the other side hydraulic circuit to the pressure accumulation circuit, and a state capable of supplying hydraulic oil pressurized to a predetermined pressure to the pressure accumulation circuit. It is desirable to have the pressure accumulation means to hold | maintain.
 このように構成すれば、一方側油圧回路および他方側油圧回路に蓄圧手段を有する蓄圧回路が接続されているため、大きく早く舵を切った場合でも、該蓄圧回路から速やかに作動油が供給され、油圧回路内に負圧によるキャビテーションが生ずるのを防止することができる。ここで、上記逆流防止手段としては、例えば、蓄圧回路に設けられた逆止弁を好適に採用することができる。また、上記蓄圧手段としては、例えば、アキュームレータを好適に採用することができる。 According to this structure, since the pressure accumulation circuit having the pressure accumulation means is connected to the one side hydraulic circuit and the other side hydraulic circuit, the hydraulic oil can be supplied quickly from the pressure accumulation circuit even when the rudder is turned quickly. And cavitation due to negative pressure in the hydraulic circuit can be prevented. Here, as the backflow prevention means, for example, a check valve provided in an accumulator circuit can be suitably adopted. In addition, as the pressure accumulation means, for example, an accumulator can be suitably adopted.
 また上記発明において、
 前記一方側油圧回路と前記蓄圧回路とを前記逆流防止手段を迂回して接続する一方側リターン回路と、
 前記他方側油圧回路と前記蓄圧回路とを前記逆流防止手段を迂回して接続する他方側リターン回路とを備え、
 前記一方側リターン回路は、一方側リターン回路を開放または閉止する一方側開閉手段を有するとともに、
 前記他方側リターン回路は、他方側リターン回路を開放または閉止する他方側開閉手段を有し、
 前記油圧ポンプから前記一方側油圧回路に作動油が吐出されている場合は、前記一方側開閉手段によって一方側リターン回路が閉止されるとともに、前記他方側開閉手段によって他方側リターン回路が開放され、
 前記油圧ポンプから前記他方側油圧回路に作動油が吐出されている場合は、前記他方側開閉手段によって他方側リターン回路が閉止されるとともに、前記一方側開閉手段によって一方側リターン回路が開放されるように構成されていることが望ましい。
In the above invention,
A one-side return circuit that connects the one-side hydraulic circuit and the accumulator circuit by bypassing the backflow prevention means;
And a second side return circuit that connects the second side hydraulic circuit and the pressure accumulation circuit by bypassing the backflow prevention means,
The one-side return circuit has one-side switching means for opening or closing the one-side return circuit, and
The other side return circuit has another side opening / closing means for opening or closing the other side return circuit,
When hydraulic fluid is discharged from the hydraulic pump to the one side hydraulic circuit, the one side opening / closing means closes the one side return circuit, and the other side opening / closing means opens the other side return circuit,
When the hydraulic fluid is discharged from the hydraulic pump to the other side hydraulic circuit, the other side opening / closing means closes the other side return circuit, and the one side opening / closing means opens the one side return circuit It is desirable to be configured.
 このように構成すれば、油圧ポンプから一方側油圧回路に作動油が吐出されている場合は、他方側油圧回路と蓄圧回路とが連通され、油圧ポンプから他方側油圧回路に作動油が吐出されている場合は、一方側油圧回路と蓄圧回路とが連通される。すなわち、蓄圧回路内の圧力を、戻り側の油圧回路内の圧力以上に保持させることができるため、別途、加圧ポンプなどを用いずとも、蓄圧回路内の作動油を継続的に加圧状態にすることができる。ここで、上記一方側開閉手段および他方側開閉手段としては、一つまたは複数の電磁切換弁によって構成することができる。 According to this structure, when the hydraulic fluid is discharged from the hydraulic pump to the one hydraulic circuit, the other hydraulic circuit communicates with the pressure storage circuit, and the hydraulic pump discharges the hydraulic fluid to the other hydraulic circuit. In this case, the one hydraulic circuit and the accumulator circuit are communicated. That is, since the pressure in the pressure accumulation circuit can be held higher than the pressure in the hydraulic circuit on the return side, the hydraulic oil in the pressure accumulation circuit can be continuously pressurized without using a pressure pump etc. separately. Can be Here, the one side opening / closing means and the other side opening / closing means can be configured by one or a plurality of electromagnetic switching valves.
 また上記発明において、前記舵取機には、
 前記一方側油圧回路および前記他方側油圧回路内の圧力が所定圧力を上回らないように構成されたリリーフ手段が設けられていることが望ましい。
In the above invention, the steering gear may
It is desirable that a relief means be provided so that the pressure in the one side hydraulic circuit and the other side hydraulic circuit does not exceed a predetermined pressure.
 このようなリリーフ手段が設けられていれば、油圧回路内の圧力が異常に高まった場合に、その圧力を蓄圧回路へと逃がすことで、油圧機器および配管等が損傷するのを防止できる。ここで、上記リリーフ手段としては、一方側油圧回路内の圧力が所定圧力を上回った場合に、一方側油圧回路から蓄圧回路への作動油の流れを許容するリリーフ弁、並びに他方側油圧回路内の圧力が所定圧力を上回った場合に、他方側油圧回路から蓄圧回路への作動油の流れを許容するリリーフ弁を有するリリーフ回路によって構成することができる。 If such a relief means is provided, when the pressure in the hydraulic circuit is abnormally increased, the pressure can be released to the pressure accumulation circuit to prevent damage to the hydraulic equipment, piping and the like. Here, as the relief means, a relief valve that allows the flow of hydraulic fluid from the one side hydraulic circuit to the pressure accumulation circuit when the pressure in the one side hydraulic circuit exceeds a predetermined pressure, and the other side in the other side hydraulic circuit Can be constituted by a relief circuit having a relief valve that allows the flow of hydraulic fluid from the other side hydraulic circuit to the pressure accumulation circuit when the pressure of the pressure exceeds the predetermined pressure.
 本発明によれば、両方向に回転可能な電動機と、電動機の回転方向および回転数に応じて、作動油の吐出方向および吐出量が制御される油圧ポンプを採用し、電動機の回転方向および回転数を制御装置によって直接制御しているため、従来と比べて、エネルギーロスが少なく、また摺動機器類の長寿命化を図ることができる舵取機を提供することができる。 According to the present invention, a motor capable of rotating in both directions, and a hydraulic pump whose discharge direction and discharge amount of hydraulic fluid are controlled according to the rotation direction and rotation speed of the motor are adopted, and the rotation direction and rotation speed of the motor As compared with the prior art, it is possible to provide a steering gear that has less energy loss and can prolong the life of sliding devices as compared to the conventional case.
 また、一方側油圧回路および他方側油圧回路に蓄圧手段を有する蓄圧回路が接続されているため、大きく早く舵を切った場合でも、蓄圧回路から速やかに作動油が供給されることで、キャビテーションの発生が抑制された舵取機を提供することができる。 In addition, since the pressure accumulation circuit having pressure accumulation means is connected to the one side hydraulic circuit and the other side hydraulic circuit, even when the steering is turned large and quickly, the hydraulic oil is supplied quickly from the pressure accumulation circuit. It is possible to provide a steering gear whose occurrence is suppressed.
本発明の舵取機が船体に装備されている一例を示した図である。It is the figure which showed an example by which the steering gear of this invention is equipped by the hull. 本発明の第1の実施形態の舵取機の構成を示した構成図である。BRIEF DESCRIPTION OF THE DRAWINGS It is the block diagram which showed the structure of the steering gear of the 1st Embodiment of this invention. 本発明の第2の実施形態の舵取機の構成を示した構成図である。It is the block diagram which showed the structure of the steering gear of the 2nd Embodiment of this invention. 本発明の第3の実施形態の舵取機の構成を示した構成図である。It is the block diagram which showed the structure of the steering gear of the 3rd Embodiment of this invention. 本発明の第4の実施形態の舵取機の構成を示した構成図である。It is the block diagram which showed the structure of the steering gear of the 4th Embodiment of this invention. 本発明の舵取機における作動油の流れを示した構成図である。It is the block diagram which showed the flow of the hydraulic fluid in the steering gear of this invention. 従来の舵取機の構成を示した構成図である。It is the block diagram which showed the structure of the conventional steering gear.
 以下、本発明の実施形態について、図面に基づいてより詳細に説明する。
 ただし、本発明の範囲は以下の実施形態に限定されるものではない。以下の実施形態に記載されている構成部品の寸法、材質、形状、その相対配置などは、特に記載がない限り、本発明の範囲をそれにのみ限定する趣旨ではなく、単なる説明例に過ぎない。
Hereinafter, embodiments of the present invention will be described in more detail based on the drawings.
However, the scope of the present invention is not limited to the following embodiments. Unless stated otherwise, the dimensions, materials, shapes, relative positions, etc. of components described in the following embodiments are not intended to limit the scope of the present invention alone, but merely illustrative examples.
<第1の実施形態>
 図1は、本発明の舵取機が船体の装備されている一例を示した図である。図1は、船体2の後尾部分を示した図であり、船体2には舵取機1が収容されているとともに、舵取機1によって回動される舵軸22が回動自在に支持されている。また、舵軸22には舵板6(舵)が連結されており、舵取機1によって舵軸22を回動することで、これと一体化している舵板6が回動する。そして、舵板6を回動させて、プロペラ4の回転によって生成された水流を所定方向に導流することで、船舶の進行方向を変化させる。
First Embodiment
FIG. 1 is a view showing an example in which a steering gear of the present invention is equipped with a hull. FIG. 1 is a view showing a rear portion of a hull 2, and while a steering gear 1 is accommodated in the hull 2, a rudder shaft 22 rotated by the steering gear 1 is rotatably supported. ing. Further, a rudder plate 6 (rudder) is connected to the rudder shaft 22, and when the rudder shaft 22 is turned by the steering gear 1, the rudder plate 6 integrated therewith is turned. Then, the steering plate 6 is rotated to introduce the water flow generated by the rotation of the propeller 4 in a predetermined direction, thereby changing the traveling direction of the ship.
 図2は、本発明の第1の実施形態の舵取機の構成を示した構成図である。図2に示したように、本発明の舵取機1は、少なくとも、電動機10、油圧ポンプ12、操舵機20、一方側油圧回路30、他方側油圧回路32、および制御装置50などを備えている。 FIG. 2 is a configuration diagram showing the configuration of the steering gear according to the first embodiment of the present invention. As shown in FIG. 2, the steering gear 1 of the present invention comprises at least an electric motor 10, a hydraulic pump 12, a steering unit 20, a hydraulic circuit 30 on one side, a hydraulic circuit 32 on the other side, and a control device 50. There is.
 電動機10は、両方向に回転可能に構成されるとともに、制御装置50によって、その回転方向および回転数が制御されるようになっている。電動機10の回転方向および回転数は、ステアリング54から操舵に関する指示信号が制御装置50に入力され、該指示信号に応じて制御装置50によって制御される。 The motor 10 is configured to be rotatable in both directions, and the control device 50 controls the rotational direction and the number of rotations. The rotational direction and the number of rotations of the electric motor 10 are controlled by the control device 50 according to an instruction signal for steering from the steering 54 input to the control device 50.
 油圧ポンプ12は、2方向吐出側の油圧ポンプであって、電動機10に直結され、電動機10の回転方向および回転数に応じて、作動油の吐出方向および吐出量が制御されるようになっている。また、油圧ポンプ12の一方側には、一方側油圧回路30が接続されるとともに、油圧ポンプ12の他方側には、他方側油圧回路32が接続されている。 The hydraulic pump 12 is a hydraulic pump on the two-direction discharge side, and is directly connected to the motor 10, and the discharge direction and the discharge amount of hydraulic fluid are controlled according to the rotation direction and the number of rotations of the motor 10. There is. Further, one hydraulic circuit 30 is connected to one side of the hydraulic pump 12, and the other hydraulic circuit 32 is connected to the other side of the hydraulic pump 12.
 操舵機20は、舵柄24、2本のラム26(以下、必要に応じて26A、26Bと区別する)、および4本のシリンダ(以下、必要に応じて28A、28B、28C、28Dと区別する)とから構成された2ラム4シリンダ型のラプソンスライド式操舵機であって、舵柄24の中心部は舵軸22に固定されている。そして、一方側油圧回路30は、シリンダ28Aおよびシリンダ28Dに接続され、他方側油圧回路32は、シリンダ28Bおよびシリンダ28Cに接続されている。 The steering gear 20 is distinguished from the steering wheel 24, two rams 26 (hereinafter, distinguished from 26A and 26B as required), and 4 cylinders (hereinafter referred to as 28A, 28B, 28C and 28D as required) And a central portion of the steering wheel 24 is fixed to the rudder shaft 22. The one side hydraulic circuit 30 is connected to the cylinder 28A and the cylinder 28D, and the other side hydraulic circuit 32 is connected to the cylinder 28B and the cylinder 28C.
 そして、一方側油圧回路30からシリンダ28Aおよびシリンダ28Dに作動油が供給された場合には、ラム26Aがシリンダ28B側(図中右側)に移動するとともに、ラム26Bがシリンダ28C側(図中左側)に移動し、シリンダ28Bおよびシリンダ28Cからその内部に貯留されていた作動油が他方側油圧回路32に排出される。そしてこれにより、操舵機20の舵柄24に固定されている舵軸22が所定方向(例えば反時計回り)に回動される。 When the hydraulic fluid is supplied from the one-side hydraulic circuit 30 to the cylinder 28A and the cylinder 28D, the ram 26A moves to the cylinder 28B side (right side in the figure), and the ram 26B on the cylinder 28C side (left side in the figure) The hydraulic fluid stored in the cylinder 28 B and the cylinder 28 C is discharged to the other side hydraulic circuit 32. And thereby, the steering shaft 22 fixed to the steering wheel 24 of the steering machine 20 is rotated in a predetermined direction (for example, counterclockwise direction).
 また、他方側油圧回路32からシリンダ28Bおよびシリンダ28Cに作動油が供給された場合には、ラム26Aがシリンダ28A側(図中左側)に移動するとともに、ラム26Bがシリンダ28D側(図中右側)に移動し、シリンダ28Aおよびシリンダ28Dからその内部に貯留されていた作動油が一方側油圧回路30に排出される。そしてこれにより、操舵機20の舵柄24に固定されている舵軸22が所定方向とは反対方向(例えば時計回り)に回動される。なお図2は、一方側油圧回路30から操舵機20に作動油が供給されて、舵軸22が反時計回りに舵角αだけ回動した状態を示している。 When hydraulic fluid is supplied from the other side hydraulic circuit 32 to the cylinder 28B and the cylinder 28C, the ram 26A moves to the cylinder 28A side (left side in the drawing) and the ram 26B to the cylinder 28D side (right side in the drawing) The hydraulic oil stored in the cylinder 28A and the cylinder 28D is discharged to the one-side hydraulic circuit 30. And thereby, the rudder axle 22 fixed to the steering wheel 24 of the steering machine 20 is rotated in the direction (for example, clockwise rotation) opposite to a predetermined direction. FIG. 2 shows a state in which the hydraulic oil is supplied from the one-side hydraulic circuit 30 to the steering gear 20 and the rudder shaft 22 is turned counterclockwise by the steering angle α.
 なお本発明において、操舵機20は、上述した2ラム4シリンダ型のラプソンスライド式操舵機に限定されず、例えば1ラム2シリンダ型のラプソンスライド式操舵機であっても良く、また例えばロータリーベーン式の操舵機であってもよいものである。 In the present invention, the steering unit 20 is not limited to the above-described two-ram, four-cylinder rapson slide steering machine, but may be, for example, a one- ram, two-cylinder rapson slide steering machine. It may be a steering wheel of the formula.
 このように構成される本発明の舵取機1は、両方向に回転可能な電動機10と、電動機10の回転方向および回転数に応じて、作動油の吐出方向および吐出量が制御される油圧ポンプ12を採用し、電動機10の回転方向および回転数を制御装置50によって直接制御している。したがって、必要な動力だけを得るように電動機10を直接制御することができ、例えば、操舵が行われていない間は電動機10の運転を停止するように制御することができる。よって、従来と比べて、エネルギーロスが少なく、また電動機10、油圧ポンプ12、操舵機20などの摺動機器類の長寿命化を図ることができる。 The steering gear 1 of the present invention thus configured includes a motor 10 capable of rotating in both directions, and a hydraulic pump whose discharge direction and discharge amount of hydraulic fluid are controlled according to the rotation direction and rotational speed of the motor 10 12, the rotational direction and rotational speed of the motor 10 are directly controlled by the controller 50. Therefore, the motor 10 can be directly controlled to obtain only the necessary power, and for example, can be controlled to stop the operation of the motor 10 while steering is not performed. Therefore, compared to the conventional case, the energy loss is small, and the service life of the sliding devices such as the electric motor 10, the hydraulic pump 12, and the steering gear 20 can be extended.
 また、油圧ポンプ12から吐出された作動油が直接油圧ポンプ12に戻ってくる、いわゆるクローズ回路に構成されているため、図7に示したオープン回路で構成された従来の舵取機100のように、油圧タンク116やブーストポンプ114を設ける必要がない。このため、油圧機器設置の省スペース化を図ることができる。 Also, since the hydraulic oil discharged from the hydraulic pump 12 is configured as a so-called closed circuit, which directly returns to the hydraulic pump 12, like the conventional steering gear 100 configured as the open circuit shown in FIG. There is no need to provide the hydraulic tank 116 or the boost pump 114. For this reason, space saving of hydraulic equipment installation can be achieved.
<第2の実施形態>
 図3は、本発明の第2の実施形態の舵取機の構成を示した構成図である。
 なお、本実施形態の舵取機1は、上述した実施形態と基本的には同一の構成であり、同一の構成には同一の符号を付し、その詳細な説明を省略する。
Second Embodiment
FIG. 3 is a configuration diagram showing a configuration of a steering gear according to a second embodiment of the present invention.
In addition, the steering gear 1 of this embodiment is fundamentally the same structure as embodiment mentioned above, attaches | subjects the code | symbol same to the same structure, and abbreviate | omits the detailed description.
 本実施形態の舵取機1は、図3に示したように、一方側油圧回路30および他方側油圧回路32と夫々接続された蓄圧回路40を備えている点が、上述した実施形態と異なっている。 The steering gear 1 of the present embodiment differs from the above-described embodiment in that it includes an accumulator circuit 40 respectively connected to the first hydraulic circuit 30 and the second hydraulic circuit 32 as shown in FIG. 3. ing.
 蓄圧回路40には、逆止弁44、46(逆流防止手段)が設けられており、逆止弁44によって、一方側油圧回路30から蓄圧回路40への作動油の逆流を防止するとともに、逆止弁46によって、他方側油圧回路32から蓄圧回路40への作動油の逆流を防止している。また、蓄圧回路40には、アキュームレータ42(蓄圧手段)が接続されている。アキュームレータ42は、所定圧力の作動油を蓄圧回路40に供給可能な状態で保持しており、これにより、蓄圧回路40内の作動油は、所定圧力に加圧された状態となっている。そしてこれにより、一方側油圧回路30または他方側油圧回路32内の圧力が低下した場合には、蓄圧回路40から速やかに作動油が供給されるようになっている。なお図3は、一方側油圧回路30から操舵機20に作動油が供給され、舵軸22が反時計回りに舵角αだけ回動するとともに、蓄圧回路40から他方側油圧回路32に向かって、流量gの作動油が供給されている状態を示している。 The pressure accumulation circuit 40 is provided with check valves 44 and 46 (back flow prevention means), and the check valve 44 prevents back flow of hydraulic fluid from the one-side hydraulic circuit 30 to the pressure accumulation circuit 40 and reversely The stop valve 46 prevents the backflow of hydraulic fluid from the other side hydraulic circuit 32 to the pressure accumulation circuit 40. Further, an accumulator 42 (accumulation means) is connected to the pressure accumulation circuit 40. The accumulator 42 holds hydraulic oil of a predetermined pressure in a state capable of being supplied to the pressure accumulation circuit 40, whereby the hydraulic oil in the pressure accumulation circuit 40 is pressurized to a predetermined pressure. As a result, when the pressure in the one side hydraulic circuit 30 or the other side hydraulic circuit 32 decreases, the hydraulic oil is supplied from the pressure storage circuit 40 promptly. In FIG. 3, hydraulic fluid is supplied from the one side hydraulic circuit 30 to the steering gear 20, and the rudder shaft 22 rotates counterclockwise at a steering angle α, and from the pressure accumulation circuit 40 toward the other side hydraulic circuit 32. , A flow rate g of the hydraulic oil is supplied.
 このように構成される本発明の舵取機1は、一方側油圧回路30および他方側油圧回路32にアキュームレータ42(蓄圧手段)を有する蓄圧回路40が接続されている。このため、大きく早く舵を切った場合などにおいて、一方側油圧回路30および他方側油圧回路32内の圧力が一時的に低下した場合でも、その圧力が蓄圧回路40に保持されている作動油の圧力を下回った場合には、蓄圧回路40から速やかに作動油が供給されるようになっている。このため、大きく早く舵を切った場合などにおいて、一方側油圧回路30および他方側油圧回路32内に負圧によるキャビテーションが生ずるのを防止することができるようになっている。 In the steering gear 1 of the present invention thus configured, an accumulator circuit 40 having an accumulator 42 (accumulator) is connected to the one hydraulic circuit 30 and the other hydraulic circuit 32. For this reason, even when the pressure in the one hydraulic circuit 30 and the other hydraulic circuit 32 temporarily decreases when the rudder is turned large and quickly, etc., the pressure of the hydraulic oil held in the pressure accumulator circuit 40 When the pressure is reduced, the hydraulic oil is supplied from the pressure accumulation circuit 40 promptly. For this reason, in the case where the rudder is turned quickly, the occurrence of cavitation due to negative pressure in the one hydraulic circuit 30 and the other hydraulic circuit 32 can be prevented.
<第3の実施形態>
 図4は、本発明の第3の実施形態の舵取機の構成を示した構成図である。
 なお、本実施形態の舵取機1は、上述した実施形態と基本的には同一の構成であり、同一の構成には同一の符号を付し、その詳細な説明を省略する。
Third Embodiment
FIG. 4 is a configuration diagram showing a configuration of a steering gear according to a third embodiment of the present invention.
In addition, the steering gear 1 of this embodiment is fundamentally the same structure as embodiment mentioned above, attaches | subjects the code | symbol same to the same structure, and abbreviate | omits the detailed description.
 本実施形態の舵取機1は、図4に示したように、一方側油圧回路30と蓄圧回路40とを逆止弁44を迂回して接続する一方側リターン回路62と、他方側油圧回路32と蓄圧回路40とを逆止弁46を迂回して接続する他方側リターン回路64とを備える点が、上述した第2の実施形態と異なっている。 In the steering gear 1 of the present embodiment, as shown in FIG. 4, a one-side return circuit 62 connecting the one-side hydraulic circuit 30 and the accumulator circuit 40 by bypassing the check valve 44, and the other hydraulic circuit This embodiment differs from the second embodiment described above in that it includes a second return circuit 64 that connects the second and third pressure accumulators 32 and 40 with the check valve 46 bypassed.
 一方側リターン回路62には、一方側リターン回路62を開放または閉止する電磁切換弁66(一方側開閉手段)が配置されている。また、他方側リターン回路64には、他方側リターン回路64を開放または閉止する電磁切換弁68(他方側開閉手段)が配置されている。そして、一方側リターン回路62および他方側リターン回路64は、蓄圧回路40に夫々、逆止弁67、69を介して接続されており、蓄圧回路40から一方側リターン回路62および他方側リターン回路64へは作動油が流れないようになっている。 The one-side return circuit 62 is provided with an electromagnetic switching valve 66 (one-side opening / closing means) for opening or closing the one-side return circuit 62. Further, in the other side return circuit 64, an electromagnetic switching valve 68 (the other side opening / closing means) for opening or closing the other side return circuit 64 is disposed. The one side return circuit 62 and the other side return circuit 64 are connected to the pressure accumulation circuit 40 via check valves 67 and 69 respectively, and the pressure accumulation circuit 40 to the one side return circuit 62 and the other side return circuit 64 are connected. The hydraulic oil does not flow to the
 そして、油圧ポンプ12から一方側油圧回路30に作動油が吐出されている場合は、電磁切換弁66によって一方側リターン回路62が閉止されるとともに、電磁切換弁68によって他方側リターン回路64が開放され、これにより、他方側油圧回路32と蓄圧回路40とが他方側リターン回路64を介して連通され、蓄圧回路40が少なくとも他方側油圧回路32内の圧力まで加圧されるようになっている。 When the hydraulic fluid is discharged from the hydraulic pump 12 to the one side hydraulic circuit 30, the one side return circuit 62 is closed by the electromagnetic switching valve 66, and the other side return circuit 64 is opened by the electromagnetic switching valve 68. Thus, the other side hydraulic circuit 32 and the pressure accumulator circuit 40 are communicated through the other side return circuit 64, and the pressure accumulator circuit 40 is pressurized at least to the pressure in the other side hydraulic circuit 32. .
 また、油圧ポンプ12から他方側油圧回路32に作動油が吐出されている場合は、電磁切換弁68によって他方側リターン回路64が閉止されるとともに、電磁切換弁66によって一方側リターン回路62が開放され、これにより、他方側油圧回路32と蓄圧回路40とが他方側リターン回路64を介して連通され、蓄圧回路40が少なくとも他方側油圧回路32内の圧力まで加圧されるようになっている。 Further, when hydraulic oil is discharged from the hydraulic pump 12 to the other side hydraulic circuit 32, the other side return circuit 64 is closed by the electromagnetic switching valve 68, and the one side return circuit 62 is opened by the electromagnetic switching valve 66. Thus, the other side hydraulic circuit 32 and the pressure accumulator circuit 40 are communicated through the other side return circuit 64, and the pressure accumulator circuit 40 is pressurized at least to the pressure in the other side hydraulic circuit 32. .
 なお、上述した電磁切換弁66、68の開閉は、制御装置50からの指令信号により、電磁切換弁66、68が通電/非通電とされることで行われる。図4は、一方側油圧回路30から操舵機20に作動油が供給され、舵軸22が反時計回りに舵角αだけ回動するとともに、他方側油圧回路32から蓄圧回路40に向かって、他方側リターン回路64を介して流量fの作動油が供給されている状態を示している。 The opening and closing of the electromagnetic switching valves 66 and 68 described above are performed by the electromagnetic switching valves 66 and 68 being energized / de-energized by a command signal from the control device 50. In FIG. 4, hydraulic fluid is supplied from the one side hydraulic circuit 30 to the steering gear 20, and the rudder shaft 22 rotates counterclockwise by the steering angle α, and from the other side hydraulic circuit 32 toward the pressure accumulation circuit 40, It shows a state in which the hydraulic fluid of flow rate f is being supplied via the other side return circuit 64.
 このように構成される本発明の舵取機1は、蓄圧回路40内の作動油の圧力を、戻り側の油圧回路内の圧力以上に保持させることができるため、別途、加圧ポンプなどを用いずとも、蓄圧回路40内の作動油を継続的に加圧状態にすることができる。 Since the steering gear 1 of the present invention thus configured can hold the pressure of the hydraulic fluid in the pressure storage circuit 40 more than the pressure in the hydraulic circuit on the return side, the pressure pump etc. The hydraulic oil in the pressure accumulation circuit 40 can be continuously pressurized without using it.
 なお、上述の説明では、本発明の一方側開閉手段および他方側開閉手段を2つの電磁切換弁66、68から夫々構成した場合を例にした。しかしながら、本発明はこれに限定されず、例えば、1つの電磁切換弁に一方側リターン回路62および他方側リターン回路64を夫々接続し、一方側開閉手段および他方側開閉手段を1つの電磁切換弁から構成してもよいものである。 In the above description, the case where the one side opening / closing means and the other side opening / closing means of the present invention are respectively constituted of the two electromagnetic switching valves 66 and 68 is taken as an example. However, the present invention is not limited to this, for example, one electromagnetic switching valve is connected to the one side return circuit 62 and the other side return circuit 64, and the one side switching means and the other side switching means are one electromagnetic switching valve. It may be composed of
<第4の実施形態>
 図5は、本発明の第4の実施形態の舵取機の構成を示した構成図である。
 なお、本実施形態の舵取機1は、上述した実施形態と基本的には同一の構成であり、同一の構成には同一の符号を付し、その詳細な説明を省略する。
Fourth Embodiment
FIG. 5 is a configuration diagram showing a configuration of a steering gear according to a fourth embodiment of the present invention.
In addition, the steering gear 1 of this embodiment is fundamentally the same structure as embodiment mentioned above, attaches | subjects the code | symbol same to the same structure, and abbreviate | omits the detailed description.
 本実施形態の舵取機1は、図5に示したように、一方側油圧回路30および他方側油圧回路32内の圧力が所定圧力を上回らないよう、リリーフ回路70(リリーフ手段)が設けられている点が、上述した第3の実施形態と異なっている。 In the steering gear 1 of the present embodiment, as shown in FIG. 5, a relief circuit 70 (relief means) is provided so that the pressure in the one hydraulic circuit 30 and the other hydraulic circuit 32 does not exceed a predetermined pressure. Is different from the third embodiment described above.
 リリーフ回路70は、一方側リターン回路62の電磁切換弁66の上流側(一方側油圧回路30側)および他方側リターン回路64の電磁切換弁68の上流側(他方側油圧回路32側)の夫々と接続されており、リリーフ弁72、74を介して、蓄圧回路40に接続されている。リリーフ弁72は、一方側油圧回路30内の圧力が所定圧力以上になった場合に開放されるようになっている。また、リリーフ弁74は、他方側油圧回路32内の圧力が所定圧力以上になった場合に開放されるようになっている。なお、図5は、油圧ポンプ12から一方側油圧回路30側に向かって作動油が吐出され、一方側油圧回路30から操舵機20に作動油が供給されている状態を示しており、図中の符号bは、一方側油圧回路30からリリーフ回路70を介して蓄圧回路40に流出される作動油の流量を示している。 The relief circuit 70 is upstream of the electromagnetic switching valve 66 of the one-side return circuit 62 (one hydraulic circuit 30 side) and upstream of the electromagnetic switching valve 68 of the other return circuit 64 (second hydraulic circuit 32). And is connected to the pressure accumulation circuit 40 via the relief valves 72 and 74. The relief valve 72 is configured to be opened when the pressure in the one side hydraulic circuit 30 becomes equal to or higher than a predetermined pressure. Further, the relief valve 74 is opened when the pressure in the other hydraulic circuit 32 becomes equal to or higher than a predetermined pressure. FIG. 5 shows a state where the hydraulic oil is discharged from the hydraulic pump 12 toward the one side hydraulic circuit 30 and the hydraulic oil is supplied from the one side hydraulic circuit 30 to the steering gear 20, as shown in FIG. The symbol b indicates the flow rate of the hydraulic oil flowing from the one-side hydraulic circuit 30 to the pressure accumulation circuit 40 via the relief circuit 70.
 このようなリリーフ回路70(リリーフ手段)が設けられていれば、一方側油圧回路30または他方側油圧回路32内の圧力が異常に高まった場合に、その圧力を蓄圧回路40へと逃がすことで、油圧機器および配管等が損傷するのを防止できる。 If such a relief circuit 70 (relief means) is provided, when the pressure in the one hydraulic circuit 30 or the other hydraulic circuit 32 abnormally increases, the pressure is released to the pressure accumulator circuit 40. And prevent damage to hydraulic equipment and piping.
 また、本実施形態の舵取機1は、図5に示したように、油圧ポンプ12において内部リークした作動油を蓄圧回路40へと供給するリーク回路80が設けられており、油圧ポンプ12において内部リークした作動油が、蓄圧回路40に回収されるように構成されている。なお、リーク回路80には逆止弁82が配置されており、蓄圧回路40からの作動油の逆流が防止されている。なお、図中の符号cは、油圧ポンプ12からリーク回路80を介して蓄圧回路40に回収される作動油の流量を示している。 Further, as shown in FIG. 5, the steering gear 1 of the present embodiment is provided with a leak circuit 80 that supplies the hydraulic pressure leaked in the hydraulic pump 12 to the pressure accumulation circuit 40. The internally leaked hydraulic oil is configured to be collected by the pressure accumulation circuit 40. A check valve 82 is disposed in the leak circuit 80 to prevent backflow of hydraulic oil from the pressure accumulation circuit 40. The symbol c in the figure indicates the flow rate of the hydraulic oil collected from the hydraulic pump 12 to the pressure accumulation circuit 40 via the leak circuit 80.
 次に、一方側油圧回路30から操舵機20に作動油が供給され、舵軸22が反時計回りに舵角αだけ回動する場合の舵取機1全体の作動油の流れについて、図6をもとに説明する。なお、図6は、油圧ポンプ12から一方側油圧回路30に向かって流量Qの作動油が吐出されている状態を示している。 Next, with respect to the flow of the hydraulic oil of the entire steering gear 1 when the hydraulic oil is supplied from the one side hydraulic circuit 30 to the steering gear 20 and the rudder shaft 22 rotates counterclockwise by the steering angle α, as shown in FIG. It explains based on. 6 shows a state in which the hydraulic fluid of the flow rate Q is discharged from the hydraulic pump 12 toward the one-side hydraulic circuit 30.
 油圧ポンプ12からの吐出流量Qは、一方側油圧回路30および他方側油圧回路32を流れる流量aのほか、リリーフ弁72からの内部リーク部(流量b)およびリーク回路80からの内部リーク分(流量c)を加えた流量となる。また、この吐出流量Qは、油圧ポンプ12の吸入流量dと等しく、下記式(1)の通り表される。
   Q=a+b+c=d   ・・・ (1)
The discharge flow rate Q from the hydraulic pump 12 is not only the flow rate a flowing through the one side hydraulic circuit 30 and the other side hydraulic circuit 32 but also the internal leak portion (flow rate b) from the relief valve 72 and the internal leak from the leak circuit 80 It becomes the flow rate which added the flow rate c). Further, the discharge flow rate Q is equal to the suction flow rate d of the hydraulic pump 12 and is expressed by the following equation (1).
Q = a + b + c = d (1)
 上記式(1)から分かるように、油圧ポンプ12の吸入流量dを他方側油圧回路32からの戻り流量aだけでまかなうことができない。しかしながら、本発明の蓄圧回路40は、戻り側回路である他方側油圧回路32よりも少なくとも高圧に保持されているため、下記式(2)、(3)に示すように、不足流量hを含めた流量gが、蓄圧回路40から逆止弁46を介して速やかに他方側油圧回路32に供給される。この不足流量hは、リリーフ弁72およびリーク回路80から蓄圧回路40に回収された内部リーク流量の合計(流量b+流量c)と等しいものとなる。
   d=a+h       ・・・ (2)
   h=g-e=b+c   ・・・ (3)
As understood from the above equation (1), the suction flow rate d of the hydraulic pump 12 can not be covered only by the return flow rate a from the other side hydraulic circuit 32. However, since the pressure accumulation circuit 40 of the present invention is held at least at a higher pressure than the other side hydraulic circuit 32 which is the return side circuit, as shown in the following formulas (2) and (3), The flow rate g is quickly supplied from the pressure accumulation circuit 40 to the other hydraulic circuit 32 via the check valve 46. This insufficient flow rate h is equal to the sum (flow rate b + flow rate c) of the internal leak flow rates recovered from the relief valve 72 and the leak circuit 80 to the pressure accumulation circuit 40.
d = a + h ... (2)
h = g-e = b + c (3)
 また、蓄圧回路40から逆止弁46を介して他方側油圧回路32に供給される流量gは、電磁切換弁68から蓄圧回路40に回収される流量fを加えて、下記式(4)のとおり表される。
   g=b+c+f     ・・・ (4)
Further, the flow rate g supplied from the pressure accumulation circuit 40 to the other hydraulic circuit 32 via the check valve 46 is obtained by adding the flow rate f recovered from the electromagnetic switching valve 68 to the pressure accumulation circuit 40, It is represented as follows.
g = b + c + f (4)
 以上のとおり、本発明の舵取機1によれば、クローズ回路において、別途、加圧ポンプなどを用いずとも、油圧ポンプ12に安定した流量を供給することができるようになっている。 As described above, according to the steering gear 1 of the present invention, a stable flow rate can be supplied to the hydraulic pump 12 without using a pressure pump or the like separately in the closed circuit.
 以上、本発明の好ましい形態について説明したが、本発明は上記の形態に限定されるものではなく、本発明の目的を逸脱しない範囲での種々の変更が可能である。 As mentioned above, although the preferable form of this invention was demonstrated, this invention is not limited to said form, A various change in the range which does not deviate from the objective of this invention is possible.
 本発明は、船舶等の航走体に装備されて操舵を行う舵取機、詳しくは、油圧によって発生した動力によって操舵を行う電動油圧方式の舵取機として、一般商船などに好適に用いることができる。 The present invention is suitably used for a general commercial vessel etc. as a steering gear equipped with a navigation body such as a ship to perform steering, more specifically, an electrohydraulic steering gear that performs steering with power generated by hydraulic pressure. Can.

Claims (4)

  1.  船体に回動可能に支持される舵軸を回動させることで、該舵軸に連結されている舵を回動させる舵取機において、
     両方向に回転可能な電動機と、
     電動機の回転方向および回転数を制御する制御装置と、
     電動機の回転方向および回転数に応じて、作動油の吐出方向および吐出量が制御される油圧ポンプと、
     前記油圧ポンプの一方側と接続された一方側油圧回路と、
     前記油圧ポンプの他方側と接続された他方側油圧回路と、
     前記一方側油圧回路および他方側油圧回路と接続され、前記一方側油圧回路から作動油が供給された場合には、前記他方側油圧回路に作動油を排出するとともに、前記舵軸を所定方向に回動させ、前記他方側油圧回路から作動油が供給された場合には、前記一方側油圧回路に作動油を排出するとともに、前記舵軸を前記所定方向とは反対方向に回動させる操舵機と、を備えたことを特徴とする舵取機。
    In the steering gear that rotates the rudder connected to the rudder shaft by rotating the rudder shaft supported rotatably by the hull.
    A motor that can rotate in both directions,
    A control device for controlling the rotational direction and the number of rotations of the motor;
    A hydraulic pump whose discharge direction and discharge amount of hydraulic fluid are controlled in accordance with the rotation direction and the number of revolutions of the motor;
    One-side hydraulic circuit connected to one side of the hydraulic pump;
    The other side hydraulic circuit connected to the other side of the hydraulic pump;
    The hydraulic fluid is connected to the one side hydraulic circuit and the other side hydraulic circuit, and when the hydraulic fluid is supplied from the one side hydraulic circuit, the hydraulic fluid is discharged to the other side hydraulic circuit and the rudder shaft is in a predetermined direction. A steering gear that rotates and discharges hydraulic oil to the one hydraulic circuit and rotates the rudder shaft in a direction opposite to the predetermined direction when hydraulic oil is supplied from the other hydraulic circuit. And a steering gear characterized by comprising.
  2.  前記一方側油圧回路および他方側油圧回路と夫々接続された蓄圧回路を備え、
     前記蓄圧回路は、前記一方側油圧回路および他方側油圧回路から蓄圧回路への作動油の流れを防止する逆流防止手段と、所定圧力に加圧された作動油を蓄圧回路に供給可能な状態で保持する蓄圧手段とを有することを特徴とする請求項1に記載の舵取機。
    It has an accumulator circuit respectively connected to the one side hydraulic circuit and the other side hydraulic circuit,
    The pressure accumulation circuit includes a backflow prevention means for preventing the flow of hydraulic oil from the one side hydraulic circuit and the other side hydraulic circuit to the pressure accumulation circuit, and a state capable of supplying hydraulic oil pressurized to a predetermined pressure to the pressure accumulation circuit. The steering gear according to claim 1, further comprising: pressure accumulation means for holding.
  3.  前記一方側油圧回路と前記蓄圧回路とを前記逆流防止手段を迂回して接続する一方側リターン回路と、
     前記他方側油圧回路と前記蓄圧回路とを前記逆流防止手段を迂回して接続する他方側リターン回路とを備え、
     前記一方側リターン回路は、一方側リターン回路を開放または閉止する一方側開閉手段を有するとともに、
     前記他方側リターン回路は、他方側リターン回路を開放または閉止する他方側開閉手段を有し、
     前記油圧ポンプから前記一方側油圧回路に作動油が吐出されている場合は、前記一方側開閉手段によって一方側リターン回路が閉止されるとともに、前記他方側開閉手段によって他方側リターン回路が開放され、
     前記油圧ポンプから前記他方側油圧回路に作動油が吐出されている場合は、前記他方側開閉手段によって他方側リターン回路が閉止されるとともに、前記一方側開閉手段によって一方側リターン回路が開放されるように構成されていることを特徴とする請求項2に記載の舵取機。
    A one-side return circuit that connects the one-side hydraulic circuit and the accumulator circuit by bypassing the backflow prevention means;
    And a second side return circuit that connects the second side hydraulic circuit and the pressure accumulation circuit by bypassing the backflow prevention means,
    The one-side return circuit has one-side switching means for opening or closing the one-side return circuit, and
    The other side return circuit has another side opening / closing means for opening or closing the other side return circuit,
    When hydraulic fluid is discharged from the hydraulic pump to the one side hydraulic circuit, the one side opening / closing means closes the one side return circuit, and the other side opening / closing means opens the other side return circuit,
    When the hydraulic fluid is discharged from the hydraulic pump to the other side hydraulic circuit, the other side opening / closing means closes the other side return circuit, and the one side opening / closing means opens the one side return circuit The steering gear according to claim 2, wherein the steering gear is configured as follows.
  4.  前記一方側油圧回路および前記他方側油圧回路内の圧力が所定圧力を上回らないように構成されたリリーフ手段が設けられていることを特徴とする請求項3に記載の舵取機。 The steering gear according to claim 3, further comprising a relief means configured so that the pressure in the one side hydraulic circuit and the other side hydraulic circuit does not exceed a predetermined pressure.
PCT/JP2012/078963 2011-11-18 2012-11-08 Steering device WO2013073442A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201280041996.XA CN103764496B (en) 2011-11-18 2012-11-08 Steering wheel
KR1020147004571A KR101547074B1 (en) 2011-11-18 2012-11-08 Steering device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011252688A JP5818648B2 (en) 2011-11-18 2011-11-18 Steering machine
JP2011-252688 2011-11-18

Publications (1)

Publication Number Publication Date
WO2013073442A1 true WO2013073442A1 (en) 2013-05-23

Family

ID=48429505

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/078963 WO2013073442A1 (en) 2011-11-18 2012-11-08 Steering device

Country Status (4)

Country Link
JP (1) JP5818648B2 (en)
KR (1) KR101547074B1 (en)
CN (1) CN103764496B (en)
WO (1) WO2013073442A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114084337A (en) * 2021-12-21 2022-02-25 广西荣华船舶科技有限公司 Mute hydraulic steering engine

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200483730Y1 (en) 2015-04-15 2017-07-03 훌루테크 주식회사 The steering gear for a ship
KR200486892Y1 (en) 2017-01-20 2018-08-09 훌루테크 주식회사 tiller for steering gear
KR101765029B1 (en) * 2017-02-03 2017-08-14 유원산업(주) The steering system of a vessel
CN108313254A (en) * 2018-03-21 2018-07-24 无锡德林防务装备股份有限公司 A kind of steering engine
CN110435868B (en) * 2019-06-28 2020-11-17 武汉船用机械有限责任公司 Control system and control method of steering engine
JP7409904B2 (en) 2020-02-28 2024-01-09 川崎重工業株式会社 steering system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04108093A (en) * 1990-08-24 1992-04-09 Furuno Electric Co Ltd Steering device
JPH06316292A (en) * 1993-05-07 1994-11-15 Mitsubishi Heavy Ind Ltd Hydraulic steering system with emergency steering gear
JP2001114195A (en) * 1999-10-15 2001-04-24 Mitsui Eng & Shipbuild Co Ltd Steering system for ship
WO2010052777A1 (en) * 2008-11-06 2010-05-14 三菱重工業株式会社 Ship steering device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN200941250Y (en) * 2006-02-22 2007-08-29 上海海事大学 Simulative loading steering machine for teaching
CN101234670B (en) * 2008-02-25 2011-04-13 万福治 Direct driving type helm gear
JP5320143B2 (en) * 2009-04-15 2013-10-23 三菱重工業株式会社 Steering machine, control method thereof and ship equipped with steering machine
CN201808668U (en) * 2010-09-21 2011-04-27 南京航海仪器二厂有限公司 Oil supply system for hydraulic steering engine
CN101954968B (en) * 2010-09-25 2012-05-16 南京航海仪器二厂有限公司 Valve block special for hydraulic steering engine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04108093A (en) * 1990-08-24 1992-04-09 Furuno Electric Co Ltd Steering device
JPH06316292A (en) * 1993-05-07 1994-11-15 Mitsubishi Heavy Ind Ltd Hydraulic steering system with emergency steering gear
JP2001114195A (en) * 1999-10-15 2001-04-24 Mitsui Eng & Shipbuild Co Ltd Steering system for ship
WO2010052777A1 (en) * 2008-11-06 2010-05-14 三菱重工業株式会社 Ship steering device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114084337A (en) * 2021-12-21 2022-02-25 广西荣华船舶科技有限公司 Mute hydraulic steering engine
CN114084337B (en) * 2021-12-21 2024-01-05 广西荣华船舶科技有限公司 Mute hydraulic steering engine control method

Also Published As

Publication number Publication date
JP5818648B2 (en) 2015-11-18
JP2013107447A (en) 2013-06-06
CN103764496A (en) 2014-04-30
KR20140041872A (en) 2014-04-04
CN103764496B (en) 2016-06-22
KR101547074B1 (en) 2015-08-24

Similar Documents

Publication Publication Date Title
WO2013073442A1 (en) Steering device
JP5232870B2 (en) Steering machine
JP5364709B2 (en) Excavator swivel device and excavator
JP5763317B2 (en) Industrial vehicle
WO2014017475A1 (en) Hydraulic drive circuit
US20130312399A1 (en) System for driving working machine
CA2708089C (en) Hydraulic system with feed pump for feeding hydraulic fluid
WO2010128645A1 (en) Control device for hybrid construction machine
WO2012035964A1 (en) Hydraulic energy regeneration device
RU2560940C1 (en) Ship rudder propeller hydraulic steering device
CN102859185A (en) Rotor blade pitch adjustment device
CN105612358A (en) Hydraulic drive system
JP2016518288A (en) Rudder drive system and steering machine operating method
CA3058355A1 (en) Apparatus for controlling a hydraulic machine
JP2010053969A (en) Construction machine
JP5112195B2 (en) Sluice hydraulic drive system and sluice
JP2007177798A (en) Hydraulic traveling device of working vehicle
JP5514082B2 (en) Hydraulic drive system for deck crane
JP2007247821A (en) Hydraulic power transmission device
JP2006336849A (en) Turning drive device
JP4800349B2 (en) Construction machinery
KR100502475B1 (en) Non return valve
US20150292181A1 (en) Hydrostatic Drive
CN113646545A (en) Hydraulic system for a stabilizer drive
JP5038247B2 (en) Sluice hydraulic drive system and sluice

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12849966

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147004571

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12849966

Country of ref document: EP

Kind code of ref document: A1