WO2013073359A1 - Filter for reducing higher-order light and stray light, and spectral device using filter - Google Patents

Filter for reducing higher-order light and stray light, and spectral device using filter Download PDF

Info

Publication number
WO2013073359A1
WO2013073359A1 PCT/JP2012/077832 JP2012077832W WO2013073359A1 WO 2013073359 A1 WO2013073359 A1 WO 2013073359A1 JP 2012077832 W JP2012077832 W JP 2012077832W WO 2013073359 A1 WO2013073359 A1 WO 2013073359A1
Authority
WO
WIPO (PCT)
Prior art keywords
filter
light
wavelength side
short
long
Prior art date
Application number
PCT/JP2012/077832
Other languages
French (fr)
Japanese (ja)
Inventor
泰之 古川
正章 北脇
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Publication of WO2013073359A1 publication Critical patent/WO2013073359A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0262Constructional arrangements for removing stray light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters
    • G02B5/281Interference filters designed for the infrared light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters
    • G02B5/285Interference filters comprising deposited thin solid films
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/12Generating the spectrum; Monochromators
    • G01J2003/1226Interference filters

Definitions

  • the present invention relates to a cut filter arranged on the incident side of a photodetector for detecting the intensity of light in each wavelength region dispersed by a spectrometer and a spectroscopic device using the cut filter.
  • Fig. 10 shows the characteristics of the diffracted light of the diffraction grating.
  • the diffraction grating has a phenomenon in which adjacent order spectra partially overlap when light in a wide wavelength range is incident. For this reason, in a spectroscopic device that splits measurement light by a diffraction grating and guides it to a photodetector (sensor array), light in different wavelength ranges is incident on a channel where light in a certain wavelength range is incident, There was a problem that the measured value of light was measured higher than the actual value.
  • overlapping wavelengths are removed using a colored glass filter or the like.
  • the primary light incident on a certain area of the sensor array is light having a wavelength range of 600 to 800 nm and the secondary light is light having a wavelength range of 300 to 400 nm, the secondary light is shielded.
  • a filter that cuts off a wavelength of 400 nm or less is used.
  • FIG. 11A shows a configuration example of such a polychromator spectrometer.
  • the polychromator can simultaneously measure multi-wavelength light separated by the diffraction grating 26 by using the sensor array 22 as a photodetector.
  • the colored glass filter 24 is disposed in front of the long-wavelength side channel on the sensor surface of the sensor array 22 affected by the high-order light, and the short-wavelength side channel is not provided with the colored glass filter. It is common.
  • stray light caused by multiple reflections on the front and back of the cover glass that protects the sensor array is also a problem.
  • a cover glass 25 that protects the sensor surface of the sensor array 22 is composed of a transmission part and a light shielding part, and stray light due to multiple reflections in the transmission part is shielded. It has been proposed to prevent the light from being incident on other channels by blocking the light (see Patent Document 1).
  • an object of the present invention is to reduce spectrum noise and improve measurement sensitivity without reducing the channels that can be used on the sensor surface of the photodetector.
  • the filter of the present invention is arranged so as to cover the entire sensor surface of the photodetector having a sensor surface in which a plurality of channels for detecting light dispersed by the spectrometer is arranged.
  • the filter surface is composed of a plurality of filter regions having different transmission wavelength characteristics, and these filter regions are arranged in the channel arrangement direction of the sensor surface of the photodetector, and are on the long wavelength side which is a wavelength range of a predetermined wavelength or more.
  • a filter film covering the channel portion for detecting light is formed with a multilayer filter that does not transmit light on the short wavelength side, which is shorter than a predetermined wavelength, and covers the channel portion for detecting light on the short wavelength side.
  • a multilayer filter that does not transmit light on the long wavelength side is formed in the filter region.
  • a spectroscopic device divides measurement light using a spectroscope and detects the spectroscopic light guided to a photodetector having a sensor surface having a plurality of channels.
  • the filter of the present invention is arranged so as to cover the surface.
  • the filter surface is composed of a plurality of filter regions having different transmission wavelength characteristics, and these filter regions are arranged in the channel arrangement direction of the sensor surface of the photodetector, and have a wavelength range of a predetermined wavelength or more.
  • a multilayer filter that does not transmit the short-wavelength light having a wavelength less than the predetermined wavelength is formed to detect the short-wavelength light.
  • a multilayer filter that does not transmit light on the long wavelength side is formed.
  • each filter region can be designed to transmit or block light in an arbitrary wavelength range, so the degree of freedom in designing a spectroscopic device rather than a colored glass filter Will improve.
  • the filter of the present invention is arranged so as to cover the sensor surface of the photodetector, measurement is performed while reducing noise while performing measurement using all the channels of the photodetector. Sensitivity can be improved.
  • the filter surface covers one long wavelength side filter region covering the channel portion for detecting light on the long wavelength side and the channel portion for detecting light on the short wavelength side. It consists of one short wavelength side filter region, a long pass filter is formed in the long wavelength side filter region, and a short pass filter is formed in the short wavelength side filter region. If the filter surface is composed of two filter regions, the noise of the detection signal of the photodetector can be reduced without increasing the manufacturing cost of the filter.
  • each multilayer filter is a band pass filter
  • the light incident on the photodetector can be further limited, and the incidence of unnecessary wavelength components on the photodetector can be further reduced. Thereby, the amount of stray light is also reduced, and the S / N ratio can be further improved.
  • FIG. 1 is a block diagram schematically showing an embodiment of a spectroscopic device.
  • This spectroscopic device splits the measurement light entering from the entrance slit 2 with a concave diffraction grating 4 as a spectroscope and guides it to a sensor array 6 as a photo detector, and detects the intensity of each constant wavelength component.
  • a cut filter 8 for reducing scattered light and stray light is disposed in front of the sensor surface of the sensor array 6.
  • FIG. 3A and 3B show an embodiment of the cut filter 8.
  • FIG. 3A is a plan view and FIG. 3B is a cross-sectional view in the filter region arrangement direction.
  • the cut filter 8 includes filter regions 12 a and 12 b that are arranged in a channel arrangement direction provided on the sensor surface of the sensor array 6.
  • the cut filter 8 covers a portion where the short wavelength detection channels (for example, less than 540 nm) on the sensor surface of the sensor array 6 are arranged with the filter region 12a, and the long wavelength detection channel (on the sensor surface of the sensor array 6) (For example, 540 nm or more) is arranged so as to cover a portion where the filter region 12b is arranged.
  • the cut filter 8 may also be directly fixed to the sensor surface as a cover glass that protects the sensor surface of the sensor array 6, or as shown in FIG. 2B. As shown, the sensor surface may be covered via the cover glass 7.
  • multilayer filters in which a plurality of dielectric layers are laminated on one side or both sides of the transparent substrate 10 made of, for example, quartz glass are formed.
  • the multilayer filter formed in the filter region 12a is a short pass filter that transmits light on the short wavelength side and blocks light on the long wavelength side.
  • the multilayer filter formed in the filter region 12b is a long pass filter that transmits light on the long wavelength side and blocks light on the short wavelength side.
  • FIG. 4 shows the light transmission characteristics of the two filter regions of the cut filter 8.
  • the short-pass filter in the filter region 12a is formed so as to transmit light having a wavelength of 300 to 540 nm and shield light having a wavelength of 550 nm or more.
  • the long pass filter is formed to transmit light having a wavelength of 540 to 800 nm and shield light having a wavelength of 520 nm or less.
  • the long-wavelength component is a short-wavelength detection channel due to scattered light or stray light from the long-wavelength side. It can suppress that it is incident on and detected.
  • FIG. 5 is an example of an absorbance spectrum on the short wavelength side when the cut filter 8 is arranged in front of the sensor array 6 and when the cut filter 8 is not arranged.
  • FIG. 8 An example of the filter film structure formed in the filter regions 12a and 12b is shown in FIG. In FIG. 8, the layers are shown in the order of being stacked from the transparent substrate 10 side.
  • two filter regions are provided in the cut filter 8, but three or more filter regions may be provided to give different light transmission characteristics to each other. If more filter regions are provided in the cut filter 8 and the light transmission characteristics of each filter region are matched to the detection wavelength of each channel provided on the sensor surface of the sensor array 6, the extra incident light to each channel can be made more efficient. Therefore, the noise can be further reduced and the measurement sensitivity can be further improved.
  • FIG. 6 shows an example in which the cut filter 8 is provided with two band pass filter regions 13a and 13b.
  • a short band pass filter is formed in the filter region 13a, and a long band pass filter is formed in the filter region 13b.
  • the light transmission characteristics of the short bandpass filter and the long bandpass filter are shown in FIG.
  • the short bandpass filter of this example is formed so as to transmit light having a wavelength of 400 to 540 nm and shield light having a wavelength of less than 400 nm and light having a wavelength of 550 nm or more.
  • the long bandpass filter is formed so as to transmit light having a wavelength of 540 to 680 nm and shield light having a wavelength of less than 540 nm and light having a wavelength of 690 nm or more.
  • An example of the film configuration of the filter formed in the filter regions 13a and 13b is shown in FIG. In FIG. 9, the layers are shown in the order of being laminated from the transparent substrate 10 side.

Abstract

A cut filter covering the sensor surface of a sensor array is provided with two filter regions. A multilayer film filter is formed in each of the filter regions. Formed in one of the filter regions is a multilayer film filter acting as a short-pass filter which allows transmission of light on the short-wavelength side and blocks light on the long-wavelength side; and formed in the other filter region is a multilayer film filter acting as a long-pass filter which allows transmission of light on the long-wavelength side and blocks light on the short-wavelength side.

Description

高次光と迷光を低減するフィルタ及びそのフィルタを用いた分光装置Filter for reducing higher-order light and stray light and spectroscopic device using the filter
 本発明は、分光器により分光された波長域ごとの光の強度を検出する光検出器の入射側に配置されるカットフィルタ及びそのカットフィルタを用いた分光装置に関するものである。 The present invention relates to a cut filter arranged on the incident side of a photodetector for detecting the intensity of light in each wavelength region dispersed by a spectrometer and a spectroscopic device using the cut filter.
 図10に回折格子の回折光の特性を示す。回折格子は、原理上、広い波長範囲の光が入射すると、隣り合う次数のスペクトルが一部重なり合うという現象が起こる。そのため、回折格子により測定光を分光して光検出器(センサアレイ)に導く分光装置では、ある波長範囲の光を入射させるべきチャネルに異なる波長範囲の光が重なって入射し、ある波長範囲の光の測定値が実際よりも高く測定されるという問題があった。 Fig. 10 shows the characteristics of the diffracted light of the diffraction grating. In principle, the diffraction grating has a phenomenon in which adjacent order spectra partially overlap when light in a wide wavelength range is incident. For this reason, in a spectroscopic device that splits measurement light by a diffraction grating and guides it to a photodetector (sensor array), light in different wavelength ranges is incident on a channel where light in a certain wavelength range is incident, There was a problem that the measured value of light was measured higher than the actual value.
 そこで、本来入射させるべき波長範囲の光とは異なる波長範囲の光を除去するために、色ガラスフィルタ等を用いて重複する波長を除去している。例えば、センサアレイのある領域に入射する1次光が600~800nmの波長範囲の光であり、2次光が300~400nmの波長範囲の光である場合は、2次光を遮蔽するために波長400nm以下をカットするフィルタを用いる。 Therefore, in order to remove light in a wavelength range different from the wavelength range that should be incident, overlapping wavelengths are removed using a colored glass filter or the like. For example, when the primary light incident on a certain area of the sensor array is light having a wavelength range of 600 to 800 nm and the secondary light is light having a wavelength range of 300 to 400 nm, the secondary light is shielded. A filter that cuts off a wavelength of 400 nm or less is used.
 図11Aにそのようなポリクロメータ分光器の構成例を示す。ポリクロメータは、光検出器としてセンサアレイ22を用いることで、回折格子26により分光された多波長の光を同時に測定することができる。回折格子から生じる高次光をカットするために、高次光の影響を受けるセンサアレイ22のセンサ面の長波長側チャネルの前に色ガラスフィルタ24を配置し、短波長側チャネルには色ガラスフィルタは設けないことが一般的である。 FIG. 11A shows a configuration example of such a polychromator spectrometer. The polychromator can simultaneously measure multi-wavelength light separated by the diffraction grating 26 by using the sensor array 22 as a photodetector. In order to cut the high-order light generated from the diffraction grating, the colored glass filter 24 is disposed in front of the long-wavelength side channel on the sensor surface of the sensor array 22 affected by the high-order light, and the short-wavelength side channel is not provided with the colored glass filter. It is common.
 また、センサアレイを保護するカバーガラスの表裏の多重反射により生じる迷光(他チャネルへノイズを生じさせる)も問題となっている。この問題を解決するために、図11Bに示されているように、センサアレイ22のセンサ面を保護するカバーガラス25を透過部と遮光部からなる構成にし、透過部における多重反射による迷光を遮光部で遮断して他のチャネルに入射することを防止することが提案されている(特許文献1参照。)。 Also, stray light (causing noise to other channels) caused by multiple reflections on the front and back of the cover glass that protects the sensor array is also a problem. In order to solve this problem, as shown in FIG. 11B, a cover glass 25 that protects the sensor surface of the sensor array 22 is composed of a transmission part and a light shielding part, and stray light due to multiple reflections in the transmission part is shielded. It has been proposed to prevent the light from being incident on other channels by blocking the light (see Patent Document 1).
特開平5-332834号公報JP-A-5-332834
 図11Aのポリクロメータ分光器では、センサアレイ22の短波長領域側では高次光は発生せず回折光の次数の重なりがないため、長波長領域側にのみ色ガラスフィルタを配置している。しかし、回折格子や分光器筐体面からの散乱光やカバーガラス内の多重反射により生じる迷光が短波長領域側のチャネルに入射することを防止できず、スペクトルのノイズを低減するのに限界があった。 In the polychromator spectrometer of FIG. 11A, high-order light is not generated on the short wavelength region side of the sensor array 22 and there is no overlapping of the orders of diffracted light, and therefore, a colored glass filter is disposed only on the long wavelength region side. However, it is impossible to prevent scattered light from the diffraction grating or the surface of the spectroscope casing or stray light generated by multiple reflection in the cover glass from entering the channel on the short wavelength region side, and there is a limit to reducing the noise of the spectrum. It was.
 また、図11Bのようにカバーガラス25に透過部と遮光部を設けると、センサアレイ22のチャネルのうち遮光部に覆われたチャネルは測定に使用することができないため、測定に使用できるチャネルが少なくなるという問題があった。 In addition, when the cover glass 25 is provided with a transmission part and a light shielding part as shown in FIG. 11B, channels covered by the light shielding part among the channels of the sensor array 22 cannot be used for measurement. There was a problem of fewer.
 そこで、本発明は、光検出器のセンサ面の使用できるチャネルを減らすことなくスペクトルのノイズを低減して測定感度を向上させることを目的とするものである。 Therefore, an object of the present invention is to reduce spectrum noise and improve measurement sensitivity without reducing the channels that can be used on the sensor surface of the photodetector.
 本発明のフィルタは、分光器により分光された光を検出するための複数のチャネルが配列されたセンサ面を有する光検出器の前記センサ面全体を覆うように配置されるものであって、そのフィルタ面は互いに異なる透過波長特性をもつ複数のフィルタ領域からなり、それらのフィルタ領域が光検出器のセンサ面のチャネル配列方向に配列されており、所定波長以上の波長範囲である長波長側の光を検出するためのチャネル部分を覆うフィルタ領域には所定波長未満の波長である短波長側の光を透過させない多層膜フィルタが形成され、短波長側の光を検出するためのチャネル部分を覆うフィルタ領域には長波長側の光を透過させない多層膜フィルタが形成されている。 The filter of the present invention is arranged so as to cover the entire sensor surface of the photodetector having a sensor surface in which a plurality of channels for detecting light dispersed by the spectrometer is arranged. The filter surface is composed of a plurality of filter regions having different transmission wavelength characteristics, and these filter regions are arranged in the channel arrangement direction of the sensor surface of the photodetector, and are on the long wavelength side which is a wavelength range of a predetermined wavelength or more. A filter film covering the channel portion for detecting light is formed with a multilayer filter that does not transmit light on the short wavelength side, which is shorter than a predetermined wavelength, and covers the channel portion for detecting light on the short wavelength side. A multilayer filter that does not transmit light on the long wavelength side is formed in the filter region.
 本発明の分光装置は、分光器を用いて測定光を分光するとともに分光した光を複数のチャネルを備えたセンサ面を有する光検出器に導いて検出するものであって、光検出器のセンサ面を覆うように本発明のフィルタが配置されていることを特徴とする。 A spectroscopic device according to the present invention divides measurement light using a spectroscope and detects the spectroscopic light guided to a photodetector having a sensor surface having a plurality of channels. The filter of the present invention is arranged so as to cover the surface.
 本発明のフィルタでは、フィルタ面は互いに異なる透過波長特性をもつ複数のフィルタ領域からなり、それらのフィルタ領域が光検出器のセンサ面のチャネル配列方向に配列されており、所定波長以上の波長範囲である長波長側の光を検出するためのチャネル部分を覆うフィルタ領域には所定波長未満の波長である短波長側の光を透過させない多層膜フィルタが形成され、短波長側の光を検出するためのチャネル部分を覆うフィルタ領域には長波長側の光を透過させない多層膜フィルタが形成されているので、光検出器の長波長側のチャネルでは高次光の入射が低減され、短波長側のチャネルでは散乱による長波長の光や迷光の入射が低減される。このフィルタを光検出器のセンサ面の前に配置することで、光検出器で得られる検出信号のノイズを低減することができ、測定感度を向上させることができる。また、フィルタ領域を多層膜フィルタで構成することにより、各フィルタ領域において任意の波長範囲の光を透過又は遮光させるように設計することができるので、色ガラスフィルタよりも分光装置の設計の自由度が向上する。 In the filter of the present invention, the filter surface is composed of a plurality of filter regions having different transmission wavelength characteristics, and these filter regions are arranged in the channel arrangement direction of the sensor surface of the photodetector, and have a wavelength range of a predetermined wavelength or more. In the filter region that covers the channel portion for detecting the long-wavelength light, a multilayer filter that does not transmit the short-wavelength light having a wavelength less than the predetermined wavelength is formed to detect the short-wavelength light. In the filter region covering the channel portion, a multilayer filter that does not transmit light on the long wavelength side is formed. Therefore, the incidence of high-order light is reduced in the channel on the long wavelength side of the photodetector, and the channel on the short wavelength side Then, the incidence of long wavelength light and stray light due to scattering is reduced. By disposing this filter in front of the sensor surface of the photodetector, noise in the detection signal obtained by the photodetector can be reduced and measurement sensitivity can be improved. In addition, by configuring the filter region with a multilayer filter, each filter region can be designed to transmit or block light in an arbitrary wavelength range, so the degree of freedom in designing a spectroscopic device rather than a colored glass filter Will improve.
 本発明の分光装置では、光検出器のセンサ面を覆うように本発明のフィルタが配置されているので、光検出器の全てのチャネルを使用して測定を行ないながら、ノイズを低減して測定感度を向上させることができる。 In the spectroscopic device of the present invention, since the filter of the present invention is arranged so as to cover the sensor surface of the photodetector, measurement is performed while reducing noise while performing measurement using all the channels of the photodetector. Sensitivity can be improved.
分光装置の一実施例を概略的に示す構成図である。It is a block diagram which shows roughly one Example of a spectroscopic device. 同実施例のセンサアレイ部分の構成の一例としてセンサアレイのセンサ面をカットフィルタで覆った例を示す図である。It is a figure which shows the example which covered the sensor surface of the sensor array with the cut filter as an example of a structure of the sensor array part of the Example. 同実施例のセンサアレイ部分の構成の一例としてセンサアレイのセンサ面をカバーガラスを介して覆った例を示す図である。It is a figure which shows the example which covered the sensor surface of the sensor array through the cover glass as an example of a structure of the sensor array part of the Example. カットフィルタの一実施例を示す図であり、(A)は平面図、(B)はフィルタ領域配列方向における断面図である。It is a figure which shows one Example of a cut filter, (A) is a top view, (B) is sectional drawing in a filter area | region array direction. カットフィルタの2つのフィルタ領域の光透過特性の一例を示すグラフである。It is a graph which shows an example of the light transmission characteristic of two filter area | regions of a cut filter. カットフィルタをセンサアレイの前に配置した場合と配置しない場合における短波長側の吸光度スペクトルの一例である。It is an example of the light-absorption spectrum of the short wavelength side in the case where it does not arrange | position with the case where a cut filter is arrange | positioned in front of a sensor array. カットフィルタの他の実施例を示す図であり、(A)は平面図、(B)はフィルタ領域配列方向における断面図である。It is a figure which shows the other Example of a cut filter, (A) is a top view, (B) is sectional drawing in a filter area | region array direction. 同実施例のカットフィルタの各フィルタ領域の光透過特性の一例を示すグラフである。It is a graph which shows an example of the light transmission characteristic of each filter area | region of the cut filter of the Example. カットフィルタのフィルタ領域に形成されているショートパスフィルタとロングパスフィルタの膜構成の一例を示すデータである。It is data which shows an example of the film | membrane structure of the short pass filter and long pass filter currently formed in the filter area | region of a cut filter. カットフィルタのフィルタ領域に形成されているショートバンドパスフィルタとロングバンドパスフィルタの膜構成の一例を示すデータである。It is data which shows an example of the film | membrane structure of the short band pass filter and long band pass filter currently formed in the filter area | region of a cut filter. 回折格子からの回折光の特性を説明するための概念図である。It is a conceptual diagram for demonstrating the characteristic of the diffracted light from a diffraction grating. 従来の分光装置のセンサアレイ部分の構成の一例として色ガラスフィルタを使用した例を示す図である。It is a figure which shows the example which uses a color glass filter as an example of a structure of the sensor array part of the conventional spectrometer. 従来の分光装置のセンサアレイ部分の構成の他の例としてセンサアレイのセンサ面を保護するカバーガラスを加工した例を示す図である。It is a figure which shows the example which processed the cover glass which protects the sensor surface of a sensor array as another example of a structure of the sensor array part of the conventional spectrometer.
 本発明のフィルタの好ましい実施形態では、フィルタ面は、長波長側の光を検出するためのチャネル部分を覆う1つの長波長側フィルタ領域及び短波長側の光を検出するためのチャネル部分を覆う1つの短波長側フィルタ領域からなり、長波長側フィルタ領域にはロングパスフィルタが形成され、短波長側フィルタ領域にはショートパスフィルタが形成されている。フィルタ面を2つのフィルタ領域からなる構成にすれば、フィルタの製造コストを増大させることなく、光検出器の検出信号のノイズを低減することができる。 In a preferred embodiment of the filter of the present invention, the filter surface covers one long wavelength side filter region covering the channel portion for detecting light on the long wavelength side and the channel portion for detecting light on the short wavelength side. It consists of one short wavelength side filter region, a long pass filter is formed in the long wavelength side filter region, and a short pass filter is formed in the short wavelength side filter region. If the filter surface is composed of two filter regions, the noise of the detection signal of the photodetector can be reduced without increasing the manufacturing cost of the filter.
 また、各多層膜フィルタをバンドパスフィルタにすれば、光検出器に入射する光をさらに限定することができ、不要な波長成分の光検出器への入射をさらに低減することができる。これにより、迷光の量も低減され、S/N比のさらなる向上を図ることができる。 Further, if each multilayer filter is a band pass filter, the light incident on the photodetector can be further limited, and the incidence of unnecessary wavelength components on the photodetector can be further reduced. Thereby, the amount of stray light is also reduced, and the S / N ratio can be further improved.
 以下に、高次光及び迷光を低減するフィルタの一実施例とともに分光装置の一実施例を図面を用いて説明する。
 図1は分光装置の一実施例を概略的に示す構成図である。この分光装置は、入口スリット2から入ってきた測定光を分光器としての凹面回折格子4で分光して光検出器であるセンサアレイ6に導き、一定の波長成分ごとにその強度を検出する。センサアレイ6のセンサ面の前方に散乱光や迷光を低減するためのカットフィルタ8が配置されている。
Hereinafter, an embodiment of a spectroscopic device will be described with reference to the drawings together with an embodiment of a filter for reducing higher-order light and stray light.
FIG. 1 is a block diagram schematically showing an embodiment of a spectroscopic device. This spectroscopic device splits the measurement light entering from the entrance slit 2 with a concave diffraction grating 4 as a spectroscope and guides it to a sensor array 6 as a photo detector, and detects the intensity of each constant wavelength component. A cut filter 8 for reducing scattered light and stray light is disposed in front of the sensor surface of the sensor array 6.
 図3はカットフィルタ8の一実施例を示すであり、(A)は平面図、(B)はフィルタ領域配列方向における断面図である。
 カットフィルタ8はセンサアレイ6のセンサ面に設けられたチャネルの配列方向に並んで配置されたフィルタ領域12a及び12bを備えている。カットフィルタ8は、センサアレイ6のセンサ面における短波長検出用のチャネル(例えば540nm未満)が配列されている部分をフィルタ領域12aで覆い、センサアレイ6のセンサ面における長波長検出用のチャネル(例えば540nm以上)が配列されている部分をフィルタ領域12bで覆うように配置される。なお、カットフィルタ8は、図2Aに示されているように、センサアレイ6のセンサ面を保護するカバーガラスを兼ねてセンサ面に直接的に固定されていてもよいし、図2Bに示されているように、カバーガラス7を介してセンサ面を覆っていてもよい。
3A and 3B show an embodiment of the cut filter 8. FIG. 3A is a plan view and FIG. 3B is a cross-sectional view in the filter region arrangement direction.
The cut filter 8 includes filter regions 12 a and 12 b that are arranged in a channel arrangement direction provided on the sensor surface of the sensor array 6. The cut filter 8 covers a portion where the short wavelength detection channels (for example, less than 540 nm) on the sensor surface of the sensor array 6 are arranged with the filter region 12a, and the long wavelength detection channel (on the sensor surface of the sensor array 6) (For example, 540 nm or more) is arranged so as to cover a portion where the filter region 12b is arranged. As shown in FIG. 2A, the cut filter 8 may also be directly fixed to the sensor surface as a cover glass that protects the sensor surface of the sensor array 6, or as shown in FIG. 2B. As shown, the sensor surface may be covered via the cover glass 7.
 フィルタ領域12a及び12bには、例えば石英ガラスからなる透明基板10の片面又は両面に複数の誘電体層が積層された多層膜フィルタが形成されている。フィルタ領域12aに形成されている多層膜フィルタは、短波長側の光を透過させて長波長側の光を遮光するショートパスフィルタである。フィルタ領域12bに形成されている多層膜フィルタは、長波長側の光を透過させて短波長側の光を遮光するロングパスフィルタである。 In the filter regions 12a and 12b, multilayer filters in which a plurality of dielectric layers are laminated on one side or both sides of the transparent substrate 10 made of, for example, quartz glass are formed. The multilayer filter formed in the filter region 12a is a short pass filter that transmits light on the short wavelength side and blocks light on the long wavelength side. The multilayer filter formed in the filter region 12b is a long pass filter that transmits light on the long wavelength side and blocks light on the short wavelength side.
 図4はカットフィルタ8の2つのフィルタ領域の光透過特性を示している。この図に示されているように、フィルタ領域12aのショートパスフィルタは、300~540nmの波長の光を透過させて550nm以上の波長の光を遮光するように形成されており、フィルタ領域12bのロングパスフィルタは540~800nmの波長の光を透過させて520nm以下の波長の光を遮光するように形成されている。 FIG. 4 shows the light transmission characteristics of the two filter regions of the cut filter 8. As shown in this figure, the short-pass filter in the filter region 12a is formed so as to transmit light having a wavelength of 300 to 540 nm and shield light having a wavelength of 550 nm or more. The long pass filter is formed to transmit light having a wavelength of 540 to 800 nm and shield light having a wavelength of 520 nm or less.
 センサアレイ6の短波長検出用のチャネルが配列されている部分に上記のようなショートパスフィルタを配置することで、散乱光や長波長側からの迷光により長波長成分が短波長検出用のチャネルに入射して検出されることを抑制できる。 By disposing the short-pass filter as described above in the portion where the short-wavelength detection channels of the sensor array 6 are arranged, the long-wavelength component is a short-wavelength detection channel due to scattered light or stray light from the long-wavelength side. It can suppress that it is incident on and detected.
 図5はカットフィルタ8をセンサアレイ6の前に配置した場合と配置しない場合における短波長側の吸光度スペクトルの一例である。センサアレイ6の短波長検出用のチャネル部分にショートパスフィルタを配置することで、センサアレイ6の検出信号のベース(I0)がショートパスフィルタを配置しない場合に比べて低減され、吸光度(=-log(I/I0))が全体的に高くなる。すなわち、カットフィルタ8を配置することによって測定感度が向上することがわかる。 FIG. 5 is an example of an absorbance spectrum on the short wavelength side when the cut filter 8 is arranged in front of the sensor array 6 and when the cut filter 8 is not arranged. By arranging a short pass filter in the short wavelength detection channel portion of the sensor array 6, the base (I 0 ) of the detection signal of the sensor array 6 is reduced as compared with the case where no short pass filter is arranged, and the absorbance (= −log (I / I 0 )) increases overall. That is, it can be seen that the measurement sensitivity is improved by arranging the cut filter 8.
 なお、フィルタ領域12a及び12bに形成されているフィルタの膜構成の一例を図8に示す。図8において、各層を透明基板10側から積層されている順に示している。なお、この実施例では、カットフィルタ8に2つのフィルタ領域を設けているが、3以上のフィルタ領域を設けて、それぞれに互いに異なる光透過特性を与えてもよい。カットフィルタ8により多くのフィルタ領域を設け、センサアレイ6のセンサ面に設けられた各チャネルの検出波長に各フィルタ領域の光透過特性を合わせれば、各チャネルへの余計な入射光をより高効率に除去することができ、ノイズがさらに低減されて測定感度のさらなる向上を図ることができる。 An example of the filter film structure formed in the filter regions 12a and 12b is shown in FIG. In FIG. 8, the layers are shown in the order of being stacked from the transparent substrate 10 side. In this embodiment, two filter regions are provided in the cut filter 8, but three or more filter regions may be provided to give different light transmission characteristics to each other. If more filter regions are provided in the cut filter 8 and the light transmission characteristics of each filter region are matched to the detection wavelength of each channel provided on the sensor surface of the sensor array 6, the extra incident light to each channel can be made more efficient. Therefore, the noise can be further reduced and the measurement sensitivity can be further improved.
 図6はカットフィルタ8に2つのバンドパスフィルタ領域13a及び13bを設けた例である。フィルタ領域13aにはショートバンドパスフィルタが形成され、フィルタ領域13bにはロングバンドパスフィルタが形成されている。このショートバンドパスフィルタとロングバンドパスフィルタの光透過特性を図7に示す。この例のショートバンドパスフィルタは400~540nmの波長の光を透過させ、400nm未満の波長の光及び550nm以上の波長の光を遮光するように形成されている。ロングバンドパスフィルタは540~680nmの波長の光を透過させ、540nm未満の波長の光及び690nm以上の波長の光を遮光するように形成されている。フィルタ領域13a及び13bに形成されているフィルタの膜構成の一例を図9に示す。図9において、各層を透明基板10側から積層されている順に示している。 FIG. 6 shows an example in which the cut filter 8 is provided with two band pass filter regions 13a and 13b. A short band pass filter is formed in the filter region 13a, and a long band pass filter is formed in the filter region 13b. The light transmission characteristics of the short bandpass filter and the long bandpass filter are shown in FIG. The short bandpass filter of this example is formed so as to transmit light having a wavelength of 400 to 540 nm and shield light having a wavelength of less than 400 nm and light having a wavelength of 550 nm or more. The long bandpass filter is formed so as to transmit light having a wavelength of 540 to 680 nm and shield light having a wavelength of less than 540 nm and light having a wavelength of 690 nm or more. An example of the film configuration of the filter formed in the filter regions 13a and 13b is shown in FIG. In FIG. 9, the layers are shown in the order of being laminated from the transparent substrate 10 side.
   2   入口スリット
   4   回折格子
   6   センサアレイ
   8   カットフィルタ
  10   透明基板
  12a,12b,13a,13b   フィルタ領域
2 entrance slit 4 diffraction grating 6 sensor array 8 cut filter 10 transparent substrate 12a, 12b, 13a, 13b filter region

Claims (4)

  1.  分光器により分光された光を検出するための複数のチャネルが配列されたセンサ面を有する光検出器の前記センサ面全体を覆うように配置されるフィルタであって、
     そのフィルタ面は互いに異なる透過波長特性をもつ複数のフィルタ領域からなり、それらのフィルタ領域が前記光検出器のセンサ面の前記チャネル配列方向に配列されており、所定波長以上の波長である長波長側の光を検出するためのチャネル部分を覆うフィルタ領域には所定波長未満の波長である短波長側の光を透過させない多層膜フィルタが形成され、短波長側の光を検出するためのチャネル部分を覆うフィルタ領域には前記長波長側の光を透過させない多層膜フィルタが形成されているフィルタ。
    A filter arranged to cover the entire sensor surface of a photodetector having a sensor surface on which a plurality of channels for detecting light dispersed by the spectroscope is arranged;
    The filter surface is composed of a plurality of filter regions having different transmission wavelength characteristics, and the filter regions are arranged in the channel array direction of the sensor surface of the photodetector, and are long wavelengths having a wavelength equal to or greater than a predetermined wavelength. In the filter area that covers the channel portion for detecting the light on the side, a multilayer film filter that does not transmit the light on the short wavelength side that is less than the predetermined wavelength is formed, and the channel portion for detecting the light on the short wavelength side The filter area | region which covers the filter in which the multilayer filter which does not permeate | transmit the light of the said long wavelength side is formed.
  2.  前記フィルタ面は、前記長波長側の光を検出するためのチャネル部分を覆う1つの長波長側フィルタ領域及び前記短波長側の光を検出するためのチャネル部分を覆う1つの短波長側フィルタ領域からなり、前記長波長側フィルタ領域にはロングパスフィルタが形成され、前記短波長側フィルタ領域にはショートパスフィルタが形成されている請求項1に記載のフィルタ。 The filter surface has one long wavelength side filter region covering a channel portion for detecting the light on the long wavelength side and one short wavelength side filter region covering a channel portion for detecting the light on the short wavelength side. The filter according to claim 1, wherein a long pass filter is formed in the long wavelength filter region, and a short pass filter is formed in the short wavelength filter region.
  3.  前記フィルタ面は、前記長波長側の光を検出するためのチャネル部分を覆う1つの長波長側フィルタ領域及び前記短波長側の光を検出するためのチャネル部分を覆う1つの短波長側フィルタ領域からなり、前記長波長側フィルタ領域にはロングバンドパスフィルタが形成され、前記短波長側フィルタ領域にはショートバンドパスフィルタが形成されている請求項1に記載のフィルタ。 The filter surface has one long wavelength side filter region covering a channel portion for detecting the light on the long wavelength side and one short wavelength side filter region covering a channel portion for detecting the light on the short wavelength side. The filter according to claim 1, wherein a long band pass filter is formed in the long wavelength side filter region, and a short band pass filter is formed in the short wavelength side filter region.
  4.  分光器を用いて測定光を分光するとともに分光した光を複数のチャネルを備えたセンサ面を有する光検出器に導いて検出する分光装置において、
     前記光検出器の前記センサ面を覆うように請求項1から3のいずれか一項に記載のフィルタが配置されていることを特徴とする分光装置。
    In a spectroscopic device that splits measurement light using a spectroscope and detects the split light by guiding it to a photodetector having a sensor surface having a plurality of channels.
    The spectroscopic device, wherein the filter according to any one of claims 1 to 3 is disposed so as to cover the sensor surface of the photodetector.
PCT/JP2012/077832 2011-11-18 2012-10-29 Filter for reducing higher-order light and stray light, and spectral device using filter WO2013073359A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011253158 2011-11-18
JP2011-253158 2011-11-18

Publications (1)

Publication Number Publication Date
WO2013073359A1 true WO2013073359A1 (en) 2013-05-23

Family

ID=48429427

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/077832 WO2013073359A1 (en) 2011-11-18 2012-10-29 Filter for reducing higher-order light and stray light, and spectral device using filter

Country Status (2)

Country Link
TW (1) TWI503583B (en)
WO (1) WO2013073359A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106969835A (en) * 2017-04-25 2017-07-21 杭州博源光电科技有限公司 A kind of two grades applied to spectral instrument and the removing method of Advanced Diffraction spectrum
CN116222783A (en) * 2023-05-08 2023-06-06 武汉精立电子技术有限公司 Spectrum measuring device and method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5637527A (en) * 1979-09-05 1981-04-11 Hitachi Ltd Spectrophotometer
JPH06117931A (en) * 1992-10-08 1994-04-28 Toshiba Corp Multi-wavelength photometric device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0167750A2 (en) * 1984-06-13 1986-01-15 Abbott Laboratories Spectrophotometer
CN102175324B (en) * 2011-01-26 2012-09-19 中国科学院长春光学精密机械与物理研究所 Multichannel low-stray-light spectrograph based on area array detector

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5637527A (en) * 1979-09-05 1981-04-11 Hitachi Ltd Spectrophotometer
JPH06117931A (en) * 1992-10-08 1994-04-28 Toshiba Corp Multi-wavelength photometric device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106969835A (en) * 2017-04-25 2017-07-21 杭州博源光电科技有限公司 A kind of two grades applied to spectral instrument and the removing method of Advanced Diffraction spectrum
CN116222783A (en) * 2023-05-08 2023-06-06 武汉精立电子技术有限公司 Spectrum measuring device and method
CN116222783B (en) * 2023-05-08 2023-08-15 武汉精立电子技术有限公司 Spectrum measuring device and method

Also Published As

Publication number Publication date
TW201321803A (en) 2013-06-01
TWI503583B (en) 2015-10-11

Similar Documents

Publication Publication Date Title
US9435958B2 (en) Optical demultiplexing system
US11703621B2 (en) Optical module and optical device using same
TWI641813B (en) Optical filter and spectrometer and method for obtaining a spectrum of an optical beam propagating along an optical path
US10191022B2 (en) Gas imager employing an array imager pixels with order filters
KR100853196B1 (en) A image sensor having spectrum sensor
CN111164394B (en) Optical sensing device and method for manufacturing optical sensing device
TWI445933B (en) Color detector having area scaled photodetectors
WO2013073359A1 (en) Filter for reducing higher-order light and stray light, and spectral device using filter
JPH07128144A (en) Spectral measuring apparatus
KR101376290B1 (en) Polychromator comprising multi reflection filter
US20220221341A1 (en) Spectral reconstruction with multi-channel color sensors
JP2011033514A (en) Spectrometry device
JPS6341411B2 (en)
WO2023228451A1 (en) Optical detector and spectroscopic measurement device
KR101388539B1 (en) Color detector
JP2007278935A (en) Light-receiving device
WO2014049861A1 (en) Spectroscope
JPH05346349A (en) Automatic chemical analyzer
JPS5943321A (en) Spectrophotometer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12850259

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12850259

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP