WO2013073295A1 - Dielectric porcelain composition and ceramic electronic components using same - Google Patents

Dielectric porcelain composition and ceramic electronic components using same Download PDF

Info

Publication number
WO2013073295A1
WO2013073295A1 PCT/JP2012/074825 JP2012074825W WO2013073295A1 WO 2013073295 A1 WO2013073295 A1 WO 2013073295A1 JP 2012074825 W JP2012074825 W JP 2012074825W WO 2013073295 A1 WO2013073295 A1 WO 2013073295A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
dielectric
dielectric constant
ceramic composition
firing
Prior art date
Application number
PCT/JP2012/074825
Other languages
French (fr)
Japanese (ja)
Inventor
喜堂 村川
遠藤 誠
祐一 菅原
幸恵 中野
Original Assignee
Tdk株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tdk株式会社 filed Critical Tdk株式会社
Publication of WO2013073295A1 publication Critical patent/WO2013073295A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • C04B35/4682Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates based on BaTiO3 perovskite phase
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/003Titanates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/003Titanates
    • C01G23/006Alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62685Treating the starting powders individually or as mixtures characterised by the order of addition of constituents or additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/02Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances
    • H01B3/12Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances ceramics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • H01G4/1218Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates
    • H01G4/1227Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates based on alkaline earth titanates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • H01G4/1236Ceramic dielectrics characterised by the ceramic dielectric material based on zirconium oxides or zirconates
    • H01G4/1245Ceramic dielectrics characterised by the ceramic dielectric material based on zirconium oxides or zirconates containing also titanates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • C04B2235/3203Lithium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/3222Aluminates other than alumino-silicates, e.g. spinel (MgAl2O4)
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • C04B2235/3234Titanates, not containing zirconia
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • C04B2235/3234Titanates, not containing zirconia
    • C04B2235/3236Alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3239Vanadium oxides, vanadates or oxide forming salts thereof, e.g. magnesium vanadate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • C04B2235/3248Zirconates or hafnates, e.g. zircon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • C04B2235/3268Manganates, manganites, rhenates or rhenites, e.g. lithium manganite, barium manganate, rhenium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3409Boron oxide, borates, boric acids, or oxide forming salts thereof, e.g. borax
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • C04B2235/3436Alkaline earth metal silicates, e.g. barium silicate
    • C04B2235/3454Calcium silicates, e.g. wollastonite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/442Carbonates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/444Halide containing anions, e.g. bromide, iodate, chlorite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/447Phosphates or phosphites, e.g. orthophosphate, hypophosphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6025Tape casting, e.g. with a doctor blade
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6583Oxygen containing atmosphere, e.g. with changing oxygen pressures
    • C04B2235/6584Oxygen containing atmosphere, e.g. with changing oxygen pressures at an oxygen percentage below that of air
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • C04B2235/662Annealing after sintering
    • C04B2235/663Oxidative annealing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • C04B2235/85Intergranular or grain boundary phases

Definitions

  • the present invention relates to a dielectric ceramic composition and a ceramic electronic component using the same, and more specifically, a dielectric ceramic composition capable of obtaining excellent electrical characteristics while firing at a low temperature, and a ceramic electronic component using the same. It is about.
  • the temperature required for calcination is as high as 1300 ° C. or higher. Become. Therefore, generally, a large amount of Si compound is usually added for the purpose of lowering the firing temperature.
  • the firing temperature using only the SiO 2 compound without greatly impairing the relative dielectric constant is generally as high as about 1200 ° C., Insufficient low-temperature firing effect.
  • the addition of an excessive Si compound is easy to form a second phase having a low relative dielectric constant, either alone or with additives, during sintering, and the dielectric constant of the resulting dielectric ceramic composition is remarkably lowered. Not right.
  • Patent Document 3 a dielectric ceramic composition characterized by containing R 2 Ti 2 O 7 together with BaO and TiO 2 has been reported for a low dielectric constant temperature compensation material.
  • the rare earth elements having large ionic radii such as Nd, La, Pr, Ce, and Sm were selected as the R elements, and they were not intended for low-temperature sintering.
  • the present invention has been made in view of such a situation, and a dielectric ceramic composition having a high relative dielectric constant even when fired at a low temperature, and a ceramic electronic in which the dielectric ceramic composition is applied to a dielectric layer
  • the purpose is to provide parts.
  • the present invention provides a general formula ABO 3 (A is at least one element selected from Ba, Ca and Sr, and B is at least one element selected from Ti and Zr) And a compound ⁇ comprising a rare earth titanium oxide represented by the general formula R 2 Ti 2 O 7 (wherein R element is Sc, Y, Eu, Gd, Tb) , Dy, Ho, Er, Tm, Yb and Lu) and a dielectric ceramic composition comprising a grain boundary formed between the particles of the compound ⁇ .
  • R element is Sc, Y, Eu, Gd, Tb
  • Dy Dy
  • R 2 Ti 2 O 7 facilitates the formation of a liquid phase at a low temperature as compared with the case where a large amount of R 2 O 3 is present as the second phase. As a result, it is considered that the low dielectric constant component remaining at the grain boundary or the grain boundary triple point decreases, the grain boundary becomes thin, and the relative dielectric constant increases.
  • the peak intensity of the surface index (222) in the X-ray diffraction chart of the compound ⁇ is 0.5 to about the peak intensity of the surface index (110) in the X-ray diffraction chart of the compound ⁇ .
  • the present invention is characterized in that a ceramic electronic component having a dielectric layer composed of the dielectric ceramic composition and an electrode layer is obtained.
  • the present invention can provide a dielectric ceramic composition having a high relative dielectric constant even when fired at a low temperature, and a ceramic electronic component in which the dielectric ceramic composition is applied to a dielectric layer. Play.
  • FIG. 1 is a cross-sectional view of a multilayer ceramic capacitor according to an embodiment of the present invention. Is a diagram illustrating the relationship R 2 Ti 2 O 7 content and relative dielectric constant as the effect of one embodiment of the present invention. It is a figure explaining the relationship between Li compound addition amount and a dielectric constant as an effect of one Embodiment in this invention. It is a figure explaining the relationship between Li compound addition amount and a dielectric constant as an effect of one Embodiment in this invention.
  • the multilayer ceramic capacitor 1 includes a capacitor element body 10 having a configuration in which dielectric layers 2 and internal electrode layers 3 are alternately stacked. At both ends of the capacitor element body 10, a pair of external electrodes 4 are formed which are electrically connected to the internal electrode layers 3 arranged alternately in the capacitor element body 10.
  • the shape of the capacitor element body 10 is not particularly limited, but is usually a rectangular parallelepiped shape. Moreover, there is no restriction
  • the dielectric layer 2 is composed of a dielectric ceramic composition according to this embodiment.
  • the dielectric ceramic composition has, as a main component, a general formula ABO 3 (A is Ba alone or at least one selected from Ba and Ca and Sr, and B is Ti alone or Ti and Zr. ) And a compound composed of a rare earth titanium oxide phase represented by the general formula R 2 Ti 2 O 7 as an auxiliary component (wherein R element is Sc, Y, Eu, Gd, Tb, Dy) , Ho, Er, Tm, Yb and Lu).
  • R element is Sc, Y, Eu, Gd, Tb, Dy
  • Ho, Er, Tm, Yb and Lu the amount of oxygen (O) may be slightly deviated from the stoichiometric composition.
  • the compound is a compound represented by a composition formula (Ba 1-xy Ca x Sr y ) ⁇ (Ti 1-m Zr m ) O 3 and having a perovskite crystal structure. Further, at least Ba is included as the A site atom, and at least Ti is included as the B site atom. Furthermore, the molar ratio between the A site atoms (Ba, Sr, and Ca) and the B site atoms (Ti and Zr) is expressed as an A / B ratio. It is preferably 98 to 1.02.
  • the grain boundary contains elements such as Ti and Si and exists between the compounds ⁇ .
  • a compound comprising a rare earth titanium oxide phase represented by the general formula R 2 Ti 2 O 7 (where R element is selected from Sc, Y, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu)
  • R element is selected from Sc, Y, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu
  • the content of at least one selected from the general formula ABO 3 (A is Ba alone, or at least one selected from Ba and Ca and Sr, and B is Ti alone, or In the plane index (222) of the rare earth titanium oxide represented by the general formula R 2 Ti 2 O 7 with respect to the peak intensity of the plane index (110) of the compound having a perovskite type crystal structure.
  • the peak intensity is 0.5-9%.
  • the R element is at least one selected from Sc, Y, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu, and preferably at least one selected from Y, Ho, Dy, Yb. , Y, Dy, and Yb are more preferable.
  • Mg oxide may be contained.
  • the content thereof is preferably 0.5 to 3 mol in terms of Mg element with respect to 100 mol of the compound represented by ABO 3 .
  • an oxide of at least one element selected from Mn, Cr, Co, Fe, and Cu may be contained.
  • the content of these oxides is preferably 0.1 to 1 mol in terms of each element with respect to 100 mol of the compound represented by ABO 3 .
  • an oxide of at least one element selected from V, Mo and W may be contained.
  • the content of these oxides is preferably 0.05 to 0.5 mol in terms of each element with respect to 100 mol of the compound represented by ABO 3 .
  • the oxide of V is preferably used from the viewpoint that the effect of improving the characteristics is great.
  • a compound containing Si may be contained.
  • the content of these compounds is preferably 0.8 mol or less in terms of Si element with respect to 100 mol of the compound represented by ABO 3 .
  • the compound containing Si is preferably an oxide of Si or a composite oxide of Si and at least one selected from Li, B, Al, Ba and Ca.
  • the thickness of the dielectric layer 2 is not particularly limited, and may be determined as appropriate according to desired characteristics and applications.
  • the rare earth titanium oxide phase represented by the general formula R 2 Ti 2 O 7 contained in the dielectric ceramic composition constituting the dielectric layer 2 is used.
  • the resulting compound may form a segregation phase independent of the compound represented by ABO 3 , or may exist in the grain boundary layer or grain boundary triple point of the main component (ABO 3 ).
  • the rare earth element R exists mainly in the form of a rare earth titanium oxide represented by the general formula R 2 Ti 2 O 7 , but is not necessarily limited to the compound, and a part thereof is R It may be present in oxides such as 2 O 3 and other forms.
  • the method for observing the microstructure of the dielectric ceramic composition is not particularly limited.
  • a reflected electron image using a YAG (yttrium / aluminum / garnet) detector attached to a scanning electron microscope (SEM) is used.
  • the main component (ABO 3 ) and the segregation phase containing the rare earth element R may be observed, and energy dispersive X-ray spectroscopy attached to the scanning transmission electron microscope (STEM) or the scanning electron microscope (SEM).
  • STEM scanning transmission electron microscope
  • SEM scanning electron microscope
  • main component using a device (EDS) ABO 3
  • the dielectric ceramic composition mainly containing a segregation phase containing rare earth elements R and Ti is identified from the peak position of the chart obtained by the X-ray diffraction (XRD) method, whereby the rare earth elements R It can be specified that the main compound containing is a rare earth titanium oxide represented by the general formula R 2 Ti 2 O 7 .
  • a rare earth titanium oxide represented by Y 2 Ti 2 O 7 with barium titanate BaTiO 3 as the main component is used as a subcomponent, the plane index (222), (400), (622), (444) ), The presence of Y 2 Ti 2 O 7 can be confirmed by confirming the peak position of the X-ray diffraction chart corresponding to (840).
  • the method for deriving the ratio of the rare earth titanium oxide represented by the general formula R 2 Ti 2 O 7 to the main component (ABO 3 ) in the dielectric ceramic composition is not particularly limited.
  • the peak intensity in the plane index (222) of Y 2 Ti 2 O 7 when the peak intensity of the X-ray diffraction chart is 100 is 1 to 5%.
  • the effect of increasing the dielectric constant was confirmed when the peak intensity was in the range of 0.5% to 9.0%.
  • the main component (ABO 3 ) and the segregated phase containing the rare earth element R are distinguished from the contrast of the reflected electron image using the YAG (yttrium / aluminum / garnet) detector attached to the scanning electron microscope (SEM).
  • SEM scanning electron microscope
  • the energy dispersive X-ray spectroscopy attached to the scanning transmission electron microscope (STEM) or scanning electron microscope (SEM) Using the apparatus (EDS), the presence or absence of R or the presence or absence of Ti is analyzed for the segregation phase containing the rare earth element R, so that the general formula R 2 Ti 2 of the segregation phase containing the rare earth element R is analyzed. it may be determined as a proportion of the rare earth-titanium oxide represented by O 7.
  • the number of measurements is not particularly limited, it is preferable to have three or more fields of view because there is a local distribution of segregation phase even in one dielectric ceramic composition.
  • the content ratio of the rare earth titanium oxide represented by the general formula R 2 Ti 2 O 7 in the segregation phase containing Y is in a certain range, and thus has a high relative dielectric constant while firing at a low temperature.
  • the dielectric ceramic composition can be obtained.
  • the existence state of the rare earth titanium oxide represented by the general formula R 2 Ti 2 O 7 described above can be realized by adding a compound containing specific Li and firing at a low temperature.
  • the crystal grain size of the main component (ABO 3) there is no particular limitation on the crystal grain size of the main component (ABO 3). What is necessary is just to determine suitably with respect to the thickness of the target dielectric material layer.
  • the conductive material contained in the internal electrode layer 3 shown in FIG. 1 is not particularly limited, but a relatively inexpensive base metal can be used when the dielectric ceramic composition constituting the dielectric layer 2 has reduction resistance. .
  • a relatively inexpensive base metal can be used when the dielectric ceramic composition constituting the dielectric layer 2 has reduction resistance.
  • the base metal used as the conductive material Ni or Ni alloy is preferable.
  • the internal electrode layer 3 may be formed using a commercially available electrode paste. What is necessary is just to determine the thickness of the internal electrode layer 3 suitably according to a use etc.
  • External electrode 4 The conductive material contained in the external electrode 4 shown in FIG. 1 is not particularly limited, but inexpensive Ni, Cu, and alloys thereof can be used in this embodiment. What is necessary is just to determine the thickness of the external electrode 4 suitably according to a use etc.
  • a green chip is produced by a normal printing method or a sheet method using a paste, and fired, and then printed or transferred an external electrode, similarly to a conventional multilayer ceramic capacitor. And then baked.
  • the manufacturing method will be specifically described.
  • a dielectric material for forming a dielectric layer is prepared, and this is made into a paint to prepare a dielectric layer paste.
  • an ABO 3 material As a dielectric material, first, an ABO 3 material, a compound material containing an R element, and a Li compound are prepared. As these raw materials, oxides of the above-described components, mixtures thereof, and composite oxides can be used. In addition, various compounds that become the above oxides or composite oxides by firing, for example, carbonates, oxalates, nitrates, hydroxides, organometallic compounds, and the like may be appropriately selected and mixed for use.
  • the raw material of ABO 3 can be produced by various methods such as those produced by various liquid phase methods (for example, oxalate method, hydrothermal synthesis method, alkoxide method, sol-gel method, etc.). What was manufactured can be used.
  • the ABO 3 raw material powder those having an average particle diameter of 100 to 400 nm are preferably used.
  • the particle diameter is smaller than 100 nm, it becomes difficult to control crystal growth by firing, and thus the sintered body particle diameter tends to be non-uniform, and a desired dielectric constant cannot be obtained.
  • it is 400 nm or more, the temperature required for firing becomes high.
  • the method for measuring the particle diameter of the raw material powder is not particularly limited, and examples thereof include a laser diffraction / scattering method using information of diffraction / scattered light obtained according to the particle diameter.
  • the raw material of the compound containing the R element is not particularly limited, and may be a solid powder of a typical R 2 O 3 oxide or a solution.
  • R element alkoxides, complexes, and salts added to a solvent may be used.
  • the raw material for the Li compound is not particularly limited, and may be a solid powder or a solution.
  • a solid material it is desirable to use at least an average particle diameter equal to or less than that of the ABO 3 raw material powder. Further, it is desirable to add in the range of 0.5 to 10 mol% in terms of Li atom.
  • the Li compound is preferably an oxide Li a M b O c containing Li and another cation M.
  • the cation M in Li a M b O c may be any of B, Al, Si, P, Ti, V, Mn, Co, Zr, Mo, and W, and Ti is suitable for obtaining.
  • the dielectric layer contains components other than the above components
  • raw materials for the components are prepared.
  • oxides of these components, mixtures thereof, composite oxides, or various compounds that become the oxides or composite oxides described above by firing can be used.
  • an Si compound When used as a raw material, it may be an oxide or a complex oxide, but the addition amount is preferably 0.8 mol% or less in terms of Si atoms.
  • a raw material of ABO 3, a raw material of an R element compound, and a Li compound are mixed to obtain a solution-like raw material mixture.
  • the ABO 3 raw material, the R element oxide raw material, and the Li compound are uniformly dispersed in the solvent.
  • the mixing is performed for about 4 to 48 hours using, for example, a ball mill. At this time, a dispersant may be added.
  • the obtained raw material mixture is dried.
  • the surface of the ABO 3 particles is covered with a compound of R element and a Li compound. That is, the R element or the like is physically or chemically adsorbed on the ABO 3 particles and coats the particle surface.
  • the drying method is not particularly limited, and may be appropriately selected from stationary drying, spray drying, freeze drying, and the like. Further, the drying temperature is not particularly limited as long as the solvent can be removed from the raw material mixture.
  • the dried raw material mixture may be used as a dielectric raw material, or may be further heat-treated.
  • heat treatment for example, a rotary kiln, a tunnel furnace, or a batch furnace can be used.
  • the holding temperature in the heat treatment is preferably in the range of 300 to 800 ° C.
  • the holding time is preferably in the range of 0 to 4 hours.
  • the raw material mixture Since the raw material mixture is agglomerated after the heat treatment, the raw material mixture may be crushed to an extent that loosens the aggregation. This crushing may be performed at the time of preparing a dielectric layer paste described later.
  • the average particle size of the raw material mixture after the heat treatment is usually about 0.1 to 1 ⁇ m.
  • the obtained heat-treated material mixture (dielectric material) is made into a paint to prepare a dielectric layer paste. At this time, raw materials of other components not added as solution raw materials may be added.
  • the internal electrode layer paste is prepared by kneading the above-described conductive materials made of various conductive metals and alloys, or various oxides, organometallic compounds, resinates, and the like that become the above-mentioned conductive materials after firing.
  • the external electrode paste may be prepared in the same manner as the internal electrode layer paste described above.
  • a green sheet is formed using the dielectric layer paste, and the internal electrode layer paste is printed thereon, then, these are stacked, and cut into a predetermined shape to obtain a green chip.
  • the green chip Before firing, the green chip is treated to remove the binder, and then the green chip is fired.
  • the rate of temperature rise is preferably 200 ° C./hour or more.
  • the holding temperature at the time of firing is preferably 1100 ° C. or less, more preferably 1000 to 1100 ° C., and the holding time is preferably 2 hours or less.
  • the firing atmosphere is preferably a reducing atmosphere.
  • the atmosphere gas for example, a mixed gas of N 2 and H 2 can be used by humidification.
  • the oxygen partial pressure during firing may be appropriately determined according to the type of the conductive material in the internal electrode layer paste, but when a base metal such as Ni or Ni alloy is used as the conductive material,
  • the oxygen partial pressure is preferably 10 ⁇ 14 to 10 ⁇ 10 MPa.
  • the temperature lowering rate during firing is preferably 50 to 500 ° C./hour.
  • Annealing is a process for re-oxidizing the dielectric layer, and thereby the IR life (insulation resistance life) can be remarkably increased, so that the reliability is improved.
  • the oxygen partial pressure in the annealing atmosphere is preferably 10 ⁇ 9 to 10 ⁇ 5 MPa.
  • the holding temperature during annealing is preferably 1000 ° C. or less, particularly 900 to 1000 ° C. Note that annealing may be composed of only a temperature raising process and a temperature lowering process. That is, the temperature holding time may be zero.
  • the binder removal treatment, firing and annealing may be performed continuously or independently.
  • the capacitor element body obtained as described above is subjected to end surface polishing, for example, by barrel polishing or sand blasting, and the external electrode paste is applied and baked to form the external electrode 4. Then, if necessary, a coating layer is formed on the surface of the external electrode 4 by plating or the like.
  • the multilayer ceramic capacitor of this embodiment manufactured in this way is mounted on a printed circuit board by soldering or the like and used for various electronic devices.
  • R 2 is selected by selecting a suitable oxide Li a M b O c containing Li and another cation M, and setting other component additives and firing conditions in the above ranges. Since Ti 2 O 7 can be generated, a dielectric ceramic composition having a high dielectric constant can be realized even when fired at a low temperature.
  • the process in which the relative permittivity becomes high even when fired at a low temperature due to the generation of R 2 Ti 2 O 7 is not necessarily clear, but can be considered as follows, for example.
  • the liquid phase is easily formed at a low temperature, and the diffusion of the additive element proceeds.
  • the low dielectric constant components remaining at the grain boundaries and grain boundary triple points are reduced, so that it is considered that the grain boundaries become thinner and the relative dielectric constant becomes higher than in the case of conventional low-temperature firing.
  • a multilayer ceramic capacitor is exemplified as an electronic component to which the dielectric ceramic composition according to the present invention is applied.
  • a multilayer ceramic capacitor is used as an electronic component to which the dielectric ceramic composition according to the present invention is applied.
  • the present invention is not limited to a capacitor, and any capacitor may be used as long as it has a dielectric layer having the above configuration.
  • BaTiO 3 powder was prepared as a raw material for ABO 3 , and Y 2 O 3 , MgCO 3 , MnCO 3 , V 2 O 5 , and CaSiO 3 powders were prepared as subcomponent raw materials.
  • MgCO 3 and MnCO 3 are contained in the dielectric ceramic composition as MgO and MnO after firing.
  • Li 2 CO 3 , LiOH, LiBO 2 , Li 2 B 4 O 7 , LiPO 2 , Li 3 PO 4 , LiMn 2 O 4 , Li 4 Ti 5 O 12 , LiCoO 2 are used as raw materials for subcomponents containing Li. , Li 2 O, Li 2 SiO 3 , Li 2 TiO 3 , LiAlO 2 , LiZrO 3 , Li 2 MoO 4 , LiVO 3 , and LiCl powders were prepared. Each compound corresponds to Sample Nos. 2 to 17 in Table 1, and in the preparation of the dielectric material, only one of them was selected and used.
  • the BaTiO 3 powder, the subcomponent raw material, and the subcomponent raw material containing Li were mixed for 16 hours using a ball mill to prepare a raw material mixture.
  • the obtained raw material mixture was dried at 150 ° C. and then heat-treated at 600 ° C. for 2 hours.
  • the raw material mixture after the heat treatment was used as a dielectric raw material.
  • each subcomponent is 4.0 mol of the subcomponent raw material containing Li in terms of each atom with respect to 100 mol of BaTiO 3 as the main component in the fired dielectric ceramic composition
  • Y 2 O 3 is 1.0 mol
  • MgO is 0.5 mol
  • MnO is 0.2 mol
  • V 2 O 5 is 0.1 mol
  • CaO is 0.8 mol
  • SiO 2 is 0.8 mol. I made it.
  • dielectric material 100 parts by mass
  • polyvinyl butyral resin 10 parts by mass
  • dioctyl phthalate (DOP) as a plasticizer 5 parts by mass
  • alcohol as a solvent: 100 parts by mass with a ball mill
  • the mixture was made into a paste to obtain a dielectric layer paste.
  • Ni particles 44.6 parts by mass, terpineol: 52 parts by mass, ethyl cellulose: 3 parts by mass, and benzotriazole: 0.4 parts by mass are kneaded by three rolls, and slurry To prepare an internal electrode layer paste.
  • a green sheet was formed on the PET film using the dielectric layer paste prepared above.
  • the electrode layer was printed in a predetermined pattern using the internal electrode layer paste thereon, and then the sheet was peeled off from the PET film to produce a green sheet having the electrode layer.
  • a plurality of green sheets having electrode layers were laminated and pressure-bonded to obtain a green laminated body, and the green laminated body was cut into a predetermined size to obtain a green chip.
  • the obtained green chip was subjected to binder removal processing, firing and annealing under the following conditions to obtain a sintered body serving as an element body.
  • the binder removal conditions were as follows: temperature increase rate: 20 ° C./hour, holding temperature: 300 ° C., temperature holding time: 8 hours, atmosphere: in air.
  • the firing conditions were temperature rising rate: 300 ° C./hour, holding temperature: 1100 ° C., temperature holding time: 2 hours, and cooling rate: 300 ° C./hour.
  • the atmospheric gas was a humidified N 2 + H 2 mixed gas, and the oxygen partial pressure was 10 ⁇ 12 MPa.
  • the annealing conditions were as follows: heating rate: 300 ° C./hour, holding temperature: 1000 ° C., temperature holding time: 2 hours, cooling rate: 300 ° C./hour, atmospheric gas: humidified N 2 gas (oxygen partial pressure: 10 ⁇ 7 MPa). A wetter was used for humidifying the atmospheric gas during firing and annealing.
  • a Cu paste was applied as an external electrode and baked to obtain a sample of the multilayer ceramic capacitor shown in FIG.
  • the size of the obtained capacitor sample is 3.2 mm ⁇ 1.6 mm ⁇ 0.6 mm
  • the thickness of the dielectric layer is 1.4 ⁇ m
  • the thickness of the internal electrode layer is 1.1 ⁇ m
  • the dielectric sandwiched between the internal electrode layers The number of layers was 200.
  • Dielectric constant ⁇ The relative dielectric constant ⁇ was measured on a capacitor sample at a reference temperature of 25 ° C. using a digital LCR meter (4274A manufactured by YHP) under the conditions of a frequency of 1 kHz and an input signal level (measurement voltage) of 1.0 Vrms. Calculated from the electric capacity (no unit).
  • the relative dielectric constant is high, and 3500 or more is good, and 4000 or more is particularly good. The results are shown in Table 1.
  • Table 1 summarizes the relationship between the content of Y 2 Ti 2 O 7 and the relative dielectric constant when various Li compounds are added and fired at a low temperature.
  • Sample No. 1 of the comparative example was a conventional material fired at 1240 ° C. without adding a Li compound, and had a relative dielectric constant of 4500.
  • Sample numbers 2 to 16 Li compounds were added and baked at 1100 ° C.
  • the content of Y 2 Ti 2 O 7 is 0%
  • the relative dielectric constant is as low as 1500 to 2400.
  • the average grain boundary thickness was 5.0 nm for material number 1 and 4.6 nm for material number 2.
  • sample numbers 6 to 16 of the examples contained Y 2 Ti 2 O 7 .
  • the content of Y 2 Ti 2 O 7 was 0.5% or more, and the relative dielectric constant was 3500 or more.
  • the Y 2 Ti 2 O 7 content was as high as 1.8 to 3.4%, and the relative dielectric constant was 4200 to 4500, which was particularly good results.
  • Sample number 17 was obtained by adding the same Li compound as sample number 16 and firing at 1240 ° C., but the content ratio and relative dielectric constant of Y 2 Ti 2 O 7 were the sample numbers fired at 1100 ° C. It was almost equivalent to 16.
  • the average grain boundary thickness of material number 13 was 1.5 nm, and the grain boundary thickness of material number 16 was 1.2 nm.
  • Example 2 Sample Nos. 19 to 26 in Table 2 were prepared through the same steps as in Example 1 with samples having the same composition as Sample No. 16 in Example 1 but only the addition amount of Li 4 Ti 5 O 12 changed. The relationship between the Y 2 Ti 2 O 7 content and the relative dielectric constant was evaluated. Sample Nos. 27 to 32 are samples having the same composition as Sample No. 16 of Example 1 but with the amount of SiO 2 added being changed through the same steps as in Example 1. Y 2 Ti 2 O The relationship between the content of 7 and the relative dielectric constant was evaluated.
  • the amount of Li 4 Ti 5 O 12 in Table 2 indicates the amount added in terms of Li atom with respect to 100 mol of BaTiO 3 as the main component.
  • the amount of SiO 2 indicates the amount added in terms of Si atoms with respect to 100 mol of BaTiO 3 as the main component.
  • sample number 18 as a comparative example is a case where the amount of addition of Li 4 Ti 5 O 12 is 0.25 mol, but the content of Y 2 Ti 2 O 7 is 0% and the relative dielectric constant Was as low as 2600.
  • sample numbers 19 to 25 in Table 2 in which the amount of Li 4 Ti 5 O 12 added is 0.5 to 10 mol have a Y 2 Ti 2 O 7 content of 2.7 to 8.2%.
  • the relative dielectric constant was as good as 3500 or more.
  • Sample Nos. 19 to 22 and Sample No. 16 in Table 2 where the addition amount of Li 4 Ti 5 O 12 is 0.5 to 4 mol are Y 2 Ti 2 O 7 contents of 2.7 to 3.4%.
  • the relative dielectric constant was particularly good at 4000 or more.
  • Sample No. 26 was a case where the addition amount of Li 4 Ti 5 O 12 was 12 mol, but the relative dielectric constant was as low as 2600 even if the content of Y 2 Ti 2 O 7 was 10.2%.
  • the average grain boundary thickness of Sample No. 18 was 3.5 nm, which was thicker than that of the sample of Example 1.
  • Sample numbers 16 and 27 to 31 in Table 2 have a Y 2 Ti 2 O 7 content of 3.1 to 3.8% in a range of 0.2 to 1.2 mol of SiO 2 added, The relative dielectric constant was as good as 3500 or more.
  • Sample Nos. 27 to 29 have a Y 2 Ti 2 O 7 content of 3.6 to 3.8% when the SiO 2 addition amount is in the range of 0.2 to 0.8 mol, and have a relative dielectric constant. was very good at 4500 or more.

Abstract

[Problem] To provide a dielectric porcelain composition which has a high relative dielectric constant even when calcined at a low temperature and ceramic electronic components in which the dielectric porcelain composition is applied to dielectric layers thereof. [Solution] A dielectric porcelain composition is obtained which comprises: a compound which is represented by general formula ABO3 (A is Ba and at least one type of element selected from Ca and Sr, and B is at least one type of element selected from Ti and Zr) and which has a perovskite crystal structure; and a compound composed of a rare earth titanium oxide which is represented by general formula R2Ti2O7 (wherein element R is at least one type of element selected from Sc, Y, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu).

Description

誘電体磁器組成物およびこれを用いたセラミック電子部品Dielectric porcelain composition and ceramic electronic component using the same
 本発明は、誘電体磁器組成物およびこれを用いたセラミック電子部品に関し、さらに詳しくは、低温で焼成しつつ優れた電気特性を得ることのできる誘電体磁器組成物およびこれを用いたセラミック電子部品に関するものである。 The present invention relates to a dielectric ceramic composition and a ceramic electronic component using the same, and more specifically, a dielectric ceramic composition capable of obtaining excellent electrical characteristics while firing at a low temperature, and a ceramic electronic component using the same. It is about.
 近時、価格競争の激しいセラミック電子部品の市場において価格競争力を維持するためには、更なる製造コストの低減が強く求められている。そうしたコスト削減を大きく実現する手段の一つとして、誘電体磁器組成物を1100℃以下の低温で焼成して得られるようにすることが、極めて有効である。また、COの排出量を抑制する点からも低温で焼成することは効果的である。 Recently, in order to maintain price competitiveness in the ceramic electronic parts market where price competition is intense, further reduction in manufacturing cost is strongly demanded. As one means for realizing such cost reduction, it is extremely effective to obtain a dielectric ceramic composition by firing at a low temperature of 1100 ° C. or lower. Moreover, firing at a low temperature is also effective from the viewpoint of suppressing CO 2 emission.
 また、電子回路の高密度化に伴う電子部品の小型・大容量化に対する要求は高く、これに伴い、たとえば積層セラミックコンデンサの薄層多層化が進んでいる。そうした薄層多層化を実現するための手段として、薄くてライン性の良い電極層や粒子径の整った誘電体層を得るうえでも、低温で焼成することは有効である。 Also, there is a high demand for downsizing and increasing the capacity of electronic components accompanying the increase in the density of electronic circuits, and for this reason, for example, multilayer ceramic capacitors are becoming thinner and multilayered. As a means for realizing such thin-layer multi-layering, firing at a low temperature is effective in obtaining a thin electrode layer with good lineability and a dielectric layer with a uniform particle diameter.
 従来、所望の電気特性を得るためには、ペロブスカイト型結晶構造を有する化合物に希土類酸化物など様々な添加剤を加えて焼成する必要があるため、焼成に必要な温度は1300℃以上と極めて高くなる。そこで、一般には焼成温度を低下させるなどの目的のために、Si化合物を大量に添加することが常であった。 Conventionally, in order to obtain desired electrical characteristics, it is necessary to add various additives such as rare earth oxides to a compound having a perovskite crystal structure and calcinate. Therefore, the temperature required for calcination is as high as 1300 ° C. or higher. Become. Therefore, generally, a large amount of Si compound is usually added for the purpose of lowering the firing temperature.
 しかしながら、例えば、BaTiOを基材とした場合に特許文献1に示すように、比誘電率を大きく損なうことなくSiO化合物のみを用いての焼成温度は、一般的に1200℃程度と高く、低温焼成効果として不十分である。他方、過剰なSi化合物の添加は、焼結時に単独若しくは添加剤などと比誘電率の低い第2相などを形成しやすく、得られる誘電体磁器組成物の比誘電率を著しく低下させるため実用的でない。 However, for example, when BaTiO 3 is used as the base material, as shown in Patent Document 1, the firing temperature using only the SiO 2 compound without greatly impairing the relative dielectric constant is generally as high as about 1200 ° C., Insufficient low-temperature firing effect. On the other hand, the addition of an excessive Si compound is easy to form a second phase having a low relative dielectric constant, either alone or with additives, during sintering, and the dielectric constant of the resulting dielectric ceramic composition is remarkably lowered. Not right.
 また、Si化合物よりも強力な低温焼成効果をもつ酸化リチウムを用いた場合でも、1100℃程度の低温で焼成する場合には、添加した元素の熱拡散が十分に進まず粒界層や三重点に比誘電率の低い相が多く残るため、得られる誘電体磁器組成物の比誘電率が著しく低下するという根本的な問題がある。そのため、特許文献2のように、BaTiOを基材とした場合に、酸化リチウムを用いて低温焼成化する場合であっても、焼成温度は1180℃と低温化としては十分でなく、また、微量のLiに対してSi化合物とを組み合わせて用いることが一般的であった。 Further, even when lithium oxide having a stronger low-temperature firing effect than Si compounds is used, when the firing is performed at a low temperature of about 1100 ° C., the thermal diffusion of the added element does not sufficiently proceed and the grain boundary layer or triple point Therefore, there is a fundamental problem that the relative dielectric constant of the obtained dielectric ceramic composition is remarkably lowered. Therefore, as in Patent Document 2, when BaTiO 3 is used as a base material, the firing temperature is 1180 ° C., which is not sufficient for lowering the temperature even when the low temperature firing is performed using lithium oxide. It has been common to use a Si compound in combination with a small amount of Li.
 また、特許文献3のように低誘電率の温度補償系材料について、BaOとTiOとともにRTiが含有されることを特徴とする誘電体磁器組成物の報告がなされているが、R元素はNd、La、Pr、Ce、Smといったイオン半径の大きな希土類元素のみが選ばれており、低温焼結を目的としたものではなかった。 Further, as disclosed in Patent Document 3, a dielectric ceramic composition characterized by containing R 2 Ti 2 O 7 together with BaO and TiO 2 has been reported for a low dielectric constant temperature compensation material. The rare earth elements having large ionic radii such as Nd, La, Pr, Ce, and Sm were selected as the R elements, and they were not intended for low-temperature sintering.
特開平8-180733号公報JP-A-8-180733 特開2004-182582号公報JP 2004-182582 A 特開2003-267778号公報JP 2003-267778 A
 本発明は、このような実状に鑑みてなされ、低温で焼成した場合であっても高い比誘電率をもつ誘電体磁器組成物および該誘電体磁器組成物が誘電体層に適用されたセラミック電子部品を提供することを目的とする。 The present invention has been made in view of such a situation, and a dielectric ceramic composition having a high relative dielectric constant even when fired at a low temperature, and a ceramic electronic in which the dielectric ceramic composition is applied to a dielectric layer The purpose is to provide parts.
 本発明は、上記目的を達成するために 一般式ABO(AはBaとCaおよびSrから選ばれる少なくとも1種の元素であり、BはTiおよびZrから選ばれる少なくとも1種の元素である)で表され、ペロブスカイト型結晶構造を有する化合物αと、一般式RTiで表される希土類チタン酸化物からなる化合物β(ただし、R元素は、Sc、Y、Eu、Gd、Tb、Dy、Ho、Er、Tm、YbおよびLuから選ばれる少なくとも1種の元素である)と前記化合物αの粒子間に形成された粒界とを備える誘電体磁器組成物を得ることを特徴とする。 In order to achieve the above object, the present invention provides a general formula ABO 3 (A is at least one element selected from Ba, Ca and Sr, and B is at least one element selected from Ti and Zr) And a compound β comprising a rare earth titanium oxide represented by the general formula R 2 Ti 2 O 7 (wherein R element is Sc, Y, Eu, Gd, Tb) , Dy, Ho, Er, Tm, Yb and Lu) and a dielectric ceramic composition comprising a grain boundary formed between the particles of the compound α. To do.
 RTiが生成することで、第2相としてRが多く存在する場合と比較して、低温における液相形成が容易となるために、添加元素の拡散が進み、その結果、粒界や粒界三重点に残存する低誘電率成分が減少して粒界が薄くなり、比誘電率が高くなると考えられる。 The formation of R 2 Ti 2 O 7 facilitates the formation of a liquid phase at a low temperature as compared with the case where a large amount of R 2 O 3 is present as the second phase. As a result, it is considered that the low dielectric constant component remaining at the grain boundary or the grain boundary triple point decreases, the grain boundary becomes thin, and the relative dielectric constant increases.
 本発明の態様としては、前記化合物αのX線回折チャートにおける面指数(110)のピーク強度に対して、前記化合物βのX線回折チャートにおける面指数(222)におけるピーク強度が0.5~9.0%であることを特徴とする請求項1に記載の誘電体磁器組成物であることが望ましい。 As an aspect of the present invention, the peak intensity of the surface index (222) in the X-ray diffraction chart of the compound β is 0.5 to about the peak intensity of the surface index (110) in the X-ray diffraction chart of the compound α. The dielectric ceramic composition according to claim 1, wherein the dielectric ceramic composition is 9.0%.
 また、本発明は、前記誘電体磁器組成物から構成される誘電体層と、電極層と、を有するセラミック電子部品を得ることを特徴とする。 Further, the present invention is characterized in that a ceramic electronic component having a dielectric layer composed of the dielectric ceramic composition and an electrode layer is obtained.
 本発明は、 低温で焼成した場合であっても高い比誘電率をもつ誘電体磁器組成物および該誘電体磁器組成物が誘電体層に適用されたセラミック電子部品を提供することができるという効果を奏する。 The present invention can provide a dielectric ceramic composition having a high relative dielectric constant even when fired at a low temperature, and a ceramic electronic component in which the dielectric ceramic composition is applied to a dielectric layer. Play.
本発明の一実施形態に係る積層セラミックコンデンサの断面図である。1 is a cross-sectional view of a multilayer ceramic capacitor according to an embodiment of the present invention. 本発明における一実施形態の効果としてRTi含有率と比誘電率の関係を説明する図である。Is a diagram illustrating the relationship R 2 Ti 2 O 7 content and relative dielectric constant as the effect of one embodiment of the present invention. 本発明における一実施形態の効果としてLi化合物添加量と比誘電率の関係を説明する図である。It is a figure explaining the relationship between Li compound addition amount and a dielectric constant as an effect of one Embodiment in this invention. 本発明における一実施形態の効果としてLi化合物添加量と比誘電率の関係を説明する図である。It is a figure explaining the relationship between Li compound addition amount and a dielectric constant as an effect of one Embodiment in this invention.
 以下、本発明の一実施形態を、図面に基づき説明する。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
積層セラミックコンデンサ1
 図1に示すように、積層セラミックコンデンサ1は、誘電体層2と内部電極層3とが交互に積層された構成のコンデンサ素子本体10を有する。このコンデンサ素子本体10の両端部には、コンデンサ素子本体10の内部で交互に配置された内部電極層3と各々導通する一対の外部電極4が形成してある。コンデンサ素子本体10の形状に特に制限はないが、通常、直方体状とされる。また、その寸法にも特に制限はなく、用途に応じて適当な寸法とすればよい。
Multilayer ceramic capacitor 1
As shown in FIG. 1, the multilayer ceramic capacitor 1 includes a capacitor element body 10 having a configuration in which dielectric layers 2 and internal electrode layers 3 are alternately stacked. At both ends of the capacitor element body 10, a pair of external electrodes 4 are formed which are electrically connected to the internal electrode layers 3 arranged alternately in the capacitor element body 10. The shape of the capacitor element body 10 is not particularly limited, but is usually a rectangular parallelepiped shape. Moreover, there is no restriction | limiting in particular also in the dimension, What is necessary is just to set it as a suitable dimension according to a use.
誘電体層2 
 誘電体層2は、本実施形態に係る誘電体磁器組成物から構成される。該誘電体磁器組成物は、主成分として、一般式ABO(AはBa単独、または、BaとCaおよびSrから選ばれる少なくとも1つとであり、BはTi単独、または、TiおよびZrである)で表される化合物と、副成分として、一般式RTiで表される希土類チタン酸化物相からなる化合物(ただし、R元素は、Sc、Y、Eu、Gd、Tb、Dy、Ho、Er、Tm、YbおよびLuから選ばれる少なくとも1つ)と、を有している。なお、酸素(O)量は、化学量論組成から若干偏倚してもよい。
Dielectric layer 2
The dielectric layer 2 is composed of a dielectric ceramic composition according to this embodiment. The dielectric ceramic composition has, as a main component, a general formula ABO 3 (A is Ba alone or at least one selected from Ba and Ca and Sr, and B is Ti alone or Ti and Zr. ) And a compound composed of a rare earth titanium oxide phase represented by the general formula R 2 Ti 2 O 7 as an auxiliary component (wherein R element is Sc, Y, Eu, Gd, Tb, Dy) , Ho, Er, Tm, Yb and Lu). Note that the amount of oxygen (O) may be slightly deviated from the stoichiometric composition.
 該化合物は、具体的には、組成式(Ba1-x-yCaSr)・(Ti1-mZr)Oで表され、ペロブスカイト型結晶構造を有する化合物である。また、Aサイト原子として、少なくともBaが含まれ、Bサイト原子として、少なくともTiが含まれている。さらに、Aサイト原子(Ba、SrおよびCa)と、Bサイト原子(TiおよびZr)と、のモル比は、A/B比として表され、本実施形態では、A/B比は、0.98~1.02であることが好ましい。 Specifically, the compound is a compound represented by a composition formula (Ba 1-xy Ca x Sr y ) · (Ti 1-m Zr m ) O 3 and having a perovskite crystal structure. Further, at least Ba is included as the A site atom, and at least Ti is included as the B site atom. Furthermore, the molar ratio between the A site atoms (Ba, Sr, and Ca) and the B site atoms (Ti and Zr) is expressed as an A / B ratio. It is preferably 98 to 1.02.
 なお、本実施形態では、上記式において、x=y=m=0、すなわち、チタン酸バリウムが特に好ましい。また、粒界は、Ti,Siなどの元素を含有し、上記化合物αの間に存在している。 In the present embodiment, x = y = m = 0 in the above formula, that is, barium titanate is particularly preferable. The grain boundary contains elements such as Ti and Si and exists between the compounds α.
 一般式RTiで表される希土類チタン酸化物相からなる化合物(ただし、R元素は、Sc、Y、Eu、Gd、Tb、Dy、Ho、Er、Tm、YbおよびLuから選ばれる少なくとも1つ)の含有量は、X線回析チャートにおいて、一般式ABO(AはBa単独、または、BaとCaおよびSrから選ばれる少なくとも1つであり、BはTi単独、または、TiおよびZrである)で表され、ペロブスカイト型結晶構造を有する化合物の面指数(110)のピーク強度に対する一般式RTiで表される希土類チタン酸化物の面指数(222)におけるピーク強度が0.5~9%である。一般式RTiで表される希土類チタン酸化物からなる化合物の含有量を上記の範囲とすることで、低い焼成温度と高い比誘電率とを両立させやすいという利点がある。なお、R元素は、Sc、Y、Eu、Gd、Tb、Dy、Ho、Er、Tm、YbおよびLuから選ばれる少なくとも1つであり、Y、Ho、Dy、Ybから選ばれる少なくとも1つが好ましく、Y、Dy、Ybから選ばれる少なくとも1つがより好ましい。 A compound comprising a rare earth titanium oxide phase represented by the general formula R 2 Ti 2 O 7 (where R element is selected from Sc, Y, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu) In the X-ray diffraction chart, the content of at least one selected from the general formula ABO 3 (A is Ba alone, or at least one selected from Ba and Ca and Sr, and B is Ti alone, or In the plane index (222) of the rare earth titanium oxide represented by the general formula R 2 Ti 2 O 7 with respect to the peak intensity of the plane index (110) of the compound having a perovskite type crystal structure. The peak intensity is 0.5-9%. By setting the content of the compound comprising the rare earth titanium oxide represented by the general formula R 2 Ti 2 O 7 in the above range, there is an advantage that it is easy to achieve both a low firing temperature and a high relative dielectric constant. The R element is at least one selected from Sc, Y, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu, and preferably at least one selected from Y, Ho, Dy, Yb. , Y, Dy, and Yb are more preferable.
 なお、本実施形態においては、必要に応じて、その他の成分が含有されていてもよい。 In the present embodiment, other components may be contained as necessary.
 たとえば、Mgの酸化物が含有されていてもよい。その含有量は、ABOで表される化合物100モルに対して、Mg元素換算で、好ましくは0.5~3モルである。該酸化物の含有量を上記の範囲とすることで、誘電体粒子の結晶粒子径を容易に制御でき、目的とする該誘電体磁器組成物の微細組織を所望のものにできるという利点がある。 For example, Mg oxide may be contained. The content thereof is preferably 0.5 to 3 mol in terms of Mg element with respect to 100 mol of the compound represented by ABO 3 . By setting the content of the oxide in the above range, there is an advantage that the crystal particle diameter of the dielectric particles can be easily controlled, and the desired fine structure of the dielectric ceramic composition can be obtained. .
 また、たとえば、Mn、Cr、Co、FeおよびCuから選ばれる少なくとも1つの元素の酸化物が含有されていてもよい。これらの酸化物の含有量は、ABOで表される化合物100モルに対して、各元素換算で、好ましくは0.1~1モルである。該酸化物の含有量を上記の範囲とすることで、結晶粒中央部であるコアへのR元素の拡散を容易に制御でき、目的とする該誘電体磁器組成物の微細組織を所望のものにできるという利点がある。なお、該酸化物のなかでも特性の改善効果が大きいという点から、Mnの酸化物および/またはCrの酸化物を用いることが好ましい。 Further, for example, an oxide of at least one element selected from Mn, Cr, Co, Fe, and Cu may be contained. The content of these oxides is preferably 0.1 to 1 mol in terms of each element with respect to 100 mol of the compound represented by ABO 3 . By making the content of the oxide within the above range, the diffusion of the R element into the core at the center of the crystal grain can be easily controlled, and the desired microstructure of the dielectric ceramic composition is desired. There is an advantage that can be. Among these oxides, it is preferable to use an oxide of Mn and / or an oxide of Cr from the viewpoint that the effect of improving characteristics is great.
 また、たとえば、V、MoおよびWから選ばれる少なくとも1つの元素の酸化物が含有されていてもよい。これらの酸化物の含有量は、ABOで表される化合物100モルに対して、各元素換算で、好ましくは0.05~0.5モルである。該酸化物の含有量を上記の範囲とすることで、目的とする該誘電体磁器組成物の微細組織を所望のものにできるという利点がある。なお、該酸化物のなかでも特性の改善効果が大きいという点から、Vの酸化物を用いることが好ましい。 Further, for example, an oxide of at least one element selected from V, Mo and W may be contained. The content of these oxides is preferably 0.05 to 0.5 mol in terms of each element with respect to 100 mol of the compound represented by ABO 3 . By setting the content of the oxide within the above range, there is an advantage that the desired microstructure of the dielectric ceramic composition can be made desired. Of these oxides, the oxide of V is preferably used from the viewpoint that the effect of improving the characteristics is great.
 また、たとえば、少量であればSiを含む化合物が含有されていてもよい。これらの化合物の含有量は、ABOで表される化合物100モルに対して、Si元素換算で、好ましくは0.8モル以下である。該化合物の含有量を上記の範囲とすることで、焼成温度や保持時間を容易に制御しつつ特性の悪化を抑制することができ、目的とする該誘電体磁器組成物の微細組織を所望のものにできるという利点がある。なお、Siを含む化合物としては、Siの酸化物、または、Siと、Li、B、Al、BaおよびCaから選ばれる少なくとも1つと、の複合酸化物が好ましい。 For example, if it is a small amount, a compound containing Si may be contained. The content of these compounds is preferably 0.8 mol or less in terms of Si element with respect to 100 mol of the compound represented by ABO 3 . By setting the content of the compound in the above range, deterioration of characteristics can be suppressed while easily controlling the firing temperature and holding time, and the desired microstructure of the dielectric ceramic composition can be obtained as desired. There is an advantage that it can be made. The compound containing Si is preferably an oxide of Si or a composite oxide of Si and at least one selected from Li, B, Al, Ba and Ca.
 誘電体層2の厚みは、特に限定されず、所望の特性や用途等に応じて適宜決定すればよい。 The thickness of the dielectric layer 2 is not particularly limited, and may be determined as appropriate according to desired characteristics and applications.
該誘電体磁器組成物の微細組織
 本実施形態では、上記の誘電体層2を構成する誘電体磁器組成物に含有される一般式RTiで表される希土類チタン酸化物相からなる化合物はABOで表される化合物とは独立した偏析相を形成してもよく、主成分(ABO)の粒界層あるいは粒界三重点に存在してもよい。
Microstructure of the dielectric ceramic composition In this embodiment, the rare earth titanium oxide phase represented by the general formula R 2 Ti 2 O 7 contained in the dielectric ceramic composition constituting the dielectric layer 2 is used. The resulting compound may form a segregation phase independent of the compound represented by ABO 3 , or may exist in the grain boundary layer or grain boundary triple point of the main component (ABO 3 ).
 本実施形態では、希土類元素Rは主として一般式RTiで表される希土類チタン酸化物の形態で存在するが、必ずしも該化合物のみに限定されるものではなく、その一部はRのような酸化物や其の他の形態で存在していてもよい。 In the present embodiment, the rare earth element R exists mainly in the form of a rare earth titanium oxide represented by the general formula R 2 Ti 2 O 7 , but is not necessarily limited to the compound, and a part thereof is R It may be present in oxides such as 2 O 3 and other forms.
 上記誘電体磁器組成物の微細組織を観察する方法としては、特に制限されず、たとえば、走査型電子顕微鏡(SEM)に付属のYAG(イットリウム/アルミニウム/ガーネット)検出器を用いた反射電子像のコントラストから主成分(ABO)と希土類元素Rを含む偏析相とを観察してもよいし、走査透過型電子顕微鏡(STEM)や走査型電子顕微鏡(SEM)に付属のエネルギー分散型X線分光装置(EDS)を用いて主成分(ABO)と希土類元素Rを含む偏析相とを観察してもよい。 The method for observing the microstructure of the dielectric ceramic composition is not particularly limited. For example, a reflected electron image using a YAG (yttrium / aluminum / garnet) detector attached to a scanning electron microscope (SEM) is used. From the contrast, the main component (ABO 3 ) and the segregation phase containing the rare earth element R may be observed, and energy dispersive X-ray spectroscopy attached to the scanning transmission electron microscope (STEM) or the scanning electron microscope (SEM). main component using a device (EDS) (ABO 3) and may be observed and segregation phase containing a rare earth element R.
 また、希土類元素RとTiとを含む偏析相を主として含む該誘電体磁器組成物をX線回析(XRD)法により得られたチャートのピーク位置から結晶構造を特定することで、希土類元素Rを含む主となる化合物が一般式RTiで表される希土類チタン酸化物であることを特定することができる。 Further, the dielectric ceramic composition mainly containing a segregation phase containing rare earth elements R and Ti is identified from the peak position of the chart obtained by the X-ray diffraction (XRD) method, whereby the rare earth elements R It can be specified that the main compound containing is a rare earth titanium oxide represented by the general formula R 2 Ti 2 O 7 .
 たとえば、チタン酸バリウムBaTiOを主成分としてYTiで表される希土類チタン酸化物を副成分とした場合には、面指数(222)、(400)、(622)、(444)、(840)に該当するX線回析チャートのピークの位置を確認することによって、YTiの存在を確認することができる。 For example, when a rare earth titanium oxide represented by Y 2 Ti 2 O 7 with barium titanate BaTiO 3 as the main component is used as a subcomponent, the plane index (222), (400), (622), (444) ), The presence of Y 2 Ti 2 O 7 can be confirmed by confirming the peak position of the X-ray diffraction chart corresponding to (840).
 さらに、上記誘電体磁器組成物中の主成分(ABO)に対する一般式RTiで表される希土類チタン酸化物の割合を導き出す方法も特に制限されず、たとえば、主成分(ABO)の面指数(110)のX線回析チャートのピーク強度を100とした場合の一般式RTiで表される希土類チタン酸化物の面指数(222)におけるピーク強度で判断してもよい。後述する実施例ではこの方法を採用している。なお、チタン酸バリウムBaTiOを主成分として100モルとしたときにYTiを0.5~3モル含む該誘電体磁器組成物について、チタン酸バリウムBaTiOの面指数(110)のX線回析チャートのピーク強度を100とした場合のYTiの面指数(222)におけるピーク強度は1~5%となる。ピーク強度が0.5%~9.0%の範囲において、誘電率が高くなるという効果が確認できた。 Furthermore, the method for deriving the ratio of the rare earth titanium oxide represented by the general formula R 2 Ti 2 O 7 to the main component (ABO 3 ) in the dielectric ceramic composition is not particularly limited. For example, the main component (ABO) 3 ) Judging by the peak intensity in the plane index (222) of the rare earth titanium oxide represented by the general formula R 2 Ti 2 O 7 when the peak intensity of the X-ray diffraction chart of the plane index (110) is 100. May be. This method is adopted in the embodiments described later. The dielectric ceramic composition containing 0.5 to 3 moles of Y 2 Ti 2 O 7 with 100 moles of barium titanate BaTiO 3 as the main component, the plane index (110) of barium titanate BaTiO 3 The peak intensity in the plane index (222) of Y 2 Ti 2 O 7 when the peak intensity of the X-ray diffraction chart is 100 is 1 to 5%. The effect of increasing the dielectric constant was confirmed when the peak intensity was in the range of 0.5% to 9.0%.
 また、走査型電子顕微鏡(SEM)に付属のYAG(イットリウム/アルミニウム/ガーネット)検出器を用いた反射電子像のコントラストから主成分(ABO)と希土類元素Rを含む偏析相とを区別することで得られた像の全体の面積に対する希土類元素Rを含む偏析相の面積割合を導いた後、走査透過型電子顕微鏡(STEM)や走査型電子顕微鏡(SEM)に付属のエネルギー分散型X線分光装置(EDS)を用いて、希土類元素Rを含む偏析相に対してRの含有の有無やTiの含有の有無を分析することにより、希土類元素Rを含む偏析相のうち一般式RTiで表される希土類チタン酸化物の占める割合として判断してもよい。   In addition, the main component (ABO 3 ) and the segregated phase containing the rare earth element R are distinguished from the contrast of the reflected electron image using the YAG (yttrium / aluminum / garnet) detector attached to the scanning electron microscope (SEM). After deriving the ratio of the segregation phase containing the rare earth element R to the total area of the image obtained in step 1, the energy dispersive X-ray spectroscopy attached to the scanning transmission electron microscope (STEM) or scanning electron microscope (SEM) Using the apparatus (EDS), the presence or absence of R or the presence or absence of Ti is analyzed for the segregation phase containing the rare earth element R, so that the general formula R 2 Ti 2 of the segregation phase containing the rare earth element R is analyzed. it may be determined as a proportion of the rare earth-titanium oxide represented by O 7.
 なお、測定数は特に制限されないが、1個の該誘電体磁器組成物中にあっても局所的には偏析相の分布の偏りがあるため、3視野以上とすることが好ましい。 Although the number of measurements is not particularly limited, it is preferable to have three or more fields of view because there is a local distribution of segregation phase even in one dielectric ceramic composition.
 このように、Yを含む偏析相のうち一般式RTiで表される希土類チタン酸化物の含有割合が一定の範囲にあることで、低温で焼成しつつ高い比誘電率をもつ該誘電体磁器組成物を得ることができる。 As described above, the content ratio of the rare earth titanium oxide represented by the general formula R 2 Ti 2 O 7 in the segregation phase containing Y is in a certain range, and thus has a high relative dielectric constant while firing at a low temperature. The dielectric ceramic composition can be obtained.
 上述した一般式RTiで表される希土類チタン酸化物の存在状態は、後述するが、特定のLiを含む化合物を添加して低温で焼成することにより実現することができる。 As described later, the existence state of the rare earth titanium oxide represented by the general formula R 2 Ti 2 O 7 described above can be realized by adding a compound containing specific Li and firing at a low temperature.
 本実施形態では、主成分(ABO)の結晶粒子径に特に制限はない。目的とする誘電体層の厚みに対して適宜決定されればよい。 In the present embodiment, there is no particular limitation on the crystal grain size of the main component (ABO 3). What is necessary is just to determine suitably with respect to the thickness of the target dielectric material layer.
内部電極層3 
 図1に示す内部電極層3に含有される導電材は特に限定されないが、誘電体層2を構成する誘電体磁器組成物が耐還元性を有する場合、比較的安価な卑金属を用いることができる。導電材として用いる卑金属としては、NiまたはNi合金が好ましい。また、内部電極層3は、市販の電極用ペーストを使用して形成してもよい。内部電極層3の厚さは用途等に応じて適宜決定すればよい。
Internal electrode layer 3
The conductive material contained in the internal electrode layer 3 shown in FIG. 1 is not particularly limited, but a relatively inexpensive base metal can be used when the dielectric ceramic composition constituting the dielectric layer 2 has reduction resistance. . As the base metal used as the conductive material, Ni or Ni alloy is preferable. The internal electrode layer 3 may be formed using a commercially available electrode paste. What is necessary is just to determine the thickness of the internal electrode layer 3 suitably according to a use etc.
外部電極4 
 図1に示す外部電極4に含有される導電材は特に限定されないが、本実施形態では安価なNi,Cuや、これらの合金を用いることができる。外部電極4の厚さは用途等に応じて適宜決定すればよい。
External electrode 4
The conductive material contained in the external electrode 4 shown in FIG. 1 is not particularly limited, but inexpensive Ni, Cu, and alloys thereof can be used in this embodiment. What is necessary is just to determine the thickness of the external electrode 4 suitably according to a use etc.
積層セラミックコンデンサ1の製造方法 
 本実施形態に係る積層セラミックコンデンサ1は、従来の積層セラミックコンデンサと同様に、ペーストを用いた通常の印刷法やシート法によりグリーンチップを作製し、これを焼成した後、外部電極を印刷または転写して焼成することにより製造される。以下、製造方法について具体的に説明する。
Manufacturing method of multilayer ceramic capacitor 1
In the multilayer ceramic capacitor 1 according to this embodiment, a green chip is produced by a normal printing method or a sheet method using a paste, and fired, and then printed or transferred an external electrode, similarly to a conventional multilayer ceramic capacitor. And then baked. Hereinafter, the manufacturing method will be specifically described.
 まず、誘電体層を形成するための誘電体原料を準備し、これを塗料化して、誘電体層用ペーストを調製する。 First, a dielectric material for forming a dielectric layer is prepared, and this is made into a paint to prepare a dielectric layer paste.
 誘電体原料として、まずABOの原料と、R元素を含む化合物の原料と、Li化合物とを準備する。これらの原料としては、上記した成分の酸化物やその混合物、複合酸化物を用いることができる。また、焼成により上記の酸化物や複合酸化物となる各種化合物、たとえば、炭酸塩、シュウ酸塩、硝酸塩、水酸化物、有機金属化合物等から適宜選択し、混合して用いることもできる。 As a dielectric material, first, an ABO 3 material, a compound material containing an R element, and a Li compound are prepared. As these raw materials, oxides of the above-described components, mixtures thereof, and composite oxides can be used. In addition, various compounds that become the above oxides or composite oxides by firing, for example, carbonates, oxalates, nitrates, hydroxides, organometallic compounds, and the like may be appropriately selected and mixed for use.
 なお、ABOの原料は、いわゆる固相法の他、各種液相法(たとえば、シュウ酸塩法、水熱合成法、アルコキシド法、ゾルゲル法など)により製造されたものなど、種々の方法で製造されたものを用いることができる。 In addition to the so-called solid phase method, the raw material of ABO 3 can be produced by various methods such as those produced by various liquid phase methods (for example, oxalate method, hydrothermal synthesis method, alkoxide method, sol-gel method, etc.). What was manufactured can be used.
 ABOの原料粉末としては、平均粒子径が100~400nmのものを用いることが好ましい。粒子径が100nmより小さい場合には、焼成による結晶成長を制御することが困難となるため焼結体粒子径が不均一になりやすく、所望の比誘電率も得られない。他方、400nm以上では焼成に必要な温度が高くなる。 As the ABO 3 raw material powder, those having an average particle diameter of 100 to 400 nm are preferably used. When the particle diameter is smaller than 100 nm, it becomes difficult to control crystal growth by firing, and thus the sintered body particle diameter tends to be non-uniform, and a desired dielectric constant cannot be obtained. On the other hand, if it is 400 nm or more, the temperature required for firing becomes high.
 なお、原料粉末の粒子径を測定する方法としては、特に制限されず、たとえば粒子径に応じて得られる回折/散乱光の情報を利用したレーザー回折散乱法が挙げられる。 In addition, the method for measuring the particle diameter of the raw material powder is not particularly limited, and examples thereof include a laser diffraction / scattering method using information of diffraction / scattered light obtained according to the particle diameter.
 R元素を含む化合物の原料としては、特に制限されず、典型的なRの酸化物の固形粉末であってもよいし、溶液状であってもよい。たとえば、R元素のアルコキシド、錯体、塩を溶媒に添加したものなどが挙げられる。 The raw material of the compound containing the R element is not particularly limited, and may be a solid powder of a typical R 2 O 3 oxide or a solution. For example, R element alkoxides, complexes, and salts added to a solvent may be used.
 同様に、Li化合物の原料としては、特に制限されず、固形粉末であってもよいし、溶液状であってもよい。固形物を用いる場合には少なくとも、ABOの原料粉末と同等以下の平均粒子径のものを用いることが望ましい。また、Li原子換算で0.5~10モル%の範囲で加えることが望ましい。 Similarly, the raw material for the Li compound is not particularly limited, and may be a solid powder or a solution. When using a solid material, it is desirable to use at least an average particle diameter equal to or less than that of the ABO 3 raw material powder. Further, it is desirable to add in the range of 0.5 to 10 mol% in terms of Li atom.
 Li化合物は、Liともう一つの陽イオンMを含む酸化物Liであることが望ましい。Liにおける陽イオンMは、B、Al、Si、P、Ti、V、Mn、Co、Zr、Mo、およびWのいずれでもよいが、Tiが得に好適である。 The Li compound is preferably an oxide Li a M b O c containing Li and another cation M. The cation M in Li a M b O c may be any of B, Al, Si, P, Ti, V, Mn, Co, Zr, Mo, and W, and Ti is suitable for obtaining.
 また、誘電体層に上記の成分以外の成分を含有させる場合には、該成分の原料を準備する。これらの原料としては、それらの成分の酸化物やその混合物、複合酸化物、あるいは焼成により上記した酸化物や複合酸化物となる各種化合物を用いることができる。また、溶液原料を用いてもよい。 Further, when the dielectric layer contains components other than the above components, raw materials for the components are prepared. As these raw materials, oxides of these components, mixtures thereof, composite oxides, or various compounds that become the oxides or composite oxides described above by firing can be used. Moreover, you may use a solution raw material.
 Si化合物を原料として用いる場合には、酸化物であっても複合酸化物であってもよいが、添加量としてはSi原子換算で0.8モル%以下とすることが望ましい。 When an Si compound is used as a raw material, it may be an oxide or a complex oxide, but the addition amount is preferably 0.8 mol% or less in terms of Si atoms.
 次に、本実施形態では、ABOの原料と、R元素の化合物の原料と、Li化合物とを混合して、溶液状の原料混合物を得る。この原料混合物においては、ABOの原料と、R元素の酸化物の原料と、Li化合物とが溶媒中で均一に分散している。混合は、たとえばボールミルを用いて4~48時間程度行う。また、このとき、分散剤を添加してもよい。 Next, in this embodiment, a raw material of ABO 3, a raw material of an R element compound, and a Li compound are mixed to obtain a solution-like raw material mixture. In this raw material mixture, the ABO 3 raw material, the R element oxide raw material, and the Li compound are uniformly dispersed in the solvent. The mixing is performed for about 4 to 48 hours using, for example, a ball mill. At this time, a dispersant may be added.
 得られた原料混合物は乾燥される。乾燥後の原料混合物においては、ABO粒子の表面に、R元素の化合物とLi化合物が被覆された状態となっている。すなわち、R元素等は、ABO粒子に物理的あるいは化学的に吸着し、粒子表面を被覆している。 The obtained raw material mixture is dried. In the raw material mixture after drying, the surface of the ABO 3 particles is covered with a compound of R element and a Li compound. That is, the R element or the like is physically or chemically adsorbed on the ABO 3 particles and coats the particle surface.
 なお、乾燥方法は特に制限されず、静置乾燥、スプレー乾燥、凍結乾燥等から適宜選択すればよい。また、乾燥する温度も特に制限されず、原料混合物の溶媒を除去できる温度であればよい。 The drying method is not particularly limited, and may be appropriately selected from stationary drying, spray drying, freeze drying, and the like. Further, the drying temperature is not particularly limited as long as the solvent can be removed from the raw material mixture.
 続いて、乾燥後の原料混合物を誘電体原料として用いてもよいし、さらに熱処理してもよい。熱処理を行うと、ABO粒子の表面に被覆されたR元素の化合物とLi化合物が粒子に対してより強固に固着される。この熱処理には、たとえばロータリーキルン、トンネル炉、バッチ炉を用いることができる。熱処理における保持温度は300~800℃の範囲とすることが好ましい。また、保持時間は0~4時間の範囲とすることが好ましい。なお、原料混合物の乾燥と熱処理とは同時に行ってもよい。同時に行う方法としては、たとえば噴霧熱分解法などが挙げられる。 Subsequently, the dried raw material mixture may be used as a dielectric raw material, or may be further heat-treated. When heat treatment is performed, the R element compound and the Li compound coated on the surface of the ABO 3 particles are more firmly fixed to the particles. For this heat treatment, for example, a rotary kiln, a tunnel furnace, or a batch furnace can be used. The holding temperature in the heat treatment is preferably in the range of 300 to 800 ° C. The holding time is preferably in the range of 0 to 4 hours. In addition, you may perform simultaneously drying and heat processing of a raw material mixture. Examples of the method performed simultaneously include a spray pyrolysis method.
 熱処理後には、原料混合物は凝集しているため、凝集をほぐす程度に原料混合物を解砕してもよい。なお、この解砕は後述する誘電体層用ペーストを調製時に行ってもよい。 Since the raw material mixture is agglomerated after the heat treatment, the raw material mixture may be crushed to an extent that loosens the aggregation. This crushing may be performed at the time of preparing a dielectric layer paste described later.
 熱処理後の原料混合物の平均粒子径は、通常、0.1~1μm程度である。次に、得られた熱処理後の原料混合物(誘電体原料)を塗料化して誘電体層用ペーストを調製する。このとき、溶液原料として添加しなかった他の成分の原料を添加してもよい。  The average particle size of the raw material mixture after the heat treatment is usually about 0.1 to 1 μm. Next, the obtained heat-treated material mixture (dielectric material) is made into a paint to prepare a dielectric layer paste. At this time, raw materials of other components not added as solution raw materials may be added. *
 内部電極層用ペーストは、上記した各種導電性金属や合金からなる導電材、あるいは焼成後に上記した導電材となる各種酸化物、有機金属化合物、レジネート等を混練して調製する。 The internal electrode layer paste is prepared by kneading the above-described conductive materials made of various conductive metals and alloys, or various oxides, organometallic compounds, resinates, and the like that become the above-mentioned conductive materials after firing.
 外部電極用ペーストは、上記した内部電極層用ペーストと同様にして調製すればよい。 The external electrode paste may be prepared in the same manner as the internal electrode layer paste described above.
 誘電体層用ペーストを用いてグリーンシートを形成し、この上に内部電極層用ペーストを印刷した後、これらを積層し、所定形状に切断してグリーンチップとする。 A green sheet is formed using the dielectric layer paste, and the internal electrode layer paste is printed thereon, then, these are stacked, and cut into a predetermined shape to obtain a green chip.
 焼成前に、グリーンチップに脱バインダ処理を施し、その後、グリーンチップの焼成を行う。焼成では、昇温速度を好ましくは200℃/時間以上とする。焼成時の保持温度は、好ましくは1100℃以下、より好ましくは1000~1100℃であり、その保持時間は、好ましくは2時間以下である。 Before firing, the green chip is treated to remove the binder, and then the green chip is fired. In firing, the rate of temperature rise is preferably 200 ° C./hour or more. The holding temperature at the time of firing is preferably 1100 ° C. or less, more preferably 1000 to 1100 ° C., and the holding time is preferably 2 hours or less.
 焼成雰囲気は、還元性雰囲気とすることが好ましく、雰囲気ガスとしてはたとえば、N2 とH2 との混合ガスを加湿して用いることができる。 The firing atmosphere is preferably a reducing atmosphere. As the atmosphere gas, for example, a mixed gas of N 2 and H 2 can be used by humidification.
 また、焼成時の酸素分圧は、内部電極層用ペースト中の導電材の種類に応じて適宜決定されればよいが、導電材としてNiやNi合金等の卑金属を用いる場合、焼成雰囲気中の酸素分圧は、10-14~10-10MPaとすることが好ましい。焼成時の降温速度は、好ましくは50~500℃/時間である。 In addition, the oxygen partial pressure during firing may be appropriately determined according to the type of the conductive material in the internal electrode layer paste, but when a base metal such as Ni or Ni alloy is used as the conductive material, The oxygen partial pressure is preferably 10 −14 to 10 −10 MPa. The temperature lowering rate during firing is preferably 50 to 500 ° C./hour.
 還元性雰囲気中で焼成した後、コンデンサ素子本体にはアニールを施すことが好ましい。アニールは、誘電体層を再酸化するための処理であり、これによりIR寿命(絶縁抵抗の寿命)を著しく長くすることができるので、信頼性が向上する。 It is preferable to anneal the capacitor element body after firing in a reducing atmosphere. Annealing is a process for re-oxidizing the dielectric layer, and thereby the IR life (insulation resistance life) can be remarkably increased, so that the reliability is improved.
 アニール雰囲気中の酸素分圧は、10-9~10-5MPaとすることが好ましい。また、アニールの際の保持温度は、1000℃以下、特に900~1000℃とすることが好ましい。なお、アニールは昇温過程および降温過程だけから構成してもよい。すなわち、温度保持時間を零としてもよい。 The oxygen partial pressure in the annealing atmosphere is preferably 10 −9 to 10 −5 MPa. The holding temperature during annealing is preferably 1000 ° C. or less, particularly 900 to 1000 ° C. Note that annealing may be composed of only a temperature raising process and a temperature lowering process. That is, the temperature holding time may be zero.
 脱バインダ処理、焼成およびアニールは、連続して行なっても、独立に行なってもよい。 The binder removal treatment, firing and annealing may be performed continuously or independently.
 上記のようにして得られたコンデンサ素子本体に、たとえばバレル研磨やサンドブラストなどにより端面研磨を施し、外部電極用ペーストを塗布して焼成し、外部電極4を形成する。そして、必要に応じ、外部電極4の表面に、めっき等により被覆層を形成する。 The capacitor element body obtained as described above is subjected to end surface polishing, for example, by barrel polishing or sand blasting, and the external electrode paste is applied and baked to form the external electrode 4. Then, if necessary, a coating layer is formed on the surface of the external electrode 4 by plating or the like.
 このようにして製造された本実施形態の積層セラミックコンデンサは、ハンダ付等によりプリント基板上などに実装され、各種電子機器等に使用される。 The multilayer ceramic capacitor of this embodiment manufactured in this way is mounted on a printed circuit board by soldering or the like and used for various electronic devices.
 本実施形態では、Liともう一つの陽イオンMを含む酸化物Liに適切なものを選択して、そのほかの成分添加物や焼成条件を上記の範囲とすることでRTiを生成することができるため、低温で焼成した場合であっても高い比誘電率をもつ誘電体磁器組成物を実現することが可能となる。 In the present embodiment, R 2 is selected by selecting a suitable oxide Li a M b O c containing Li and another cation M, and setting other component additives and firing conditions in the above ranges. Since Ti 2 O 7 can be generated, a dielectric ceramic composition having a high dielectric constant can be realized even when fired at a low temperature.
 RTiが生成することによって、低温で焼成した場合であっても比誘電率が高くなるプロセスは必ずしも明らかではないが、たとえば次のように考えることができる。第2相としてRが多く存在する場合と比較して、RTiが生成する場合は、低温における液相形成が容易となるために、添加元素の拡散が進む。その結果、粒界や粒界三重点に残存する低誘電率成分が減少するため、従来の低温焼成の場合と比較して、粒界が薄くなり、比誘電率が高くなると考えられる。 The process in which the relative permittivity becomes high even when fired at a low temperature due to the generation of R 2 Ti 2 O 7 is not necessarily clear, but can be considered as follows, for example. Compared with the case where a large amount of R 2 O 3 is present as the second phase, when R 2 Ti 2 O 7 is produced, the liquid phase is easily formed at a low temperature, and the diffusion of the additive element proceeds. As a result, the low dielectric constant components remaining at the grain boundaries and grain boundary triple points are reduced, so that it is considered that the grain boundaries become thinner and the relative dielectric constant becomes higher than in the case of conventional low-temperature firing.
 以上、本発明の実施形態について説明してきたが、本発明は、上述した実施形態に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々に改変することができる。 The embodiments of the present invention have been described above, but the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the scope of the present invention.
 たとえば、上述した実施形態では、本発明に係る誘電体磁器組成物を適用した電子部品として積層セラミックコンデンサを例示したが、本発明に係る誘電体磁器組成物を適用する電子部品としては、積層セラミックコンデンサに限定されず、上記構成の誘電体層を有するものであれば何でも良い。 For example, in the above-described embodiment, a multilayer ceramic capacitor is exemplified as an electronic component to which the dielectric ceramic composition according to the present invention is applied. However, as an electronic component to which the dielectric ceramic composition according to the present invention is applied, a multilayer ceramic capacitor is used. The present invention is not limited to a capacitor, and any capacitor may be used as long as it has a dielectric layer having the above configuration.
 以下、本発明を、さらに詳細な実施例に基づき説明するが、本発明は、これら実施例に限定されない。 Hereinafter, the present invention will be described based on more detailed examples, but the present invention is not limited to these examples.
実施例1
 まず、ABOの原料としてBaTiO3 粉末を、副成分の原料として、Y、MgCO、MnCO、V、CaSiOの各粉末とを、それぞれ準備した。また、MgCOおよびMnCO3 は、焼成後には、MgOおよびMnOとして誘電体磁器組成物中に含有されることとなる。
Example 1
First, BaTiO 3 powder was prepared as a raw material for ABO 3 , and Y 2 O 3 , MgCO 3 , MnCO 3 , V 2 O 5 , and CaSiO 3 powders were prepared as subcomponent raw materials. In addition, MgCO 3 and MnCO 3 are contained in the dielectric ceramic composition as MgO and MnO after firing.
 さらに、Liを含む副成分の原料として、LiCO、LiOH、LiBO、Li、LiPO、LiPO、LiMn、LiTi12、LiCoO、LiO、LiSiO、LiTiO、LiAlO、LiZrO、LiMoO、LiVO、LiClの各粉末をそれぞれ準備した。なお、各化合物は表1の試料番号2から17に対応しており、以下誘電体原料の作成においては、いずれか1種のみを選択して使用した。 Furthermore, Li 2 CO 3 , LiOH, LiBO 2 , Li 2 B 4 O 7 , LiPO 2 , Li 3 PO 4 , LiMn 2 O 4 , Li 4 Ti 5 O 12 , LiCoO 2 are used as raw materials for subcomponents containing Li. , Li 2 O, Li 2 SiO 3 , Li 2 TiO 3 , LiAlO 2 , LiZrO 3 , Li 2 MoO 4 , LiVO 3 , and LiCl powders were prepared. Each compound corresponds to Sample Nos. 2 to 17 in Table 1, and in the preparation of the dielectric material, only one of them was selected and used.
 次に、BaTiO粉末と副成分の原料とLiを含む副成分の原料とを、ボールミルを用いて、16時間混合し、原料混合物を作製した。得られた原料混合物を150℃で乾燥した後、600℃で2時間の条件で熱処理を行った。熱処理後の原料混合物を誘電体原料とした。 Next, the BaTiO 3 powder, the subcomponent raw material, and the subcomponent raw material containing Li were mixed for 16 hours using a ball mill to prepare a raw material mixture. The obtained raw material mixture was dried at 150 ° C. and then heat-treated at 600 ° C. for 2 hours. The raw material mixture after the heat treatment was used as a dielectric raw material.
 なお、各副成分の添加量は、焼成後の誘電体磁器組成物において主成分であるBaTiO3 100モルに対して、各原子換算で、Liを含む副成分の原料4.0モル、Yが1.0モル、MgOが0.5モル、MnOが0.2モル、Vが0.1モル、CaOが0.8モル、SiOが0.8モル、となるようにした。 In addition, the addition amount of each subcomponent is 4.0 mol of the subcomponent raw material containing Li in terms of each atom with respect to 100 mol of BaTiO 3 as the main component in the fired dielectric ceramic composition, Y 2 O 3 is 1.0 mol, MgO is 0.5 mol, MnO is 0.2 mol, V 2 O 5 is 0.1 mol, CaO is 0.8 mol, and SiO 2 is 0.8 mol. I made it.
 次いで、得られた誘電体原料:100質量部と、ポリビニルブチラール樹脂:10質量部と、可塑剤としてのジオクチルフタレート(DOP):5質量部と、溶媒としてのアルコール:100質量部とをボールミルで混合してペースト化し、誘電体層用ペーストを得た。 Next, the obtained dielectric material: 100 parts by mass, polyvinyl butyral resin: 10 parts by mass, dioctyl phthalate (DOP) as a plasticizer: 5 parts by mass, and alcohol as a solvent: 100 parts by mass with a ball mill The mixture was made into a paste to obtain a dielectric layer paste.
 また、上記とは別に、Ni粒子:44.6質量部と、テルピネオール:52質量部と、エチルセルロース:3質量部と、ベンゾトリアゾール:0.4質量部とを、3本ロールにより混練し、スラリー化して内部電極層用ペーストを作製した。 In addition to the above, Ni particles: 44.6 parts by mass, terpineol: 52 parts by mass, ethyl cellulose: 3 parts by mass, and benzotriazole: 0.4 parts by mass are kneaded by three rolls, and slurry To prepare an internal electrode layer paste.
 上記にて作製した誘電体層用ペーストを用いて、PETフィルム上にグリーンシートを形成した。次いで、この上に内部電極層用ペーストを用いて、電極層を所定パターンで印刷した後、PETフィルムからシートを剥離し、電極層を有するグリーンシートを作製した。次いで、電極層を有するグリーンシートを複数枚積層し、加圧接着することによりグリーン積層体とし、このグリーン積層体を所定サイズに切断することにより、グリーンチップを得た。 A green sheet was formed on the PET film using the dielectric layer paste prepared above. Next, the electrode layer was printed in a predetermined pattern using the internal electrode layer paste thereon, and then the sheet was peeled off from the PET film to produce a green sheet having the electrode layer. Next, a plurality of green sheets having electrode layers were laminated and pressure-bonded to obtain a green laminated body, and the green laminated body was cut into a predetermined size to obtain a green chip.
 得られたグリーンチップについて、脱バインダ処理、焼成およびアニールを下記条件にて行って、素子本体となる焼結体を得た。 The obtained green chip was subjected to binder removal processing, firing and annealing under the following conditions to obtain a sintered body serving as an element body.
 脱バインダ処理条件は、昇温速度:20℃/時間、保持温度:300℃、温度保持時間:8時間、雰囲気:空気中とした。 The binder removal conditions were as follows: temperature increase rate: 20 ° C./hour, holding temperature: 300 ° C., temperature holding time: 8 hours, atmosphere: in air.
 焼成条件は、昇温速度:300℃/時間、保持温度:1100℃、温度保持時間:2時間、降温速度:300℃/時間とした。なお、雰囲気ガスは、加湿したN2 +H2 混合ガスとし、酸素分圧が10-12MPaとなるようにした。 The firing conditions were temperature rising rate: 300 ° C./hour, holding temperature: 1100 ° C., temperature holding time: 2 hours, and cooling rate: 300 ° C./hour. The atmospheric gas was a humidified N 2 + H 2 mixed gas, and the oxygen partial pressure was 10 −12 MPa.
 アニール条件は、昇温速度:300℃/時間、保持温度:1000℃、温度保持時間:2時間、降温速度:300℃/時間、雰囲気ガス:加湿したN2 ガス(酸素分圧:10-7MPa)とした。なお、焼成およびアニールの際の雰囲気ガスの加湿には、ウェッターを用いた。 The annealing conditions were as follows: heating rate: 300 ° C./hour, holding temperature: 1000 ° C., temperature holding time: 2 hours, cooling rate: 300 ° C./hour, atmospheric gas: humidified N 2 gas (oxygen partial pressure: 10 −7 MPa). A wetter was used for humidifying the atmospheric gas during firing and annealing.
 次いで、得られた焼結体の端面をサンドブラストにて研磨した後、外部電極としてCuペーストを塗布し焼き付けることで、図1に示す積層セラミックコンデンサの試料を得た。得られたコンデンサ試料のサイズは、3.2mm×1.6mm×0.6mmであり、誘電体層の厚み1.4μm、内部電極層の厚み1.1μm、内部電極層に挟まれた誘電体層の数は200とした。 Next, after polishing the end face of the obtained sintered body with sand blasting, a Cu paste was applied as an external electrode and baked to obtain a sample of the multilayer ceramic capacitor shown in FIG. The size of the obtained capacitor sample is 3.2 mm × 1.6 mm × 0.6 mm, the thickness of the dielectric layer is 1.4 μm, the thickness of the internal electrode layer is 1.1 μm, and the dielectric sandwiched between the internal electrode layers The number of layers was 200.
 得られた各コンデンサ試料について、X線回析法によりYTiの含有率を評価した。次に、比誘電率を下記に示す方法により測定した。また、この時の粒界の平均厚みは、下記の方法で確認した。 For each of the obtained capacitor samples were evaluated for the content of Y 2 Ti 2 O 7 by X-ray diffractometry. Next, the relative dielectric constant was measured by the method shown below. Moreover, the average thickness of the grain boundary at this time was confirmed by the following method.
X線回析法によるYTiの含有率の評価
 まず、得られたコンデンサ試料を粉砕し、X線回析法(Cu―Kα)により2θ=20~100°の回析ピークから結晶相の同定をおこなった。次に、誘電体中のYTiの割合をBaTiOの面指数(110)のX線回析チャートのピーク強度を100とした場合のYTiの面指数(222)におけるピーク強度の比を百分率として求めたものをYTiの含有率とした。
Evaluation of Y 2 Ti 2 O 7 Content by X-ray Diffraction Method First, the obtained capacitor sample was pulverized and then analyzed from the diffraction peak of 2θ = 20 to 100 ° by X-ray diffraction method (Cu-Kα). The crystal phase was identified. Then, the plane index (222 of Y 2 Ti 2 O 7 in the case where the peak intensity of X-ray diffraction chart of the plane index of BaTiO 3 the ratio of Y 2 Ti 2 O 7 in the dielectric (110) and 100 ) Obtained as a percentage of the peak intensity ratio was taken as the Y 2 Ti 2 O 7 content.
比誘電率ε 
 比誘電率εは、コンデンサ試料に対し、基準温度25℃において、デジタルLCRメータ(YHP社製4274A)にて、周波数1kHz,入力信号レベル(測定電圧)1.0Vrmsの条件下で測定された静電容量から算出した(単位なし)。本実施例では、比誘電率は高いほうが好ましく、3500以上を良好とし、4000以上を特に良好とした。結果を表1に示す。
Dielectric constant ε
The relative dielectric constant ε was measured on a capacitor sample at a reference temperature of 25 ° C. using a digital LCR meter (4274A manufactured by YHP) under the conditions of a frequency of 1 kHz and an input signal level (measurement voltage) of 1.0 Vrms. Calculated from the electric capacity (no unit). In this example, it is preferable that the relative dielectric constant is high, and 3500 or more is good, and 4000 or more is particularly good. The results are shown in Table 1.
粒界厚みの評価
 得られたコンデンサ試料から、FIBを用いて薄片試料を作成した。これを走査透過型電子顕微鏡(STEM)で観察し、隣接する結晶粒子を粒界とし、電子線に対して粒界が垂直になる厚みを計測した。このような粒界を10点探して、厚みを測定し、平均粒界厚みとした。
Evaluation of Grain Boundary Thickness From the obtained capacitor sample, a flake sample was prepared using FIB. This was observed with a scanning transmission electron microscope (STEM), and the thickness at which the grain boundary was perpendicular to the electron beam was measured with the adjacent crystal grain as the grain boundary. Ten such grain boundaries were searched and the thickness was measured to obtain the average grain boundary thickness.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1は様々なLi化合物を添加して低温で焼成した場合のYTiの含有率と比誘電率との関係をまとめたものである。比較例の試料番号1はLi化合物を添加することなく1240℃で焼成した従来材で、比誘電率は4500であった。試料番号2~16については、Li化合物を添加して1100℃で焼成した。このうち比較例の試料番号2~5については、YTiの含有率は0%であり、比誘電率は1500~2400と低い。平均粒界厚みは、資料番号1が5.0nm、資料番号2が4.6nmであった。 Table 1 summarizes the relationship between the content of Y 2 Ti 2 O 7 and the relative dielectric constant when various Li compounds are added and fired at a low temperature. Sample No. 1 of the comparative example was a conventional material fired at 1240 ° C. without adding a Li compound, and had a relative dielectric constant of 4500. For sample numbers 2 to 16, Li compounds were added and baked at 1100 ° C. Among these, in the sample numbers 2 to 5 of the comparative examples, the content of Y 2 Ti 2 O 7 is 0%, and the relative dielectric constant is as low as 1500 to 2400. The average grain boundary thickness was 5.0 nm for material number 1 and 4.6 nm for material number 2.
 これに対して、実施例の試料番号6~16については、YTiを含有していることを確認した。このうち試料番号7~16についてはYTiの含有率は0.5%以上であり、比誘電率は3500以上と良好であった。特に、試料番号13~16についてはYTiの含有率は1.8~3.4%と高く、比誘電率は4200~4500と特に良好な結果であった。なお、試料番号17は、試料番号16と同じLi化合物を添加して1240℃で焼成したものであるが、YTiの含有率および比誘電率は、1100℃で焼成した試料番号16とほぼ同等であった。資料番号13の平均粒界厚みは1.5nm、資料番号16の粒界厚みは1.2nmであった。 On the other hand, it was confirmed that the sample numbers 6 to 16 of the examples contained Y 2 Ti 2 O 7 . Among these, for sample numbers 7 to 16, the content of Y 2 Ti 2 O 7 was 0.5% or more, and the relative dielectric constant was 3500 or more. In particular, for the sample numbers 13 to 16, the Y 2 Ti 2 O 7 content was as high as 1.8 to 3.4%, and the relative dielectric constant was 4200 to 4500, which was particularly good results. Sample number 17 was obtained by adding the same Li compound as sample number 16 and firing at 1240 ° C., but the content ratio and relative dielectric constant of Y 2 Ti 2 O 7 were the sample numbers fired at 1100 ° C. It was almost equivalent to 16. The average grain boundary thickness of material number 13 was 1.5 nm, and the grain boundary thickness of material number 16 was 1.2 nm.
 表1から、YTiの含有率が0.5%以上で良好な比誘電率が得られることを確認した。また、Liともう一つの陽イオンMを含む酸化物としてLiとした場合に、Mが、B、Al、Si、P、Ti、V、Mn、Co、Zr、Mo、およびWから選ばれるLi化合物を選択することで、YTiを含有するために良好な比誘電率を得ることができることを確認した。特に、M=Tiを選択することでYTiの含有率が高くなり、比誘電率が最も高くなることを確認することができた。 From Table 1, it was confirmed that a good dielectric constant was obtained when the content of Y 2 Ti 2 O 7 was 0.5% or more. Further, when Li a M b O c is used as an oxide containing Li and another cation M, M is B, Al, Si, P, Ti, V, Mn, Co, Zr, Mo, and It was confirmed that by selecting a Li compound selected from W, a favorable dielectric constant can be obtained because Y 2 Ti 2 O 7 is contained. In particular, it was confirmed that by selecting M = Ti, the content of Y 2 Ti 2 O 7 was increased and the relative dielectric constant was the highest.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
実施例2
 表2の試料番号19~26は、実施例1の試料番号16と同様の組成でLiTi12の添加量のみ変化させた試料を実施例1と同様の工程を経て作成したもので、YTiの含有率と比誘電率との関係を評価した。試料番号27~32は、実施例1の試料番号16と同様の組成で、SiOの添加量のみ変化させた試料を実施例1と同様の工程を経て作成したもので、YTiの含有率と比誘電率との関係を評価した。なお、表2のLiTi12量とは主成分であるBaTiO3 100モルに対してLi原子換算で添加した量を示している。同様に、SiO量とは主成分であるBaTiO3 100モルに対してSi原子換算で添加した量を示している。
Example 2
Sample Nos. 19 to 26 in Table 2 were prepared through the same steps as in Example 1 with samples having the same composition as Sample No. 16 in Example 1 but only the addition amount of Li 4 Ti 5 O 12 changed. The relationship between the Y 2 Ti 2 O 7 content and the relative dielectric constant was evaluated. Sample Nos. 27 to 32 are samples having the same composition as Sample No. 16 of Example 1 but with the amount of SiO 2 added being changed through the same steps as in Example 1. Y 2 Ti 2 O The relationship between the content of 7 and the relative dielectric constant was evaluated. In addition, the amount of Li 4 Ti 5 O 12 in Table 2 indicates the amount added in terms of Li atom with respect to 100 mol of BaTiO 3 as the main component. Similarly, the amount of SiO 2 indicates the amount added in terms of Si atoms with respect to 100 mol of BaTiO 3 as the main component.
 表2および図3より、比較例である試料番号18はLiTi12の添加量0.25モルの場合であるが、YTiの含有率は0%で比誘電率は2600と低かった。これに対して、LiTi12の添加量0.5~10モルである表2の試料番号19~25はYTiの含有率2.7~8.2%であり、比誘電率は3500以上と良好であった。特に、LiTi12の添加量0.5~4モルである表2の試料番号19~22および試料番号16はYTiの含有率2.7~3.4%であり、比誘電率は4000以上と特に良好であった。試料番号26はLiTi12の添加量12モルの場合であるが、YTiの含有率は10.2%であっても比誘電率は2600と低かった。
なお、試料番号18の平均粒界厚みは、3.5nmであり、実施例1の試料に比較して、厚かった。
From Table 2 and FIG. 3, sample number 18 as a comparative example is a case where the amount of addition of Li 4 Ti 5 O 12 is 0.25 mol, but the content of Y 2 Ti 2 O 7 is 0% and the relative dielectric constant Was as low as 2600. On the other hand, sample numbers 19 to 25 in Table 2 in which the amount of Li 4 Ti 5 O 12 added is 0.5 to 10 mol have a Y 2 Ti 2 O 7 content of 2.7 to 8.2%. The relative dielectric constant was as good as 3500 or more. In particular, Sample Nos. 19 to 22 and Sample No. 16 in Table 2 where the addition amount of Li 4 Ti 5 O 12 is 0.5 to 4 mol are Y 2 Ti 2 O 7 contents of 2.7 to 3.4%. The relative dielectric constant was particularly good at 4000 or more. Sample No. 26 was a case where the addition amount of Li 4 Ti 5 O 12 was 12 mol, but the relative dielectric constant was as low as 2600 even if the content of Y 2 Ti 2 O 7 was 10.2%.
The average grain boundary thickness of Sample No. 18 was 3.5 nm, which was thicker than that of the sample of Example 1.
 表2および図3より、LiTi12の添加量が0.5~11モルの場合に比誘電率が3500以上と良好な結果が得られることがわかった。また、表2より、YTiの含有率が10%以下で良好な比誘電率が得られることを確認した。 From Table 2 and FIG. 3, it was found that when the added amount of Li 4 Ti 5 O 12 is 0.5 to 11 mol, a favorable dielectric constant of 3500 or more is obtained. Further, from Table 2, it was confirmed that a good dielectric constant was obtained when the content of Y 2 Ti 2 O 7 was 10% or less.
 表1および図2と表2より、YTiの含有率が、0.5%~9.0%の範囲において比誘電率が3500以上と良好な結果が得られることを確認した。 From Table 1, FIG. 2 and Table 2, it was confirmed that a favorable result was obtained with a relative dielectric constant of 3500 or more when the content of Y 2 Ti 2 O 7 was in the range of 0.5% to 9.0%. .
 表2の試料番号16および27~31は、SiOの添加量が0.2~1.2モルの範囲でのYTiの含有率3.1~3.8%であり、比誘電率は3500以上と良好であった。特に、試料番号27~29は、SiOの添加量が0.2~0.8モルの範囲でのYTiの含有率3.6~3.8%であり、比誘電率は4500以上と極めて良好であった。 Sample numbers 16 and 27 to 31 in Table 2 have a Y 2 Ti 2 O 7 content of 3.1 to 3.8% in a range of 0.2 to 1.2 mol of SiO 2 added, The relative dielectric constant was as good as 3500 or more. In particular, Sample Nos. 27 to 29 have a Y 2 Ti 2 O 7 content of 3.6 to 3.8% when the SiO 2 addition amount is in the range of 0.2 to 0.8 mol, and have a relative dielectric constant. Was very good at 4500 or more.
 表2および図4より、SiOの添加量が0.8モル以下で極めて良好な比誘電率が得られることを確認した。また、SiOの添加量と、YTiの含有率との間の相関関係は弱く、SiOが減量されると比誘電率は高くなる傾向にあった。 From Table 2 and FIG. 4, it was confirmed that a very good relative dielectric constant was obtained when the amount of SiO 2 added was 0.8 mol or less. Further, the correlation between the added amount of SiO 2 and the content of Y 2 Ti 2 O 7 was weak, and the relative dielectric constant tended to increase when the amount of SiO 2 was reduced.
 比誘電率を下げることなく低温で焼成することで、薄くてライン性の良い電極層や粒子径の整った誘電体層が得られることから高大容量でかつ薄層多層のセラミックコンデンサの製造方法として適用できる。同時に、高い温度で焼成した場合と比較して大幅な製造コスト削減とCOの排出量抑制とを達成することができる。 By firing at a low temperature without reducing the dielectric constant, a thin electrode layer with good lineability and a dielectric layer with a uniform particle size can be obtained. As a manufacturing method for high-capacity, thin-layer multilayer ceramic capacitors Applicable. At the same time, it is possible to achieve significant manufacturing cost reduction and CO 2 emission reduction as compared with the case of firing at a high temperature.
  1… 積層セラミックコンデンサ
 10… コンデンサ素子本体
  2… 誘電体層
  3… 内部電極層
  4… 外部電極
DESCRIPTION OF SYMBOLS 1 ... Multilayer ceramic capacitor 10 ... Capacitor element main body 2 ... Dielectric layer 3 ... Internal electrode layer 4 ... External electrode

Claims (3)

  1.  一般式ABO(AはBaとCaおよびSrから選ばれる少なくとも1種の元素であり、BはTiおよびZrから選ばれる少なくとも1種の元素である)で表され、ペロブスカイト型結晶構造を有する化合物αと、一般式RTiで表される希土類チタン酸化物からなる化合物β(ただし、R元素は、Sc、Y、Eu、Gd、Tb、Dy、Ho、Er、Tm、YbおよびLuから選ばれる少なくとも1種の元素である)と前記化合物αの粒子間に形成された粒界とを備える誘電体磁器組成物。 Compound represented by general formula ABO 3 (A is at least one element selected from Ba, Ca and Sr, and B is at least one element selected from Ti and Zr) and has a perovskite crystal structure α and a compound β consisting of a rare earth titanium oxide represented by the general formula R 2 Ti 2 O 7 (wherein R element is Sc, Y, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and A dielectric ceramic composition comprising: at least one element selected from Lu) and a grain boundary formed between particles of the compound α.
  2.  前記化合物αのX線回折チャートにおける面指数(110)のピーク強度に対して、前記化合物βのX線回折チャートにおける面指数(222)におけるピーク強度が0.5~9.0%であることを特徴とする請求項1に記載の誘電体磁器組成物。 The peak intensity at the surface index (222) in the X-ray diffraction chart of the compound β is 0.5 to 9.0% with respect to the peak intensity at the surface index (110) in the X-ray diffraction chart of the compound α. The dielectric ceramic composition according to claim 1, wherein:
  3.  請求項1~2のいずれかに記載の誘電体磁器組成物から構成される誘電体層と電極層とを有するセラミック電子部品。 A ceramic electronic component having a dielectric layer composed of the dielectric ceramic composition according to claim 1 and an electrode layer.
PCT/JP2012/074825 2011-11-15 2012-09-27 Dielectric porcelain composition and ceramic electronic components using same WO2013073295A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011249346 2011-11-15
JP2011-249346 2011-11-15
JP2012194121A JP5998765B2 (en) 2011-11-15 2012-09-04 Dielectric porcelain composition and ceramic electronic component using the same
JP2012-194121 2012-09-04

Publications (1)

Publication Number Publication Date
WO2013073295A1 true WO2013073295A1 (en) 2013-05-23

Family

ID=48429365

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/074825 WO2013073295A1 (en) 2011-11-15 2012-09-27 Dielectric porcelain composition and ceramic electronic components using same

Country Status (2)

Country Link
JP (1) JP5998765B2 (en)
WO (1) WO2013073295A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110957135A (en) * 2018-09-27 2020-04-03 株式会社村田制作所 Multilayer ceramic capacitor
US11613797B2 (en) 2017-06-30 2023-03-28 Oulun Yliopisto Ceramic composite material

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6213337B2 (en) * 2014-03-26 2017-10-18 Tdk株式会社 Dielectric porcelain composition and electronic component
KR102171677B1 (en) * 2015-01-05 2020-10-29 삼성전기주식회사 Dielectric ceramic composition, dielectric material and multilayer ceramic capacitor comprising the same
JP6795302B2 (en) * 2015-12-28 2020-12-02 Tdk株式会社 Ceramic electronic components
KR102184672B1 (en) * 2015-12-29 2020-11-30 삼성전기주식회사 Dielectric ceramic composition and multilayer ceramic capacitor including the same
KR102295110B1 (en) * 2015-12-29 2021-08-31 삼성전기주식회사 Dielectric ceramic composition and multilayer ceramic capacitor including the same
KR102163055B1 (en) * 2015-12-29 2020-10-08 삼성전기주식회사 Dielectric composition and multilayer electronic component comprising the same
JP2020155523A (en) 2019-03-19 2020-09-24 株式会社村田製作所 Multilayer ceramic capacitor
KR20190116150A (en) * 2019-08-16 2019-10-14 삼성전기주식회사 Multilayered capacitor and board having the same mounted thereon

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003267778A (en) * 2002-03-15 2003-09-25 Murata Mfg Co Ltd Dielectric ceramic composition, method for manufacturing the same, and multilayer capacitor
JP2007145648A (en) * 2005-11-28 2007-06-14 Kyocera Corp Dielectric ceramic

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003267778A (en) * 2002-03-15 2003-09-25 Murata Mfg Co Ltd Dielectric ceramic composition, method for manufacturing the same, and multilayer capacitor
JP2007145648A (en) * 2005-11-28 2007-06-14 Kyocera Corp Dielectric ceramic

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11613797B2 (en) 2017-06-30 2023-03-28 Oulun Yliopisto Ceramic composite material
US11891338B2 (en) 2017-06-30 2024-02-06 Oulun Yliopisto Ceramic composite material
CN110957135A (en) * 2018-09-27 2020-04-03 株式会社村田制作所 Multilayer ceramic capacitor

Also Published As

Publication number Publication date
JP2013126936A (en) 2013-06-27
JP5998765B2 (en) 2016-09-28

Similar Documents

Publication Publication Date Title
JP5998765B2 (en) Dielectric porcelain composition and ceramic electronic component using the same
JP5531863B2 (en) Dielectric ceramic composition and ceramic electronic component
TWI399766B (en) Multilayer ceramic capacitor and production method of the same
JP3908723B2 (en) Method for producing dielectric ceramic composition
JP5838927B2 (en) Multilayer ceramic electronic components
TWI407464B (en) Laminated ceramic condenser and method making the same
CN102060521B (en) Hexagonal type barium titanate powder, producing method thereof, dielectric ceramic composition and electronic component
JP3838036B2 (en) Dielectric porcelain composition, capacitor using the same, and method of manufacturing the same
JP3934352B2 (en) Multilayer ceramic chip capacitor and manufacturing method thereof
JP4299827B2 (en) Dielectric ceramic composition, electronic component and multilayer ceramic capacitor
US20100188797A1 (en) Laminated ceramic capacitor
JP6696266B2 (en) Dielectric ceramic composition and multilayer ceramic capacitor
JP5483825B2 (en) Dielectric porcelain and multilayer ceramic capacitor
JP5077362B2 (en) Dielectric ceramic and multilayer ceramic capacitor
TWI525651B (en) Laminated ceramic capacitors
JP2007258661A (en) Laminated ceramic capacitor and its manufacturing method
JP5779860B2 (en) Hexagonal barium titanate powder, method for producing the same, dielectric ceramic composition, and electronic component
JP2009143735A (en) Dielectric porcelain composition and electronic component
JP2005277393A (en) Laminated ceramic capacitor and its manufacturing method
JP2007063056A (en) Method of manufacturing dielectric ceramic composition
JP4403705B2 (en) Dielectric porcelain composition and electronic component
JP2004182582A (en) Low temperature-fired dielectric ceramic composition and multilayer ceramic capacitor using the same
TWI406310B (en) Dielectric ceramics and laminated ceramic capacitors
JP4267438B2 (en) DIELECTRIC CERAMIC COMPOSITION, ELECTRONIC COMPONENT AND METHOD FOR PRODUCING THEM
JP4910812B2 (en) Dielectric porcelain composition and electronic component

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12850516

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12850516

Country of ref document: EP

Kind code of ref document: A1