WO2013071734A1 - Chromatic dispersion compensation method and device - Google Patents

Chromatic dispersion compensation method and device Download PDF

Info

Publication number
WO2013071734A1
WO2013071734A1 PCT/CN2012/074398 CN2012074398W WO2013071734A1 WO 2013071734 A1 WO2013071734 A1 WO 2013071734A1 CN 2012074398 W CN2012074398 W CN 2012074398W WO 2013071734 A1 WO2013071734 A1 WO 2013071734A1
Authority
WO
WIPO (PCT)
Prior art keywords
dispersion
optical signal
compensation
information
dispersion compensation
Prior art date
Application number
PCT/CN2012/074398
Other languages
French (fr)
Chinese (zh)
Inventor
李荆晶
邹红兵
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201110360099.2A external-priority patent/CN102386980B/en
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2013071734A1 publication Critical patent/WO2013071734A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2507Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion
    • H04B10/2513Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to chromatic dispersion

Definitions

  • step S102 in order not to affect or reduce the impact on the transmission of normal service data, the proportion of the transmitted optical signal occupied by the first beam signal is small, and does not affect the transmission of normal service data.
  • the above ratio may be It is 2%, 3%, 4% or 5%.
  • Acquiring the dispersion information from the first beam of light signals in step S104 may include the following process: acquiring light of each of the wavelengths of the optical signals of all wavelengths from the optical signals of all wavelengths in the first beam of optical signals Corresponding to the dispersion information corresponding to the signal; correspondingly, in step S106, the first dispersion compensation is performed on the second optical signal according to the acquired dispersion information, which may include the following processing: corresponding dispersion according to the acquired optical signal of each wavelength The information performs a first dispersion compensation on the optical signals of all wavelengths in the second optical signal. Before the step S104, the timing compensation control mechanism may be further set.
  • the compensation module is further configured to perform a first dispersion compensation on the optical signals of all wavelengths in the second optical signal according to the obtained dispersion information corresponding to the optical signal of each wavelength.
  • the apparatus may further include: a determining module 26 connected to the compensation module 24, configured to determine an optimal dispersion compensation value; the compensation module 24 further configured to determine the optimal dispersion according to the determination The compensation value performs a second dispersion compensation on the second beam of light signals.
  • the determining module 26 includes: an obtaining unit 260, connected to the determining unit
  • the dispersion detection module samples and calculates the dispersion value of the specified wavelength signal
  • the excellent dispersion value is calculated by the detecting unit 422 and the calculating unit 424, and the dispersion value is fed back to the dispersion detecting controller 44 through the communication link, and the dispersion detecting controller 44 feeds back to the user through the communication link.
  • the user sends a specific wavelength ⁇ ⁇ and the dispersion value of this wavelength to the dispersion compensation controller 46, which controls the dispersion compensator 48 to implement compensation adjustment.
  • the dispersion fine tuning controller 50 fine-tunes the link.
  • the calculation unit 424 in the dispersion detector 42 can select to calculate the dispersion value in accordance with the phase modulation method.
  • the dispersion detecting controller 44 is omitted with respect to the apparatus in the present embodiment with respect to Embodiment 3, and therefore, automatic control of dispersion compensation can be realized.
  • the spectroscope 60 divides the optical signals on the line into two beams according to a certain ratio, one beam is transmitted to the optical demultiplexing unit 62, and the other beam is transmitted to the dispersion detector 42.
  • the dispersion compensation controller 46 issues a dispersion compensation command through the user interface, and the dispersion compensation controller 46 sends the command to the dispersion detector 42 through the communication link.
  • the dispersion detector 42 controls the filtering unit 420 to sequentially filter all the signals in the optical multiplex section.
  • the dispersion compensation controller 46 controls to sequentially issue a compensation command to the dispersion compensator of the corresponding wavelength to implement compensation adjustment.
  • the dispersion fine adjustment controller 50 implements fine adjustment compensation on the line, respectively.
  • the specific working process of the dispersion compensation apparatus of this embodiment is as follows: In the first step, the user issues a wavelength compensation command to the dispersion compensation controller 46; in the second step, the dispersion compensation controller 46 forwards the command to the dispersion detector through the communication link. 42.
  • the dispersion detector 42 determines whether there is still a band signal available, and then jumps back to the fourth step to filter the next band signal, and if not, jumps to the seventh step; and in the seventh step, the dispersion detector 42 The wavelength and dispersion correspondence information is transmitted to the dispersion compensation controller 46. In the eighth step, the dispersion compensation controller 46 transmits the dispersion compensator 48 on the wavelength sequentially designated wavelengths.

Abstract

The present invention provides a chromatic dispersion compensation method and device. The method comprises: splitting an optical signal to be transmitted into a first beam of optical signal and a second beam of optical signal, the first beam of optical signal being used for acquiring chromatic dispersion information, and the second beam of optical signal being used for transmitting service data; acquiring the chromatic dispersion information from the first beam of optical signal; and performing primary chromatic dispersion compensation on the second beam of optical signal according to the acquired chromatic dispersion information. By adopting the technical solutions provided by the present invention, the problems of high system cost, inflexible configuration, smooth upgrading incapability and the like in the prior art can be solved, thereby further breaking the limitations of whether transmitting services or not; the switching of the services between channels can be flexibly controlled; an implementation mode configuration can be flexibly controlled, namely, both centralized control and distributed control can be adopted; the seamless embedding of a system can be implemented; and high smooth transition upgrading capability can be achieved.

Description

色散补偿方法及装置 技术领域 本发明涉及光网络通讯技术领域, 具体而言, 涉及一种色散补偿方法及装置。 背景技术 色散指复色光分解为单色光而形成光谱的现象, 色散会导致长距离光传输系统信 号变差, 并且随着传输距离和传输速率的提升而影响变大。 在 40Gbit/s速率系统出现 以前, 光传输系统一般采用在复用段配置固定色散补偿模块(Dispersion Compensation Module, 简称为 DCM) 来实现色散补偿。 而对于 40G及以上速率系统, 由于色散补 偿模块补偿精度不够、 色散斜率补偿与光纤的失配、 环境温度变化对色散有较大影响 以及线路维护可能造成色散变化等, 还在通道层的接收机前配置了可调色散补偿 (tunable chromatic dispersion compensation, 简称为 TDC), 用于完成通道层色散精细 动态补偿。 目前比较典型的 TDC调制方法大多采用先粗调后细调的方法,这种调制方法缺点 在于: (1)通道上必须有实际的业务; (2)调制较慢, 一次完整的调制大概需要 5至 10 分钟。 这样的话, 对于需要实现保护的系统来说, 如果工作通道发生故障切换到了保 护通道, 而由于保护通道只有等到实际的业务切换过来后才能开始启动调制, 这样业 务恢复时间肯定无法满足 G806标准中对保护倒换的时间要求。 为了满足光传输系统中对色散补偿实时性更高的要求, 也可以采用单通道色散监 控系统, 但是, 单通道密集型光波复用 (Dense Wavelength Division Multiplexing, 简 称为 DWDM) 色散监控装置存在系统成本高, 配置不够灵活, 无法平滑升级等问题。 给用户的使用带来不便。 针对相关技术中的上述问题, 目前尚未提出有效的解决方案。 发明内容 针对相关技术中, 现有的色散监控技术存在的系统成本高, 配置不灵活以及无法 平滑升级等问题,本发明提供了一种色散补偿方法及装置, 以解决上述问题至少之一。 根据本发明的一个方面, 提供了一种色散补偿方法, 包括: 将待传输的光信号分 成第一束光信号和第二束光信号, 其中, 所述第一束光信号用于获取色散信息, 所述 第二束光信号用于传输业务数据; 从所述第一束光信号中获取所述色散信息; 根据获 取的所述色散信息对所述第二束光信号进行第一次色散补偿。 从第一束光信号中获取色散信息, 包括: 从第一束光信号中的用户指定波长的光 信号中获取用户指定波长的光信号的色散信息; 根据获取的色散信息对第二束光信号 进行第一次色散补偿, 包括: 根据获取的用户指定波长的光信号的色散信息对第二束 光信号中的用户指定波长的光信号进行第一次色散补偿。 从第一束光信号中获取色散信息, 包括: 从第一束光信号中的所有波长的光信号 中获取与所有波长的光信号中的每一个波长的光信号对应的色散信息; 根据获取的色 散信息对第二束光信号进行第一次色散补偿, 包括: 根据获取的每一个波长的光信号 对应的色散信息对第二束光信号中的所有波长的光信号进行第一次色散补偿。 从第一束光信号中获取色散信息之前, 还包括以下之一: 接收用户的操作指令, 其中, 操作指令用于指示每隔第一预定时间段从第一束光信号中获取色散信息; 配置 第二预定时间段, 其中, 在第二预定时间段到达时, 指示从第一束光信号中获取色散 信息; 检测传输第二束光信号的线路上是否产生帧丢失(Loss Of Frame, 简称为 LOF) 告警, 其中, 在检测到 LOF告警时, 指示从第一束光信号中获取色散信息。 上述根据获取的色散信息对第二束光信号进行第一次色散补偿之后, 还包括: 确 定最佳色散补偿值;根据确定的最佳色散补偿值对第二束光信号进行第二次色散补偿。 上述确定最佳色散补偿值, 包括: 获取多个预定时间段的前向纠错(Forward error correction, 简称为 FEC) 误码率; 从获取的 FEC误码率中确定最小 FEC误码率; 根 据最小 FEC误码率确定与其对应的补偿值, 并将确定的补偿值作为最佳补偿值。 上述确定最佳色散补偿值之前, 还包括: 检测在第一次色散补偿之后的第二束光 信号的色散值; 确定检测到的色散值达到预设阈值。 上述根据获取的色散信息对第二束光信号进行第一次色散补偿之前, 还包括: 接 收来自于用户的操作指令, 其中, 操作指令用于指示对对第二束光信号进行第一次色 散补偿。 根据本发明的另一方面, 提供了一种色散补偿装置, 包括: 分光模块, 设置为将 待传输的光信号分成第一束光信号和第二束光信号, 其中, 所述第一束光信号用于获 取色散信息, 所述第二束光信号用于传输业务数据; 获取模块, 设置为从所述第一束 光信号中获取所述色散信息; 第一补偿模块, 设置为根据获取的所述色散信息对所述 第二束光信号进行第一次色散补偿。 上述获取模块, 还设置为从第一束光信号中的用户指定波长的光信号中获取用户 指定波长的光信号的色散信息; 上述补偿模块, 还设置为根据获取的用户指定波长的 光信号的色散信息对第二束光信号中的用户指定波长的光信号进行第一次色散补偿。 上述获取模块, 还设置为从第一束光信号中的所有波长的光信号中获取与所有波 长的光信号中的每一个波长的光信号对应的色散信息; 上述补偿模块, 还设置为根据 获取的每一个波长的光信号对应的色散信息对第二束光信号中的所有波长的光信号进 行第一次色散补偿。 上述装置还包括: 确定模块, 设置为确定最佳色散补偿值; 补偿模块, 还设置为 根据确定的最佳色散补偿值对第二束光信号进行第二次色散补偿。 上述确定模块, 包括: 获取单元, 设置为获取多个预定时间段的 FEC纠错前误码 率; 确定单元, 设置为从获取的 FEC误码率中确定最小 FEC误码率; 以及根据最小 前向纠错 FEC误码率确定与其对应的补偿值, 并将确定的补偿值作为最佳补偿值。 通过本发明, 采用从待传输的光信号分出一束专用于检测色散信息的光信号 (第 一束光信号) 并根据检测的色散信息对要传输业务数据的光信号自动进行色散补偿的 技术手段, 解决了相关技术中存在的系统成本高, 配置不灵活以及无法平滑升级等问 题, 进而达到了不受是否传输业务的限制, 可以灵活的控制业务在通道间的切换以及 同时控制实现模式配置灵活, 可以集中控制, 也可以采用分布式控制, 实现系统的无 缝嵌入, 有强大的平滑过渡升级能力的效果。 附图说明 此处所说明的附图用来提供对本发明的进一步理解, 构成本申请的一部分, 本发 明的示意性实施例及其说明用于解释本发明, 并不构成对本发明的不当限定。 在附图 中: 图 1是根据本发明实施例的色散补偿方法的流程图; 图 2是根据本发明实施例的色散补偿装置的结构框图; 图 3是根据本发明优选实施例的色散补偿装置的结构示意图; 图 4是根据本发明实施例 1的色散补偿装置的结构示意图; 图 5是根据本发明实施例 2的色散补偿方法的流程示意图; 图 6是根据本发明实施例 3的色散补偿装置的结构示意图; 图 7是根据本发明实施例 4的色散补偿装置的结构示意图。 具体实施方式 下文中将参考附图并结合实施例来详细说明本发明。 需要说明的是, 在不冲突的 情况下, 本申请中的实施例及实施例中的特征可以相互组合。 图 1是根据本发明实施例的色散补偿方法的流程图。 如图 1所示, 该方法包括: 步骤 S102, 将待传输的光信号分成第一束光信号和第二束光信号, 其中, 第一束 光信号用于获取色散信息, 第二束光信号用于传输业务数据; 步骤 S104, 从第一束光信号中获取色散信息; 步骤 S106, 根据获取的色散信息对第二束光信号进行第一次色散补偿。 通过上述处理步骤, 由于从待传输的光信号分出了一束专用于检测色散信息的光 信号 (第一束光信号) 并根据检测的色散信息对要传输业务数据的光信号自动进行色 散补偿, 因此, 可以解决配置不灵活以及无法平滑升级等问题, 同时采用上述处理过 程, 由于可以实现集中色散检测, 节省了成本。 在步骤 S102中,为了不影响或减少对正常业务数据的传输的影响,上述第一束信 号所占的传输的光信号的比例很小, 不会影响正常业务数据的传输, 例如, 上述比例 可以为 2%、 3%、 4%或 5%等。 在具体实施时, 可以对待传输的光信号中用户指定的某一波长的光信号进行色散 补偿, 也可以对所有波长的光信号进行色散补偿, 具体地: 在步骤 S104中, 从第一束光信号中获取色散信息, 可以包括以下处理过程: 从第 一束光信号中的用户指定波长的光信号中获取用户指定波长的光信号的色散信息; 相 应地, 在步骤 S106中, 根据获取的色散信息对第二束光信号进行第一次色散补偿, 可 以包括: 根据获取的用户指定波长的光信号的色散信息对第二束光信号中的用户指定 波长的光信号进行第一次色散补偿。 或者 在步骤 S104中, 从第一束光信号中获取色散信息, 可以包括以下处理过程: 从第 一束光信号中的所有波长的光信号中获取与所有波长的光信号中的每一个波长的光信 号对应的色散信息; 相应地, 在步骤 S106中, 根据获取的色散信息对第二束光信号进 行第一次色散补偿, 可以包括以下处理过程: 根据获取的每一个波长的光信号对应的 色散信息对第二束光信号中的所有波长的光信号进行第一次色散补偿。 在步骤 S104之前, 还可以设定定时补偿控制机制, 具体地, 在第一束光信号中获 取色散信息之前, 还可以包括以下之一处理过程: (1 ) 接收用户的操作指令, 其中, 所述操作指令用于指示每隔第一预定时间段从所述第一束光信号中获取所述色散信 息; (2) 配置第二预定时间段, 其中, 在所述第二预定时间段到达时, 指示从所述第 一束光信号中获取所述色散信息; (3 ) 检测传输所述第二束光信号的线路上是否产生 帧丢失 (LOF) 告警, 其中, 在检测到 LOF告警时, 指示从所述第一束光信号中获取 所述色散信息。 为了使色散补偿效果更佳, 在第一次色散补偿之后还可以对对第二束光信号进行 细调, 具体包括以下处理过程: 确定最佳色散补偿值; 根据确定的最佳色散补偿值对 第二束光信号进行第二次色散补偿。 在上述实施例中, 可以根据实际情况采取不同的确定最佳色散补偿值的方式, 例 如可以根据前向纠错 (Forward error correction, 简称为 FEC) 误码率确定最佳色散补 偿值, 具体可以包括以下处理步骤: 获取多个预定时间段的 FEC 误码率; 从获取的 FEC误码率中确定最小 FEC误码率; 根据最小 FEC误码率确定与其对应的补偿值, 并将确定的补偿值作为最佳补偿值。 在启动第二次色散补偿之前可以设置一检测步骤, 只有在检测的第一次色散补偿 之后的第二束光信号的色散值满足一定条件时再启动第二次色散, 具体地, 在确定最 佳色散补偿值之前, 还可以包括以下处理过程: 检测在第一次色散补偿之后的第二束 光信号的色散值; 确定检测到的色散值达到预设阈值。 在具体时可以检测上述第二束 光信号线路上的帧丢失告警是否消失, 如果消失则开始第二次色散补偿, 否则不启动 第二次色散补偿。 在步骤 S106中,可以自动触发根据获取的色散信息对第二束光信号进行第一次色 散补偿, 也可以通过以下处理方式触发: 从第一束光信号中获取色散信息之后, 将色 散信息告知用户, 然后由用户根据色散信息进行操作触发根据获取的色散信息对第二束光信号进行 第一次色散补偿, 具体地, 在根据获取的色散信息对第二束光信号进行第一次色散补 偿之前, 还可以包括以下处理过程: 接收来自于用户的操作指令, 其中, 操作指令用 于指示对对第二束光信号进行第一次色散补偿。 在本实施例中还提供了一种色散补偿装置, 该装置用于实现上述实施例及优选实 施方式, 已经进行过说明的不再赘述, 下面对该装置中涉及到模块进行说明。 如以下 所使用的, 术语"模块"可以实现预定功能的软件和 /或硬件的组合。 尽管以下实施例所 描述的装置较佳地以软件来实现, 但是硬件, 或者软件和硬件的组合的实现也是可能 并被构想的。 图 2为根据本发明实施例色散补偿装置的结构框图。 如图 2所示, 该装 置包括: 分光模块 20,连接至获取模块 22, 设置为将待传输的光信号分成第一束光信号和 第二束光信号, 其中, 第一束光信号用于获取色散信息, 第二束光信号用于传输业务 数据; 获取模块 22, 连接至补偿模块 24, 设置为从第一束光信号中获取色散信息; 补偿模块 24, 设置为根据获取的色散信息对第二束光信号进行第一次色散补偿。 优选地, 上述获取模块 22, 还设置为从第一束光信号中的用户指定波长的光信号 中获取用户指定波长的光信号的色散信息; 上述补偿模块 24, 还设置为根据获取的用 户指定波长的光信号的色散信息对第二束光信号中的用户指定波长的光信号进行第一 次色散补偿。 在本发明的一个优选实施方式中, 上述获取模块 22, 还设置为从第一束光信号中 的所有波长的光信号中获取与所有波长的光信号中的每一个波长的光信号对应的色散 信息; 上述补偿模块, 还设置为根据获取的每一个波长的光信号对应的色散信息对第 二束光信号中的所有波长的光信号进行第一次色散补偿。 优选地, 如图 3所示, 上述装置还可以包括: 确定模块 26, 连接至补偿模块 24, 设置为确定最佳色散补偿值; 上述补偿模块 24, 还设置为根据确定的所述最佳色散补 偿值对所述第二束光信号进行第二次色散补偿。 优选地, 如图 3所示, 上述确定模块 26, 包括: 获取单元 260, 连接至确定单元TECHNICAL FIELD The present invention relates to the field of optical network communication technologies, and in particular to a dispersion compensation method and apparatus. BACKGROUND OF THE INVENTION Dispersion refers to a phenomenon in which a complex color light is decomposed into monochromatic light to form a spectrum. The dispersion causes a signal deterioration of a long-distance optical transmission system, and the influence becomes larger as the transmission distance and the transmission rate increase. Before the emergence of the 40 Gbit/s rate system, the optical transmission system generally uses a Dispersion Compensation Module (DCM) in the multiplex section to implement dispersion compensation. For 40G and above rate systems, the compensation of the dispersion compensation module is insufficient, the dispersion slope compensation and fiber mismatch, the environmental temperature change have a great influence on the dispersion, and the line maintenance may cause dispersion variation. The tunable chromatic dispersion compensation (TDC) is configured in front to complete the channel layer dispersion fine dynamic compensation. At present, most typical TDC modulation methods adopt the method of coarse adjustment and fine adjustment first. The disadvantages of this modulation method are: (1) There must be actual service on the channel; (2) The modulation is slow, and a complete modulation requires about 5 Up to 10 minutes. In this case, for a system that needs to implement protection, if the working channel fails over to the protection channel, the protection channel can only start to start modulation after the actual service switching, so the service recovery time cannot meet the G806 standard. Time requirements for protection switching. In order to meet the higher real-time requirements for dispersion compensation in the optical transmission system, a single-channel dispersion monitoring system can also be used. However, the system cost of the Dense Wavelength Division Multiplexing (DWDM) dispersion monitoring device exists. High, the configuration is not flexible enough, and the problem cannot be upgraded smoothly. Inconvenience to the user's use. In view of the above problems in the related art, an effective solution has not yet been proposed. SUMMARY OF THE INVENTION In the related art, the existing dispersion monitoring technology has the problems of high system cost, inflexible configuration, and inability to smoothly upgrade. The present invention provides a dispersion compensation method and apparatus to solve at least one of the above problems. According to an aspect of the invention, a dispersion compensation method is provided, comprising: dividing an optical signal to be transmitted into a first beam optical signal and a second beam optical signal, wherein the first beam optical signal is used to obtain dispersion information , said The second optical signal is used to transmit the service data; the dispersion information is obtained from the first optical signal; and the second optical signal is subjected to a first dispersion compensation according to the acquired dispersion information. Acquiring the dispersion information from the first optical signal, comprising: acquiring the dispersion information of the optical signal of the user-specified wavelength from the optical signal of the user-specified wavelength in the first optical signal; and the second optical signal according to the acquired dispersion information Performing the first dispersion compensation includes: performing a first dispersion compensation on the optical signal of the user-specified wavelength in the second optical signal according to the acquired dispersion information of the optical signal of the user-specified wavelength. Acquiring the dispersion information from the first optical signal, comprising: acquiring, from the optical signals of all wavelengths in the first optical signal, dispersion information corresponding to the optical signal of each of the optical signals of all wavelengths; The first dispersion compensation of the second optical signal by the dispersion information comprises: performing first dispersion compensation on the optical signals of all wavelengths in the second optical signal according to the dispersion information corresponding to the acquired optical signal of each wavelength. Before acquiring the chromatic dispersion information from the first optical signal, the method further includes: receiving an operation instruction of the user, where the operation instruction is used to indicate that the chromatic dispersion information is obtained from the first optical signal every first predetermined time period; a second predetermined time period, wherein, when the second predetermined time period arrives, indicating that the dispersion information is acquired from the first light signal; and detecting whether a frame loss is generated on the line transmitting the second light signal (Loss Of Frame, referred to as The LOF) alarm, wherein, when the LOF alarm is detected, indicating that the dispersion information is obtained from the first optical signal. After performing the first dispersion compensation on the second optical signal according to the obtained dispersion information, the method further includes: determining an optimal dispersion compensation value; and performing second dispersion compensation on the second optical signal according to the determined optimal dispersion compensation value. . The determining the optimal dispersion compensation value includes: obtaining a Forward Error Correction (FEC) error rate for a plurality of predetermined time periods; determining a minimum FEC error rate from the obtained FEC error rate; The minimum FEC error rate determines the compensation value corresponding thereto, and the determined compensation value is taken as the optimal compensation value. Before determining the optimal dispersion compensation value, the method further includes: detecting a dispersion value of the second optical signal after the first dispersion compensation; and determining that the detected dispersion value reaches a preset threshold. Before performing the first dispersion compensation on the second optical signal according to the obtained dispersion information, the method further includes: receiving an operation instruction from the user, where the operation instruction is used to indicate that the second optical signal is first dispersed. make up. According to another aspect of the present invention, a dispersion compensation apparatus is provided, comprising: a light splitting module configured to split an optical signal to be transmitted into a first beam light signal and a second beam light signal, wherein the first beam light The signal is used to obtain dispersion information, the second light signal is used to transmit service data; and an acquisition module is set to be from the first bundle Acquiring the dispersion information in the optical signal; the first compensation module is configured to perform the first dispersion compensation on the second optical signal according to the obtained dispersion information. The acquiring module is further configured to: obtain, from the optical signal of the user-specified wavelength in the first optical signal, the dispersion information of the optical signal of the user-specified wavelength; the compensation module is further configured to be based on the acquired optical signal of the user-specified wavelength. The dispersion information performs a first dispersion compensation on the optical signal of the user-specified wavelength in the second optical signal. The acquiring module is further configured to acquire, from the optical signals of all wavelengths in the first optical signal, dispersion information corresponding to the optical signals of each of the optical signals of all wavelengths; the compensation module is further configured to acquire according to the optical signal The dispersion information corresponding to the optical signal of each wavelength performs the first dispersion compensation on the optical signals of all wavelengths in the second optical signal. The device further includes: a determining module configured to determine an optimal dispersion compensation value; and a compensation module configured to perform a second dispersion compensation on the second optical signal according to the determined optimal dispersion compensation value. The determining module includes: an obtaining unit, configured to obtain a FEC error correction error rate for a plurality of predetermined time periods; and a determining unit configured to determine a minimum FEC error rate from the obtained FEC error rate; and according to the minimum front The compensation value corresponding to the error correction FEC error rate is determined, and the determined compensation value is taken as the optimal compensation value. According to the present invention, a technique for automatically performing dispersion compensation on an optical signal for transmitting a service data based on an optical signal (first beam optical signal) dedicated to detecting dispersion information from an optical signal to be transmitted and based on the detected dispersion information is employed. The method solves the problems of high system cost, inflexible configuration, and inability to smoothly upgrade in the related technologies, thereby achieving the limitation of whether or not the transmission service is restricted, and can flexibly control the switching of services between channels and control the implementation mode configuration at the same time. Flexible, centralized control, or distributed control for seamless embedding of systems with powerful smooth transition and upgrade capabilities. BRIEF DESCRIPTION OF THE DRAWINGS The accompanying drawings, which are set to illustrate,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 1 is a flow chart of a dispersion compensation method according to an embodiment of the present invention; FIG. 2 is a structural block diagram of a dispersion compensation apparatus according to an embodiment of the present invention; and FIG. 3 is a dispersion compensation apparatus according to a preferred embodiment of the present invention. Schematic diagram of the structure; 4 is a schematic structural diagram of a dispersion compensation apparatus according to Embodiment 1 of the present invention; FIG. 5 is a schematic flow chart of a dispersion compensation method according to Embodiment 2 of the present invention; FIG. 6 is a schematic structural diagram of a dispersion compensation apparatus according to Embodiment 3 of the present invention; Figure 7 is a block diagram showing the structure of a dispersion compensation device according to Embodiment 4 of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail with reference to the accompanying drawings. It should be noted that the embodiments in the present application and the features in the embodiments may be combined with each other without conflict. 1 is a flow chart of a dispersion compensation method in accordance with an embodiment of the present invention. As shown in FIG. 1, the method includes: Step S102, dividing an optical signal to be transmitted into a first beam optical signal and a second beam optical signal, where the first beam optical signal is used to acquire dispersion information, and the second beam optical signal is used. For transmitting service data; Step S104, acquiring dispersion information from the first beam of light signals; Step S106, performing first dispersion compensation on the second beam of light signals according to the acquired dispersion information. Through the above processing steps, since a light signal (first light signal) dedicated to detecting the dispersion information is branched from the optical signal to be transmitted, and the optical signal to be transmitted with the service data is automatically subjected to dispersion compensation according to the detected dispersion information. Therefore, it is possible to solve the problem that the configuration is inflexible and cannot be smoothly upgraded, and at the same time, the above processing is adopted, and the centralized dispersion detection can be realized, thereby saving the cost. In step S102, in order not to affect or reduce the impact on the transmission of normal service data, the proportion of the transmitted optical signal occupied by the first beam signal is small, and does not affect the transmission of normal service data. For example, the above ratio may be It is 2%, 3%, 4% or 5%. In a specific implementation, the optical signal of a certain wavelength specified by the user in the optical signal to be transmitted may be subjected to dispersion compensation, or the optical signal of all wavelengths may be subjected to dispersion compensation, specifically: in step S104, from the first light Acquiring the dispersion information in the signal may include the following process: acquiring the dispersion information of the optical signal of the user-specified wavelength from the optical signal of the user-specified wavelength in the first optical signal; correspondingly, in step S106, according to the acquired dispersion The information performing the first dispersion compensation on the second optical signal may include: performing a first dispersion compensation on the optical signal of the user-specified wavelength in the second optical signal according to the acquired dispersion information of the optical signal of the user-specified wavelength. Or Acquiring the dispersion information from the first beam of light signals in step S104 may include the following process: acquiring light of each of the wavelengths of the optical signals of all wavelengths from the optical signals of all wavelengths in the first beam of optical signals Corresponding to the dispersion information corresponding to the signal; correspondingly, in step S106, the first dispersion compensation is performed on the second optical signal according to the acquired dispersion information, which may include the following processing: corresponding dispersion according to the acquired optical signal of each wavelength The information performs a first dispersion compensation on the optical signals of all wavelengths in the second optical signal. Before the step S104, the timing compensation control mechanism may be further set. Specifically, before acquiring the dispersion information in the first optical signal, the following processing may be further included: (1) receiving an operation instruction of the user, where The operation instruction is configured to instruct to acquire the dispersion information from the first beam of light signals every first predetermined time period; (2) configuring a second predetermined time period, wherein, when the second predetermined time period arrives And indicating that the dispersion information is acquired from the first optical signal; (3) detecting whether a frame loss (LOF) alarm is generated on a line transmitting the second optical signal, where, when the LOF alarm is detected, Instructing to acquire the dispersion information from the first beam of light signals. In order to make the dispersion compensation effect better, the second beam optical signal can be finely adjusted after the first dispersion compensation, and specifically includes the following processing process: determining an optimal dispersion compensation value; according to the determined optimal dispersion compensation value pair The second optical signal is subjected to a second dispersion compensation. In the above embodiment, different methods for determining the optimal dispersion compensation value may be adopted according to actual conditions. For example, the optimal error compensation value may be determined according to a forward error correction (FEC) error rate. The following processing steps are included: obtaining a FEC error rate of a plurality of predetermined time periods; determining a minimum FEC error rate from the obtained FEC error rate; determining a compensation value corresponding thereto according to a minimum FEC error rate, and determining the compensation The value is used as the best compensation value. Before the second dispersion compensation is started, a detecting step may be set, and the second dispersion is started only when the dispersion value of the second optical signal after the first dispersion compensation is satisfied meets a certain condition, specifically, determining the most Before the good dispersion compensation value, the following processing may be further included: detecting a dispersion value of the second optical signal after the first dispersion compensation; and determining that the detected dispersion value reaches a preset threshold. Specifically, it may be detected whether the frame loss alarm on the second optical signal line disappears, and if it disappears, the second dispersion compensation is started, otherwise the second dispersion compensation is not started. In step S106, the first dispersion compensation may be automatically triggered according to the acquired dispersion information, or may be triggered by the following processing manner: after obtaining the dispersion information from the first optical signal, the dispersion information is notified The user then performs an operation according to the dispersion information to trigger a first dispersion compensation on the second optical signal according to the acquired dispersion information, specifically, performing a first dispersion compensation on the second optical signal according to the acquired dispersion information. Before the reimbursement, the following processing may be further included: receiving an operation instruction from the user, wherein the operation instruction is used to indicate that the first dispersion compensation is performed on the second optical signal. In the embodiment, a dispersion compensation device is also provided, which is used to implement the above-mentioned embodiments and preferred embodiments. The descriptions of the above-mentioned embodiments are omitted. As used hereinafter, the term "module" may implement a combination of software and/or hardware of a predetermined function. Although the apparatus described in the following embodiments is preferably implemented in software, hardware, or a combination of software and hardware, is also possible and conceivable. 2 is a block diagram showing the structure of a dispersion compensation apparatus according to an embodiment of the present invention. As shown in FIG. 2, the device includes: a light splitting module 20 connected to the acquisition module 22, configured to divide the optical signal to be transmitted into a first beam light signal and a second beam light signal, wherein the first beam light signal is used for Acquiring the dispersion information, the second optical signal is used to transmit the service data; the obtaining module 22 is connected to the compensation module 24, and is configured to obtain the dispersion information from the first optical signal; the compensation module 24 is configured to be based on the acquired dispersion information The second optical signal is subjected to a first dispersion compensation. Preferably, the obtaining module 22 is further configured to acquire, from the optical signal of the user-specified wavelength in the first optical signal, the dispersion information of the optical signal of the user-specified wavelength; the compensation module 24 is further configured to be specified according to the acquired user. The dispersion information of the optical signal of the wavelength performs the first dispersion compensation on the optical signal of the user-specified wavelength in the second optical signal. In a preferred embodiment of the present invention, the acquiring module 22 is further configured to acquire, from the optical signals of all wavelengths in the first optical signal, a dispersion corresponding to the optical signal of each of the optical signals of all wavelengths. The compensation module is further configured to perform a first dispersion compensation on the optical signals of all wavelengths in the second optical signal according to the obtained dispersion information corresponding to the optical signal of each wavelength. Preferably, as shown in FIG. 3, the apparatus may further include: a determining module 26 connected to the compensation module 24, configured to determine an optimal dispersion compensation value; the compensation module 24 further configured to determine the optimal dispersion according to the determination The compensation value performs a second dispersion compensation on the second beam of light signals. Preferably, as shown in FIG. 3, the determining module 26 includes: an obtaining unit 260, connected to the determining unit
262, 设置为获取多个预定时间段的前向纠错 (FEC) 误码率; 确定单元 262, 设置为 从获取的 FEC误码率中确定最小 FEC误码率; 以及根据最小前向纠错 FEC误码率确 定与其对应的补偿值, 并将确定的补偿值作为最佳补偿值。 为了更好地理解上述实施例, 以下结合相关附图和优选实施例详细说明。 在以下 实施例中考虑到相关技术中的色散色度的监控问题以及通道上 TDC 调控时间超出阈 值等问题, 主要从以下几个方面对现有技术进行改进: 1、 自动定时检测补偿控制; 2、 可自动完成色散补偿的控制; 3、 可根据用户设定调整允许偏移的范围。 其中, 对于第 1 方面, 可以采用以下之一技术方案实现自动定时补偿控制: 用户可下发命令给色散 检测控制器, 通知每隔某个时间段自动发起一次检测补偿; 或者是此系统默认配置为 自动补偿模式, 每隔一定时间段自动检测补偿一次; 或者只要检测到线路上产生一次 LOF告警就自动开启一次检测补偿。 实施例 1 本实施例涉及一种可以对光传输网络 (Optical Transport Network, 简称为 OTN) 设备网络的色散集中控制的装置和方法。 本实施例的目的在于, 克服现有技术中存在的色散色度的监控问题和通道上 TDC 调控时间超出阈值的问题, 为了实现上述目的, 本实施例提供了以下技术方案: 如图 4所示, 本实施例的色散补偿装置包括: 色散锁定器 40、 色散检测器 42、 色 散检测控制器 44、 色散补偿控制器 46、 色散补偿器 48和色散细调控制器 50组成。 其中, 上述色散锁定器 40相当于图 2和 /或图 3中的分光模块 20, 色散补偿器 48 相当于图 2和 /或图 3中的补偿模块 24, 色散细调控制器 50完成的功能也可以由确定 模块 26完成。 色散补偿控制器 46、 色散补偿控制器 46和色散细调控制器 50所要完 成的功能均可以由上述实施例中的补偿模块 24来完成。 如图 4所示, 上述色散锁定器 40, 由分光器组成, 设置为将线路传送的光信号通 过分光器分光, 将其中一束光 (相当于上述实施例中的第二束光信号) 通过滤波器将 指定波长信号传送到色散调整控制器 (包括色散补偿控制器 46、 色散补偿器 48和色 散细调控制器 50), 将另外一束光 (相当于上述实施例中的第一束光信号) 直接传给 色散检测器 42; 色散检测器 42,检测指定波长光信号的色散值,可以由滤波单元和色散检测单元、 计算单元组成, 其中, 滤波单元设置为滤出指定波长的光信号, 色散检测单元设置为 对滤出的指定波长的光信号进行采样检测, 计算单元设置为根据采样检测的结果计算 色散值。 色散检测控制器 44, 设置为接收用户命令, 并识别用户命令然后将识别后的用户 命令传递给色散检测器 42进行色散检测; 色散补偿控制器 46, 设置为根据特定波长的色散值, 控制色散补偿器 48执行色 散补偿,将色散补偿器 48调整到指定的补偿值上。色散调整控制器线路传送实际业务; 色散补偿器 48, 根据色散补偿控制器 46和色散细调控制器 50的命令, 调节色散 补偿值; 色散细调控制器 50, 当检测到线路上 LOF告警消失, 开启色散补偿细调过程。 根据线路上 FEC误码率, 控制色散补偿器 48细调, 寻找色散补偿最优点。 上述色散检测器 42 中的滤波单元可以使用可调滤波器或光栅实现, 检测单元由 AD检测器及系统 CPU软件组成; 上述色散检测控制器 44, 可以由具有用户界面的软件模块构成; 上述色散补偿控制器 46由系统 CPU软件及通信接口组成; 上述色散补偿器 48, 可以选取可调色散补偿器 TDC; 上述色散细调控制器 50, 可以由系统 CPU中软件实现。 实施例 2 本实施例提供一种色散补偿方法, 该方法用于实现波长集中调整控制, 需要说明 的是, 本实施例中的方法可以基于实施例 1中的模块实现。如图 5所示, 该方法包括: 牛鹏 262, configured to obtain a forward error correction (FEC) error rate for a plurality of predetermined time periods; determining unit 262, configured to determine a minimum FEC error rate from the obtained FEC error rate; and according to minimum forward error correction The FEC error rate determines the compensation value corresponding thereto, and the determined compensation value is taken as the optimal compensation value. In order to better understand the above embodiments, the following detailed description will be made in conjunction with the accompanying drawings and preferred embodiments. In the following embodiments, the problem of monitoring the dispersion chromaticity in the related art and the problem that the TDC regulation time on the channel exceeds the threshold are considered, and the prior art is mainly improved from the following aspects: 1. Automatic timing detection compensation control; The control of dispersion compensation can be automatically completed; 3. The range of allowable offset can be adjusted according to user settings. For the first aspect, the automatic timing compensation control can be implemented by using one of the following technical solutions: The user can issue a command to the dispersion detection controller to notify that the detection compensation is automatically initiated every certain time period; or the default configuration of the system In the automatic compensation mode, the compensation is automatically detected at regular intervals; or the detection compensation is automatically turned on whenever a LOF alarm is detected on the line. Embodiment 1 This embodiment relates to an apparatus and method for centralized control of dispersion of an Optical Transport Network (OTN) device network. The purpose of this embodiment is to overcome the problem of the chromaticity of the chromaticity of the prior art and the problem that the TDC regulation time exceeds the threshold on the channel. To achieve the above objective, the present embodiment provides the following technical solutions: The dispersion compensation device of the present embodiment includes: a dispersion locker 40, a dispersion detector 42, a dispersion detecting controller 44, a dispersion compensation controller 46, a dispersion compensator 48, and a dispersion fine adjustment controller 50. The dispersion locker 40 is equivalent to the light splitting module 20 of FIG. 2 and/or FIG. 3, and the dispersion compensator 48 is equivalent to the compensation module 24 of FIG. 2 and/or FIG. 3, and the function of the dispersion fine adjustment controller 50 is completed. This can also be done by the determination module 26. The functions to be performed by the dispersion compensation controller 46, the dispersion compensation controller 46, and the dispersion fine adjustment controller 50 can all be performed by the compensation module 24 in the above embodiment. As shown in FIG. 4, the dispersion locker 40 is composed of a beam splitter, and is configured to pass the optical signal transmitted by the line through the beam splitter, and pass one of the light (corresponding to the second light signal in the above embodiment). The filter transmits the specified wavelength signal to the dispersion adjustment controller (including the dispersion compensation controller 46, the dispersion compensator 48, and the dispersion fine adjustment controller 50), and the other beam (corresponding to the first beam in the above embodiment) The signal is directly transmitted to the dispersion detector 42. The dispersion detector 42 detects the dispersion value of the optical signal of the specified wavelength, and may be composed of a filtering unit, a dispersion detecting unit and a calculating unit, wherein the filtering unit is configured to filter out the optical signal of the specified wavelength. The dispersion detecting unit is configured to perform sampling detection on the filtered optical signal of the specified wavelength, and the calculating unit is configured to calculate the dispersion value according to the result of the sampling detection. The dispersion detection controller 44 is configured to receive a user command and recognize the user command and then pass the identified user command to the dispersion detector 42 for dispersion detection; the dispersion compensation controller 46 is configured to control the dispersion according to the dispersion value of the specific wavelength The compensator 48 performs dispersion compensation to adjust the dispersion compensator 48 to the specified compensation value. The dispersion adjustment controller line transmits the actual service; the dispersion compensator 48 adjusts the dispersion compensation value according to the commands of the dispersion compensation controller 46 and the dispersion fine adjustment controller 50; the dispersion fine adjustment controller 50 detects that the LOF alarm disappears on the line , Turn on the dispersion compensation fine adjustment process. According to the FEC error rate on the line, the dispersion compensator 48 is finely adjusted to find the best advantage of dispersion compensation. The filtering unit in the dispersion detector 42 may be implemented by using a tunable filter or a grating, and the detecting unit is composed of an AD detector and a system CPU software; the dispersion detecting controller 44 may be composed of a software module having a user interface; The compensation controller 46 is composed of a system CPU software and a communication interface; the dispersion compensator 48 may select a tunable dispersion compensator TDC; and the dispersion fine adjustment controller 50 may be implemented by software in the system CPU. Embodiment 2 This embodiment provides a dispersion compensation method, which is used to implement wavelength concentration adjustment control. It should be noted that the method in this embodiment can be implemented based on the module in Embodiment 1. As shown in FIG. 5, the method includes:
少 S502, 开始;  Less S502, start;
牛鹏  Niu Peng
少 S504, 色散检测控制器下发命令给色散检测模块待检测波长; 牛鹏  Less S504, the dispersion detection controller issues a command to the dispersion detection module to be detected wavelength;
少 S506, 色散检测模块滤出指定波长信号; 牛鹏  Less S506, the dispersion detection module filters out the specified wavelength signal;
少 S508, 滤出成功? 失败则转入步骤 S510, 成功则进入步骤 S512; 牛鹏  Less S508, filtered out successfully? If the failure, the process proceeds to step S510, and if successful, the process proceeds to step S512;
少 S510, 上报告警, 调整结束。 牛鹏  Less S510, report the police, the adjustment is over. Niu Peng
少 S512, 色散检测模块采样、 计算指定波长信号色散值; 牛鹏  Less S512, the dispersion detection module samples and calculates the dispersion value of the specified wavelength signal;
少 S514, 向检测控制器发送色散信息; 步骤 S516, 检测控制器将色散信息发送给色散调整控制器; 步骤 S518, 色散调整控制器根据信息向相应波长的单板发送调整命令; 步骤 S520, 相应的单板根据调整命令控制色散补偿器调整; 步骤 S522, 调整成功?成功则转入步骤 S526, 失败则转入步骤 S524; 步骤 S524, 上报告警, 发送调整失败命令给色散补偿控制器, 整个过程结束。 步骤 S526, 发送调整成功命令给色散补偿控制器; 步骤 S528, 色散细调控制器检测线路上 LOF告警是否消失?若消失则转入步骤 S530, 若没有则一直等待; 步骤 S530, 开启细调过程; 步骤 S532, 色散细调控制器获取当前色散补偿点 N (ps/nm), 等待 3S, 读取线路 上的 FEC纠错前误码率 Ei; 步骤 S534, 色散细调控制器控制色散补偿器将当前补偿值调到 N-5, 等待 3S, 读 取线路上 FEC纠错前误码率 E2; 步骤 S536, 色散细调控制器控制色散补偿器将当前补偿值调到 N+5, 等待 3S, 读取线路上 FEC纠错前误码率 E3 ; 步骤 S538, 比较 El、 E2、 E3, 找到最小点, 步骤 S540, 最小点在 N?若否则跳到步骤 S546, 否则转入步骤 S542; 步骤 S542, 比较计数器加 1 ; 步骤 S544, 比较计数器是否大于等于 3 ?若是则跳到步骤 S550, 若否则跳到步骤 S548; 步骤 S546, 比较计数器清零; 步骤 S548, 将色散补偿器调节到此最小点, 跳到步骤 S532重新执行; 步骤 S550, 细调结束。 采用本实施例的上述技术方案, 能够对通道色散进行有效检测和补偿, 不受是否 传输业务的限制, 可以灵活的控制业务在通道间的切换, 具有极大的实用价值。 同时 本实施例实现了集中检测, 节约了成本, 并且, 控制实现模式配置灵活, 可以集中控 制, 也可以采用分布式控制, 且可以在系统的不同层次上配置检测 /控制模块, 实现系 统的无缝嵌入, 有强大的平滑过渡升级能力。 实施例 3 本实施例提供一种色散补偿装置,如图 6所示,包括: 分光器 60、光分波单元 62、 色散检测器 42、 色散检测控制器 44、 色散补偿控制器 46、 色散补偿器 48和色散细调 控制器 50。 其中, 分光器 10将线路上的光信号按照一定的比例分为两束, 一束传送 到光分波单元 62, 另一束传送到色散检测器 42。 通过用户接口对色散检测控制器 44 下发对某一指定波长信号实现色散检测,色散检测控制器 44通过通信链路将命令下发 给色散检测器 42,色散检测器 42控制滤波单元 420输出波长为 λ Ν的信号,通过检测 单元 422、 计算单元 424计算出色散值, 将色散值通过通信链路反馈给色散检测控制 器 44, 色散检测控制器 44通过通信连路反馈给用户。 用户将特定波长 λΝ和此波长的 色散值下发色散补偿控制器 46,色散补偿控制器 46控制色散补偿器 48实现补偿调整。 色散细调控制器 50对链路实现细调。 正如实施例 1中所述,色散检测器 42中的计算单元 424可以选择按照相位调制法 计算色散值。 本实施例的色散补偿装置的具体工作过程如下: 第一步, 用户下发对波长 λΝ的信号的色散检测命令给色散检测控制器 44; 第二步, 色散检测控制器 44下发命令给色散检测器 42待检测波长 λΝ ; 第三步, 色散检测器 42的滤波单元 420滤出指定波长信号; 第四步,色散检测器 42对滤出信号进行采样检测,通过计算单元 424计算出该信 号的色散值, 按分光器的分光比换算到业务链路上的色散值; 第五步, 色散检测器 42向色散检测控制器 44发送色散信息; 第六步, 色散检测控制器 44将色散值通知用户; 第七步, 用户下发色散补偿命令给色散补偿控制器 46, 命令携带波长信息和色散 值; 第八步, 色散补偿控制器 46向 λΝ波长上的色散补偿器 48发送色散补偿命令; 第九步, 色散补偿器 48调整; 第十步, 调整成功则发送调整成功命令给色散补偿控制器 46, 否则发送调整失败 命令给色散补偿控制器 46; 第十一步, 色散补偿控制器 46将成功或失败信息通知用户。 第十二步, 色散细调控制器 50检测线路上 LOF告警是否消失?若消失则进入第 十五步, 若没有则一直等待; 第十三步, 开启细调过程; 第十四步, 色散细调控制器 50获取当前色散补偿点 N (ps/nm), 等待 3S, 读取 线路上的 FEC纠错前误码率 Ei; 第十五步, 色散细调控制器 50控制色散补偿器将当前补偿值调到 N-5, 等待 3S, 读取线路上 FEC纠错前误码率 E2; 第十六步, 色散细调控制器 50控制色散补偿器将当前补偿值调到 N+5, 等待 3S, 读取线路上 FEC纠错前误码率 E3 ; 第十七步, 比较 El、 E2、 E3, 找到最小点, 第十八步, 最小点在 N?若否则跳到第二十一步, 否则往下执行; 第十九步, 比较计数器加 1 ; 第二十步, 比较计数器是否大于等于 3 ?若是则跳到第二十三步, 若否则跳到第 二十二步; 第二十一步, 比较计数器清零; 第二十二步, 将色散补偿器 48调节到此最小点, 跳到第十六步重新执行; 第二十三步, 细调结束。 实施例 4 本实施例提供一种色散补偿装置,如图 7所示,包括: 分光器 60、光分波单元 62、 色散检测器 42、 色散补偿控制器 46、 色散补偿器 48和色散细调控制器 50。 相对于实 施例 3本实施中的装置省略了色散检测控制器 44, 因此, 可以实现色散补偿的自动控 制。 其中, 分光器 60将线路上的光信号按照一定的比例分为两束, 一束传送到光分波 单元 62, 另一束传送到色散检测器 42。 通过用户接口对色散补偿控制器 46下发色散 补偿命令, 色散补偿控制器 46通过通信链路将命令下发给色散检测器 42, 色散检测 器 42控制滤波单元 420将光复用段所有信号依次滤出, 检测、计算其色散值, 并将波 长与色散的对应值保存下来, 扫描完毕将波长与色散值得对应关系通过通信链路反馈 给色散补偿控制器 46。 色散补偿控制器 46控制依次对对应波长的色散补偿器下发补 偿命令, 实现补偿调整。 色散细调控制器 50分别在线路上实现细调补偿。 本实施例的色散补偿装置的具体工作过程如下: 第一步, 用户下发波长补偿命令给色散补偿控制器 46; 第二步, 色散补偿控制器 46将命令通过通信链路转发给色散检测器 42; 第三步, 色散检测器 42控制滤波单元 420全波段信号依次滤波, 假设从 λΐ开始; 第四步, 滤波单元 420滤波, 色散检测器 42检查波长的信号是否有效, 有效则进 入第五步, 无效则跳到第六步; 第五步,色散检测器 42对滤出信号进行采样检测,通过计算单元 424计算出该信 号的色散值, 按分光器的分光比换算到业务链路上的色散值; 第六步,色散检测器 42判断是否还有可用波段信号,有则跳回第四步对下一波段 信号滤波, 没有则跳到第七步; 第七步, 色散检测器 42向色散补偿控制器 46发送波长和色散对应信息; 第八步, 色散补偿控制器 46按照波长依次指定波长上的色散补偿器 48发送色散 补偿命令; 第九步, 色散补偿器 48调整; 第十步, 调整成功则发送调整成功命令给色散补偿控制器 46, 否则发送调整失败 命令给色散补偿控制器 46; 第十一步,所有有用波长色散补偿成功,色散补偿控制器 46则返回成功信息通知 用户; 否则返回失败信息通知用户。 如果失败用户可发送命令确认是否让所有色散补 偿控制器 46恢复原值。 需要说明的是,本实施例对光信号进行细调的过程和实施例 3中的细调过程类似, 此处不再赘述。 在另外一个实施例中, 还提供了一种软件, 该软件用于执行上述实施例及优选实 施方式中描述的技术方案。 在另外一个实施例中, 还提供了一种存储介质, 该存储介质中存储有上述软件, 该存储介质包括但不限于: 光盘、 软盘、 硬盘、 可擦写存储器等。 显然, 本领域的技术人员应该明白, 上述的本发明的各模块或各步骤可以用通用 的计算装置来实现, 它们可以集中在单个的计算装置上, 或者分布在多个计算装置所 组成的网络上, 可选地, 它们可以用计算装置可执行的程序代码来实现, 从而, 可以 将它们存储在存储装置中由计算装置来执行, 并且在某些情况下, 可以以不同于此处 的顺序执行所示出或描述的步骤, 或者将它们分别制作成各个集成电路模块, 或者将 它们中的多个模块或步骤制作成单个集成电路模块来实现。 这样, 本发明不限制于任 何特定的硬件和软件结合。 以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本领域的技 术人员来说, 本发明可以有各种更改和变化。 凡在本发明的精神和原则之内, 所作的 任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。 S514, sending the dispersion information to the detection controller; Step S516, the detection controller sends the dispersion information to the dispersion adjustment controller. Step S518, the dispersion adjustment controller sends an adjustment command to the board of the corresponding wavelength according to the information. Step S520, the corresponding board controls the dispersion compensator according to the adjustment command. Step S522, the adjustment is successful? If yes, the process goes to step S526. If the process fails, the process goes to step S524. In step S524, the alarm is reported, and the adjustment failure command is sent to the dispersion compensation controller, and the whole process ends. Step S526, sending an adjustment success command to the dispersion compensation controller; Step S528, the dispersion fine adjustment controller detects whether the LOF alarm on the line disappears? If it disappears, go to step S530, if not, wait until it is; step S530, turn on the fine adjustment process; step S532, the dispersion fine adjustment controller acquires the current dispersion compensation point N (ps/nm), waits for 3S, reads on the line FEC error correction pre-error rate Ei; Step S534, the dispersion fine-tuning controller controls the dispersion compensator to adjust the current compensation value to N-5, waits for 3S, and reads the FEC error correction error rate E2 on the line; step S536, The dispersion fine-tuning controller controls the dispersion compensator to adjust the current compensation value to N+5, wait for 3S, and read the error rate E3 before FEC error correction on the line; Step S538, compare El, E2, E3, find the minimum point, step S540, the minimum point is N? If otherwise, the process goes to step S546, otherwise, the process goes to step S542; in step S542, the comparison counter is incremented by 1; in step S544, the comparison counter is greater than or equal to 3? If yes, the process goes to step S550, if otherwise, the process goes to step S550. S548; Step S546, the comparison counter is cleared; Step S548, the dispersion compensator is adjusted to the minimum point, and the process goes to Step S532 to re-execute; Step S550, the fine adjustment ends. By adopting the above technical solution of the embodiment, the channel chromatic dispersion can be effectively detected and compensated, and is not restricted by the transmission service, and the switching of the services between the channels can be flexibly controlled, which has great practical value. At the same time, the embodiment implements centralized detection, which saves cost, and the control implementation mode is flexible, and can be centralized or distributed, and the detection/control module can be configured at different levels of the system to achieve no system. The seam is embedded and has a powerful smooth transition upgrade capability. Embodiment 3 This embodiment provides a dispersion compensation device, as shown in FIG. 6, comprising: a beam splitter 60, an optical splitting unit 62, a dispersion detector 42, a dispersion detecting controller 44, a dispersion compensation controller 46, and dispersion compensation. The controller 48 and the dispersion fine adjustment controller 50. Among them, the spectroscope 10 divides the optical signals on the line into two beams according to a certain ratio, one beam is transmitted to the optical demultiplexing unit 62, and the other beam is transmitted to the dispersion detector 42. Dispersion detection is performed on the specified wavelength signal by the dispersion detection controller 44 through the user interface. The dispersion detection controller 44 sends a command to the dispersion detector 42 via the communication link, and the dispersion detector 42 controls the filtering unit 420 to output the wavelength. For the signal of λ ,, the excellent dispersion value is calculated by the detecting unit 422 and the calculating unit 424, and the dispersion value is fed back to the dispersion detecting controller 44 through the communication link, and the dispersion detecting controller 44 feeds back to the user through the communication link. The user sends a specific wavelength λ Ν and the dispersion value of this wavelength to the dispersion compensation controller 46, which controls the dispersion compensator 48 to implement compensation adjustment. The dispersion fine tuning controller 50 fine-tunes the link. As described in Embodiment 1, the calculation unit 424 in the dispersion detector 42 can select to calculate the dispersion value in accordance with the phase modulation method. Specific working process dispersion compensation apparatus of the present embodiment is as follows: First, send a command for detecting dispersion wavelength λ Ν dispersion detection signal to the controller 44 the user; the second step, the dispersion detection controller 44 issued commands to The dispersion detector 42 is to detect the wavelength λ Ν ; in the third step, the filtering unit 420 of the dispersion detector 42 filters out the specified wavelength signal; in the fourth step, the dispersion detector 42 performs sampling detection on the filtered signal, and is calculated by the calculating unit 424. The dispersion value of the signal is converted to the dispersion value on the service link according to the split ratio of the splitter; in the fifth step, the dispersion detector 42 transmits the dispersion information to the dispersion detection controller 44; in the sixth step, the dispersion detection controller 44 The dispersion value informs the user; in the seventh step, the user sends a dispersion compensation command to the dispersion compensation controller 46, and the command carries the wavelength information and the dispersion value; In the eighth step, the dispersion compensation controller 46 sends a dispersion compensation command to the dispersion compensator 48 on the λ Ν wavelength; in the ninth step, the dispersion compensator 48 adjusts; and in the tenth step, if the adjustment is successful, the adjustment success command is sent to the dispersion compensation controller. 46. Otherwise, the adjustment failure command is sent to the dispersion compensation controller 46. In the eleventh step, the dispersion compensation controller 46 notifies the user of the success or failure information. In the twelfth step, the dispersion fine adjustment controller 50 detects whether the LOF alarm on the line disappears. If it disappears, it will enter the fifteenth step. If not, it will wait. In the thirteenth step, the fine adjustment process is started. In the fourteenth step, the dispersion fine adjustment controller 50 obtains the current dispersion compensation point N (ps/nm), waiting for 3S. Reading the FEC error correction error rate Ei on the line; in the fifteenth step, the dispersion fine adjustment controller 50 controls the dispersion compensator to adjust the current compensation value to N-5, waits for 3S, and reads the FEC error correction on the line. The first error rate E2; in the sixteenth step, the dispersion fine adjustment controller 50 controls the dispersion compensator to adjust the current compensation value to N+5, waits for 3S, and reads the error rate E3 before the FEC error correction on the line; Step, compare El, E2, E3, find the minimum point, the 18th step, the minimum point is N? If otherwise jump to the 21st step, otherwise go down; the 19th step, compare counter plus 1; Ten steps, compare whether the counter is greater than or equal to 3? If yes, jump to the twenty-third step, if otherwise jump to the twenty-second step; the twenty-first step, the comparison counter is cleared; the twenty-second step, the dispersion compensation The controller 48 adjusts to this minimum point, skips to the sixteenth step and re-executes; and in the twenty-third step, the fine adjustment ends. Embodiment 4 This embodiment provides a dispersion compensation device, as shown in FIG. 7, comprising: a beam splitter 60, an optical demultiplexing unit 62, a dispersion detector 42, a dispersion compensation controller 46, a dispersion compensator 48, and a fine dispersion adjustment. Controller 50. The dispersion detecting controller 44 is omitted with respect to the apparatus in the present embodiment with respect to Embodiment 3, and therefore, automatic control of dispersion compensation can be realized. Among them, the spectroscope 60 divides the optical signals on the line into two beams according to a certain ratio, one beam is transmitted to the optical demultiplexing unit 62, and the other beam is transmitted to the dispersion detector 42. The dispersion compensation controller 46 issues a dispersion compensation command through the user interface, and the dispersion compensation controller 46 sends the command to the dispersion detector 42 through the communication link. The dispersion detector 42 controls the filtering unit 420 to sequentially filter all the signals in the optical multiplex section. Then, the dispersion value is detected and calculated, and the corresponding values of the wavelength and the dispersion are saved. After the scanning, the correspondence between the wavelength and the dispersion value is fed back to the dispersion compensation controller 46 through the communication link. The dispersion compensation controller 46 controls to sequentially issue a compensation command to the dispersion compensator of the corresponding wavelength to implement compensation adjustment. The dispersion fine adjustment controller 50 implements fine adjustment compensation on the line, respectively. The specific working process of the dispersion compensation apparatus of this embodiment is as follows: In the first step, the user issues a wavelength compensation command to the dispersion compensation controller 46; in the second step, the dispersion compensation controller 46 forwards the command to the dispersion detector through the communication link. 42. In the third step, the dispersion detector 42 controls the filtering unit 420 to filter the full-band signals sequentially, assuming starting from λΐ; in the fourth step, the filtering unit 420 filters, and the dispersion detector 42 checks whether the signal of the wavelength is valid, and if it is valid, it enters the fifth. Step: If it is invalid, skip to the sixth step. In the fifth step, the dispersion detector 42 samples and detects the filtered signal, and calculates the dispersion value of the signal by the calculating unit 424, and converts the split value of the splitter to the service link according to the split ratio of the splitter. In the sixth step, the dispersion detector 42 determines whether there is still a band signal available, and then jumps back to the fourth step to filter the next band signal, and if not, jumps to the seventh step; and in the seventh step, the dispersion detector 42 The wavelength and dispersion correspondence information is transmitted to the dispersion compensation controller 46. In the eighth step, the dispersion compensation controller 46 transmits the dispersion compensator 48 on the wavelength sequentially designated wavelengths. Dispersion compensation command; ninth step, adjustment dispersion compensator 48; In the tenth step, if the adjustment succeeds, the adjustment success command is sent to the dispersion compensation controller 46, otherwise the adjustment failure command is sent to the dispersion compensation controller 46; in the eleventh step, all useful wavelength dispersion compensation is successful, and the dispersion compensation controller 46 returns successfully. The information is notified to the user; otherwise, a failure message is returned to notify the user. If the failed user can send a command to confirm whether all the dispersion compensation controllers 46 have been restored to their original values. It should be noted that the process of fine-tuning the optical signal in this embodiment is similar to the fine-tuning process in Embodiment 3, and details are not described herein again. In another embodiment, software is also provided for performing the technical solutions described in the above embodiments and preferred embodiments. In another embodiment, a storage medium is provided, the software being stored, including but not limited to: an optical disk, a floppy disk, a hard disk, a rewritable memory, and the like. Obviously, those skilled in the art should understand that the above modules or steps of the present invention can be implemented by a general-purpose computing device, which can be concentrated on a single computing device or distributed over a network composed of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device, such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein. The steps shown or described are performed, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps are fabricated as a single integrated circuit module. Thus, the invention is not limited to any specific combination of hardware and software. The above is only the preferred embodiment of the present invention, and is not intended to limit the present invention, and various modifications and changes can be made to the present invention. Any modifications, equivalent substitutions, improvements, etc. made within the spirit and scope of the present invention are intended to be included within the scope of the present invention.

Claims

权 利 要 求 书 Claim
1. 一种色散补偿方法, 包括: 1. A dispersion compensation method, comprising:
将待传输的光信号分成第一束光信号和第二束光信号, 其中, 所述第一束 光信号用于获取色散信息, 所述第二束光信号用于传输业务数据;  Separating the optical signal to be transmitted into a first beam optical signal and a second beam optical signal, where the first beam optical signal is used to acquire dispersive information, and the second beam optical signal is used to transmit service data;
从所述第一束光信号中获取所述色散信息;  Obtaining the dispersion information from the first beam of light signals;
根据获取的所述色散信息对所述第二束光信号进行第一次色散补偿。  Performing a first dispersion compensation on the second beam of light signals according to the acquired dispersion information.
2. 根据权利要求 1所述的方法, 其中, 2. The method according to claim 1, wherein
从所述第一束光信号中获取所述色散信息, 包括: 从所述第一束光信号中 的用户指定波长的光信号中获取所述用户指定波长的光信号的色散信息;  Obtaining the dispersion information from the first beam of light signals, comprising: acquiring dispersion information of the optical signal of the user-specified wavelength from an optical signal of a user-specified wavelength of the first beam of optical signals;
根据获取的所述色散信息对所述第二束光信号进行第一次色散补偿,包括: 根据获取的所述用户指定波长的光信号的色散信息对所述第二束光信号中的所 述用户指定波长的光信号进行第一次色散补偿。  Performing a first dispersion compensation on the second beam of light signals according to the obtained dispersion information, comprising: performing, according to the acquired dispersion information of the optical signal of the user-specified wavelength, the said one of the second beam of light signals The optical signal of the user-specified wavelength is subjected to the first dispersion compensation.
3. 根据权利要求 1所述的方法, 其中, 3. The method according to claim 1, wherein
从所述第一束光信号中获取所述色散信息, 包括: 从所述第一束光信号中 的所有波长的光信号中获取与所述所有波长的光信号中的每一个波长的光信号 对应的色散信息;  Acquiring the dispersion information from the first optical signal, comprising: acquiring an optical signal of each of the optical signals of all wavelengths from optical signals of all wavelengths in the first optical signal Corresponding dispersion information;
根据获取的所述色散信息对所述第二束光信号进行第一次色散补偿,包括: 根据获取的所述每一个波长的光信号对应的色散信息对所述第二束光信号中的 所述所有波长的光信号进行第一次色散补偿。  Performing the first dispersion compensation on the second beam of optical signals according to the obtained dispersion information, including: according to the obtained dispersion information corresponding to the optical signal of each wavelength, to the second optical signal The optical signals of all wavelengths are subjected to the first dispersion compensation.
4. 根据权利要求 1所述的方法, 其中, 从所述第一束光信号中获取所述色散信息 之前, 还包括以下之一: 4. The method according to claim 1, wherein before the obtaining the dispersion information from the first beam of light signals, the method further comprises one of the following:
接收用户的操作指令, 其中, 所述操作指令用于指示每隔第一预定时间段 从所述第一束光信号中获取所述色散信息;  Receiving an operation instruction of the user, where the operation instruction is used to indicate that the dispersion information is acquired from the first beam optical signal every first predetermined time period;
配置第二预定时间段, 其中, 在所述第二预定时间段到达时, 指示从所述 第一束光信号中获取所述色散信息;  Configuring a second predetermined time period, wherein, when the second predetermined time period arrives, indicating that the dispersion information is acquired from the first light signal;
检测传输所述第二束光信号的线路上是否产生帧丢失 LOF告警, 其中, 在 检测到 LOF告警时, 指示从所述第一束光信号中获取所述色散信息。 Detecting whether a frame loss LOF alarm is generated on the line transmitting the second optical signal, wherein, when the LOF alarm is detected, indicating that the dispersion information is acquired from the first optical signal.
5. 根据权利要求 1至 4任一项所述的方法, 其中, 根据获取的所述色散信息对所 述第二束光信号进行第一次色散补偿之后, 还包括: The method according to any one of claims 1 to 4, wherein after the first dispersion compensation is performed on the second optical signal according to the obtained dispersion information, the method further includes:
确定最佳色散补偿值;  Determine the optimal dispersion compensation value;
根据确定的所述最佳色散补偿值对所述第二束光信号进行第二次色散补 偿。  Performing a second dispersion compensation on the second beam of light signals based on the determined optimal dispersion compensation value.
6. 根据权利要求 5所述的方法, 其中, 确定最佳色散补偿值, 包括: 6. The method according to claim 5, wherein determining an optimal dispersion compensation value comprises:
获取多个预定时间段的前向纠错 FEC误码率;  Obtaining a forward error correction FEC error rate for a plurality of predetermined time periods;
从获取的 FEC误码率中确定最小 FEC误码率;  Determining a minimum FEC error rate from the obtained FEC error rate;
根据所述最小 FEC误码率确定与其对应的补偿值,并将确定的补偿值作为 所述最佳补偿值。  A compensation value corresponding thereto is determined according to the minimum FEC error rate, and the determined compensation value is used as the optimal compensation value.
7. 根据权利要求 5所述的方法, 其中, 确定最佳色散补偿值之前, 还包括: 检测在第一次色散补偿之后的所述第二束光信号的色散值; 确定检测到的所述色散值达到预设阈值。 7. The method according to claim 5, wherein, before determining the optimal dispersion compensation value, further comprising: detecting a dispersion value of the second beam optical signal after the first dispersion compensation; determining the detected The dispersion value reaches a preset threshold.
8. 根据权利要求 1至 4任一项所述的方法, 其中, 根据获取的所述色散信息对所 述第二束光信号进行第一次色散补偿之前, 还包括: The method according to any one of claims 1 to 4, wherein before the first dispersion compensation is performed on the second optical signal according to the acquired dispersion information, the method further includes:
接收来自于用户的操作指令, 其中, 所述操作指令用于指示对对所述第二 束光信号进行第一次色散补偿。  Receiving an operation instruction from a user, wherein the operation instruction is for instructing to perform a first dispersion compensation on the second beam optical signal.
9. 一种色散补偿装置, 包括: 9. A dispersion compensation device comprising:
分光模块, 设置为将待传输的光信号分成第一束光信号和第二束光信号, 其中, 所述第一束光信号用于获取色散信息, 所述第二束光信号用于传输业务 数据;  a light splitting module, configured to divide the optical signal to be transmitted into a first beam optical signal and a second beam optical signal, where the first beam optical signal is used to obtain dispersion information, and the second beam optical signal is used for transmission service Data
获取模块, 设置为从所述第一束光信号中获取所述色散信息; 补偿模块, 设置为根据获取的所述色散信息对所述第二束光信号进行第一 次色散补偿。  And an acquiring module, configured to obtain the dispersion information from the first beam of light signals; and the compensation module is configured to perform first dispersion compensation on the second beam of light signals according to the acquired dispersion information.
10. 根据权利要求 9所述的装置, 其中, 所述获取模块, 还设置为从所述第一束光信号中的用户指定波长的光信号 中获取所述用户指定波长的光信号的色散信息; 所述补偿模块, 还设置为根据获取的所述用户指定波长的光信号的色散信 息对所述第二束光信号中的所述用户指定波长的光信号进行第一次色散补偿。 10. The apparatus according to claim 9, wherein the acquiring module is further configured to acquire, from the optical signal of a user-specified wavelength of the first beam of optical signals, dispersion information of the optical signal of the user-specified wavelength. ; The compensation module is further configured to perform first-time dispersion compensation on the optical signal of the user-specified wavelength in the second beam optical signal according to the acquired dispersion information of the optical signal of the user-specified wavelength.
11. 根据权利要求 9所述的装置, 其中, 11. The device according to claim 9, wherein
所述获取模块, 还设置为从所述第一束光信号中的所有波长的光信号中获 取与所述所有波长的光信号中的每一个波长的光信号对应的色散信息;  The acquiring module is further configured to obtain, from the optical signals of all wavelengths in the first optical signal, dispersion information corresponding to an optical signal of each of the optical signals of all wavelengths;
所述补偿模块, 还设置为根据获取的所述每一个波长的光信号对应的色散 信息对所述第二束光信号中的所述所有波长的光信号进行第一次色散补偿。  The compensation module is further configured to perform a first dispersion compensation on the optical signals of all the wavelengths in the second optical signal according to the obtained dispersion information corresponding to the optical signal of each wavelength.
12. 根据权利要求 9至 11任一项所述的装置, 其中, 12. Apparatus according to any one of claims 9 to 11, wherein
所述装置还包括: 确定模块, 设置为确定最佳色散补偿值;  The apparatus further includes: a determining module configured to determine an optimal dispersion compensation value;
所述补偿模块, 还设置为根据确定的所述最佳色散补偿值对所述第二束光 信号进行第二次色散补偿。  The compensation module is further configured to perform a second dispersion compensation on the second beam of light signals according to the determined optimal dispersion compensation value.
13. 根据权利要求 12所述的装置, 其中, 所述确定模块, 包括: The device of claim 12, wherein the determining module comprises:
获取单元, 设置为获取多个预定时间段的 FEC纠错前误码率; 确定单元, 设置为从获取的 FEC误码率中确定最小 FEC误码率; 以及根 据所述最小前向纠错 FEC误码率确定与其对应的补偿值,并将确定的补偿值作 为所述最佳补偿值。  An obtaining unit, configured to obtain a FEC error correction error rate for a plurality of predetermined time periods; a determining unit configured to determine a minimum FEC error rate from the obtained FEC error rate; and according to the minimum forward error correction FEC The bit error rate determines the compensation value corresponding thereto, and the determined compensation value is taken as the optimal compensation value.
PCT/CN2012/074398 2011-11-14 2012-04-19 Chromatic dispersion compensation method and device WO2013071734A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110360099.2A CN102386980B (en) 2011-11-14 Dispersion compensation method and device
CN201110360099.2 2011-11-14

Publications (1)

Publication Number Publication Date
WO2013071734A1 true WO2013071734A1 (en) 2013-05-23

Family

ID=45825992

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/074398 WO2013071734A1 (en) 2011-11-14 2012-04-19 Chromatic dispersion compensation method and device

Country Status (1)

Country Link
WO (1) WO2013071734A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1968055A (en) * 2006-05-13 2007-05-23 华为技术有限公司 Examining method and device for chromatic dispersion
CN101369853A (en) * 2008-09-26 2009-02-18 中兴通讯股份有限公司 Method and apparatus for chromatic dispersion compensation of optimized wavelength passage
CN101800607A (en) * 2010-01-12 2010-08-11 浙江大学 High-order dynamic adjustable dispersion compensation equipment and dispersion compensation method thereof
CN101908932A (en) * 2009-06-04 2010-12-08 华为技术有限公司 Compensation method and device of polarization mode dispersion
CN102326344A (en) * 2011-08-01 2012-01-18 华为技术有限公司 Coherent receiver apparatus and dispersion compensation method
CN102386980A (en) * 2011-11-14 2012-03-21 中兴通讯股份有限公司 Chromatic dispersion compensation method and device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1968055A (en) * 2006-05-13 2007-05-23 华为技术有限公司 Examining method and device for chromatic dispersion
CN101369853A (en) * 2008-09-26 2009-02-18 中兴通讯股份有限公司 Method and apparatus for chromatic dispersion compensation of optimized wavelength passage
CN101908932A (en) * 2009-06-04 2010-12-08 华为技术有限公司 Compensation method and device of polarization mode dispersion
CN101800607A (en) * 2010-01-12 2010-08-11 浙江大学 High-order dynamic adjustable dispersion compensation equipment and dispersion compensation method thereof
CN102326344A (en) * 2011-08-01 2012-01-18 华为技术有限公司 Coherent receiver apparatus and dispersion compensation method
CN102386980A (en) * 2011-11-14 2012-03-21 中兴通讯股份有限公司 Chromatic dispersion compensation method and device

Also Published As

Publication number Publication date
CN102386980A (en) 2012-03-21

Similar Documents

Publication Publication Date Title
JP2007312155A (en) Wavelength multiplex optical transmission system and its management method
JP3864338B2 (en) Dispersion compensation apparatus and dispersion compensation control method
US20120230681A1 (en) Optical transmission apparatus and optical attenuation amount control method
US20070077072A1 (en) Wavelength division multiplexing apparatus
JP2008098975A (en) Receiver, transmitter, reception method and transmission method
JP2008072555A (en) Optical receiver
US20030081292A1 (en) Transmission characteristic compensation control system
US20140212133A1 (en) Control device for optical channel monitor, optical transmission device, and method of controlling optical channel monitor
JP5458826B2 (en) Dispersion compensation device, optical receiver, dispersion compensation method, and optical reception method
JP2008228002A (en) Dispersion compensation quantity setting method when adding optical transmission units in optical transmission apparatus, and optical transmission apparatus
JP2005506719A (en) Receiver system and method for optical amplification backup
JP4351189B2 (en) Optical transmission line monitoring method, optical transmission line monitoring program, and optical transmission line monitoring apparatus
US20090269079A1 (en) Optical signal transmission control apparatus and optical signal transmission control method
JP4900481B2 (en) Wavelength division multiplexing apparatus and optical signal input interruption detection method
JP2018007058A (en) Network control device, optical transmission system and fault determination method
US9154227B2 (en) Port monitoring device and port monitoring method
JP5025503B2 (en) Dispersion compensation device
US9363011B2 (en) Monitoring and controlling optical nodes
WO2013071734A1 (en) Chromatic dispersion compensation method and device
CN101753218A (en) Method and device for compensating adaptive dispersion
WO2008053567A1 (en) Optical receiver apparatus and received optical signal dispersion compensating method
JP2010074521A (en) Optical transmission device, optical transmission method, and optical transmitter receiver
WO2008011767A1 (en) A system and method for realizing the centralized control of the wavelength adjusting
JPWO2006051616A1 (en) Bi-directional optical communication system
CN102386980B (en) Dispersion compensation method and device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12850385

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12850385

Country of ref document: EP

Kind code of ref document: A1