WO2013071688A1 - 高压石油井喷失控的解决方法 - Google Patents

高压石油井喷失控的解决方法 Download PDF

Info

Publication number
WO2013071688A1
WO2013071688A1 PCT/CN2012/001275 CN2012001275W WO2013071688A1 WO 2013071688 A1 WO2013071688 A1 WO 2013071688A1 CN 2012001275 W CN2012001275 W CN 2012001275W WO 2013071688 A1 WO2013071688 A1 WO 2013071688A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel
flange
valve
pressure
well
Prior art date
Application number
PCT/CN2012/001275
Other languages
English (en)
French (fr)
Inventor
王健柏
Original Assignee
Wang Jianbai
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wang Jianbai filed Critical Wang Jianbai
Publication of WO2013071688A1 publication Critical patent/WO2013071688A1/zh

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B34/00Valve arrangements for boreholes or wells
    • E21B34/02Valve arrangements for boreholes or wells in well heads
    • E21B34/04Valve arrangements for boreholes or wells in well heads in underwater well heads
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/01Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells specially adapted for obtaining from underwater installations
    • E21B43/0122Collecting oil or the like from a submerged leakage

Definitions

  • the invention relates to a solution for the out of control of high pressure LPG well jets due to failure and damage of the oil well blowout preventer or the high pressure total threshold door. That is to say, a new pressure valve device equipped with a spring-loading lock device is used, and a high-pressure valve is installed in a harsh environment by a high-pressure well nozzle through an operable wheel shank and a special bolt automatic elastic machine. This method is not only applicable to the ground but also to deep sea submarine oil blowouts. In addition, it is also possible to use a well-sealed steel structure concrete sealing box around the seabed of the blowout nozzle to completely seal the uncontrolled oil well, and then install the ladder steel cover and pre-install the high-pressure valve. Thereby achieving control and safe utilization of uncontrolled blowouts.
  • a blowout accident in an oil well is usually caused by various reasons. If the well blowout preventer or the total high pressure valve is not failed or damaged, then the blowout blowout can finally solve the problem by closing the above valve. If the high pressure LPG caused damage or failure of the BOP or the total high pressure valve and could not close the valve and the blowout occurred, the problem is very serious and is not easy to solve.
  • a serious blowout that has occurred in history such as the August 26, 1956 bombing of the blowout near Iran's Qom, uncontrollable crude oil sprayed to a height of 51.8 meters, spewing 120,000 barrels per day; June 3, 1979, Gulf of Mexico Undersea oil blowout, leaking 4000-5000 tons of crude oil every day.
  • the rescue method for solving the problem of high-pressure LPG blowout out of control is the killing method, which is to inject high-density barite powder into the well to increase the pressure and stop the blowout. Or use a pressure pump to pump a large amount of heavy mud or cement mortar into the well pipe at one time to control or seal the oil well.
  • the blowout pressure is too high, the direct killing well cannot be pressed, and an oblique well can be drilled near the well injection well to meet the well blown oil well; or two safe distances can be made at the safe distance from the well injection well.
  • the well is sealed at the bottom by injecting cement mortar into the bottom of the well.
  • the blowout formed by the explosion of the Deepwater Horizon drilling rig in the Gulf of Mexico in April 2010 was the method of using rescue wells, but it lasted for nearly 4-5 months and caused huge economic losses. Although the above method can finally solve the problem, for the oil and gas well blowout with uncontrolled pressure, the speed is slow, the effect is not too ideal, and the well of the blowout is completely scrapped.
  • the invention provides a set of easy-to-operate and easy-to-control solutions for the difficult environment in which the harsh environment of the blowout high-pressure oil and gas is difficult to operate, and can solve the ground or deep seabed in a short time with little cost or very low cost.
  • a freely disassemblable control wheel is mounted on the upper neck or lower neck of the straight-through high pressure valve for easy installation and installation of new high pressure valves on the flange of the high pressure well nozzle.
  • the control wheel is mounted in such a way that a stainless steel clamp is placed on the neck of the high pressure valve with a horizontal or vertical flat nose or a hanging loop nose.
  • the clamp can be tightened or welded to the neck of the high pressure valve.
  • the spokes of the operating wheel are connected to the wheel handle through the shaft connection, and the other end of the wheel spoke is passed through a flat hole or a hanging ring flat hole nose mounted on the stainless steel clamp of the threshold door neck, and the shaft is folded and fixed by the fastening device. After tightening all the spokes, the wheel handle is integrated with the high pressure valve through the spokes, so as to realize the process of installing the high pressure valve above the high pressure well nozzle by manipulating the outer edge handle.
  • a special spring-loading lock device is attached to the valve flange, and two positioning jaws are symmetrically fixed on the valve flange for mounting
  • the flange holes of the upper and lower flanges can be accurately aligned.
  • the high-pressure valve Due to the anti-reverse action of the ball lock lock device with a certain strength, the high-pressure valve is even under the high nozzle pressure. It will no longer be flushed, so that the valve flange and the flange of the nozzle can be fully engaged.
  • the special ⁇ automatic tensioning machine By operating the special ⁇ automatic tensioning machine, tighten the ⁇ and nut of the valve flange hole in turn.
  • the tamper automatic tensioning machine also undertakes the task of loosening the connection between the upper and lower flanges of the oil well nozzle and the apron, so as to conveniently remove the upper flange tube of the oil well nozzle.
  • the special ⁇ automatic elastic machine has a large electric torque, which can solve the problem that the flange shackle is not easy to be unloaded under special circumstances. In addition, if a manual board can solve the problem, of course, it can be.
  • the method is not only applicable to ground high-pressure LPG blowout, but also fully applicable to the need of installing new control valves for subsea blowout.
  • the high-pressure valves installed in this method should generally adopt straight-through high-pressure brakes.
  • the working method of the automatic elastic machine The lifting and lowering of the DC motor head ⁇ ⁇ card slot is controlled by the lifting and lowering of the hydraulic rod, the hydraulic rod and the sliding sleeve are connected with the DC motor, and the sliding sleeve is sleeved on the central sill of the console, and is driven by the ball type up and down The motor is lifted and lowered, and a high-energy lithium battery is arranged in the vertical raft.
  • the lower ⁇ mother card slot can also be hydraulically controlled to adjust to the special environment of the well nozzle.
  • the hydraulic inner rod and the hydraulic raft of the nut slot hydraulic lifting can Use if square hexagon or triangle.
  • the DC motor can be a vertical infinitely variable rotating head. It is also possible to use a turning type continuously variable rotating head, and a ball cage type universal joint is used at the turning to realize the longitudinal feeding after the motor shaft is bent, and the purpose is to make the rotating head have a small radius to realize In the narrow space of the nozzle flange bolt, the motor head ⁇ bolt groove can be close to and aligned with the ⁇ bolt that needs to be loose, so as to achieve effective installation and disassembly.
  • a stainless steel spring pin lock device with special structure is welded on the flange of the high pressure valve, so that the high pressure valve can be smoothly locked on the flange of the high pressure well nozzle, thereby facilitating the environment under the harsh high pressure blowout environment. Tighten the flange of the flange to complete the process of installing the new valve.
  • the structural features of the device are as follows:
  • the locking sleeve is of a rounded sleeve type, and the inner diameter of the sleeve is slightly larger than the outer diameter of the valve flange.
  • a set of approximately 8-24 springs and tapered pin pins, or 8-24 springs and a bearing half-rotating plate pins are mounted in the inner walls of the sleeve and in the respective locking grooves of the same sectional plane.
  • the distance from the truncated face to the upper plane of the sleeve is slightly greater than the sum of the thickness of the valve flange and the thickness of the wellhead flange.
  • the upper half of the sleeve which is cut off from the plane, and the lower half of the preloaded spring lock pin are seamlessly welded to the arc intersecting the cross section of the inner and outer walls of the sleeve to form a spring pin lock device.
  • a set of inclined stainless steel guiding slide strips are seamlessly welded to facilitate smooth insertion into the well pipe flange.
  • the precision and strong circumferential welding is used to lock the stainless steel spring ball.
  • the upper in-plane round wire of the device is welded to the outer round wire of the valve flange.
  • the shallow groove can be prefabricated on the welding arc.
  • a trench pre-seal sealing method is used to build a sealed chamber of the subsea pile-based steel structure concrete, and the oil is led out from the high pressure valve at the top of the ladder cover.
  • the seabed sludge is removed around the nozzle of the oil well that is out of control.
  • four piles are positioned at the four corners of the TF around the well, passing through the seabed rock to a depth of about 3-20 meters.
  • Two square deep grooves are opened by a slotting machine on the rock of two square lines connected by four pile wells which are slightly smaller than the inner tangent line and slightly larger than the outer tangent line.
  • the closed cavity of the submarine steel box is constructed.
  • the inner and outer steel box plates of the double-layer steel box of the prefabricated rectangular bottom are inserted into the two square deep grooves pre-cut out of the seabed rock, inserted into the bottom of the tank through the pressure conveying pipe, and perfused with high strength.
  • ⁇ Mud mortar while driving up the sea.
  • heavy oil with a specific gravity larger than seawater is injected above the inner and outer square grooves, and floats on the cement and maintains a certain thickness in the groove, thereby
  • the cement slurry is closed by heavy oil and isolated from sea water.
  • the quick-setting cement mortar is set and condensed. In this way, the double-walled steel box is completely coagulated with the steel frame of the four well piles and is completely sealed with the seabed rock layer.
  • the seawater in the steel box interlayer is evacuated, and then the quick-setting cement mortar is injected.
  • the quick-setting cement mortar is condensed and shaped, so that the steel structure concrete sealed chamber is formed around the oil well.
  • the ladder steel cover with 2-3 high pressure valves is fastened and then tightly sealed.
  • the uncontrolled blowout crude oil will be led out by the steel cover valve.
  • the bottom of the square steel box with the interlayer is sealed with the viscous oily adhesive slurry continuously supplied to the seabed plane, and then a sealed chamber of the seabed pile-based steel structure concrete is formed, and the oil is from the ladder type.
  • the high pressure valve at the top of the hood is exported.
  • the seabed silt is removed around the nozzle of the oil well that is out of control, and the bottom of the rock is leveled.
  • four piles are positioned at the four corners of the square around the well, passing through the seabed rock to a depth of about 3-20 meters.
  • the upper pipe and the bottom of the box connected thereto are welded with a viscous oily adhesive slurry discharge interlayer.
  • a viscous oily adhesive slurry discharge interlayer On the steel plate flat bottom steel plate end, you can put a soft rubber sleeve or not.
  • the inner and outer steel plates of the double-layer steel box are wrapped in a prefabricated steel frame square frame of the pile foundation.
  • the adhesive slurry pump is turned on, and the viscous oily adhesive slurry in the tank is piped to the steel box conduit to the discharge interlayer around the bottom portion, and the adhesive slurry is slowly supplied to the double-layer steel at a constant pressure.
  • the inner and outer walls of the box are closed to the plane of the seabed rock.
  • the feed can be stopped; if not, the constant pressure is continuously supplied to the slurry to keep it sealed to prevent subsequent intrusion of seawater at the bottom of the steel box into the steel tank layer.
  • cement mortar is poured into the steel box interlayer.
  • the steel box layer can be evacuated or directly poured without evacuation.
  • the 4--12 feed port is quickly injected into the quick-setting cement mortar, and the seawater is driven upwards.
  • the quick-setting cement mortar is condensed and shaped, so that the steel structure concrete sealed chamber is formed around the oil well.
  • the ladder steel cover with 2 to 3 high pressure valves is fastened and then tightly sealed, and the uncontrolled blowout crude oil will be led out by the wide door of the steel cover.
  • Figure 1 High pressure valve with spring ball lock.
  • Figure 2 A-A cross-sectional view of the spring-loaded lock device.
  • Figure 3 Schematic diagram of the wheel shank spokes of the operating wheel.
  • Figure 4 Schematic diagram of the automatic tightening machine for the ⁇ bolt nut.
  • Figure 5 Docking diagram of the valve flange pre-assembled with the spring-loaded locking device and the nozzle flange.
  • Figure 6 Schematic diagram of a concrete seal room enclosing a steel frame of a pile pile through a double-layer steel box.
  • Figure 7 Schematic diagram of the steel structure of the prefabricated well pile.
  • Figure 8 Schematic diagram of a double-layer steel box with a rectangular bottom.
  • Figure 9 Pre-sealed operation of the pre-buried double-layer steel box for the trench.
  • Figure 10 Pre-sealing operation of the pre-buried double-layer steel box for the ground trench.
  • Figure 11 Viscous oily bond-seal-encapsulated double-layer steel box operation.
  • Figure 12 Viscous oily coherent slurry encapsulated double steel box operation II.
  • Figure 13 Schematic diagram of a square steel box with a steel structure and a sealed wellhead.
  • Figure 14 Ladder steel valve. illustration
  • a spring-loaded lock device mounted on the flange of the high-pressure valve.
  • the spokes are connected to the shaft of the wheel.
  • the bottom of the box is filled with cement mortar holes.
  • the top of the box excludes seawater holes.
  • a steel box encased in a pile frame.
  • a raw material tank for continuously injecting an oily adhesive slurry under constant pressure.
  • the spokes 12 of the operating wheel are connected to the wheel shank 11 through the shaft connection 14, and the other end of the wheel spoke is passed through a flat hole or a hanging ring flat hole nose mounted on the stainless steel clamp of the valve neck, and the connecting shaft 18 is passed through the folding 19
  • the fastening device 13 is fixed. After all the spokes are tightened, the wheel handle is integrated with the high pressure valve through the spokes, so that the process of installing the high pressure valve above the high pressure well nozzle can be conveniently accomplished by manipulating the outer edge handle 11.
  • a special spring ball lock device 2 is welded, and two positioning bolts 39 are symmetrically fixed on the wide door flange for When installing the high pressure valve, in order to adapt to the high pressure blowout environment, the flange holes 43 of the upper and lower flanges can be accurately aligned.
  • the positioning bolt 39 is accurately butted with the nozzle flange hole 43 and then pressed downward through the wheel handle ( In Fig.
  • the high pressure valve is tightly engaged with the underlying flange by the spring pin lock device (Fig. 5), because of the anti-reverse action of the ball lock device with a certain strength, even in the case Under high nozzle pressure, the high pressure valve will not be rushed again, so that the valve flange and the flange of the nozzle can be fully engaged together (Figure 5 below).
  • the ⁇ bolt and the ⁇ mother of the valve flange hole are tightened in turn.
  • the uncontrollable high-pressure LPG blowout caused by the out-of-control of the oil well nozzle blowout preventer or the total valve is controlled and closed after the new high-pressure straight-through valve is installed by the above method.
  • the tamper automatic tensioning machine also undertakes the task of loosening the connection ⁇ bolt and the tweezer of the upper and lower flanges of the oil well pipe to conveniently remove the upper flange pipe of the oil well pipe.
  • the special tamper automatic tightening machine has a large electric torque, which can solve the problem that the flange bolt is not easy to be unloaded under special circumstances.
  • the manual board can solve the problem, of course, it can be.
  • the method is not only applicable to ground high-pressure LPG blowout, but also fully applicable to the need to install a new control valve for subsea blowout.
  • the high-pressure valve installed in this method should generally adopt a straight-through high-pressure gate valve. 2.
  • the working method of the bolt automatic elastic machine The lifting and lowering of the motor head ⁇ latching slot 33 is controlled by the lifting and lowering of the hydraulic lever 26, and the hydraulic rod 26 and the sliding sleeve 24 are connected to the DC motor 30 or 37, and the sliding sleeve 24 is established in the center of the console 22.
  • the ball type is slid up and down to drive the motor 30 or 37 up and down, and the high-energy lithium battery 17 is disposed in the column.
  • the lower ⁇ mother card slot 34 can also be hydraulically controlled to lift 35 to adapt to the special environment of the spur nozzle, and the hydraulic inner rod and hydraulic pressure of the ⁇ mother card slot hydraulic lifting
  • the cavity can be square or hexagonal.
  • the device is controlled in linkage with the hydraulic circulation pump 28 of the hydraulic lifting rod.
  • the DC motor can be a vertical 37 stepless variable speed rotary head. It is also possible to adopt a turning type 30 continuously variable rotating head, and a ball cage type joint 32 is used at the turning point to realize longitudinal feeding after the motor shaft 31 is bent, and the purpose is to make the rotating head have a small radius.
  • the motor head ⁇ bolt groove can be close to and aligned with the ⁇ bolt required to be elastic, thereby achieving effective installation and disassembly.
  • a stainless steel spring pin lock device (Fig. 2) with special structure is welded on the flange of the high pressure valve, so that the high pressure valve can be smoothly locked on the flange of the high pressure well nozzle port 2, thereby facilitating the bad In the high-pressure well shooting environment, it is easy to tighten the flange of the flange to complete the process of installing a new valve.
  • the locking sleeve is of a cylindrical sleeve type, and the inner diameter of the sleeve is slightly larger than the outer diameter of the valve flange.
  • a set of approximately 8-24 springs 9 and tapered pin 8, or 8-24 springs and abutments 41 are mounted in the inner walls of the sleeve and in the lock grooves evenly distributed on the same section plane (Fig. 2).
  • Half turn pin 42 The distance from the section plane (A-A) to the upper plane 38 of the sleeve is slightly greater than the sum of the thickness of the valve flange and the thickness of the wellhead flange.
  • the upper half of the sleeve, which is cut off from the plane, and the lower half of the preloaded spring lock pin are seamlessly welded on the arc 7 where the inner and outer walls of the sleeve intersect the cross section to form a spring pin lock device. .
  • a set of inclined stainless steel guiding slide strips 3 are evenly and seamlessly joined to facilitate smooth insertion into the well tubular flange 40.
  • the upper inner wall 21 of the device and the outer wall 20 of the valve flange are prepared, coated with metal adhesive, and then sleeved together, and the upper plane is aligned, and the stainless steel spring is welded by precision and strength.
  • the upper in-plane round wire of the ball lock device is welded to the outer circle 38 of the valve flange.
  • the shallow groove can be prefabricated on the welding arc. 4.
  • Surrounding the oil well of the subsea blowhole it is sealed by inserting the groove 60 to form a sealed chamber of the subsea pile-based steel structure concrete (Fig. 6), and then the oil is led out from the high pressure valve 71 of the ladder top 69.
  • the seabed sludge is removed around the nozzle of the oil well that is out of control.
  • Four pile wells 44 are positioned by the offshore oil rig at four corners around the well 46, passing through the seabed rock at a depth of about 3-20 meters.
  • the square frame of the subsea pile steel structure is connected to the ground (Fig. 7), and the four angle legs 52 of the frame are inserted into the bottom of the four pile wells 53 and the frame is completely horizontal, and then the pump is pressed by the pile.
  • the bottom of the well is filled with high-strength quick-setting cement mortar, and at the same time, the seawater is driven upwards; when the cement mortar is filled into the pile well 53 and overflows from the wellhead, heavy oil with a specific gravity larger than seawater is injected above the pile well, and floats above the cement slurry. Maintain a certain thickness, so that the cement slurry in the well pile is closed by heavy oil and isolated from sea water. After 1-5 days, the quick-setting cement mortar is condensed and shaped to complete the steel structure frame of the pile foundation around the subsea oil well.
  • a closed chamber 48 for the subsea steel box is constructed.
  • the inner and outer steel plates 47 of the double-layer steel box 55 of the prefabricated rectangular tooth bottom 56 are inserted into the two square deep grooves 60, 47 pre-cut out of the seabed rock, through
  • the pressure transfer pipe is inserted into the bottom of the tank, and the high-strength quick-setting cement sand 61 is poured while driving up the seawater (Fig. 9, Fig. 10).
  • the seawater in the steel box layer is evacuated 63, and then injected into the quick-setting cement mortar 48.
  • the quick-setting cement mortar is condensed and shaped, so that the steel structure concrete sealed chamber is formed around the oil well;
  • the upper plane of the chamber, the conical steel cover 69 with 2 - 3 high pressure valves is fastened, and then the seal 70 is tightened, and the uncontrolled blowout crude oil will be led out by the valve 71 of the steel cover. 5.
  • the mud at the bottom of the sea is removed around the nozzle of the oil well that is out of control, and the bottom of the rock is leveled.
  • Four pile wells 44 are positioned through the offshore oil rigs at the four corners of the square around the well, passing through the seabed rock to a depth of about 3-20 meters.
  • the bottom is filled with high-strength quick-setting cement mortar 53 while driving up the seawater.
  • the upper duct 64 and the bottom of the box connected thereto are welded with a viscous oily adhesive slurry discharge interlayer 68; at the steel plate flat bottom steel plate end, it can be softened. Rubber sleeves, or not.
  • the inner and outer steel plates 47 of the double-layer steel box are wrapped around the prefabricated pile foundation 44, 45 steel structure frame. Opening the adhesive slurry pump, pipe the viscous oily adhesive slurry of the tank 65 to the steel box conduit 64 to the discharge interlayer 68 at the bottom periphery, and supply the adhesive paddle at a constant pressure, thereby The outer wall of the double-layer steel box is completely closed to the plane of the seabed rock.
  • the feeding can be stopped; if it is not solidified, the slurry is supplied to the slurry at a constant pressure to keep it closed, thereby isolating the subsequent intrusion of seawater at the bottom of the steel box into the steel box layer.
  • cement mortar 66 is poured into the steel box floor.
  • the steel box layer can be evacuated or directly poured without evacuation.
  • 4--12 inlets 50 quickly inject a large amount of quick-setting cement mortar 67, while driving up the seawater, when the cement mortar is filled with the inner space of the steel box layer and fully covered by the top surface of the box After a large amount of overflow, pull out the conveying pipe and close all the steel box orifices.
  • the quick-setting cement mortar is condensed and shaped, so that the steel structure concrete sealed chamber is formed around the oil well (Fig. 13);
  • the upper plane of the chamber is fastened with a trapezoidal steel cover with 2 to 3 high pressure valves (Fig.
  • the uncontrolled oil high pressure blowout caused by failure of the blowout preventer or the total valve failure is solved, which is faster and more effective than the conventional method, and is stable and reliable.
  • this method can solve the problem in about 20 days and the well is not scrapped, while the traditional method takes 2-3 months or more.

Landscapes

  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Physics & Mathematics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Earth Drilling (AREA)
  • Mechanically-Actuated Valves (AREA)

Abstract

一种因为油井防喷器或高压总阀门的失效及损坏而导致高压石油气井喷失控的解决方法,采用安装了弹簧弹子锁套装置(2)的高压阀门装置,通过可操作的轮盘以及使用专用的螺栓自动松紧机,实现对高压井喷的管口在恶劣环境下安装新的高压阀门装置,从而关闭失控的高压井喷。该方法不仅适用于地面而且适用于深海海底石油井喷。另外也可以采用在井喷管口海底周围,通过预制井桩的方法架构一个完全密闭的钢结构混凝土封箱,将失控的油井完全封闭起来,然后在上方安装预制了高压阀门梯型钢罩(69),失控的井喷原油将由钢罩的阀门(71)导出,从而达到对失控高压井喷的完全控制和安全利用。

Description

高压石油井喷失控的解决方法 技术领域
本发明涉及一种因为油井防喷器或高压总阈门的失效及损坏而导致高压石油气井喷 失控的解决方法。也即采用安装了弹簧弹子锁套装置的新髙压阀门装置,通过可操作的轮柄 盘以及使用专用的螺栓自动松紧机, 实现对高压井喷管口在恶劣环境下安装新的高压阀门。 该法不仅适用于地面而且适用于深海海底石油井喷。 另外也可以采用在井喷管口海底周围, 通过打井桩的方法架构一个完全密闭的钢结构混凝土封箱, 将失控的油井完全封闭起来, 然后在上方安装梯型钢罩、 并预装高压阀门, 从而达到对失控井喷的控制和安全利用。
背景技术
石油钻井发生井喷事故, 通常是由于各种原因造成的, 如果油井防喷器或总高压阀门 没有失效或损坏,那么髙压井喷最终可以通过关闭上述阀门解决问题。如果是因为高压的石 油气造成了防喷器或总高压阀门的损坏或失效而无法关闭阀门、发生的井喷,那么问题就非 常严重, 不好解决。历史上曾经出现过的严重井喷, 比如 1956年 8月 26闩伊朗库姆附近的 井喷, 无法控制的原油喷到了 51. 8米高度, 每天喷出 12万桶; 1979年 6月 3円墨西哥湾 海底石油井喷, 每天泄漏喷出 4000- 5000吨原油。它们都是在用了三个多月的时间后, 才将 失控的高压井喷完全控制住,但已经对周围的环境造成了严重污染。井喷往往伴随着有毒气 体, 易燃易着火, 造成对环境和人群较大的危害。通常, 解决高压石油气井喷失控的抢险方 法有压井法, 是将密度大的重晶石粉灌到井里, 以增加压力, 止住井喷的继续发生。或者用 髙压泵将大量重泥浆或水泥砂浆一次性打入井管, 将油井控制住或封住。打救援井法, 如果 井喷压力过高, 直接压井压不住, 可在距离井喷油井的附近打一个斜向的井, 与井喷的油井 交汇; 或在离开井喷油井的安全距离打两个同样的井, 通过向井底注入水泥砂浆, 将井喷的 油井在底部封死。美国墨西哥湾 2010年 4月发生的深水地平线钻井平台爆炸所形成的井喷, 就是采用打救援井的方法, 但持续了近 4-5个月, 并造成了巨大的经济损失。采用前述方法 虽然最终能够解决问题,但对于超髙压力失控的油气井喷来讲,速度较慢,效果不是太理想, 同时造成井喷的油井完全报废。另外操作的周期过长, 也需付出极大的代价。尤其是对于深 海海底失控的髙压石油井喷来讲, 由于无法进行深水人工作业,若不能在较短的时间内制止 住巨量泄漏的井喷原油, 将会对周围的海域和生态环境造成无法估量和难以挽回的损失。 发明内容
本发明针对井喷高压油气的恶劣环境不易操作的背景,提出了一整套便于操作和 易于控制的解决方法, 可以在较短的时间内, 以很少的成本或极低的代价解决地面或 深海海底高压石油气井喷失控的问题。
为了适应在高压井喷管口法兰安装新阀门的需要,采用特殊处理的新的直通式高压阀门, 通过以下几个步骤来实现。
在直通式高压阀门的上方颈部或者以及下方颈部, 安装可以自由拆装的操控轮盘,用以 在高压井喷管口的法兰上能够方便的操作安装新的高压阀门。该操控轮盘的安装是这样实现 的: 在高压阀门的颈部安装不锈钢卡箍, 卡箍上带有横式或竖式的扁孔鼻或挂环式扁孔鼻。 卡箍可以采取上紧的方式,也可采取焊接的方式固定在高压阀门的颈部。操作轮盘的轮辐通 过轴连接与轮柄相连,将轮辐另一端穿过安装在阈门颈部不锈钢卡箍上的扁孔或挂环式扁孔 鼻, 经折叠连接轴后通过扣紧装置固定, 将全部轮辐绷紧后, 使轮柄通过轮辐与高压阀门一 体化, 以实现通过操控外缘轮柄来方便的完成在高压井喷管口上方安装高压阀门的过程。
在直通式髙压阀门欲与油井管口法兰相连接的阀门法兰边缘,悍接上专用的弹簧弹子锁 套装置, 在阀门法兰上对称的固定两个定位蟝柃, 用以在安装高压阀门时, 为了适应高压井 喷的环境, 能够使上下法兰的法兰孔准确对位。当通过操控轮柄将髙压阀门通过专用弹簧弹 子锁套装置下方的滑卡套入管口法兰、定位螺栓与管口法兰孔准确对接后,通过轮柄向下施 压, 髙压阀门通过弹簧弹子锁套装置便与下面的管口法兰紧密扣合在一起, 由于具有一定强 度的弹子锁锁套装置的止逆作用, 因此即使在很高的管口喷压作用下,高压阀门也不会再被 冲起, 从而使阀门法兰与管口法兰能够完全扣合在一起。
通过操作专用螵柃自动松紧机, 将阀门法兰孔的嫘柃、 螺母依次上紧。 这样, 由于油 井管口防喷器或总阀门失效而造成的不可控性高压石油气井喷,在通过上述方法安装了新的 高压直通式阀门后, 得到控制。该嫘栓自动松紧机, 还担负着将油井管口上下法兰的连接嫘 柃与蟝母松开的任务, 以方便的拆除油井管口的上法兰管。该专用嫘柃自动松紧机具有很大 的电动扭矩, 可以解决在特殊环境下法兰螵栓不易卸下的难题。另外, 若采用手工板子能解 决问题, 当然也可以。
最后将新装上的高压阀门关闭。 该法不仅适用于地面高压石油气井喷, 而且也完全适 用于海底井喷安装新的控制阀门的需要,本法所安装的高压阀门一般宜采用直通式高压闸阖。 嫘柃自动松紧机的工作方法。 通过液压杆的升降控制直流电机头嫘栓卡槽的升降进给, 液压杆与滑动套管与直流电机相连接,滑动套管套在控制台的中央立杵上、通过滚珠式上下 滑动从而带动电机的升降,立杵内配置高能锂电池。在直流电动机头的嫘栓槽内側面有强磁 性材料,下方嫘母卡槽也可采用液压控制升降以适应井喷管口的特殊环境,其螺母卡槽液压 升降的液压内杆及液压肸,可以采用 if方型六角型或三角型。当上下螺母柃槽纵向进给对准 嫘柃嫘母后, 启动无级变速直流电机, 从而完成对嫘栓螵母的电动旋紧和松开; 在嫘栓卡槽 的底部设置触压式感知装置, 与液压升降杆的液压循环泵联动控制, 当上下螺栓母槽压紧 蟝柃嫘母后, 便不再纵向过度进给, 从而实现自控升降的电动松紧嫘母的过程。 直流电机 可以采用垂直式的无级变速旋转机头。 也可以采用转弯式的无级变速旋转机头, 转弯处采 用球笼式万向节以实现电机轴弯转后的纵向进给,其目的是使旋转机头具有很小的半径, 以 实现在管口法兰螺栓狭小的空间内,能够使电机头嫘栓槽贴近并对准需要松紧的嫘栓, 从而 实现有效的安装和拆卸。
在高压阀门的法兰上焊接具有特殊结构的不锈钢弹簧弹子锁套装置, 使高压阀门能够 顺利的套锁在高压井喷管口的法兰上, 从而有利于在恶劣的高压井喷环境下,容易的上紧连 接法兰的嫘栓蟝母, 以完成安装新阀门的过程。 该装置的结构特点是: 锁套为圆杵状套筒 型, 套筒的内径略大于安装阀门法兰的外径。在套筒的内壁、 同一个截平面上均勾分布的各 锁槽内, 安装一组大约 8-24个弹簧及锥形弹子销、或 8-24个弹簧及轴撑半转板销。从截平 面到套筒上平面的距离略大于阀门法兰盘厚度与井管口法兰盘的厚度之和。将平面截开的套 筒上半段, 与预装了弹簧锁销的下半段, 在套筒的内外壁与截面相交的弧线上, 进行无缝焊 接, 制成弹簧弹子锁套装置。在该装置的下平面的内圈, 均勾的无缝焊接一组倾斜的不锈钢 引导滑卡条, 以利于顺利套入井管法兰盘。将制备好的该装置上部内圆壁及阀门法兰盘外圆 壁, 涂上金属胶粘剂, 然后套合在一起, 且上平面对齐, 通过精密而有强度的圆周焊接, 将 该不锈钢弹簧弹子锁套装置的上平面内圆线与阀门法兰盘的外圆线焊接在一起。为了使焊接 完好, 可以在焊接弧线上预制焊接浅槽。 在井喷的油井四周海底,以沟槽预埤密封法,造一个海底井桩基钢结构混凝土的密封室, 石油从梯型罩顶的高压阀门导出。
首先, 在失控的石油井喷的油井管口周围清除海底淤泥。 通过海上石油钻井平台在油 井周围 TF方的四个角定位打四个桩井, 穿过海底岩石大约 3-20米深度。 在四个桩井相连的 略小于内切线、略大于外切线的两个 ΪΗ方形线的岩石上,用开槽机开出两个 方形深型沟槽。 在地面焊接好海底井桩钢结构的四方框架,将框架的四只角钢腿,插入到四个桩井的底部并 使框架整体处于水平,然后通过泵压输送管由桩井的底部灌注高强度速凝水泥砂浆, 同时向 上驱赶出海水; 当水泥砂浆灌注满桩井并由井口大量溢出时, 在桩井口上方注入比重大于海水 的重油, 同时浮在水泥浆之上保持一定厚度, 从而将井桩内的水泥浆被重油所封闭, 与海水 隔绝。 经过 1-5天, 速凝水泥砂浆凝结定型。 完成海底油井四周的井桩基钢结构框架。
其次, 建造海底钢箱的密闭腔。将预制好的矩形齿底的双层钢箱的内外钢箱板, 插入到海 底岩石预先开凿出的两个正方形的深型沟槽内, 通过压力输送管插入到槽的底部, 灌注高强度 速^泥砂浆,同时向上驱赶出海水。当水泥砂浆灌注满内外正方形沟槽并由表面大量溢出时, 在内外正方形沟槽上方注入比重大于海水的重油、 同时浮在水泥柴之上并在槽内保持一定厚 度, 从而将沟槽内的水泥浆被重油所封闭, 与海水隔绝。 经过 1-5天, 速凝水泥砂浆凝结定 型。这样, 双层的方钢箱便与四个井桩的钢结构框架完全混凝, 同时与海底岩石层完全密封。
最后, 将钢箱夹层的海水抽空, 然后注入速凝水泥砂浆, 经过 2-10天, 速凝水泥砂浆 凝结定型, 从而在油井四周制成钢结构混凝土密闭的方室。 在方型室的上平面, 将带有 2-3 个高压阀门的梯型钢罩扣住, 然后紧固密封, 失控的井喷原油将由钢罩的阀门导出。 在井喷的油井四周海底,通过持续供给的粘稠油性粘合浆剂对具有夹层的方钢箱的底部、 与海底平面密封,然后造一个海底桩基钢结构混凝土的密封室,石油从梯型罩顶的高压阀门 导出。
首先, 在失控的石油井喷的油井管口周围清除海底淤泥, 海底岩石作底面找平处理。 通过海上石油钻井平台在油井周围正方的四个角定位打四个桩井, 穿过海底岩石大约 3-20 米深度。在地面焊接好海底井桩钢结构方形框架,将框架的四只角钢腿, 插入到四个桩井的 底部并使框架处于完全水平, 然后通过泵压输送管由桩井的底部灌注高强度速凝水泥砂浆, 同时向上驱赶出海水。当水泥砂浆灌注满桩井并由井口大量溢出时,在桩井口上方注入比重 大于海水的重油,同时浮在水泥浆之上保持一定厚度,从而将井桩内的水泥浆被重油所封闭, 与海水隔绝。经过 1-5天,速凝水泥砂浆凝结定型,完成海底油井四周的井桩基钢结构框架。
其次, 在预制的双层钢箱的内外侧面, 焊接上导管及与其相连的箱底周边粘稠油性粘合 浆出料夹层。 在钢箱平底部钢板端, 可套上软的橡胶套, 也可不套。 将该双层钢箱的内外层 钢板, 套包住预制好的井桩基钢结构方型框架。 开启粘合浆泵, 将罐中的粘稠油性粘合剂浆, 通过管道输送到钢箱导管至底部周边的出料夹层内, 以恒压徐徐供给粘合剂浆料, 从而将双 层钢箱的内外壁与海底岩石平面封闭。如果粘合剂浆料凝固密封, 可停止供料; 如果不凝固, 则恒压持续供给浆料, 使之保持密闭, 以隔绝钢箱底部海水对钢箱层内的后续侵入。 最后, 在钢箱夹层内灌注水泥砂浆。 钢箱层内可作抽空处理, 也可不抽空而直接灌注。 通过泵压力输送管在钢箱层底部的 4--12个进浆管口,快速大量注入速凝水泥砂浆, 同时向 上驱赶出海水。当水泥砂浆灌注满钢箱层内空间并由箱顶平面充分大量溢出后,拔出输送管 并封闭所有的钢箱孔口。 经过 2- 10天, 速凝水泥砂浆凝结定型, 从而在油井四周制成钢结 构混凝土密闭的方室。在方型室的上平面, 将带有 2- 3个高压阀门的梯型钢罩扣住, 然后紧 固密封, 失控的井喷原油将由钢罩的阔门导出。
附图说明
图示说明
图 1 : 安装了弹簧弹子锁套装置的高压阀门。
图 2: 弹簧弹子锁套装置的 A- A剖面图。
图 3: 操作轮盘之轮柄轮辐卡箍的示意图。
图 4: 嫘栓螺母自动松紧机示意图。
图 5: 预装了弹簧弹子锁套装置的阀门法兰与管口法兰的对接图。
图 6: 通过双层钢箱套包住井桩钢结构框架的混凝土封井室示意图。
图 7: 预制井桩的钢结构框架示意图。
图 8: 矩形齿底的双层钢箱示意图。
图 9: 地沟槽预埋式双层钢箱预封操作一。
图 10: 地沟槽预埋式双层钢箱预封操作二。
图 11: 粘稠油性粘合浆包封式双层钢箱操作一。
图 12: 粘稠油性粘合浆包封式双层钢箱操作二。
图 13: 套包井桩钢结构混凝土钢箱、 密封井口的方室示意图。
图 14: 梯型钢罩阀门。 图例说明
1.予安装在高压阀门颈部的卡箍。
2.予安装在高压阀门法兰上的弹簧弹子锁套装置。
3.弹簧弹子锁套下面的不锈钢滑卡。
4.高压阀门阀闸的开关旋轴。
5.高压阀门的连接法兰。 6.高压阀门的颈部。
7.弹簧弹子锁套的焊接线。
8.梯角型不锈钢弹子插销。
9.不锈钢弹子弹簧。
10.弹簧弹子锁套装置的 A-A截面。
11.操作轮盘的轮柄。
12.操作轮盘的轮辐。
13.操作轮盘轮辐的扣紧装置。
14.轮辐与轮盘的轴连接。
15.轮辐挂紧的卡箍 (焊接式或上紧式) 。
16.卡箍上的挂紧轮辐的横向扁孔鼻或挂环式扁孔鼻。
17.卡箍上的挂紧轮辐的竖向扁孔鼻。
18.轴连接。
19.轮辐的折叠段。
20.阀门法兰盘外圆壁。
21.弹簧弹子锁套装置上部内圆壁。
22.嫘栓自动松紧机的操作架。
23.嫘栓自动松紧机的立柱。
24.携带电机的滑动套管。
25.液压升降的套管。
26.液压升降杆。
27.固体电池。
28.液压循环泵。
29.液压循环管。
30.弯头式密封直流电机。
31.直流电机的输出转轴。
32.球笼式万向节。
33.上紧嫘栓的卡槽。
34.顶住嫘母的卡槽。
35.采用液压升降的嫘栓母卡槽。
36.操作按钮。
37.垂直式密封直流电机。
38.阀门法兰与弹簧弹子锁套的焊接点。 39.阀门法兰上的两个固定定位嫘栓。
40.油井管口法兰。
41.转板式弹子。
42.转板轴支撑。
43.油井管口法兰孔。
44.桩井内灌注速凝水泥。
45.桩井内的角钢。
46.井喷油井。
47.双层钢板箱。
48.钢板箱内灌注速凝水泥。
49.双层钢板封箱立体图。
50.箱底灌注水泥砂浆孔。
51.箱顶排除海水孔。
52.插入到桩井内的角钢腿。
53.灌注了速凝水泥的井桩基。
54.焊接条形钢。
55.套包住井桩框架的钢箱。
56.钢箱的矩形齿底。
57.海水。
58.安装的双层钢箱。
59.海底岩石基。
60.岩石基内开出的深型插槽。
61.速凝水泥浆。
62.封住速凝水泥桨的重油。
63.抽空海水。
64.钢箱侧面油性粘合浆导管。
65.恒压持续灌注油性粘合浆的原料罐。
66.盛装速凝水泥砂浆的罐。
67.底部灌注速凝水泥浆驱逐海水。
68.钢箱底部周边的粘合浆出料夹层。
69.梯型钢罩。
70.上紧装置。
71.高压阀门。 具体实施方式
下面结合图示及图例, 进一步说明本发明的具体实施过程。
一. 在直通式高压阀门 (图 1 ) 的上方颈部 1或者以及下方颈部 6, 安装可以自由拆装的操 控轮盘(图 3上), 用以在高压井喷管口的法兰上能够方便的操作安装新的高压阀门。 该操 控轮盘的安装是这样实现的: 在高压阀门的颈部安装不锈钢卡箍 1, 卡箍 15上带有横式 16 或竖式 17的扁孔鼻或挂环式扁孔鼻; 卡箍可以采取上紧的方式, 也可采取悍接的方式固定 在高压阀门的颈部。 操作轮盘的轮辐 12通过轴连接 14与轮柄 11相连, 将轮辐另一端穿过 安装在阀门颈部不锈钢卡箍上的扁孔或挂环式扁孔鼻,经过折叠 19连接轴 18后通过扣紧装 置 13固定。 将全部轮辐绷紧后, 使轮柄通过轮辐与高压阀门一体化, 以实现通过操控外缘 轮柄 11来方便的完成在高压井喷管口上方安装高压阀门的过程。
在直通式高压阀门欲与油井管口法兰相连接的阀门法兰 5边缘,焊接上专用的弹簧弹子 锁套装置 2, 在阔门法兰上对称的固定两个定位嫘栓 39, 用以在安装高压阀门时, 为了适应 高压井喷的环境, 能够使上下法兰的法兰孔 43准确对位。 当通过操控轮柄将高压阀门通过 专用弹簧弹子锁套装置 2下方的滑卡 3套入管口法兰、定位嫘栓 39与管口法兰孔 43准确对 接后, 通过轮柄向下施压(图 5上), 高压阀门通过弹簧弹子锁套装置便与下面的管口法兰 紧密扣合在一起(图 5下), 由于具有一定强度的弹子锁锁套装置的止逆作用, 因此即使在 很高的管口喷压作用下, 高压阀门也不会再被冲起,从而使阀门法兰与管口法兰能够完全扣 合在一起(图 5下)。
通过操作本法专用的嫘栓自动松紧机(图 4), 将阀门法兰孔的嫘栓、 嫘母依次上紧。 这样, 由于油井管口防喷器或总阀门失控而造成的不可控性高压石油气井喷,在通过上述方 法安装了新的高压直通式阀门后, 得到控制和关闭。该嫘栓自动松紧机, 还担负着将油井管 口上下法兰的连接嫘栓与嫘母松开的任务, 以方便的拆除油井管口的上法兰管。该专用嫘栓 自动松紧机具有很大的电动扭矩, 可以解决在特殊环境下法兰螺栓不易卸下的难题。 另外, 若采用手工板子能解决问题, 当然也可以。
最后将新装上的高压阀门 4关闭。 该法不仅适用于地面高压石油气井喷, 而且也完全 适用海底井喷安装新的控制阀门的需要,本法所安装的高压阀门一般宜采用直通式高压闸阀。 二. 螺栓自动松紧机的工作方法。通过液压杆 26的升降控制电机头嫘栓卡槽 33的升降进给, 液压杆 26与滑动套管 24与直流电机 30或 37相连接,滑动套管套 24在控制台 22的中央立 柱上 23、 通过滚珠式上下滑动从而带动电机 30或 37的升降, 立柱内配置高能锂电池 17。 在直流电动机头的嫘栓槽内側面有强磁性材料, 下方嫘母卡槽 34也可采用液压控制升降 35 以适应井喷管口的特殊环境,其嫘母卡槽液压升降的液压内杆及液压腔,可以采用正方型六 角型或三角型。 当上下嫘母栓槽纵向进给对准螺栓嫘母后, 启动无级变速直流电机, 从而完 成对嫘栓嫘母的电动旋紧和松开; 在嫘栓卡槽 33的底部设置触压式感知装置, 与液压升降 杆的液压循环泵 28联动控制, 当上下嫘栓母槽压紧嫘栓嫘母后, 便不再纵向过度进给, 从 而实现自控升降的电动松紧螵母的过程。直流电机可以采用垂直式 37的无级变速旋转机头。 也可以采用转弯式 30的无级变速旋转机头, 转弯处采用球笼式万向节 32以实现电机轴 31 弯转后的纵向进给,其目的是使旋转机头具有很小的半径, 以实现在管口法兰嫘栓狭小的空 间内, 能够使电机头嫘栓槽贴近并对准需要松紧的嫘栓, 从而实现有效的安装和拆卸。 三. 在高压阀门的法兰上焊接具有特殊结构的不锈钢弹簧弹子锁套装置 (图 2), 使高压阀 门能够顺利的套锁在高压井喷管口的法兰上 2, 从而有利于在恶劣的高压井喷环境下, 容易 的上紧连接法兰的嫘栓嫘母, 以完成安装新阀门的过程。该装置的结构特点是: 锁套为圆柱 状套筒型, 套筒的内径略大于安装阀门法兰的外径。 在套筒的内壁、 同一个截平面(图 2) 上均匀分布的各锁槽内, 安装一组大约 8-24个弹簧 9及锥形弹子销 8、 或 8- 24个弹簧及轴 撑 41半转板销 42。 从截平面(A- A)到套筒上平面 38的距离略大于阀门法兰盘厚度与井管 口法兰盘的厚度之和。将平面截开的套筒上半段, 与预装了弹簧锁销的下半段, 在套筒的内 外壁与截面相交的弧线 7上, 进行无缝焊接, 制成弹簧弹子锁套装置。在该装置的下平面的 内圈, 均匀的无缝悍接一组倾斜的不锈钢引导滑卡条 3, 以利于顺利套入井管法兰盘 40。将 制备好的该装置上部内圆壁 21及阀门法兰盘外圆壁 20,涂上金属胶粘剂,然后套合在一起, 且上平面对齐, 通过精密而有强度的圆周焊接, 将该不锈钢弹簧弹子锁套装置的上平面内圆 线与阀门法兰盘的外圆线 38焊接在一起。为了使焊接完好,可以在焊接弧线上预制焊接浅槽。 四. 在海底井喷的油井四周, 以插入沟槽 60预埋法密封,造一个海底井桩基钢结构混凝土 的密封室(图 6), 然后石油从梯型罩顶 69的高压阀门 71导出。
首先, 在失控的石油井喷的油井管口周围清除海底淤泥。 通过海上石油钻井平台在油 井 46周围正方的四个角定位打四个桩井 44, 穿过海底岩石大约 3- 20米深度。 在四个桩井 相连的略小于内切线、略大于外切线的两个正方形线的岩石上,用开槽机开出两个正方形的 深型沟槽 47、 60。在地面悍接好海底井桩钢结构方形框架(图 7),将框架的四只角钢腿 52, 插入到四个桩井 53的底部并使框架处于完全水平,然后通过泵压输送管由桩井的底部灌注高 强度速凝水泥砂浆, 同时向上驱赶出海水; 当水泥砂浆灌注满桩井 53并由井口大量溢出时, 在桩井口上方注入比重大于海水的重油, 同时浮在水泥浆之上保持一定厚度,从而将井桩内 的水泥浆被重油所封闭, 与海水隔绝。经过 1-5天, 速凝水泥砂浆凝结定型, 完成海底油井 四周的井桩基钢结构框架。
其次, 建造海底钢箱的密闭腔 48。 将预制好的矩形齿底 56 (有利于砂浆的均布) 的双 层钢箱 55的内外层钢板 47,插入到海底岩石预先开凿出的两个正方形的深型沟槽内 60、 47, 通过压力输送管插入到槽的底部,灌注高强度速凝水泥砂 61,同时向上驱赶出海水(图 9、 图 10) 。 当水泥砂浆灌注满内外正方形沟槽 60、 47并由表面大量溢出时, 在内外正方形沟 槽上方注入比重大于海水 57的重油 62, 同时浮在水泥浆之上并在槽内保持一定厚度 62,从 而将沟槽内的水泥浆 61被重油所封闭, 与海水隔绝。经过 1-5天, 速凝水泥砂浆凝结定型。 这样,双层的方钢箱便将四个桩基及钢结构框架完全包住,同时与海底岩石层完全密封 (图 6)。
最后,将钢箱层内的海水抽空 63, 然后注入速凝水泥砂浆 48, 经过 2- 10天, 速凝水 泥砂浆凝结定型, 从而在油井四周制成钢结构混凝土密闭的方室; 在方型室的上平面, 将 带有 2- 3个高压阀门的锥形钢罩 69扣住, 然后紧固密封 70, 失控的井喷原油将由钢罩的 阀门 71导出。 五. 在海底井喷的油井四周, 以恒压持续灌注到钢箱底部夹层 68的粘稠油性粘合剂浆 65 进行包封, 然后造一个海底桩基钢结构混凝土的密封室, 石油从梯型罩顶的高压阀门导出。
首先, 在失控的石油井喷的油井管口周围清除海底的淤泥, 海底岩石作底面找平处理。 通过海上石油钻井平台在油井周围正方的四个角定位打四个桩井 44, 穿过海底岩石大约 3 - 20米深度。 在地面焊接好海底井桩钢结构方框架(图 7), 将框架的四只角钢腿 52, 插入 到四个桩井的底部并使框架处于完全水平,然后通过泵压输送管由桩井的底部灌注高强度速 凝水泥砂浆 53, 同时向上驱赶出海水。 当水泥砂浆灌注满桩井并由井口大量溢出时, 在桩 井口上方注入比重大于海水的重油, 同时浮在水泥浆之上保持一定厚度,从而将井桩内的水 泥浆被重油所封闭, 与海水隔绝。经过 1-5天, 速凝水泥砂浆凝结定型, 完成海底油井四周 的井桩基钢结构方型框架。 其次, 在预制带夹层的钢箱内外侧面(图 11 ), 焊接上导管 64及与其相连的箱底周边 粘稠油性粘合浆出料夹层 68; 在钢箱平底部钢板端, 可套上松软的胶套, 也可不套。将该双 层钢箱的内外层钢板 47, 套包住预制好的井桩基 44、 45钢结构框架。 开启粘合浆泵, 将罐 中 65的粘稠油性粘合剂浆, 通过管道输送到钢箱导管 64至底部周边的出料夹层 68内, 以 恒压徐徐供给粘合剂桨料, 从而将双层钢箱的外壁与海底岩石平面完全封闭。如果粘稠油性 粘合剂浆料凝固密封, 可停止供料; 如果不凝固, 则恒压徐徐供给浆料, 使之保持密闭, 从 而隔绝钢箱底部海水对钢箱层内的后续侵入。
最后,在钢箱层内灌注水泥砂浆 66。钢箱层内可作抽空处理,也可不抽空而直接灌注。 通过泵压力输送管在钢箱层底部的 4- -12个进 口 50, 快速大量注入速凝水泥砂浆 67, 同 时向上驱赶出海水, 当水泥砂浆灌注满钢箱层内空间并由箱顶平面充分大量溢出后,拔出输 送管并封闭所有的钢箱孔口, 经过 2- 10天, 速凝水泥砂浆凝结定型, 从而在油井四周制成 钢结构混凝土密闭的方室(图 13); 在方型室的上平面, 将带有 2- 3个高压阀门的梯形钢罩 扣住(图 14), 然后紧固密封 70, 失控的井喷原油将由钢罩的阀门 71导出。 采用本发明的方法, 解决因为防喷器或总阀门失效损坏等而造成的失控性石油高压 井喷, 比传统的方法速度快而且效果好, 稳定可靠。通常在髙压井喷爆发后, 采用本法可以 在 20天左右解决问题而且油井不报废, 而传统方法则需要 2-3个月甚至更多的时间。

Claims

权 利 要 求 书
1. 一种解决高压石油井喷的方法, 其基本特征是, 为了适应在高压井喷管口法兰安装新阀 门的需要, 采用经过特殊处理的直通式高压阀门装置, 通过以下几个步骤来实现。
在直通式高压阀门的上方颈部或者以及下方颈部,安装可以自由拆装的操控轮盘,用以 在高压井喷管口的法兰上能够方便的操作安装新的髙压阀门。该操控轮盘的安装是这样实现 的: 在高压阀门的颈部安装不锈钢卡箍, 卡箍上带有横式或竖式的扁孔鼻或挂环式扁孔鼻。 卡箍可以采取上紧的方式, 也可采取悍接的方式固定在高压阀门的颈部。操作轮盘的轮辐通 过轴连接与轮柄相连,将轮辐另一端穿过安装在阀门颈部不锈钢卡箍上的扁孔或挂环式扁孔 鼻, 经折叠连接轴后通过扣紧装置固定, 将全部轮辐缃紧后, 使轮柄通过轮辐与高压阀门一 体化, 以实现通过操控外缘轮柄来方便的完成在高压井喷管口上方安装高压阀门的过程。
在直通式高压阀门欲与油井管口法兰相连接的阀门法兰边缘,焊接上专用的弹簧弹子锁 套装置,在阀门法兰上对称的固定两个定位嫘栓, 用以在安装高压阀门时, 为了适应高压井 喷的环境, 能够使上下法兰的法兰孔准确对位。当通过操控轮柄将高压阖门通过专用弹簧弹 子锁套装置下方的滑卡套入管口法兰、定位嫘栓与管口法兰孔准确对接后,通过轮柄向下施 压, 高压阀门通过弹簧弹子锁套装置便与下面的管口法兰紧密扣合在一起。 由于具有一定强 度的弹子锁锁套装置的止逆作用, 因此即使在很高的管口喷压作用下, 高压阀门也不会再被 冲起, 从而使阀门法兰与管口法兰能够完全扣合在一起。
通过操作专用嫘栓自动松紧机, 将阀门法兰孔的嫘栓、 螺母依次上紧。 这样, 由于油 井管口防喷器或总阀门失效而造成的不可控性高压石油气井喷,在通过上述方法安装了新的 高压直通式阀门后, 得到控制。该嫘栓自动松紧机, 还担负着将油井管口上下法兰的连接嫘 栓与嫘母松开的任务, 以方便的拆除油井管口的上法兰管与失控阀门。该专用螺栓自动松紧 机具有很大的电动扭矩, 可以解决在特殊环境下法兰嫘栓不易卸下的难题。另外, 若采用手 工板子能解决问题, 当然也可以。
最后将新的高压阀门装置关闭。 该法不仅适用于地面超高压石油气井喷, 而且也完全 适用于海底环境井喷安装新控制阀门的需要,本法所安装的高压阀门装置一般采用直通式闸阖。
2. 如权利要求 1一种解决高压石油井喷的方法所述, 专用嫘栓自动松紧机的基本特征是, 通过液压杆的升降控制直流电机头嫘栓卡槽的升降进给, 液压杆与滑动套管与直流电机相连 接, 滑动套管套在控制台的中央立柱上、通过上下滑动从而带动电机的升降, 立柱内配置高 能锂电池。在直流电动机头的嫘栓槽内侧面有强磁性材料,下方嫘母卡槽也可采用液压控制 升降以适应井喷管口的特殊环境,其嫘母卡槽液压升降的液压内杆及液压腔,可以采用正方 型六角型或三角型。 当上下嫘母栓槽纵向进给对准嫘栓嫘母后, 启动无级变速直流电机, 从 而完成对嫘栓嫘母的电动旋紧和松开。在嫘栓卡槽的底部设置触压式感知装置,与液压升降 杆的液压循环泵联动控制, 当上下嫘栓母槽压紧嫘栓嫘母后, 便不再纵向过度进给, 从而 实现自控升降的电动松紧嫘母的过程。 直流电机可以采用垂直式的无级变速旋转机头, 或 者采用转弯式的无级变速旋转机头,转弯处采用球笼式万向节以实现电机轴弯转后的纵向进 给, 其目的是使旋转机头具有很小的半径, 以实现深海环境在管口法兰嫘栓狭小的空间内, 能够使电机头嫘栓槽贴近并对准需要松紧的嫘栓, 从而实现有效的安装和拆卸。
3. —种解决高压石油井喷的方法, 其基本特征是, 在髙压阀门的法兰上焊接具有特殊结构 的不锈钢弹簧弹子锁套装置,使高压阀门能够顺利的套锁住高压井喷管口的法兰,从而有利 于在恶劣的高压井喷环境下, 容易上紧连接法兰的嫘栓嫘母, 完成安装新阀门装置的过程。 该装置的结构特点是: 锁套为圆柱状套筒型, 套筒的内径略大于安装阀门法兰的外径。 在 套筒的内壁、 同一个截平面上均匀分布的各锁槽内, 安装一组大约 8- 24个弹簧及锥形弹子 销、 或 8-24个弹簧及轴撑半转板销。 从截平面到套筒上平面的距离略大于阀门法兰盘厚度 与井管口法兰盘的厚度之和。 将平面截开的套筒上半段, 与预装了弹簧锁销的下半段, 在套筒的内外壁与截面相交的弧线上,进行无缝焊接, 制成弹簧弹子锁套装置。在该装置的 下平面的内圈,均匀的无缝焊接一组倾斜的不锈钢引导滑卡条,以利于顺利套入井管法兰盘。 将制备好的该装置上部内圆壁及阀门法兰盘外圆壁, 涂上金属胶粘剂, 然后套合在一起, 且上平面对齐,通过精密强度的圆周无缝焊接,将该不锈钢弹簧弹子锁套装置的上平面内圆 线与阀门法兰盘的外圆线焊接在一起。 为了使嬅接完好, 可以在焊接弧线上预制焊接浅槽。
4. 一种解决石油髙压并喷的方法, 其基本特征是, 在井喷的油井四周海底, 以沟槽预埋密 封法, 造一个海底井桩基钢结构混凝土的密封室, 石油从梯型罩顶的高压阀门导出。
首先, 在失控的石油井喷的油井管口周围清除海底淤泥。 通过海上石油钻井平台在油 井周围正方的四个角定位打四个桩井, 穿过海底岩石大约 3- 20米深度。 在四个桩井相连的 略小于内切线、略大于外切线的两个正方形线的岩石上,用开槽机开出两个正方形深型沟槽。 在地面焊接好海底井桩钢结构的四方框架,将框架的四只角钢腿,插入到四个桩井的底部并 使框架整体处于水平,然后通过泵压输送管由桩井的底部灌注高强度速凝水泥砂浆, 同时向 上驱赶出海水; 当水泥砂浆灌注满桩井并由井口大量溢出时, 在桩井口上方注入比重大于海水 的重油, 同时浮在水泥浆之上保持一定厚度, 从而将井桩内的水泥浆被重油所封闭, 与海水 隔绝。 经过 1-5天, 速凝水泥砂浆凝结定型。 完成海底油井四周的井桩基钢结构框架。 其次, 建造海底钢箱的密闭腔。 将预制好的矩形齿底的双层钢箱的内外钢箱板, 插入到海 底岩石预先开凿出的两个正方形的深型沟槽内, 通过压力输送管插入到槽的底部, 灌注高强度 速凝水泥砂浆,同时向上驱赶出海水。当水泥砂浆灌注满内外正方形沟槽并由表面大量溢出时, 在内外正方形沟槽上方注入比重大于海水的重油、 同时浮在水泥浆之上并在槽内保持一定厚 度, 从而将沟槽内的水泥浆被重油所封闭, 与海水隔绝。 经过 1-5天, 速凝水泥砂浆凝结定 型。 这样, 双层的方钢箱便与四个并桩的钢结构框架完全混凝, 同时与海底岩石层完全密封。
最后, 将钢箱夹层的海水抽空, 然后注入速凝水泥砂衆, 经过 2-10天, 速凝水泥砂衆 凝结定型, 从而在油井四周制成钢结构混凝土密闭的方室。 在方型室的上平面, 将带有 2-3 个高压阀门的梯型钢罩扣住, 然后紧固密封, 失控的井喷原油将由钢罩的阀门导出。
5. —种解决石油高压井喷的方法, 其基本特征是, 在井喷的油井四周海底, 通过持续供给 的粘稠油性粘合浆剂对具有夹层的方钢箱的底部、与海底平面密封,然后造一个海底桩基钢 结构混凝土的密封室, 石油从梯型罩顶的高压阀门导出。
首先, 在失控的石油井喷的油井管口周围清除海底淤泥, 海底岩石作底面找平处理。 通过海上石油钻井平台在油井周围正方的四个角定位打四个桩井, 穿过海底岩石大约 3-20 米深度。在地面焊接好海底井桩钢结构方形框架,将框架的四只角钢腿, 插入到四个桩并的 底部并使框架处于完全水平, 然后通过泵压输送管由桩井的底部灌注高强度速凝水泥砂浆, 同时向上驱赶出海水。当水泥砂漿灌注满桩井并由井口大量溢出时,在桩井口上方注入比重 大于海水的重油,同时浮在水泥浆之上保持一定厚度,从而将井桩内的水泥浆被重油所封闭, 与海水隔绝。经过 1-5天,速凝水泥砂浆凝结定型,完成海底油井四周的井桩基钢结构框架。
其次, 在预制的双层钢箱的内外側面, 焊接上导管及与其相连的箱底周边粘稠油性粘合 浆出料夹层。 在钢箱平底部钢板端, 可套上软的橡胶套, 也可不套。 将该双层钢箱的内外层 钢板, 套包住预制好的井桩基钢结构方型框架。 开启粘合浆泵, 将罐中的粘稠油性粘合剂浆, 通过管道输送到钢箱导管至底部周边的出料夹层内, 以恒压徐徐供给粘合剂浆料, 从而将双 层钢箱的内外壁与海底岩石平面封闭。如果粘合剂桨料凝固密封, 可停止供料; 如果不凝固, 则恒压持续供给浆料, 使之保持密闭, 以隔绝钢箱底部海水对钢箱层内的后续侵入。
最后, 在钢箱夹层内灌注水泥砂浆。 钢箱层内可作抽空处理, 也可不抽空而直接灌注。 通过泵压力输送管在钢箱层底部的 4- -12个进浆管口,快速大量注入速凝水泥砂浆, 同时向 上驱赶出海水。当水泥砂浆灌注满钢箱层内空间并由箱顶平面充分大量溢出后,拔出输送管 并封闭所有的钢箱孔口。 经过 2- 10天, 速凝水泥砂浆凝结定型, 从而在油井四周制成钢结 构混凝土密闭的方室。在方型室的上平面,将带有 2-3个高压阀门的梯型钢罩扣住, 然后紧 固密封, 失控的井喷原油将由钢罩的阀门导出。
PCT/CN2012/001275 2011-09-23 2012-09-17 高压石油井喷失控的解决方法 WO2013071688A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110285233.7A CN103015947B (zh) 2011-09-23 2011-09-23 高压石油井喷失控的解决方法
CN201110285233.7 2011-09-23

Publications (1)

Publication Number Publication Date
WO2013071688A1 true WO2013071688A1 (zh) 2013-05-23

Family

ID=47964992

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/001275 WO2013071688A1 (zh) 2011-09-23 2012-09-17 高压石油井喷失控的解决方法

Country Status (2)

Country Link
CN (1) CN103015947B (zh)
WO (1) WO2013071688A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108533269A (zh) * 2018-04-09 2018-09-14 衡水益通管业股份有限公司 一种超深立井的波纹钢混凝土护壁及构建方法
CN115898327A (zh) * 2023-03-01 2023-04-04 山东健源石油工程技术有限公司 一种水平井旋转自导式浮鞋
CN116641704A (zh) * 2023-07-25 2023-08-25 大庆新顺丰石油科技开发有限公司 一种油田用井口取样装置及其使用方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106593339B (zh) * 2017-01-25 2022-11-08 徐州徐工基础工程机械有限公司 一种多功能远程遥控的井喷救援车
CN106944282A (zh) * 2017-04-21 2017-07-14 成都大漠石油技术有限公司 重型油罐外壁用喷涂装置
CN108031172A (zh) * 2017-12-29 2018-05-15 巫立斌 一种水处理用过滤装置
CN112324377B (zh) * 2020-11-25 2023-12-12 山东海洋工程装备有限公司 用于深海无钻机永久弃井的井下作业工具及作业方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5878812A (en) * 1997-05-13 1999-03-09 Double-E Inc. Misaligning wellhead system
US20020100501A1 (en) * 2001-01-31 2002-08-01 Gilmore Valve Co. BOP operating system with quick dump valve
CN2544094Y (zh) * 2002-04-18 2003-04-09 华建军 一种防喷阀
CN2734983Y (zh) * 2004-08-31 2005-10-19 石文东 油井防喷器
CN101939503A (zh) * 2007-09-21 2011-01-05 越洋塞科外汇合营有限公司 用于提供额外防喷器控制冗余的系统和方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201265392Y (zh) * 2008-10-21 2009-07-01 西南石油大学 一种油气井高压防腐井下安全阀

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5878812A (en) * 1997-05-13 1999-03-09 Double-E Inc. Misaligning wellhead system
US20020100501A1 (en) * 2001-01-31 2002-08-01 Gilmore Valve Co. BOP operating system with quick dump valve
CN2544094Y (zh) * 2002-04-18 2003-04-09 华建军 一种防喷阀
CN2734983Y (zh) * 2004-08-31 2005-10-19 石文东 油井防喷器
CN101939503A (zh) * 2007-09-21 2011-01-05 越洋塞科外汇合营有限公司 用于提供额外防喷器控制冗余的系统和方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108533269A (zh) * 2018-04-09 2018-09-14 衡水益通管业股份有限公司 一种超深立井的波纹钢混凝土护壁及构建方法
CN115898327A (zh) * 2023-03-01 2023-04-04 山东健源石油工程技术有限公司 一种水平井旋转自导式浮鞋
CN115898327B (zh) * 2023-03-01 2023-05-02 山东健源石油工程技术有限公司 一种水平井旋转自导式浮鞋
CN116641704A (zh) * 2023-07-25 2023-08-25 大庆新顺丰石油科技开发有限公司 一种油田用井口取样装置及其使用方法
CN116641704B (zh) * 2023-07-25 2023-10-20 大庆新顺丰石油科技开发有限公司 一种油田用井口取样装置及其使用方法

Also Published As

Publication number Publication date
CN103015947B (zh) 2017-09-15
CN103015947A (zh) 2013-04-03

Similar Documents

Publication Publication Date Title
WO2013071688A1 (zh) 高压石油井喷失控的解决方法
US7188683B2 (en) Drilling method
WO2017020697A1 (zh) 一种后打桩海上风机基础的施工装置及施工方法
WO2019223265A1 (zh) 欠平衡正循环条件下天然气水合物固态流开采方法及系统
BR102014028614B1 (pt) Sistema de liberação de esfera, conjunto de instalação de revestimento e método para suspender uma coluna tubular interna a partir de uma coluna tubular externa
CA2597887A1 (en) System and method for well intervention
KR20130007556A (ko) 연속 공구회전과 연속 천공액 공급을 수반하는 굴착장치 및 방법
BRPI0616216B1 (pt) dispositivo de separação
US20190169936A1 (en) Mobile offshore drilling unit, a method of using such a unit and a system comprising such a unit
US11959346B2 (en) Method for offshore dual-drive core drilling with three layers of casings under surge compensation
EP1121508B1 (en) Drilling method
US9109406B2 (en) Method for removing a hydrocarbon production platform from sea
WO2016054610A1 (en) Drilling rig system with movable wellcenter assembly
CN101684869B (zh) 重力式常压干式舱
US20030132030A1 (en) Horizontal boring pipe connecting and disconnecting device
US20120308309A1 (en) Manufacturing method, driving in and injection of underwater piles
CN205532515U (zh) 一种可燃冰解堵装置、解堵系统
WO2021127855A1 (zh) 一种双层连续管双梯度钻井系统
CN114135254A (zh) 一种水合物固态流化-降压联合开采方法
CN205369263U (zh) 一种用于处理海底管道悬跨的灌浆袋装置
KR101784971B1 (ko) 시추 장치
CA2959106C (en) Method and apparatus for access and remediation of hydrocarbon storage tanks
CN102505925B (zh) 用于深水钻井的工具传送装置
CN113482570A (zh) 一种可重复利用固井套管的施工工艺
KR20160006479A (ko) Bop 크레인을 구비한 드릴쉽

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12849461

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12849461

Country of ref document: EP

Kind code of ref document: A1