WO2013070370A1 - Thermally stable flame resistant flexible polyurethane foam with reduced odor - Google Patents

Thermally stable flame resistant flexible polyurethane foam with reduced odor Download PDF

Info

Publication number
WO2013070370A1
WO2013070370A1 PCT/US2012/059503 US2012059503W WO2013070370A1 WO 2013070370 A1 WO2013070370 A1 WO 2013070370A1 US 2012059503 W US2012059503 W US 2012059503W WO 2013070370 A1 WO2013070370 A1 WO 2013070370A1
Authority
WO
WIPO (PCT)
Prior art keywords
iii
weight
flexible polyurethane
polyurethane foam
reactive
Prior art date
Application number
PCT/US2012/059503
Other languages
French (fr)
Inventor
F Michael PLAVER
Original Assignee
Dow Global Technologies Llc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dow Global Technologies Llc filed Critical Dow Global Technologies Llc
Publication of WO2013070370A1 publication Critical patent/WO2013070370A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • C08G18/6666Compounds of group C08G18/48 or C08G18/52
    • C08G18/667Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38
    • C08G18/6674Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/3203
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/18Catalysts containing secondary or tertiary amines or salts thereof
    • C08G18/1808Catalysts containing secondary or tertiary amines or salts thereof having alkylene polyamine groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/18Catalysts containing secondary or tertiary amines or salts thereof
    • C08G18/1833Catalysts containing secondary or tertiary amines or salts thereof having ether, acetal, or orthoester groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4833Polyethers containing oxyethylene units
    • C08G18/4837Polyethers containing oxyethylene units and other oxyalkylene units
    • C08G18/4841Polyethers containing oxyethylene units and other oxyalkylene units containing oxyethylene end groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0014Use of organic additives
    • C08J9/0052Organo-metallic compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0066Use of inorganic compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0095Mixtures of at least two compounding ingredients belonging to different one-dot groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/02Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by the reacting monomers or modifying agents during the preparation or modification of macromolecules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/122Hydrogen, oxygen, CO2, nitrogen or noble gases
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • C08K5/098Metal salts of carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2110/00Foam properties
    • C08G2110/0008Foam properties flexible
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2110/00Foam properties
    • C08G2110/0041Foam properties having specified density
    • C08G2110/0058≥50 and <150kg/m3
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2110/00Foam properties
    • C08G2110/0083Foam properties prepared using water as the sole blowing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2350/00Acoustic or vibration damping material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/02Foams characterised by the foaming process characterised by mechanical pre- or post-treatments
    • C08J2201/022Foams characterised by the foaming process characterised by mechanical pre- or post-treatments premixing or pre-blending a part of the components of a foamable composition, e.g. premixing the polyol with the blowing agent, surfactant and catalyst and only adding the isocyanate at the time of foaming
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/06CO2, N2 or noble gases
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2205/00Foams characterised by their properties
    • C08J2205/04Foams characterised by their properties characterised by the foam pores
    • C08J2205/05Open cells, i.e. more than 50% of the pores are open
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2205/00Foams characterised by their properties
    • C08J2205/06Flexible foams
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2375/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2375/04Polyurethanes
    • C08J2375/08Polyurethanes from polyethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K2003/026Phosphorus

Definitions

  • the present invention relates to a composition for an improved flame resistant flexible polyurethane foam which is useful in under the hood vehicle applications which require sound deadening and vibration management wherein the improvement is odor reduction, preferably characterized as non-odiferous.
  • Noise and vibration management is a significant issue for vehicle manufacturers, as cabin noise is a major factor in the comfort experience of automotive passengers.
  • noise and vibration abatement measures are routinely incorporated into motor vehicles. These abatement measures often utilize flexible polyurethane foams. However, such foams typically are called upon to perform one or more functional purpose that can not be compromised at the expense of noise and vibration absorption, for example, under the hood applications require a high degree of flame resistance, in some cases an Underwriters' Laboratories Standard 94 (UL 94) V-0 rating.
  • UL 94 Underwriters' Laboratories Standard 94
  • fire retardants in polyurethane foams is well known.
  • Methods of imparting flame retardancy that combine calcium carbonate, ammonium hydroxide, or another such inorganic compound, halophosphoric acid compound, melamine, or another such compound with a polyol are also known.
  • a large amount of such a compound must be added to impart flame retardancy often resulting in considerable problems in relationship to the properties, moldability, economics, and the like.
  • Methods of making flame retardant flexible polyurethane foam can also include adding a halogenated phosphoric acid ester as a flame retardant to a composition for polyester-based polyurethane foam and using a reactive flame retardant that adds a phosphorus or halogen atom to the polyhydroxyl compound or organic polyisocyanate that is a raw material of the polyurethane foam.
  • a halogenated phosphoric acid ester as a flame retardant to a composition for polyester-based polyurethane foam
  • a reactive flame retardant that adds a phosphorus or halogen atom to the polyhydroxyl compound or organic polyisocyanate that is a raw material of the polyurethane foam.
  • the urethane foam obtained by these methods discolors over time, the foam itself deteriorates, and adequate flame retardancy is not maintained over an extended period of time because the flame retardant volatilizes. Due to recent environmental and market trends, non-halogenated flame retardant solutions have been pursued.
  • USP 6,765,034 discloses a flame resistant flexible polyurethane composition for use in sound deadening and vibration applications that comprises no flame retardants and relies on the selection of a specific isocyanate mixture and polyol.
  • the flammability of said foams is defined only in regard to FMVSS302 flammability test, which is a less stringent flammability test as compared to the UL 94 test.
  • FMVSS (Federal Motor Vehicle Safety Standard) 302 is a horizontal flame test which relates to a material's tendency to melt (therefore not spreading flame) as opposed to UL 94 vertical flame test which describes a material's ability to resist combustion.
  • US Patent Publication 20030130365 describes a process to make a flexible polyurethane foam from a rigid polyurethane foam comprising an organic phosphate flame retardant in combination with expandable graphite.
  • said process is a multi-step process requiring a crushing step and a heating step.
  • said polyurethane foams are evaluated by the less stringent flame spread FMVSS 302 test with no mention of UL 94 combustion resistance performance.
  • USP 5,169,876 discloses a flexible polyurethane foam comprising very high levels (20 to 50 weight percent) of expandable graphite incorporated into the cell walls which meet UL 94 V-0.
  • the process requires a heated split stream polyol addition wherein one stream contains the expandable graphite.
  • the high levels of expandable graphite and complex process steps contribute to an expensive product and may negatively affect the resultant foam properties, such as tensile strength.
  • JP 1998147623 discloses a flexible polyurethane foam with a complex flame retardant mixture comprising ammonium polyphosphate, red phosphorus and expandable graphite.
  • a complex flame retardant mixture comprising ammonium polyphosphate, red phosphorus and expandable graphite.
  • said foams require from 4 to 9 times the amount of ammonium polyphosphate as compared to the amount of red phosphorus.
  • Odor can be a problem for flame-retardant foam, especially flexible polyurethanes containing certain additive-type flame-retardant components, sees USP 4,690,954.
  • An acrid odor may often be difficult to overcome and may be objectionable during the manufacturing of molded articles, storage of molded articles, and/or during the end use application of the molded articles.
  • Odor, in addition to flame-retardant efficiency, after production may be of further concern if the desired application requires exposure to elevated temperatures, especially for extended exposure to higher temperatures.
  • the present invention is such a flame resistant flexible polyurethane foam and process for preparing said foam.
  • the present invention is an improved reactive formulation for making a flame resistant flexible polyurethane foam comprising a mixture of:
  • a flame retardant component comprising a combination of:
  • red phosphorus in an amount greater than 3 parts by weight and equal to or less than 8 parts by weight
  • flame retardant component does not contain ammonium polyphosphate and parts by weight are based on the total weight of the B side,
  • one or more additional component selected from a catalyst, a blowing agent, a cell opener, a surfactant, a crosslinker, a chain extender, a flame retardant, a filler, a colorant, a pigment, an antistatic agent, reinforcing fibers, an antioxidant, a preservative, or an acid scavenger,
  • the improvement is the reactive formulation further comprises:
  • a non-halogen containing copper compound preferably present in the B side, preferably wherein the weight ratio of red phosphorus to non-halogen containing copper compound is preferably between 15:1 and 3:2, and most preferably the non-halogen containing copper compound is copper acetate, wherein said flame resistant flexible polyurethane foam made from the improved reactive formulation achieves a V-0 rating at 0.5 inch according to Underwriters' Laboratories Standard 94 Flammability Test after heat aging at 150°C for seven days, preferably the flame resistant flexible polyurethane foam is characterized as substantially non-odoriferous.
  • the organic isocyanate of the reactive formulation disclosed herein above comprises monomeric MDI, polymeric MDI, combinations there of, and/or liquid variants thereof obtained by introducing uretonimine and/or carbodiimide groups forming polyisocyanates, said carbodiimide and/or uretonimine modified polyisocyanates having an NCO value of from 29 to 33 percent and included in said polyisocyanate is from 1 to 45 percent by weight of 2,4'-diphenylmethane diisocyanate in the form of a monomer and/or a carbodiimidization product thereof.
  • the isocyanate-reactive component isocyanate of the reactive formulation disclosed herein above comprises an ethylene-oxide capped polyether polyol.
  • a flame retardant component comprising a combination of:
  • red phosphorus in an amount greater than 3 parts by weight and equal to or less than 8 parts by weight
  • expandable graphite preferably from 5 to 20 parts by weight
  • a catalyst selected from a blowing agent, a cell opener, a surfactant, a crosslinker, a chain extender, a flame retardant, a filler, a colorant, a pigment, an antistatic agent, reinforcing fibers, an antioxidant, a preservative, or an acid scavenger,
  • the foam is disposed around or in the vicinity of an engine of an automotive vehicle as an engine cover, an engine noise insulator, a fuel injector encapsulant, a side cover, an oil pan cover, an under cover, a hood silencer, or a dashboard silencer,
  • the flame resistant flexible polyurethane foam is characterized as substantially non- odoriferous.
  • the flame resistant flexible polyurethane foam has a density of from 80 kg/m 3 to 140 kg/m 3 . In a preferred embodiment of the reactive formulation and/or process described herein above, flame resistant flexible polyurethane foam has a tensile strength of equal to or greater than 150 kPa.
  • the flame resistant flexible polyurethane foam has an air flow resistivity of from 40,000 rayls/m to 150,000 rayls/m.
  • the present invention is a flame resistant flexible polyurethane foam for use in an engine compartment of a vehicle said foam is halogen-free and ammonium polyphosphate free and has a UL 94 flammability rating after heat aging at 150°C for seven days of V-0 at 0.5 inch, a density between 80 kg/m 3 and 140 kg/m 3 , and an air flow resistivity between 40,000 rayls/m and 150,000 rayls/m.
  • the flexible polyurethane foams according to the present invention are prepared from a reactive formulation comprising an A side comprising one or more organic isocyanate (i), a B side comprising one or more isocyanate-reactive component (ii), a flame retardant component (iii) comprising a combination of red phosphorus (iii.a), expandable graphite (iii.b), and optionally sodium citrate (iii.c) wherein the flame retardant component does not contain ammonium polyphosphate, optionally one or more additives (iv), and an odor reducing additive, such as a non-halogen containing copper compound (v).
  • a reactive formulation comprising an A side comprising one or more organic isocyanate (i), a B side comprising one or more isocyanate-reactive component (ii), a flame retardant component (iii) comprising a combination of red phosphorus (iii.a), expandable graphite (iii.b), and optionally sodium citrate
  • Suitable organic isocyanates (i) for use in the composition and process of the present invention include any of those known in the art for the preparation of polyurethane foams, like aliphatic, cycloaliphatic, araliphatic and, preferably, aromatic isocyanates, such as toluene diisocyanate in the form of its 2,4 and 2,6-isomers and mixtures thereof and diphenylmethane diisocyanate in the form of its 2,4'-, 2,2'- and 4,4'-isomers and mixtures thereof, the mixtures of diphenylmethane diisocyanates (MDI) and oligomers thereof having an isocyanate functionality greater than 2 known in the art as "crude” or polymeric MDI (polymethylene polyphenylene polyisocyanates), the known variants of MDI comprising urethane, allophanate, urea, biuret, carbodiimide, uretonimine and/or isocyanurate groups.
  • monomeric MDI, crude MDI, polymeric MDI, combinations thereof, and/or liquid variants thereof are obtained by introducing uretonimine and/or carbodiimide groups into said polyisocyanates, such a carbodiimide and/or uretonimine modified polyisocyanate having an NCO value of from 29 to 33 percent and includes 1 to 45 percent by weight of 2,4'-diphenylmethane diisocyanate in the form of a monomer and/or a carbodiimidization product thereof.
  • uretonimine and/or carbodiimide groups such a carbodiimide and/or uretonimine modified polyisocyanate having an NCO value of from 29 to 33 percent and includes 1 to 45 percent by weight of 2,4'-diphenylmethane diisocyanate in the form of a monomer and/or a carbodiimidization product thereof.
  • the organic isocyanate component may include one or more organic polyisocyanate, in addition to and/or in place of monomeric MDI as needed, provided other polyisocyanate compounds do not have adverse influences on the performance on the desired sound deadening, vibration management, and flame resistance properties of the flexible polyurethane foam.
  • organic polyisocyanate in addition to and/or in place of monomeric MDI as needed, provided other polyisocyanate compounds do not have adverse influences on the performance on the desired sound deadening, vibration management, and flame resistance properties of the flexible polyurethane foam.
  • polyisocyanate compounds include isocyanate-terminal prepolymers which are formed by a reaction between at least one of compounds of the above-indicated monomeric MDI, and suitable active hydrogen compounds.
  • the other polyisocyanate compounds may be selected from among organic isocyanates such as tolylene diisocyanate (TDI), isopholone diisocyanate (IPDI) and xylene diisocyanates (XDI), and modifications thereof.
  • organic isocyanates such as tolylene diisocyanate (TDI), isopholone diisocyanate (IPDI) and xylene diisocyanates (XDI), and modifications thereof.
  • TDI tolylene diisocyanate
  • IPDI isopholone diisocyanate
  • XDI xylene diisocyanates
  • the amount of polyisocyanate that is used to make resilient flexible foam typically is sufficient to provide an isocyanate index of from 0.6 to 1.5, preferable 0.6 to 1.2, although wider ranges can be used in special cases.
  • a preferred range is from 0.7 to 1.05 and a more preferred range is from 0.75 to 1.05.
  • the B side of the present invention comprises an isocyanate-reactive component (ii) which includes any type of compound of those known in the art for that purpose, for example polyamines, aminoalcohols and polyols.
  • Suitable polyols have been fully described in the prior art and include reaction products of alkylene oxides, for example ethylene oxide and/or propylene oxide, with initiators containing from 2 to 8 active hydrogen atoms per molecule.
  • Suitable initiators include: polyols, for example ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, butane diol, glycerol, trimethylolpropane, triethanolamine,
  • polystyrene resin for example ethylene diamine, tolylene diamine, diaminodiphenylmethane and polymethylene polypheny lene polyamines; and aminoalcohols, for example ethanolamine and diethanolamine; and mixtures of such initiators.
  • suitable polyols include polyesters obtained by the condensation of appropriate proportions of glycols and higher functionality polyols with polycarboxylic acids.
  • Still further suitable polyols include hydroxyl terminated polythioethers, polyamides, polyesteramides, polycarbonates, polyacetals, polyolefins and polysiloxanes.
  • isocyanate -reactive components include ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, butane diol, glycerol, trimethylolpropane, ethylene diamine, ethanolamine, diethanolamine, triethanolamine and the other initiators mentioned before. Mixtures of such isocyanate-reactive components may be used as well. Most preferably polyols are used which do not comprise primary, secondary or tertiary nitrogen atoms.
  • polyols and polyol mixtures having hydroxyl equivalent weight of equal to or greater than 1200, preferably equal to or greater than 1500, more preferably equal to or greater than 1700.
  • Polyol equivalent weight is the molecular weight of the polyol divided by the hydroxyl functionality of the molecule.
  • polyols and polyol mixtures having hydroxyl equivalent weight of equal to or less than 4000, preferably equal to or less than 3000 and more preferably equal to or less than 2500.
  • Polyols used for the preparation of the flexible foams of the present invention have an average nominal hydroxyl functionality of from 2 to 8, preferably of from 2 to 4.
  • reaction products of alkylene oxides for example ethylene oxide and/or propylene oxide
  • initiators containing from 2 to 8 active hydrogen atoms per molecule.
  • Suitable initiators include: polyols, for example ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, butane diol, glycerol, trimethylolpropane, triethanolamine,
  • polyamines for example ethylene diamine, tolylene diamine, diaminodiphenylmethane and polymethylene polypheny lene polyamines;
  • polystyrene resins for example ethanolamine and diethanolamine; and mixtures of such initiators.
  • suitable polyols include polyesters obtained by the condensation of appropriate proportions of glycols and higher functionality polyols with polycarboxylic acids.
  • Still further suitable polyols include hydroxyl terminatedpolythioethers, polyamides, polyesteramides, polycarbonates, polyacetals, polyolefins and polysiloxanes.
  • Preferred polyols are the polyether polyols comprising ethylene oxide and/or propylene oxide units and most preferably polyoxyethylene polyoxypropylene polyols having an oxyethylene content of at least 10 percent and preferably 10 to 85 percent by weight.
  • a preferred isocyanate-reactive component comprises an ethylene-oxide capped polyether polyol.
  • polystyrene and acrylonitrile modified polyols
  • polymeric polyols for example polyether polyols
  • polyisocyanate an amino- or hydroxy-functional compound, such as triethanolamine
  • the polymer modified polyols which are particularly interesting in accordance with the invention are products obtained by in situ polymerisation of styrene and/or acrylonitrile in polyoxyethylene polyoxypropylene polyols and products obtained by in situ reaction between a polyisocyanate and an amino or hydroxy-functional compound (such as triethanolamine) in a polyoxyethylene polyoxypropylene polyol.
  • Polyoxyalkylene polyols containing from 5 to 50 percent of dispersed polymer are particularly useful. Particle sizes of the dispersed polymer of less than 50 microns are preferred. Mixtures of such isocyanate-reactive components may be used as well. Most preferably polyols are used which do not comprise primary, secondary or tertiary nitrogen atoms.
  • the B side further comprises a flame retardant component (iii) which comprises a combination of red phosphorus (iii. a), an expandable graphite (iii.b), and optionally sodium citrate (iii.c).
  • the flame retardant component does not contain ammonium polyphosphate.
  • the red phosphorus that constructs the composition for flame retardant flexible polyurethane foam of the present invention is inorganic.
  • the inorganic red phosphorus may be untreated or may have been surface treated by an inorganic substance and/or organic substance (referred to hereinafter as coated red phosphorus), and the like. It is especially preferable to use coated red phosphorus in terms of the stability and ease of handling.
  • red phosphorus products examples include NOVA REDTM and NOVA EXCELTM available from Rin Kagaku Kogyo Co., HISHIGUARDTM available from Nippon Chemical Industries Co., and EXOLITTM RP607 available from Clariant.
  • the red phosphorous can be neat, as a concentrate, or used as a mixture, solution, or a thixotropic dispersion in a carrier medium such as castor oil, diphenyloctylphosphate, tris(chloropropyl)phosphate (TCPP), etc., for example EXOLIT RP 6590 (TP) and
  • the red phosphorus (iii.a) is present in an amount of greater than 3 parts based on the total weight of the B side, preferably equal to or greater than 3.5 parts, preferably equal to or greater than 4 parts based on the total weight of the B side.
  • the red phosphorus (iii.a) is present in an amount of equal to or less than 8 parts based on the total weight of the B side, preferably equal to or less than 7.5 parts, preferably equal to or less than 7 parts, preferably equal to or less than 6.5 parts, and more preferably equal to or less than 6 parts based on the total weight of the B side.
  • the flame retardant component (iii) further consists of an expandable graphite (iii.b) which is well known in the art.
  • expandable graphite iii.b
  • examples include crystalline compounds that maintain the laminar structure of the carbon that has grown a graphite interlayer compound by treating natural flaky graphite, pyrolytic graphite, Kish graphite, or another such powder by concentrated sulfuric acid, nitric acid, or another such inorganic acid and concentrated nitric acid, perchloric acid, permanganic acid, bichromate, or another such strong oxidizing agent.
  • Expandable graphite that has been neutralized by ammonia, an aliphatic lower amine, alkali metal compound, alkaline earth metal compound, or the like is preferably used.
  • Examples of aliphatic lower amines include monomethyl amine, dimethyl amine, trimethyl amine, ethyl amine, and the like.
  • Examples of alkali metal compounds and alkaline earth metal compounds include hydroxides, oxides, carbonates, sulfates, organic acid salts, and the like of potassium, sodium, calcium, barium, magnesium, and the like.
  • Preferably expandable graphite flakes have a size of from 0.3 to 1.0 mm.
  • the expandable graphite (iii.b) being used is formed of graphite, with H 2 SO 4 or SO 4 , for example, having two free negative valences, which attach to two free positive valences of a hydrocarbon ring, incorporated between the planes of the graphite mesh.
  • H 2 SO 4 or SO 4 for example, having two free negative valences, which attach to two free positive valences of a hydrocarbon ring, incorporated between the planes of the graphite mesh.
  • Examples of commercial expandable graphite products include NYAGRAPHTM available from Naycol Nano Technologies, Inc., CA-60STM available from Nippon Kasei Chemical Co., and CALLOTEKTM available from Graphitmaschine Kropfmuehlm AG.
  • the expandable graphite (iii.b) is present in an amount of equal to or greater than 5 parts based on the total weight of the B side, preferably equal to or greater than 7 parts, and more preferably equal to or greater than 10 parts based on the total weight of the B side.
  • the expandable graphite (iii.b) is present in an amount of equal to or less than 20 parts based on the total weight of the B side, preferably equal to or less than 17 parts, and more preferably equal to or less than 15 parts based on the total weight of the B side.
  • the flame retardant component (iii) may optionally further consists of sodium citrate
  • sodium citrate (iii.c) is present in the flame retardant component (iii) of the present invention it is present in an amount of equal to or greater than 0.5 parts based on the total weight of the B side, preferably equal to or greater than 1 part, and more preferably equal to or greater than 2 parts based on the total weight of the B side. If sodium citrate (iii.c) is present in the flame retardant component (iii) of the present invention it is present in an amount of equal to or less than 15 parts based on the total weight of isocyanate- reactive component, preferably equal to or less than 12 parts, and more preferably equal to or less than 10 parts based on the total weight of the B side.
  • the A side, the B side, and/or the reactive formulation of the present invention may comprise an additional compound other than ammonium
  • polyphosphate including organic and/or inorganic, halogenated and/or non-halogenated, in addition to the red phosphorus (iii. a), expandable graphite (iii.b), and optionally sodium citrate (iii.c) to improve the flame resistance performance of the flexible polyurethane foam produced therefrom.
  • the A side, the B side, the reactive formulation, the flame retardant component (iii), and/or the flexible polyurethane foam of the present invention do not comprise or contain any other flame retardant additives than the red phosphorus (iii.a), the expandable graphite (iii.b), and optionally the sodium citrate (iii.c).
  • the A side, the B side, the reactive formulation, and/or the flame retardant component (iii) and/or the flexible polyurethane foam of the present invention do not comprise or contain any other flame retardant additives than the red phosphorus (iii.a) and the expandable graphite (iii.b).
  • the A side, the B side, the reactive formulation, the flame retardant component (iii) and/or the flexible polyurethane foam of the present invention do not contain an organic phosphorus containing compound.
  • the A side, the B side, the reactive formulation, the flame retardant component (iii), and/or the flexible polyurethane foam of the present invention do not comprise or contain caseine.
  • the A side, the B side, the reactive formulation, the flame retardant component (iii), and/or the flexible polyurethane foam of the present invention do not comprise or contain a halogenated flame retardant.
  • the A side, the B side, and/or the reactive formulation of the present invention comprise only non- halogenated flame retardants.
  • the reaction of the reactive formulation of the present invention comprising one or more organic polyisocyanate (i), one or more isocyanate-reactive component (ii), and the flame retardant component (iii) comprising a combination of red phosphorus (iii. a), expandable graphite (iii.b), and optionally sodium citrate (iii.c) wherein the flame retardant component does not contain ammonium polyphosphate, to make a flexible polyurethane foam can be performed in the presence of various types of other additional materials (iv), as may be useful in the particular manufacturing process that is used or to impart desired characteristics to the resulting foam.
  • additional materials iv
  • catalysts include, for example, catalysts, blowing agents, cell openers, surfactants, crosslinkers, chain extenders, flame retardants (other than red phosphorus, expandable ammonium polyphosphate, and sodium citrate), fillers, colorants, pigments, antistatic agents, reinforcing fibers, antioxidants, preservatives, acid scavengers, and the like.
  • the B side may comprise one or more additional components (iv).
  • a blowing agent is required, preferably water.
  • any other known way to prepare polyurethane foams may be employed additionally, like the use of reduced or variable pressure, the use of a gas like air, N 2 and C0 2 , the use of more conventional blowing agents like chlorofluorocarbons, hydrofluorocarbons, hydrocarbons and fluorocarbons, the use of other reactive blowing agents, i.e.
  • blowing agent may vary widely and primarily depends on the desired density. Water may be used as liquid at below- ambient, ambient or elevated temperature and as steam.
  • One embodiment of the present invention is a combination of blowing agent is water and C0 2 wherein the C0 2 is added to the ingredients for making the foam in the mixing head of a device for making the foam, to one of the isocyanate-reactive ingredients and preferably to the polyisocyanate before the polyisocyanate is brought into contact with the isocyanate-reactive ingredients.
  • the flexible polyurethane foam of the present invention is made from reactive formulations comprising (A) the A side comprising an organic isocyanate (i); (B) the B side comprising an isocyanate-reactive component (ii), and the flame retardant additive (iii) in the presence of water; and (C) a non-halogen containing copper compound (v).
  • such formulations contain from 1 to 7 weight percent, especially from 1 to 6 weight percent water based on the total weight of the isocyanate-reactive component (ii).
  • Desirable flexible polyurethane foam can be made in a slabstock process or in a closed mold. Closed mold molding processes are preferred to make shaped products such as under the hood applications, for example, engine encapsulation members.
  • one or more catalyst may be present in the B side of the reactive formulation of the present invention.
  • One preferred type of catalyst is a tertiary amine catalyst.
  • the tertiary amine catalyst may be any compound possessing catalytic activity for the reaction between a polyol and an organic polyisocyanate and at least one tertiary amine group.
  • Representative tertiary amine catalysts include
  • N-ethyl-morpholine N,N-dimethylbenzylamine, ⁇ , ⁇ -dimethylethanolamine, ⁇ , ⁇ , ⁇ ', ⁇ '- tetramethyl- 1 ,4-butanediamine, ⁇ , ⁇ -dimethylpiperazine, 1 ,4-diazobicyclo-2,2,2-octane, bis(dimethylaminoethyl)ether, bis(2-dimethylaminoethyl) ether, morpholine,4,4'-(oxydi-2,l- ethanediyl)bis, triethylenediamine, pentamethyl diethylene triamine, dimethyl cyclohexyl amine, N-acetyl ⁇ , ⁇ -dimethyl amine, N-coco-morpholine, ⁇ , ⁇ -dimethyl aminomethyl N-methyl ethanol amine, N, N, N'-trimethyl-N'-hydroxyethyl bis(aminoethyl)
  • dipropanolamine bis(dimethylaminopropyl)amino-2-propanol, tetramethylamino bis (propylamine), (dimethyl(aminoethoxyethyl))((dimethyl amine)ethyl)ether, tris(dimethyl- amino propyl) amine, dicyclohexyl methyl amine, bis(N,N-dimethyl-3-aminopropyl) amine, 1 ,2-ethylene piperidine and methyl-hydroxyethyl piperazine
  • the B side of the reactive formulation may contain one or more other catalysts, in addition to or instead of the tertiary amine catalyst mentioned before.
  • tin carboxylates and tetravalent tin compounds. Examples of these include stannous octoate, dibutyl tin diacetate, dibutyl tin dilaurate, dibutyl tin dimercaptide, dialkyl tin dialkylmercapto acids, dibutyl tin oxide, dimethyl tin dimercaptide, dimethyl tin diisooctylmercaptoacetate, and the like.
  • Catalysts are typically used in small amounts.
  • the total amount of catalyst used may be 0.0015 to 5 weight percent, preferably from 0.01 to 1 weight percent based on the total weight of the isocyanate -reactive compound (ii).
  • Organometallic catalysts are typically used in amounts towards the low end of these ranges.
  • the B side may further comprise as one of the additional components (iv) a crosslinker, which preferably is used, if at all, in small amounts, to 2 weight percent, up to 0.75 weight percent, or up to 0.5 weight percent based on the total weight of the isocyanate- reactive compound (ii).
  • the crosslinker contains at least three isocyanate-reactive groups per molecule and has an equivalent weight, per isocyanate-reactive group, of from 30 to about 125 and preferably from 30 to 75.
  • Aminoalcohols such as monoethanolamine, diethanolamine and triethanolamine are preferred types, although compounds such as glycerine, trimethylolpropane and pentaerythritol also can be used.
  • the B side may further comprise a surfactant as an additional component (iv).
  • a surfactant is preferably included in the foam formulation to help stabilize the foam as it expands and cures.
  • surfactants include nonionic surfactants and wetting agents such as those prepared by the sequential addition of propylene oxide and then ethylene oxide to propylene glycol, solid or liquid organosilicones, and polyethylene glycol ethers of long chain alcohols.
  • Ionic surfactants such as tertiary amine or alkanolamine salts of long chain alkyl acid sulfate esters, alkyl sulfonic esters and alkyl arylsulfonic acids can also be used.
  • the surfactants prepared by the sequential addition of propylene oxide and then ethylene oxide to propylene glycol are preferred, as are the solid or liquid organosilicones. Examples of useful organosilicone surfactants include commercially available
  • polysiloxane/polyether copolymers such as TEGOSTABTM B-8729, and B-8719LF available from Goldschmidt Chemical Corp., and NIAXTM L2171 surfactant from TEGOSTABTM B-8729, and B-8719LF available from Goldschmidt Chemical Corp., and NIAXTM L2171 surfactant from TEGOSTABTM B-8729, and B-8719LF available from Goldschmidt Chemical Corp., and NIAXTM L2171 surfactant from TEGOSTABTM B-8729, and B-8719LF available from Goldschmidt Chemical Corp., and NIAXTM L2171 surfactant from TEGOSTABTM B-8729, and B-8719LF available from Goldschmidt Chemical Corp., and NIAXTM L2171 surfactant from TEGOSTABTM B-8729, and B-8719LF available from Goldschmidt Chemical Corp., and NIAXTM L2171 surfactant from TEGOSTABTM B-8729,
  • Non-hydrolyzable liquid organosilicones are more preferred.
  • a surfactant when used, it is typically present in an amount of 0.0015 to 1 weight percent based on the total weight of the organic isocyanate (i).
  • a cell opener may be present as an additional component (iv) in the B side of the reactive formulation.
  • the cell opener functions during the polymerization reaction to break cell walls and therefore promote the formation of an open cell structure.
  • a high open cell content (at least 25 percent by number, preferably at least 50 percent) is usually beneficial for foams that are used in noise and vibration absorption applications.
  • a useful type of cell opener includes ethylene oxide homopolymers or random copolymers of ethylene oxide and a minor proportion of propylene oxide, which have a molecular weight of 5000 or more. These cell openers preferably have a hydroxyl functionality of at least 4, more preferably at least 6. Cell openers are preferably used in amounts from about 0.5 to about 5 weight percent based on the total weight of the isocyanate-reactive compound (ii).
  • a chain extender may be employed as an additional component (iv) in the B side of the reactive formulation of the present invention.
  • a chain extender is a compound having exactly two isocyanate-reactive groups and an equivalent weight per isocyanate-reactive group of up to 499, preferably up to 250, also may be present. Chain extenders, if present at all, are usually used in small amounts, such as up to 10, preferably up to 5 and more preferably up to 2 weight percent based on the total weight of the isocyanate-reactive compound (ii).
  • chain extenders examples include ethylene glycol, diethylene glycol, Methylene glycol, propylene glycol, dipropylene glycol, tripropylene glycol, 1,4-dimethylolcyclohexane, 1 ,4-butane diol, 1,6-hexane diol, 1,3-propane diol,
  • diethyltoluene diamine diethyltoluene diamine, amine-terminated polyethers such as JEFF AMINETM D-400 from Huntsman Chemical Company, amino ethyl piperazine, 2-methyl piperazine, 1,5-diamino- 3-methyl-pentane, isophorone diamine, ethylene diamine, hexane diamine, hydrazine, piperazine, mixtures thereof and the like.
  • the B side may also comprise as an additional component (iv) a filler, which reduces overall cost, load bearing and other physical properties to the product.
  • the filler may constitute up to about 50 percent, of the total weight of the polyurethane reactive formulation (i.e., the combined weight of the organic isocyanate (i), the isocyanate-reactive compound (ii), and the flame retardant component (iii)).
  • Suitable fillers include talc, mica, montmorillonite, marble, barium sulfate (barytes), milled glass granite, milled glass, calcium carbonate, aluminum trihydrate, carbon, aramid, silica, silica-alumina, zirconia, talc, bentonite, antimony trioxide, kaolin, coal based fly ash and boron nitride. Odor in flame resistant flexible polyurethane foams may be a production
  • flame resistant flexible polyurethane foams comprising a flame retardant component comprising a combination of red phosphorus, expandable graphite, and optionally sodium citrate wherein the flame retardant component does not contain ammonium polyphosphate may emit an acrid odor.
  • an odor reducing component (v) such as a non-halogen containing copper compound
  • a reactive formulation comprising a combination of red phosphorus, expandable graphite, and optionally sodium citrate wherein the flame retardant component does not contain ammonium polyphosphate the flame resistant flexible polyurethane foam resulting therefrom has reduced odor and/or is essentially non-odiferous.
  • the odor suppressants suitable for use in the conduct of this invention are selected from the group consisting of cupric oxide, cupric acetate, cuprous acetate, copper metal, complexes of cupric cation or cuprous cation and ligands containing one or more nitrogen atoms.
  • the cuprous and cupric inorganic salts mentioned hereinabove are well known compounds whose physical properties are well known in the literature.
  • the physical properties of cupric chloride, one of the aforementioned inorganic salts are set forth in the Handbook of Chemistry, 11th Ed, Editor John A. Dean (1973) as follows: a brown yellow powder that is hygroscopic having a density of 3.3869/cm.sup.3 and a melting point of 620°C.
  • Useful complexes of cupric and cuprous cations and a nitrogen atom containing ligands are also well known, see USP 4,356,282.
  • the nitrogen atom can be in any form which allows coordination covalent bonding with cupric and/or cuprous cations.
  • such nitrogen atom can be in the form of an amide, amine, aromatic nitrogen base and the like.
  • Such useful complexes include those formed by cupric and cuprous cations and monodentate ligands such as ammonia, mono-, di-, and tri- alkyl amines, pyridine, caprolactam, pyrrolidine, isocyanides, cyanides and the like.
  • Useful and preferred complexes also include those formed by cupric and cuprous cations and polydentate ligands, as for example, ethylene diamine, nitrilotriacetic acid ethylene diamine triacetic acid, 2,2' dipyridyl and similar amines, phthalocyanine, 8-hydroxyquinoline and the like.
  • cupric acetate cupric oxide, and complexes of cupric cation and cuprous cation and polydentate ligands are those for use in the preferred embodiments of this invention.
  • cupric acetate is particularly preferred.
  • the weight ratio of red phosphorus to non-halogen containing copper compound is between 15:1 and 3:2.
  • the odor reducing additive (v) may be added entirely in the A side, or added entirely in the B side, or added partially in the A side and partially in the B side, or separately to the A side and B side when they are mixed.
  • the odor reducing additive is added in the B side.
  • Flexible foam can be made in accordance with the invention in a slabstock process or in a closed mold molding process.
  • Slabstock foam is formed as a large bun which is cut into the required shape and size for use.
  • Closed mold molding processes can be either so- called hot molding process or a cold molding process wherein the foaming takes place in a closed mold. After the foam has cured, the mold is opened, and the flexible foam removed. An integral skin can be formed onto the surface of the foam in the mold.
  • a film, fabric, leather or other coverstock can be inserted into the mold prior to introducing the reactive formulation, to produce a foam that has a desirable show surface.
  • Polyurethane foam formulations that contain a mixture of ethylene oxide-capped polypropylene oxides in accordance with the invention have been found to process well, especially in formulations in which water is used as a blowing agent, especially when used as the sole blowing agent as described herein above.
  • Good processing herein refers to the ability of a foam formulation to consistently produce good quality foam in an industrial setting. Good processing is indicated by consistently uniform cell structure, complete mold filling, consistently good surface appearance, consistent foam density and consistency in foam physical properties as the foam is produced over time.
  • the foam formulation tolerates small changes in operating temperatures, catalyst levels and other process conditions which often cause significant product inconsistencies in other high water foam formulations.
  • a high open cell content (at least 25 percent by number, preferably at least 50 percent) is usually beneficial for foams that are used in noise and vibration absorption applications.
  • Flexible polyurethane foam is characterized in having a resiliency, as determined using the ASTM D-3574 ball rebound test, which measures the height a ball rebounds from the surface of the foam when dropped under specified conditions. Under the ASTM test, the foam exhibits a resiliency of at least 40 percent, especially at least 50 percent.
  • the flexible polyurethane foam of the present invention advantageously also has a density in the range of 4 to 10 pounds/cubic foot (pcf) (64-160 kg/m 3 ), preferably from 5 to 8.8 pounds/cubic foot (80-140 kg/m 3 ). Density is conveniently measured according to ASTM D 3574.
  • the flexible polyurethane foam of the present invention advantageously has a tensile strength in the range of 150 to 800 kPa.
  • the tensile strength of the foam according to the present invention is equal to or greater than 150 kPa, more preferably equal to or greater than 200 kPa, more preferably equal to or greater than 250 kPa, and even more preferably equal to or greater than 300 kPa.
  • the tensile strength of the foam according to the present invention is equal to or less than 800 kPa, more preferably equal to or less than 700 kPa, more preferably equal to or less than 600 kPa, and even more preferably equal to or less than 500 kPa.
  • Tensile strength is conveniently measured according to ASTM D 3574.
  • the flexible polyurethane foam of the present invention advantageously achieves a UL 94 flammability rating of V-0 even after exposure to elevated temperatures for extended periods of time.
  • the flexible polyurethane foam of the present invention achieves a UL 94 flammability rating of V-0 after heat aging at 150°C for seven days.
  • One means of measuring sound absorption performance of noise and vibration- absorbing applications is by using equipment such as an impedance tube, or what is generally referred to as reverberation chambers, in accordance with individual OEM specifications.
  • Another test used to evaluate sound absorption performance is air flow resistivity, according to ASTM C522-87.
  • the air flow resistivity should be in the range of 30,000 to 200,000 rayls/m, more preferably 40,000 to 150,000 rayls/m. Rayls is pressure divided by volumetric flow rate and is equivalent to
  • Air flow resistivity is given in rayls/m which is pressure divided by the volumetric flow rate divided by the thickness of the foam specimen.
  • a reactive formulation comprising: (A) an A side comprising (i) one or more organic polyisocyanate; (B) a B side comprising (ii) one or more isocyanate-reactive component, (iii) a flame retardant component comprising a combination of: (iii.a) red phosphorus, (iii.b) expandable graphite, and (iii.c) optionally sodium citrate wherein the flame retardant component does not contain ammonium polyphosphate; (iv) one or more additional component selected from a catalyst, a blowing agent, a cell opener, a surfactant, a crosslinker, a chain extender, a flame retardant (other than red phosphorus, expandable graphite, and sodium citrate), a filler, a colorant, a pigment, an antistatic agent, reinforcing fibers, an antioxidant, a preservative, or an acid
  • the "B side” is a premix comprising the appropriate amounts of polyol, flame retardant component, blowing agent, catalyst, foaming aid, optionally the copper compound, and other aids specific to the desired polyol component/final foam.
  • elevated temperatures above 40°C, may be required to mix the components.
  • the B side is mixed together at a temperature less than 40°C, more preferably it is mixed together at ambient temperature (defined herein as from 20°C to 30°C).
  • the B side is then mixed with the specific organic (poly)isocyanate component, comprised in the "A side" at the desired ratio, forming the reactive formulation which, when mixed, allows for the foaming reaction to occur.
  • the polyol premix (B side) and the organic polyisocyanate component (A side) are mixed together by any known urethane foaming equipment.
  • the resulting reactive formulation is subjected to conditions sufficient to cure the reactive formulation to form a flame resistant flexible polyurethane foam which after heat aging at 150°C for seven days obtains a UL 94 V-0 rating at 0.5 inch.
  • the reactive formulation is either introduced into a suitable mold, so that a foaming/curing reaction takes place within the mold to form the desired polyurethane foam or it is allowed to foam/cure to form a slab stock or it is foamed in place
  • the flame resistant flexible polyurethane foam thus manufactured can be suitably used for flame resistant and noise and vibration-absorbing applications according to the present invention, for example, the foams may be used for and/or molded into an article to be used for and/or molded/foamed in place as an engine cover, an engine noise insulator, a fuel injector encapsulant, a side cover, an oil pan cover, an under cover, a hood silencer, and a dashboard silencer, which are disposed around or in the vicinity of an engine of an automotive vehicle, to reduce the amount of sound or noise to be transmitted from the engine.
  • the flame resistant flexible polyurethane foam may be suitably used and/or molded into articles to be used for or molded/foamed in place as spacers or fillers for filling gaps or spaces between the engine and the surrounding devices, or encapsulation of engine parts for attenuating the standing waves.
  • Comparative Examples A to E and Example 1 comprise a reaction formulation used to provide a flexible polyurethane foam comprising a polyol component and other additives (B side) and an isocyanate component (A side).
  • the polyol component comprises a polyol, a catalyst, a flame retardant component, a cross-linking agent (diethylene glycol), a blowing agent (water), a silicon surfactant, a black colorant wherein the components are pre mixed.
  • red phosphorus is added first and expandable graphite last. All the components are added to and mixed into the B side at ambient temperature (in this case, about 23°C).
  • the isocyanate component comprises a carbodiimide-modified MDI with 72 weight percent 4,4'-MDI and 2 weight percent 2,4'-MDI, an equivalent molecular weight of about 145, and an isocyanate content of about 29.
  • Comparative Example A and Example 1 are identical with the exception that Example 1 comprises cupric acetate which is added to and mixed with the B side components.
  • Comparative Examples B to E and Example 1 are identical with the exception that Comparative Examples B to E comprise potential odor reducing compounds added to and mixed with the B side components other than cupric acetate.
  • the polyol component and isocyanate component are molded into foam pad using a HiTech high pressure impingement mixing machine equipped with a 40 inch by 40 inch by 1 inch frame with a 20 inch by 20 inch by 1 inch mold insert.
  • the test mold top and bottom are heated to 54°C.
  • the B side is heated to 27°C and the A side is heated to 27°C.
  • the injection pressure for both the B side and A side are 2000 pounds per square inch (psi).
  • the shot size is 680 to 750 grams (g) and the shot time is 2.25 to 2.45 seconds (s).
  • the cure time is 3 minutes (min). After the foam has cured, the mold is opened, and the foam is removed from the mold.
  • composition of the polyol component (B side) for Comparative Examples A to E and Example 1 are listed in Table 1.
  • a formulated polyol blend (comprising polyols and other additives) is made from the below listed components. Amounts are given as weight percent based on the total weight of the formulated polyol blend. The amounts for the components making up the polyol component (B) are given in parts based on the total weight of the polyol component (B). The ratio of the polyol component (B) and the isocyanate component (A) are given parts.
  • Polyol is a glycerine initiated propylene oxide and 15 percent ethylene oxide capped polyol having a hydroxyl number of 27.5 and an equivalent weight of 2040 available as VORANOL CP 6001 Polyol from The Dow Chemical Company;
  • Isocyanate is a carbodiimide-modified MDI with 72 weight percent 4,4'-MDI and 2 weight percent 2,4'-MDI, an equivalent molecular weight of about 145, and an isocyanate content of about 29 available as Isocyanate 143 LM from The Dow Chemical Company;
  • DEG is diethylene glycol
  • TEGOSTABTMB 4113 is a low efficiency cell regulating type silicon surfactant available from Goldschmidt Gmbh;
  • DABCOTM33 LV is a 33 percent triethylene diamine in dipropylene glycol curing catalyst available from Air Products;
  • DABCO BL 11 is a 70 percent bis (N,N dimethylaminoethyl) ether in dipropylene glycol blowing catalysts available from Air Products;
  • Black is a black colorant available as POP 4654 Black from Day Glo;
  • EXOLITTM RP 607 is microencapsulated red phosphorus flame retardant available from Clariant Pigment and Additive Division;
  • NYAGRAPHTM 351 is an expandable graphite having an initial expansion temperature of 150°C and an expansion volume of 350 ml/g available from Naycol Nano Technologies, Inc.;
  • Copper Acetate is available as Copper (II) Acetate, 98% from Sigma Aldrich;
  • Magnetic Oxide is available from Sigma Aldrich.
  • Isocyanate Index is the ratio of the actual amount of isocyanate relative to the theoretical amount of isocyanate required to react with the polyol component
  • Average PH3 is the amount of phosphine detected by gas chromatography after exposing a sample of molded foam to 40°C for 90 minutes;
  • “Odor” is determined by smelling the foam after molding and comparing the odor to the control sample (which has an objectionable acrid odor); and "UL 94" is vertical flammability testing run according to Underwriter' s Laboratories Standard 94 and 0.5 inch by 0.5 inch by 5 inch foam samples. Samples are tested according to UL 94 protocol as molded (e.g., at ambient temperature for at least 24 hours) and after aging at 150°C for 7 days (samples at ambient temperature for at least 24 hours after aging and before testing).
  • Example 1 the resultant foam product of the present invention is a flexible foam with no objectionable, acrid odor having good flammability performance after aging at 150°C for 7 days.

Abstract

The present invention relates to a reactive formulation used to make a flame resistant flexible polyurethane foam with reduced odor which is particularly suited for use in under the hood vehicle applications which require sound deadening and vibration management and a process to make said foam. Said foam is particularly suitable for such applications because desirable flame resistant properties are achieved after exposure to heat over an extended period of time. In particular, the flame resistant flexible polyurethane foam is made from a reactive formulation comprising an A side comprising (i) one or more organic isocyanate and a B side comprising (ii) one or more isocyanate-reactive component, (iii) a flame retardant component comprising a combination of red phosphorus, expandable graphite, and optionally sodium citrate wherein the flame retardant component does not contain ammonium polyphosphate; (iv) one or more additional component selected from a catalyst, a blowing agent, a cell opener, a surfactant, a crosslinker, a chain extender, a filler, a colorant, a pigment, an antistatic agent, reinforcing fibers, an antioxidant, a preservative, or an acid scavenger, and (v) a non-halogen containing copper compound wherein the resulting foam achieves after heat aging at 150°C for seven days a V-0 rating at 0.5 inch according to Underwriters' Laboratories Standard 94 Flammability Test.

Description

THERMALLY STABLE FLAME RESISTANT FLEXIBLE POLYURETHANE FOAM
WITH REDUCED ODOR
FIELD OF THE INVENTION
The present invention relates to a composition for an improved flame resistant flexible polyurethane foam which is useful in under the hood vehicle applications which require sound deadening and vibration management wherein the improvement is odor reduction, preferably characterized as non-odiferous.
BACKGROUND OF THE INVENTION
Noise and vibration management is a significant issue for vehicle manufacturers, as cabin noise is a major factor in the comfort experience of automotive passengers.
Therefore, noise and vibration abatement measures are routinely incorporated into motor vehicles. These abatement measures often utilize flexible polyurethane foams. However, such foams typically are called upon to perform one or more functional purpose that can not be compromised at the expense of noise and vibration absorption, for example, under the hood applications require a high degree of flame resistance, in some cases an Underwriters' Laboratories Standard 94 (UL 94) V-0 rating.
The use of fire retardants in polyurethane foams is well known. Methods of imparting flame retardancy that combine calcium carbonate, ammonium hydroxide, or another such inorganic compound, halophosphoric acid compound, melamine, or another such compound with a polyol are also known. However, a large amount of such a compound must be added to impart flame retardancy often resulting in considerable problems in relationship to the properties, moldability, economics, and the like.
Methods of making flame retardant flexible polyurethane foam can also include adding a halogenated phosphoric acid ester as a flame retardant to a composition for polyester-based polyurethane foam and using a reactive flame retardant that adds a phosphorus or halogen atom to the polyhydroxyl compound or organic polyisocyanate that is a raw material of the polyurethane foam. However, the urethane foam obtained by these methods discolors over time, the foam itself deteriorates, and adequate flame retardancy is not maintained over an extended period of time because the flame retardant volatilizes. Due to recent environmental and market trends, non-halogenated flame retardant solutions have been pursued. For example, USP 6,765,034 discloses a flame resistant flexible polyurethane composition for use in sound deadening and vibration applications that comprises no flame retardants and relies on the selection of a specific isocyanate mixture and polyol. Furthermore, the flammability of said foams is defined only in regard to FMVSS302 flammability test, which is a less stringent flammability test as compared to the UL 94 test. FMVSS (Federal Motor Vehicle Safety Standard) 302 is a horizontal flame test which relates to a material's tendency to melt (therefore not spreading flame) as opposed to UL 94 vertical flame test which describes a material's ability to resist combustion.
US Patent Publication 20030130365 describes a process to make a flexible polyurethane foam from a rigid polyurethane foam comprising an organic phosphate flame retardant in combination with expandable graphite. However, said process is a multi-step process requiring a crushing step and a heating step. Furthermore, said polyurethane foams are evaluated by the less stringent flame spread FMVSS 302 test with no mention of UL 94 combustion resistance performance.
USP 5,169,876 discloses a flexible polyurethane foam comprising very high levels (20 to 50 weight percent) of expandable graphite incorporated into the cell walls which meet UL 94 V-0. However, the process requires a heated split stream polyol addition wherein one stream contains the expandable graphite. The high levels of expandable graphite and complex process steps contribute to an expensive product and may negatively affect the resultant foam properties, such as tensile strength.
JP 1998147623 discloses a flexible polyurethane foam with a complex flame retardant mixture comprising ammonium polyphosphate, red phosphorus and expandable graphite. However, to meet UL 94 V-2 or V-0 requirements, said foams require from 4 to 9 times the amount of ammonium polyphosphate as compared to the amount of red phosphorus.
Odor can be a problem for flame-retardant foam, especially flexible polyurethanes containing certain additive-type flame-retardant components, sees USP 4,690,954. An acrid odor may often be difficult to overcome and may be objectionable during the manufacturing of molded articles, storage of molded articles, and/or during the end use application of the molded articles. Odor, in addition to flame-retardant efficiency, after production may be of further concern if the desired application requires exposure to elevated temperatures, especially for extended exposure to higher temperatures.
There exists an unmet need for a flame resistant flexible polyurethane foam composition for sound deadening and vibration applications which meets UL 94 V-0 requirements, especially after exposure to elevated temperatures over a period of time and method to make said foam, that is cost effective, does not require additional multiple process steps over conventional methods, and does not require complex flame retardant mixtures and/or high levels of flame retardants.
BRIEF SUMMARY OF THE INVENTION
The present invention is such a flame resistant flexible polyurethane foam and process for preparing said foam.
In one embodiment, the present invention is an improved reactive formulation for making a flame resistant flexible polyurethane foam comprising a mixture of:
(A) an A side comprising
(i) one or more organic isocyanate,
and
(B) side comprising:
one or more isocyanate-reactive component, a flame retardant component comprising a combination of:
(iii.a) red phosphorus in an amount greater than 3 parts by weight and equal to or less than 8 parts by weight,
(iii.b) expandable graphite, preferably from 5 to 20 parts by weight, and
(iii.c) optionally sodium citrate, preferably when present from 0.5 to 15 parts by weight,
wherein the flame retardant component does not contain ammonium polyphosphate and parts by weight are based on the total weight of the B side,
and
(iv) one or more additional component selected from a catalyst, a blowing agent, a cell opener, a surfactant, a crosslinker, a chain extender, a flame retardant, a filler, a colorant, a pigment, an antistatic agent, reinforcing fibers, an antioxidant, a preservative, or an acid scavenger,
wherein the improvement is the reactive formulation further comprises:
(v) a non-halogen containing copper compound, preferably present in the B side, preferably wherein the weight ratio of red phosphorus to non-halogen containing copper compound is preferably between 15:1 and 3:2, and most preferably the non-halogen containing copper compound is copper acetate, wherein said flame resistant flexible polyurethane foam made from the improved reactive formulation achieves a V-0 rating at 0.5 inch according to Underwriters' Laboratories Standard 94 Flammability Test after heat aging at 150°C for seven days, preferably the flame resistant flexible polyurethane foam is characterized as substantially non-odoriferous.
In a preferred embodiment of the present invention, the organic isocyanate of the reactive formulation disclosed herein above comprises monomeric MDI, polymeric MDI, combinations there of, and/or liquid variants thereof obtained by introducing uretonimine and/or carbodiimide groups forming polyisocyanates, said carbodiimide and/or uretonimine modified polyisocyanates having an NCO value of from 29 to 33 percent and included in said polyisocyanate is from 1 to 45 percent by weight of 2,4'-diphenylmethane diisocyanate in the form of a monomer and/or a carbodiimidization product thereof.
In another preferred embodiment of the present invention, the isocyanate-reactive component isocyanate of the reactive formulation disclosed herein above comprises an ethylene-oxide capped polyether polyol.
Another embodiment of the present invention is a process to make a flame resistant flexible polyurethane foam by the steps of:
(I) forming:
(A) an A side comprising:
(i) one or more organic isocyanate,
and
(B) a B side comprising:
(ii) one or more isocyanate-reactive component,
(iii) a flame retardant component comprising a combination of:
(iii.a) red phosphorus in an amount greater than 3 parts by weight and equal to or less than 8 parts by weight (iii.b) expandable graphite, preferably from 5 to 20 parts by weight,
and
(iii.c) optionally sodium citrate, preferably when present from 0.5 to 15 parts by weight,
(iv) wherein the flame retardant component does not contain ammonium polyphosphate and parts by weight are based on the total weight of the B side,
(v) one or more additional component selected from a catalyst, a blowing agent, a cell opener, a surfactant, a crosslinker, a chain extender, a flame retardant, a filler, a colorant, a pigment, an antistatic agent, reinforcing fibers, an antioxidant, a preservative, or an acid scavenger,
and
(v) a non-halogen containing copper compound, present in the B side, preferably wherein the weight ratio of red phosphorus to non- halogen containing copper compound is between 15: 1 and 3:2;
(II) mixing the A side and the B side together to form a reactive formulation; and
(III) subjecting the resulting reactive formulation to conditions sufficient to cure the reactive formulation to form a flame resistant flexible polyurethane foam, preferably the foam is disposed around or in the vicinity of an engine of an automotive vehicle as an engine cover, an engine noise insulator, a fuel injector encapsulant, a side cover, an oil pan cover, an under cover, a hood silencer, or a dashboard silencer,
wherein said foam achieves a V-0 rating at 0.5 inch according to Underwriter's Laboratories Standard 94 Flammability Test (UL 94) after heat aging at 150°C for seven days, preferably the flame resistant flexible polyurethane foam is characterized as substantially non- odoriferous.
In a preferred embodiment of the reactive formulation and/or process described herein above, the flame resistant flexible polyurethane foam has a density of from 80 kg/m3 to 140 kg/m3. In a preferred embodiment of the reactive formulation and/or process described herein above, flame resistant flexible polyurethane foam has a tensile strength of equal to or greater than 150 kPa.
In a preferred embodiment of the reactive formulation and/or process described herein above, the flame resistant flexible polyurethane foam has an air flow resistivity of from 40,000 rayls/m to 150,000 rayls/m.
In yet another embodiment, the present invention is a flame resistant flexible polyurethane foam for use in an engine compartment of a vehicle said foam is halogen-free and ammonium polyphosphate free and has a UL 94 flammability rating after heat aging at 150°C for seven days of V-0 at 0.5 inch, a density between 80 kg/m3 and 140 kg/m3, and an air flow resistivity between 40,000 rayls/m and 150,000 rayls/m.
DETAILED SUMMARY OF THE INVENTION The flexible polyurethane foams according to the present invention are prepared from a reactive formulation comprising an A side comprising one or more organic isocyanate (i), a B side comprising one or more isocyanate-reactive component (ii), a flame retardant component (iii) comprising a combination of red phosphorus (iii.a), expandable graphite (iii.b), and optionally sodium citrate (iii.c) wherein the flame retardant component does not contain ammonium polyphosphate, optionally one or more additives (iv), and an odor reducing additive, such as a non-halogen containing copper compound (v).
Suitable organic isocyanates (i) for use in the composition and process of the present invention include any of those known in the art for the preparation of polyurethane foams, like aliphatic, cycloaliphatic, araliphatic and, preferably, aromatic isocyanates, such as toluene diisocyanate in the form of its 2,4 and 2,6-isomers and mixtures thereof and diphenylmethane diisocyanate in the form of its 2,4'-, 2,2'- and 4,4'-isomers and mixtures thereof, the mixtures of diphenylmethane diisocyanates (MDI) and oligomers thereof having an isocyanate functionality greater than 2 known in the art as "crude" or polymeric MDI (polymethylene polyphenylene polyisocyanates), the known variants of MDI comprising urethane, allophanate, urea, biuret, carbodiimide, uretonimine and/or isocyanurate groups.
Preferably monomeric MDI, crude MDI, polymeric MDI, combinations thereof, and/or liquid variants thereof are obtained by introducing uretonimine and/or carbodiimide groups into said polyisocyanates, such a carbodiimide and/or uretonimine modified polyisocyanate having an NCO value of from 29 to 33 percent and includes 1 to 45 percent by weight of 2,4'-diphenylmethane diisocyanate in the form of a monomer and/or a carbodiimidization product thereof. For a good description of such carbodiimide and/or uretonimine modified polyisocyanates see USP 6,765,034, which is incorporated by reference herein in its entirety.
In the present invention, the organic isocyanate component may include one or more organic polyisocyanate, in addition to and/or in place of monomeric MDI as needed, provided other polyisocyanate compounds do not have adverse influences on the performance on the desired sound deadening, vibration management, and flame resistance properties of the flexible polyurethane foam. Typical examples of such other
polyisocyanate compounds include isocyanate-terminal prepolymers which are formed by a reaction between at least one of compounds of the above-indicated monomeric MDI, and suitable active hydrogen compounds. To improve the formability and other characteristics of the obtained foam, the other polyisocyanate compounds may be selected from among organic isocyanates such as tolylene diisocyanate (TDI), isopholone diisocyanate (IPDI) and xylene diisocyanates (XDI), and modifications thereof. These isocyanates may be used in combinations of two or more types. Most preferably polyisocyanates are used which have an average isocyanate functionality of 2.1 to 3.0 and preferably of 2.2 to 2.8.
The amount of polyisocyanate that is used to make resilient flexible foam typically is sufficient to provide an isocyanate index of from 0.6 to 1.5, preferable 0.6 to 1.2, although wider ranges can be used in special cases. A preferred range is from 0.7 to 1.05 and a more preferred range is from 0.75 to 1.05.
The B side of the present invention comprises an isocyanate-reactive component (ii) which includes any type of compound of those known in the art for that purpose, for example polyamines, aminoalcohols and polyols.
Suitable polyols have been fully described in the prior art and include reaction products of alkylene oxides, for example ethylene oxide and/or propylene oxide, with initiators containing from 2 to 8 active hydrogen atoms per molecule. Suitable initiators include: polyols, for example ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, butane diol, glycerol, trimethylolpropane, triethanolamine,
pentaerythritol, sorbitol and sucrose; polyamines, for example ethylene diamine, tolylene diamine, diaminodiphenylmethane and polymethylene polypheny lene polyamines; and aminoalcohols, for example ethanolamine and diethanolamine; and mixtures of such initiators. Other suitable polyols include polyesters obtained by the condensation of appropriate proportions of glycols and higher functionality polyols with polycarboxylic acids. Still further suitable polyols include hydroxyl terminated polythioethers, polyamides, polyesteramides, polycarbonates, polyacetals, polyolefins and polysiloxanes. Still further suitable isocyanate -reactive components include ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, butane diol, glycerol, trimethylolpropane, ethylene diamine, ethanolamine, diethanolamine, triethanolamine and the other initiators mentioned before. Mixtures of such isocyanate-reactive components may be used as well. Most preferably polyols are used which do not comprise primary, secondary or tertiary nitrogen atoms.
Of particular importance for the preparation of the flexible polyurethane foams of the present invention are polyols and polyol mixtures having hydroxyl equivalent weight of equal to or greater than 1200, preferably equal to or greater than 1500, more preferably equal to or greater than 1700. Polyol equivalent weight is the molecular weight of the polyol divided by the hydroxyl functionality of the molecule. Of particular importance for the preparation of the flexible polyurethane foams of the present invention are polyols and polyol mixtures having hydroxyl equivalent weight of equal to or less than 4000, preferably equal to or less than 3000 and more preferably equal to or less than 2500. Polyols used for the preparation of the flexible foams of the present invention have an average nominal hydroxyl functionality of from 2 to 8, preferably of from 2 to 4.
Of particular importance for the preparation of the flexible foams are reaction products of alkylene oxides, for example ethylene oxide and/or propylene oxide, with initiators containing from 2 to 8 active hydrogen atoms per molecule. Suitable initiators include: polyols, for example ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, butane diol, glycerol, trimethylolpropane, triethanolamine,
pentaerythritol and sorbitol; polyamines, for example ethylene diamine, tolylene diamine, diaminodiphenylmethane and polymethylene polypheny lene polyamines; and
aminoalcohols, for example ethanolamine and diethanolamine; and mixtures of such initiators. Other suitable polyols include polyesters obtained by the condensation of appropriate proportions of glycols and higher functionality polyols with polycarboxylic acids. Still further suitable polyols include hydroxyl terminatedpolythioethers, polyamides, polyesteramides, polycarbonates, polyacetals, polyolefins and polysiloxanes. Preferred polyols are the polyether polyols comprising ethylene oxide and/or propylene oxide units and most preferably polyoxyethylene polyoxypropylene polyols having an oxyethylene content of at least 10 percent and preferably 10 to 85 percent by weight. A preferred isocyanate-reactive component comprises an ethylene-oxide capped polyether polyol.
Other polyols which may be used comprise dispersions or solutions of addition or condensation polymers in polyols of the types described above. Such modified polyols, often referred to as "copolymer" polyols have been fully described in the prior art and include products obtained by the in situ polymerisation of one or more vinyl monomers, for example styrene and acrylonitrile, in polymeric polyols, for example polyether polyols, or by the in situ reaction between a polyisocyanate and an amino- or hydroxy-functional compound, such as triethanolamine, in a polymeric polyol.
The polymer modified polyols which are particularly interesting in accordance with the invention are products obtained by in situ polymerisation of styrene and/or acrylonitrile in polyoxyethylene polyoxypropylene polyols and products obtained by in situ reaction between a polyisocyanate and an amino or hydroxy-functional compound (such as triethanolamine) in a polyoxyethylene polyoxypropylene polyol.
Polyoxyalkylene polyols containing from 5 to 50 percent of dispersed polymer are particularly useful. Particle sizes of the dispersed polymer of less than 50 microns are preferred. Mixtures of such isocyanate-reactive components may be used as well. Most preferably polyols are used which do not comprise primary, secondary or tertiary nitrogen atoms.
The B side further comprises a flame retardant component (iii) which comprises a combination of red phosphorus (iii. a), an expandable graphite (iii.b), and optionally sodium citrate (iii.c). In a preferred embodiment, the flame retardant component does not contain ammonium polyphosphate. The red phosphorus that constructs the composition for flame retardant flexible polyurethane foam of the present invention is inorganic. The inorganic red phosphorus may be untreated or may have been surface treated by an inorganic substance and/or organic substance (referred to hereinafter as coated red phosphorus), and the like. It is especially preferable to use coated red phosphorus in terms of the stability and ease of handling. Examples of commercial red phosphorus products include NOVA RED™ and NOVA EXCEL™ available from Rin Kagaku Kogyo Co., HISHIGUARD™ available from Nippon Chemical Industries Co., and EXOLIT™ RP607 available from Clariant.
The red phosphorous can be neat, as a concentrate, or used as a mixture, solution, or a thixotropic dispersion in a carrier medium such as castor oil, diphenyloctylphosphate, tris(chloropropyl)phosphate (TCPP), etc., for example EXOLIT RP 6590 (TP) and
EXOLIT RP 6580 available from Clariant.
The red phosphorus (iii.a) is present in an amount of greater than 3 parts based on the total weight of the B side, preferably equal to or greater than 3.5 parts, preferably equal to or greater than 4 parts based on the total weight of the B side. The red phosphorus (iii.a) is present in an amount of equal to or less than 8 parts based on the total weight of the B side, preferably equal to or less than 7.5 parts, preferably equal to or less than 7 parts, preferably equal to or less than 6.5 parts, and more preferably equal to or less than 6 parts based on the total weight of the B side.
The flame retardant component (iii) further consists of an expandable graphite (iii.b) which is well known in the art. Examples include crystalline compounds that maintain the laminar structure of the carbon that has grown a graphite interlayer compound by treating natural flaky graphite, pyrolytic graphite, Kish graphite, or another such powder by concentrated sulfuric acid, nitric acid, or another such inorganic acid and concentrated nitric acid, perchloric acid, permanganic acid, bichromate, or another such strong oxidizing agent. Expandable graphite that has been neutralized by ammonia, an aliphatic lower amine, alkali metal compound, alkaline earth metal compound, or the like is preferably used. Examples of aliphatic lower amines include monomethyl amine, dimethyl amine, trimethyl amine, ethyl amine, and the like. Examples of alkali metal compounds and alkaline earth metal compounds include hydroxides, oxides, carbonates, sulfates, organic acid salts, and the like of potassium, sodium, calcium, barium, magnesium, and the like. Preferably expandable graphite flakes have a size of from 0.3 to 1.0 mm.
In one embodiment, the expandable graphite (iii.b) being used is formed of graphite, with H2SO4 or SO4, for example, having two free negative valences, which attach to two free positive valences of a hydrocarbon ring, incorporated between the planes of the graphite mesh. When the flexible polyurethane foam is burned, this graphite expands to from 100 to 200 times its volume, giving off SO3 and/or S02 and water. A loose, expanded mass that acts in an insulating manner thus forms. Examples of commercial expandable graphite products include NYAGRAPH™ available from Naycol Nano Technologies, Inc., CA-60S™ available from Nippon Kasei Chemical Co., and CALLOTEK™ available from Graphitwerk Kropfmuehlm AG.
The expandable graphite (iii.b) is present in an amount of equal to or greater than 5 parts based on the total weight of the B side, preferably equal to or greater than 7 parts, and more preferably equal to or greater than 10 parts based on the total weight of the B side. The expandable graphite (iii.b) is present in an amount of equal to or less than 20 parts based on the total weight of the B side, preferably equal to or less than 17 parts, and more preferably equal to or less than 15 parts based on the total weight of the B side.
The flame retardant component (iii) may optionally further consists of sodium citrate
(iii.c) which is well known in the art.
If sodium citrate (iii.c) is present in the flame retardant component (iii) of the present invention it is present in an amount of equal to or greater than 0.5 parts based on the total weight of the B side, preferably equal to or greater than 1 part, and more preferably equal to or greater than 2 parts based on the total weight of the B side. If sodium citrate (iii.c) is present in the flame retardant component (iii) of the present invention it is present in an amount of equal to or less than 15 parts based on the total weight of isocyanate- reactive component, preferably equal to or less than 12 parts, and more preferably equal to or less than 10 parts based on the total weight of the B side.
In one embodiment, the A side, the B side, and/or the reactive formulation of the present invention may comprise an additional compound other than ammonium
polyphosphate, including organic and/or inorganic, halogenated and/or non-halogenated, in addition to the red phosphorus (iii. a), expandable graphite (iii.b), and optionally sodium citrate (iii.c) to improve the flame resistance performance of the flexible polyurethane foam produced therefrom.
In one embodiment, the A side, the B side, the reactive formulation, the flame retardant component (iii), and/or the flexible polyurethane foam of the present invention do not comprise or contain any other flame retardant additives than the red phosphorus (iii.a), the expandable graphite (iii.b), and optionally the sodium citrate (iii.c).
In one embodiment, the A side, the B side, the reactive formulation, and/or the flame retardant component (iii) and/or the flexible polyurethane foam of the present invention do not comprise or contain any other flame retardant additives than the red phosphorus (iii.a) and the expandable graphite (iii.b).
In another embodiment, the A side, the B side, the reactive formulation, the flame retardant component (iii) and/or the flexible polyurethane foam of the present invention do not contain an organic phosphorus containing compound. In another embodiment, the A side, the B side, the reactive formulation, the flame retardant component (iii), and/or the flexible polyurethane foam of the present invention do not comprise or contain caseine.
In another embodiment, the A side, the B side, the reactive formulation, the flame retardant component (iii), and/or the flexible polyurethane foam of the present invention do not comprise or contain a halogenated flame retardant. In other words, the A side, the B side, and/or the reactive formulation of the present invention comprise only non- halogenated flame retardants.
The reaction of the reactive formulation of the present invention comprising one or more organic polyisocyanate (i), one or more isocyanate-reactive component (ii), and the flame retardant component (iii) comprising a combination of red phosphorus (iii. a), expandable graphite (iii.b), and optionally sodium citrate (iii.c) wherein the flame retardant component does not contain ammonium polyphosphate, to make a flexible polyurethane foam can be performed in the presence of various types of other additional materials (iv), as may be useful in the particular manufacturing process that is used or to impart desired characteristics to the resulting foam. These include, for example, catalysts, blowing agents, cell openers, surfactants, crosslinkers, chain extenders, flame retardants (other than red phosphorus, expandable ammonium polyphosphate, and sodium citrate), fillers, colorants, pigments, antistatic agents, reinforcing fibers, antioxidants, preservatives, acid scavengers, and the like.
The B side may comprise one or more additional components (iv). For example, in order to prepare a flexible polyurethane foam of the present invention a blowing agent is required, preferably water. However if the amount of water is not sufficient to obtain the desired density of the foam any other known way to prepare polyurethane foams may be employed additionally, like the use of reduced or variable pressure, the use of a gas like air, N2 and C02, the use of more conventional blowing agents like chlorofluorocarbons, hydrofluorocarbons, hydrocarbons and fluorocarbons, the use of other reactive blowing agents, i.e. agents which react with any of the ingredients in the reacting mixture and due to this reaction liberate a gas which causes the mixture to foam and the use of catalysts which enhance a reaction which leads to gas formation like the use of carbodiimide-formation- enhancing catalysts such as phospholene oxides. Combinations of these ways to make foams may be used as well. The amount of blowing agent may vary widely and primarily depends on the desired density. Water may be used as liquid at below- ambient, ambient or elevated temperature and as steam.
One embodiment of the present invention is a combination of blowing agent is water and C02 wherein the C02 is added to the ingredients for making the foam in the mixing head of a device for making the foam, to one of the isocyanate-reactive ingredients and preferably to the polyisocyanate before the polyisocyanate is brought into contact with the isocyanate-reactive ingredients.
In one embodiment, the flexible polyurethane foam of the present invention is made from reactive formulations comprising (A) the A side comprising an organic isocyanate (i); (B) the B side comprising an isocyanate-reactive component (ii), and the flame retardant additive (iii) in the presence of water; and (C) a non-halogen containing copper compound (v). Preferably, such formulations contain from 1 to 7 weight percent, especially from 1 to 6 weight percent water based on the total weight of the isocyanate-reactive component (ii). Desirable flexible polyurethane foam can be made in a slabstock process or in a closed mold. Closed mold molding processes are preferred to make shaped products such as under the hood applications, for example, engine encapsulation members.
As an additional component (iv), one or more catalyst may be present in the B side of the reactive formulation of the present invention. One preferred type of catalyst is a tertiary amine catalyst. The tertiary amine catalyst may be any compound possessing catalytic activity for the reaction between a polyol and an organic polyisocyanate and at least one tertiary amine group. Representative tertiary amine catalysts include
trimethylamine, triethylamine, dimethylethanolamine, N-methylmorpholine,
N-ethyl-morpholine, N,N-dimethylbenzylamine, Ν,Ν-dimethylethanolamine, Ν,Ν,Ν',Ν'- tetramethyl- 1 ,4-butanediamine, Ν,Ν-dimethylpiperazine, 1 ,4-diazobicyclo-2,2,2-octane, bis(dimethylaminoethyl)ether, bis(2-dimethylaminoethyl) ether, morpholine,4,4'-(oxydi-2,l- ethanediyl)bis, triethylenediamine, pentamethyl diethylene triamine, dimethyl cyclohexyl amine, N-acetyl Ν,Ν-dimethyl amine, N-coco-morpholine, Ν,Ν-dimethyl aminomethyl N-methyl ethanol amine, N, N, N'-trimethyl-N'-hydroxyethyl bis(aminoethyl) ether, N,N-bis(3-dimethylaminopropyl)N-isopropanolamine, (Ν,Ν-dimethyl) amino-ethoxy ethanol, N, N, N', N' -tetramethyl hexane diamine, l,8-diazabicyclo-5,4,0-undecene-7, Ν,Ν-dimorpholinodiethyl ether, N-methyl imidazole, dimethyl aminopropyl
dipropanolamine, bis(dimethylaminopropyl)amino-2-propanol, tetramethylamino bis (propylamine), (dimethyl(aminoethoxyethyl))((dimethyl amine)ethyl)ether, tris(dimethyl- amino propyl) amine, dicyclohexyl methyl amine, bis(N,N-dimethyl-3-aminopropyl) amine, 1 ,2-ethylene piperidine and methyl-hydroxyethyl piperazine
The B side of the reactive formulation may contain one or more other catalysts, in addition to or instead of the tertiary amine catalyst mentioned before. Of particular interest among these are tin carboxylates and tetravalent tin compounds. Examples of these include stannous octoate, dibutyl tin diacetate, dibutyl tin dilaurate, dibutyl tin dimercaptide, dialkyl tin dialkylmercapto acids, dibutyl tin oxide, dimethyl tin dimercaptide, dimethyl tin diisooctylmercaptoacetate, and the like.
Catalysts are typically used in small amounts. For example, the total amount of catalyst used may be 0.0015 to 5 weight percent, preferably from 0.01 to 1 weight percent based on the total weight of the isocyanate -reactive compound (ii). Organometallic catalysts are typically used in amounts towards the low end of these ranges.
The B side may further comprise as one of the additional components (iv) a crosslinker, which preferably is used, if at all, in small amounts, to 2 weight percent, up to 0.75 weight percent, or up to 0.5 weight percent based on the total weight of the isocyanate- reactive compound (ii). The crosslinker contains at least three isocyanate-reactive groups per molecule and has an equivalent weight, per isocyanate-reactive group, of from 30 to about 125 and preferably from 30 to 75. Aminoalcohols such as monoethanolamine, diethanolamine and triethanolamine are preferred types, although compounds such as glycerine, trimethylolpropane and pentaerythritol also can be used.
The B side may further comprise a surfactant as an additional component (iv). A surfactant is preferably included in the foam formulation to help stabilize the foam as it expands and cures. Examples of surfactants include nonionic surfactants and wetting agents such as those prepared by the sequential addition of propylene oxide and then ethylene oxide to propylene glycol, solid or liquid organosilicones, and polyethylene glycol ethers of long chain alcohols. Ionic surfactants such as tertiary amine or alkanolamine salts of long chain alkyl acid sulfate esters, alkyl sulfonic esters and alkyl arylsulfonic acids can also be used. The surfactants prepared by the sequential addition of propylene oxide and then ethylene oxide to propylene glycol are preferred, as are the solid or liquid organosilicones. Examples of useful organosilicone surfactants include commercially available
polysiloxane/polyether copolymers such as TEGOSTAB™ B-8729, and B-8719LF available from Goldschmidt Chemical Corp., and NIAX™ L2171 surfactant from
Momentive Performance Materials. Non-hydrolyzable liquid organosilicones are more preferred. When a surfactant is used, it is typically present in an amount of 0.0015 to 1 weight percent based on the total weight of the organic isocyanate (i).
A cell opener may be present as an additional component (iv) in the B side of the reactive formulation. The cell opener functions during the polymerization reaction to break cell walls and therefore promote the formation of an open cell structure. A high open cell content (at least 25 percent by number, preferably at least 50 percent) is usually beneficial for foams that are used in noise and vibration absorption applications. A useful type of cell opener includes ethylene oxide homopolymers or random copolymers of ethylene oxide and a minor proportion of propylene oxide, which have a molecular weight of 5000 or more. These cell openers preferably have a hydroxyl functionality of at least 4, more preferably at least 6. Cell openers are preferably used in amounts from about 0.5 to about 5 weight percent based on the total weight of the isocyanate-reactive compound (ii).
A chain extender may be employed as an additional component (iv) in the B side of the reactive formulation of the present invention. A chain extender is a compound having exactly two isocyanate-reactive groups and an equivalent weight per isocyanate-reactive group of up to 499, preferably up to 250, also may be present. Chain extenders, if present at all, are usually used in small amounts, such as up to 10, preferably up to 5 and more preferably up to 2 weight percent based on the total weight of the isocyanate-reactive compound (ii). Examples of suitable chain extenders include ethylene glycol, diethylene glycol, Methylene glycol, propylene glycol, dipropylene glycol, tripropylene glycol, 1,4-dimethylolcyclohexane, 1 ,4-butane diol, 1,6-hexane diol, 1,3-propane diol,
diethyltoluene diamine, amine-terminated polyethers such as JEFF AMINE™ D-400 from Huntsman Chemical Company, amino ethyl piperazine, 2-methyl piperazine, 1,5-diamino- 3-methyl-pentane, isophorone diamine, ethylene diamine, hexane diamine, hydrazine, piperazine, mixtures thereof and the like.
The B side may also comprise as an additional component (iv) a filler, which reduces overall cost, load bearing and other physical properties to the product. The filler may constitute up to about 50 percent, of the total weight of the polyurethane reactive formulation (i.e., the combined weight of the organic isocyanate (i), the isocyanate-reactive compound (ii), and the flame retardant component (iii)). Suitable fillers include talc, mica, montmorillonite, marble, barium sulfate (barytes), milled glass granite, milled glass, calcium carbonate, aluminum trihydrate, carbon, aramid, silica, silica-alumina, zirconia, talc, bentonite, antimony trioxide, kaolin, coal based fly ash and boron nitride. Odor in flame resistant flexible polyurethane foams may be a production
characteristic which can be improved by being reduced or even eliminated by choice of flame retardant and/or other additives. Applicant's have found that flame resistant flexible polyurethane foams comprising a flame retardant component comprising a combination of red phosphorus, expandable graphite, and optionally sodium citrate wherein the flame retardant component does not contain ammonium polyphosphate may emit an acrid odor. Surprisingly, Applicant has found that by adding an odor reducing component (v), such as a non-halogen containing copper compound, to a reactive formulation comprising a combination of red phosphorus, expandable graphite, and optionally sodium citrate wherein the flame retardant component does not contain ammonium polyphosphate the flame resistant flexible polyurethane foam resulting therefrom has reduced odor and/or is essentially non-odiferous.
The odor suppressants suitable for use in the conduct of this invention are selected from the group consisting of cupric oxide, cupric acetate, cuprous acetate, copper metal, complexes of cupric cation or cuprous cation and ligands containing one or more nitrogen atoms. The cuprous and cupric inorganic salts mentioned hereinabove are well known compounds whose physical properties are well known in the literature. For example, the physical properties of cupric chloride, one of the aforementioned inorganic salts are set forth in the Handbook of Chemistry, 11th Ed, Editor John A. Dean (1973) as follows: a brown yellow powder that is hygroscopic having a density of 3.3869/cm.sup.3 and a melting point of 620°C.
Useful complexes of cupric and cuprous cations and a nitrogen atom containing ligands are also well known, see USP 4,356,282. The nitrogen atom can be in any form which allows coordination covalent bonding with cupric and/or cuprous cations. For example, such nitrogen atom can be in the form of an amide, amine, aromatic nitrogen base and the like. Such useful complexes include those formed by cupric and cuprous cations and monodentate ligands such as ammonia, mono-, di-, and tri- alkyl amines, pyridine, caprolactam, pyrrolidine, isocyanides, cyanides and the like. Useful and preferred complexes also include those formed by cupric and cuprous cations and polydentate ligands, as for example, ethylene diamine, nitrilotriacetic acid ethylene diamine triacetic acid, 2,2' dipyridyl and similar amines, phthalocyanine, 8-hydroxyquinoline and the like.
Of the aforementioned odor suppressants, cupric acetate, cupric oxide, and complexes of cupric cation and cuprous cation and polydentate ligands are those for use in the preferred embodiments of this invention. Amongst these preferred suppressants, cupric acetate is particularly preferred.
Preferably, the weight ratio of red phosphorus to non-halogen containing copper compound is between 15:1 and 3:2.
The odor reducing additive (v) may be added entirely in the A side, or added entirely in the B side, or added partially in the A side and partially in the B side, or separately to the A side and B side when they are mixed. Preferably, the odor reducing additive is added in the B side.
Flexible foam can be made in accordance with the invention in a slabstock process or in a closed mold molding process. Slabstock foam is formed as a large bun which is cut into the required shape and size for use. Closed mold molding processes can be either so- called hot molding process or a cold molding process wherein the foaming takes place in a closed mold. After the foam has cured, the mold is opened, and the flexible foam removed. An integral skin can be formed onto the surface of the foam in the mold. A film, fabric, leather or other coverstock can be inserted into the mold prior to introducing the reactive formulation, to produce a foam that has a desirable show surface.
Polyurethane foam formulations that contain a mixture of ethylene oxide-capped polypropylene oxides in accordance with the invention have been found to process well, especially in formulations in which water is used as a blowing agent, especially when used as the sole blowing agent as described herein above. Good processing herein refers to the ability of a foam formulation to consistently produce good quality foam in an industrial setting. Good processing is indicated by consistently uniform cell structure, complete mold filling, consistently good surface appearance, consistent foam density and consistency in foam physical properties as the foam is produced over time. The foam formulation tolerates small changes in operating temperatures, catalyst levels and other process conditions which often cause significant product inconsistencies in other high water foam formulations.
It is often preferred to crush the foam to open the cells. A high open cell content (at least 25 percent by number, preferably at least 50 percent) is usually beneficial for foams that are used in noise and vibration absorption applications.
Flexible polyurethane foam is characterized in having a resiliency, as determined using the ASTM D-3574 ball rebound test, which measures the height a ball rebounds from the surface of the foam when dropped under specified conditions. Under the ASTM test, the foam exhibits a resiliency of at least 40 percent, especially at least 50 percent. The flexible polyurethane foam of the present invention advantageously also has a density in the range of 4 to 10 pounds/cubic foot (pcf) (64-160 kg/m3), preferably from 5 to 8.8 pounds/cubic foot (80-140 kg/m3). Density is conveniently measured according to ASTM D 3574.
The flexible polyurethane foam of the present invention advantageously has a tensile strength in the range of 150 to 800 kPa. Preferably, the tensile strength of the foam according to the present invention is equal to or greater than 150 kPa, more preferably equal to or greater than 200 kPa, more preferably equal to or greater than 250 kPa, and even more preferably equal to or greater than 300 kPa. Preferably, the tensile strength of the foam according to the present invention is equal to or less than 800 kPa, more preferably equal to or less than 700 kPa, more preferably equal to or less than 600 kPa, and even more preferably equal to or less than 500 kPa. Tensile strength is conveniently measured according to ASTM D 3574.
The flexible polyurethane foam of the present invention advantageously achieves a UL 94 flammability rating of V-0 even after exposure to elevated temperatures for extended periods of time. For example, the flexible polyurethane foam of the present invention achieves a UL 94 flammability rating of V-0 after heat aging at 150°C for seven days.
One means of measuring sound absorption performance of noise and vibration- absorbing applications, such as molded parts from the resilient, flexible polyurethane of the present invention, is by using equipment such as an impedance tube, or what is generally referred to as reverberation chambers, in accordance with individual OEM specifications. Another test used to evaluate sound absorption performance is air flow resistivity, according to ASTM C522-87. Preferably, for noise and vibration-absorbing applications, the air flow resistivity should be in the range of 30,000 to 200,000 rayls/m, more preferably 40,000 to 150,000 rayls/m. Rayls is pressure divided by volumetric flow rate and is equivalent to
Pa/(m3/s) (or Pa-s/m3). Air flow resistivity is given in rayls/m which is pressure divided by the volumetric flow rate divided by the thickness of the foam specimen.
To manufacture the flame resistant flexible polyurethane foam of the present invention, a reactive formulation is prepared, said reactive formulation comprising: (A) an A side comprising (i) one or more organic polyisocyanate; (B) a B side comprising (ii) one or more isocyanate-reactive component, (iii) a flame retardant component comprising a combination of: (iii.a) red phosphorus, (iii.b) expandable graphite, and (iii.c) optionally sodium citrate wherein the flame retardant component does not contain ammonium polyphosphate; (iv) one or more additional component selected from a catalyst, a blowing agent, a cell opener, a surfactant, a crosslinker, a chain extender, a flame retardant (other than red phosphorus, expandable graphite, and sodium citrate), a filler, a colorant, a pigment, an antistatic agent, reinforcing fibers, an antioxidant, a preservative, or an acid scavenger; and (C) a non-halogen containing copper compound (v), wherein said non- halogen containing copper compound (v) is preferably added in the B side. The "B side", is a premix comprising the appropriate amounts of polyol, flame retardant component, blowing agent, catalyst, foaming aid, optionally the copper compound, and other aids specific to the desired polyol component/final foam. Depending on the composition of the B side, elevated temperatures, above 40°C, may be required to mix the components.
Preferably, the B side is mixed together at a temperature less than 40°C, more preferably it is mixed together at ambient temperature (defined herein as from 20°C to 30°C). The B side is then mixed with the specific organic (poly)isocyanate component, comprised in the "A side" at the desired ratio, forming the reactive formulation which, when mixed, allows for the foaming reaction to occur. The polyol premix (B side) and the organic polyisocyanate component (A side) are mixed together by any known urethane foaming equipment. The resulting reactive formulation is subjected to conditions sufficient to cure the reactive formulation to form a flame resistant flexible polyurethane foam which after heat aging at 150°C for seven days obtains a UL 94 V-0 rating at 0.5 inch. The reactive formulation is either introduced into a suitable mold, so that a foaming/curing reaction takes place within the mold to form the desired polyurethane foam or it is allowed to foam/cure to form a slab stock or it is foamed in place.
The flame resistant flexible polyurethane foam thus manufactured can be suitably used for flame resistant and noise and vibration-absorbing applications according to the present invention, for example, the foams may be used for and/or molded into an article to be used for and/or molded/foamed in place as an engine cover, an engine noise insulator, a fuel injector encapsulant, a side cover, an oil pan cover, an under cover, a hood silencer, and a dashboard silencer, which are disposed around or in the vicinity of an engine of an automotive vehicle, to reduce the amount of sound or noise to be transmitted from the engine. In particular, the flame resistant flexible polyurethane foam may be suitably used and/or molded into articles to be used for or molded/foamed in place as spacers or fillers for filling gaps or spaces between the engine and the surrounding devices, or encapsulation of engine parts for attenuating the standing waves. EXAMPLES
Comparative Examples A to E and Example 1 comprise a reaction formulation used to provide a flexible polyurethane foam comprising a polyol component and other additives (B side) and an isocyanate component (A side). The polyol component comprises a polyol, a catalyst, a flame retardant component, a cross-linking agent (diethylene glycol), a blowing agent (water), a silicon surfactant, a black colorant wherein the components are pre mixed. In mixing the polyol component, red phosphorus is added first and expandable graphite last. All the components are added to and mixed into the B side at ambient temperature (in this case, about 23°C). The isocyanate component comprises a carbodiimide-modified MDI with 72 weight percent 4,4'-MDI and 2 weight percent 2,4'-MDI, an equivalent molecular weight of about 145, and an isocyanate content of about 29. Comparative Example A and Example 1 are identical with the exception that Example 1 comprises cupric acetate which is added to and mixed with the B side components. Comparative Examples B to E and Example 1 are identical with the exception that Comparative Examples B to E comprise potential odor reducing compounds added to and mixed with the B side components other than cupric acetate. The polyol component and isocyanate component are molded into foam pad using a HiTech high pressure impingement mixing machine equipped with a 40 inch by 40 inch by 1 inch frame with a 20 inch by 20 inch by 1 inch mold insert. The test mold top and bottom are heated to 54°C. The B side is heated to 27°C and the A side is heated to 27°C. The injection pressure for both the B side and A side are 2000 pounds per square inch (psi). The shot size is 680 to 750 grams (g) and the shot time is 2.25 to 2.45 seconds (s). The cure time is 3 minutes (min). After the foam has cured, the mold is opened, and the foam is removed from the mold.
The composition of the polyol component (B side) for Comparative Examples A to E and Example 1 are listed in Table 1. For Comparative Examples A to E and Example 1 a formulated polyol blend (comprising polyols and other additives) is made from the below listed components. Amounts are given as weight percent based on the total weight of the formulated polyol blend. The amounts for the components making up the polyol component (B) are given in parts based on the total weight of the polyol component (B). The ratio of the polyol component (B) and the isocyanate component (A) are given parts. In Table 1: "Polyol" is a glycerine initiated propylene oxide and 15 percent ethylene oxide capped polyol having a hydroxyl number of 27.5 and an equivalent weight of 2040 available as VORANOL CP 6001 Polyol from The Dow Chemical Company;
"Isocyanate" is a carbodiimide-modified MDI with 72 weight percent 4,4'-MDI and 2 weight percent 2,4'-MDI, an equivalent molecular weight of about 145, and an isocyanate content of about 29 available as Isocyanate 143 LM from The Dow Chemical Company;
"DEG" is diethylene glycol;
"TEGOSTAB™B 4113" is a low efficiency cell regulating type silicon surfactant available from Goldschmidt Gmbh;
"DABCO™33 LV" is a 33 percent triethylene diamine in dipropylene glycol curing catalyst available from Air Products;
"DABCO BL 11" is a 70 percent bis (N,N dimethylaminoethyl) ether in dipropylene glycol blowing catalysts available from Air Products;
"Black" is a black colorant available as POP 4654 Black from Day Glo;
"EXOLIT™ RP 607" is microencapsulated red phosphorus flame retardant available from Clariant Pigment and Additive Division;
"NYAGRAPH™ 351" is an expandable graphite having an initial expansion temperature of 150°C and an expansion volume of 350 ml/g available from Naycol Nano Technologies, Inc.;
"Cupric Acetate" is available as Copper (II) Acetate, 98% from Sigma Aldrich;
"Potassium Iodide" is available from Fisher Scientific;
"Aluminum Hydroxide" is available from Sigma Aldrich;
"Magnesium Oxide" is available from Sigma Aldrich; and
"Sodium Citrate Dihydrate" is available from Fisher Scientific.
Properties for the resultant foams from the formulated polyol mixtures of
Comparative Examples A and Example 1 are provided in Table 1. In Table 1:
"Isocyanate Index" is the ratio of the actual amount of isocyanate relative to the theoretical amount of isocyanate required to react with the polyol component;
"Average PH3" is the amount of phosphine detected by gas chromatography after exposing a sample of molded foam to 40°C for 90 minutes;
"Odor" is determined by smelling the foam after molding and comparing the odor to the control sample (which has an objectionable acrid odor); and "UL 94" is vertical flammability testing run according to Underwriter' s Laboratories Standard 94 and 0.5 inch by 0.5 inch by 5 inch foam samples. Samples are tested according to UL 94 protocol as molded (e.g., at ambient temperature for at least 24 hours) and after aging at 150°C for 7 days (samples at ambient temperature for at least 24 hours after aging and before testing).
As shown in Table 1 , Example 1 , the resultant foam product of the present invention is a flexible foam with no objectionable, acrid odor having good flammability performance after aging at 150°C for 7 days.
Table 1
Figure imgf000023_0001

Claims

What is claimed is:
1. An improved reactive formulation for making a flame resistant flexible polyurethane foam comprising a mixture of:
(A) an A side comprising
(i) one or more organic isocyanate,
and
(B) a B side comprising:
(ii) one or more isocyanate-reactive component,
(iii) a flame retardant component comprising a combination of:
(iii. a) red phosphorus in an amount greater than 3 parts by weight and equal to or less than 8 parts by weight,
(iii.b) expandable graphite,
and
(iii.c) optionally sodium citrate,
wherein the flame retardant component does not contain ammonium polyphosphate and wherein parts by weight are based on the total weight of the B side,
and
(iv) one or more additional component selected from a catalyst, a blowing agent, a cell opener, a surfactant, a crosslinker, a chain extender, a flame retardant, a filler, a colorant, a pigment, an antistatic agent, reinforcing fibers, an antioxidant, a preservative, or an acid scavenger,
wherein said flame resistant flexible polyurethane foam made from the reactive formulation achieves a V-0 rating at 0.5 inch according to Underwriter's Laboratories Standard 94 Flammability Test after heat aging at 150°C for seven days,
wherein the improvement is the reactive formulation further comprises:
(C) a non-halogen containing copper compound (v).
2. The reactive formulation of Claim 1 wherein the organic isocyanate comprises monomeric MDI, polymeric MDI, combinations there of, and/or liquid variants thereof obtained by introducing uretonimine and/or carbodiimide groups forming polyisocyanates, said carbodiimide and/or uretonimine modified polyisocyanates having an NCO value of from 29 to 33 percent and included in said polyisocyanate is from 1 to 45 percent by weight of 2,4'-diphenylmethane diisocyanate in the form of a monomer and/or a carbodiimidization product thereof.
3. The reactive formulation of Claim 1 wherein said isocyanate-reactive component comprises an ethylene-oxide capped polyether polyol.
4. The reactive formulation of Claim 1 wherein the expandable graphite (iii.b) is present in an amount of from 5 to 20 parts by weight, wherein parts by weight are based on the total weight of the B side.
5. The composition of Claim 1 wherein the non-halogen containing copper compound is copper acetate.
6. The composition of Claim 1 wherein the red phosphorous to non-halogen containing copper compound weight ratio is between 15:1 and 3:2.
7. The composition of Claim 1 wherein the flame retardant component comprises:
(iii.c) from 0.5 to 15 parts by weight sodium citrate,
wherein parts by weight are based on the total weight of the B side.
8. The flame resistant flexible polyurethane foam made from the improved reactive formulation of Claim 1 is characterized as substantially non-odoriferous.
9. A process to make an improved flame resistant flexible polyurethane foam by the steps of:
(I) forming:
(A) an A side comprising:
(i) one or more organic isocyanate,
and
(B) a B side comprising:
(ii) one or more isocyanate-reactive component, (iii) a flame retardant component comprising a combination of:
(iii.a) red phosphorus in an amount greater than 3 parts by weight and equal to or less than 8 parts by weight,
(iii.b) expandable graphite,
and
(iii.c) optionally sodium citrate,
wherein the flame retardant component does not contain ammonium polyphosphate and wherein parts by weight are based on the total weight of the B side, (iv) one or more additional component selected from a catalyst, a blowing agent, a cell opener, a surfactant, a crosslinker, a chain extender, a flame retardant, a filler, a colorant, a pigment, an antistatic agent, reinforcing fibers, an antioxidant, a preservative, or an acid scavenger;
and
(vi) a non-halogen containing copper compound wherein the weight ratio of red phosphorus to non-halogen containing copper compound is between 15:1 and 3:2;
(II) mixing the A side and the B side together to form a reactive formulation; and
(III) subjecting the resulting reactive formulation to conditions sufficient to cure the reactive formulation to form a flame resistant flexible polyurethane foam wherein said foam achieves a V-0 rating at 0.5 inch according to Underwriter's Laboratories Standard 94 Flammability Test after heat aging at 150°C for seven days.
10. The flame resistant flexible polyurethane foam made from the process of Claim 9 is characterized as substantially non-odoriferous.
11. The process of Claim 9 wherein the flame resistant flexible polyurethane foam is disposed around or in the vicinity of an engine of an automotive vehicle as an engine cover, an engine noise insulator, a fuel injector encapsulant, a side cover, an oil pan cover, an under cover, a hood silencer, or a dashboard silencer.
12. A flame resistant flexible polyurethane foam for use in an engine compartment of a vehicle said foam is halogen-free and ammonium polyphosphate free and has a UL 94 flammability rating after heat aging at 150°C for seven days of V-0 at 0.5 inch, a density between 80 kg/m3 and 140 kg/m3, and an air flow resistivity between 40,000 rayls/m and 150,000 rayls/m.
PCT/US2012/059503 2011-11-09 2012-10-10 Thermally stable flame resistant flexible polyurethane foam with reduced odor WO2013070370A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201161557568P 2011-11-09 2011-11-09
US61/557,568 2011-11-09

Publications (1)

Publication Number Publication Date
WO2013070370A1 true WO2013070370A1 (en) 2013-05-16

Family

ID=47116402

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2012/059503 WO2013070370A1 (en) 2011-11-09 2012-10-10 Thermally stable flame resistant flexible polyurethane foam with reduced odor

Country Status (1)

Country Link
WO (1) WO2013070370A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014078943A1 (en) * 2012-11-26 2014-05-30 Proprietect L.P. Isocyanate-based polymer foam having improved flame retardant properties
EP3118232A1 (en) * 2015-07-14 2017-01-18 Rohm And Haas Company Process for preparing hydrophobically modified alkylene oxide urethane polymer
CN111454419A (en) * 2020-03-31 2020-07-28 新子元(上海)科技发展有限公司 Full-water-blown semi-rigid PU foam

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4356282A (en) 1981-07-06 1982-10-26 Allied Corporation Phosphine suppressants for polymeric compositions including red phosphorus as a flame retardant
US4690954A (en) 1986-04-25 1987-09-01 The Dow Chemical Company Halogenated phosphorate ethers with flame-retardant polyurethanes
US5169876A (en) 1989-03-18 1992-12-08 Metzeler Schaum Gmbh Process for producing a flame-resistant elastic soft polyurethane foam
JPH10147623A (en) 1996-11-20 1998-06-02 Chisso Corp Composition for flame retardant soft polyurethane foam
EP1298160A1 (en) * 2001-09-27 2003-04-02 Tokai Rubber Industries, Ltd. Flame-resistant and sound-and vibration-insulating member for vehicles, and process of manufacturing the same
US20030130365A1 (en) 1999-10-07 2003-07-10 Berend Eling Process for making rigid and flexible polyurethane foams containing a fire-retardant
WO2012067841A2 (en) * 2010-11-18 2012-05-24 Dow Global Technologies Llc Flame resistant flexible polyurethane foam

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4356282A (en) 1981-07-06 1982-10-26 Allied Corporation Phosphine suppressants for polymeric compositions including red phosphorus as a flame retardant
US4690954A (en) 1986-04-25 1987-09-01 The Dow Chemical Company Halogenated phosphorate ethers with flame-retardant polyurethanes
US5169876A (en) 1989-03-18 1992-12-08 Metzeler Schaum Gmbh Process for producing a flame-resistant elastic soft polyurethane foam
JPH10147623A (en) 1996-11-20 1998-06-02 Chisso Corp Composition for flame retardant soft polyurethane foam
US20030130365A1 (en) 1999-10-07 2003-07-10 Berend Eling Process for making rigid and flexible polyurethane foams containing a fire-retardant
EP1298160A1 (en) * 2001-09-27 2003-04-02 Tokai Rubber Industries, Ltd. Flame-resistant and sound-and vibration-insulating member for vehicles, and process of manufacturing the same
US6765034B2 (en) 2001-09-27 2004-07-20 Tokai Rubber Industries, Ltd. Flame-resistant and sound- and vibration-insulating member for vehicles, and process of manufacturing the same
WO2012067841A2 (en) * 2010-11-18 2012-05-24 Dow Global Technologies Llc Flame resistant flexible polyurethane foam

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Handbook of Chemistry", 1973
MODESTI M ET AL: "Halogen-free flame retardants for polymeric foams", POLYMER DEGRADATION AND STABILITY, BARKING, GB, vol. 78, no. 1, 1 January 2002 (2002-01-01), pages 167 - 173, XP004374685, ISSN: 0141-3910, DOI: 10.1016/S0141-3910(02)00130-1 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014078943A1 (en) * 2012-11-26 2014-05-30 Proprietect L.P. Isocyanate-based polymer foam having improved flame retardant properties
EP3118232A1 (en) * 2015-07-14 2017-01-18 Rohm And Haas Company Process for preparing hydrophobically modified alkylene oxide urethane polymer
US10150852B2 (en) 2015-07-14 2018-12-11 Rohm And Haas Company Process for preparing hydrophobically modified alkylene oxide urethane polymer
CN111454419A (en) * 2020-03-31 2020-07-28 新子元(上海)科技发展有限公司 Full-water-blown semi-rigid PU foam
CN111454419B (en) * 2020-03-31 2022-05-20 新子元(上海)科技发展有限公司 Full-water-blown semi-rigid PU foam

Similar Documents

Publication Publication Date Title
US9403961B2 (en) Flame resistant flexible polyurethane foam
US9410012B2 (en) Thermally stable flame resistant flexible polyurethane foam
EP0307987B1 (en) Flexible polyurethane foam having a high fire resistance
US9908984B2 (en) Flame retardant polyurethane foam and method for producing same
EP2922921B1 (en) Isocyanate-based polymer foam having improved flame retardant properties
ES2765194T3 (en) Flexible flame resistant polyurethane foam
EP3152242A1 (en) Heat and flame resistant polyurethane foam
EP3044244B1 (en) Pipa polyol based conventional flexible foam
JPH02105811A (en) Preparation of polyurethane foam
EP2513183B1 (en) Flame retardant polyurethane foams containing biuret linkages
WO2013070370A1 (en) Thermally stable flame resistant flexible polyurethane foam with reduced odor
WO2011090627A1 (en) Fire-resistant polyurethane foam for sound and vibration absorption
EP1345977B1 (en) Isocyanic compositions and use thereof in the preparation of expanded polyurethanes with improved fire behaviour
KR20220061164A (en) Flexible polyurethane foams, methods for their preparation and uses thereof
JP2004501999A (en) Isocyanate composition and its use for the production of flame-resistant foamed polyurethane materials

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12780594

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12780594

Country of ref document: EP

Kind code of ref document: A1