WO2013070227A1 - Composition durcissable à l'humidité contenant un polymère possédant des groupes silyles - Google Patents

Composition durcissable à l'humidité contenant un polymère possédant des groupes silyles Download PDF

Info

Publication number
WO2013070227A1
WO2013070227A1 PCT/US2011/060156 US2011060156W WO2013070227A1 WO 2013070227 A1 WO2013070227 A1 WO 2013070227A1 US 2011060156 W US2011060156 W US 2011060156W WO 2013070227 A1 WO2013070227 A1 WO 2013070227A1
Authority
WO
WIPO (PCT)
Prior art keywords
silane
composition
component
iii
chosen
Prior art date
Application number
PCT/US2011/060156
Other languages
English (en)
Inventor
Sumi Dinkar
Mihirkumar Patel MAHESHBAI
Anantharaman Dhanabalan
Original Assignee
Momentive Performance Materials Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Momentive Performance Materials Inc. filed Critical Momentive Performance Materials Inc.
Priority to PCT/US2011/060156 priority Critical patent/WO2013070227A1/fr
Publication of WO2013070227A1 publication Critical patent/WO2013070227A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/336Polymers modified by chemical after-treatment with organic compounds containing silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0025Crosslinking or vulcanising agents; including accelerators
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/05Alcohols; Metal alcoholates
    • C08K5/057Metal alcoholates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/544Silicon-containing compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/02Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • C08L101/10Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups containing hydrolysable silane groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/50Complexes comprising metals of Group V (VA or VB) as the central metal
    • B01J2531/54Bismuth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/84Metals of the iron group
    • B01J2531/842Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2204Organic complexes the ligands containing oxygen or sulfur as complexing atoms
    • B01J31/2208Oxygen, e.g. acetylacetonates
    • B01J31/2226Anionic ligands, i.e. the overall ligand carries at least one formal negative charge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2204Organic complexes the ligands containing oxygen or sulfur as complexing atoms
    • B01J31/2208Oxygen, e.g. acetylacetonates
    • B01J31/2226Anionic ligands, i.e. the overall ligand carries at least one formal negative charge
    • B01J31/223At least two oxygen atoms present in one at least bidentate or bridging ligand
    • B01J31/2234Beta-dicarbonyl ligands, e.g. acetylacetonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0091Complexes with metal-heteroatom-bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • C08K5/098Metal salts of carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/52Phosphorus bound to oxygen only
    • C08K5/521Esters of phosphoric acids, e.g. of H3PO4
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/52Phosphorus bound to oxygen only
    • C08K5/524Esters of phosphorous acids, e.g. of H3PO3
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/53Phosphorus bound to oxygen bound to oxygen and to carbon only
    • C08K5/5317Phosphonic compounds, e.g. R—P(:O)(OR')2
    • C08K5/5333Esters of phosphonic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/02Polysilicates

Definitions

  • the present invention relates to curable compositions comprising curable polymers having reactive terminal silyl groups and iron-based or bismuth based catalysts.
  • the present invention provides curable compositions comprising Fe(III)- based or Bi(III)-based complexes as alternatives to organotin catalysts.
  • Polymers having reactive terminal silyl groups or compositions comprising such polymers can be hydrolyzed and condensed in the presence of water and organometal catalysts.
  • Suitable known catalysts for curable compositions include organometallic compounds employing metals such as Sn, Ti, Zn or Ca.
  • Organotin compounds such as, for example, dibutyltin dilaurate (DBTDL) are widely used as condensation cure catalysts to accelerate the moisture assisted curing of a number of different polyorganosiloxanes and non-silicone polymers having reactive terminal silyl groups such as room temperature vulcanizing (RTV) formulations including RTV-1 and
  • RTV-2 formulations Environmental regulatory agencies and directives, however, have increased or are expected to increase restrictions on the use of organotin compounds in formulated products. For example, while formulations with greater than 0.5 wt. % dibutyltin presently require labeling as toxic with reproductive IB classification, dibutyltin-containing formulations are proposed to be completely phased out in consumer applications during next 4-6 years.
  • organotin compounds such as dioctyltin compounds and dimethyltin compounds can only be considered as a short-term remedial plan, as these organotin compounds may also be regulated in the future. It would be beneficial to identify non-Sn metal catalysts that accelerate the condensation curing of moisture curable silicones and non-silicones. Desirably, substitutes for organotin catalysts should exhibit properties similar to organotin compounds in terms of curing, storage, and appearance. Non-tin catalysts would also desirably initiate the condensation reaction of the selected polymers and complete this reaction upon the surface and may be in the bulk in a desired time schedule. There are therefore many proposals for the replacement of organometallic tin compounds by other organometallic compounds.
  • U.S. Pub. No. 201 1/0021684 and 2011/0040034 describes the synthesis and use of iron complexes that contain both diketonate or enolate anions and monovalent anions as catalysts in RTV-organosiloxane compositions.
  • U.S. Patent Nos. 4,404,348 and 3,936,578 claim the use of iron acetylacetonates as catalyst in solventless organosiloxane coating/impregnating compositions.
  • U.S. Patent No. 5,985,991 broadly claims the use of among others, e.g., iron acetylacetonate in a generic list of metal acetylacetonates consisting of Cu, Cr, Al, Zn, Ti and Zr to improve the oil resistance of RTV silicone composition which comprises metal salt of carboxylic acid as a condensation cure catalyst.
  • U.S. Patent No. 5,945,466 broadly claims among others, e.g.
  • organic metal compounds containing Fe in a generic list of organic metal compounds containing Sn, Ti, Zr, Pd, Zn, Co, Mn and Al as metallic element, as curing catalyst for room temperature curable organopolysiloxane composition which contains organosilane or its hydrolyzed product among other components.
  • U.S. Publication Nos. 2003/0069379 claims the use of bivalent bismuth carboxylates as curing catalyst in room temperature curing organopolysiloxane composition.
  • U.S. Publication No. 201 1/0009558 and 201 1/0021684 claims the use of Bi(monoallyl ethylene glycolate) 3 and Bi(l ,l ,l ,5,5,5-hexafluoropentanedionate) 3 as catalysts, respectively, in curable organopolysiloxane compositions.
  • U.S. Patent No. 7,365,145 genetically claims, among others, organo iron and organo bismuth compounds
  • U.S. 4,293,597 includes Fe and Bi salts of mono- or di-carboxylic acids in a generic list of metal salts including Pb, Sn, Zr, Sb, Cd, Ba, Ca, and Ti as catalysts in curable silicone rubber compositions that also contains nitrogen-functional silanes.
  • US 4,461 ,867 includes Fe and Bi metal esters in a generic list of metal esters also including Sn, Pb, Zr, Sb, Cd, Ba, Ca, Ti, Mn, Zn, Cr, Co, Ni, Al, Ga and Ge as a catalyst in moisture curable RTV-1 silicone compositions.
  • U.S. Pub. No. 2011/0098420 includes, among others, Fe and Bi compounds in a generic list also including compounds of Pt, Pd,
  • ⁇ 3023215 ⁇ 4 Pb, Sn, Zn, Ti and Zr, as dehydrogenative condensation reaction catalyst for a curable polysiloxane composition comprising of siloxanes with 2 or more hydrosilyl groups and siloxanes with 2 or more silanol groups.
  • Fe and Bi based catalysts in a generic list which includes other metal catalysts based on Sn, Ti, Zr, Pb, Co, Sb, Mn and Zn, in curable diorganopolysiloxane compositions used for making insulated glass units.
  • Publication number 2002/0156210 claims the use of catalyst composition that is the combination of or the reaction products of ingredients comprising iron containing compounds that include, among others, iron carboxylates and iron acetylacetonates, silyl phosphates and organoaluminium compounds in the process of forming conjugated diene polymers.
  • the present invention provides tin-free, curable compositions comprising silyl-terminated polymers and a non-toxic condensation catalyst based on iron or bismuth complexes.
  • the present invention provides curable compositions employing a Fe(III)-based complex or a Bi(III)-based as a condensation catalyst.
  • the Fe(III)-based catalysts are complexes of the Formula (1):
  • Y is a chelating ligand
  • A is an anion
  • c is a number between 0 to 2 or an integer.
  • the invention provides a curable composition exhibiting a relatively short tack- free time, curing through the bulk, as well as long storage stability in the cartridge, i.e., in the absence of humidity.
  • Fe(III) or Bi(III) compounds including compounds of formulas (1) or (2), in combination with certain adhesion promoter components and acidic compounds exhibit curing behavior similar to or even better than organotin compounds, and are therefore suitable as replacements for organotin catalysts in compositions having a reactive, silyl-terminated polymer that can undergo condensation reactions such as in RTV-1 sealant and RTV-2 formulations.
  • Curable compositions using selected Fe(III) or Bi(III) compounds may also exhibit certain storage stability of the uncured composition in the cartridge, adhesion onto several surfaces, and a cure rate in a predictable time scheme.
  • the present invention provides a composition for forming a cured polymer composition
  • a composition for forming a cured polymer composition comprising (A) a polymer having at least a reactive silylgroup; (B) a crosslinker or chain extender chosen from an alkoxysilane, an alkoxysiloxane, an oximosilane, an oximosiloxane, an enoxysilane, an enoxysiloxane, an aminosilane, a carboxysilane, a carboxysiloxane, an alkylamidosilane, an alkylamidosiloxane, an arylamidosilane, an arylamidosiloxane, an alkoxyaminosilane, an alkaryaminosiloxane, an alkoxycarbamatosilane, an alkoxycarbamatosiloxane, and combinations of two or more thereof; (C) about 0.01-7 parts per weight per 100 parts per weight of the poly
  • Y is a chelating ligand chosen from a diketonate, a diamine, a triamine, an aminoacetate, a nitriloacetate, a bipyridin, a glyoxime, or a combination of two or more thereof; and A is an anion, and c is a number between 0 to 2 or an integer.
  • the chelating agent Y comprises a substituted or unsubstituted diketonate.
  • the anion A is selected from group
  • ⁇ 3023215 comprises octoate, 2-ethylhexanoate, decanoate, or a combination of two or more thereof.
  • the anion A is chosen from a branched C 4 -
  • Ci 9 -alkyl carboxylic acid Ci 9 -alkyl carboxylic acid.
  • the component (F) is chosen from a mono ester of a phosphate; a phosphonate of the formula (R 3 0)PO(OH) 2 , (R 3 0)P(OH) 2 , or R 3 P(0)(OH) 2 where R 3 is a Ci-C ]8 -alkyl, a C 2 -C 20 -alkoxyalkyl, phenyl, a C7-C 12 - alkylaryl, a poly(C 2 -C4-alkylene) oxide ester or its mixtures with diesters; a branched alkyl C 4 -C 14 -alkyl carboxylic acid; or a combination of two or more thereof.
  • the polymer (A) has the formula: [R a R 3 _ a Si-Z-] n - -Z-
  • X is chosen from a polyurefhane; a polyester; a polyether; a polycarbonate; a polyolefm; a polypropylene; a polyesterether; and a polyorganosiloxane having units of R 3 SiOi /2 , R 2 SiO, RSi0 3/2 , and/or Si0 4/2 n is 0 to 100, a is 0 to 2, R and R 1 can be identical or different at the same Si-atom and chosen from a Ci-Cio-alkyl; a Ci-Cio-alkyl substituted with one or more of CI, F, N, O or S; a phenyl; a C 7 -C] 6 -alkylaryl; a C 7 -Ci -arylalkyl; a C 2 -C 4 -polyalkylene ether; or a combination of two or more thereof.
  • R is chosen from OH, a Ci-C 8 -alkoxy, a C 2 -C 18 - alkoxyalkyl, an oximoalkyl, an enoxyalkyl, an aminoalkyl, a carboxyalkyl, an amidoalkyl , an amidoaryl, a carbamatoalkyl, or a combination of two or more thereof, and Z is a bond, a divalent unit selected from the group of a Ci-C 8 -alkylene, or O.
  • the crosslinker component (B) is chosen from tetraethylorthosilicate (TEOS), a polycondensate of TEOS, methyltrimethoxysilane (MTMS), vinyl-trimethoxysilane, methylvinyldimethoxysilane, dimethyldiethoxysilane, vinyltriethoxysilane, tetra-n-propylorthosilicate, vinyltris(methylethylketoxime)silane, methyltris(methylethylketoxime)silane, trisacetamidomethylsilane, bisacetamidodimethylsilane, tris(N-methyl-acetamido)methylsilane, bis(N- methylacetamido)dimethylsilane, (N-methyl-acetamido)methyldialkoxysilane, trisbenzamidomethylsilane, trisprop
  • ⁇ 3023215 ⁇ 9 methylacetamido)silane; methyltris(N-methylacetamido)silane; ethyldimefhoxy(N- methylacetamido)silane; methyltris( -methylbenzamido)silane; methylmethoxybis(N- methylacetamido)silane; methyldimethoxy(caprolactamo)silane; trimethoxy(N- methylacetamido)silane; methyldimethoxyethylacetimidatosilane; mefhyldimefhoxy- propylacetimidatosilane; methyldimethoxy(N,N',N'-trimethylureido)silane; methyldimethoxy(N-allyl-N',N'-dimethylureido)silane; mefhyldimethoxy(N-phenyl- N',N
  • methyldimethoxyisocyanatosilane dimethoxydiisocyanatosilane; methyldimethoxy- thioisocyanatosilane; methylmethoxydithioisocyanatosilane, or a combination of two or more thereof.
  • the adhesion promoter component (D) is chosen from an aminoalkyltrialkoxysilane, an aminoalkylalkyldialkoxysilane, a bis(alkyltrialkoxysilyl)amine, a tris(alkyltrialkoxysilyl)amine, a tris(alkyltrialkoxy- silyl)cyanuarate, and a tris(alkyltrialkoxy-silyl)isocyanuarate, or a combination of two or more thereof.
  • the composition comprises about 1 to about 10 wt. % of the crosslinker component (B) based on 100 wt.% of the polymer component (A).
  • the crosslinker component (B) is chosen from a silane or a siloxane, the silane or siloxane having two or more reactive groups that can undergo hydrolysis and/or condensation reaction with polymer (A) or on its ov/n in the presence of water and component (F).
  • the polymer component (A) is chosen from a polyorganosiloxane comprising divalent units of the formula [R 2 SiO] in the backbone, wherein R is chosen from a Cj-Cio-alkyl; a Ci-Cio alkyl substituted with one or more of CI, F, N, O or S; a phenyl; a C7-C16 alkylaryl; a C 7 -Ci 6 arylalkyl; a C 2 -C 4 polyalkylene ether; or a combination of two or more thereof.
  • the catalyst (C) is present in an amount of from about 0.2 to about 0.7 wt. pt. per 100 wt. pt. of component (A).
  • the component (F) is present in an amount of from about 0.02 to about 3 wt. pt. per 100 wt. pt. of component (A).
  • the polymer component (A) has the formula:
  • R 1 is chosen from a Ci-Cio-alkyl; a C1-C 10 alkyl substituted with one or more of CI, F, N, O or S; a phenyl; a C 7 -Ci 6 alkylaryl; a C7-C16 arylalkyl; a C 2 -C 4 polyalkylene ether; or a combination of two or more thereof, and other siloxane units may be present in amounts less than 10 mol.% preferably methyl, vinyl, phenyl.
  • R is chosen from OH, a Ci-C 8 -alkoxy, a C 2 -C 18 - alkoxyalkyl, an oximoalkyl, an enoxyalkyl, an aminoalkyl, a carboxyalkyl, an amidoalkyl, an amidoaryl, a carbamatoalkyl, or a combination of two or more thereof, and Z is -0-, bond, or -C 2 H 4 -.
  • the composition further comprises a solvent chosen from an alkylbenzene, a trialkyphosphophate, a triarylphosphate, a
  • ⁇ 3023215 ⁇ 1 1 phthalic acid ester, an arylsulfonic acid ester having a viscosity-density constant (VDC) of at least 0.86 that is miscible with a polyorganosiloxanes and catalyst component (C), a polyorganosiloxane devoid of reactive groups and having a viscosity of less than 2000 mPa.s at 25 °C, or a combination of two or more thereof.
  • VDC viscosity-density constant
  • the composition is provided as a one part composition.
  • the composition comprises 100 pt. wt of component (A), 0.1 to about 10 pt. wt. of at least one crosslinker (B), 0.01 to about 7 pt. wt. of a catalyst (C), 0.1 to about 5 pt. wt. of an adhesion promoter (D), 0 to about 300 pt. wt. of component (E), 0.01 to about 8 pt. wt. of component (F) whereby this composition can be stored in the absence of humidity and is curable in the presence of humidity upon exposure to ambient air.
  • the composition is a two-part composition comprising: (i) a first portion comprising the polymer component (A), optionally the filler component (E), and optionally the acidic compound (F); and (ii) a second portion comprising the crosslinker (B), the catalyst component (C), the adhesive promoter (D), and the acidic compound (F), whereby (i) and (ii) are stored separately until applied for curing by mixing of the components (i) and (ii).
  • portion (i) comprises 100 % wt. of component (A), and 0 to 70 pt. wt. of component (E); and portion (ii) comprises 0.1 to 10 pt. wt. of at least one crosslinker (B), 0.01 to 7 pt. wt. of a catalyst (C), 0 to 5 pt. wt. of an adhesion promoter (D), and 0.02 to 3 pt. wt. component (F).
  • the present invention provides a method of providing a cured material comprising exposing the composition to ambient air.
  • a method of providing a cured material comprises combining the first portion and the second portion and curing the mixture.
  • the composition is stored in a sealed cartridge or flexible bag having outlet nozzles for extrusion and/or shaping of the uncured composition prior to cure.
  • the present invention provides a cured polymer material formed from the composition.
  • the cured polymer material is in the form of an elastomeric or duromeric seal, an adhesive, a coating, an encapsulant, a shaped article, a mold, and an impression material.
  • compositions are found to exhibit good storage stability and adhere to a variety of surfaces.
  • the curable compositions exhibit excellent adherence to thermoplastic surfaces, including polyacrylate and polymethylmethacrylate (PMMA) surfaces.
  • the present invention provides a curable composition employing an iron
  • Fe(III) Fe(III)
  • Bi(III) bismuth
  • the Fe(III) or Bi(III) complexes identified in the present invention in combination with an adhesion promoter and an acidic compound exhibit similar or superior curing properties as compared to compositions employing organotin compounds, such as DBTDL, in terms of accelerating
  • ⁇ 3023215 ⁇ 13 moisture assisted condensation curing of silicones to result in cross-linked silicones that can be used as sealants and RTVs (Room-Temperature Vulcanized Rubber).
  • RTVs Room-Temperature Vulcanized Rubber
  • the present invention provides a curable composition
  • a curable composition comprising a polymer component (A) comprising a reactive terminal silyl group, a cross-linker component (B), a catalyst component (C) comprising a Fe(III)-based complex or a Bi(III)-based complex, an adhesion promoter component (D), an optional filler component (E), and an acidic compound (F), and optionally auxiliary components (G).
  • the polymer component (A) may be a liquid or solid-based polymer having a reactive terminal silyl group.
  • the polymer component (A) is not particularly limited and may be chosen from any cross-linkable polymer as may be desired for a particular purpose or intended use.
  • suitable polymers for the polymer component (A) include polyorganosiloxanes (Al) or organic polymers free of siloxane bonds (A2), wherein the polymers (Al) and (A2) comprise reactive terminal silyl groups.
  • the polymer component (A) may be present in an amount of from about 10 to about 90 wt. % of the curable composition.
  • the curable composition comprises about 100 pt. wt. of the polymer component (A).
  • the polymer component (A) may include a wide range of polyorganosiloxanes.
  • the polymer component may comprise one or more polysiloxanes and copolymers of formula (3):
  • R 1 may be chosen from saturated C ⁇ - Ci 2 alkyl (which can be substituted with one or more of a halogen (e.g., CI, F, O, S or N atom), C5-C16 cycloalkyl, C 2 -Ci 2 alkenyl, C 7 -Ci 6 arylalkyl, C 7 -C 16 alkylaryl, phenyl, C 2 -C 4 polyalkylene ether, or a combination of two or more thereof.
  • a halogen e.g., CI, F, O, S or N atom
  • C5-C16 cycloalkyl C 2 -Ci 2 alkenyl, C 7 -Ci 6 arylalkyl, C 7 -C 16 alkylaryl, phenyl, C 2 -C 4 polyalkylene ether, or a combination of two or more thereof.
  • Exemplary preferred groups are methyl, trifluoropropyl and/or phen
  • R 2 may be a group reactive to protonated agents such as water and may be chosen from OH, Ci-C 8 -alkoxy, C2-C] 8 -alkoxyalkyl, amino, alkenyloxy, oximoalkyl, enoxyalkyl, aminoalkyl, carboxyalkyl, amidoalkyl, amidoaryl, carbamatoalkyl or a combination of two or more thereof.
  • exemplary groups for R include OH, alkoxy, alkenyloxy, alkyloximo, alkylcarboxy, alkylamido, arylamido, or a combination of two or more thereof.
  • Z may be a bond, a divalent linking unit selected from the group of Oi /2 , hydrocarbons which can contain one or more O, S or N atom, amide, urethane, ether, ester, urea units or a combination of two or more thereof. If the linking group Z is a hydrocarbon group then Z is linked to the silicon atom over a SiC bond. In one embodiment Z is chosen from a Ci-C 14 alkylene.
  • X is chosen from a polyurethane; a polyester; a polyether; a polycarbonate; a polyolefin; a polypropylene; a polyesterether; and a polyorganosiloxane having units of R 3 SiOi /2 , R 2 SiO, RSi0 3/2 , and/or Si0 /2 , where R is chosen from a C1 -C10- alkyl; a C1-C10 alkyl substituted with one or more of CI, F, N, O or S; a phenyl; a C 7 -C 16 alkylaryl; a C 7 -Ci 6 arylalkyl; a C 2 -C 4 polyalkylene ether; or a combination of two or more
  • X may be a divalent or multivalent polymer unit selected from the group of siloxy units linked over oxygen or hydrocarbon groups to the terminal silyl group comprising the reactive group R as described above, polyether, alkylene, isoalkylene, polyester or polyurethane units linked over hydrocarbon groups to the silicon atom comprising one or more reactive groups R 2 as described above.
  • the hydrocarbon group X can contain one or more heteroatoms such as N, S, O or P forming amides, esters, ethers urethanes, esters, ureas.
  • the average polymerization degree (P n ) of X should be more than 6, e.g.
  • n is 0-100; desirably 1 , and a is 0-2, desirably 0-1.
  • Non-limiting examples of the components for unit X include polyoxyalkylene polymers such as polyoxyethylene, polyoxypropylene, polyoxybutylene, polyoxyethylene-polyoxypropylene copolymer, polyoxytetramethylene, or polyoxypropylene-polyoxybutylene copolymer; ethylene-propylene copolymer, polyisobutylene, polychloroprene, polyisoprene, polybutadiene, copolymer of isobutylene and isoprene, copolymers of isoprene or butadiene and acrylonitrile and/or styrene, or hydrocarbon polymer such as hydrogenated polyolefin polymers produced by hydrogenating these polyolefin polymers; polyester polymer manufactured by a condensation of dibasic acid such as adipic acid or phthalic acid and glycol, polycarbonates, or ring-opening polymerization of lactones; polyacrylic acid ester produced by radical poly
  • ⁇ 3023215 ⁇ 16 styrene; graft polymer produced by polymerizing the above organic polymer with a vinyl monomer; polysulfide polymer; polyamide polymer such as Nylon 6® produced by ring- opening polymerization of ⁇ -caprolactam, Nylon 6.6 produced by polycondensation of hexamethylenediamine and adipic acid, etc., Nylon 12 produced by ring-opening polymerization of ⁇ -aminolauro-lactam, copolymeric polyamides, polyurethanes, or polyureas.
  • polyamide polymer such as Nylon 6® produced by ring- opening polymerization of ⁇ -caprolactam, Nylon 6.6 produced by polycondensation of hexamethylenediamine and adipic acid, etc.
  • Nylon 12 produced by ring-opening polymerization of ⁇ -aminolauro-lactam, copolymeric polyamides, polyurethanes, or
  • Particularly suitable polymers include, but are not limited to, polysiloxanes, polyoxyalkylenes, saturated hydrocarbon polymers such as polyisobutylene, hydrogenated polybutadiene and hydrogenated polyisoprene, or polyethylene, polypropylene, polyester, polycarbonates, polyurethanes, polyurea polymers and the like.
  • saturated hydrocarbon polymer, polyoxyalkylene polymer and vinyl copolymer are particularly suitable due to their low glass transition temperature which provide a high flexibility at low temperatures, i.e. below 0°C.
  • the reactive silyl groups in formula (3) can be introduced by employing silanes containing a functional group which has the ability to react by known methods with unsaturated hydrocarbons via hydrosilylation, or reaction of SiOH, aminoalkyl, HOOC-alkyl, HO-alkyl or HO-aryl, HS-alkyl or -aryl, Cl(0)C-alkyl or-aryl, epoxyalkyl or epoxycycloalkyl groups in the prepolymer to be linked to a reactive silyl group via condensation or ring-opening reactions.
  • Examples of the main embodiments include the following: (i) siloxane prepolymers having a SiOH group that can undergo a
  • silanes having an unsaturated group that is capable of reacting via a hydrosilylation or a radical reaction with a SiH group or radically activated groups of a silane such as SiH or an unsaturated group and
  • Silanes suitable for method (i) include alkoxysilanes, especially tetraalkoxysilanes, di-and trialkoxysilanes, di-and triacetoxysilanes, di-and triketoximato- silanes, di-and trialkenyloxysilanes, di-and tricarbonamidosilanes, wherein the remaining residues at the silicon atom of the silane are substituted or unsubstituted hydrocarbons.
  • silanes for method (i) include alkyltrialkoxysilanes, such as vinyltrimefhoxysilane, methyltrimethoxysilane, propyltrimethoxysilane aminoalkyltrimethoxysilane, ethyltriacetoxysilane, methyl- or propyltriacetoxysilane, methyltributanonoximosilane, methyltripropenyloxysilane, methyltribenzamidosilane, or methyltriacetamidosilane.
  • alkyltrialkoxysilanes such as vinyltrimefhoxysilane, methyltrimethoxysilane, propyltrimethoxysilane aminoalkyltrimethoxysilane, ethyltriacetoxysilane, methyl- or propyltriacetoxysilane, methyltributanonoximosilane, methyltripropenyloxysilane, methyltribenzamidosilane, or
  • Prepolymers suitable for reaction under method (i) are SiOH- terminated polyalkylsiloxanes, which can undergo a condensation reaction with a silane having hydrolysable groups attached to the silicon atom.
  • exemplary SiOH-terminated polyalkydisiloxanes include polydimethylsilaxanes.
  • Suitable silanes for method (ii) include alkoxysilanes, especially trialkoxysilanes (HSi(OR) 3 ) such as trimethoxysilane, triethoxysilane,
  • ⁇ 3023215 ⁇ 18 mefhyldiethoxysilane, methyldimethoxysilane, and phenyldimethoxysilane; methyldiacetoxysilane and phenyldiacetoxysilane.
  • Hydrogenchlorosilanes are in principle possible but are less desirable due to the additional replacement of the halogen through an alkoxy, acetoxy group, etc.
  • Other suitable silanes include or gano functional silanes having unsaturated groups which can be activated by radicals, such as vinyl, allyl, mercaptoalkyl, or acrylic groups.
  • Non-limiting examples include vinyltrimethoxysilane, mercaptopropyltrimethoxysilane, methyacryloxypropyltrimethoxysilane.
  • Prepolymers suitable for reaction under method (ii) include vinyl terminated polyalkylsiloxanes, preferably polydimethylsiloxanes, hydrocarbons with unsaturated groups which can undergo hydrosilylation or can undergo radically induced grafting reactions with a corresponding organofunctional group of a silane comprising, for example, unsaturated hydrocarbon or a -SiH group.
  • Another method for introducing silyl groups into hydrocarbon polymers can be the copolymerization of unsaturated hydrocarbon monomers with the unsaturated groups of silanes.
  • the introduction of unsaturated groups into a hydrocarbon prepolymer may include, for example, the use of alkenyl halogenides as chain stopper after polymerization of the silicon free hydrocarbon moiety.
  • Desirable reaction products between the silanes and prepolymers include the following structures:
  • Suitable silanes for method (iii) include, but are not limited to, alkoxysilanes, especially silanes having organofunctional groups to be reactive to -OH, -SH, amino, epoxy, -COC1,
  • these silanes have an isocyanatoalkyl group such as gamma-isocyanatopropyltrimethoxysilane, gamma- isocyanatopropylmethyldimethoxysilane, gamma-isocyanatopropyltriethoxysilane, gamma-glycidoxypropylethyldimethoxysilane, gamma-glycidoxypropyltrimethoxysilane, gamma- glycidoxypropyltrimethoxysilane, gamma-(3 ,4- epoxycyclohexyl)ethyltrimethoxysilane, epoxylimonyltrimethoxysilane, N-(2- aminoethyl)-aminopropyltrimethoxysilane gamma-aminopropyltriethoxysilane, gamma- aminopropyltrimethoxysilane
  • Examples of suitable prepolymers for a reaction under method (iii) include, but are not limited to, polyalkylene oxides having OH groups, preferably with a high molecular weight (Mw) (weight average molecular weight > 6000 g/mol) and a polydispersity M w /M n of less than 1.6; urethanes having remaining NCO groups, such as NCO functionalized polyalkylene oxides, especially blocked isocyanates.
  • ⁇ 302321 5 : ⁇ 20 which can react complementarily with an epoxy, isocyanato, amino, carboxyhalogenide or halogenalkyl group of the corresponding silane having further reactive groups useful for the final cure.
  • Suitable isocyanates for the introduction of a NCO group into a polyether may include tolulene diisocyanate, diphenylmethane diisocyanate, or xylene diisocyanate, or aliphatic polyisocyanate such as isophorone diisocyanate, or hexamethylene diisocyanate.
  • the polymerization degree of the unit X depends on the requirements of viscosity and mechanical properties of the cured product. If X is a polydimethylsiloxane unit, the average polymerization degree based on the number average molecular weight M n is preferably 7 to 5000 siloxy units, preferably 200-2000 units. In order to achieve a sufficient tensile strength of > 5 MPa, an average polymerization degree P n of > 250 is suitable whereby the polydimethylsiloxanes have a viscosity of more than 300 mPa.s at 25 °C. If X is a hydrocarbon unit other than a polysiloxane unit, the viscosity with respect to the polymerization degree is much higher.
  • Examples of the method for synthesizing a polyoxyalkylene polymer include, but are not limited to, a polymerization method using an alkali catalyst such as KOH, a polymerization method using a transition metal compound porphyrin complex catalyst such as complex obtained by reacting an organoaluminum compound, a polymerization method using a composite metal cyanide complex catalyst disclosed, e.g., in U.S. 3,427,256; U.S. 3,427,334; U.S. 3,278,457; U.S. 3,278,458; U.S. 3,278,459; U.S. 3,427,335; U.S. 6,696,383; and U.S. 6,919,293.
  • a polymerization method using an alkali catalyst such as KOH
  • a transition metal compound porphyrin complex catalyst such as complex obtained by reacting an organoaluminum compound
  • a polymerization method using a composite metal cyanide complex catalyst disclosed, e.
  • group X is selected from hydrocarbon polymers, then polymers or copolymers having isobutylene units are particularly desirable due to its physical properties such as excellent weatherability, excellent heat resistance, and low gas and moisture permeability.
  • Examples of the monomers include olefins having 4 to 12 carbon atoms, vinyl ether, aromatic vinyl compound, vinylsilanes, and allylsilanes.
  • Examples of the copolymer component include 1-butene, 2-butene, 2-methyl-l -butene, 3-methyl-l - butene, pentene, 4-methyl-l-pentene, hexene, vinylcyclohexene, methyl vinyl ether, ethyl vinyl ether, isobutyl vinyl ether, styrene, alpha-methylstyrene, dimethylstyrene, beta- pinene, indene, and for example, but not limited to, vinyltrialkoxysilanes, e.g.
  • vinyltrimethoxysilane vinylmethyldichlorosilane, vinyldimethylmethoxysilane, divinyldichlorosilane, divinyldimethoxysilane, allyltrichlorosilane, allylmethyldichlorosilane, allyldimethylmethoxysilane, diallyldichlorosilane, diallyldimethoxysilane, gamma-methacryloyloxypropyltrimethoxysilane, and gamma- methacryloyloxy-propyl-methyldimethoxysilane.
  • the polymer component (A) may be a polymer of formula (4):
  • R , R , and Z are defined as above with respect to formula (3);
  • R is Ci-C6-alkyl (an exemplary alkyl being methyl);
  • a is 0-2, x is 0 to about 10,000; preferably 1 1 to about 2500; and
  • y is 0 to about 1 ,000; preferably 0 to 500.
  • Z in a compound of formula (4) is a bond or a divalent C 2 to Ci 4 -alkylene group, especially
  • ⁇ 302321 5 : ⁇ 22 preferred is -C 2 H -.
  • Non-limiting examples of suitable polysiloxane-containing polymers (Al) include, for example, silanol-stopped polydimethylsiloxane, silanol or alkoxy-stopped polyorganosiloxanes, e.g., methoxystopped polydimethylsiloxane, alkoxy-stopped polydimethylsiloxane-polydiphenylsiloxane copolymer, and silanol or alkoxy-stopped fluoroalkyl-substituted siloxanes such as poly(methyl 3,3,3-trifluoropropyl)siloxane and poly(methyl 3,3,3-trifluoropropyl)siloxane-polydimethyl siloxane copolymer.
  • silanol-stopped polydimethylsiloxane silanol or alkoxy-stopped polyorganosiloxanes
  • methoxystopped polydimethylsiloxane
  • the polyorganosiloxane component (Al) may be present in an amount of about 10 to about 90 wt. % of the composition or 100 pt. wt.
  • the polyorganosiloxane component has an average chain length in the range of about 10 to about 2500 siloxy units, and the viscosity is in the range of about 10 to about 500,000 mPa.s at 25 °C.
  • the composition may include silyl-terminated organic polymers (A2) that are free of siloxane units, and which undergo curing by a condensation reaction comparable to that of siloxane containing polymers (Al).
  • the organic polymers (A2) that are suitable as the polymer component (A) include a terminal silyl group.
  • the terminal silyl group may be of the formula (5):
  • R , R , and a are as defined above.
  • siloxane free organic polymers include, but are not limited to, silylated polyurethane (SPUR), silylated polyester, silylated polyether,
  • silylated polycarbonate silylated polyolefins like polyethylene, polypropylene, silylated polyesterether and combinations of two or more thereof.
  • the siloxane-free organic polymer may be present in an amount of from about 10 to about 90 wt. % of the composition or about 100 pt. wt.
  • the polymer component (A) may be a silylated polyurethane (SPUR).
  • SPUR silylated polyurethane
  • Such moisture curable compounds are known in the art in general and can be obtained by various methods including (i) reacting an isocyanate-terminated polyurethane (PUR) prepolymer with a suitable silane, e.g., one possessing both hydrolyzable functionality at the silicon atom, such as, alkoxy, etc., and secondly active hydrogen-containing functionality such as mercaptan, primary or secondary amine, preferably the latter, etc., or by (ii) reacting a hydroxyl-terminated PUR (polyurethane) prepolymer with a suitable isocyanate-terminated silane, e.g., one possessing one to three alkoxy groups.
  • PUR isocyanate-terminated polyurethane
  • moisture-curable SPUR obtained from reaction of hydroxyl-terminated PUR prepolymer and isocyanatosilane.
  • moisture curable SPUR materials include those described in U.S. Patent No. 7,569,653, the disclosure of which is incorporated by reference in its entirety.
  • the polysiloxane composition may further include a crosslinker or a chain extender as component (B).
  • the crosslinker is of the formula (6):
  • the cross-linker component may be a condensation product of formula (6) wherein one or more but not all R groups are hydrolyzed and released in the presence of water and then intermediate silanols undergo a condensation reaction to give a Si-O-Si bond and water.
  • the average polymerization degree can result in a compound having 2- 10 Si units.
  • crosslinker includes a compound including an additional reactive component having at least two hydrolysable groups and less than three silicon atoms per molecule not defined under (A).
  • the crosslinker or chain extender may be chosen from an alkoxysilane, an alkoxysiloxane, an oximosilane, an oximosiloxane, an enoxysilane, an enoxysiloxane, an aminosilane, a carboxysilane, a carboxysiloxane, an alkylamidosilane, an alkylamidosiloxane, an arylamidosilane, an arylamidosiloxane, an alkoxyaminosilane, an alkaryaminosiloxane, an alkoxycarbamatosilane, an alkoxycarbamatosiloxane, an imidatosilane, a ureidosilane, an
  • ⁇ 3023215 ⁇ 25 isocyanatosilane, a thioisocyanatosilane, and combinations of two or more thereof.
  • suitable cross-linkers include, but are not limited to, tetraethylorthosilicate (TEOS); methyltrimethoxysilane (MTMS); methyltriethoxysilane; vinyltrimethoxysilane; vinyltriethoxysilane; methylphenyldimethoxysilane; 3,3,3- trifluoropropyltrimethoxysilane; methyltriacetoxysilane; vinyltriacetoxysilane; ethyltriacetoxysilane; di-butoxydiacetoxysilane; phenyltripropionoxysilane; methyltris(methylethylketoxime)silane; vinyltris(methylethylketoxime)silane; 3,3,3- trifluoropropyltris(methylethylket
  • methyldimethoxy(acetaldoximo) sil ane methyldimethoxy(N-methyl carbamato) silane ; ethyldimethoxy(N-methylcarbamato)silane; methyldimethoxyisopropenoxysilane; trimethoxyisopropenoxysilane; methyltri-iso-propenoxysilane; methyldimethoxy(but-2- ene-2-oxy)silane; methyl dimethoxy(l -phenyl ethenoxy)silane; methyldimethoxy-2(l - carboethoxypropenoxy)silane; methylmethoxydi-N-methylaminosilane; vinyldimethoxymethylaminosilane; tetra-N,N-diethylaminosilane; methyldimethoxymethylaminosilane; methyltricyclohexylaminosilane; methyldimethoxyethylaminosilane
  • ⁇ 3023215 ⁇ 26 methylacetamido)silane; methyltris(N-methylbenzamido)silane; methylmethoxybis(N- methylacetamido)silane; methyldimethoxy(caprolactamo)silane; trimefhoxy(N- methylacetamido)silane; methyldimethoxyethylacetimidatosilane; methyldimethoxypropylacetimidatosilane; methyldimethoxy(N,N',N'- trimethylureido)silane; methyldimethoxy(N-allyl-N',N'-dimethylureido)silane; methyldimethoxy( -phenyl-N',N'-dimethylureido)silane;
  • the crosslinker may be present in an amount from about 1 to about 10 wt. % of the composition or from about 0.1 to about 10 pt. wt. per 100 pt. wt. of the polymer component (A). In another embodiment, the crosslinker may be present in an amount from about 0.1 to about 5 pt. wt. per 100 pt. wt. of the polymer component (A).
  • the crosslinker may be present in an amount from about 0.5 to about 3 pt. wt. per 100 pt. wt. of the polymer component (A).
  • numerical values may be combined to form new or undisclosed ranges.
  • Additional alkoxysilanes in an amount greater than 0.1 wt.% of component and (A) that are not consumed by the reaction between the prepolymer Z'-X- Z' and which comprise additional functional groups selected from R 4 can also work as an adhesion promoter and are defined and counted under component (D).
  • the curable compositions further comprise an organometal catalyst (C) chosen from a Fe(III) complex or a Bi(III) complex.
  • C organometal catalyst
  • Fe(III) and Bi(III) complexes when used with an adhesion promoter and an acidic compound in accordance with aspects of the invention, exhibit excellent catalytic activity and are found to work satisfactorily in most of the compositions, e.g., typical sealant RTV1 or RTV2 formulations, comprising polymers having reactive terminal groups, which may additionally contain other ingredients.
  • the Fe(III) or Bi(III) complexes may be either solid or liquid in nature. In the case of solid Fe(III) or Bi(III) complexes, these are usually dispersed with the aid of an organic solvent.
  • the catalysts component (C) is a Fe(III) complex of the formula (1):
  • Y is a chelating ligand
  • A is an anion
  • c 0-2.
  • the chelating ligand Y may be chosen from diketonates, diamines, triamines, aminoacetates, nitriloacteates, bipyridins, glyoximes, a carboxylate, combinations of two or more thereof, and the like.
  • Suitable chelating ligands include, but are not limited to, acetylacetonate- 2,4-pentanedione ('AA'or 'acac'); hexanedione-2,4; heptanedione-2,4; heptanedione-3,5; ethyl-3-pentanedione-2,4; methyl- 5-hexanedione-2,4; octanedione-2,4; octanedione-3,5; dimethyl-5,5 hexanedione-2,4; methyl-6-heptanedione-2,4; dimethyl-2,2-nonanedione-3,5; dimethyl-2,6- heptanedione- 3,5; 2-acetylcyclohexanone (Cy-acac); 2,2,6,6- tetramethyl-3,5-heptanedione (t-Bu-a
  • the anion A is selected from group which consists of substituted, unsubstituted C4-C 25 -alkyl-, C 7 -C 2 5-arylalkyl, C 7 -C 25 -alkylaryl and C 6 -C 10 - aryl carboxylate anions.
  • the anion may be a carboxylate chosen from pentanoate, hexoate, heptoate, octoate, 2-ethyl hexanoate, neodeconate, etc., or a combination of two or more thereof.
  • the anion A in formulas (1) or (2) is not particularly limited and may be chosen from anions including, but not limited to, halides, hydroxide, oxide, peroxide, ozonide, hydrosulfide, alkoxides, alkyl thio, nitride, acetate, amide, carboxylate, cyanide, cyanate, thiocyanate, carbonate, hydrogen carbonate and the like.
  • Suitable anions include, but are not limited to, F “ , CI “ , (I 3 ) “ , [C1F 2 ] ⁇ , [IF ] “ , (CIO) “ , (C10 2 )-, (C10 3 ) ⁇ (CI0 4 ) ⁇ (OH) “ , (SH) “ , (SeH) “ , (0 2 ) ⁇ (0 3 ) ⁇ (HS 2 ) ⁇ (CH 3 0) “ , (C 2 H 5 0)-, (C3H 7 O)-, (CH 3 S)-, (C2H5SV, (C2H4CIO)-, (C 6 H 5 0)-, (C 6 H 5 S)-, [C 6 H 4 ( 0 2 )0]-, (HCO 2 ) " , (C 7 H 15 C0 2 ) ,(CH 3 C0 2 )-, (CH 3 CH 2 C0 2 ) ⁇ (N 3 ) ⁇ (CN) ⁇ (N
  • the catalyst compound (C) comprises Fe(III) penta-
  • the catalyst component (C) comprises Fe(III) 3- methyl-penta-2,4-dionate.
  • the catalyst component (C) comprises Bi(III)-octoate.
  • the catalyst component (C) comprises Bi(III) neodecanoate.
  • the catalyst compound (C) comprises Bi(III) 2-ethylhexanoate.
  • the Fe(III) or Bi(III) complex may be added to the composition in an amount of from about 0.01 to about 7.0 pt. wt. related to 100 part per weight of component (A). In another embodiment the Fe(III) or Bi(III) complex may be added in an amount of from about 0.1 to about 5.0 pt. wt. In still another embodiment, the Fe(III) or Bi(III) complex may be added in an amount of from about 0.15 to about 2.5 pt. wt. In still another embodiment, the Fe(III) or Bi(III) complex may be present in an amount of about 0.2 to about 0.5 pt. wt. per 100 pt. wt. of component (A).
  • An increase in the amount of Fe(III) or Bi(III) complex as a catalyst may increase the cure rate of curing the surface and decrease the cure time for a tack-free surface and the complete cure through the bulk. Furthermore, the amount of the Fe(III) or Bi(III) complex added to the composition may affect the viscosity of the composition. Particularly, an increase in the amount of the Fe(III) or Bi(III) complex may increase the final viscosity of the composition, which is less desirable.
  • composition furthers include an adhesion promoter component (D) that is different to component (A) or (B).
  • the adhesion promoter (D) may be an organofunctional silane comprising the group R 4 , e.g., aminosilanes, and other
  • the amount of non-reacted silane (B) or (D) in the reaction for making (A) can be defined in that after the endcapping reaction the free silanes are evaporated at a higher temperature up to 200 °C and vacuum up to 1 mbar to be more than 0.1 wt.% of (A).
  • some selected amines can advantageously be added to fine-tune the rate of the metal complex catalyzed condensation curing of silicone/non-silicone polymer containing reactive silyl groups, as desired.
  • the composition comprises an adhesion promoter (D) comprising a group R 4 as described by the general formula (7):
  • R 4 is E-(CR 5 2 ) f -W-(CH 2 ) r ;
  • R 1 is as described above;
  • d is 0, 1 or 2;
  • e 1 , 2 or 3;
  • d + e 1 to 2;
  • f is 0 to 8, and may be identical or different.
  • Non-limiting examples of suitable compounds include:
  • the group E may be selected from either a group E 1 or E 2 .
  • E 1 may be selected from a monovalent group comprising amine, -NH 2 , -NHR, -(NHC 2 H 5 )i_ioNHR, NHC 6 H5, halogen, pseudohalogen, unsaturated aliphatic group with up to 14 carbon atoms, epoxy-group-containing aliphatic group with up to 14 carbon atoms, cyanurate- containing group, and an isocyanurate-containing group.
  • E may be selected from a group comprising of a di- or multivalent group consisting of amine, polyamine, isocyanurate-containing and an isocyanurate-containing group, sulfide, sulfate, phosphate, phosphite and a polyorganosiloxane group, which can contain R 4 and OR 3 groups;
  • W is selected from the group consisting of a single bond, a heteroatomic group selected from -COO-, -0-, epoxy, -S-, -CONH-, -HN-CO-NH- units;
  • R 5 is selected from hydrogen and R as defined above, R 1 may be identical or different as defined above,
  • R 3 is selected from the group, which consists of CpCs-alkoxy, such as methoxy, ethoxy, C 3 -Ci 2 -alkoxyalkyl, C 2 -C 22 -alkylcarboxy and C4-C 100 - polyalkylene
  • component (D) include:
  • component (D) examples include compounds of the formulas (7a- 7k). Furthermore the formula (7b) of compounds (D) shall comprise compounds of the formula (71):
  • R, R 1 , R 3 , and R 4 are as defined above;
  • R 6 is hydrogen, R, linear and branched C 3 -Ci 6 alkyl, C 5 -Ci 4 cycloalkyl, phenyl, and phenyl substituted with Ci-C 8 alkyl;
  • s is 0-6 (and in one embodiment desirably 0);
  • u is 0-10 (in one embodiment desirably 0-5); and s + u is 10 or less.
  • R 4 is selected from:
  • An exemplary group of adhesion promoters are selected from the group which consists of amino group-containing silane coupling agents, which can also be used as the cure rate modifying component (F).
  • the amino group- containing silane adhesion promoter agent (D) is a compound having a group containing a silicon atom bonded to a hydrolyzable group (hereinafter referred to as a hydrolyzable group attached to the silicon atom) and an amino group. Specific examples thereof include the same silyl groups with hydrolyzable groups described above. Among these groups, the methoxy group and ethoxy group are particularly suitable.
  • the number of the hydrolyzable groups may be 2 or more, and particularly suitable are compounds having 3 or more hydrolzable groups.
  • adhesion promoter (D) examples include, but are not limited to N-(2-aminoethyl)aminopropyltrimethoxysilane gamma- aminopropyltriethoxysilane, gamma-aminopropyltrimethoxysilane, bis(gamma- trimethoxysilypropyl)amine, N-phenyl-gamma-aminopropyltrimethoxysilane, triaminofunctionaltrimethoxysilane, gamma-aminopropylmethyldimethoxysilane, gamma-aminopropylmethyldiethoxysilane, methacryloxypropyltrimethoxysilane, methylaminopropyltrimethoxysilane, gamma-glycidoxypropylethyldimethoxysilane, gamma-glycidoxypropyltrimeth
  • adhesion promoters include bis(alkyltrialkoxysilyl)amines and tris(alkyltrialkoxysilyl)amines including, but not limited to, bis(3- propyltrimethoxysilyl)amine and tris(3-propyltrimethoxysilyl)amine.
  • ⁇ 302321 5 ⁇ 36 aminosilane complex, phenylamino long-chain alkyl silane and aminosilylated silicone. These amino group-containing silane coupling agents may be used alone, or two or more kinds of them may be used in combination.
  • the curable compositions of the present invention may further comprise an alkoxysilane or blend of alkoxysilanes as an adhesion promoter (D).
  • the adhesion promoter may be a combination blend of N-2-aminoethyl-3-aminopropyltrimethoxysilane and l ,3,5-tris(trimethoxy-silylpropyl)isocyanurate and others.
  • the adhesion promoter (D) may be present in an amount of from about 0.1 to about 5.0 pt. wt. based on 100 parts of the polymer component (A). In one embodiment, the adhesion promoter may be present in an amount of from about 0.15 to about 2.0 pt. wt. In another embodiment, the adhesion promoter may be present in an amount of from about 0.5 to about 1.5 pt. wt of the polymer component (A). This defines the amount of (D) in composition of (A) wherein the content of free silanes coming from the endcapping of polymer (A) is smaller than 0.1 wt.%.
  • the present compositions may further include a filler component (E).
  • the filler component(s) (E) may have different functions, such as to be used as reinforcing or semi-reinforcing filler, i.e., to achieve higher tensile strength after curing having in addition the ability to increase the viscosity establish pseudoplasticity/shear thinning, and thixotropic behavior as well as non-reinforcing fillers acting mainly as a volume extender.
  • the reinforcing fillers are characterized by having a specific surface area of more than 50 m 2 /g related BET-surface, whereby the semi-reinforcing fillers have a specific surface area in the range of 10-50 m 2 /g. So-called extending fillers have
  • the semi -reinforcing filler is a calcium carbonate filler, a silica filler, or a mixture thereof.
  • suitable reinforcing fillers include, but are not limited to fumed silicas or precipitated silica, which can be partially or completely treated with organosilanes or siloxanes to make them less hydrophilic and decrease the water content or control the viscosity and storage stability of the composition. These fillers are named hydrophobic fillers. Tradenames are Aerosil®, HDK®, Cab-O-Sil® etc.
  • Suitable extending fillers include, but are not limited to, ground silicas (CeliteTM), precipitated and colloidal calcium carbonates (which are optionally treated with compounds such as stearate or stearic acid); reinforcing silicas such as fumed silicas, precipitated silicas, silica gels and hydrophobized silicas and silica gels; crushed and ground quartz, cristobalite, alumina, aluminum hydroxide, titanium dioxide, zinc oxide, diatomaceous earth, iron oxide, carbon black, powdered thermoplastics such as acrylonitrile, polyethylene, polypropylene, polytetrafluoroethylene and graphite or clays such as kaolin, bentonite or montmorillonite (treated/untreated), and the like.
  • ground silicas CaliteTM
  • precipitated and colloidal calcium carbonates which are optionally treated with compounds such as stearate or stearic acid
  • reinforcing silicas such as fumed silicas, precipitated
  • the type and amount of filler added depends upon the desired physical properties for the cured silicone/non-silicone composition.
  • the filler may be a single species or a mixture of two or more species.
  • the extending fillers can be present from about 0 to about 300 wt. % of the composition related to 100 parts of component
  • the reinforcing fillers can be present from about 5 to about 60 wt. % of the composition related to 100 parts of component (A), preferably 5 to 30 wt.%.
  • the inventive compositions further comprise an acidic compound (F), which, in conjunction with the adhesion promoter and Fe(III) or Bi(III) catalyst, has been found accelerate curing (as compared to curing in the absence of such compounds).
  • the component (F) may be present in an amount of from about 0.01 to about 5 wt. % of the composition. In another embodiment 0.01 to about 8 parts per weight (pt. wt.) per 100 pt. wt. of component (A) are used, more preferably 0.02 to 3 pt. wt. per 100 pt .wt. of component (A) and most preferably 0.02 to 1 pt. wt. per 100 pt. wt. of component (A) are used.
  • the acidic compounds (F) may be chosen from various phosphate esters, phosphonates, phosphites, phosphines, sulfites, pseudohalogenides, branched alkyl carboxylic acids, combinations of two or more thereof, and the like.
  • the acidic compounds (F) may, in one embodiment, be useful as stabilizers in order to ensure a longer storage time when sealed in a cartridge before use in contact with ambient air.
  • Especially alkoxy-terminated polysiloxanes can lose the ability to cure after storage in a cartridge and show e.g. decreased hardness under curing conditions. It may, therefore be useful to add compounds of the formula (8), which can extend storage time or ability to cure over months.
  • R 7 is selected from the group a linear or branched and optionally substituted Ci-C 3 o-alkyl groups, linear or branched,C5-Ci 4 -cycloalkyl groups,
  • ⁇ 3023215 ⁇ 39 C 6 -Ci4-aryl groups, C 6 -C 3 i alkylaryl groups, linear or branched C 2 -C 3 o-alkenyl groups or linear or branched Ci-C 30 -alkoxy-alkyl groups, C 4 -C 30 o-polyalkenylene oxide groups (polyethers), such as Marlophor® N5 acid, triorganylsilyl- and diorganyl (C]-C 8 )- alkoxysilyl groups.
  • the phoshates can include also mixtures of primary and secondary esters.
  • Non-limiting examples of suitable phosphonates include 1 -hydroxyethane-( 1 ,1- diphosphonate) (HEDP), amino trimethylene phosphonate (ATMP), nitrolo- tris(methylphosphonate) (NTMP), diethylenetriamine-pentakismethylene phosphonate (DTP MP), 1 ,2-diaminoethane-tetrakismethylene phosphonate (EDTMP), and phosphonobutanetricarbonate (PBTC).
  • HEDP 1 -hydroxyethane-( 1 ,1- diphosphonate)
  • ATMP amino trimethylene phosphonate
  • NTMP nitrolo- tris(methylphosphonate)
  • DTP MP diethylenetriamine-pentakismethylene phosphonate
  • ETMP 1 ,2-diaminoethane-tetrakismethylene phosphonate
  • PBTC phosphonobutanetricarbonate
  • the acidic compound may be chosen from a mono ester of a phosphate; a phosphonate of the formula (R 3 0)PO(OH) 2 , (R 3 0)P(OH) 2 , or
  • R 3 P(0)(OH) 2 where R 3 is a C,-Ci 8 -alkyl, a C 2 -C 20 -alkoxyalkyl, phenyl, a C 7 -C ]2 - alkylaryl, a poly(C 2 -C 4 -alkylene) oxide ester or its mixtures with diesters, etc.
  • the acidic compound is a branched alkyl C4-C19- alkyl carboxylic acids, including C5-C19 acids with alpha tertiary carbon, or a combination of two or more thereof.
  • suitable compounds include, but are not limited to, VersaticTM Acid, Why Acid, Steric Acid, etc.
  • acidic compound may be a mixture comprising branched alkyl carboxylic acids.
  • the acidic compound is a mixture of mainly tertiary aliphatic Cio-carboxylic acids.
  • Applicants have found that the combination of a Fe(III) or Bi(III) catalyst and an acidic compound may provide a curable composition that provides a cured polymer exhibiting a tack-free time, hardness, and/or cure time comparable to compositions made using tin catalysts, but that provide better adhesion compared to materials made using tin catalysts.
  • the catalyst (C) comprises a complex Fe m
  • the acidic component (F) is added in a molar ratio of less than 1 with respect to catalyst (C). In embodiments, the acidic component (F) is added in a molar ratio of (F):(C) of l : 10 to l :4.
  • the curable composition may also include auxiliary substances (G) such as plastizers, pigments, stabilizers, anti-microbial or fungicides, biocides and/or solvents.
  • auxiliary substances such as plastizers, pigments, stabilizers, anti-microbial or fungicides, biocides and/or solvents.
  • Preferred plastizers for reactive polyorganosiloxanes (A) are selected from the group of polyorganosiloxanes having chain length of 10-300 siloxy units. Preferred are trimethylsilyl terminated polydimethylsiloxanes having a viscosity of 100 - lOOO mPa.s at 25 °C.
  • the choice of optional solvents may have a role in assuring uniform dispersion of the catalyst, thereby altering curing speed.
  • solvents include polar and non-polar solvents such as toluene, hexane, chloroform, methanol, ethanol, isopropyl alcohol, acetone, methylethyl ketone, dimethylformamide (DMF), dimethyl sulfoxide (DMSO).
  • Water can be an additional component (G) to accelerate fast curing 2 part compositions RTV 2-K, whereby the water can be in one part of the 2 compositions.
  • Particularly suitable non-polar solvents include, but are not limited to, toluene, hexane and the like if the solvents should evaporate after cure and application.
  • the solvents include high boiling hydrocarbons such as alkylbenzenes, phtalic acid esters, arylsulfonic acid esters, trialkyl- or triarylphosphate esters, which have a low vapor pressure and can extend the volume providing lower costs. Examples cited by reference may be those of U.S. 6,599,633; U.S. 4,312,801.
  • the solvent can be present in an amount of from about 20 to about 99 wt. % of the catalyst composition.
  • a composition in accordance with the present invention comprises: 100 pt. wt. polymer component (A); about 0.1 to about 10 pt. wt. crosslinker component (B); about 0.01 to about 7 pt. wt. catalyst component (C); about 0.1 to about 5, in one embodiment 0.15-1 pt. wt., of an adhesion promoter component (D); about 0 to about 300 pt. wt. filler component (E); about 0.01 to about 7 pt. wt. of acidic compound (F); optionally 0 to about 15 pt. wt. component (G), where the pt. wt.
  • components (B) - (G) are each based on 100 parts of the polymer component (A).
  • the composition comprises the component (F) in an amount of from about 0.01 to about 1 pt. wt. per 100 pt. wt. of component (A).
  • the component (F) in an amount of from about 0.01 to about 1 pt. wt. per 100 pt. wt. of component (A).
  • composition comprises the catalyst (C) in an amount of from about 0.1 to about 0.8 wt. pt. per 100 wt. pt of component (A).
  • the composition comprises: 100 pt. wt of component
  • composition (A); 0.5 to about 3 pt. wt of at least one alkoxysilane as crosslinker (B); 0.1 to about 2 pt. wt. of Fe-III-3 -methyl -penta-2,4-dionate as catalyst (C); 0.1 to about 1.5 pt. wt. of Bis(3- propyltrimethoxysilyl)amine as adhesion promoter (D); 0 to about 300 pt. wt of component (E); 0.01 to about 0.5 pt. wt. of Versatic AcidTM 10 as component (F); whereby this composition can be stored in the absence of humidity and is curable in the presence of humidity upon exposure to ambient air.
  • the composition comprises: 100 pt. wt of component (A); 0.5 to about 3 pt. wt of at least one alkoxysilane as crosslinker (B); 0.1 to about 2 pt. wt. of Bi-III-(octoate) as catalyst (C); 0.1 to about 1.5 pt. wt. of bis(3- propyltrimethoxysilyl)amine as adhesion promoter (D); 0 to about 300 pt. wt of component (E); 0.01 to about 0.5 pt. wt. of Versatic AcidTM 10 as component (F); whereby this composition can be stored in the absence of humidity and is curable in the presence of humidity upon exposure to ambient air.
  • the curable compositions may be provided as either a One-Part composition or a two-part composition.
  • a One-Part composition refers to a composition comprising a mixture of the various components described above.
  • a two-part composition may comprise a first portion and a second portion that are separately stored and subsequently mixed together just prior to application for curing.
  • a two-part composition comprises a first portion (PI) comprising a
  • first and second portions may include other components (F) and/or (G) as may be desired for a particular purpose or intended use.
  • the first portion (PI) may optionally comprise an adhesion promoter (D) and/or a filler (E)
  • the second portion (P2) may optionally comprise auxiliary substances (G), a cure rate modifying component (F), and water (G).
  • a two-part composition comprises (i) a first portion comprising the polymer component (A), optionally the filler component (E), and optionally the acidic compound (F); and (ii) a second portion comprising the crosslinker (B), the catalyst component (C), the adhesive promoter (D), and the acidic compound (F), where portions (i) and (ii) are stored separately until applied for curing by mixing of the components (i) and (ii).
  • An exemplary "Two-Part" composition comprises: a first portion (i) comprising 100 pt .wt of component (A), and 0 to 70 pt. wt of component (E); and a second portion (ii) comprising 0.1 to 5 pt .wt of at least one crosslinker (B); 0.01 to 2 pt. wt. of a catalyst (C); 0.1 to 2 p.wt. of an adhesion promoter (D); and 0.02 to 1 pt. wt. component (F).
  • the curable compositions may be used in a wide range of applications including as materials for sealing, mold making, adhesives, coatings in sanitary rooms, glazing, prototyping, joint seal between different materials, e.g., sealants between ceramic or mineral surfaces and thermoplastics, paper release, impregnation, and the like.
  • a curable composition in accordance with the present invention comprising a Fe(III) or Bi(III) complex as a catalyst may be suitable for a wide variety of applications such as, for example, a general purpose and industrial sealant, potting compound, caulk, adhesive or coating for construction use, insulated glass (IG), structural glazing (SSG), where glass sheets are fixed and sealed in metal frame; caulks, adhesives for metal plates, car bodies, vehicles, electronic devices and the like.
  • the present composition may be used either as a one-part RTV-1K or as a two-part room temperature vulcanizing (RTV- 2K) formulation which can adhere onto broad variety of metal, mineral, ceramic, rubber or plastic surfaces.
  • Curable compositions comprising Fe(III) or Bi(III) catalyst compounds may be further understood with reference to the following Examples.
  • the mixed formulation was a) poured into a Teflon mold (length x breadth x depth ⁇ 10 cm x 10 cm x 1 cm) placed inside a fume hood.
  • the surface curing (TFT) and bulk curing was monitored as a function of time (maximum of 7 days).
  • a second portion b) was submitted to an ageing test simulating the storage stability.
  • TFT tack free time
  • SS stainless steel
  • Bulk curing is the time taken for complete curing of formulation throughout the thickness (i.e. Top to bottom) and it is monitored as a function of time (visual inspection).
  • the surface curing (TFT) and bulk curing was monitored as a function of time (maximum of 7 days) and Shore A hardness in order to determine to what extent the compositions maintained performance after storage under accelerated conditions.
  • the increased temperature for the storage test should simulate the storage effect at room temperature (25 °C 50 % relative humidity) over longer times in a kind of time lapse.
  • Table 1 illustrates the performance of the Fe(III) catalysts and its ligands as compared to the tin catalysts and compared to compositions that do not employ an adhesion promoter (D) or a cure accelerator (F).
  • the comparative examples CI- C3 and the examples 1-7 show the effect of a catalyst replacement. If the tin catalyst is replaced by the iron acetylacetonate shown in comparative example C3 the Tack-Free-Time and Bulk Cure Time are enlarged. If the iron (III) (3 -methyl -penta-2,4-dionate) is used as shown in the example 3 the Tack-Free- Time and Bulk Cure Time are shorter than in comparative example CI but the curing times don ' t yet have the level the composition with DBTDL in comparison example CI . In addition the level of hardness is slightly lower in example 3 than CI .
  • the addition of the carboxylic acids in table 1 has divergent effects in the case of the tin and iron catalysts.
  • C2 shows slightly decreased curing times but a lower hardness than CI .
  • the carboxylic acids decrease the Tack-Free-Time and Bulk Cure Time, again as shown by example 1 , 2, 4, 5, 6 and 7, and increase the hardness, whereby the Versatic Acid in example 6 and 7 provides the shortest curing times and highest level of hardness when used together with Fe(III)-3-methyl-penta-2,4-dionate.
  • the inventive composition can be cured with very low catalyst concentration without negative effects on cure times.
  • ⁇ 3023215 ⁇ (length x breadth x depth ⁇ 10 cm x 10 cm x 1 cm) placed inside a fume hood.
  • the surface curing (TFT) and bulk curing was monitored as a function of time (maximum of 7 days).
  • TFT tack free time
  • SS stainless steel
  • Bulk curing is the time taken for complete curing of formulation throughout the thickness (i.e. Top to bottom) and it is monitored as a function of time (visual inspection).
  • EPS polymer- filler composition
  • PI polymer- filler composition
  • the complete reactive formulation was poured into a Teflon mold (length x breadth x depth ⁇ lO cm x lO cm x 1 cm) placed inside a fume hood.
  • TFT surface curing
  • bulk curing was monitored as a function of time (maximum of 7 days) and °Shore A hardness in order to determine, to what extent the compositions maintained performance after storage under
  • Table 2 compares the properties of compositions using a Bi(III) based catalyst with a carboxylate ligand to compositions using a tin based catalyst.
  • the examples 8-10 and comparative example 9 show the effect of the replacement of the tin catalyst versus the inventive bismuth catalyst.

Abstract

La présente invention concerne des compositions durcissables contenant des catalyseurs organo-métalliques sans Sn qui accélèrent le durcissement par condensation de silicones/non-silicones durcissables à l'humidité. En particulier, la présente invention concerne des complexes de Fe(III) et de Bi(III) particulièrement appropriés pour remplacer les composés organostanniques destinés aux produits d'étanchéité et aux formulations RTV. Les complexes de Fe(III) et de Bi(III) sont comparables ou supérieurs aux composés organostanniques, comme le DBTDL, manifestent un certain comportement en présence de composants qui permettent l'ajustement des caractéristiques de durcissement des compositions de l'invention et confèrent une bonne adhérence et une bonne stabilité pendant le stockage.
PCT/US2011/060156 2011-11-10 2011-11-10 Composition durcissable à l'humidité contenant un polymère possédant des groupes silyles WO2013070227A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/US2011/060156 WO2013070227A1 (fr) 2011-11-10 2011-11-10 Composition durcissable à l'humidité contenant un polymère possédant des groupes silyles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2011/060156 WO2013070227A1 (fr) 2011-11-10 2011-11-10 Composition durcissable à l'humidité contenant un polymère possédant des groupes silyles

Publications (1)

Publication Number Publication Date
WO2013070227A1 true WO2013070227A1 (fr) 2013-05-16

Family

ID=45048266

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2011/060156 WO2013070227A1 (fr) 2011-11-10 2011-11-10 Composition durcissable à l'humidité contenant un polymère possédant des groupes silyles

Country Status (1)

Country Link
WO (1) WO2013070227A1 (fr)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015081148A1 (fr) * 2013-11-26 2015-06-04 Momentive Performance Materials Inc. Compositions durcissables à l'humidité
WO2015119904A1 (fr) * 2014-02-06 2015-08-13 Momentive Performance Materials Inc. Composition de silicone durcissable à l'humidité
US9394443B2 (en) 2011-11-10 2016-07-19 Momentive Performance Materials, Inc. Moisture curable organopolysiloxane composition
US9493691B2 (en) 2013-03-13 2016-11-15 Momentive Performance Materials Inc. Moisture curable organopolysiloxane compositions
US9523002B2 (en) 2011-12-15 2016-12-20 Momentive Performance Materials Inc. Moisture curable organopolysiloxane compositions
US9527959B2 (en) 2011-12-29 2016-12-27 Momentive Performance Materials Inc. Moisture curable organopolysiloxane composition
US9605113B2 (en) 2013-05-10 2017-03-28 Momentive Performance Materials Inc. Non-metal catalyzed room temperature moisture curable organopolysiloxane compositions
US9663657B2 (en) 2011-12-15 2017-05-30 Momentive Performance Materials Inc. Moisture curable organopolysiloxane compositions
EP3083764B1 (fr) 2013-12-19 2019-07-03 Sika Technology AG Silicone réticulant par condensation avec stabilité en température

Citations (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3278457A (en) 1963-02-14 1966-10-11 Gen Tire & Rubber Co Method of making a polyether using a double metal cyanide complex compound
US3278458A (en) 1963-02-14 1966-10-11 Gen Tire & Rubber Co Method of making a polyether using a double metal cyanide complex compound
US3278459A (en) 1963-02-14 1966-10-11 Gen Tire & Rubber Co Method of making a polyether using a double metal cyanide complex compound
US3427334A (en) 1963-02-14 1969-02-11 Gen Tire & Rubber Co Double metal cyanides complexed with an alcohol aldehyde or ketone to increase catalytic activity
US3427256A (en) 1963-02-14 1969-02-11 Gen Tire & Rubber Co Double metal cyanide complex compounds
US3427335A (en) 1963-02-14 1969-02-11 Gen Tire & Rubber Co Double metal cyanides complexed with an acyclic aliphatic saturated monoether,an ester and a cyclic ether and methods for making the same
US3627722A (en) 1970-05-28 1971-12-14 Minnesota Mining & Mfg Polyurethane sealant containing trialkyloxysilane end groups
US3632557A (en) 1967-03-16 1972-01-04 Union Carbide Corp Vulcanizable silicon terminated polyurethane polymers
US3786081A (en) 1970-12-04 1974-01-15 Basf Ag Crude oil demulsifiers
US3936578A (en) 1972-04-14 1976-02-03 Rhone-Poulenc S.A. Method of rendering a substrate non-stick towards tacky substances by coating the substrate with an organosilicon composition
US3971751A (en) 1975-06-09 1976-07-27 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Vulcanizable silylether terminated polymer
US4293597A (en) 1974-12-30 1981-10-06 General Electric Company Method of forming a roofing composite using silicone rubber composition
US4312801A (en) 1979-01-16 1982-01-26 Krafft, S.A. Introduced in processes for the manufacture of silicon-based curable compositions
US4345053A (en) 1981-07-17 1982-08-17 Essex Chemical Corp. Silicon-terminated polyurethane polymer
US4404348A (en) 1981-08-12 1983-09-13 Rhone-Poulenc Specialites Chimiques Solventless organosilicon coating/impregnating compositions
US4461867A (en) 1982-09-27 1984-07-24 General Electric Company Composition for promoting adhesion of curable silicones to substrates
US4481367A (en) 1979-12-26 1984-11-06 Union Carbide Corporation High viscosity polyoxyalkylene glycol block copolymers and method of making the same
US4625012A (en) 1985-08-26 1986-11-25 Essex Specialty Products, Inc. Moisture curable polyurethane polymers
US4985491A (en) 1989-10-05 1991-01-15 Olin Corporation Polyurethane sealants made using high molecular weight polyols prepared with double metal cyanide catalysts
US5194489A (en) 1989-11-21 1993-03-16 Rhone-Poulenc Chimie Organopolysiloxane composition containing a cyclopentenyl radical and crosslinkable to give an elastomer
US5623044A (en) 1992-10-13 1997-04-22 Essex Specialty Products, Inc. Polyurethane sealant compositions
US5852137A (en) 1997-01-29 1998-12-22 Essex Specialty Products Polyurethane sealant compositions
US5919888A (en) 1995-08-10 1999-07-06 Arco Chemical Technology, L.P. Viscosity-stable isocyanate-terminated prepolymers and polyoxyalkylene polyether polyols having improved storage stability
US5932650A (en) 1996-01-26 1999-08-03 General Electric Company One component room temperature vulcanizable (RTV) silicone sealant with improved high temperature adhesion
US5945466A (en) 1996-05-21 1999-08-31 Shin-Etsu Chemical Co., Ltd. Room temperature curable organopolysiloxane composition
EP0947531A1 (fr) 1998-03-26 1999-10-06 Bayer Ag Polyisocyanates bloqués avec des esters maloniques et stabilisés avec le formaldéhyde contre le jaunissement
US5985991A (en) 1997-06-10 1999-11-16 Dow Corning Corporation Oil resistant silicone sealants containing a metal acetate
US6197912B1 (en) 1999-08-20 2001-03-06 Ck Witco Corporation Silane endcapped moisture curable compositions
US6207794B1 (en) 1997-05-28 2001-03-27 Mitsui Chemical, Inc. Polyoxyalkylene polyols, derivatives thereof, and process for producing the polyoxyalkylene polyols
US6303731B1 (en) 1999-01-20 2001-10-16 H.B. Fuller Licensing & Financing Inc. Moisture curable polyurethane compositions
US6310170B1 (en) 1999-08-17 2001-10-30 Ck Witco Corporation Compositions of silylated polymer and aminosilane adhesion promoters
US6359101B1 (en) 1999-12-15 2002-03-19 Synuthane International, Inc. Preparing polyether polyols with DMC catalysts
US20020156210A1 (en) 2001-02-19 2002-10-24 Bridgestone Corp. Manufacture of conjugated diene polymers by using an iron-based catalyst composition
US20020198352A1 (en) 2001-06-06 2002-12-26 Asahi Glass Company, Limited Curable composition
US6515164B1 (en) 1997-01-02 2003-02-04 Henkel Kommanditgesellschaft Auf Aktien Low monomer polyurethane prepolymer and process therefore
US20030069379A1 (en) 2001-10-10 2003-04-10 Shin-Etsu Chemical Co., Ltd. Room temperature curing organopolysiloxane composition
US6599633B1 (en) 1999-04-10 2003-07-29 Dow Corning S.A. Organosiloxane compositions
US6696383B1 (en) 2002-09-20 2004-02-24 Bayer Polymers Llc Double-metal cyanide catalysts which can be used to prepare polyols and the processes related thereto
US20040122253A1 (en) 2001-04-12 2004-06-24 Smith Andrea Karen MDI-based polyurethane prepolymer with low monomeric MDI content
US6827875B2 (en) 2001-07-03 2004-12-07 Bayer Aktiengesellschaft Cyclic ketones as blocking agents
US6833423B2 (en) 2002-06-18 2004-12-21 Bayer Polymers Llc Moisture-curable, polyether urethanes with reactive silane groups and their use as sealants, adhesives and coatings
US20050020706A1 (en) 2001-12-18 2005-01-27 Guido Kollbach Method for producing polyurethane prepolymer having a low content of monomers
US20050137322A1 (en) 2003-12-17 2005-06-23 Roesler Richard R. Silane modified two-component polyurethane coating
US6919293B1 (en) 1999-11-08 2005-07-19 Bayer Aktiengesellschaft Double metal cyanide catalysts for producing polyether polyols
US20050171315A1 (en) * 2002-10-02 2005-08-04 Kaneka Corporation Curable composition
US7115695B2 (en) 2001-07-27 2006-10-03 Kaneka Corporation Curable composition
EP1731573A1 (fr) * 2004-04-01 2006-12-13 Kaneka Corporation Composition vulcanisable
US20070237912A1 (en) * 2006-04-06 2007-10-11 General Electric Company Architectural unit possessing translucent silicone rubber component
US7365145B2 (en) 2005-09-14 2008-04-29 Momentive Performance Materials Inc. Moisture curable silylated polymer containing free polyols for coating, adhesive and sealant application
EP1985666A1 (fr) * 2006-02-16 2008-10-29 Kaneka Corporation Composition durcissable
US7504468B2 (en) 2003-06-25 2009-03-17 Rhodia Chimie Single-component polyorganosiloxane compositions which crosslink into silicone elastomers
US20090156737A1 (en) 2006-05-11 2009-06-18 Wacker Chemie Ag Transparent polymer mixtures which contain alkoxysilane-terminated polymers
US7569653B2 (en) 2006-02-01 2009-08-04 Momentive Performance Materials Inc. Sealant composition having reduced permeability to gas
US20090306307A1 (en) 2006-06-20 2009-12-10 Dongchan Ahn Curable Organosilicon Composition
US20110009558A1 (en) 2007-12-20 2011-01-13 Christian Maliverney Room-temperature vulcanisable organopolysiloxane compound to give an elastomer and novel organopolysiloxane polycondensation catalysts
US20110021684A1 (en) 2007-12-20 2011-01-27 Christian Maliverney Rtv-organopolysiloxane compositions and novel organopolysiloxane polycondensation catalysts therefor
US20110040034A1 (en) 2007-12-20 2011-02-17 Christian Maliverney Room-temperature vulcanisable organopolysiloxane compound to give an elastomer and novel organopolysiloxane polycondensation catalysts
US20110098420A1 (en) 2008-03-28 2011-04-28 Mitsubishi Chemical Corporation Curable polysiloxane composition, and polysiloxane cured product, optical member, member for aerospace industry, semiconductor light-emitting device, illuminating device and image display device using the same

Patent Citations (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3278458A (en) 1963-02-14 1966-10-11 Gen Tire & Rubber Co Method of making a polyether using a double metal cyanide complex compound
US3278459A (en) 1963-02-14 1966-10-11 Gen Tire & Rubber Co Method of making a polyether using a double metal cyanide complex compound
US3427334A (en) 1963-02-14 1969-02-11 Gen Tire & Rubber Co Double metal cyanides complexed with an alcohol aldehyde or ketone to increase catalytic activity
US3427256A (en) 1963-02-14 1969-02-11 Gen Tire & Rubber Co Double metal cyanide complex compounds
US3427335A (en) 1963-02-14 1969-02-11 Gen Tire & Rubber Co Double metal cyanides complexed with an acyclic aliphatic saturated monoether,an ester and a cyclic ether and methods for making the same
US3278457A (en) 1963-02-14 1966-10-11 Gen Tire & Rubber Co Method of making a polyether using a double metal cyanide complex compound
US3632557A (en) 1967-03-16 1972-01-04 Union Carbide Corp Vulcanizable silicon terminated polyurethane polymers
US3627722A (en) 1970-05-28 1971-12-14 Minnesota Mining & Mfg Polyurethane sealant containing trialkyloxysilane end groups
US3786081A (en) 1970-12-04 1974-01-15 Basf Ag Crude oil demulsifiers
US3936578A (en) 1972-04-14 1976-02-03 Rhone-Poulenc S.A. Method of rendering a substrate non-stick towards tacky substances by coating the substrate with an organosilicon composition
US4293597A (en) 1974-12-30 1981-10-06 General Electric Company Method of forming a roofing composite using silicone rubber composition
US3971751A (en) 1975-06-09 1976-07-27 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Vulcanizable silylether terminated polymer
US4312801A (en) 1979-01-16 1982-01-26 Krafft, S.A. Introduced in processes for the manufacture of silicon-based curable compositions
US4481367A (en) 1979-12-26 1984-11-06 Union Carbide Corporation High viscosity polyoxyalkylene glycol block copolymers and method of making the same
US4345053A (en) 1981-07-17 1982-08-17 Essex Chemical Corp. Silicon-terminated polyurethane polymer
US4404348A (en) 1981-08-12 1983-09-13 Rhone-Poulenc Specialites Chimiques Solventless organosilicon coating/impregnating compositions
US4461867A (en) 1982-09-27 1984-07-24 General Electric Company Composition for promoting adhesion of curable silicones to substrates
US4625012A (en) 1985-08-26 1986-11-25 Essex Specialty Products, Inc. Moisture curable polyurethane polymers
US4985491A (en) 1989-10-05 1991-01-15 Olin Corporation Polyurethane sealants made using high molecular weight polyols prepared with double metal cyanide catalysts
US5194489A (en) 1989-11-21 1993-03-16 Rhone-Poulenc Chimie Organopolysiloxane composition containing a cyclopentenyl radical and crosslinkable to give an elastomer
US5623044A (en) 1992-10-13 1997-04-22 Essex Specialty Products, Inc. Polyurethane sealant compositions
US5919888A (en) 1995-08-10 1999-07-06 Arco Chemical Technology, L.P. Viscosity-stable isocyanate-terminated prepolymers and polyoxyalkylene polyether polyols having improved storage stability
US5932650A (en) 1996-01-26 1999-08-03 General Electric Company One component room temperature vulcanizable (RTV) silicone sealant with improved high temperature adhesion
US5945466A (en) 1996-05-21 1999-08-31 Shin-Etsu Chemical Co., Ltd. Room temperature curable organopolysiloxane composition
US6515164B1 (en) 1997-01-02 2003-02-04 Henkel Kommanditgesellschaft Auf Aktien Low monomer polyurethane prepolymer and process therefore
US5852137A (en) 1997-01-29 1998-12-22 Essex Specialty Products Polyurethane sealant compositions
US6207794B1 (en) 1997-05-28 2001-03-27 Mitsui Chemical, Inc. Polyoxyalkylene polyols, derivatives thereof, and process for producing the polyoxyalkylene polyols
US5985991A (en) 1997-06-10 1999-11-16 Dow Corning Corporation Oil resistant silicone sealants containing a metal acetate
EP0947531A1 (fr) 1998-03-26 1999-10-06 Bayer Ag Polyisocyanates bloqués avec des esters maloniques et stabilisés avec le formaldéhyde contre le jaunissement
US6303731B1 (en) 1999-01-20 2001-10-16 H.B. Fuller Licensing & Financing Inc. Moisture curable polyurethane compositions
US6599633B1 (en) 1999-04-10 2003-07-29 Dow Corning S.A. Organosiloxane compositions
US6310170B1 (en) 1999-08-17 2001-10-30 Ck Witco Corporation Compositions of silylated polymer and aminosilane adhesion promoters
US6197912B1 (en) 1999-08-20 2001-03-06 Ck Witco Corporation Silane endcapped moisture curable compositions
US6919293B1 (en) 1999-11-08 2005-07-19 Bayer Aktiengesellschaft Double metal cyanide catalysts for producing polyether polyols
US6359101B1 (en) 1999-12-15 2002-03-19 Synuthane International, Inc. Preparing polyether polyols with DMC catalysts
US20020156210A1 (en) 2001-02-19 2002-10-24 Bridgestone Corp. Manufacture of conjugated diene polymers by using an iron-based catalyst composition
US20040122253A1 (en) 2001-04-12 2004-06-24 Smith Andrea Karen MDI-based polyurethane prepolymer with low monomeric MDI content
US20020198352A1 (en) 2001-06-06 2002-12-26 Asahi Glass Company, Limited Curable composition
US6827875B2 (en) 2001-07-03 2004-12-07 Bayer Aktiengesellschaft Cyclic ketones as blocking agents
US7115695B2 (en) 2001-07-27 2006-10-03 Kaneka Corporation Curable composition
US20030069379A1 (en) 2001-10-10 2003-04-10 Shin-Etsu Chemical Co., Ltd. Room temperature curing organopolysiloxane composition
US20050020706A1 (en) 2001-12-18 2005-01-27 Guido Kollbach Method for producing polyurethane prepolymer having a low content of monomers
US6833423B2 (en) 2002-06-18 2004-12-21 Bayer Polymers Llc Moisture-curable, polyether urethanes with reactive silane groups and their use as sealants, adhesives and coatings
US6696383B1 (en) 2002-09-20 2004-02-24 Bayer Polymers Llc Double-metal cyanide catalysts which can be used to prepare polyols and the processes related thereto
US7550547B2 (en) 2002-10-02 2009-06-23 Kaneka Corporation Curable composition
US20050171315A1 (en) * 2002-10-02 2005-08-04 Kaneka Corporation Curable composition
US7504468B2 (en) 2003-06-25 2009-03-17 Rhodia Chimie Single-component polyorganosiloxane compositions which crosslink into silicone elastomers
US20050137322A1 (en) 2003-12-17 2005-06-23 Roesler Richard R. Silane modified two-component polyurethane coating
EP1731573A1 (fr) * 2004-04-01 2006-12-13 Kaneka Corporation Composition vulcanisable
US7365145B2 (en) 2005-09-14 2008-04-29 Momentive Performance Materials Inc. Moisture curable silylated polymer containing free polyols for coating, adhesive and sealant application
US7569653B2 (en) 2006-02-01 2009-08-04 Momentive Performance Materials Inc. Sealant composition having reduced permeability to gas
EP1985666A1 (fr) * 2006-02-16 2008-10-29 Kaneka Corporation Composition durcissable
US7527838B2 (en) 2006-04-06 2009-05-05 Momentive Performance Materials Inc. Architectural unit possessing translucent silicone rubber component
US20070237912A1 (en) * 2006-04-06 2007-10-11 General Electric Company Architectural unit possessing translucent silicone rubber component
US20090156737A1 (en) 2006-05-11 2009-06-18 Wacker Chemie Ag Transparent polymer mixtures which contain alkoxysilane-terminated polymers
US20090306307A1 (en) 2006-06-20 2009-12-10 Dongchan Ahn Curable Organosilicon Composition
US20110009558A1 (en) 2007-12-20 2011-01-13 Christian Maliverney Room-temperature vulcanisable organopolysiloxane compound to give an elastomer and novel organopolysiloxane polycondensation catalysts
US20110021684A1 (en) 2007-12-20 2011-01-27 Christian Maliverney Rtv-organopolysiloxane compositions and novel organopolysiloxane polycondensation catalysts therefor
US20110040034A1 (en) 2007-12-20 2011-02-17 Christian Maliverney Room-temperature vulcanisable organopolysiloxane compound to give an elastomer and novel organopolysiloxane polycondensation catalysts
US20110098420A1 (en) 2008-03-28 2011-04-28 Mitsubishi Chemical Corporation Curable polysiloxane composition, and polysiloxane cured product, optical member, member for aerospace industry, semiconductor light-emitting device, illuminating device and image display device using the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9394443B2 (en) 2011-11-10 2016-07-19 Momentive Performance Materials, Inc. Moisture curable organopolysiloxane composition
US9523002B2 (en) 2011-12-15 2016-12-20 Momentive Performance Materials Inc. Moisture curable organopolysiloxane compositions
US9663657B2 (en) 2011-12-15 2017-05-30 Momentive Performance Materials Inc. Moisture curable organopolysiloxane compositions
US9527959B2 (en) 2011-12-29 2016-12-27 Momentive Performance Materials Inc. Moisture curable organopolysiloxane composition
US9493691B2 (en) 2013-03-13 2016-11-15 Momentive Performance Materials Inc. Moisture curable organopolysiloxane compositions
US9605113B2 (en) 2013-05-10 2017-03-28 Momentive Performance Materials Inc. Non-metal catalyzed room temperature moisture curable organopolysiloxane compositions
WO2015081148A1 (fr) * 2013-11-26 2015-06-04 Momentive Performance Materials Inc. Compositions durcissables à l'humidité
EP3083764B1 (fr) 2013-12-19 2019-07-03 Sika Technology AG Silicone réticulant par condensation avec stabilité en température
WO2015119904A1 (fr) * 2014-02-06 2015-08-13 Momentive Performance Materials Inc. Composition de silicone durcissable à l'humidité

Similar Documents

Publication Publication Date Title
US9394443B2 (en) Moisture curable organopolysiloxane composition
US8937141B2 (en) Moisture curable organopolysiloxane composition
EP2797986A1 (fr) Composition d'organopolysiloxane durcissable par l'humidité
KR101804832B1 (ko) 수분 경화성 오가노폴리실록산 조성물
US9493691B2 (en) Moisture curable organopolysiloxane compositions
WO2013070227A1 (fr) Composition durcissable à l'humidité contenant un polymère possédant des groupes silyles
WO2015119904A1 (fr) Composition de silicone durcissable à l'humidité
US9523002B2 (en) Moisture curable organopolysiloxane compositions
WO2013165552A2 (fr) Composition d'organopolysiloxane durcissable à l'humidité
WO2015081146A1 (fr) Composé durcissable à l'humidité comprenant des complexes métal-arène
WO2014210492A1 (fr) Composition durcissable à l'humidité contenant du strontium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11788704

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC

122 Ep: pct application non-entry in european phase

Ref document number: 11788704

Country of ref document: EP

Kind code of ref document: A1