WO2013070115A1 - Метод видовой и штаммовой идентификации бифидобактерий с использованием генов систем токсин-антитоксин ii типа суперсемейств mazef и reibe - Google Patents

Метод видовой и штаммовой идентификации бифидобактерий с использованием генов систем токсин-антитоксин ii типа суперсемейств mazef и reibe Download PDF

Info

Publication number
WO2013070115A1
WO2013070115A1 PCT/RU2012/000836 RU2012000836W WO2013070115A1 WO 2013070115 A1 WO2013070115 A1 WO 2013070115A1 RU 2012000836 W RU2012000836 W RU 2012000836W WO 2013070115 A1 WO2013070115 A1 WO 2013070115A1
Authority
WO
WIPO (PCT)
Prior art keywords
strain
strains
bifidobacteria
genes
longum
Prior art date
Application number
PCT/RU2012/000836
Other languages
English (en)
French (fr)
Inventor
Мария Георгиевна АЛЕКСЕЕВА
Ольга Викторовна АВЕРИНА
Валерий Николаевич ДАНИЛЕНКО
Original Assignee
Автономная Некоммерческая Организация "Научно-Исследовательский Центр Биотехнологии Антибиотиков И Других Биологически Активных Веществ "Биоан"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Автономная Некоммерческая Организация "Научно-Исследовательский Центр Биотехнологии Антибиотиков И Других Биологически Активных Веществ "Биоан" filed Critical Автономная Некоммерческая Организация "Научно-Исследовательский Центр Биотехнологии Антибиотиков И Других Биологически Активных Веществ "Биоан"
Publication of WO2013070115A1 publication Critical patent/WO2013070115A1/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • C12Q1/689Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for bacteria
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/686Polymerase chain reaction [PCR]

Definitions

  • the invention relates to biotechnology, in particular to the production of bacterial preparations and food products, as well as to medical microbiology and can be used to identify strains of bifidobacteria.
  • the nucleotide ' sequences of the 16S pPHK genes have developed rhodo-, group- and species-specific primers, amplification with which in some cases can be carried out simultaneously in a common reaction mixture (the so-called multiplex PCR - multiplex PCR) (Boesten RJ, Schuren FH, de Vos WM.
  • multiplex PCR - multiplex PCR Boesten RJ, Schuren FH, de Vos WM.
  • SUBSTITUTE SHEET (RULE 26)
  • the objective of the present invention is to provide an express method of molecular genetic identification of bifidobacteria, including typing of strains belonging to the B. Iongum phylotype.
  • the claimed invention provides a method for species and strain identification of bifidobacteria, based on the combination and polymorphism of genes of toxin-antitoxin (TA) type II systems of the azEF and RelBE superfamilies.
  • TA toxin-antitoxin
  • the action of toxin-antitoxin systems in a number of studies qualifies as adaptation to stressful conditions (substrate starvation or other stresses) necessary for survival. (Yamaguchi Y., Park JH, Inouye M. Toxin-antitoxin systems in bacteria and archaea. Annu Rev Genet.
  • the components of TA systems are usually two genes located one after another (sometimes overlapping), equipped with at least one promoter, and forming an operon.
  • the toxin gene causes the formation of a long-lived “poisoning” bacterium product, and the antitoxin gene is a labile product that can neutralize this toxin by binding to it (or preventing its formation).
  • the antitoxin gene is a labile product that can neutralize this toxin by binding to it (or preventing its formation).
  • the technical result of the invention is: amplification using the developed oligonucleotides with possible subsequent DNA sequencing, which allows quick and accurate genotyping of bifidobacteria, including typing of strains belonging to the B. longum phylotype.
  • the authors of the present invention conducted a computer search of the genes of the toxin-antitoxin systems of the MazEF and RelBE superfamilies in the genomes of 36 bacterial strains of the genus Bifidobacterium belonging to 11 species available in the database using the National Center for Biotechnology Information (NCBI) programs (http: // www.ncbi.nlm.nih.gov/) and UniProt (http://www.uniprot.org/).
  • NCBI National Center for Biotechnology Information
  • a comparative analysis of the sequences of the detected genes was performed using the Blast (http://blast.ncbi.nlm.nih.gov/) and CLUSTAL W (www.ch.embnet.org/software/ClustalW.html) programs.
  • the database contains 11 genomes belonging to the group B. longum (7 strains of the subspecies B. longum subsp. Longum and 4 strains of the subspecies B. longum subsp. Infantis), as well as the strain Bifidobacterium sp. 12_1_47BFAA, also related to the species B. longum.
  • relB antitoxin genes were found in B. strain longum subsp. infantis ATCC 15697. In B. strain longum subsp. infantis ATCC 15697 contains the largest number (7) of relB antitoxin genes (we designate relBl-relBl in the order in the genome). In B. strain longum subsp. longum JDM301 contains 6 relB antitoxin genes (there are no genes homologous to the relBl and ge1B5 genes, but there is a gene designated as ge1B8). In other B. longum strains, 1 to 3 relB antitoxin genes were detected. Thus, we found the polymorphism of relB antitoxin genes at the strain level.
  • ge1B3 The gene designated as ge1B3 is present in all B. longum genomes; it has a high homology from 98 to 99% throughout the nucleotide sequence except for the C-terminal
  • SUBSTITUTE SHEET (RULE 26) region and can be used for species identification of strains of the B. longum phylotype.
  • RelBl-relBlO antitoxin genes have low homology between themselves (15-30%), which can serve as a strain-specific trait, in addition, nucleotide sequences of relB genes have single nucleotide substitutions and inserts, which allows the development of strain-specific oligonucleotides.
  • the polymorphism of relB antitoxin genes that we identified can be used to identify B. longum strains — isolation of polymorphic subtypes.
  • RelE toxin genes are present only in the genomes of 4 strains - ATCC 15697, JDM301, 157F and 12_1_47BFAA.
  • the analysis showed the absence of a correlation between the species affiliation of bifidobacteria and the presence of TA genes of the MazEF family.
  • the mazF genes encoding the toxin are present only in the genomes of 3 strains of B. longum — ATCC 15697, JDM301, and 157F.
  • Sequence 3 presents a comparative analysis of the nucleotide sequences of the antitoxin genes ge1B3 of B. longum strains and the localization of the ReBN and ReBC oligonucleotides for species identification. On all nucleotide sequences presented, the differences are highlighted in red, the inserts in yellow.
  • the largest number (7) of relB antitoxin genes is present in the genome of the ATCC 15697 strain, and the relBl gene is strain-specific, because absent in the genomes of the remaining strains.
  • the relBl gene is strain-specific, because absent in the genomes of the remaining strains.
  • ge1B8 and relBlO are also specific for strains JDM301 and CASS 91563, respectively (sequences 6, 8).
  • SUBSTITUTE SHEET (RULE 26)
  • the relB2 gene is present in the genomes of the ATCC 15697, JDM301, and F8 strains; gene ge1B4 - in the genomes of strains of ATCC 15697, JDM301, 157F and 12_1_47BFAA; gene ge1B5 - genomes of strains of ATCC 15697 and 157F; gene ge1B9 - the genomes of the ATCC 55813 and CCUG 52486 strains.
  • a comparative analysis of the sequences of the relB antitoxin genes revealed single nucleotide differences for different strains, which also allowed the construction of strain-specific oligonucleotides (sequences 2, 4, 5, 7).
  • strains DJO10A, NCC2705, BBMN68, and JC 1217 contain only the gene antitoxin ge1B3, which is also present in the genomes of all B. longum strains (sequence 3).
  • Group ge1VZa The following strains belong to it: ATCC 15697, ATCC 55813, DJO10A, 12_1_47BFAA, F8, NCC2705, JD 301, 157F.
  • nucleotide sequence contains the substitutions (Au- »G; C 2 i6-T; A 2 i7 ⁇ » G; C 3 oe->T; A 3 i 0 ->G; A 312 - »G; G 3 i 5 -A;
  • strains CCUG 52486, BB N68, JCM 1217 and CASS 91563.
  • Group ge1VZa can be divided into subgroups:
  • Subgroup relB3a.l. The ATCC 15697 strain belongs to it.
  • Subgroup ge1VZa 2. Differences from ge1VZA.1 - An 4 - »G; C 2 i6 ⁇ ; A2i 7 - »G; G228-A .; A 3 34-> G.
  • ATCC 55813 (additionally contains gene ge1B9),
  • DJO10A (contains only gene ge1VZ),
  • 157F (additionally contains the relB4 and relB5 genes).
  • Subgroup ge1VZa 4. Differences from relB3A.l - Gs 7 ->A; An 4 -> - G; C 2 i6->T;
  • the strain JDM301 belongs to it.
  • Subgroup ge1VZa 5. Differences from reIB3A.l - C 2 i->T; ii 4 - »G; Ai 6 8-G; Ai 7 9- ”C; C 2 i6- * T; A 2 i 7 - * G; With 3 5b- »T. It includes strain F8.
  • the relB3b group can be divided into subgroups:
  • Strain ⁇ 68 belongs to it.
  • Subgroup relB3b 2. Contains replacements A i44 ->C; Ai 6 8- »G.
  • Subgroup ge1VZ.Z. Contains replacements A 144 ->C; G228- »A.
  • Subgroup relB3b. 4. Contains replacements Ai 6 8- »G; Ai 79 - »C.
  • SUBSTITUTE SHEET (RULE 26) we constructed the oligonucleotides RelBllBbN and RelBllBbC for species identification of B. bifidum based on the nucleotide sequence of the relBll gene (sequence 9).
  • oligonucleotides can be developed to identify other types of bifidobacteria - B. animalis subsp. lactis and B. breve.
  • the proposed method includes a set of pairs of oligonucleotides for species and strain identification of bifidobacteria of the group B. longum.
  • the proposed methodological approach can be used to identify other types of bifidobacteria, in particular Bifidobacterium bifidum and Bifidobacterium adolescentis.
  • a bifidobacteria culture was grown on MPA agar medium with 0.05% cysteine for 48 hours at 37 ° C under anaerobic conditions in a HiAnaerobicTM anaerostat (HiMedia Company (India)), after which genomic DNA was isolated.
  • SUBSTITUTE SHEET (RULE 26) The bifidobacteria culture is centrifuged at 8000 rpm for 10 minutes. The precipitate was suspended in 0.6 ml of TEST buffer (10 m Tris HCl pH 8.0; 5 mM EDTA pH 8.0; 1 M NaCl; 1/200 volume of Triton-HUO). Mix gently. Incubated at 37 ° C for 12 hours. Add 150 ⁇ l of a freshly prepared lysozyme solution (initial concentration of 100 mg / ml); add 10 ⁇ l of RNase solution (stock solution 10 mg / ml). Mix gently. Incubated at 3 ° C for 3 hours (the suspension should become slightly viscous).
  • the aqueous phase is taken up in pure eppendorf and 1 volume of chloroform with isoamyl alcohol is added. The contents of eppendorf are mixed by inversion for 1 minute. Centrifuge for 5 minutes at 12,000 rpm. The aqueous phase is transferred to pure eppendorf, 1 ml of isopropanol is added, stirred by inversion (a precipitate appears in the form of strands). Centrifuged for 1 min at 10,000 rpm, the supernatant is removed. The precipitate was washed with 70% ethanol, dried and dissolved in 150 ⁇ l of water.
  • Amplification of DNA is carried out using the Amplification kit of Dialat Ltd company on the Tertsik instrument (DNA technology).
  • Composition of the PCR mix (100 .mu.l): 10 .mu.l YuhPTsR buffer, 10 .mu.l of 2,5mM EdNTPs, 50t MdS1 4 l 2, 0.3 micrograms gegnomnoy DNA and 0.8 .mu.l of the enzyme Taq-polymerase.
  • Oligonucleotide primers are added at a concentration of 20 pmol per
  • PCR reaction parameters 95 ° C for 5 min (cell lysis and denaturation of genomic DNA); then 30 cycles of amplification - 94 ° C - 1 min (denaturation), 56 ° C for 1 min (annealing of oligonucleotides), 72 ° C - 2 min (completion (elongation) of the chain); final elongation of fragments at 72 ° ⁇ - 10 min, storage at 4 ° ⁇ .
  • the results of the study are taken into account by analyzing the amplification products of the test samples by electrophoresis in 1% agarose gel. After amplification is completed, 1/5 of the volume of the bX DN7A Loading Dye solution (Fermentas) is carefully added under oil to the tubes with the test samples after amplification, mixed, and 8 ⁇ l of the obtained sample is added to the wells of the agarose gel. Electrophoresis is carried out in a SE-2 horizontal electrophoresis chamber (Helikon Company) with an Elf-4 power source (DNA technology) at a voltage of 120 volts for 60 minutes.
  • SE-2 horizontal electrophoresis chamber Helikon Company
  • Elf-4 power source DNA technology
  • the species identification of bifidobacteria of the B. longum phylotype is carried out by amplification with the genomic DNA of bifidobacteria at the above parameters using the RelBN oligonucleotides ( 5 ' TGCGAAACTGAAGAACGAGG 3' ) and RelBC
  • amplification with genomic DNA is carried out using the oligonucleotides shown in Table 2.
  • the PCR products are analyzed on a 1% agarose gel.
  • the size of the obtained fragment is determined using the GeneRuler TM DNA marker 100+ bp ("Fermentas").
  • the studied strain is identical to the strain B. longum subsp. infantis ATCC 15697 in the case of producing fragments using oligonucleotides ReBlN-ReBIC (strain-specific), ReB2N-ReB2C and ReB3.lN-ReB3.2C. When using the remaining oligonucleotides, there should be no PCR products.
  • the studied strain is identical to the strain B. longum subsp. infantis ATCC 55813 in the presence of PCR products only when using ReB3 oligonucleotides. lN-ReB3.1 ⁇ and ReB9.1N-ReB9.1 ⁇ .
  • the studied strain is identical to the strain B. longum subsp. infantis CCUG 52486 in the presence of PCR products only when using ReB3 oligonucleotides. lN-ReB3.1C, ReB3.4N-ReB3.4C and ReB9. lN-ReB9.2C.
  • the studied strain is identical to the strain B. longum DJO10A in the presence of PCR products only when using ReB3 oligonucleotides. lN-ReB3.1C.
  • the studied strain is identical to the strain of Bifidobacterium sp. (B. longum) 12_1_47BFAA in the presence of PCR products only when using ReB3 oligonucleotides. lN-ReB3.1C and ReB4N-ReB4C.
  • the studied strain is identical to the strain B. longum subsp. longum F8 in the presence of PCR products only when using the oligonucleotides ReB2N-ReB2C and ReB3.3N-ReBC.
  • the studied strain is identical to B. longum strain NCC2705 in the case of PCR products only when using ReB3 oligonucleotides. lN-ReB3.2C.
  • SUBSTITUTE SHEET (RULE 26) The studied strain is identical to the strain B. longum subsp. longum JDM301 in the case of amplification of fragments only when using oligonucleotides ReB8N-ReB8C (strain-specific), ReB2N-ReB2C and ReB3. lN-ReB3.1C.
  • the studied strain is identical to the strain B. longum subsp. longum BBMN68 in the presence of PCR products only when using ReB3 oligonucleotides. lN-ReB3.1C and ReB3.4N-ReB3.4C.
  • the studied strain is identical to the strain B. longum subsp. infantis 157F in the presence of PCR products only when using ReB3 oligonucleotides. lN-ReB3.1C, ReB4N-ReB4C and ReB5N-ReB5C.
  • the studied strain is identical to the strain B. longum subsp. longum JCM 1211 in the presence of PCR products only when using ReB3 oligonucleotides. lN-ReB3.1 ⁇ and ReB3.5N-ReB3.4 ⁇ .
  • the studied strain is identical to the strain B. longum subsp. longum CASS 91563 in the case of PCR products only when using the oligonucleotides ReBlON-ReBlOC and ReB3.1N-
  • Identification of bifidobacteria relating to V.bifidum sight is performed by amplification of genomic DNA of bifidobacteria at the above-described parameters using RelBllBbN oligonucleotides (5 'ATGGCGAGCATACCCAC 3') and RelBllBbC (5 'ATCTGCCATTCGACGTTTCCTT 3').
  • the identification of bifidobacteria B. adolescentis is carried out by amplification with the genomic DNA of bifidobacteria using the parameters described above using azBaN oligonucleotides ( 5 ' GTGAGATCTGGACTGTGCT 3 ') and azBaC ( 5 'CTGGCGCATGACATCATCT 3 ').
  • B.longum strain identification was performed. Based on the composition of the genes of the RelBE families among 23 B. longum strains, the strain diversity of bifidobacteria from the Russian collection is shown.
  • Oligonucleotides for strain identification of bifidobacteria of group B. longum Oligonucleotides for strain identification of bifidobacteria of group B. longum.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

Изобретение относится к биотехнологии, в частности к производству бактериальных препаратов и продуктов питания, а также к медицинской микробиологии и может быть использовано для идентификации штаммов бифидобактерий. В заявленном изобретении предложен метод видовой и штаммовой идентификации бифидобактерий, основанный на комбинации и полиморфизме генов систем токсин-антитоксин семейств MazEF и RelBE. Техническим результатом изобретения является: проведение амплификации с использованием разработанных олигонуклеотидов с возможным последующим секвенированием ДНК позволяет точно и быстро проводить генотипирование бифидобактерий, включая типирование штаммов, относящихся к филотипу В.longum. Олигонуклеотиды, подобранные к таким генам можно использовать для характеристики штамма, для выявления штаммового разнообразия в исследуемой экологической нише. ПЦР с использованием этих олигонуклеотидов можно представить как диагностический, методический подход для определения исследуемого штамма в клинических пробах или молекулярного отслеживания штамма в коммерческих препаратах для различных существующих диагностических технологий и приборов.

Description

Метод видовой и штгаммовой идентификации бифидобактерий с использованием генов систем токсин-антитоксин II типа суперсемейств MazEF и RelBE.
ОПИСАНИЕ
Область техники, к которой относится изобретение
Изобретение относится к биотехнологии, в частности к производству бактериальных препаратов и продуктов питания, а также к медицинской микробиологии и может быть использовано для идентификации штаммов бифидобактерий.
Уровень техники
Известно, что клинические проявления дисбактериоза кишечника, как правило, отмечаются на фоне отсутствия или дефицита бифидобактерий, которые в норме являются основой микрофлоры кишечника людей всех возрастов. (Tilg Н., Kaser А. Gut microbiome, obesity, and metabolic dysfunction. The J. of Clinic. Investig. 2011. V.121 W 6. P. 2126-2132; Leahy S.C., Higgins D.G., Fitzgerald G.F and van Sinderen D. Getting better with bifidobacteria. Journal of Applied Microbiology 2005, 98, 1303-1315) . Именно поэтому бифидобактерии широко используются в составе заквасок для приготовления различных кисломолочных продуктов и в виде бакпрепаратов, применяемых в лечебно- профилактических целях. В связи с этим очень важно разработать точные методы идентификации видов и штаммов бифидобактерий. (Turroni, F. , Ribbera, A., Foroni, Е. et al. Human gut microbiota and bifidobacteria: from composition to functionality. Antonie van Leeuwenhoek . 2008. 94. P. 35-50; Reichardt N, Barclay AR, Weaver LT, Morrison DJ. Use of stable isotopes to measure the metabolic activity of the human intestinal microbiota. Appl Environ Microbiol. 2011 Nov; 77 (22) : 8009-14; Poltavs ' ka OA, Kovalenko NK. Taxonomic position of bifidobacteria and modern methods for their identification. Mikrobiol Z. 2009 May-Jun;71 (3):62-72; Stanton
1
ЗАМЕНЯЮЩИЙ ЛИСТ (ПРАВИЛО 26) С . , Ross R.P., Fitzgerald G.F. and Van Sinderen, D. (2005) Fermented functional foods based on probiotics and their biogenic metabolites. Curr. Opin . Biotechnol . 16, 198-203).
В настоящее время для идентификации вида и рода бифидобактерий применяются следующие методы:
1. Метод, основанный на амплификации фрагментов гена 16S PHK. (Youn SY, Seo JM, Ji GE. Evaluation of the PCR method for identification of Bifidobacterium species. Lett Appl
Microbiol. 2008, Jan, 46(1):7-13; Krizova, J., Spanova, A. and Rittich, B. Evaluation of amplified ribosomal DNA restriction analysis (ARDRA) and species-specific PCR for identification of Bifidobacterium species. Syst Appl Microbiol. 2006, 29, 36-44; Kwon, H.S., Yang, E.H., Lee, S.H., Yeon, S. ., Kang, B.H. and Kim, T.Y. Rapid identification of potentially probiotic Bifidobacterium species by multiplex PCR using species-specific primers based on the region extending from 16S rRNA through 23S rRNA. FEMS Microbiol Lett. 2005, 250, 55-62; Патент Япония, United States Patent 7,321,032, 2008; Патент ES P200601788, 2006; Патент KR 20050012505, 2005) .
По нуклеотидным ' последовательностям генов 16S pPHK разработаны родо-, группо- и видоспецифичные праймеры, ам- плификация с которыми в ряде случаев может проводиться од- новременно в общей реакционной смеси (так называемая мультиплексная ПЦР - multiplex PCR) (Boesten RJ, Schuren FH, de Vos WM. A Bifidobacterium mixed-species microarray for high resolution discrimination between intestinal bifidobacteria. J Microbiol Methods. 2009 Mar; 76 ( 3 ) : 269-77 ; Matsuki Т., Watanabe К . , Fujimoto J., Kado Y . , Takada Т., Matsumoto К . , Tanaka R. Quantitative PCR with 16S rRNA-gene-targeted species-specific primers for analysis of human intestinal Bifidobacteria . Applied and environmental microbiology, Jan. 2004, p. 167-173). Однако межвидовой уровень сходства по гену 16S рРНК варьирует в пределах 93-99%, и многие виды бифидобактерий филогенетически
2
ЗАМЕНЯЮЩИЙ ЛИСТ (ПРАВИЛО 26) близки между собой.
2. Метод двулокусного секвенирования, в частности, с использованием β- субъединицы F0Fi -АТФазы. (Ventura М., Canchaya С . , van Sinderen D, , Fitzgerald G.F., Zink R. Bifidobacterium lactis DSM 10140: Identification of the atp ( a tpBEFHAGDC) Operon and Analysis of Its Genetic Structure, Characteristics, and Phylogeny. Applied and environmental microbiology, May 2004, p. 3110-3121.).
3. Метод с использованием 7 консервативных генов «домашнего хозяйства» clpC, dnaB, dnaG, dnaJl, purF, rpoC и xfp, комбинация последовательностей которых позволяет выявить филогенетические отличия между видами бифидобактерий . (Ventura, М., Canchaya, С . , Del Casale, A., Dellaglio, F. , Neviani, Ε . , .Fitzgerald, G. F. and van Sinderen, D. Analysis of bifidobacterial evolution using a multilocus approach. Int. J. Syst. Evol. Microbiol. 2006, 56, 2783-2792.).
Однако перечисленные выше методы не позволяют проводить штамм-специфическую идентификацию, поскольку нуклеотидные последовательности генов, используемых для видовой идентификации, полностью идентичны для разных штаммов одного вида.
Для генотипирования штаммов вида В. animalis subsp. lactis разработан метод, основанный на однонуклеотидных полиморфизмах, вставках и делециях. (Briczinski Е.Р., Loquasto J.R., Barrangou R., Dudley E.G., Roberts A.M., Roberts R.F. Strain-specific genotyping of Bifidobacterium animalis subsp. lactis by using single-nucleotide polymorphisms, insertions, and deletions. Appl Environ Microbiol. 2009 Dec; 75 (23) : 7501-8. Epub 2009 Oct 2.)
Для штаммов других видов Bifidobacterium (в том числе В. longum) до настоящего времени не разработаны методы идентификации .
Раскрытие изобретения
3
ЗАМЕНЯЮЩИЙ ЛИСТ (ПРАВИЛО 26) Задачей настоящего изобретения является создание экспресс - метода молекулярно-генетической идентификации бифидобактерий, включающего типирование штаммов, относящихся к филотипу В. Iongum.
В заявленном изобретении предложен метод видовой и штаммовой идентификации бифидобактерий, основанный на комбинации и полиморфизме генов систем токсин-антитоксин (ТА) II типа суперсемейств azEF и RelBE. Действие систем токсин- антитоксин в ряде работ квалифицируют как адаптацию к стрессовым условиям (субстратное голодание или другие стрессы) , необходимую для выживания. (Yamaguchi Y., Park J.H., Inouye М. Toxin-antitoxin systems in bacteria and archaea. Annu Rev Genet. 2011, Dec 15; 45 : 61-79; Прозоров А. А., Данилен о B.H. Системы "токсин-антитоксин" у бактерий: инструмент апоптоза или модуляторы метаболизма? Микробиология. 2010. Т.79. N'-2. С. 147- 159. )
Компонентами ТА систем обычно являются два гена, располагающиеся один за другим (иногда перекрываясь ) , снабжённые, по крайней мере, одним промотором, и образующие оперон. Ген токсина обуславливает образование долгоживущего «отравляющего» бактерию продукта, а ген антитоксина лабильного продукта, способного нейтрализовать этот токсин, связываясь с ним (или препятствуя его образованию) . (Engelberg- Kulka Н, Amitai S, Kolodkin-Gal I, Hazan R. Bacterial programmed cell death and multicellular behavior in bacteria. PLoS Genet. 2006, 2 (10): 1518-1526.).
Техническим результатом изобретения является: проведение амплификации с использованием разработанных олигонуклеотидов с возможным последующим секвенированием ДНК, что позволяет быстро и точно проводить генотипирование бифидобактерий, включая типирование штаммов, относящихся к филотипу В. longum.
1. Биоинформатический анализ наличия генов систем токсин-
4
ЗАМЕНЯЮЩИЙ ЛИСТ (ПРАВИЛО 26) антитоксин
RelBE и MazEF у бифидобактерии
Авторами настоящего изобретения был проведен компьютерный поиск генов систем токсин-антитоксин суперсемейств MazEF и RelBE в геномах 36 штаммов бактерий рода Bifidobacterium, относящихся к 11 видам, доступных в базе данных, с использованием программ National Center for Biotechnology Information (NCBI) (http://www.ncbi.nlm.nih.gov/) и UniProt (http://www.uniprot.org/). Сравнительный анализ последовательностей обнаруженных генов проводили с использованием программ Blast (http://blast.ncbi.nlm.nih.gov/) и CLUSTAL W (www.ch.embnet.org/software/ClustalW.html).
В результате биоинформатического анализа обнаружены существенные различия штаммов, относящихся к филотипу B.longum, по наличию генов данных систем токсин-антитоксин (таблица 1) . К настоящему времени в базе данных представлено 11 геномов, относящихся к группе В. longum (7 штаммов подвида Б. longum subsp. longum и 4 штамма подвида В. longum subsp. infantis) , a также штамма Bifidobacterium sp. 12_1_47BFAA, также относящегося к виду Б. longum.
Во всех геномах штаммов группы Б. longum обнаружены гены антитоксина relB. В штамме Б. longum subsp. infantis АТСС 15697 присутствует наибольшее количество (7) генов антитоксина relB (обозначены нами как relBl- relBl в порядке расположения в геноме) . В штамме Б. longum subsp. longum JDM301 присутствует б генов антитоксина relB (отсутствуют гены, гомологичные генам relBl и ге1В5, но присутствует ген, обозначенный как ге1В8) . В других штаммах Б. longum обнаружено от 1 до 3 генов антитоксина relB. Таким образом, нами был обнаружен полиморфизм генов антитоксина relB на штаммовом уровне.
Ген, обозначенный как ге1ВЗ, присутствует во всех геномах B.longum, имеет высокую гомологию от 98 до 99% по всей нуклеотидной последовательности за исключением С-концевой
5
ЗАМЕНЯЮЩИЙ ЛИСТ (ПРАВИЛО 26) области и может быть использован для видовой идентификации штаммов филотипа В. longum.
Гены антитоксина relBl-relBlO имеют низкую гомологию между собой (15-30%), что может служить штаммо-специфическим признаком, кроме того в нуклеотидных последовательностях генов relB имеются однонуклеотидные замены и вставки, что позволяет разработать штаммоспецифические олигонуклеотиды.
Таким образом, выявленный нами полиморфизм генов антитоксина relB может быть использован для идентификации штаммов В. longum - выделения полиморфных субтипов.
Гены токсина relE присутствуют только в геномах 4 штаммов - АТСС 15697, JDM301, 157F и 12_1_47BFAA.
Проведенный анализ показал отсутствие корреляции между видовой принадлежностью бифидобактерий и наличием ТА генов семейства MazEF. Гены mazF, кодирующие токсин, присутствуют только в геномах 3 штаммов В. longum - АТСС 15697, JDM301 и 157F.
Гены семейств токсин-антитоксин MazEF и RelBE присутствуют и в геномах других видов рода Bifidobacterium, не относящихся к к филотипу В. longum.
В геноме штамма В. adolescentis АТСС 15703 присутствует только 1 таzF ген, кодирующий токсин. В геномах штаммов вида В. animalis subsp. lactis - по 1 гену токсина relE и 2 гена антитоксина relB (семейство RelBE) и по 1 гену токсина mazF; в геномах штаммов вида В. bifidum - по 3 гена антитоксина relB по 1 гену токсина mazF; в геномах штаммов вида В. breve - по 1 гену токсина relE и от 4 до 5 генов антитоксина relB по 2 гена токсина mazF. Таким образом, с использованием генов систем токсин-антитоксин MazEF и RelBE можно также проводить видовую идентификацию других видов бифидобактерий, не относящихся к к филотипу В. longum.
У штаммов В. angulatum, В. catenulatum и у 2 из 4 штаммов В. dentium гены систем токсин-антитоксин семейств MazEF и RelBE б
ЗАМЕНЯЮЩИЙ ЛИСТ (ПРАВИЛО 26) не выявлены.
2. Разработка олигонуклеотидов для идентификации В. longum
2.1. Идентификация филотипа В. longum Поскольку ген антитоксина, обозначенный нами как ге1ВЗ, присутствует. во всех геномах В. longum, на основании нуклеотидных последовательностей консервативного гена были сконструированы олигонуклеотиды для видовой идентификации с использованием Программ CLUSTALW
(www.ch.embnet.org/software/ClustalW.html) и Adv. BLAST
(http: //www.ncbi.nlm.nih.gov/blast/Blast.cgi) .
На последовательности 3 (см. перечень последовательностей) представлен сравнительный анализ нуклеотидных последовательностей генов антитоксина ге1ВЗ штаммов В. longum и локализация олигонуклеотидов ReBN и ReBC для видовой идентификации. На всех представленных нуклеотидных последовательностях отличия выделены красным цветом, вставки - желтым цветом.
2.2. Идентификация штаммов, относящихся к филотипу В. longum С увеличением числа доступных секвенированных геномов бифидобактерий появилась возможность идентифицировать участки ДНК, специфичные для каждого конкретного штамма.
Как было сказано выше, наибольшее количество (7) генов антитоксина relB присутствует в геноме штамма АТСС 15697, причем ген relBl является штаммоспецифическим, т.к. отсутствует в геномах остальных штаммов. В связи с этим, для идентификации данного штамма нами были сконструированы олигонуклеотиды на основе нуклеотидной последовательности гена relBl
(последовательность 1) .
Также гены ге1В8 и relBlO являются специфическими для штаммов JDM301 и КАСС 91563 соответственно (последовательности 6, 8) .
7
ЗАМЕНЯЮЩИЙ ЛИСТ (ПРАВИЛО 26) Ген relB2 присутствует в геномах штаммов АТСС 15697, JDM301 и F8; ген ге1В4 - в геномах штаммов АТСС 15697, JDM301, 157F и 12_1_47BFAA; ген ге1В5 - геномах штаммов АТСС 15697 и 157F; ген ге1В9 - геномах штаммов АТСС 55813 и CCUG 52486. Сравнительный анализ последовательностей этих генов антитоксина relB выявил однонуклеотидные отличия для разных штаммов, что также позволило сконструировать штаммспецифические олигонуклеотиды (последовательности 2, 4, 5, 7) .
Геномы штаммов DJO10A, NCC2705, BBMN68 и JC 1217 содержат только ген антитоксина ге1ВЗ, присутствующий также в геномах всех штаммов В. longum (последовательность 3) .
По нуклеотидной последовательности гена антитоксина ге1ВЗ штаммы В. longum можно разбить на 2 основные группы:
Группа ге1ВЗа. К ней относятся штаммы: АТСС 15697, АТСС 55813, DJO10A, 12_1_47BFAA, F8, NCC2705, JD 301, 157F.
Группа relB3b. В отличие от группы ге1ВЗА (нумерация дана для штамма АТСС 15697) нуклеотидная последовательность содержит замены (Au-»G; C2i6-T; A2i7~»G; С3оэ->Т; A3i0->G; A312-»G; G3i5-A;
T3i6->G; A317-+C; C3i8-»T; G324->A; A326-*G; A327->G; T330->G; G33i->A; A334->G; Тззт->С; A338-+G; C342-»T; A344->G; C34s-»A; T347-*G; A3so->G; G35i-»C; 352->G; G354->A; C356-»T; G358-»T; A359->G) и вставки (15 нуклеотидов в области между 332 и 333 нуклеотидами; 4 нуклеотида в области между 342 и 343 нуклеотидами; 2 нуклеотида в области между 360 и 361 нуклеотидами) .
К ней относятся штаммы: CCUG 52486, BB N68, JCM 1217 и КАСС 91563.
Группу ге1ВЗа можно разбить на подгруппы:
Подгруппа relB3a.l. К ней относится штамм АТСС 15697.
Подгруппа ге1ВЗа.2. Отличия от ге1ВЗА.1 - An4-»G; C2i6^ ; A2i7—»G; G228-A.; A334->G.
К ней относятся штаммы: АТСС 55813 (содержит дополнительно ген ге1В9) ,
DJO10A (содержит только ген ге1ВЗ) ,
8
ЗАМЕНЯЮЩИЙ ЛИСТ (ПРАВИЛО 26) 12_1_47BFAA (содержит дополнительно ген relB4) ,
157F (содержит дополнительно гены relB4 и relB5) .
Подгруппа ге1ВЗа.З. Отличия от relB3A.l - A -»G; C2i6->T; A:L7->G;
G22s->A.
К ней относится штамм NCC2705.
Подгруппа ге1ВЗа.4. Отличия от relB3A.l - Gs7->A; An4->-G; C2i6->T;
2п->£>! A334->G.
К ней относится штамм JDM301.
Подгруппа ге1ВЗа.5. Отличия от reIB3A.l - C2i->T; ii4-»G; Ai68-G; Ai79-»C; C2i6-*T; A2i7-*G; С35б-»Т. К ней относится штамм F8.
Группу relB3b можно разбить на подгруппы:
Подгруппа relB3b.l. Содержит замену Ai44-»C.
К ней относится штамм ΒΒΜΝ68.
Подгруппа relB3b.2. Содержит замены Ai44->C; Ai68-»G.
К ней относится штамм CCUG 52486.
Подгруппа ге1ВЗЬ.З. Содержит замены А144->С; G228-»A.
К ней относится штамм JCM 1217.
Подгруппа relB3b.4. Содержит замены Ai68-»G; Ai79-»C.
К ней относится штамм КАСС 91563.
Все выявленные при сравнении последовательностей генов антитоксина relB отличия позволяют проводить идентификацию штаммов В. longum.
3. Разработка олигонуклеотидов для видовой идентификации
Bifidobacterium,
не относящихся к филотипу В. longum.
В геномах штаммов вида В. bifidum присутствует по 3 гена антитоксина relB. Сравнительный анализ нуклеотидных последовательностей генов relB штаммов В. bifidum с генами антитоксина relBl-relBlO штаммов В. longum показал, что 2 гена имеют высокую идентичность (от 98 до 99%) с генами ге1В2 и relBlO, третий ген антитоксина имеет низкую идентичность (15- 30%) и обозначен нами как relBll (таблица 3) . В связи с этим,
9
ЗАМЕНЯЮЩИЙ ЛИСТ (ПРАВИЛО 26) нами были сконструированы олигонуклеотиды RelBllBbN и RelBllBbC для проведения видовой идентификации В. bifidum на основе нуклеотидной последовательности гена relBll (последовательность 9) .
В геноме штамма В. adolescentis АТСС 15703 присутствует только 1 ген токсина mazF. Сравнительный анализ его нуклеотидной последовательности с mazF генами показал низкую идентичность с подобными генами штаммов В. longum, В. animalis subsp. lactis, В. bifidum и В. breve. В связи с этим, для проведения идентификации бифидобактерий, относящихся к виду В. adolescentis нами были сконструированы олигонуклеотиды MazBaN и MazBaC на основе последовательности гена токсина mazF (последовательность 10) .
Аналогично можно разработать олигонуклеотиды для идентификации других видов бифидобактерий - В. animalis subsp. lactis и В. breve.
Таким образом:
1) Метод по настоящему изобретению, основанный на комбинации и полиморфизме генов токсин-антитоксин системы relBE.
2) Предлагаемый метод включает набор пар олигонуклеотидов для видовой и штаммовой идентификации бифидобактерий группы В. longum.
3) Предлагаемый методический подход может быть использован и для идентификации других видов бифидобактерий, в частности Bifidobacterium bifidum и Bifidobacterium adolescentis .
Осуществление изобретения
Культуру бифидобактерий выращивают на агаризованной среде МРС с 0,05% цистеина в течение 48 часов при 37°С при анаэробных условиях в анаэростате HiAnaerobicTM (Компания "HiMedia" (Индия) ) , после чего выделяют геномную ДНК.
10
ЗАМЕНЯЮЩИЙ ЛИСТ (ПРАВИЛО 26) Культуру бифидобактерий центрифугируют при 8000 об/мин в течение 10 минут. Осадок суспендируют в 0,6 мл буфера TEST (10 m трис НС1 рН 8,0; 5 шМ ЭДТА рН 8,0; 1М NaCl; 1/200 объема Тритон-ХЮО) . Осторожно перемешивают. Инкубируют при 37°С в течение 12 часов. Добавляют 150 мкл свежеприготовленного раствора лизоцима (исходная концентрация 100 мг/мл) ; добавляют 10 мкл раствора РНКазы (исходный раствор 10 мг/мл) . Осторожно перемешивают. Инкубируют при 3 °С в течение 3 часов (суспензия должна стать слегка вязкой) . Добавляют 150 мкл раствора протеиназы К (исходный раствор 20 мг/мл) и 150 мкл 10% саркозила. Осторожно перемешивают. Инкубируют при 37 °С в течение 24 часов до полного лизиса. Добавляют 100 мкл 25% додецилсульфата натрия, перемешивают, инкубируют при 55°С в течение 2,5 часов (суспензия должна посветлеть). К лизату клеток добавляют 1 объем фенола . Содержимое эппендорфа интенсивно, но осторожно перемешивают переворачиванием в течение 1 минуты. Центрифугируют 10 мин при 12000 об/мин. Водную фазу отбирают в новый эппендорф, повторяют обработку фенолом. Водную фазу отбирают в чистый эппендорф и добавляют 1 объем хлороформа с изоамиловым спиртом. Содержимое эппендорфа перемешивают переворачиванием в течение 1 минуты. Центрифугируют 5 мин при 12000 об/мин. Водную фазу переносят в чистый эппендорф, добавляют 1 мл изопропанола, перемешивают переворачиванием (появится осадок в виде тяжей) . Центрифугируют в течение 1 мин при 10000 об/мин, супернатант удаляют. Осадок промывают 70% этиловым спиртом, высушивают и растворяют в 150 мкл воды.
Амплификацию ДНК проводят с использованием набора «Амплификация» фирмы «Dialat Ltd» на приборе «Терцик» («ДНК- технология») . Состав смеси для ПЦР (на 100 мкл) : 10 мкл ЮхПЦР буфера, 10 мкл смеси 2,5mM EdNTPs, 4 мкл 50т МдС12, 0,3 мкг гегномной ДНК и 0,8 мкл фермента Taq-полимеразы. Олигонуклеотидные праймеры добавляют в концентрации 20 пмоль на
11
ЗАМЕНЯЮЩИЙ ЛИСТ (ПРАВИЛО 26) 100 мкл смеси.
Параметры ПЦР реакции: 95°С в течение 5 мин (лизис клеток и денатурация геномной ДНК) ; затем 30 циклов амплификации - 94°С - 1 мин (денатурация) , 56°С в течение 1 мин (отжиг олигонуклеотидов) , 72°С - 2 мин (достройка (элонгация) цепи) ; финальная элонгация фрагментов при 72°С - 10 мин, хранение при 4°С.
Результаты исследования учитывают путем анализа продуктов амплификации исследуемых образцов методом электрофореза в 1% агарозном геле. В пробирки с исследуемыми образцами после завершения амплификации вносят аккуратно под масло 1/5 объема раствора бХ DN7A Loading Dye («Fermentas») , перемешивают и 8 мкл полученного образца вносят в лунки агарозного геля. Электрофорез проводят в камере для горизонтального электрофореза "SE-2" (Компания «Хеликон») с источником питания " Эльф-4 " («ДНК-технология») при напряжении 120 вольт в течение 60 мин. Результаты электрофореза учитывают в ультрафиолетовом свете с длинной волны 254 нм на трансиллюминаторе ТСР-20 МС («Vilber Lourmat», Франция) . В качестве контроля размера полученного фрагмента используют ДНК маркер GeneRuler™ 100+ п.н. («Fermentas») .
Примеры идентификации вида и штаммов В. longum _ по настоящему изобретению.
Пример 1.
Видовая идентификация филотипа В. longum.
Видовую идентификацию бифидобактерий филотипа В. longum проводят путем амплификации с геномной ДНК бифидобактерий при описанных выше параметрах с использованием олигонуклеотидов RelBN (5'TGCGAAACTGAAGAACGAGG3' ) и RelBC
(5' CGCGGAACTGCTTGTAGGT3' ) .
При амплификации с ДНК штаммов, относящихся к филотипу В. longum, должен быть наработан фрагмент размером 275 п.н.
12
ЗАМЕНЯЮЩИЙ ЛИСТ (ПРАВИЛО 26) Пример 2.
Идентификация штаммов В. longum.
Для штамм-специфической идентификации проводят амплификацию с геномной ДНК с использованием олигонуклеотидов, представленых в таблице 2. ПЦР продукты анализируют в 1% агарозном геле. Размер полученного фрагмента определяют с помощью ДНК-маркера GeneRuler™ 100+ п.н. («Fermentas») .
Исследуемый штамм идентичен штамму В. longum subsp. infantis АТСС 15697 в случае наработки фрагментов при использовании олигонуклеотидов ReBlN-ReBIC (штамм- специфические) , ReB2N-ReB2C и ReB3.lN-ReB3.2C. При использовании остальных олигонуклеотидов не должно быть ПЦР- продуктов .
Исследуемый штамм идентичен штамму В. longum subsp. infantis АТСС 55813 в случае наличия ПЦР-продуктов только при использовании олигонуклеотидов ReB3. lN-ReB3.1С и ReB9.1N- ReB9.1С.
Исследуемый штамм идентичен штамму В. longum subsp. infantis CCUG 52486 в случае наличия ПЦР-продуктов только при использовании олигонуклеотидов ReB3. lN-ReB3.1С, ReB3.4N-ReB3.4C и ReB9. lN-ReB9.2C.
Исследуемый штамм идентичен штамму В. longum DJO10A в случае наличия ПЦР-продуктов только при использовании олигонуклеотидов ReB3. lN-ReB3.1С .
Исследуемый штамм идентичен штамму Bifidobacterium sp. (В. longum) 12_1_47BFAA в случае наличия ПЦР-продуктов только при использовании олигонуклеотидов ReB3. lN-ReB3.1С и ReB4N- ReB4C.
Исследуемый штамм идентичен штамму В. longum subsp. longum F8 в случае наличия ПЦР-продуктов только при использовании олигонуклеотидов ReB2N-ReB2C и ReB3.3N-ReBC .
Исследуемый штамм идентичен штамму В. longum NCC2705 в случае наличия ПЦР-продуктов только при использовании олигонуклеотидов ReB3. lN-ReB3.2С .
13
ЗАМЕНЯЮЩИЙ ЛИСТ (ПРАВИЛО 26) Исследуемый штамм идентичен штамму В. longum subsp. longum JDM301 в случае амплификации фрагментов только при использовании олигонуклеотидов ReB8N-ReB8C (штамм- специфические) , ReB2N-ReB2C и ReB3. lN-ReB3.1С .
Исследуемый штамм идентичен штамму В. longum subsp. longum BBMN68 в случае наличия ПЦР-продуктов только при использовании олигонуклеотидов ReB3. lN-ReB3.1С и ReB3.4N-ReB3.4C.
Исследуемый штамм идентичен штамму В. longum subsp. infantis 157F в случае наличия ПЦР-продуктов только при использовании олигонуклеотидов ReB3. lN-ReB3.1С, ReB4N-ReB4C и ReB5N-ReB5C.
Исследуемый штамм идентичен штамму В. longum subsp. longum JCM 1211 в случае наличия ПЦР-продуктов только при использовании олигонуклеотидов ReB3. lN-ReB3.1С и ReB3.5N- ReB3.4С.
Исследуемый штамм идентичен штамму В. longum subsp. longum КАСС 91563 в случае наличия ПЦР-продуктов только при использовании олигонуклеотидов ReBlON-ReBlOC и ReB3.1N-
ReB3.4С.
Пример 3.
Идентификация видов Bifidobacterium bifidum и Bifidobacterium adolescentis .
Идентификацию бифидобактерий, относящихся к виду В.bifidum, проводят путем амплификации с геномной ДНК бифидобактерий при описанных выше параметрах с использованием олигонуклеотидов RelBllBbN (5'ATGGCGAGCATACCCAC3' ) и RelBllBbC (5'ATCTGCCATTCGACGTTTCCTT3' ) .
При амплификации с ДНК штаммов, относящихся к виду
В. bifidum, должен быть наработан фрагмент размером 178 п.н.
Идентификацию бифидобактерий В. adolescentis проводят путем амплификации с геномной ДНК бифидобактерий при описанных выше параметрах с использованием олигонуклеотидов azBaN (5'GTGAGATCTGGACTGTGCT3' ) и azВаС (5'CTGGCGCATGACATCATCT3' ) .
14
ЗАМЕНЯЮЩИЙ ЛИСТ (ПРАВИЛО 26) При амплификации с ДНК штаммов, относящихся к виду В.
adolescentis, должен быть наработан фрагмент размером 277 п.н.
Пример 4.
Идентификация штаммов бифидобактерий из российской коллекции.
С использованием сконструированных олигонуклеотидов для генов систем токсин-антитоксин семейств MazEF и RelBE проведена идентификация 35 штаммов бифидобактерий из коллекции лаборатории генетики микроорганизмов Института общей генетики им. Н.И.Вавилова РАН, выделенных из гастроэнтерологического тракта практически здоровых людей Центрального региона России.'
На первом этапе была проведена видовая идентификация с использованием праймеров на ген 16S pPHK. (Youn SY, Seo JM, Ji GE. Evaluation of the PCR method for identification of Bifidobacterium species. Lett Appl Microbiol. 2008, Jan, 46(1):7-13). Из них 23 штамма были отнесены к филотипу В. longum, 6 штаммов - к виду В. adolescentis и б штаммов - к виду В . bifidum.
На втором этапе проводили штаммовую идентификацию B.longum. Исходя из композиции генов семейств RelBE среди 23 штаммов B.longum показано штаммовое разнообразие бифидобактерий из Российской коллекции.
15
ЗАМЕНЯЮЩИЙ ЛИСТ (ПРАВИЛО 26) Таблица 1.
Наличие генов систем RelBE и MazEF в геномах
секвенированных штаммов
группы В. longum.
Figure imgf000018_0001
16
ЗАМЕНЯЮЩИЙ ЛИСТ (ПРАВИЛО 26) Таблица 2.
Олигонуклеотиды для штаммовой идентификации бифидобактерии группы В. longum.
Figure imgf000019_0001
17
ЗАМЕНЯЮЩИЙ ЛИСТ (ПРАВИЛО 26) Таблица 3.
Наличие генов систем MazE и RelBE в секвенированных геномах штаммов бифидобактерии, не относящихся к филотипу
Figure imgf000020_0001
ь нуклеотидных последовательностей которых превышает 90%.
18
ЗАМЕНЯЮЩИЙ ЛИСТ (ПРАВИЛО 26)

Claims

Формула изобретения
Метод видовой и штаммо-специфической идентификации бифидобактерий основан на комбинации и полиморфизме генов систем токсин-антитоксин суперсемейств MazEF и RelBE и включает набор пар олигонуклеотидов для видовой и штаммовой идентификации бифидобактерий филотипа Bifidobacterium longum.
Видовую идентификацию бифидобактерий филотипа
Bifidobacterium longum проводят путем амплификации ДНК с геномной ДНК с использованием видоспецифических олигонуклеотидов RelBN и RelBC .
Для идентификации штаммов внутри филотипа В. longum проводят амплификацию с геномной ДНК с использованием штамм-специфических олигонуклеотидов .
Предлагаемый методический подход может быть использован и для идентификации других видов бифидобактерий, в частности Bifidobacterium bifidum и Bifidobacterium adolescentis.
19
ЗАМЕНЯЮЩИЙ ЛИСТ (ПРАВИЛО 26)
PCT/RU2012/000836 2011-11-08 2012-10-16 Метод видовой и штаммовой идентификации бифидобактерий с использованием генов систем токсин-антитоксин ii типа суперсемейств mazef и reibe WO2013070115A1 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
RU2011145069 2011-11-08
RU2011145069/10A RU2527069C2 (ru) 2011-11-08 2011-11-08 СПОСОБ ВИДОВОЙ И ШТАММОВОЙ ИДЕНТИФИКАЦИИ БИФИДОБАКТЕРИЙ ФИЛОТИПА Bifidobacterium longum

Publications (1)

Publication Number Publication Date
WO2013070115A1 true WO2013070115A1 (ru) 2013-05-16

Family

ID=48290365

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/RU2012/000836 WO2013070115A1 (ru) 2011-11-08 2012-10-16 Метод видовой и штаммовой идентификации бифидобактерий с использованием генов систем токсин-антитоксин ii типа суперсемейств mazef и reibe

Country Status (2)

Country Link
RU (1) RU2527069C2 (ru)
WO (1) WO2013070115A1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112908410A (zh) * 2021-03-01 2021-06-04 上海欧易生物医学科技有限公司 一种基于snakemake流程的正选择基因的检测方法和系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0581171A1 (en) * 1992-07-20 1994-02-02 Kabushiki Kaisha Yakult Honsha Species-specific oligonucleotides for bifidobacteria and a method of detection using the same
EP0826778A1 (en) * 1996-09-03 1998-03-04 Peter Kaufmann Oligonucleotide probes for the detection of bifidobacteria
WO2002074798A2 (en) * 2001-01-30 2002-09-26 Societe Des Produits Nestle S.A. The genome of a bifidobacterium
JP2006081429A (ja) * 2004-09-15 2006-03-30 Morinaga Milk Ind Co Ltd ビフィドバクテリウムロンガムbb536の検出法
JP2008142043A (ja) * 2006-12-12 2008-06-26 Kobe Univ ビフィドバクテリウム・ロンガム株のdna多型による遺伝子型識別法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
UA53337U (ru) * 2010-02-03 2010-10-11 Государственное Предприятие «Центр Иммунобиологических Препаратов» Способ определения штаммов бифидобактерий для создания эталонных образцов пробиотических препаратов

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0581171A1 (en) * 1992-07-20 1994-02-02 Kabushiki Kaisha Yakult Honsha Species-specific oligonucleotides for bifidobacteria and a method of detection using the same
EP0826778A1 (en) * 1996-09-03 1998-03-04 Peter Kaufmann Oligonucleotide probes for the detection of bifidobacteria
WO2002074798A2 (en) * 2001-01-30 2002-09-26 Societe Des Produits Nestle S.A. The genome of a bifidobacterium
JP2006081429A (ja) * 2004-09-15 2006-03-30 Morinaga Milk Ind Co Ltd ビフィドバクテリウムロンガムbb536の検出法
JP2008142043A (ja) * 2006-12-12 2008-06-26 Kobe Univ ビフィドバクテリウム・ロンガム株のdna多型による遺伝子型識別法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SHEU SJ ET AL.: "Use of tuf gene-based primers for the PCR detection of probiotic Bifidobacterium species and enumeration of bifidobacteria in fermented milk by cultural and quantitative real-time PCR methods", J FOOD SCI., vol. 75, no. 8, 7 October 2010 (2010-10-07), pages M5217 - 527, XP055066835 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112908410A (zh) * 2021-03-01 2021-06-04 上海欧易生物医学科技有限公司 一种基于snakemake流程的正选择基因的检测方法和系统
CN112908410B (zh) * 2021-03-01 2022-08-23 上海欧易生物医学科技有限公司 一种基于snakemake流程的正选择基因的检测方法和系统

Also Published As

Publication number Publication date
RU2011145069A (ru) 2013-05-20
RU2527069C2 (ru) 2014-08-27

Similar Documents

Publication Publication Date Title
Caamaño-Antelo et al. Genetic discrimination of foodborne pathogenic and spoilage Bacillus spp. based on three housekeeping genes
Ventura et al. Bifidobacterium lactis DSM 10140: identification of the atp (atpBEFHAGDC) operon and analysis of its genetic structure, characteristics, and phylogeny
Skånseng et al. Comparison of chicken gut colonisation by the pathogens Campylobacter jejuni and Clostridium perfringens by real-time quantitative PCR
Wunderlin et al. Stage 0 sporulation gene A as a molecular marker to study diversity of endospore‐forming F irmicutes
Song et al. Genetic diversity and population structure of Lactobacillus delbrueckii subspecies bulgaricus isolated from naturally fermented dairy foods
US20240035098A1 (en) Highly polymorphic and modular extragenic (h.p.m.e.) markers within specific taxa of microorganisms and use thereof for their differentiation, identification and quantification
Vandamme et al. Phylogenetics and systematics
Arguedas-Villa et al. Cold growth behaviour and genetic comparison of Canadian and Swiss Listeria monocytogenes strains associated with the food supply chain and human listeriosis cases
Olsen et al. Analysis of the genetic distribution among members of Clostridium botulinum group I using a novel multilocus sequence typing (MLST) assay
Appelt et al. Development and comparison of loop-mediated isothermal amplification and quantitative polymerase chain reaction assays for the detection of Mycoplasma bovis in milk
Prosekov et al. Identification of industrially important lactic acid bacteria in foodstuffs
Strydom et al. PCR-RFLP analysis of the rpoB gene to distinguish the five species of Cronobacter
Barth et al. Demonstration of genes encoding virulence and virulence life-style factors in Brachyspira spp. isolates from pigs
Botina et al. Antibiotic resistance of potential probiotic bacteria of the genus Lactobacillus from human gastrointestinal microbiome
Vitali et al. Quantitative detection of probiotic Bifidobacterium strains in bacterial mixtures by using real-time PCR
Ferreira et al. Increased expression of clp genes in Lactobacillus delbrueckii UFV H2b20 exposed to acid stress and bile salts
Guglielmetti et al. Molecular characterization of Bifidobacterium longum biovar longum NAL8 plasmids and construction of a novel replicon screening system
Zuridah et al. Identification of lipase producing thermophilic bacteria from Malaysian hot springs
Lu et al. A one-step PCR-based method for specific identification of 10 common lactic acid bacteria and Bifidobacterium in fermented milk
Schmid et al. Alternative sigma factor σ H activates competence gene expression in Lactobacillus sakei
RU2526576C2 (ru) Способ идентификации лактобацилл
RU2508406C2 (ru) СПОСОБ ВИДОВОЙ ИДЕНТИФИКАЦИИ ЛАКТОБАЦИЛЛ L.casei/paracasei, L.fermentum, L.plantarum И L.rhamnosus
Santos et al. RE-PCR variability and toxigenic profile of food poisoning, foodborne and soil-associated Bacillus cereus isolates from Brazil
Averina et al. Distribution of genes of toxin-antitoxin systems of mazEF and relBE families in bifidobacteria from human intestinal microbiota
Bakhshi et al. A molecular survey on virulence associated genotypes of non-O1 non-O139 Vibrio cholerae in aquatic environment of Tehran, Iran

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12846966

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC, DATED 27-10-14

122 Ep: pct application non-entry in european phase

Ref document number: 12846966

Country of ref document: EP

Kind code of ref document: A1