WO2013069794A1 - Colloidal dispersion, method for producing same, and use of same - Google Patents
Colloidal dispersion, method for producing same, and use of same Download PDFInfo
- Publication number
- WO2013069794A1 WO2013069794A1 PCT/JP2012/079187 JP2012079187W WO2013069794A1 WO 2013069794 A1 WO2013069794 A1 WO 2013069794A1 JP 2012079187 W JP2012079187 W JP 2012079187W WO 2013069794 A1 WO2013069794 A1 WO 2013069794A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- colloidal dispersion
- semiconductor material
- organic
- dispersion
- water
- Prior art date
Links
- 238000001246 colloidal dispersion Methods 0.000 title claims abstract description 133
- 238000004519 manufacturing process Methods 0.000 title claims description 54
- 239000004065 semiconductor Substances 0.000 claims abstract description 116
- 238000000034 method Methods 0.000 claims abstract description 102
- 239000000463 material Substances 0.000 claims abstract description 83
- 239000002245 particle Substances 0.000 claims abstract description 46
- 239000003960 organic solvent Substances 0.000 claims abstract description 45
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 38
- 238000002296 dynamic light scattering Methods 0.000 claims abstract description 26
- 239000010409 thin film Substances 0.000 claims description 85
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 claims description 62
- 239000000758 substrate Substances 0.000 claims description 45
- 239000010408 film Substances 0.000 claims description 31
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 claims description 30
- 239000007788 liquid Substances 0.000 claims description 29
- 239000000084 colloidal system Substances 0.000 claims description 23
- 230000008569 process Effects 0.000 claims description 18
- -1 thiophene compound Chemical class 0.000 claims description 18
- XMWRBQBLMFGWIX-UHFFFAOYSA-N C60 fullerene Chemical compound C12=C3C(C4=C56)=C7C8=C5C5=C9C%10=C6C6=C4C1=C1C4=C6C6=C%10C%10=C9C9=C%11C5=C8C5=C8C7=C3C3=C7C2=C1C1=C2C4=C6C4=C%10C6=C9C9=C%11C5=C5C8=C3C3=C7C1=C1C2=C4C6=C2C9=C5C3=C12 XMWRBQBLMFGWIX-UHFFFAOYSA-N 0.000 claims description 17
- 238000004110 electrostatic spray deposition (ESD) technique Methods 0.000 claims description 17
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 claims description 16
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 13
- 229920000642 polymer Polymers 0.000 claims description 11
- 238000004528 spin coating Methods 0.000 claims description 11
- 229910003472 fullerene Inorganic materials 0.000 claims description 9
- YTPLMLYBLZKORZ-UHFFFAOYSA-N Divinylene sulfide Natural products C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 claims description 8
- 229920000123 polythiophene Polymers 0.000 claims description 5
- 229930192474 thiophene Natural products 0.000 claims description 5
- 238000003756 stirring Methods 0.000 abstract description 8
- 239000006185 dispersion Substances 0.000 description 64
- 229920000301 poly(3-hexylthiophene-2,5-diyl) polymer Polymers 0.000 description 56
- 239000000243 solution Substances 0.000 description 39
- 238000009826 distribution Methods 0.000 description 23
- 238000001132 ultrasonic dispersion Methods 0.000 description 18
- 239000007787 solid Substances 0.000 description 17
- 238000005259 measurement Methods 0.000 description 14
- 239000007921 spray Substances 0.000 description 13
- 238000006243 chemical reaction Methods 0.000 description 12
- 230000008859 change Effects 0.000 description 11
- 239000000976 ink Substances 0.000 description 11
- 230000004044 response Effects 0.000 description 11
- MCEWYIDBDVPMES-UHFFFAOYSA-N [60]pcbm Chemical compound C123C(C4=C5C6=C7C8=C9C%10=C%11C%12=C%13C%14=C%15C%16=C%17C%18=C(C=%19C=%20C%18=C%18C%16=C%13C%13=C%11C9=C9C7=C(C=%20C9=C%13%18)C(C7=%19)=C96)C6=C%11C%17=C%15C%13=C%15C%14=C%12C%12=C%10C%10=C85)=C9C7=C6C2=C%11C%13=C2C%15=C%12C%10=C4C23C1(CCCC(=O)OC)C1=CC=CC=C1 MCEWYIDBDVPMES-UHFFFAOYSA-N 0.000 description 10
- MVPPADPHJFYWMZ-UHFFFAOYSA-N chlorobenzene Chemical compound ClC1=CC=CC=C1 MVPPADPHJFYWMZ-UHFFFAOYSA-N 0.000 description 10
- 239000011362 coarse particle Substances 0.000 description 10
- 238000005507 spraying Methods 0.000 description 10
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 9
- 229910052782 aluminium Inorganic materials 0.000 description 9
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 9
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 8
- 239000011248 coating agent Substances 0.000 description 7
- 238000000576 coating method Methods 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 7
- 238000001914 filtration Methods 0.000 description 7
- 230000006870 function Effects 0.000 description 7
- 239000002244 precipitate Substances 0.000 description 7
- 239000000047 product Substances 0.000 description 7
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 6
- QGJOPFRUJISHPQ-UHFFFAOYSA-N Carbon disulfide Chemical compound S=C=S QGJOPFRUJISHPQ-UHFFFAOYSA-N 0.000 description 6
- 238000007590 electrostatic spraying Methods 0.000 description 6
- 239000011521 glass Substances 0.000 description 6
- 238000002604 ultrasonography Methods 0.000 description 6
- 229920001940 conductive polymer Polymers 0.000 description 5
- 239000012046 mixed solvent Substances 0.000 description 5
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 5
- 125000004432 carbon atom Chemical group C* 0.000 description 4
- 239000002019 doping agent Substances 0.000 description 4
- 230000005684 electric field Effects 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 238000001704 evaporation Methods 0.000 description 4
- 238000007639 printing Methods 0.000 description 4
- 238000001771 vacuum deposition Methods 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 229920001609 Poly(3,4-ethylenedioxythiophene) Polymers 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 230000001771 impaired effect Effects 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 238000009718 spray deposition Methods 0.000 description 3
- 239000003381 stabilizer Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 239000004094 surface-active agent Substances 0.000 description 3
- WNXJIVFYUVYPPR-UHFFFAOYSA-N 1,3-dioxolane Chemical group C1COCO1 WNXJIVFYUVYPPR-UHFFFAOYSA-N 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- UUIQMZJEGPQKFD-UHFFFAOYSA-N Methyl butyrate Chemical compound CCCC(=O)OC UUIQMZJEGPQKFD-UHFFFAOYSA-N 0.000 description 2
- PWLNAUNEAKQYLH-UHFFFAOYSA-N Octyl butanoate Chemical compound CCCCCCCCOC(=O)CCC PWLNAUNEAKQYLH-UHFFFAOYSA-N 0.000 description 2
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 2
- 229920000280 Poly(3-octylthiophene) Polymers 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 239000000443 aerosol Substances 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 125000000217 alkyl group Chemical group 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- QGJOPFRUJISHPQ-NJFSPNSNSA-N carbon disulfide-14c Chemical compound S=[14C]=S QGJOPFRUJISHPQ-NJFSPNSNSA-N 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- FJKIXWOMBXYWOQ-UHFFFAOYSA-N ethenoxyethane Chemical compound CCOC=C FJKIXWOMBXYWOQ-UHFFFAOYSA-N 0.000 description 2
- 150000002170 ethers Chemical class 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 238000000445 field-emission scanning electron microscopy Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000007646 gravure printing Methods 0.000 description 2
- 238000007641 inkjet printing Methods 0.000 description 2
- 150000002576 ketones Chemical class 0.000 description 2
- PQXKHYXIUOZZFA-UHFFFAOYSA-M lithium fluoride Chemical compound [Li+].[F-] PQXKHYXIUOZZFA-UHFFFAOYSA-M 0.000 description 2
- 230000005499 meniscus Effects 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Substances [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000007650 screen-printing Methods 0.000 description 2
- SCYULBFZEHDVBN-UHFFFAOYSA-N 1,1-Dichloroethane Chemical compound CC(Cl)Cl SCYULBFZEHDVBN-UHFFFAOYSA-N 0.000 description 1
- IANQTJSKSUMEQM-UHFFFAOYSA-N 1-benzofuran Chemical group C1=CC=C2OC=CC2=C1 IANQTJSKSUMEQM-UHFFFAOYSA-N 0.000 description 1
- FCEHBMOGCRZNNI-UHFFFAOYSA-N 1-benzothiophene Chemical group C1=CC=C2SC=CC2=C1 FCEHBMOGCRZNNI-UHFFFAOYSA-N 0.000 description 1
- RFKWIEFTBMACPZ-UHFFFAOYSA-N 3-dodecylthiophene Chemical compound CCCCCCCCCCCCC=1C=CSC=1 RFKWIEFTBMACPZ-UHFFFAOYSA-N 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- FERIUCNNQQJTOY-UHFFFAOYSA-M Butyrate Chemical compound CCCC([O-])=O FERIUCNNQQJTOY-UHFFFAOYSA-M 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- ZAFNJMIOTHYJRJ-UHFFFAOYSA-N Diisopropyl ether Chemical compound CC(C)OC(C)C ZAFNJMIOTHYJRJ-UHFFFAOYSA-N 0.000 description 1
- 229920001167 Poly(triaryl amine) Polymers 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 1
- DHXVGJBLRPWPCS-UHFFFAOYSA-N Tetrahydropyran Chemical compound C1CCOCC1 DHXVGJBLRPWPCS-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- 235000005811 Viola adunca Nutrition 0.000 description 1
- 240000009038 Viola odorata Species 0.000 description 1
- 235000013487 Viola odorata Nutrition 0.000 description 1
- 235000002254 Viola papilionacea Nutrition 0.000 description 1
- JUORUGJGJCHSCT-UHFFFAOYSA-N [2,4,6-tri(propan-2-yl)phenyl]boron Chemical compound [B]C1=C(C(C)C)C=C(C(C)C)C=C1C(C)C JUORUGJGJCHSCT-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229920000109 alkoxy-substituted poly(p-phenylene vinylene) Polymers 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 239000003945 anionic surfactant Substances 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 238000010296 bead milling Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 125000005605 benzo group Chemical group 0.000 description 1
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 235000010290 biphenyl Nutrition 0.000 description 1
- 239000004305 biphenyl Substances 0.000 description 1
- 125000006267 biphenyl group Chemical group 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- XUPYJHCZDLZNFP-UHFFFAOYSA-N butyl butanoate Chemical compound CCCCOC(=O)CCC XUPYJHCZDLZNFP-UHFFFAOYSA-N 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 125000000609 carbazolyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3NC12)* 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 229920000547 conjugated polymer Polymers 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000004148 curcumin Substances 0.000 description 1
- 125000004093 cyano group Chemical group *C#N 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000007607 die coating method Methods 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 238000003618 dip coating Methods 0.000 description 1
- POLCUAVZOMRGSN-UHFFFAOYSA-N dipropyl ether Chemical compound CCCOCCC POLCUAVZOMRGSN-UHFFFAOYSA-N 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000000132 electrospray ionisation Methods 0.000 description 1
- 125000003700 epoxy group Chemical group 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- WBJINCZRORDGAQ-UHFFFAOYSA-N formic acid ethyl ester Natural products CCOC=O WBJINCZRORDGAQ-UHFFFAOYSA-N 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 150000008282 halocarbons Chemical class 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000004611 light stabiliser Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000008204 material by function Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229910021392 nanocarbon Inorganic materials 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 125000000962 organic group Chemical group 0.000 description 1
- FZYQHMHIALEGMG-MVOHYUIRSA-N pcbb Chemical compound CCCCOC(=O)CCCC1([C@]23C4=C5C=CC6=C7C=CC8=C9C=CC%10=C%11C=CC%12=C(C=C4)[C@]31C1=C3C4=C2C5=C6C=2C7=C8C5=C9C%10=C(C3=C5C4=2)C%11=C%121)C1=CC=CC=C1 FZYQHMHIALEGMG-MVOHYUIRSA-N 0.000 description 1
- BRVSNRNVRFLFLL-HQSVLGJOSA-N pcbo Chemical compound CCCCCCCCOC(=O)CCCC1([C@]23C4=C5C=CC6=C7C=CC8=C9C=CC%10=C%11C=CC%12=C(C=C4)[C@]31C1=C3C4=C2C5=C6C=2C7=C8C5=C9C%10=C(C3=C5C4=2)C%11=C%121)C1=CC=CC=C1 BRVSNRNVRFLFLL-HQSVLGJOSA-N 0.000 description 1
- 238000005191 phase separation Methods 0.000 description 1
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N phenylbenzene Natural products C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229920000264 poly(3',7'-dimethyloctyloxy phenylene vinylene) Polymers 0.000 description 1
- 229920000172 poly(styrenesulfonic acid) Polymers 0.000 description 1
- 229940005642 polystyrene sulfonic acid Drugs 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 235000019333 sodium laurylsulphate Nutrition 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- 150000003464 sulfur compounds Chemical class 0.000 description 1
- 238000010345 tape casting Methods 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- 150000003577 thiophenes Chemical class 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J13/00—Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
- B01J13/0004—Preparation of sols
- B01J13/0021—Preparation of sols containing a solid organic phase
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
- H10K71/10—Deposition of organic active material
- H10K71/12—Deposition of organic active material using liquid deposition, e.g. spin coating
- H10K71/15—Deposition of organic active material using liquid deposition, e.g. spin coating characterised by the solvent used
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
- H10K30/30—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
- H10K30/50—Photovoltaic [PV] devices
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/10—Organic polymers or oligomers
- H10K85/111—Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
- H10K85/113—Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/549—Organic PV cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- the present invention relates to an aqueous colloidal dispersion of a water-insoluble organic semiconductor material, a production method thereof, and use thereof.
- Non-Patent Document 1 describes a method for producing a thin film of an organic semiconductor from a low-concentration solution by an evaporation spray deposition (ESDUS, Evaporative Spray Deposition using Ultradilute Solution) method.
- ESDUS evaporation spray deposition
- Patent Document 1 and Patent Document 2 an organic semiconductor solution or a mixed solution with a binder is applied and formed into an organic film by electrostatic spray deposition (ESD).
- ESD electrostatic spray deposition
- Non-Patent Document 1 Non-Patent Document 2
- Patent Document 1 Patent Document 2
- organic solvents such as ether, aromatic, alcohol, ketone, and halogen as solvents.
- Solvents and, in some cases, harmful organic solvents such as toluene and carbon disulfide are used. Therefore, for realization of a low-carbon society such as reduction of environmental load and CO 2 reduction, a new organic semiconductor film-forming technology that does not substantially use an organic solvent has been strongly demanded.
- Patent Document 3 and Non-Patent Document 3 describe that a thin film is produced by applying water or a water / alcohol mixed dispersion of a PEDOT conductive polymer by an ESD method.
- Non-Patent Document 4 an anionic surfactant such as sodium lauryl sulfate is added to an amorphous conductive polymer to prepare an aqueous dispersion, which is coated with a slot die method and organic. A method of making a device is described.
- Non-Patent Documents 3 and 4 there are still very few reported examples other than Non-Patent Documents 3 and 4 regarding the technology for producing an organic thin film element by converting a conductive polymer or nanocarbon material used as an active layer of an organic thin film element into an aqueous ink.
- Non-Patent Document 5 describes that an aqueous dispersion of P3HT was prepared by dissolving P3HT (poly (3-hexylthiophene)), a kind of conductive polymer, in tetrahydrofuran and then adding it to water. ing.
- P3HT poly (3-hexylthiophene)
- Japanese Patent Publication Japanese Unexamined Patent Application Publication No. 2009-251386 (released on October 29, 2009)” Japanese Patent Publication “Japanese Patent Laid-Open No. 2010-528119 (published on August 19, 2010)” Japanese Patent Gazette “JP 2011-3442 (published Jan. 6, 2011)”
- Patent Document 3 and Non-Patent Document 3 use a special polymer (PEDOT conductive polymer) that needs to be mixed with a counter ion such as sulfonic acid in order to disperse in water. It was the way. Therefore, these methods are techniques that are not easily applied to other conductive polymers. In addition, when used as an ink, since sulfonic acid or the like remains in the coating film, there is a possibility that the device characteristics of the organic thin film element are greatly impaired.
- PEDOT conductive polymer PEDOT conductive polymer
- a counter ion such as sulfonic acid
- Non-Patent Document 4 when used as an ink, a non-volatile surfactant remains in the coating film, which may greatly impair device characteristics of the organic thin film element.
- Non-Patent Document 5 The method described in Non-Patent Document 5 is not developed for ink use, and therefore, the stability of the colloidal dispersion is poor. Of course, Non-Patent Document 5 does not describe an organic thin film element having good device characteristics.
- the present invention has been made in view of the above problems, and its object is to provide a water-insoluble organic semiconductor material that is stable even when an agent that stabilizes colloidal dispersion (dispersion stabilizer) is not added. It is an object to provide an aqueous colloid dispersion, a method for producing the same, and the like.
- the inventors of the present application have made extensive studies to solve the above problems. As a result, in the process of first dissolving the water-insoluble organic semiconductor material in the water-soluble organic solvent and then adding the resulting solution to water and stirring, the organic semiconductor material in the organic solvent becomes a predetermined size or less. Thus, it was found that dispersing and dissolving in this manner is extremely important for the stability of the finally obtained colloidal dispersion, and the present invention has been conceived.
- the method for producing a colloidal dispersion according to the present invention is a method for producing a colloidal dispersion in which a colloid of a water-insoluble organic semiconductor material is dispersed in water, wherein the organic semiconductor is incorporated in a water-soluble organic solvent. Dispersing and dissolving the material until the average particle diameter measured based on the dynamic light scattering method is 50 nm or less to prepare a solution containing an organic semiconductor material, and adding the above solution to water and stirring the solution B It is characterized by including.
- the present invention also provides a colloidal dispersion produced by the above production method.
- the method for producing an organic thin film element according to the present invention is characterized by including an attaching step of attaching the colloidal dispersion to a substrate.
- the present invention also provides an organic thin film element manufactured by the above manufacturing method.
- a colloidal aqueous dispersion of a water-insoluble organic semiconductor material that is stable even when an agent for stabilizing the dispersion of a colloid (dispersion stabilizer) is not added, a method for producing the same, and the like can be obtained at low cost.
- an agent for stabilizing the dispersion of a colloid dispersion stabilizer
- a method for producing the same, and the like can be obtained at low cost.
- FIG. 10 is a diagram showing a schematic configuration of an element produced in Example 8.
- Example 8 it is a figure which shows the time response of the short circuit photocurrent of the element A, and the result of a current-voltage characteristic.
- Example 8 it is a figure which shows the time response of the short circuit photocurrent of the element B, and the result of a current-voltage characteristic.
- Example 8 it is a figure which shows the result of the time response of the short circuit photocurrent of the element C.
- FIG. In Example 9 it is a figure which shows the result of the DMA measurement of the colloid dispersion liquid of P3HT, and the result of microscopic observation.
- Example 9 it is a figure which shows the result of the DMA measurement of the colloid dispersion liquid of PCBM, and the result of microscopic observation.
- Example 10 it is a figure which shows the time response of the short circuit photocurrent of the element E, and the result of a current-voltage characteristic.
- the method for producing a colloidal dispersion according to the present invention comprises dissolving and dissolving an organic semiconductor material in a water-soluble organic solvent until the average particle size measured based on a dynamic light scattering method is 50 nm or less.
- the process A which produces the solution containing this, and the process B which adds and stirs the said solution to water are included.
- a colloidal dispersion liquid in which a colloid of a water-insoluble organic semiconductor material is dispersed in water can be obtained.
- each process will be described in more detail.
- Step A is a step of preparing a solution containing the organic semiconductor material by dispersing and dissolving the organic semiconductor material in a water-soluble organic solvent until the average particle diameter measured based on the dynamic light scattering method is 50 nm or less. is there.
- the organic semiconductor material in the method for producing a colloidal dispersion according to the present invention refers to a material that is water-insoluble and soluble in an organic solvent, and is used as a p-type semiconductor material or an n-type semiconductor material.
- the p-type semiconductor material include polymers of polythiophene and thiophene compounds.
- the polymer of the thiophene compound includes a repeating unit having a thiophene skeleton in the main chain, and a polymer that may contain a repeating unit having a structure other than the thiophene skeleton in the main chain (excluding polythiophene). ).
- examples of the repeating unit having a structure other than the thiophene skeleton include a repeating unit having a carbazole skeleton, a repeating unit having a benzothiophene skeleton, and a repeating unit having a p-phenylene vinylene skeleton.
- a part of the hydrogen atoms contained in the repeating unit is, for example, an alkyl group having 1 to 20 carbon atoms, preferably 1 to 10 carbon atoms; a phenyl group, a benzyl group, etc. It may be substituted with a monocyclic aromatic substituent (narrowly defined aryl group); other aromatic substituents;
- polymer of the thiophene compound examples include poly (3-hexylthiophene) (P3HT), poly [[9- (1-octylnonyl) -9H-carbazole-2,7-diyl] -2,5-thiophenediyl.
- PCDTBT poly (3-octylthiophene)
- P3OT poly (3-dodecylthiophene)
- P3DDT poly [(9,9-di-n-octylfluorenyl-2,7-diyl) -alt- (benzo [2,1,3] thiadiazole-4,8-diyl)]
- F8BT poly [ (9,9-dioctylfluorenyl-2,7-diyl) -co-bithiophene]
- F8T2 poly (3-octylthiophene-2,5-diyl-co-3-decylo) And xylthiophene-2,5-diyl)
- POT-co-DOT poly (3-octylthiophene-2,5-diyl-co-3-decylo) And xylthiophene-2,5-diyl)
- p-type semiconductor materials include, for example, poly [2-methoxy-5- (3 ′, 7′-dimethyloctyloxy) -1,4-phenylenevinylene] (MDMO-PPV), and poly [2-methoxy Polymers having a p-phenylene vinylene skeleton such as -5- (2-ethylhexyloxy) -1,4-phenylene vinylene] (MEH-PPV), and poly [bis (4-phenyl) (2,4,6-trimethyl) Phenyl) amine] (PTAA) and the like.
- MDMO-PPV poly [2-methoxy-5- (3 ′, 7′-dimethyloctyloxy) -1,4-phenylenevinylene]
- MEH-PPV poly [2-methoxy Polymers having a p-phenylene vinylene skeleton such as -5- (2-ethylhexyloxy) -1,4-phenylene vinylene]
- n-type semiconductor material examples include fullerene and fullerene derivatives.
- fullerenes include C 60 fullerene, C 70 fullerene, and C 84 fullerene.
- the fullerene derivative for example, an alkyl group having 1 to 20 carbon atoms, preferably 1 to 10 carbon atoms; epoxy group; about 1 to 2 dioxolane structure (dioxolane group); And compounds having a substituent such as a condensed ring organic group such as a benzofuran group and the like.
- fullerene derivatives include various fullerene epoxides, 1,3-dioxolane-fullerene derivatives, phenyl C 61 butyric acid methyl ester (PCBM), phenyl C 61 butyric acid butyl ester (PCBB), phenyl C 61 butyric acid octyl ester (PCBO). ), Indene-added fullerene derivatives, silylmethyl-added fullerene derivatives, indolino-fullerene derivatives, and benzofurano-fullerene derivatives.
- PCBM phenyl C 61 butyric acid methyl ester
- PCBB phenyl C 61 butyric acid butyl ester
- PCBO phenyl C 61 butyric acid octyl ester
- n-type semiconductor materials include, for example, ladder polymers (BBL, poly (benzobisimidazobenzophenanthroline), etc.), conjugated polymers containing boron (eg, poly [(2,5-didecyloxy-1,4- Phenylene) (2,4,6-triisopropylphenylborane)], diphenyl ends, etc.), phenylene vinylene-based polymers containing cyano groups (eg, poly (2,5-di (hexyloxy) cyanoterephthalylidene), and Poly (5- (2-ethylhexyloxy) -2-methoxy-cyanoterephthalylidene) and the like.
- ladder polymers BBL, poly (benzobisimidazobenzophenanthroline), etc.
- conjugated polymers containing boron eg, poly [(2,5-didecyloxy-1,4- Phenylene) (2,4,6-triisopropylphen
- the water-soluble organic solvent is not particularly limited as long as it can be mixed with water without phase separation and can dissolve the water-insoluble organic semiconductor material.
- the water-soluble organic solvent preferably has a solubility of 1% by volume or more in water, and more preferably has a solubility of 10% by volume or more in water.
- water-soluble organic solvent examples include alcohols such as methanol, ethanol, and isopropanol; ethers such as tetrahydropyran, tetrahydrofuran, dipropyl ether, diisopropyl ether, and ethyl vinyl ether; ketones such as acetone and methyl ethyl ketone; Examples include esters such as ethyl formate, propyl formate, and ethyl acetate; sulfur compounds such as carbon disulfide; halogenated hydrocarbons such as chloroform, dichloroethane, and dichloromethane; and the like. These organic solvents may be used alone or as a mixed solvent.
- ethers, alcohols, and combinations thereof are preferable from the viewpoint of excellent solubility in water and relatively low risk of adverse effects on the environment.
- tetrahydrofuran, dichloromethane, chloroform or a mixed solvent thereof are particularly suitable for dissolving the polymer of polythiophene and thiophene compound, and among them, tetrahydrofuran, dichloromethane, or a mixed solvent thereof.
- the solubility of these polymers is particularly excellent.
- Particularly suitable for the dissolution of fullerene and fullerene derivatives are tetrahydrofuran, carbon disulfide, chloroform, ethanol, or a mixed solvent thereof. Among them, tetrahydrofuran, carbon disulfide, or a mixed solvent thereof is soluble in fullerene or the like. Excellent.
- the boiling point is relatively low (less than 100 ° C.), it is easy to remove in a post-process, easily dissolve in water (solubility is 0.1 volume% or more, for example), and relatively many kinds of organic semiconductor materials are used. From the viewpoint of being soluble, tetrahydrofuran, chloroform, ethanol and the like are preferable as the organic solvent.
- the amount of the organic semiconductor material with respect to the organic solvent is not particularly limited. What is necessary is just to determine suitably by the solubility etc. of the organic-semiconductor material with respect to the organic solvent to be used.
- the amount (concentration) of the organic semiconductor material in the solution obtained by dissolving the organic semiconductor material in the organic solvent is, for example, preferably 0.01% by weight or more and 10% by weight or less, and 0.05% by weight or more and 3%. More preferably, it is more preferably 0.1% by weight or less and further preferably 1% by weight or less. This is because the concentration adjustment (concentration) of the finally obtained colloidal dispersion becomes easier when the content is 0.01% by weight or more. In addition, if it is 10% by weight or less, the risk that a part of the organic semiconductor material aggregates without forming a colloid in water and forms coarse particles is more reliably reduced in Step B and later described later. .
- Step B If coarse particles are present in the colloidal dispersion obtained in Step B, the device characteristics of the organic thin film element produced using the colloidal dispersion may be impaired. Although coarse particles can be removed by filtration, it is preferable to suppress the generation of coarse particles as much as possible from the viewpoint of effective utilization of the organic semiconductor material.
- Dispersion is performed until the average particle size of the organic semiconductor material measured based on the dynamic light scattering (DLS) method is 50 nm or less. This is because if the average particle size is larger than 50 nm, a large amount of coarse particles of the organic semiconductor material are formed in the finally obtained colloidal dispersion. In addition, this is because the storage stability of the colloidal dispersion becomes extremely poor. Furthermore, since the average particle size of the organic semiconductor material in the colloidal dispersion liquid is large, there is a possibility that the device characteristics of the organic thin film element may not be sufficiently exhibited when this colloidal dispersion liquid is used for the production of an organic thin film element. is there.
- DLS dynamic light scattering
- the dispersion is preferably carried out until the average particle diameter is 20 nm or less, more preferably 10 nm or less.
- the amount of water used in Step B can be reduced and the colloidal dispersion having a higher concentration can be prepared as the dispersion is sufficiently performed.
- the method for dispersing the organic semiconductor material is not particularly limited as long as the organic semiconductor material is mechanically dispersed.
- the dispersing method include an ultrasonic method, a bead mill method, a roll mill method, a jet mill method, and a homogenizer method.
- an ultrasonic method is preferable. This is because the ultrasonic method is simple, there is little risk of contamination, and the particle size of the organic semiconductor material can be reduced uniformly.
- a device for generating ultrasonic waves for example, a known device such as an ultrasonic disperser or an ultrasonic cleaner can be used.
- Ultrasonic irradiation conditions are not particularly limited. The ultrasonic irradiation conditions are preferably, for example, a frequency of 20 to 50 kHz, an ultrasonic output of 50 to 500 W, and an irradiation time of 10 to 60 minutes.
- the temperature at the time of dispersion is not particularly limited, but the organic semiconductor material is preferably dispersed while maintaining the temperature of the organic solvent within a range of 30 to 60 ° C. This is because the speed of dispersion can be improved. Moreover, it is because the average particle diameter of organic-semiconductor material can be made smaller (for example, 10 nm or less). For example, when THF is used as the organic solvent, the temperature at the time of dispersion is more preferably maintained within the range of 40 to 50 ° C.
- the “average particle diameter measured based on the DLS method” is used in a general sense in this technical field, and the particle size of the particle obtained by monodisperse mode analysis based on the principle of the so-called dynamic light scattering method. It refers to the particle size corresponding to the integrated value 50% in the distribution.
- the areas that can be clearly distinguished as noise are excluded, and there are multi-peaks that deviate to the extent that the average particle diameter cannot be accurately reflected. Appearing measurement data is appropriately processed such as not to be analyzed.
- the organic semiconductor material measured based on the DLS method can be dispersed until the average particle size becomes 50 nm or less is determined by the method of actually obtaining the measured value based on the DLS method in accordance with the description of Examples described later. In addition, it can also be determined using the change in color of the solution before and after dispersion as an index. For example, in the case of poly (3-hexylthiophene), if the color of the solution changes to light orange due to dispersion, the average particle size of poly (3-hexylthiophene) measured based on the DLS method becomes about 5 nm to 50 nm. Indicates that
- Step B is a step in which the solution prepared in Step A is added to water and stirred.
- the organic semiconductor material is colloided and dispersed in water.
- a liquid obtained by performing colloidal dispersion in water obtained through the process B may be simply referred to as a “colloid dispersion liquid”.
- the amount of water with respect to the solution prepared in step A is not particularly limited, but is preferably 10 times or more and 100 times or less, more preferably 20 times or more and 50 times or less, more preferably 30 times. More than double volume and less than 50 times volume.
- the volume is 10 times or more, the possibility that the organic semiconductor material is insolubilized and floats without colloidalization is more reliably reduced.
- concentration adjustment (concentration) of the obtained colloid dispersion liquid will become easier.
- Process B is preferably performed as soon as possible after Process A. This is because the organic semiconductor material aggregates in the solution prepared in step A and the risk of forming coarse particles in step B is more reliably reduced. Step B is preferably performed within 30 minutes after Step A, more preferably within 15 minutes, further preferably within 5 minutes, and particularly preferably immediately.
- the method of adding the solution prepared in Step A to water is not particularly limited, but it is preferable to add it dropwise. This is because adding small amounts tends to make it difficult to form coarse particles of the organic semiconductor material than adding them all at once.
- the method of stirring the water to which the solution prepared in Step A is added is not particularly limited, and may be performed, for example, at room temperature for about 1 to 2 hours using a general mechanical stirrer.
- step C a step of removing the organic solvent from the obtained colloidal dispersion (step C) is performed.
- the colloidal dispersion is concentrated and unnecessary substances are removed. Therefore, when the colloidal dispersion is used for manufacturing an organic thin film element, a better quality (eg, uniform and smooth) thin film is formed. be able to.
- the method for removing the organic solvent is not particularly limited.
- Examples of the method for removing the organic solvent include 1) heating the colloidal dispersion to evaporate the organic solvent, 2) evaporating the organic solvent by reducing the pressure, and 3) combining these 1) and 2). It can be mentioned.
- Preferable examples of the method for removing the organic solvent include evaporating the organic solvent by reducing the pressure at preferably 60 ° C. or lower, more preferably 50 ° C. or lower, further preferably 40 ° C. or lower, particularly preferably room temperature. . This is because the colloidal properties of the organic semiconductor material are less likely to change compared to removing the organic solvent only by heating.
- the water in the colloidal dispersion may also be evaporated to double the concentration (concentration) of the colloidal dispersion.
- concentration concentration
- the spraying time can be shortened by increasing the concentration of the colloidal dispersion.
- a step of filtering the colloidal dispersion may be performed between step B and step C or after step C. Even when coarse particles of the organic semiconductor material are formed in the colloidal dispersion, the coarse particles can be removed from the colloidal dispersion by filtration.
- the method of filtration is not particularly limited, but is preferably a method using a paper filter.
- the type of the paper filter is preferably JIS P3801 5C, from the viewpoint that the colloidal semiconductor material is less filtered and coarse particles can be selectively filtered. As a result, a more stable colloidal dispersion can be obtained. Therefore, a better quality thin film can be formed when the colloidal dispersion is used for the production of an organic thin film element.
- colloidal dispersion according to the present invention The colloidal dispersion produced by the above production method has the following characteristics.
- a dispersion stabilizer such as a surfactant
- the colloidal dispersion according to the present invention can be used, for example, as an organic semiconductor ink composition. Since the colloidal dispersion according to the present invention has the above-described characteristics, a high-quality thin film can be formed when used in the production of an organic thin film element. Therefore, the organic thin film element can have high-performance device characteristics. In addition, since the obtained organic thin film element is particularly excellent in optoelectronic properties, the colloidal dispersion according to the present invention is particularly suitably used for the production of high performance photoconductive films such as thin films for solar cells and thin films for photosensors. Can do.
- the method for producing an organic thin film element according to the present invention includes an attaching step for attaching the colloidal dispersion to a substrate.
- the shape of the substrate is not particularly limited, and examples thereof include a substrate.
- the substrate include a glass substrate, a plastic substrate, and a silicon substrate.
- An electrode pattern and / or other semiconductor films may be formed on the substrate.
- the method for attaching the colloidal dispersion to the substrate is not particularly limited.
- the adhesion method include spin coating, roll coating, spin casting, doctor blading, dip coating, spray coating, screen printing, gravure printing, ink jet printing, and die coating methods.
- Spray coating is preferred because it allows the use of semiconductor inks that are low in concentration and low in viscosity.
- the spray coating include an evaporation spray deposition (ESDUS) method and an electrostatic spray deposition (ESD) method.
- ESDUS evaporation spray deposition
- ESD electrostatic spray deposition
- the ESD method is particularly preferable as the method of attaching. This is because the ESD method is efficient because it can be formed by designating a specific location (electrode location) on the surface of the substrate.
- the droplets (colloid dispersion liquid) to be sprayed are small in the ESD method, the organic solvent that remains slightly in the colloid dispersion liquid can be volatilized before the liquid droplets reach the substrate. It is. Furthermore, since the droplets to be sprayed are small, a minute colloid can be uniformly sprayed on the substrate in units of one or several.
- the electrostatic spraying device used in the ESD method may be a known device.
- the electrode provided on the base include an ITO (Indium / Tin / Oxide) electrode, an aluminum electrode, a gold electrode, a silver electrode, a chromium electrode, a titanium oxide electrode, and a zinc oxide electrode.
- an insulating film, another semiconductor film, a metal film, or the like may be inserted between the electrode and the formed organic semiconductor thin film.
- a thin film made of poly (3,4-ethylenedioxythiophene) / polystyrene sulfonic acid (PEDOT / PSS) may be formed between the electrode and the organic semiconductor thin film, or the electrode and the organic semiconductor thin film
- a thin film made of lithium fluoride may be formed between the two.
- the conditions for electrostatic spraying in the ESD method may be appropriately determined depending on the type of organic semiconductor material, the area and thickness of the organic semiconductor thin film, the use of the organic thin film element, and the like (see also the following examples).
- the concentration of the colloidal dispersion (organic semiconductor ink composition) is preferably about 0.04 to 0.06 mg / ml, for example, about 0.05 mg / ml, from the viewpoint of securing a good film forming speed. More preferably. Even when the colloidal dispersion liquid has a low concentration, it is possible to obtain a desired film thickness by increasing the spraying time.
- the mechanism of the electrospray phenomenon in the ESD method is currently considered as follows. That is, first, ions having a charge opposite to that of the electrode collect on the surface of the liquid (colloid dispersion) at the tip of the spray capillary by applying a voltage. The meniscus rises in a semispherical shape at the capillary tip due to the interaction between the electric charge accumulated on the liquid surface and the electric field. Under a higher electric field, a conical meniscus called Taylor-cone is formed. When the electric field is further increased and the electrostatic force repulsion exceeds the surface tension, a part of the liquid jumps out of the Taylor-cone and starts to be ejected as a droplet or a jet.
- the ejected liquid droplet or jet is strongly charged and is attracted to the conductive substrate (electrode on the substrate) by the electric field. In some cases, the liquid is further broken by electrostatic repulsion within the liquid to form fine droplets or jets. Since the size of the formed droplets is extremely small and the surface area per volume is very large, a large amount of solvent evaporates in a very short time. As a result, nanoscale droplets are jetted onto the substrate, and a very dense and uniform film can be obtained.
- the organic thin film element according to the present invention manufactured using the ESD method is excellent in photoelectric conversion characteristics (see also the following examples). Therefore, it can be suitably used as a high-performance photoconductive film such as a thin film for a solar cell and a thin film for a photosensor.
- the substrate may have a semiconductor film formed on the surface by spin coating.
- the material of the semiconductor film is, for example, a material in which the majority carriers are the same as the organic semiconductor material dispersed in the colloidal dispersion to be adhered (that is, the n-type / p-type classification is the same), preferably It is the same material as the organic semiconductor material dispersed in the colloidal dispersion to be adhered.
- the colloidal dispersion may be attached to at least a part of the semiconductor film.
- the organic thin film element manufactured in this way is more excellent in photoelectric conversion characteristics (see also the following examples). Therefore, it can be more suitably used as a high-performance photoconductive film such as a thin film for a solar cell and a thin film for a photosensor.
- the colloidal dispersion liquid (organic semiconductor ink composition) of the present invention used in the method for producing an organic thin film element can be prepared using either an n-type semiconductor material or a p-type semiconductor material. Therefore, an organic thin film element in which n-type and p-type semiconductor materials are freely combined, such as an n-type semiconductor thin film element, a p-type semiconductor thin film element, and a pn junction type semiconductor thin film element, is manufactured using the colloid dispersion liquid of the present invention. can do.
- an additive such as a surfactant or a thickener may be added to the colloidal dispersion to improve the film forming property of the formed colloidal particles, if necessary.
- additives such as antioxidant or a light stabilizer
- the concentration of the colloidal dispersion liquid may be adjusted by diluting or concentrating in advance according to the method of adhesion. As described above, in step C, the removal of the organic solvent and the concentration adjustment (concentration) may be performed simultaneously.
- a known method may be used. Further, another semiconductor thin film and / or an electrode may be further laminated on the formed organic semiconductor thin film. Furthermore, a dopant can also be doped in the organic thin film element as needed.
- the method for doping the dopant is not particularly limited. For example, the dopant is doped simultaneously with or after the formation of the organic thin film element by using a water-based ink in which the dopant is dispersed, by a spray coating technique such as an ESD method.
- the colloidal dispersion according to the present invention is aqueous. For this reason, the organic thin film element manufacturing method according to the present invention reduces the environmental load. Moreover, the manufacturing method of the organic thin film element which concerns on this invention is excellent in the safety
- Organic thin film element examples include a solar battery, an EL element, a transistor (such as a phototransistor), a sensor (such as a photosensor), a memory, a photoconductor for electrophotography, a capacitor, and a battery.
- the colloidal dispersion according to the present invention is used, an organic semiconductor thin film containing no unnecessary substances such as a dispersant can be produced. Therefore, the organic thin film element according to the present invention has a feature that the device characteristics are less likely to be impaired.
- the particle size of the organic semiconductor material in the organic semiconductor thin film obtained using the colloidal dispersion according to the present invention is, for example, 100 nm or less, 70 nm or less, 50 nm or less, and in some cases, 10 nm. (See also the examples below).
- an organic thin film element for example, a solar cell
- the device characteristics of an organic thin film element are improved as the particle size of the organic semiconductor material in the organic semiconductor thin film is smaller. Therefore, the organic thin film element according to the present invention is characterized by excellent device characteristics.
- the production method according to the present invention is a method for producing a colloidal dispersion liquid in which a colloid of a water-insoluble organic semiconductor material is dispersed in water, and the organic semiconductor material is contained in a water-soluble organic solvent.
- Step A for dispersing and dissolving until the average particle diameter measured based on the dynamic light scattering method is 50 nm or less, and preparing a solution containing an organic semiconductor material,
- Step B for adding the solution to water and stirring
- the manufacturing method characterized by including.
- the solution in the method for producing a colloidal dispersion according to the present invention, in the step B, the solution is added to 10 to 100 volume volumes of water within 30 minutes after the step A. Is preferred.
- step C of removing the organic solvent from the water to which the solution is added after the step B.
- the organic semiconductor material is preferably dispersed by ultrasonic waves.
- the step B is preferably added dropwise to the water.
- the organic semiconductor material is preferably polythiophene, a polymer of a thiophene compound, fullerene, or a fullerene derivative.
- the organic solvent is preferably at least one selected from the group consisting of tetrahydrofuran, chloroform, and ethanol.
- step A it is preferable to disperse the organic semiconductor material while maintaining the temperature of the organic solvent within a range of 30 to 60 ° C.
- the present invention also provides a colloidal dispersion produced by any one of the production methods described above.
- the method for producing an organic thin film element according to the present invention is characterized by including an attaching step of attaching the colloidal dispersion to a substrate.
- the substrate has a semiconductor film formed by spin coating on the surface, and the attaching step includes at least part of the semiconductor film, the semiconductor film and the majority carrier. It may be preferable to adhere the colloidal dispersion in which organic semiconductors having the same are dispersed.
- the colloidal dispersion is attached to a substrate by an electrostatic spray deposition method in the attaching step.
- the organic thin film element may be a solar cell element.
- the present invention also provides an organic thin film element manufactured by any one of the above manufacturing methods.
- the “average particle diameter by DLS measurement” in the following examples and comparative examples corresponds to an integrated value of 50% in the particle size distribution of particles obtained by so-called “monodisperse mode analysis based on the principle of the dynamic light scattering method”.
- the particle size is obtained by excluding the region that can be clearly distinguished as noise from the value displayed by the attached analysis software of the DLS device (Zeta potential / particle size measurement system ELSZ-2, manufactured by Otsuka Electronics Co., Ltd.). It is.
- Example 1 20 mg of poly (3-hexylthiophene) (P3HT; trade name SP001, purchased from MERCK) (organic semiconductor material) was added to 20 ml of tetrahydrofuran (water-soluble organic solvent), and the average particle size of P3HT by DLS measurement was It was dispersed and dissolved by ultrasonic waves until the thickness became 8 nm (device name: SONO CLEANER 50D, manufactured by Kaijo Corporation). The conditions for ultrasonic dispersion were a tetrahydrofuran temperature of 45 ° C., an ultrasonic output of 38 kHz, 50 W, and a dispersion treatment time of 60 minutes.
- P3HT poly (3-hexylthiophene)
- the P3HT after the addition and before dispersion was a black solid of about several mm, but the solution obtained by dispersion exhibited a light orange color.
- the entire amount of the above solution was dropped into 500 ml of distilled water and stirred with a mechanical stirrer for 2 hours.
- the obtained colloidal dispersion was filtered using 5C (corresponding to JIS P3801 type 5 C) filter paper. Further, the obtained filtrate was distilled off under reduced pressure in a 40 ° C. hot water bath to remove tetrahydrofuran and the like, and concentrated to obtain a dark blue colloidal dispersion.
- This colloidal dispersion did not change color even when stored at room temperature for a long period of time, and almost no increase in massive precipitates or suspended matters was observed (see Table 1).
- the concentration of the dry solid content in the obtained colloidal dispersion was 0.05% by weight. Moreover, the insoluble component generation rate of the colloidal dispersion was less than 0.1%.
- the insoluble component of the colloidal dispersion refers to a substance (organic semiconductor material) that has been separated by filtration.
- the insoluble component generation rate refers to a ratio of what percentage of the used organic semiconductor material is separated in the above filtration.
- the concentration of the dry solid content in the obtained colloid dispersion liquid is calculated by (weight of organic semiconductor material used ⁇ weight of insoluble component) / weight of colloid dispersion liquid after distillation under reduced pressure ⁇ 100.
- Example 2 20 mg of poly (3-hexylthiophene) (P3HT) (same product as Example 1) was added to 20 ml of tetrahydrofuran, and dispersed and dissolved by ultrasonic until the average particle size of P3HT by DLS measurement was 20 nm. It was.
- the conditions for ultrasonic dispersion were the same apparatus as in Example 1, with a tetrahydrofuran temperature of 45 ° C., an ultrasonic output of 38 kHz, 50 W, and a dispersion treatment time of 15 minutes.
- the P3HT after the addition and before dispersion was a black solid of about several mm, but the solution obtained by dispersion exhibited a light orange color.
- Example 1 After the ultrasonic dispersion, a dark blue colloid dispersion was obtained by the same operation as in Example 1 (colloid dispersion A). This colloidal dispersion did not change color even when stored at room temperature for a long period of time, and almost no increase in massive precipitates or suspended matters was observed (see Table 1).
- the concentration of dry solid in the obtained colloidal dispersion was 0.04% by weight.
- the insoluble component generation rate of the colloidal dispersion was less than 1%.
- Example 3 100 mg of poly (3-hexylthiophene) (P3HT) (same product as in Example 1) was added to 20 ml of tetrahydrofuran, and dispersed and dissolved by ultrasound until the average particle size of P3HT by DLS measurement was 20 nm. It was.
- the conditions for ultrasonic dispersion were the same apparatus as in Example 1, with a tetrahydrofuran temperature of 45 ° C., an ultrasonic output of 38 kHz, 50 W, and a dispersion treatment time of 15 minutes.
- distribution after addition was black solid of about several millimeters, the solution obtained by dispersion
- the concentration of dry solid in the obtained colloidal dispersion was 0.07% by weight.
- the insoluble component generation rate of the colloidal dispersion was 1 to 5%.
- Example 4 20 mg of poly [[9- (1-octylnonyl) -9H-carbazole-2,7-diyl] -2,5-thiophenediyl-2,1,3-benzothiadiazole-4,7-diyl-2 , 5-thiophenediyl] (PCDTBT; synthesized by RIKEN) (organic semiconductor material) is added to 20 ml of tetrahydrofuran, and dispersed by ultrasound until the average particle size of PCDTBT by DLS measurement is 50 nm. And dissolved.
- PCDTBT poly [[9- (1-octylnonyl) -9H-carbazole-2,7-diyl] -2,5-thiophenediyl-2,1,3-benzothiadiazole-4,7-diyl-2 , 5-thiophenediyl] (PCDTBT; synthesized by RIKEN) (organic semiconductor material) is added to 20 ml
- the conditions for ultrasonic dispersion were the same apparatus as in Example 1, with a tetrahydrofuran temperature of 45 ° C., an ultrasonic output of 38 kHz, 50 W, and a dispersion treatment time of 30 minutes.
- distribution was about several millimeters black powder, but the solution obtained by dispersion
- a dark blue-violet colloidal dispersion was obtained in the same manner as in Example 1 (colloidal dispersion B). This colloidal dispersion did not change color even when stored at room temperature for a long period of time, and almost no increase in massive precipitates or suspended matters was observed (see Table 1).
- the concentration of dry solid in the obtained colloidal dispersion was 0.04% by weight.
- the insoluble component generation rate in the colloidal dispersion was 1 to 2%.
- Example 5 20 mg of phenyl C 61 butyric acid methyl ester (PCBM; trade name nanom spectra E100, purchased from Frontier Carbon Co., Ltd.) (organic semiconductor material) was added to 20 ml of tetrahydrofuran until the average particle size of PCBM by DLS measurement reached 50 nm. Dispersed by ultrasonic waves and dissolved. The conditions for ultrasonic dispersion were the same apparatus as in Example 1, with a tetrahydrofuran temperature of 45 ° C., an ultrasonic output of 38 kHz, 50 W, and a dispersion treatment time of 15 minutes.
- PCBM phenyl C 61 butyric acid methyl ester
- Example 6 20 mg of poly (3-hexylthiophene) (P3HT) (same product as in Example 1) was added to 20 ml of tetrahydrofuran, and dispersed and dissolved by ultrasound until the average particle size of P3HT by DLS measurement was 50 nm. It was.
- the conditions for ultrasonic dispersion were the same apparatus as in Example 1, with a tetrahydrofuran temperature of 45 ° C., an ultrasonic output of 38 kHz, 50 W, and a dispersion treatment time of 5 minutes.
- the concentration of the dry solid content in the obtained colloidal dispersion was 0.02% by weight.
- the insoluble component generation rate of the colloidal dispersion was 20%.
- ⁇ Comparative Example 1 20 mg of poly (3-hexylthiophene) (P3HT) (same product as in Example 1) was added to 20 ml of tetrahydrofuran, and dispersed and dissolved by ultrasound until the average particle size of P3HT was 100 nm as measured by DLS. It was.
- the conditions for ultrasonic dispersion were the same apparatus as in Example 1, with a tetrahydrofuran temperature of 22 ° C., an ultrasonic output of 38 kHz, 50 W, and a dispersion treatment time of 30 minutes.
- distribution after addition was a black solid of about several millimeters, the solution obtained by dispersion
- the concentration of the dry solid content in the obtained colloidal dispersion was 0.01% by weight.
- the insoluble component generation rate of the colloidal dispersion was 60%.
- ⁇ Comparative example 2 20 mg of poly (3-hexylthiophene) (P3HT) (same product as in Example 1) was added to 20 ml of tetrahydrofuran, and dispersed and dissolved by ultrasound until the average particle size of P3HT was 200 nm by DLS measurement. It was.
- the conditions for ultrasonic dispersion were the same apparatus as in Example 1, with a tetrahydrofuran temperature of 22 ° C., an ultrasonic output of 38 kHz, 50 W, and a dispersion treatment time of 15 minutes.
- distribution after addition was a black solid of about several millimeters, the solution obtained by dispersion
- the concentration of the dry solid in the obtained colloidal dispersion was 0.001% by weight.
- the insoluble component generation rate of the colloidal dispersion was 90%.
- ⁇ Comparative Example 3 20 mg of poly (3-hexylthiophene) (P3HT) (same product as in Example 1) was added to 20 ml of tetrahydrofuran, and dispersed by ultrasound until the average particle size of P3HT was 200 to 300 nm as measured by DLS. Dissolved.
- the conditions for ultrasonic dispersion were the same apparatus as in Example 1, with a tetrahydrofuran temperature of 22 ° C., an ultrasonic output of 38 kHz, 50 W, and a dispersion treatment time of 5 minutes.
- distribution after addition was a black solid of about several millimeters, the solution obtained by dispersion
- Example 1 After the ultrasonic dispersion, a light blue colloidal dispersion was obtained in the same manner as in Example 1. When the colloidal dispersion was stored at room temperature for a long period of time, it changed from a transparent state to a suspended state, and an increase in massive precipitates or suspended matters was observed (see Table 1).
- the concentration of the dry solid content in the obtained colloidal dispersion was 0.005% by weight. Also, since the colloidal dispersion was extremely unstable, it was difficult to accurately measure the insoluble component generation rate, but it was at least 50% or more.
- Table 1 summarizes the results of Examples 1 to 6 and Comparative Examples 1 to 3.
- the coating film was prepared by using the ESD method by the same method as in Example 7 described later.
- the average particle diameter in a coating film is a measured value by observation with a scanning electron microscope (FE-SEM
- Example 7 Using an electrostatic spraying device (device name ES-3500, manufactured by Fuence Co., Ltd.), the colloidal dispersions obtained in Examples 2, 4, and 5 (colloidal dispersions A, B, and C, respectively) were made into ITO pattern glass. It apply
- the colloidal dispersions A to C were used after about 1 day to several months had passed since preparation. In addition, the significant relationship was not seen between the elapsed time after adjustment, and the average particle diameter in a coating film.
- FIG. 1 A schematic diagram of the electrostatic spraying device used is shown in FIG.
- the colloidal dispersion 2 to be electrostatically applied is filled in a glass spray capillary 1 having a fine tip.
- a platinum wire electrode 3 for applying a voltage is inserted inside the spray capillary 1.
- the tip diameter of the spray capillary 1 is about 50 ⁇ m, and the distance from the tip of the spray capillary 1 to the substrate 6 is about 3 cm.
- an ITO electrode 7 is patterned on the substrate 6.
- the ITO electrode 7 is connected to the ground and an earth is secured.
- a high voltage (applied voltage) of about 3 to 10 kV is applied between the spray capillary 1 and the substrate 6, the colloidal dispersion liquid 2 is sprayed as a spray frame 4 by electrostatic force.
- the droplets of the colloidal dispersion liquid 2 sprayed as the spray frame 4 are electrostatically polarized, they are selectively attracted to the ITO electrode 7 of the substrate 6.
- an acrylic having a diameter of 1.7 cm as an electrostatic mask between the spray capillary 1 and the substrate 6 is used.
- a plate 5 was installed. By using the acrylic plate 5 as an electrostatic mask, the organic semiconductor material in the colloidal dispersion 2 selectively formed the thin film 8 on the ITO electrode 7 of the substrate 6.
- Table 2 shows the spray conditions of each colloidal dispersion and the evaluation results of the film thickness of the formed thin film.
- a source meter (device name 2400, manufactured by KEITHLEY) having functions of a voltage source and an ammeter was connected to the ITO electrode 7 and the aluminum electrode 9, and the time response of the short-circuit photocurrent was measured.
- the current-voltage characteristics were measured in the dark and under light irradiation.
- the sign of voltage and current is expressed as a positive voltage when a positive voltage is applied to the ITO electrode 7 side, and is positive when the current in the element 10 flows from the ITO electrode 7 to the aluminum electrode 9.
- Current notation A solar simulator was used for light irradiation, and the device 10 was adjusted so that light intensity of 100 mW / cm 2 was irradiated.
- FIG. 3A The result of the time response of the short-circuit photocurrent in the element A is shown in FIG. 3A, and the result of the current-voltage characteristics in the dark and under light irradiation is shown in FIG.
- FIG. 3 a photocurrent was observed in both measurement results, and it was confirmed that the element A functions as a photoelectric conversion element.
- the short circuit photocurrent of voltage application 0V was observed, it has confirmed that it was functioning also as a solar cell.
- the open circuit voltage of the element A was about 1.5 V, and the conversion efficiency ⁇ was 0.0015%.
- FIG. 4A The result of the time response of the short-circuit photocurrent in the element B is shown in FIG. 4A, and the result of the current-voltage characteristics in the dark and under light irradiation is shown in FIG. 4B.
- the element B also functions as a photoelectric conversion element and as a solar cell.
- the open circuit voltage of the element B was about 1.2V.
- ⁇ Comparative Example 4> As a comparison (conventional method), P3HT was applied by spin coating on an ITO patterned glass substrate to obtain a substrate D.
- a solution of P3HT was prepared by dissolving P3HT in chlorobenzene (Spectrozole) so as to have a concentration of 14 mg / ml, and stirring overnight at 30 to 40 ° C. using a stirrer.
- the substrate was the same as that used in Example 8, and the substrate 6 with the ITO electrode 7 was ultrasonically cleaned with pure water, 2-propanol, acetone and chloroform, and further UV ozone cleaned.
- a thin film was formed on the cleaned substrate by spin coating using the above P3HT chlorobenzene solution.
- the rotation speed was 1000 rpm and the time was 20 seconds.
- an aluminum electrode was formed by a vacuum deposition method in the same manner as in Example 8 to obtain an element D.
- the electrode area functioning as an element was designed to be 2.5 mm ⁇ 2.5 mm.
- the time response of the short-circuit photocurrent was measured in the same manner as in Example 8. Further, in the same manner as in Example 8, the current-voltage characteristics were measured in a short-circuit dark place and under light irradiation.
- the open circuit voltage of the element D is about 0.23 V, which is the same value as a general organic semiconductor thin film. Further, the conversion efficiency ⁇ of the element D was 0.00044%. When the result of the element D was compared with the result of the element A (FIG. 3), the conversion efficiency of the element A was much better than that of the element D. In addition, the open circuit voltage of the element A was much higher than that of the element D. These high characteristics indicate high performance as a photoelectric conversion element or a solar cell.
- Example 1 In the same manner as in Example 2, P3HT was dissolved in tetrahydrofuran and dispersed by ultrasonic waves until the average particle diameter of P3HT as measured by DLS was 20 nm or less. This solution was allowed to stand at room temperature, and the color change of the solution was observed with the naked eye.
- Example 9 A colloidal dispersion of P3HT was obtained in the same manner as in Example 2. Also, a colloidal dispersion of PCBM was obtained in the same manner as in Example 5. The size distribution of the colloidal particles was measured for these colloidal dispersions by means of DMA (Differential Mobility Analyzer: low pressure type DMA system, manufactured by Wyckoff Scientific Co., Ltd.). These colloidal dispersions were observed with a scanning electron microscope (FE-SEM Hitachi S4800T).
- DMA Different Mobility Analyzer: low pressure type DMA system, manufactured by Wyckoff Scientific Co., Ltd.
- the colloidal dispersion is subjected to aerosol ionization using an electrospray ionization device provided in the DMA, brought into an equilibrium charging state using a neutralizer, and then the classification length is 141 mm, and the sheath gas flow rate is This was performed by introducing an aerosol gas flow rate of 1.5 (std L / min) into DMA operated under atmospheric pressure conditions at 10 (std L / min).
- FIG. 6 (a) shows the DMA results of the P3HT colloidal dispersion.
- images obtained by imaging a P3HT colloidal dispersion with a microscope are shown in FIGS. 6B to 6D.
- 6B to 6D are images magnified 10,000, 100,000, and 300,000 times, respectively.
- the size distribution of the P3HT colloidal particles in the P3HT colloidal dispersion had a number density peak near 40 nm.
- FIG. 7 The DMA result of the colloidal dispersion of PCBM is shown in FIG.
- images of the PCBM colloidal dispersion taken with a microscope are shown in FIGS. 7B to 7D.
- FIG. 7 (b) is an image magnified 10,000 times, and (c) and (d) are images magnified 100,000 times.
- the size distribution of the colloidal particles of PCBM in the colloidal dispersion of PCBM had a number density peak near 30 nm.
- Example 10 a P3HT thin film produced by spin coating is inserted between the ITO electrode and a thin film produced by spraying a colloidal dispersion with an electrostatic spraying device, as compared with the element A of Example 8. Different in that it is.
- the solution of P3HT used for spin coating was prepared by dissolving P3HT in chlorobenzene (spectrosol) so as to have a concentration of 14 mg / ml and stirring it overnight at 30 to 40 ° C. using a stirrer.
- the substrate was the same as that used in Example 8, and the substrate 6 with the ITO electrode 7 was ultrasonically cleaned with pure water, 2-propanol, acetone and chloroform, and further UV ozone cleaned.
- a P3HT thin film was formed on the cleaned substrate by spin coating using the above P3HT chlorobenzene solution. The rotation speed was 1000 rpm and the time was 20 seconds. The film thickness of the P3HT thin film was 39 nm.
- the colloidal dispersion of P3HT was prepared by the same procedure as in Example 2 (colloidal dispersion A ′).
- the colloidal dispersion A ′ was applied onto the P3HT thin film using an electrostatic spraying apparatus, and the thin film was laminated to obtain a substrate E.
- the spraying method was basically the same as in Example 7, but the applied voltage was 4.3 kV and the coating time was 120 minutes.
- the thickness of the laminated portion was 70 nm.
- An element E was obtained by depositing an aluminum electrode on the obtained substrate E by a vacuum deposition method in the same manner as in Example 8.
- the electrode area functioning as an element was designed to be 2.5 mm ⁇ 2.5 mm.
- the time response of the short-circuit photocurrent was measured in the same manner as in Example 8. Further, in the same manner as in Example 8, the current-voltage characteristics were measured in a short-circuit dark place and under light irradiation.
- FIG. 8 (a) The result of the time response of the short-circuit photocurrent is shown in FIG. 8 (a), and the current-voltage characteristic result in the short-circuit dark place and under light irradiation is shown in FIG. 8 (b).
- the element E also functions as a photoelectric conversion element and as a solar cell.
- FIG. 8A when the result of the element E shown in FIG. 8A is compared with the result of the element A shown in FIG. 3A, it is found that more short-circuit photocurrent flows in the element E.
- FIG. 8B it was found that the conversion efficiency ⁇ of the element E was 0.0027%. This indicates that the element E has higher performance than the element A as a photoelectric conversion element or a solar cell.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Dispersion Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Inks, Pencil-Leads, Or Crayons (AREA)
- Photovoltaic Devices (AREA)
- Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
Abstract
An aqueous colloidal dispersion of a water-insoluble organic semiconductor material having relatively high stability is produced by dispersing and dissolving the organic semiconductor material in a water-soluble organic solvent until the average particle diameter thereof as determined by a dynamic light scattering method comes to 50 nm or less, thereby producing a solution that contains the organic semiconductor material, and then adding water to the solution and stirring the resulting solution.
Description
本発明は、非水溶性の有機半導体材料のコロイドの水分散液、その製造方法、およびその利用に関するものである。
The present invention relates to an aqueous colloidal dispersion of a water-insoluble organic semiconductor material, a production method thereof, and use thereof.
有機半導体を用いた有機薄膜素子の製造において、有機半導体の薄膜製造法として、スピンコート法のほか、スクリーン印刷、グラビア印刷およびインクジェット印刷等の印刷技術が知られている。
In the production of organic thin film elements using organic semiconductors, printing techniques such as screen printing, gravure printing, and ink jet printing are known in addition to spin coating methods as methods for producing organic semiconductor thin films.
しかし、これらの印刷技術を適用するためには、有機半導体材料をクロロベンゼン等の有機溶媒に高濃度に溶かしたインクを調製する必要があった。そのため、結晶性または自己配向性が高く、有機溶媒に対する溶解性が低い有機半導体材料は、これらの印刷技術に利用することが困難であった。
However, in order to apply these printing techniques, it was necessary to prepare an ink in which an organic semiconductor material was dissolved in an organic solvent such as chlorobenzene at a high concentration. Therefore, an organic semiconductor material that has high crystallinity or self-orientation and low solubility in an organic solvent has been difficult to use in these printing techniques.
上記の問題を解決するため、低濃度のインクからでも有機半導体を製膜できる技術が開発された。そのような技術として、噴霧(スプレー)塗布技術を用いる方法がある。
In order to solve the above problems, a technology capable of forming an organic semiconductor film from a low concentration ink has been developed. As such a technique, there is a method using a spray coating technique.
例えば、非特許文献1には、蒸発噴霧堆積(ESDUS,Evaporative Spray Deposition using UltradiluteSolution)法によって、低濃度の溶液から有機半導体の薄膜を製造する方法が記載されている。また、非特許文献2、特許文献1および特許文献2には、静電噴霧堆積(ESD,Electro Spray Deposition)法によって、有機半導体の溶解液またはバインダーとの混合溶解液を塗布製膜し、有機電子デバイスを作製する方法が記載されている。
For example, Non-Patent Document 1 describes a method for producing a thin film of an organic semiconductor from a low-concentration solution by an evaporation spray deposition (ESDUS, Evaporative Spray Deposition using Ultradilute Solution) method. Further, in Non-Patent Document 2, Patent Document 1 and Patent Document 2, an organic semiconductor solution or a mixed solution with a binder is applied and formed into an organic film by electrostatic spray deposition (ESD). A method of making an electronic device is described.
しかし、非特許文献1、非特許文献2、特許文献1および特許文献2等に記載の印刷技術に係る方法は、溶媒としてエーテル系、芳香族系、アルコール系、ケトン系およびハロゲン系等の有機溶媒、場合によっては、トルエンおよび二硫化炭素等の有害な有機溶媒を使用するものである。そのため、環境負荷の低減およびCO2削減等、低炭素社会の実現に向けて、有機溶媒を実質的に使わない有機半導体の新たな製膜技術が強く求められていた。
However, the methods related to the printing technology described in Non-Patent Document 1, Non-Patent Document 2, Patent Document 1, and Patent Document 2 are organic solvents such as ether, aromatic, alcohol, ketone, and halogen as solvents. Solvents and, in some cases, harmful organic solvents such as toluene and carbon disulfide are used. Therefore, for realization of a low-carbon society such as reduction of environmental load and CO 2 reduction, a new organic semiconductor film-forming technology that does not substantially use an organic solvent has been strongly demanded.
例えば、特許文献3および非特許文献3には、PEDOT系導電性高分子の水または水/アルコール混合分散液をESD法で塗布して薄膜を作製することが記載されている。
For example, Patent Document 3 and Non-Patent Document 3 describe that a thin film is produced by applying water or a water / alcohol mixed dispersion of a PEDOT conductive polymer by an ESD method.
また、例えば、非特許文献4には、非結晶性の導電性高分子にラウリル硫酸ナトリウム等の陰イオン系界面活性剤を添加して水分散液を調製し、スロットダイ方式で塗布して有機デバイスを作製する方法が記載されている。
Further, for example, in Non-Patent Document 4, an anionic surfactant such as sodium lauryl sulfate is added to an amorphous conductive polymer to prepare an aqueous dispersion, which is coated with a slot die method and organic. A method of making a device is described.
しかし、有機薄膜素子の活性層として用いられる導電性高分子またはナノカーボン材料を水性インク化し、有機薄膜素子を作製する技術は、非特許文献3および4以外には未だ報告例が極めて少ない。
However, there are still very few reported examples other than Non-Patent Documents 3 and 4 regarding the technology for producing an organic thin film element by converting a conductive polymer or nanocarbon material used as an active layer of an organic thin film element into an aqueous ink.
なお、非特許文献5には、導電性高分子の一種であるP3HT(ポリ(3-ヘキシルチオフェン))をテトラヒドロフランに溶解した後に、水に加えてP3HTの水分散液を調製したことが記載されている。
Non-Patent Document 5 describes that an aqueous dispersion of P3HT was prepared by dissolving P3HT (poly (3-hexylthiophene)), a kind of conductive polymer, in tetrahydrofuran and then adding it to water. ing.
しかし、特許文献3および非特許文献3に記載の方法は、水に分散するためにはスルホン酸等の対イオンを混合する必要がある、特殊な高分子(PEDOT系導電性高分子)を用いた方法である。そのため、これらの方法は他の導電性高分子に対して容易に適応し難い技術である。また、インクとして用いた場合に、スルホン酸等が塗膜中に残留するため、有機薄膜素子のデバイス特性を大きく損なう虞がある。
However, the methods described in Patent Document 3 and Non-Patent Document 3 use a special polymer (PEDOT conductive polymer) that needs to be mixed with a counter ion such as sulfonic acid in order to disperse in water. It was the way. Therefore, these methods are techniques that are not easily applied to other conductive polymers. In addition, when used as an ink, since sulfonic acid or the like remains in the coating film, there is a possibility that the device characteristics of the organic thin film element are greatly impaired.
同様に、非特許文献4に記載の方法は、インクとして用いた場合に、不揮発性の界面活性剤が塗膜中に残留するため、有機薄膜素子のデバイス特性を大きく損なう虞がある。
Similarly, in the method described in Non-Patent Document 4, when used as an ink, a non-volatile surfactant remains in the coating film, which may greatly impair device characteristics of the organic thin film element.
非特許文献5に記載の方法は、インク用途で開発されたものではないため、コロイド分散液の安定性に劣る。もちろん、非特許文献5には、良好なデバイス特性を有する有機薄膜素子についての記載もない。
The method described in Non-Patent Document 5 is not developed for ink use, and therefore, the stability of the colloidal dispersion is poor. Of course, Non-Patent Document 5 does not describe an organic thin film element having good device characteristics.
本発明は上記の課題に鑑みてなされたものであり、その目的は、コロイドの分散を安定化させる剤(分散安定剤)を添加しない場合でも安定性を有する、非水溶性の有機半導体材料のコロイドの水分散液、およびその製造方法等を提供することにある。
The present invention has been made in view of the above problems, and its object is to provide a water-insoluble organic semiconductor material that is stable even when an agent that stabilizes colloidal dispersion (dispersion stabilizer) is not added. It is an object to provide an aqueous colloid dispersion, a method for producing the same, and the like.
本願発明者らは上記課題を解決するために鋭意検討を行った。その結果、まず非水溶性の有機半導体材料を水溶性の有機溶媒に溶解し、次いで得られた溶液を水に加えて攪拌するプロセスにおいて、当該有機溶媒中の有機半導体材料を所定サイズ以下になるように分散して溶解しておくことが、最終的に得られるコロイド分散液の安定性に極めて重要であることを見出し、本発明に想到するに至った。
The inventors of the present application have made extensive studies to solve the above problems. As a result, in the process of first dissolving the water-insoluble organic semiconductor material in the water-soluble organic solvent and then adding the resulting solution to water and stirring, the organic semiconductor material in the organic solvent becomes a predetermined size or less. Thus, it was found that dispersing and dissolving in this manner is extremely important for the stability of the finally obtained colloidal dispersion, and the present invention has been conceived.
すなわち、本発明に係るコロイド分散液の製造方法は、非水溶性の有機半導体材料のコロイドが水に分散しているコロイド分散液の製造方法であって、水溶性の有機溶媒中に上記有機半導体材料を動的光散乱法に基づき測定した平均粒径が50nm以下になるまで分散して溶解し、有機半導体材料を含む溶液を作製する工程Aと、上記溶液を水に加えて攪拌する工程Bとを含むことを特徴としている。
That is, the method for producing a colloidal dispersion according to the present invention is a method for producing a colloidal dispersion in which a colloid of a water-insoluble organic semiconductor material is dispersed in water, wherein the organic semiconductor is incorporated in a water-soluble organic solvent. Dispersing and dissolving the material until the average particle diameter measured based on the dynamic light scattering method is 50 nm or less to prepare a solution containing an organic semiconductor material, and adding the above solution to water and stirring the solution B It is characterized by including.
本発明はまた、上記製造方法によって製造されるコロイド分散液を提供する。
The present invention also provides a colloidal dispersion produced by the above production method.
本発明に係る有機薄膜素子の製造方法は、上記コロイド分散液を基体に付着させる付着工程を含むことを特徴としている。
The method for producing an organic thin film element according to the present invention is characterized by including an attaching step of attaching the colloidal dispersion to a substrate.
本発明はまた、上記製造方法によって製造される有機薄膜素子を提供する。
The present invention also provides an organic thin film element manufactured by the above manufacturing method.
本発明により、コロイドの分散を安定化させる剤(分散安定剤)を添加しない場合でも安定性を有する、非水溶性の有機半導体材料のコロイドの水分散液、およびその製造方法等を低コストで提供することができる。
INDUSTRIAL APPLICABILITY According to the present invention, a colloidal aqueous dispersion of a water-insoluble organic semiconductor material that is stable even when an agent for stabilizing the dispersion of a colloid (dispersion stabilizer) is not added, a method for producing the same, and the like can be obtained at low cost. Can be provided.
〔本発明に係るコロイド分散液の製造方法〕
(概要)
本発明に係るコロイド分散液の製造方法は、水溶性の有機溶媒中に有機半導体材料を動的光散乱法に基づき測定した平均粒径が50nm以下になるまで分散して溶解し、有機半導体材料を含む溶液を作製する工程Aと、上記溶液を水に加えて攪拌する工程Bとを含むものである。この製造方法により、非水溶性の有機半導体材料のコロイドが水に分散しているコロイド分散液が得られる。以下、各工程についてより詳細に説明する。 [Method of producing colloidal dispersion according to the present invention]
(Overview)
The method for producing a colloidal dispersion according to the present invention comprises dissolving and dissolving an organic semiconductor material in a water-soluble organic solvent until the average particle size measured based on a dynamic light scattering method is 50 nm or less. The process A which produces the solution containing this, and the process B which adds and stirs the said solution to water are included. By this manufacturing method, a colloidal dispersion liquid in which a colloid of a water-insoluble organic semiconductor material is dispersed in water can be obtained. Hereinafter, each process will be described in more detail.
(概要)
本発明に係るコロイド分散液の製造方法は、水溶性の有機溶媒中に有機半導体材料を動的光散乱法に基づき測定した平均粒径が50nm以下になるまで分散して溶解し、有機半導体材料を含む溶液を作製する工程Aと、上記溶液を水に加えて攪拌する工程Bとを含むものである。この製造方法により、非水溶性の有機半導体材料のコロイドが水に分散しているコロイド分散液が得られる。以下、各工程についてより詳細に説明する。 [Method of producing colloidal dispersion according to the present invention]
(Overview)
The method for producing a colloidal dispersion according to the present invention comprises dissolving and dissolving an organic semiconductor material in a water-soluble organic solvent until the average particle size measured based on a dynamic light scattering method is 50 nm or less. The process A which produces the solution containing this, and the process B which adds and stirs the said solution to water are included. By this manufacturing method, a colloidal dispersion liquid in which a colloid of a water-insoluble organic semiconductor material is dispersed in water can be obtained. Hereinafter, each process will be described in more detail.
(工程A)
工程Aは、水溶性の有機溶媒中に有機半導体材料を動的光散乱法に基づき測定した平均粒径が50nm以下になるまで分散して溶解し、有機半導体材料を含む溶液を作製する工程である。 (Process A)
Step A is a step of preparing a solution containing the organic semiconductor material by dispersing and dissolving the organic semiconductor material in a water-soluble organic solvent until the average particle diameter measured based on the dynamic light scattering method is 50 nm or less. is there.
工程Aは、水溶性の有機溶媒中に有機半導体材料を動的光散乱法に基づき測定した平均粒径が50nm以下になるまで分散して溶解し、有機半導体材料を含む溶液を作製する工程である。 (Process A)
Step A is a step of preparing a solution containing the organic semiconductor material by dispersing and dissolving the organic semiconductor material in a water-soluble organic solvent until the average particle diameter measured based on the dynamic light scattering method is 50 nm or less. is there.
<非水溶性の有機半導体材料>
本発明に係るコロイド分散液の製造方法における有機半導体材料は、非水溶性で且つ有機溶媒に対して溶解可能なものを指し、p型半導体材料またはn型半導体材料として利用される。p型半導体材料としては、例えば、ポリチオフェンおよびチオフェン系化合物のポリマーが挙げられる。本願明細書において、チオフェン系化合物のポリマーとは、主鎖にチオフェン骨格を有する繰返し単位を含み、さらに主鎖にチオフェン骨格以外の構造を有する繰り返し単位を含んでいてもよいポリマー(但しポリチオフェンを除く)を指す。ここで、チオフェン骨格以外の構造を有する繰り返し単位として、例えば、カルバゾール骨格を有する繰返し単位、ベンゾチオフェン骨格を有する繰返し単位、およびp-フェニレンビニレン骨格を有する繰返し単位等が挙げられる。なお、これらの繰返し単位は何れも、当該繰返し単位中に含まれる水素原子の一部が、例えば、炭素数1~20、好ましくは炭素数1~10のアルキル基;フェニル基およびベンジル基等の単環系の芳香族置換基(狭義のアリール基);その他の芳香族置換基;等で置換されていてもよい。 <Water-insoluble organic semiconductor material>
The organic semiconductor material in the method for producing a colloidal dispersion according to the present invention refers to a material that is water-insoluble and soluble in an organic solvent, and is used as a p-type semiconductor material or an n-type semiconductor material. Examples of the p-type semiconductor material include polymers of polythiophene and thiophene compounds. In the present specification, the polymer of the thiophene compound includes a repeating unit having a thiophene skeleton in the main chain, and a polymer that may contain a repeating unit having a structure other than the thiophene skeleton in the main chain (excluding polythiophene). ). Here, examples of the repeating unit having a structure other than the thiophene skeleton include a repeating unit having a carbazole skeleton, a repeating unit having a benzothiophene skeleton, and a repeating unit having a p-phenylene vinylene skeleton. In any of these repeating units, a part of the hydrogen atoms contained in the repeating unit is, for example, an alkyl group having 1 to 20 carbon atoms, preferably 1 to 10 carbon atoms; a phenyl group, a benzyl group, etc. It may be substituted with a monocyclic aromatic substituent (narrowly defined aryl group); other aromatic substituents;
本発明に係るコロイド分散液の製造方法における有機半導体材料は、非水溶性で且つ有機溶媒に対して溶解可能なものを指し、p型半導体材料またはn型半導体材料として利用される。p型半導体材料としては、例えば、ポリチオフェンおよびチオフェン系化合物のポリマーが挙げられる。本願明細書において、チオフェン系化合物のポリマーとは、主鎖にチオフェン骨格を有する繰返し単位を含み、さらに主鎖にチオフェン骨格以外の構造を有する繰り返し単位を含んでいてもよいポリマー(但しポリチオフェンを除く)を指す。ここで、チオフェン骨格以外の構造を有する繰り返し単位として、例えば、カルバゾール骨格を有する繰返し単位、ベンゾチオフェン骨格を有する繰返し単位、およびp-フェニレンビニレン骨格を有する繰返し単位等が挙げられる。なお、これらの繰返し単位は何れも、当該繰返し単位中に含まれる水素原子の一部が、例えば、炭素数1~20、好ましくは炭素数1~10のアルキル基;フェニル基およびベンジル基等の単環系の芳香族置換基(狭義のアリール基);その他の芳香族置換基;等で置換されていてもよい。 <Water-insoluble organic semiconductor material>
The organic semiconductor material in the method for producing a colloidal dispersion according to the present invention refers to a material that is water-insoluble and soluble in an organic solvent, and is used as a p-type semiconductor material or an n-type semiconductor material. Examples of the p-type semiconductor material include polymers of polythiophene and thiophene compounds. In the present specification, the polymer of the thiophene compound includes a repeating unit having a thiophene skeleton in the main chain, and a polymer that may contain a repeating unit having a structure other than the thiophene skeleton in the main chain (excluding polythiophene). ). Here, examples of the repeating unit having a structure other than the thiophene skeleton include a repeating unit having a carbazole skeleton, a repeating unit having a benzothiophene skeleton, and a repeating unit having a p-phenylene vinylene skeleton. In any of these repeating units, a part of the hydrogen atoms contained in the repeating unit is, for example, an alkyl group having 1 to 20 carbon atoms, preferably 1 to 10 carbon atoms; a phenyl group, a benzyl group, etc. It may be substituted with a monocyclic aromatic substituent (narrowly defined aryl group); other aromatic substituents;
チオフェン系化合物のポリマーとしては、例えば、ポリ(3-ヘキシルチオフェン)(P3HT)、ポリ[[9-(1-オクチルノニル)-9H-カルバゾール-2,7-ジイル]-2,5-チオフェンジイル-2,1,3-ベンゾチアヂアゾール-4,7-ジイル-2,5-チオフェンジイル](PCDTBT)、ポリ(3-オクチルチオフェン)(P3OT)、ポリ(3-ドデシルチオフェン)(P3DDT)、ポリ[(9,9-ジ-n-オクチルフルオレニル-2,7-ジイル)-alt-(ベンゾ[2,1,3]チアジアゾール-4,8-ジイル)](F8BT)、ポリ[(9,9-ジオクチルフルオレニル-2,7-ジイル)-co-ビチオフェン](F8T2)、およびポリ(3-オクチルチオフェン-2,5-ジイル-co-3-デシルオキシチオフェン-2,5-ジイル)(POT-co-DOT)等が挙げられる。
Examples of the polymer of the thiophene compound include poly (3-hexylthiophene) (P3HT), poly [[9- (1-octylnonyl) -9H-carbazole-2,7-diyl] -2,5-thiophenediyl. -2,1,3-benzothiadiazole-4,7-diyl-2,5-thiophenediyl] (PCDTBT), poly (3-octylthiophene) (P3OT), poly (3-dodecylthiophene) (P3DDT) , Poly [(9,9-di-n-octylfluorenyl-2,7-diyl) -alt- (benzo [2,1,3] thiadiazole-4,8-diyl)] (F8BT), poly [ (9,9-dioctylfluorenyl-2,7-diyl) -co-bithiophene] (F8T2), and poly (3-octylthiophene-2,5-diyl-co-3-decylo) And xylthiophene-2,5-diyl) (POT-co-DOT).
p型半導体材料として他には、例えば、ポリ[2-メトキシ-5-(3’,7’-ジメチルオクチルオキシ)-1,4-フェニレンビニレン](MDMO-PPV)、およびポリ[2-メトキシ-5-(2-エチルヘキシルオキシ)-1,4-フェニレンビニレン](MEH-PPV)等のp-フェニレンビニレン骨格を有するポリマー、ならびにポリ[ビス(4-フェニル)(2,4,6-トリメチルフェニル)アミン](PTAA)等が挙げられる。
Other p-type semiconductor materials include, for example, poly [2-methoxy-5- (3 ′, 7′-dimethyloctyloxy) -1,4-phenylenevinylene] (MDMO-PPV), and poly [2-methoxy Polymers having a p-phenylene vinylene skeleton such as -5- (2-ethylhexyloxy) -1,4-phenylene vinylene] (MEH-PPV), and poly [bis (4-phenyl) (2,4,6-trimethyl) Phenyl) amine] (PTAA) and the like.
また、n型半導体材料としては、例えば、フラーレンおよびフラーレン誘導体が挙げられる。フラーレンとしては、C60フラーレン、C70フラーレン、およびC84フラーレン等が挙げられる。フラーレン誘導体としては、例えば、フラーレンの炭素原子の一部に、炭素数1~20、好ましくは炭素数1~10のアルキル基;エポキシ基;1~2個程度のジオキソラン構造(ジオキソラン基);インドリン基およびベンゾフラン基等の縮環有機基;等の置換基が結合した化合物が挙げられる。フラーレン誘導体として具体的には、各種のフラーレンエポキシド、1,3-ジオキソラン-フラーレン誘導体、フェニルC61酪酸メチルエステル(PCBM)、フェニルC61酪酸ブチルエステル(PCBB)、フェニルC61酪酸オクチルエステル(PCBO)、インデン付加型フラーレン誘導体、シリルメチル付加型フラーレン誘導体、インドリノ-フラーレン誘導体、およびベンゾフラノ-フラーレン誘導体等が挙げられる。
Examples of the n-type semiconductor material include fullerene and fullerene derivatives. Examples of fullerenes include C 60 fullerene, C 70 fullerene, and C 84 fullerene. As the fullerene derivative, for example, an alkyl group having 1 to 20 carbon atoms, preferably 1 to 10 carbon atoms; epoxy group; about 1 to 2 dioxolane structure (dioxolane group); And compounds having a substituent such as a condensed ring organic group such as a benzofuran group and the like. Specific examples of fullerene derivatives include various fullerene epoxides, 1,3-dioxolane-fullerene derivatives, phenyl C 61 butyric acid methyl ester (PCBM), phenyl C 61 butyric acid butyl ester (PCBB), phenyl C 61 butyric acid octyl ester (PCBO). ), Indene-added fullerene derivatives, silylmethyl-added fullerene derivatives, indolino-fullerene derivatives, and benzofurano-fullerene derivatives.
n型半導体材料として他には、例えば、ラダー状ポリマー(BBL,ポリ(ベンゾビスイミダゾベンゾフェナントロリン)等)、ホウ素を含んだ共役ポリマー(例えば、ポリ[(2,5-ジデシロキシ-1,4-フェニレン)(2,4,6-トリイソプロピルフェニルボラン)],ジフェニル末端等)、シアノ基を含むフェニレンビニレン系ポリマー(例えば、ポリ(2,5-ジ(ヘキシルオキシ)シアノテレフタリリデン)、およびポリ(5-(2-エチルヘキシルオキシ)-2-メトキシ-シアノテレフタリリデン)等)等が挙げられる。
Other n-type semiconductor materials include, for example, ladder polymers (BBL, poly (benzobisimidazobenzophenanthroline), etc.), conjugated polymers containing boron (eg, poly [(2,5-didecyloxy-1,4- Phenylene) (2,4,6-triisopropylphenylborane)], diphenyl ends, etc.), phenylene vinylene-based polymers containing cyano groups (eg, poly (2,5-di (hexyloxy) cyanoterephthalylidene), and Poly (5- (2-ethylhexyloxy) -2-methoxy-cyanoterephthalylidene) and the like.
<水溶性の有機溶媒>
水溶性の有機溶媒は、水と相分離をせずに混和することができ、且つ上記非水溶性の有機半導体材料を溶解させることができる限り、特に限定されない。水溶性の有機溶媒は、水に対して1体積%以上の溶解性を有することが好ましく、水に対して10体積%以上の溶解性を有することがより好ましい。 <Water-soluble organic solvent>
The water-soluble organic solvent is not particularly limited as long as it can be mixed with water without phase separation and can dissolve the water-insoluble organic semiconductor material. The water-soluble organic solvent preferably has a solubility of 1% by volume or more in water, and more preferably has a solubility of 10% by volume or more in water.
水溶性の有機溶媒は、水と相分離をせずに混和することができ、且つ上記非水溶性の有機半導体材料を溶解させることができる限り、特に限定されない。水溶性の有機溶媒は、水に対して1体積%以上の溶解性を有することが好ましく、水に対して10体積%以上の溶解性を有することがより好ましい。 <Water-soluble organic solvent>
The water-soluble organic solvent is not particularly limited as long as it can be mixed with water without phase separation and can dissolve the water-insoluble organic semiconductor material. The water-soluble organic solvent preferably has a solubility of 1% by volume or more in water, and more preferably has a solubility of 10% by volume or more in water.
水溶性の有機溶媒としては、例えば、メタノール、エタノール、およびイソプロパノール等のアルコール類;テトラヒドロピラン、テトラヒドロフラン、ジプロピルエーテル、ジイソプロピルエーテル、およびエチルビニルエーテル等のエーテル類;アセトン、およびメチルエチルケトン等のケトン類;蟻酸エチル、蟻酸プロピル、および酢酸エチル等のエステル類;二硫化炭素等の硫黄化合物;クロロホルム、ジクロロエタン、およびジクロロメタン等のハロゲン化炭化水素類;等が挙げられる。これらの有機溶媒は、単独で用いてもよいし、混合溶媒として用いてもよい。
Examples of the water-soluble organic solvent include alcohols such as methanol, ethanol, and isopropanol; ethers such as tetrahydropyran, tetrahydrofuran, dipropyl ether, diisopropyl ether, and ethyl vinyl ether; ketones such as acetone and methyl ethyl ketone; Examples include esters such as ethyl formate, propyl formate, and ethyl acetate; sulfur compounds such as carbon disulfide; halogenated hydrocarbons such as chloroform, dichloroethane, and dichloromethane; and the like. These organic solvents may be used alone or as a mixed solvent.
上記例示の有機溶媒のなかでも、水への溶解性に優れ、かつ環境へ悪影響を及ぼす虞が比較的少ないという観点では、エーテル類、アルコール類、およびこれらの組み合わせが好ましい。
Among the organic solvents exemplified above, ethers, alcohols, and combinations thereof are preferable from the viewpoint of excellent solubility in water and relatively low risk of adverse effects on the environment.
また、上記例示の有機溶媒のうち、ポリチオフェンおよびチオフェン系化合物のポリマーの溶解に特に好適なものは、テトラヒドロフラン、ジクロロメタン、クロロホルムまたはこれらの混合溶媒であり、なかでもテトラヒドロフラン、ジクロロメタン、またはこれらの混合溶媒が特にこれらポリマーの溶解性に優れる。フラーレンおよびフラーレン誘導体の溶解に特に好適なものは、テトラヒドロフラン、二硫化炭素、クロロホルム、エタノール、またはこれらの混合溶媒であり、なかでもテトラヒドロフラン、二硫化炭素、またはこれらの混合溶媒がフラーレン等の溶解性に優れる。
Of the organic solvents exemplified above, tetrahydrofuran, dichloromethane, chloroform or a mixed solvent thereof are particularly suitable for dissolving the polymer of polythiophene and thiophene compound, and among them, tetrahydrofuran, dichloromethane, or a mixed solvent thereof. However, the solubility of these polymers is particularly excellent. Particularly suitable for the dissolution of fullerene and fullerene derivatives are tetrahydrofuran, carbon disulfide, chloroform, ethanol, or a mixed solvent thereof. Among them, tetrahydrofuran, carbon disulfide, or a mixed solvent thereof is soluble in fullerene or the like. Excellent.
また、沸点が比較的低くて(100℃未満)後工程での除去が容易で、水に溶け易く(溶解度が、例えば、0.1体積%以上)、且つ比較的多種類の有機半導体材料を溶解可能であるという観点では、有機溶媒としては、テトラヒドロフラン、クロロホルム、およびエタノール等が好ましい。
In addition, since the boiling point is relatively low (less than 100 ° C.), it is easy to remove in a post-process, easily dissolve in water (solubility is 0.1 volume% or more, for example), and relatively many kinds of organic semiconductor materials are used. From the viewpoint of being soluble, tetrahydrofuran, chloroform, ethanol and the like are preferable as the organic solvent.
<工程Aの詳細>
有機溶媒に対する有機半導体材料の量は、特に限定されない。用いる有機溶媒に対する有機半導体材料の溶解度等によって、適宜決定すればよい。有機溶媒に有機半導体材料を溶解させた溶液中における有機半導体材料の量(濃度)は、例えば、0.01重量%以上で10重量%以下であることが好ましく、0.05重量%以上で3重量%以下であることがより好ましく、0.1重量%以上で1重量%以下であることがさらに好ましい場合がある。0.01重量%以上である場合には、最終的に得られるコロイド分散液の濃度調整(濃縮)がより容易となるからである。また、10重量%以下であれば、後述する工程B以降において、有機半導体材料の一部が水中でコロイド化せずに凝集して粗大粒子を形成する虞がより確実に低減されるからである。 <Details of Process A>
The amount of the organic semiconductor material with respect to the organic solvent is not particularly limited. What is necessary is just to determine suitably by the solubility etc. of the organic-semiconductor material with respect to the organic solvent to be used. The amount (concentration) of the organic semiconductor material in the solution obtained by dissolving the organic semiconductor material in the organic solvent is, for example, preferably 0.01% by weight or more and 10% by weight or less, and 0.05% by weight or more and 3%. More preferably, it is more preferably 0.1% by weight or less and further preferably 1% by weight or less. This is because the concentration adjustment (concentration) of the finally obtained colloidal dispersion becomes easier when the content is 0.01% by weight or more. In addition, if it is 10% by weight or less, the risk that a part of the organic semiconductor material aggregates without forming a colloid in water and forms coarse particles is more reliably reduced in Step B and later described later. .
有機溶媒に対する有機半導体材料の量は、特に限定されない。用いる有機溶媒に対する有機半導体材料の溶解度等によって、適宜決定すればよい。有機溶媒に有機半導体材料を溶解させた溶液中における有機半導体材料の量(濃度)は、例えば、0.01重量%以上で10重量%以下であることが好ましく、0.05重量%以上で3重量%以下であることがより好ましく、0.1重量%以上で1重量%以下であることがさらに好ましい場合がある。0.01重量%以上である場合には、最終的に得られるコロイド分散液の濃度調整(濃縮)がより容易となるからである。また、10重量%以下であれば、後述する工程B以降において、有機半導体材料の一部が水中でコロイド化せずに凝集して粗大粒子を形成する虞がより確実に低減されるからである。 <Details of Process A>
The amount of the organic semiconductor material with respect to the organic solvent is not particularly limited. What is necessary is just to determine suitably by the solubility etc. of the organic-semiconductor material with respect to the organic solvent to be used. The amount (concentration) of the organic semiconductor material in the solution obtained by dissolving the organic semiconductor material in the organic solvent is, for example, preferably 0.01% by weight or more and 10% by weight or less, and 0.05% by weight or more and 3%. More preferably, it is more preferably 0.1% by weight or less and further preferably 1% by weight or less. This is because the concentration adjustment (concentration) of the finally obtained colloidal dispersion becomes easier when the content is 0.01% by weight or more. In addition, if it is 10% by weight or less, the risk that a part of the organic semiconductor material aggregates without forming a colloid in water and forms coarse particles is more reliably reduced in Step B and later described later. .
工程Bで得られたコロイド分散液中に粗大粒子が存在すると、当該コロイド分散液を用いて製造した有機薄膜素子のデバイス特性が損なわれる虞がある。また、濾過によって粗大粒子を除去することもできるが、有機半導体材料の有効活用の観点では、粗大粒子の発生を可能な限り抑制することが好ましい。
If coarse particles are present in the colloidal dispersion obtained in Step B, the device characteristics of the organic thin film element produced using the colloidal dispersion may be impaired. Although coarse particles can be removed by filtration, it is preferable to suppress the generation of coarse particles as much as possible from the viewpoint of effective utilization of the organic semiconductor material.
分散は、動的光散乱(DLS)法に基づき測定した有機半導体材料の平均粒径が50nm以下になるまで行う。平均粒径が50nmより大きいと、最終的に得られるコロイド分散液中で有機半導体材料の粗大粒子を大量に形成するからである。加えて、当該コロイド分散液の保存安定性が著しく劣るようになるからである。さらに、当該コロイド分散液中の有機半導体材料の平均粒径は大きいため、このコロイド分散液を有機薄膜素子の製造に用いた場合、有機薄膜素子のデバイス特性が充分に発揮されない虞があるからである。分散は、好ましくは上記平均粒径が20nm以下、より好ましくは10nm以下になるまで行う。なお、分散を充分に行うほど、工程Bで用いる水の量を低減できて、より高濃度なコロイド分散液を調製可能となるという利点もある。
Dispersion is performed until the average particle size of the organic semiconductor material measured based on the dynamic light scattering (DLS) method is 50 nm or less. This is because if the average particle size is larger than 50 nm, a large amount of coarse particles of the organic semiconductor material are formed in the finally obtained colloidal dispersion. In addition, this is because the storage stability of the colloidal dispersion becomes extremely poor. Furthermore, since the average particle size of the organic semiconductor material in the colloidal dispersion liquid is large, there is a possibility that the device characteristics of the organic thin film element may not be sufficiently exhibited when this colloidal dispersion liquid is used for the production of an organic thin film element. is there. The dispersion is preferably carried out until the average particle diameter is 20 nm or less, more preferably 10 nm or less. In addition, there is also an advantage that the amount of water used in Step B can be reduced and the colloidal dispersion having a higher concentration can be prepared as the dispersion is sufficiently performed.
有機半導体材料を分散させる方法は、機械的に分散させる方法であれば、特に限定されない。分散させる方法としては、例えば、超音波による方法、ビーズミル法、ロールミル法、ジェットミル法、およびホモジナイザー法等が挙げられる。分散させる方法としては、超音波による方法が好ましい。超音波による方法は、簡便であり、汚染が発生する虞が少なく、且つ有機半導体材料の粒径を均等に小さくできるからである。超音波を発生させる装置として、例えば、超音波分散機または超音波洗浄機等の公知の装置を用いることができる。超音波の照射条件は、特に限定されない。超音波の照射条件は、例えば、周波数が20~50kHz、超音波出力が50~500W、照射時間が10~60分であることが好ましい。
The method for dispersing the organic semiconductor material is not particularly limited as long as the organic semiconductor material is mechanically dispersed. Examples of the dispersing method include an ultrasonic method, a bead mill method, a roll mill method, a jet mill method, and a homogenizer method. As a method of dispersing, an ultrasonic method is preferable. This is because the ultrasonic method is simple, there is little risk of contamination, and the particle size of the organic semiconductor material can be reduced uniformly. As a device for generating ultrasonic waves, for example, a known device such as an ultrasonic disperser or an ultrasonic cleaner can be used. Ultrasonic irradiation conditions are not particularly limited. The ultrasonic irradiation conditions are preferably, for example, a frequency of 20 to 50 kHz, an ultrasonic output of 50 to 500 W, and an irradiation time of 10 to 60 minutes.
また、分散させる際の温度は特に限定されないが、好ましくは有機溶媒の温度を30~60℃の範囲内に保ちながら、有機半導体材料を分散する。分散の速度を向上させることができるからである。また、有機半導体材料の平均粒径をより小さく(例えば、10nm以下)できるからである。分散させる際の温度は、例えば、有機溶媒としてTHFを使用する場合には、より好ましくは40~50℃の範囲内に保っておく。
The temperature at the time of dispersion is not particularly limited, but the organic semiconductor material is preferably dispersed while maintaining the temperature of the organic solvent within a range of 30 to 60 ° C. This is because the speed of dispersion can be improved. Moreover, it is because the average particle diameter of organic-semiconductor material can be made smaller (for example, 10 nm or less). For example, when THF is used as the organic solvent, the temperature at the time of dispersion is more preferably maintained within the range of 40 to 50 ° C.
本発明において「DLS法に基づき測定した平均粒径」とはこの技術分野における一般的な意味で用いられており、いわゆる動的光散乱法の原理に基づく単分散モード解析によって求めた粒子の粒度分布における積算値50%に対応する粒径を指す。なお、粒度分布を解析する際に一般的に行われるように、明らかにノイズとして区別できる領域を除外すること、および、正確に平均粒径を反映することが出来ない程度に乖離したマルチピークが出現している測定データは解析の対象としないこと、等の処理を適宜行う。
In the present invention, the “average particle diameter measured based on the DLS method” is used in a general sense in this technical field, and the particle size of the particle obtained by monodisperse mode analysis based on the principle of the so-called dynamic light scattering method. It refers to the particle size corresponding to the integrated value 50% in the distribution. In addition, as is generally done when analyzing the particle size distribution, the areas that can be clearly distinguished as noise are excluded, and there are multi-peaks that deviate to the extent that the average particle diameter cannot be accurately reflected. Appearing measurement data is appropriately processed such as not to be analyzed.
なお、DLS法に基づき測定した有機半導体材料の平均粒径が50nm以下になるまで分散できているか否かの判定は、後述する実施例の記載に従いDLS法に基づき実際に測定値を得る方法の他、分散前後の溶液の色の変化を指標にして判定することもできる。例えば、ポリ(3-ヘキシルチオフェン)の場合、分散によって溶液の色が淡橙色に変化すれば、DLS法に基づき測定したポリ(3-ヘキシルチオフェン)の平均粒径が5nm~50nm程度となっていることを示す。
Whether or not the organic semiconductor material measured based on the DLS method can be dispersed until the average particle size becomes 50 nm or less is determined by the method of actually obtaining the measured value based on the DLS method in accordance with the description of Examples described later. In addition, it can also be determined using the change in color of the solution before and after dispersion as an index. For example, in the case of poly (3-hexylthiophene), if the color of the solution changes to light orange due to dispersion, the average particle size of poly (3-hexylthiophene) measured based on the DLS method becomes about 5 nm to 50 nm. Indicates that
(工程B)
工程Bは、工程Aで作製した溶液を水に加えて攪拌する工程である。工程Bにおいて、有機半導体材料は、水中でコロイド化して分散する。本明細書では、工程Bを経て得られた、有機半導体材料が水中でコロイド化して分散した液を、単に「コロイド分散液」と称する場合がある。 (Process B)
Step B is a step in which the solution prepared in Step A is added to water and stirred. In step B, the organic semiconductor material is colloided and dispersed in water. In the present specification, a liquid obtained by performing colloidal dispersion in water obtained through the process B may be simply referred to as a “colloid dispersion liquid”.
工程Bは、工程Aで作製した溶液を水に加えて攪拌する工程である。工程Bにおいて、有機半導体材料は、水中でコロイド化して分散する。本明細書では、工程Bを経て得られた、有機半導体材料が水中でコロイド化して分散した液を、単に「コロイド分散液」と称する場合がある。 (Process B)
Step B is a step in which the solution prepared in Step A is added to water and stirred. In step B, the organic semiconductor material is colloided and dispersed in water. In the present specification, a liquid obtained by performing colloidal dispersion in water obtained through the process B may be simply referred to as a “colloid dispersion liquid”.
工程Aで作製した溶液に対する水の量は、特に限定されないが、好ましくは10倍体積以上で100倍体積以下であり、より好ましくは20倍体積以上で50倍体積以下であり、さらに好ましくは30倍体積以上で50倍体積以下である。10倍体積以上であれば、有機半導体材料がコロイド化せずに、不溶化して浮いてくる虞がより確実に低減される。また、100倍体積以下であれば、得られたコロイド分散液の濃度調整(濃縮)がより容易となる。
The amount of water with respect to the solution prepared in step A is not particularly limited, but is preferably 10 times or more and 100 times or less, more preferably 20 times or more and 50 times or less, more preferably 30 times. More than double volume and less than 50 times volume. When the volume is 10 times or more, the possibility that the organic semiconductor material is insolubilized and floats without colloidalization is more reliably reduced. Moreover, if it is 100 volume or less, the density | concentration adjustment (concentration) of the obtained colloid dispersion liquid will become easier.
工程Bは、工程Aの後できるだけ早く行うことが好ましい。工程Aで作製した溶液中で有機半導体材料が凝集し、工程Bにおいて粗大粒子を形成する虞がより確実に低減されるからである。工程Bは、工程Aの後、30分以内に行うことが好ましく、15分以内に行うことがより好ましく、5分以内に行うことがさらに好ましく、直ちに行うことが特に好ましい。
Process B is preferably performed as soon as possible after Process A. This is because the organic semiconductor material aggregates in the solution prepared in step A and the risk of forming coarse particles in step B is more reliably reduced. Step B is preferably performed within 30 minutes after Step A, more preferably within 15 minutes, further preferably within 5 minutes, and particularly preferably immediately.
工程Aで作製した溶液を水に加える方法は、特に限定されないが、滴下して加えることが好ましい。少量ずつ加えていく方が、一度に加えるよりも有機半導体材料の粗大粒子を形成しにくい傾向があるからである。
The method of adding the solution prepared in Step A to water is not particularly limited, but it is preferable to add it dropwise. This is because adding small amounts tends to make it difficult to form coarse particles of the organic semiconductor material than adding them all at once.
工程Aで作製した溶液が加えられた水を攪拌する方法は、特に限定されず、例えば、一般的なメカニカルスターラーを用いて室温で1~2時間程度行えばよい。
The method of stirring the water to which the solution prepared in Step A is added is not particularly limited, and may be performed, for example, at room temperature for about 1 to 2 hours using a general mechanical stirrer.
(工程C)
好ましくは、工程Bの後、得られたコロイド分散液から有機溶媒を除去する工程(工程C)を行う。これによって、コロイド分散液の濃縮および不要物の除去が行われるため、当該コロイド分散液を有機薄膜素子の製造等に用いた際に、より良質な(例えば、均一で平滑な)薄膜を形成することができる。 (Process C)
Preferably, after step B, a step of removing the organic solvent from the obtained colloidal dispersion (step C) is performed. As a result, the colloidal dispersion is concentrated and unnecessary substances are removed. Therefore, when the colloidal dispersion is used for manufacturing an organic thin film element, a better quality (eg, uniform and smooth) thin film is formed. be able to.
好ましくは、工程Bの後、得られたコロイド分散液から有機溶媒を除去する工程(工程C)を行う。これによって、コロイド分散液の濃縮および不要物の除去が行われるため、当該コロイド分散液を有機薄膜素子の製造等に用いた際に、より良質な(例えば、均一で平滑な)薄膜を形成することができる。 (Process C)
Preferably, after step B, a step of removing the organic solvent from the obtained colloidal dispersion (step C) is performed. As a result, the colloidal dispersion is concentrated and unnecessary substances are removed. Therefore, when the colloidal dispersion is used for manufacturing an organic thin film element, a better quality (eg, uniform and smooth) thin film is formed. be able to.
有機溶媒を除去する方法は、特に限定されない。有機溶媒を除去する方法としては、例えば、1)コロイド分散液を加熱して、有機溶媒を蒸発させること、2)減圧して有機溶媒を蒸発させること、3)これら1)および2)を組み合わせること、が挙げられる。有機溶媒を除去する方法の好ましい例として、好ましくは60℃以下、より好ましくは50℃以下、さらに好ましくは40℃以下、特に好ましくは室温で、減圧することによって有機溶媒を蒸発させることが挙げられる。加熱のみで有機溶媒を除去することに比べて、有機半導体材料のコロイドの性質が変化する虞が少ないからである。なお、工程Cにおいて、コロイド分散液の濃度調整(濃縮)を兼ねて、コロイド分散液中の水も蒸発させてもよい。例えば、後述のように噴霧して有機半導体薄膜を形成する場合に、コロイド分散液の高濃度化によって、噴霧時間の短縮を図ることができる。
The method for removing the organic solvent is not particularly limited. Examples of the method for removing the organic solvent include 1) heating the colloidal dispersion to evaporate the organic solvent, 2) evaporating the organic solvent by reducing the pressure, and 3) combining these 1) and 2). It can be mentioned. Preferable examples of the method for removing the organic solvent include evaporating the organic solvent by reducing the pressure at preferably 60 ° C. or lower, more preferably 50 ° C. or lower, further preferably 40 ° C. or lower, particularly preferably room temperature. . This is because the colloidal properties of the organic semiconductor material are less likely to change compared to removing the organic solvent only by heating. In step C, the water in the colloidal dispersion may also be evaporated to double the concentration (concentration) of the colloidal dispersion. For example, when an organic semiconductor thin film is formed by spraying as described later, the spraying time can be shortened by increasing the concentration of the colloidal dispersion.
(工程D)
必要に応じて、工程Bと工程Cとの間または工程Cの後、コロイド分散液を濾過する工程(工程D)を行ってもよい。コロイド分散液中で有機半導体材料の粗大粒子が形成された場合でも、濾過によって、当該粗大粒子をコロイド分散液から除去することができる。濾過の方法は、特に限定されないが、好ましくはペーパーフィルターを用いる方法である。ペーパーフィルターの種類は、コロイド化した半導体材料の濾取が少なく粗大粒子の選択的な濾取が可能という観点で、JIS P3801 5種Cの規格のものが好ましい。これによって、より安定なコロイド分散液を得ることができる。そのため、当該コロイド分散液を有機薄膜素子の製造等に用いた際に、より良質な薄膜を形成することができる。 (Process D)
If necessary, a step of filtering the colloidal dispersion (step D) may be performed between step B and step C or after step C. Even when coarse particles of the organic semiconductor material are formed in the colloidal dispersion, the coarse particles can be removed from the colloidal dispersion by filtration. The method of filtration is not particularly limited, but is preferably a method using a paper filter. The type of the paper filter is preferably JIS P3801 5C, from the viewpoint that the colloidal semiconductor material is less filtered and coarse particles can be selectively filtered. As a result, a more stable colloidal dispersion can be obtained. Therefore, a better quality thin film can be formed when the colloidal dispersion is used for the production of an organic thin film element.
必要に応じて、工程Bと工程Cとの間または工程Cの後、コロイド分散液を濾過する工程(工程D)を行ってもよい。コロイド分散液中で有機半導体材料の粗大粒子が形成された場合でも、濾過によって、当該粗大粒子をコロイド分散液から除去することができる。濾過の方法は、特に限定されないが、好ましくはペーパーフィルターを用いる方法である。ペーパーフィルターの種類は、コロイド化した半導体材料の濾取が少なく粗大粒子の選択的な濾取が可能という観点で、JIS P3801 5種Cの規格のものが好ましい。これによって、より安定なコロイド分散液を得ることができる。そのため、当該コロイド分散液を有機薄膜素子の製造等に用いた際に、より良質な薄膜を形成することができる。 (Process D)
If necessary, a step of filtering the colloidal dispersion (step D) may be performed between step B and step C or after step C. Even when coarse particles of the organic semiconductor material are formed in the colloidal dispersion, the coarse particles can be removed from the colloidal dispersion by filtration. The method of filtration is not particularly limited, but is preferably a method using a paper filter. The type of the paper filter is preferably JIS P3801 5C, from the viewpoint that the colloidal semiconductor material is less filtered and coarse particles can be selectively filtered. As a result, a more stable colloidal dispersion can be obtained. Therefore, a better quality thin film can be formed when the colloidal dispersion is used for the production of an organic thin film element.
〔本発明に係るコロイド分散液〕
上記の製造方法によって製造されたコロイド分散液は、以下のような特徴を有する。
(i)有機半導体材料のコロイドの粒径が小さい。
(ii)不要な有機溶媒がほとんど含まれていないか、実質的に全く含まれていない。
(iii)分散安定剤(界面活性剤等)を併用しなくても分散安定性が良好であり、高濃度でも分散安定性を有する。 [Colloidal dispersion according to the present invention]
The colloidal dispersion produced by the above production method has the following characteristics.
(I) The particle size of the colloid of the organic semiconductor material is small.
(Ii) Little or no unnecessary organic solvent is contained.
(Iii) Even if a dispersion stabilizer (such as a surfactant) is not used in combination, the dispersion stability is good, and the dispersion stability is maintained even at a high concentration.
上記の製造方法によって製造されたコロイド分散液は、以下のような特徴を有する。
(i)有機半導体材料のコロイドの粒径が小さい。
(ii)不要な有機溶媒がほとんど含まれていないか、実質的に全く含まれていない。
(iii)分散安定剤(界面活性剤等)を併用しなくても分散安定性が良好であり、高濃度でも分散安定性を有する。 [Colloidal dispersion according to the present invention]
The colloidal dispersion produced by the above production method has the following characteristics.
(I) The particle size of the colloid of the organic semiconductor material is small.
(Ii) Little or no unnecessary organic solvent is contained.
(Iii) Even if a dispersion stabilizer (such as a surfactant) is not used in combination, the dispersion stability is good, and the dispersion stability is maintained even at a high concentration.
本発明に係るコロイド分散液は、例えば、有機半導体インク組成物として利用することができる。本発明に係るコロイド分散液は、上記の特徴を有するため、有機薄膜素子の製造に用いた際に、良質な薄膜を形成し得る。したがって、当該有機薄膜素子は、高性能なデバイス特性を有し得る。また、得られる有機薄膜素子は、特に光電子特性に優れるので、本発明に係るコロイド分散液は、特に、太陽電池用薄膜、およびフォトセンサ用薄膜等の高性能光導電膜の製造に好適に利用し得る。
The colloidal dispersion according to the present invention can be used, for example, as an organic semiconductor ink composition. Since the colloidal dispersion according to the present invention has the above-described characteristics, a high-quality thin film can be formed when used in the production of an organic thin film element. Therefore, the organic thin film element can have high-performance device characteristics. In addition, since the obtained organic thin film element is particularly excellent in optoelectronic properties, the colloidal dispersion according to the present invention is particularly suitably used for the production of high performance photoconductive films such as thin films for solar cells and thin films for photosensors. Can do.
〔本発明に係る有機薄膜素子の製造方法〕
(付着工程)
本発明に係る有機薄膜素子の製造方法は、上記コロイド分散液を基体に付着させる付着工程を含むものである。 [Method for Producing Organic Thin Film Element According to the Present Invention]
(Adhesion process)
The method for producing an organic thin film element according to the present invention includes an attaching step for attaching the colloidal dispersion to a substrate.
(付着工程)
本発明に係る有機薄膜素子の製造方法は、上記コロイド分散液を基体に付着させる付着工程を含むものである。 [Method for Producing Organic Thin Film Element According to the Present Invention]
(Adhesion process)
The method for producing an organic thin film element according to the present invention includes an attaching step for attaching the colloidal dispersion to a substrate.
基体の形状は特に限定されないが、基板等が挙げられる。基板としては、例えば、ガラス基板、プラスチック基板、およびシリコン基板等が挙げられる。基体には、電極パターン、および/または他の半導体膜等が形成されていてもよい。
The shape of the substrate is not particularly limited, and examples thereof include a substrate. Examples of the substrate include a glass substrate, a plastic substrate, and a silicon substrate. An electrode pattern and / or other semiconductor films may be formed on the substrate.
上記コロイド分散液を基体に付着させる方法は、特に限定されない。付着させる方法としては、例えば、スピンコーティング、ロールコーティング、スピンキャスティング、ドクターブレーディング、ディップコーティング、スプレーコーティング、スクリーン印刷、グラビア印刷、インクジェット印刷、およびダイコート法等が挙げられ、なかでも、比較的低濃度で、粘度の低い半導体インクの利用が可能なスプレーコーティングが好ましい。スプレーコーティングとしては、例えば、蒸発噴霧堆積(ESDUS)法、および静電噴霧堆積(ESD)法等が挙げられる。特にESDUS法、およびESD法等の方法を併用することによって、容易に任意の膜厚で有機半導体薄膜を得ることができる。
The method for attaching the colloidal dispersion to the substrate is not particularly limited. Examples of the adhesion method include spin coating, roll coating, spin casting, doctor blading, dip coating, spray coating, screen printing, gravure printing, ink jet printing, and die coating methods. Spray coating is preferred because it allows the use of semiconductor inks that are low in concentration and low in viscosity. Examples of the spray coating include an evaporation spray deposition (ESDUS) method and an electrostatic spray deposition (ESD) method. In particular, an organic semiconductor thin film having an arbitrary film thickness can be easily obtained by using a method such as the ESDUS method and the ESD method together.
付着させる方法としては、ESD法が特に好ましい。ESD法は、基体表面の特定の場所(電極の配置箇所)を指定して製膜することができ、効率的だからである。またESD法は、噴霧される液滴(コロイド分散液)が小さいため、液滴が基体に到達するまでの間に、コロイド分散液中にわずかに残っている有機溶媒を揮発させることができるからである。さらに、噴霧される液滴が小さいため、微小なコロイドを1個または数個単位で基体に均質に吹き付けることができるからである。
The ESD method is particularly preferable as the method of attaching. This is because the ESD method is efficient because it can be formed by designating a specific location (electrode location) on the surface of the substrate. In addition, since the droplets (colloid dispersion liquid) to be sprayed are small in the ESD method, the organic solvent that remains slightly in the colloid dispersion liquid can be volatilized before the liquid droplets reach the substrate. It is. Furthermore, since the droplets to be sprayed are small, a minute colloid can be uniformly sprayed on the substrate in units of one or several.
ESD法において用いる静電噴霧装置は、公知の装置でよい。基体に設ける電極としては、例えば、ITO(Indium Tin Oxide)電極、アルミニウム電極、金電極、銀電極、クロム電極、酸化チタン電極、および酸化亜鉛電極等が挙げられる。また、電極と形成される有機半導体薄膜との間に、絶縁膜、他の半導体膜、または金属膜等が挿入されてもよい。例えば、電極と有機半導体薄膜のとの間にポリ(3,4-エチレンジオキシチオフェン)/ポリスチレンスルホン酸(PEDOT/PSS)からなる薄膜が形成されていてもよく、あるいは、電極と有機半導体薄膜との間にフッ化リチウムからなる薄膜が形成されていてもよい。
The electrostatic spraying device used in the ESD method may be a known device. Examples of the electrode provided on the base include an ITO (Indium / Tin / Oxide) electrode, an aluminum electrode, a gold electrode, a silver electrode, a chromium electrode, a titanium oxide electrode, and a zinc oxide electrode. Further, an insulating film, another semiconductor film, a metal film, or the like may be inserted between the electrode and the formed organic semiconductor thin film. For example, a thin film made of poly (3,4-ethylenedioxythiophene) / polystyrene sulfonic acid (PEDOT / PSS) may be formed between the electrode and the organic semiconductor thin film, or the electrode and the organic semiconductor thin film A thin film made of lithium fluoride may be formed between the two.
ESD法における静電噴霧の条件は、有機半導体材料の種類、有機半導体薄膜の面積および膜厚、ならびに有機薄膜素子の用途等によって、適宜決定すればよい(下記実施例も参照)。コロイド分散液(有機半導体インク組成物)の濃度は、良好な成膜スピードを確保する観点では、例えば、0.04~0.06mg/ml程度にすることが好ましく、0.05mg/ml程度にすることがより好ましい。なお、コロイド分散液が低濃度であっても、噴霧する時間を長くすることで、所望の膜厚にすることが可能である。
The conditions for electrostatic spraying in the ESD method may be appropriately determined depending on the type of organic semiconductor material, the area and thickness of the organic semiconductor thin film, the use of the organic thin film element, and the like (see also the following examples). The concentration of the colloidal dispersion (organic semiconductor ink composition) is preferably about 0.04 to 0.06 mg / ml, for example, about 0.05 mg / ml, from the viewpoint of securing a good film forming speed. More preferably. Even when the colloidal dispersion liquid has a low concentration, it is possible to obtain a desired film thickness by increasing the spraying time.
なお、ESD法におけるエレクトロスプレー現象のメカニズムについては現在以下のように考えられている。すなわち、まず、電圧の印加によってスプレーキャピラリー先端の液体(コロイド分散液)表面に電極と反対符号の電荷を持つイオンが集まる。液体表面に蓄積された電荷と電場との相互作用によってキャピラリー先端ではメニスカスが半円球状に盛り上がる。より高い電場の下では、Taylor-coneと呼ばれる円錐状のメニスカスが形成される。電場をさらに大きくし、静電気力反発が表面張力を上回ると、液体の一部がTaylor-coneから飛び出し、液滴あるいはジェットとして噴出を始める。噴出された液滴あるいはジェットは、強く帯電しており、電場によって導電性基体(基体上の電極)へ引き寄せられる。場合によっては液体内部での静電気力反発によってさらに分裂して細かい液滴あるいはジェットを形成する。形成された液滴のサイズは極めて小さく、体積あたりの表面積が非常に大きいため、極めて短時間のうちに多くの溶媒が蒸発することとなる。これによって、基体上にはナノスケールの液滴が噴射された状態となり、非常に緻密で、均一性を有する膜を得ることができる。
The mechanism of the electrospray phenomenon in the ESD method is currently considered as follows. That is, first, ions having a charge opposite to that of the electrode collect on the surface of the liquid (colloid dispersion) at the tip of the spray capillary by applying a voltage. The meniscus rises in a semispherical shape at the capillary tip due to the interaction between the electric charge accumulated on the liquid surface and the electric field. Under a higher electric field, a conical meniscus called Taylor-cone is formed. When the electric field is further increased and the electrostatic force repulsion exceeds the surface tension, a part of the liquid jumps out of the Taylor-cone and starts to be ejected as a droplet or a jet. The ejected liquid droplet or jet is strongly charged and is attracted to the conductive substrate (electrode on the substrate) by the electric field. In some cases, the liquid is further broken by electrostatic repulsion within the liquid to form fine droplets or jets. Since the size of the formed droplets is extremely small and the surface area per volume is very large, a large amount of solvent evaporates in a very short time. As a result, nanoscale droplets are jetted onto the substrate, and a very dense and uniform film can be obtained.
ESD法を用いて製造された本発明に係る有機薄膜素子は、光電変換特性に優れる(下記実施例も参照)。したがって、太陽電池用薄膜、およびフォトセンサ用薄膜等の高性能光導電膜として好適に用いられ得る。
The organic thin film element according to the present invention manufactured using the ESD method is excellent in photoelectric conversion characteristics (see also the following examples). Therefore, it can be suitably used as a high-performance photoconductive film such as a thin film for a solar cell and a thin film for a photosensor.
また、基体はスピンコーティングによって形成された半導体膜を表面に有していてもよい。半導体膜の材料は、例えば、付着させるコロイド分散液に分散している有機半導体材料と多数キャリアが同じである(すなわち、n型・p型の区分が同じである)材料であり、好ましくは、付着させるコロイド分散液に分散している有機半導体材料と同一の材料である。上記コロイド分散液は、半導体膜の少なくとも一部に付着させればよい。このように製造された有機薄膜素子は、光電変換特性により優れる(下記実施例も参照)。したがって、太陽電池用薄膜、およびフォトセンサ用薄膜等の高性能光導電膜としてより好適に用いられ得る。
Further, the substrate may have a semiconductor film formed on the surface by spin coating. The material of the semiconductor film is, for example, a material in which the majority carriers are the same as the organic semiconductor material dispersed in the colloidal dispersion to be adhered (that is, the n-type / p-type classification is the same), preferably It is the same material as the organic semiconductor material dispersed in the colloidal dispersion to be adhered. The colloidal dispersion may be attached to at least a part of the semiconductor film. The organic thin film element manufactured in this way is more excellent in photoelectric conversion characteristics (see also the following examples). Therefore, it can be more suitably used as a high-performance photoconductive film such as a thin film for a solar cell and a thin film for a photosensor.
有機薄膜素子の製造方法に用いる本発明のコロイド分散液(有機半導体インク組成物)は、n型半導体材料、p型半導体材料の何れを用いても調製可能である。したがって、本発明のコロイド分散液を用いて、n型半導体薄膜素子、p型半導体薄膜素子、およびpn接合型半導体薄膜素子等、n型およびp型半導体材料を自在に組み合わせた有機薄膜素子を製造することができる。
The colloidal dispersion liquid (organic semiconductor ink composition) of the present invention used in the method for producing an organic thin film element can be prepared using either an n-type semiconductor material or a p-type semiconductor material. Therefore, an organic thin film element in which n-type and p-type semiconductor materials are freely combined, such as an n-type semiconductor thin film element, a p-type semiconductor thin film element, and a pn junction type semiconductor thin film element, is manufactured using the colloid dispersion liquid of the present invention. can do.
(その他の工程)
有機薄膜素子の製造において、必要に応じて、形成したコロイド粒子の製膜性向上のために、界面活性剤、または増粘剤等の添加剤をコロイド分散液に添加してもよい。また、薄膜成形後の機能の維持または向上を目的として、酸化防止剤、または光安定剤等の添加剤をコロイド分散液に添加してもよい。コロイド分散液の製造過程または有機薄膜素子の製造過程における、上記添加剤の添加時期および添加量は、適宜決定し得る。 (Other processes)
In the production of the organic thin film element, an additive such as a surfactant or a thickener may be added to the colloidal dispersion to improve the film forming property of the formed colloidal particles, if necessary. Moreover, you may add additives, such as antioxidant or a light stabilizer, to a colloid dispersion liquid for the purpose of the maintenance or improvement of the function after thin film shaping | molding. The addition timing and amount of the additive in the process of manufacturing the colloidal dispersion or the process of manufacturing the organic thin film element can be appropriately determined.
有機薄膜素子の製造において、必要に応じて、形成したコロイド粒子の製膜性向上のために、界面活性剤、または増粘剤等の添加剤をコロイド分散液に添加してもよい。また、薄膜成形後の機能の維持または向上を目的として、酸化防止剤、または光安定剤等の添加剤をコロイド分散液に添加してもよい。コロイド分散液の製造過程または有機薄膜素子の製造過程における、上記添加剤の添加時期および添加量は、適宜決定し得る。 (Other processes)
In the production of the organic thin film element, an additive such as a surfactant or a thickener may be added to the colloidal dispersion to improve the film forming property of the formed colloidal particles, if necessary. Moreover, you may add additives, such as antioxidant or a light stabilizer, to a colloid dispersion liquid for the purpose of the maintenance or improvement of the function after thin film shaping | molding. The addition timing and amount of the additive in the process of manufacturing the colloidal dispersion or the process of manufacturing the organic thin film element can be appropriately determined.
コロイド分散液は、付着させる方法に応じて、予め希釈または濃縮することによって、濃度を調整してもよい。上述のように、工程Cにおいて、有機溶媒の除去と濃度調整(濃縮)とを同時に行ってもよい。
The concentration of the colloidal dispersion liquid may be adjusted by diluting or concentrating in advance according to the method of adhesion. As described above, in step C, the removal of the organic solvent and the concentration adjustment (concentration) may be performed simultaneously.
付着工程以外の工程については、公知の方法を用いればよい。また、形成した有機半導体薄膜の上に、さらに、他の半導体薄膜、および/または電極等を積層してもよい。さらに、必要に応じて有機薄膜素子中にドーパントをドープすることもできる。ドーパントをドープする方法は特に限定されないが、例えば、ドーパントを分散した水系インクを用いて、ESD法等のスプレーコーティングの手法により、有機薄膜素子の形成と同時にまたは形成後に、ドーパントをドープする。
For the steps other than the adhesion step, a known method may be used. Further, another semiconductor thin film and / or an electrode may be further laminated on the formed organic semiconductor thin film. Furthermore, a dopant can also be doped in the organic thin film element as needed. The method for doping the dopant is not particularly limited. For example, the dopant is doped simultaneously with or after the formation of the organic thin film element by using a water-based ink in which the dopant is dispersed, by a spray coating technique such as an ESD method.
本発明に係るコロイド分散液は水系である。そのため、本発明に係る有機薄膜素子の製造方法は、環境負荷が低減されている。また、本発明に係る有機薄膜素子の製造方法は、消防上あるいは労働衛生上の安全性に優れている。
The colloidal dispersion according to the present invention is aqueous. For this reason, the organic thin film element manufacturing method according to the present invention reduces the environmental load. Moreover, the manufacturing method of the organic thin film element which concerns on this invention is excellent in the safety | security on fire fighting or occupational health.
〔本発明に係る有機薄膜素子〕
有機薄膜素子としては、例えば、太陽電池、EL素子、トランジスタ(光トランジスタ等)、センサ(光センサ等)、メモリ、電子写真用感光体、コンデンサ、およびバッテリー等が挙げられる。 [Organic thin film element according to the present invention]
Examples of the organic thin film element include a solar battery, an EL element, a transistor (such as a phototransistor), a sensor (such as a photosensor), a memory, a photoconductor for electrophotography, a capacitor, and a battery.
有機薄膜素子としては、例えば、太陽電池、EL素子、トランジスタ(光トランジスタ等)、センサ(光センサ等)、メモリ、電子写真用感光体、コンデンサ、およびバッテリー等が挙げられる。 [Organic thin film element according to the present invention]
Examples of the organic thin film element include a solar battery, an EL element, a transistor (such as a phototransistor), a sensor (such as a photosensor), a memory, a photoconductor for electrophotography, a capacitor, and a battery.
本発明に係るコロイド分散液を用いれば、分散剤等の不要な物質が含まれていない有機半導体薄膜を製造し得る。そのため、本発明に係る有機薄膜素子は、デバイス特性が損なわれる虞が少ないという特徴を有する。
If the colloidal dispersion according to the present invention is used, an organic semiconductor thin film containing no unnecessary substances such as a dispersant can be produced. Therefore, the organic thin film element according to the present invention has a feature that the device characteristics are less likely to be impaired.
さらに、本発明に係るコロイド分散液を用いて得られた有機半導体薄膜中における有機半導体材料の粒径は、例えば、100nm以下であり、70nm以下であり、50nm以下であり、場合によっては、10nm以下であり得る(下記実施例も参照)。一般に、有機薄膜素子、例えば、太陽電池においては、有機半導体薄膜中における有機半導体材料の粒径が小さい程、有機薄膜素子のデバイス特性が向上するといわれている。そのため、本発明に係る有機薄膜素子は、デバイス特性に優れるという特徴を有する。
Furthermore, the particle size of the organic semiconductor material in the organic semiconductor thin film obtained using the colloidal dispersion according to the present invention is, for example, 100 nm or less, 70 nm or less, 50 nm or less, and in some cases, 10 nm. (See also the examples below). In general, in an organic thin film element, for example, a solar cell, it is said that the device characteristics of an organic thin film element are improved as the particle size of the organic semiconductor material in the organic semiconductor thin film is smaller. Therefore, the organic thin film element according to the present invention is characterized by excellent device characteristics.
以上のように、本発明に係る製造方法は、非水溶性の有機半導体材料のコロイドが水に分散しているコロイド分散液の製造方法であって、水溶性の有機溶媒中に上記有機半導体材料を動的光散乱法に基づき測定した平均粒径が50nm以下になるまで分散して溶解し、有機半導体材料を含む溶液を作製する工程Aと、上記溶液を水に加えて攪拌する工程Bとを含むことを特徴とする製造方法である。
As described above, the production method according to the present invention is a method for producing a colloidal dispersion liquid in which a colloid of a water-insoluble organic semiconductor material is dispersed in water, and the organic semiconductor material is contained in a water-soluble organic solvent. Step A for dispersing and dissolving until the average particle diameter measured based on the dynamic light scattering method is 50 nm or less, and preparing a solution containing an organic semiconductor material, Step B for adding the solution to water and stirring The manufacturing method characterized by including.
本発明に係る方法において、本発明に係るコロイド分散液の製造方法では、上記工程Bは、上記工程Aの後30分以内に上記溶液を10倍体積以上で100倍体積以下の水に加えることが好ましい。
In the method according to the present invention, in the method for producing a colloidal dispersion according to the present invention, in the step B, the solution is added to 10 to 100 volume volumes of water within 30 minutes after the step A. Is preferred.
本発明に係るコロイド分散液の製造方法では、工程Bの後、上記溶液が加えられた水から上記有機溶媒を除去する工程Cをさらに含むことが好ましい。
In the method for producing a colloidal dispersion according to the present invention, it is preferable to further include a step C of removing the organic solvent from the water to which the solution is added after the step B.
本発明に係るコロイド分散液の製造方法では、上記工程Aにおいて、超音波によって上記有機半導体材料を分散することが好ましい。
In the method for producing a colloidal dispersion according to the present invention, in the step A, the organic semiconductor material is preferably dispersed by ultrasonic waves.
本発明に係るコロイド分散液の製造方法では、上記工程Bは、上記溶液を水に滴下して加えることが好ましい。
In the method for producing a colloidal dispersion according to the present invention, the step B is preferably added dropwise to the water.
本発明に係るコロイド分散液の製造方法では、上記有機半導体材料が、ポリチオフェン、チオフェン系化合物のポリマー、フラーレン、またはフラーレン誘導体であることが好ましい。
In the method for producing a colloidal dispersion according to the present invention, the organic semiconductor material is preferably polythiophene, a polymer of a thiophene compound, fullerene, or a fullerene derivative.
本発明に係るコロイド分散液の製造方法では、上記有機溶媒が、テトラヒドロフラン、クロロホルム、およびエタノールからなる群より選択される少なくとも一種であることが好ましい。
In the method for producing a colloidal dispersion according to the present invention, the organic solvent is preferably at least one selected from the group consisting of tetrahydrofuran, chloroform, and ethanol.
本発明に係るコロイド分散液の製造方法では、上記工程Aにおいて、上記有機溶媒の温度を30~60℃の範囲内に保ちながら上記有機半導体材料を分散することが好ましい。
In the method for producing a colloidal dispersion according to the present invention, in the step A, it is preferable to disperse the organic semiconductor material while maintaining the temperature of the organic solvent within a range of 30 to 60 ° C.
本発明はまた、上記何れかの製造方法によって製造されるコロイド分散液を提供する。
The present invention also provides a colloidal dispersion produced by any one of the production methods described above.
本発明に係る有機薄膜素子の製造方法は、上記コロイド分散液を基体に付着させる付着工程を含むことを特徴としている。
The method for producing an organic thin film element according to the present invention is characterized by including an attaching step of attaching the colloidal dispersion to a substrate.
本発明に係る有機薄膜素子の製造方法では、上記基体はスピンコーティングによって形成された半導体膜を表面に有しており、上記付着工程は当該半導体膜の少なくとも一部に、当該半導体膜と多数キャリアが同じである有機半導体が分散している上記コロイド分散液を付着させることが好ましい場合がある。
In the method for manufacturing an organic thin film element according to the present invention, the substrate has a semiconductor film formed by spin coating on the surface, and the attaching step includes at least part of the semiconductor film, the semiconductor film and the majority carrier. It may be preferable to adhere the colloidal dispersion in which organic semiconductors having the same are dispersed.
本発明に係る有機薄膜素子の製造方法では、上記付着工程において、上記コロイド分散液を静電噴霧堆積法によって基体に付着させることが好ましい。
In the method for producing an organic thin film element according to the present invention, it is preferable that the colloidal dispersion is attached to a substrate by an electrostatic spray deposition method in the attaching step.
本発明に係る有機薄膜素子の製造方法では、上記有機薄膜素子が太陽電池素子である場合がある。
In the method for manufacturing an organic thin film element according to the present invention, the organic thin film element may be a solar cell element.
本発明はまた、上記何れかの製造方法によって製造される有機薄膜素子を提供する。
The present invention also provides an organic thin film element manufactured by any one of the above manufacturing methods.
本発明は上述した実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
The present invention is not limited to the above-described embodiments, and various modifications can be made within the scope shown in the claims, and embodiments obtained by appropriately combining technical means disclosed in different embodiments. Is also included in the technical scope of the present invention.
以下、本発明を実施例及び参考例によりさらに詳細に説明するが、本発明はこれらの例に限定されるものではない。
Hereinafter, although an example and a reference example explain the present invention still in detail, the present invention is not limited to these examples.
なお、下記の実施例および比較例における「DLS測定による平均粒径」は、いわゆる「動的光散乱法の原理に基づく単分散モード解析によって求めた粒子の粒度分布における積算値50%に対応する粒径」であり、DLS装置(ゼータ電位・粒径測定システム ELSZ-2、大塚電子株式会社製)の付属解析ソフトで表示された値から明らかにノイズとして区別できる領域を除外して求めたものである。
The “average particle diameter by DLS measurement” in the following examples and comparative examples corresponds to an integrated value of 50% in the particle size distribution of particles obtained by so-called “monodisperse mode analysis based on the principle of the dynamic light scattering method”. The particle size is obtained by excluding the region that can be clearly distinguished as noise from the value displayed by the attached analysis software of the DLS device (Zeta potential / particle size measurement system ELSZ-2, manufactured by Otsuka Electronics Co., Ltd.). It is.
<実施例1>
20mgのポリ(3-ヘキシルチオフェン)(P3HT;商品名SP001、MERCK社より購入)(有機半導体材料)を20mlのテトラヒドロフラン(水溶性の有機溶媒)に添加し、DLS測定によるP3HTの平均粒径が8nmになるまで超音波によって分散させて、溶解させた(装置名SONO CLEANER 50D、株式会社カイジョー製)。超音波分散の条件は、テトラヒドロフランの温度が45℃、超音波の出力が38kHz、50Wで、分散処理の時間が60分間であった。添加後分散前のP3HTは、数mm程度の黒色固体であったが、分散により得られた溶液は、淡橙色を呈した。超音波分散の後直ちに、上記溶液の全量を500mlの蒸留水に滴下して、メカニカルスターラーで2時間撹拌した。次いで、得られたコロイド分散液を5C(JIS P3801 5種Cに相当)の濾紙を用いて濾過した。さらに、得られた濾液を40℃の湯浴中で減圧留去することによって、テトラヒドロフラン等を取り除いて濃縮し、濃青色のコロイド分散液を得た。このコロイド分散液は、長期間、室温下で保存をしてもほぼ変色せず、塊状の沈殿物または浮遊物の増加もほぼ観察されなかった(表1参照)。 <Example 1>
20 mg of poly (3-hexylthiophene) (P3HT; trade name SP001, purchased from MERCK) (organic semiconductor material) was added to 20 ml of tetrahydrofuran (water-soluble organic solvent), and the average particle size of P3HT by DLS measurement was It was dispersed and dissolved by ultrasonic waves until the thickness became 8 nm (device name: SONO CLEANER 50D, manufactured by Kaijo Corporation). The conditions for ultrasonic dispersion were a tetrahydrofuran temperature of 45 ° C., an ultrasonic output of 38 kHz, 50 W, and a dispersion treatment time of 60 minutes. The P3HT after the addition and before dispersion was a black solid of about several mm, but the solution obtained by dispersion exhibited a light orange color. Immediately after the ultrasonic dispersion, the entire amount of the above solution was dropped into 500 ml of distilled water and stirred with a mechanical stirrer for 2 hours. Next, the obtained colloidal dispersion was filtered using 5C (corresponding to JIS P3801 type 5 C) filter paper. Further, the obtained filtrate was distilled off under reduced pressure in a 40 ° C. hot water bath to remove tetrahydrofuran and the like, and concentrated to obtain a dark blue colloidal dispersion. This colloidal dispersion did not change color even when stored at room temperature for a long period of time, and almost no increase in massive precipitates or suspended matters was observed (see Table 1).
20mgのポリ(3-ヘキシルチオフェン)(P3HT;商品名SP001、MERCK社より購入)(有機半導体材料)を20mlのテトラヒドロフラン(水溶性の有機溶媒)に添加し、DLS測定によるP3HTの平均粒径が8nmになるまで超音波によって分散させて、溶解させた(装置名SONO CLEANER 50D、株式会社カイジョー製)。超音波分散の条件は、テトラヒドロフランの温度が45℃、超音波の出力が38kHz、50Wで、分散処理の時間が60分間であった。添加後分散前のP3HTは、数mm程度の黒色固体であったが、分散により得られた溶液は、淡橙色を呈した。超音波分散の後直ちに、上記溶液の全量を500mlの蒸留水に滴下して、メカニカルスターラーで2時間撹拌した。次いで、得られたコロイド分散液を5C(JIS P3801 5種Cに相当)の濾紙を用いて濾過した。さらに、得られた濾液を40℃の湯浴中で減圧留去することによって、テトラヒドロフラン等を取り除いて濃縮し、濃青色のコロイド分散液を得た。このコロイド分散液は、長期間、室温下で保存をしてもほぼ変色せず、塊状の沈殿物または浮遊物の増加もほぼ観察されなかった(表1参照)。 <Example 1>
20 mg of poly (3-hexylthiophene) (P3HT; trade name SP001, purchased from MERCK) (organic semiconductor material) was added to 20 ml of tetrahydrofuran (water-soluble organic solvent), and the average particle size of P3HT by DLS measurement was It was dispersed and dissolved by ultrasonic waves until the thickness became 8 nm (device name: SONO CLEANER 50D, manufactured by Kaijo Corporation). The conditions for ultrasonic dispersion were a tetrahydrofuran temperature of 45 ° C., an ultrasonic output of 38 kHz, 50 W, and a dispersion treatment time of 60 minutes. The P3HT after the addition and before dispersion was a black solid of about several mm, but the solution obtained by dispersion exhibited a light orange color. Immediately after the ultrasonic dispersion, the entire amount of the above solution was dropped into 500 ml of distilled water and stirred with a mechanical stirrer for 2 hours. Next, the obtained colloidal dispersion was filtered using 5C (corresponding to JIS P3801 type 5 C) filter paper. Further, the obtained filtrate was distilled off under reduced pressure in a 40 ° C. hot water bath to remove tetrahydrofuran and the like, and concentrated to obtain a dark blue colloidal dispersion. This colloidal dispersion did not change color even when stored at room temperature for a long period of time, and almost no increase in massive precipitates or suspended matters was observed (see Table 1).
得られたコロイド分散液における乾燥固形分の濃度は、0.05重量%であった。また、コロイド分散液の不溶成分発生率は、0.1%未満であった。なお、各実施例および比較例において、コロイド分散液の不溶成分とは、上記の濾過によって濾別された物質(有機半導体材料)を指す。不溶成分発生率とは、使用した有機半導体材料の何%が、上記の濾過において濾別されたかという割合を指す。また、得られたコロイド分散液における乾燥固形分の濃度は、(使用した有機半導体材料の重量-不溶成分の重量)/減圧留去後のコロイド分散液重量×100、を計算したものである。
The concentration of the dry solid content in the obtained colloidal dispersion was 0.05% by weight. Moreover, the insoluble component generation rate of the colloidal dispersion was less than 0.1%. In each example and comparative example, the insoluble component of the colloidal dispersion refers to a substance (organic semiconductor material) that has been separated by filtration. The insoluble component generation rate refers to a ratio of what percentage of the used organic semiconductor material is separated in the above filtration. Further, the concentration of the dry solid content in the obtained colloid dispersion liquid is calculated by (weight of organic semiconductor material used−weight of insoluble component) / weight of colloid dispersion liquid after distillation under reduced pressure × 100.
<実施例2>
20mgのポリ(3-ヘキシルチオフェン)(P3HT)(実施例1と同一品)を20mlのテトラヒドロフランに添加し、DLS測定によるP3HTの平均粒径が20nmになるまで超音波によって分散させて、溶解させた。超音波分散の条件は、実施例1と同一の装置を用いて、テトラヒドロフランの温度が45℃、超音波の出力が38kHz、50Wで、分散処理の時間が15分間であった。添加後分散前のP3HTは、数mm程度の黒色固体であったが、分散により得られた溶液は、淡橙色を呈した。超音波分散の後、実施例1と同様の操作により、濃青色のコロイド分散液を得た(コロイド分散液A)。このコロイド分散液は、長期間、室温下で保存をしてもほぼ変色せず、塊状の沈殿物または浮遊物の増加もほぼ観察されなかった(表1参照)。 <Example 2>
20 mg of poly (3-hexylthiophene) (P3HT) (same product as Example 1) was added to 20 ml of tetrahydrofuran, and dispersed and dissolved by ultrasonic until the average particle size of P3HT by DLS measurement was 20 nm. It was. The conditions for ultrasonic dispersion were the same apparatus as in Example 1, with a tetrahydrofuran temperature of 45 ° C., an ultrasonic output of 38 kHz, 50 W, and a dispersion treatment time of 15 minutes. The P3HT after the addition and before dispersion was a black solid of about several mm, but the solution obtained by dispersion exhibited a light orange color. After the ultrasonic dispersion, a dark blue colloid dispersion was obtained by the same operation as in Example 1 (colloid dispersion A). This colloidal dispersion did not change color even when stored at room temperature for a long period of time, and almost no increase in massive precipitates or suspended matters was observed (see Table 1).
20mgのポリ(3-ヘキシルチオフェン)(P3HT)(実施例1と同一品)を20mlのテトラヒドロフランに添加し、DLS測定によるP3HTの平均粒径が20nmになるまで超音波によって分散させて、溶解させた。超音波分散の条件は、実施例1と同一の装置を用いて、テトラヒドロフランの温度が45℃、超音波の出力が38kHz、50Wで、分散処理の時間が15分間であった。添加後分散前のP3HTは、数mm程度の黒色固体であったが、分散により得られた溶液は、淡橙色を呈した。超音波分散の後、実施例1と同様の操作により、濃青色のコロイド分散液を得た(コロイド分散液A)。このコロイド分散液は、長期間、室温下で保存をしてもほぼ変色せず、塊状の沈殿物または浮遊物の増加もほぼ観察されなかった(表1参照)。 <Example 2>
20 mg of poly (3-hexylthiophene) (P3HT) (same product as Example 1) was added to 20 ml of tetrahydrofuran, and dispersed and dissolved by ultrasonic until the average particle size of P3HT by DLS measurement was 20 nm. It was. The conditions for ultrasonic dispersion were the same apparatus as in Example 1, with a tetrahydrofuran temperature of 45 ° C., an ultrasonic output of 38 kHz, 50 W, and a dispersion treatment time of 15 minutes. The P3HT after the addition and before dispersion was a black solid of about several mm, but the solution obtained by dispersion exhibited a light orange color. After the ultrasonic dispersion, a dark blue colloid dispersion was obtained by the same operation as in Example 1 (colloid dispersion A). This colloidal dispersion did not change color even when stored at room temperature for a long period of time, and almost no increase in massive precipitates or suspended matters was observed (see Table 1).
得られたコロイド分散液における乾燥固形分の濃度は、0.04重量%であった。また、コロイド分散液の不溶成分発生率は、1%未満であった。
The concentration of dry solid in the obtained colloidal dispersion was 0.04% by weight. The insoluble component generation rate of the colloidal dispersion was less than 1%.
<実施例3>
100mgのポリ(3-ヘキシルチオフェン)(P3HT)(実施例1と同一品)を20mlのテトラヒドロフランに添加し、DLS測定によるP3HTの平均粒径が20nmになるまで超音波によって分散させて、溶解させた。超音波分散の条件は、実施例1と同一の装置を用いて、テトラヒドロフランの温度が45℃、超音波の出力が38kHz、50Wで、分散処理の時間が15分間であった。なお、添加後分散前のP3HTは、数mm程度の黒色固体であったが、分散により得られた溶液は、淡橙色を呈した。超音波分散の後、実施例1と同様の操作により、濃青色のコロイド分散液を得た。このコロイド分散液は、長期間、室温下で保存をしてもほぼ変色せず、塊状の沈殿物または浮遊物の増加もほぼ観察されなかった(表1参照)。 <Example 3>
100 mg of poly (3-hexylthiophene) (P3HT) (same product as in Example 1) was added to 20 ml of tetrahydrofuran, and dispersed and dissolved by ultrasound until the average particle size of P3HT by DLS measurement was 20 nm. It was. The conditions for ultrasonic dispersion were the same apparatus as in Example 1, with a tetrahydrofuran temperature of 45 ° C., an ultrasonic output of 38 kHz, 50 W, and a dispersion treatment time of 15 minutes. In addition, although P3HT before dispersion | distribution after addition was black solid of about several millimeters, the solution obtained by dispersion | distribution exhibited light orange. After the ultrasonic dispersion, a dark blue colloidal dispersion was obtained in the same manner as in Example 1. This colloidal dispersion did not change color even when stored at room temperature for a long period of time, and almost no increase in massive precipitates or suspended matters was observed (see Table 1).
100mgのポリ(3-ヘキシルチオフェン)(P3HT)(実施例1と同一品)を20mlのテトラヒドロフランに添加し、DLS測定によるP3HTの平均粒径が20nmになるまで超音波によって分散させて、溶解させた。超音波分散の条件は、実施例1と同一の装置を用いて、テトラヒドロフランの温度が45℃、超音波の出力が38kHz、50Wで、分散処理の時間が15分間であった。なお、添加後分散前のP3HTは、数mm程度の黒色固体であったが、分散により得られた溶液は、淡橙色を呈した。超音波分散の後、実施例1と同様の操作により、濃青色のコロイド分散液を得た。このコロイド分散液は、長期間、室温下で保存をしてもほぼ変色せず、塊状の沈殿物または浮遊物の増加もほぼ観察されなかった(表1参照)。 <Example 3>
100 mg of poly (3-hexylthiophene) (P3HT) (same product as in Example 1) was added to 20 ml of tetrahydrofuran, and dispersed and dissolved by ultrasound until the average particle size of P3HT by DLS measurement was 20 nm. It was. The conditions for ultrasonic dispersion were the same apparatus as in Example 1, with a tetrahydrofuran temperature of 45 ° C., an ultrasonic output of 38 kHz, 50 W, and a dispersion treatment time of 15 minutes. In addition, although P3HT before dispersion | distribution after addition was black solid of about several millimeters, the solution obtained by dispersion | distribution exhibited light orange. After the ultrasonic dispersion, a dark blue colloidal dispersion was obtained in the same manner as in Example 1. This colloidal dispersion did not change color even when stored at room temperature for a long period of time, and almost no increase in massive precipitates or suspended matters was observed (see Table 1).
得られたコロイド分散液における乾燥固形分の濃度は、0.07重量%であった。また、コロイド分散液の不溶成分発生率は、1~5%であった。
The concentration of dry solid in the obtained colloidal dispersion was 0.07% by weight. The insoluble component generation rate of the colloidal dispersion was 1 to 5%.
<実施例4>
20mgのポリ[[9-(1-オクチルノニル)-9H-カルバゾール-2,7-ジイル]-2,5-チオフェンジイル-2,1,3-ベンゾチアヂアゾール-4,7-ジイル-2,5-チオフェンジイル](PCDTBT;独立行政法人理化学研究所で合成したもの)(有機半導体材料)を20mlのテトラヒドロフランに添加し、DLS測定によるPCDTBTの平均粒径が50nmになるまで超音波によって分散させて、溶解させた。超音波分散の条件は、実施例1と同一の装置を用いて、テトラヒドロフランの温度が45℃、超音波の出力が38kHz、50Wで、分散処理の時間が30分間であった。なお、添加後分散前のPCDTBTは、数mm程度の黒色粉末であったが、分散により得られた溶液は、濃青色を呈した。超音波分散の後、実施例1と同様の操作により、濃青紫色のコロイド分散液を得た(コロイド分散液B)。このコロイド分散液は、長期間、室温下で保存をしてもほぼ変色せず、塊状の沈殿物または浮遊物の増加もほぼ観察されなかった(表1参照)。 <Example 4>
20 mg of poly [[9- (1-octylnonyl) -9H-carbazole-2,7-diyl] -2,5-thiophenediyl-2,1,3-benzothiadiazole-4,7-diyl-2 , 5-thiophenediyl] (PCDTBT; synthesized by RIKEN) (organic semiconductor material) is added to 20 ml of tetrahydrofuran, and dispersed by ultrasound until the average particle size of PCDTBT by DLS measurement is 50 nm. And dissolved. The conditions for ultrasonic dispersion were the same apparatus as in Example 1, with a tetrahydrofuran temperature of 45 ° C., an ultrasonic output of 38 kHz, 50 W, and a dispersion treatment time of 30 minutes. In addition, PCDTBT after dispersion | distribution but before dispersion | distribution was about several millimeters black powder, but the solution obtained by dispersion | distribution exhibited dark blue. After the ultrasonic dispersion, a dark blue-violet colloidal dispersion was obtained in the same manner as in Example 1 (colloidal dispersion B). This colloidal dispersion did not change color even when stored at room temperature for a long period of time, and almost no increase in massive precipitates or suspended matters was observed (see Table 1).
20mgのポリ[[9-(1-オクチルノニル)-9H-カルバゾール-2,7-ジイル]-2,5-チオフェンジイル-2,1,3-ベンゾチアヂアゾール-4,7-ジイル-2,5-チオフェンジイル](PCDTBT;独立行政法人理化学研究所で合成したもの)(有機半導体材料)を20mlのテトラヒドロフランに添加し、DLS測定によるPCDTBTの平均粒径が50nmになるまで超音波によって分散させて、溶解させた。超音波分散の条件は、実施例1と同一の装置を用いて、テトラヒドロフランの温度が45℃、超音波の出力が38kHz、50Wで、分散処理の時間が30分間であった。なお、添加後分散前のPCDTBTは、数mm程度の黒色粉末であったが、分散により得られた溶液は、濃青色を呈した。超音波分散の後、実施例1と同様の操作により、濃青紫色のコロイド分散液を得た(コロイド分散液B)。このコロイド分散液は、長期間、室温下で保存をしてもほぼ変色せず、塊状の沈殿物または浮遊物の増加もほぼ観察されなかった(表1参照)。 <Example 4>
20 mg of poly [[9- (1-octylnonyl) -9H-carbazole-2,7-diyl] -2,5-thiophenediyl-2,1,3-benzothiadiazole-4,7-diyl-2 , 5-thiophenediyl] (PCDTBT; synthesized by RIKEN) (organic semiconductor material) is added to 20 ml of tetrahydrofuran, and dispersed by ultrasound until the average particle size of PCDTBT by DLS measurement is 50 nm. And dissolved. The conditions for ultrasonic dispersion were the same apparatus as in Example 1, with a tetrahydrofuran temperature of 45 ° C., an ultrasonic output of 38 kHz, 50 W, and a dispersion treatment time of 30 minutes. In addition, PCDTBT after dispersion | distribution but before dispersion | distribution was about several millimeters black powder, but the solution obtained by dispersion | distribution exhibited dark blue. After the ultrasonic dispersion, a dark blue-violet colloidal dispersion was obtained in the same manner as in Example 1 (colloidal dispersion B). This colloidal dispersion did not change color even when stored at room temperature for a long period of time, and almost no increase in massive precipitates or suspended matters was observed (see Table 1).
得られたコロイド分散液における乾燥固形分の濃度は、0.04重量%であった。また、コロイド分散液の不溶成分発生率は、1~2%であった。
The concentration of dry solid in the obtained colloidal dispersion was 0.04% by weight. The insoluble component generation rate in the colloidal dispersion was 1 to 2%.
<実施例5>
20mgのフェニルC61酪酸メチルエステル(PCBM;商品名nanom spectra E100、フロンティアカーボン株式会社より購入)(有機半導体材料)を20mlのテトラヒドロフランに添加し、DLS測定によるPCBMの平均粒径が50nmになるまで超音波によって分散させて、溶解させた。超音波分散の条件は、実施例1と同一の装置を用いて、テトラヒドロフランの温度が45℃、超音波の出力が38kHz、50Wで、分散処理の時間が15分間であった。なお、添加後分散前のPCBMは、数mm程度の黒色粉末であったが、分散により得られた溶液は、褐色を呈した。超音波分散の後、実施例1と同様の操作により、淡褐色のコロイド分散液を得た(コロイド分散液C)。このコロイド分散液は、長期間、室温下で保存をしてもほぼ変色せず、塊状の沈殿物または浮遊物の増加もほぼ観察されなかった(表1参照)。 <Example 5>
20 mg of phenyl C 61 butyric acid methyl ester (PCBM; trade name nanom spectra E100, purchased from Frontier Carbon Co., Ltd.) (organic semiconductor material) was added to 20 ml of tetrahydrofuran until the average particle size of PCBM by DLS measurement reached 50 nm. Dispersed by ultrasonic waves and dissolved. The conditions for ultrasonic dispersion were the same apparatus as in Example 1, with a tetrahydrofuran temperature of 45 ° C., an ultrasonic output of 38 kHz, 50 W, and a dispersion treatment time of 15 minutes. In addition, although PCBM before dispersion | distribution before dispersion | distribution was a black powder of about several mm, the solution obtained by dispersion | distribution exhibited brown. After the ultrasonic dispersion, a light brown colloidal dispersion was obtained in the same manner as in Example 1 (colloidal dispersion C). This colloidal dispersion did not change color even when stored at room temperature for a long period of time, and almost no increase in massive precipitates or suspended matters was observed (see Table 1).
20mgのフェニルC61酪酸メチルエステル(PCBM;商品名nanom spectra E100、フロンティアカーボン株式会社より購入)(有機半導体材料)を20mlのテトラヒドロフランに添加し、DLS測定によるPCBMの平均粒径が50nmになるまで超音波によって分散させて、溶解させた。超音波分散の条件は、実施例1と同一の装置を用いて、テトラヒドロフランの温度が45℃、超音波の出力が38kHz、50Wで、分散処理の時間が15分間であった。なお、添加後分散前のPCBMは、数mm程度の黒色粉末であったが、分散により得られた溶液は、褐色を呈した。超音波分散の後、実施例1と同様の操作により、淡褐色のコロイド分散液を得た(コロイド分散液C)。このコロイド分散液は、長期間、室温下で保存をしてもほぼ変色せず、塊状の沈殿物または浮遊物の増加もほぼ観察されなかった(表1参照)。 <Example 5>
20 mg of phenyl C 61 butyric acid methyl ester (PCBM; trade name nanom spectra E100, purchased from Frontier Carbon Co., Ltd.) (organic semiconductor material) was added to 20 ml of tetrahydrofuran until the average particle size of PCBM by DLS measurement reached 50 nm. Dispersed by ultrasonic waves and dissolved. The conditions for ultrasonic dispersion were the same apparatus as in Example 1, with a tetrahydrofuran temperature of 45 ° C., an ultrasonic output of 38 kHz, 50 W, and a dispersion treatment time of 15 minutes. In addition, although PCBM before dispersion | distribution before dispersion | distribution was a black powder of about several mm, the solution obtained by dispersion | distribution exhibited brown. After the ultrasonic dispersion, a light brown colloidal dispersion was obtained in the same manner as in Example 1 (colloidal dispersion C). This colloidal dispersion did not change color even when stored at room temperature for a long period of time, and almost no increase in massive precipitates or suspended matters was observed (see Table 1).
得られたコロイド分散液における乾燥固形分の濃度は、0.04重量%であった。また、コロイド分散液の不溶成分発生率は、10%であった。
<実施例6>
20mgのポリ(3-ヘキシルチオフェン)(P3HT)(実施例1と同一品)を20mlのテトラヒドロフランに添加し、DLS測定によるP3HTの平均粒径が50nmになるまで超音波によって分散させて、溶解させた。超音波分散の条件は、実施例1と同一の装置を用いて、テトラヒドロフランの温度が45℃、超音波の出力が38kHz、50Wで、分散処理の時間が5分間であった。なお、添加後分散前のP3HTは、数mm程度の黒色固体であったが、分散により得られた溶液は、淡橙色を呈した。超音波分散の後、実施例1と同様の操作により、濃青色のコロイド分散液を得た。このコロイド分散液は、長期間、室温下で保存をしてもほぼ変色せず、塊状の沈殿物または浮遊物の増加もほぼ観察されなかった(表1参照)。 The concentration of the dry solid content in the obtained colloidal dispersion was 0.04% by weight. The insoluble component generation rate of the colloidal dispersion was 10%.
<Example 6>
20 mg of poly (3-hexylthiophene) (P3HT) (same product as in Example 1) was added to 20 ml of tetrahydrofuran, and dispersed and dissolved by ultrasound until the average particle size of P3HT by DLS measurement was 50 nm. It was. The conditions for ultrasonic dispersion were the same apparatus as in Example 1, with a tetrahydrofuran temperature of 45 ° C., an ultrasonic output of 38 kHz, 50 W, and a dispersion treatment time of 5 minutes. In addition, although P3HT before dispersion | distribution after addition was black solid of about several millimeters, the solution obtained by dispersion | distribution exhibited light orange. After the ultrasonic dispersion, a dark blue colloidal dispersion was obtained in the same manner as in Example 1. This colloidal dispersion did not change color even when stored at room temperature for a long period of time, and almost no increase in massive precipitates or suspended matters was observed (see Table 1).
<実施例6>
20mgのポリ(3-ヘキシルチオフェン)(P3HT)(実施例1と同一品)を20mlのテトラヒドロフランに添加し、DLS測定によるP3HTの平均粒径が50nmになるまで超音波によって分散させて、溶解させた。超音波分散の条件は、実施例1と同一の装置を用いて、テトラヒドロフランの温度が45℃、超音波の出力が38kHz、50Wで、分散処理の時間が5分間であった。なお、添加後分散前のP3HTは、数mm程度の黒色固体であったが、分散により得られた溶液は、淡橙色を呈した。超音波分散の後、実施例1と同様の操作により、濃青色のコロイド分散液を得た。このコロイド分散液は、長期間、室温下で保存をしてもほぼ変色せず、塊状の沈殿物または浮遊物の増加もほぼ観察されなかった(表1参照)。 The concentration of the dry solid content in the obtained colloidal dispersion was 0.04% by weight. The insoluble component generation rate of the colloidal dispersion was 10%.
<Example 6>
20 mg of poly (3-hexylthiophene) (P3HT) (same product as in Example 1) was added to 20 ml of tetrahydrofuran, and dispersed and dissolved by ultrasound until the average particle size of P3HT by DLS measurement was 50 nm. It was. The conditions for ultrasonic dispersion were the same apparatus as in Example 1, with a tetrahydrofuran temperature of 45 ° C., an ultrasonic output of 38 kHz, 50 W, and a dispersion treatment time of 5 minutes. In addition, although P3HT before dispersion | distribution after addition was black solid of about several millimeters, the solution obtained by dispersion | distribution exhibited light orange. After the ultrasonic dispersion, a dark blue colloidal dispersion was obtained in the same manner as in Example 1. This colloidal dispersion did not change color even when stored at room temperature for a long period of time, and almost no increase in massive precipitates or suspended matters was observed (see Table 1).
得られたコロイド分散液における乾燥固形分の濃度は、0.02重量%であった。また、コロイド分散液の不溶成分発生率は、20%であった。
The concentration of the dry solid content in the obtained colloidal dispersion was 0.02% by weight. The insoluble component generation rate of the colloidal dispersion was 20%.
<比較例1>
20mgのポリ(3-ヘキシルチオフェン)(P3HT)(実施例1と同一品)を20mlのテトラヒドロフランに添加し、DLS測定でP3HTの平均粒径が100nmになるまで超音波によって分散させて、溶解させた。超音波分散の条件は、実施例1と同一の装置を用いて、テトラヒドロフランの温度が22℃、超音波の出力が38kHz、50Wで、分散処理の時間が30分間であった。なお、添加後分散前のP3HTは、数mm程度の黒色固体であったが、分散により得られた溶液は、濃褐色を呈した。超音波分散の後、実施例1と同様の操作により、薄青色のコロイド分散液を得た(表1参照)。 <Comparative Example 1>
20 mg of poly (3-hexylthiophene) (P3HT) (same product as in Example 1) was added to 20 ml of tetrahydrofuran, and dispersed and dissolved by ultrasound until the average particle size of P3HT was 100 nm as measured by DLS. It was. The conditions for ultrasonic dispersion were the same apparatus as in Example 1, with a tetrahydrofuran temperature of 22 ° C., an ultrasonic output of 38 kHz, 50 W, and a dispersion treatment time of 30 minutes. In addition, although P3HT before dispersion | distribution after addition was a black solid of about several millimeters, the solution obtained by dispersion | distribution exhibited dark brown. After the ultrasonic dispersion, a light blue colloidal dispersion was obtained in the same manner as in Example 1 (see Table 1).
20mgのポリ(3-ヘキシルチオフェン)(P3HT)(実施例1と同一品)を20mlのテトラヒドロフランに添加し、DLS測定でP3HTの平均粒径が100nmになるまで超音波によって分散させて、溶解させた。超音波分散の条件は、実施例1と同一の装置を用いて、テトラヒドロフランの温度が22℃、超音波の出力が38kHz、50Wで、分散処理の時間が30分間であった。なお、添加後分散前のP3HTは、数mm程度の黒色固体であったが、分散により得られた溶液は、濃褐色を呈した。超音波分散の後、実施例1と同様の操作により、薄青色のコロイド分散液を得た(表1参照)。 <Comparative Example 1>
20 mg of poly (3-hexylthiophene) (P3HT) (same product as in Example 1) was added to 20 ml of tetrahydrofuran, and dispersed and dissolved by ultrasound until the average particle size of P3HT was 100 nm as measured by DLS. It was. The conditions for ultrasonic dispersion were the same apparatus as in Example 1, with a tetrahydrofuran temperature of 22 ° C., an ultrasonic output of 38 kHz, 50 W, and a dispersion treatment time of 30 minutes. In addition, although P3HT before dispersion | distribution after addition was a black solid of about several millimeters, the solution obtained by dispersion | distribution exhibited dark brown. After the ultrasonic dispersion, a light blue colloidal dispersion was obtained in the same manner as in Example 1 (see Table 1).
得られたコロイド分散液における乾燥固形分の濃度は、0.01重量%であった。また、コロイド分散液の不溶成分発生率は、60%であった。
The concentration of the dry solid content in the obtained colloidal dispersion was 0.01% by weight. The insoluble component generation rate of the colloidal dispersion was 60%.
<比較例2>
20mgのポリ(3-ヘキシルチオフェン)(P3HT)(実施例1と同一品)を20mlのテトラヒドロフランに添加し、DLS測定でP3HTの平均粒径が200nmになるまで超音波によって分散させて、溶解させた。超音波分散の条件は、実施例1と同一の装置を用いて、テトラヒドロフランの温度が22℃、超音波の出力が38kHz、50Wで、分散処理の時間が15分間であった。なお、添加後分散前のP3HTは、数mm程度の黒色固体であったが、分散により得られた溶液は、濃褐色を呈した。超音波分散の後、実施例1と同様の操作により、薄青色のコロイド分散液を得た(表1参照)。 <Comparative example 2>
20 mg of poly (3-hexylthiophene) (P3HT) (same product as in Example 1) was added to 20 ml of tetrahydrofuran, and dispersed and dissolved by ultrasound until the average particle size of P3HT was 200 nm by DLS measurement. It was. The conditions for ultrasonic dispersion were the same apparatus as in Example 1, with a tetrahydrofuran temperature of 22 ° C., an ultrasonic output of 38 kHz, 50 W, and a dispersion treatment time of 15 minutes. In addition, although P3HT before dispersion | distribution after addition was a black solid of about several millimeters, the solution obtained by dispersion | distribution exhibited dark brown. After the ultrasonic dispersion, a light blue colloidal dispersion was obtained in the same manner as in Example 1 (see Table 1).
20mgのポリ(3-ヘキシルチオフェン)(P3HT)(実施例1と同一品)を20mlのテトラヒドロフランに添加し、DLS測定でP3HTの平均粒径が200nmになるまで超音波によって分散させて、溶解させた。超音波分散の条件は、実施例1と同一の装置を用いて、テトラヒドロフランの温度が22℃、超音波の出力が38kHz、50Wで、分散処理の時間が15分間であった。なお、添加後分散前のP3HTは、数mm程度の黒色固体であったが、分散により得られた溶液は、濃褐色を呈した。超音波分散の後、実施例1と同様の操作により、薄青色のコロイド分散液を得た(表1参照)。 <Comparative example 2>
20 mg of poly (3-hexylthiophene) (P3HT) (same product as in Example 1) was added to 20 ml of tetrahydrofuran, and dispersed and dissolved by ultrasound until the average particle size of P3HT was 200 nm by DLS measurement. It was. The conditions for ultrasonic dispersion were the same apparatus as in Example 1, with a tetrahydrofuran temperature of 22 ° C., an ultrasonic output of 38 kHz, 50 W, and a dispersion treatment time of 15 minutes. In addition, although P3HT before dispersion | distribution after addition was a black solid of about several millimeters, the solution obtained by dispersion | distribution exhibited dark brown. After the ultrasonic dispersion, a light blue colloidal dispersion was obtained in the same manner as in Example 1 (see Table 1).
得られたコロイド分散液における乾燥固形分の濃度は、0.001重量%であった。また、コロイド分散液の不溶成分発生率は、90%であった。
The concentration of the dry solid in the obtained colloidal dispersion was 0.001% by weight. The insoluble component generation rate of the colloidal dispersion was 90%.
<比較例3>
20mgのポリ(3-ヘキシルチオフェン)(P3HT)(実施例1と同一品)を20mlのテトラヒドロフランに添加し、DLS測定でP3HTの平均粒径が200~300nmになるまで超音波によって分散させて、溶解させた。超音波分散の条件は、実施例1と同一の装置を用いて、テトラヒドロフランの温度が22℃、超音波の出力が38kHz、50Wで、分散処理の時間が5分間であった。なお、添加後分散前のP3HTは、数mm程度の黒色固体であったが、分散により得られた溶液は、濃褐色を呈した。超音波分散の後、実施例1と同様の操作により、薄青色のコロイド分散液を得た。このコロイド分散液は、長期間、室温下で保存をすると、透明から懸濁状態に変化し、さらに塊状の沈殿物または浮遊物の増加が観察された(表1参照)。 <Comparative Example 3>
20 mg of poly (3-hexylthiophene) (P3HT) (same product as in Example 1) was added to 20 ml of tetrahydrofuran, and dispersed by ultrasound until the average particle size of P3HT was 200 to 300 nm as measured by DLS. Dissolved. The conditions for ultrasonic dispersion were the same apparatus as in Example 1, with a tetrahydrofuran temperature of 22 ° C., an ultrasonic output of 38 kHz, 50 W, and a dispersion treatment time of 5 minutes. In addition, although P3HT before dispersion | distribution after addition was a black solid of about several millimeters, the solution obtained by dispersion | distribution exhibited dark brown. After the ultrasonic dispersion, a light blue colloidal dispersion was obtained in the same manner as in Example 1. When the colloidal dispersion was stored at room temperature for a long period of time, it changed from a transparent state to a suspended state, and an increase in massive precipitates or suspended matters was observed (see Table 1).
20mgのポリ(3-ヘキシルチオフェン)(P3HT)(実施例1と同一品)を20mlのテトラヒドロフランに添加し、DLS測定でP3HTの平均粒径が200~300nmになるまで超音波によって分散させて、溶解させた。超音波分散の条件は、実施例1と同一の装置を用いて、テトラヒドロフランの温度が22℃、超音波の出力が38kHz、50Wで、分散処理の時間が5分間であった。なお、添加後分散前のP3HTは、数mm程度の黒色固体であったが、分散により得られた溶液は、濃褐色を呈した。超音波分散の後、実施例1と同様の操作により、薄青色のコロイド分散液を得た。このコロイド分散液は、長期間、室温下で保存をすると、透明から懸濁状態に変化し、さらに塊状の沈殿物または浮遊物の増加が観察された(表1参照)。 <Comparative Example 3>
20 mg of poly (3-hexylthiophene) (P3HT) (same product as in Example 1) was added to 20 ml of tetrahydrofuran, and dispersed by ultrasound until the average particle size of P3HT was 200 to 300 nm as measured by DLS. Dissolved. The conditions for ultrasonic dispersion were the same apparatus as in Example 1, with a tetrahydrofuran temperature of 22 ° C., an ultrasonic output of 38 kHz, 50 W, and a dispersion treatment time of 5 minutes. In addition, although P3HT before dispersion | distribution after addition was a black solid of about several millimeters, the solution obtained by dispersion | distribution exhibited dark brown. After the ultrasonic dispersion, a light blue colloidal dispersion was obtained in the same manner as in Example 1. When the colloidal dispersion was stored at room temperature for a long period of time, it changed from a transparent state to a suspended state, and an increase in massive precipitates or suspended matters was observed (see Table 1).
得られたコロイド分散液における乾燥固形分の濃度は、0.005重量%であった。また、コロイド分散液が極めて不安定なために、その不溶成分発生率の正確な測定は困難であったが、少なくとも50%以上であった。
The concentration of the dry solid content in the obtained colloidal dispersion was 0.005% by weight. Also, since the colloidal dispersion was extremely unstable, it was difficult to accurately measure the insoluble component generation rate, but it was at least 50% or more.
実施例1~6および比較例1~3の結果をまとめたものを表1に示す。なお、塗膜は後述の実施例7と同様の手法によりESD法を用いて作製したものである。また、塗膜中の平均粒径は、走査型電子顕微鏡(FE-SEM Hitachi S4800T)での観察による実測値である。何れも調製後1日~2ヶ月経過したものを用いたが、この間に明確な粒径変化はみられず、濾過後のコロイド分散液は室温中でも安定であると考えられる。
Table 1 summarizes the results of Examples 1 to 6 and Comparative Examples 1 to 3. The coating film was prepared by using the ESD method by the same method as in Example 7 described later. Moreover, the average particle diameter in a coating film is a measured value by observation with a scanning electron microscope (FE-SEM | Hitachi * S4800T). In either case, the sample was used after 1 day to 2 months, but no clear particle size change was observed during this period, and the colloidal dispersion after filtration is considered to be stable even at room temperature.
静電噴霧装置(装置名ES-3500、株式会社フューエンス製)を用いて、実施例2、4、5で得られたコロイド分散液(それぞれコロイド分散液A、B、C)を、ITOパターンガラス基板(商品名ITOパターンガラス、テクノプリント株式会社製)上に塗布し、基板A~Cをそれぞれ得た。コロイド分散液A~Cは、何れも調製後1日~数ヶ月程度経過したものを用いた。なお、調整後の経過時間と塗膜中の平均粒径との間に有意な関係性はみられなかった。
Using an electrostatic spraying device (device name ES-3500, manufactured by Fuence Co., Ltd.), the colloidal dispersions obtained in Examples 2, 4, and 5 (colloidal dispersions A, B, and C, respectively) were made into ITO pattern glass. It apply | coated on the board | substrate (Brand name ITO pattern glass, the product made from Techno-print Co., Ltd.), and board | substrate AC was obtained, respectively. The colloidal dispersions A to C were used after about 1 day to several months had passed since preparation. In addition, the significant relationship was not seen between the elapsed time after adjustment, and the average particle diameter in a coating film.
用いた静電噴霧装置の概略図を図1の(a)に示す。静電塗布するコロイド分散液2は微細な先端をもつガラス製のスプレーキャピラリー1に充填されている。スプレーキャピラリー1内部には電圧を加えるための白金製の針金状電極3が挿入されている。スプレーキャピラリー1の先端径は50μm程度であり、スプレーキャピラリー1の先端から基板6までの距離は3cm程度である。図1の(b)に示すように、基板6にはITO電極7がパターニングされている。ITO電極7はグランドに接続され、アースが確保されている。このスプレーキャピラリー1と基板6との間に3~10kV程度の高電圧(印加電圧)を印加すると、コロイド分散液2が静電気力によってスプレーフレーム4となって噴射される。
A schematic diagram of the electrostatic spraying device used is shown in FIG. The colloidal dispersion 2 to be electrostatically applied is filled in a glass spray capillary 1 having a fine tip. A platinum wire electrode 3 for applying a voltage is inserted inside the spray capillary 1. The tip diameter of the spray capillary 1 is about 50 μm, and the distance from the tip of the spray capillary 1 to the substrate 6 is about 3 cm. As shown in FIG. 1B, an ITO electrode 7 is patterned on the substrate 6. The ITO electrode 7 is connected to the ground and an earth is secured. When a high voltage (applied voltage) of about 3 to 10 kV is applied between the spray capillary 1 and the substrate 6, the colloidal dispersion liquid 2 is sprayed as a spray frame 4 by electrostatic force.
スプレーフレーム4となって噴射されたコロイド分散液2の液滴は静電分極しているため、基板6のITO電極7に選択的にひきつけられる。なお、本実施例では、作業時間を短縮化し、且つ用いるコロイド分散液2を少量化するため、スプレーキャピラリー1と基板6との間に静電マスクとして直径1.7cmの口径の穴があるアクリル板5を設置した。アクリル板5を静電マスクとして用いることで、コロイド分散液2中の有機半導体材料は、基板6のITO電極7上により選択的に薄膜8を形成した。各コロイド分散液のスプレー条件および形成した薄膜の膜厚の評価結果を表2に示す。
Since the droplets of the colloidal dispersion liquid 2 sprayed as the spray frame 4 are electrostatically polarized, they are selectively attracted to the ITO electrode 7 of the substrate 6. In this embodiment, in order to shorten the working time and to reduce the amount of the colloidal dispersion 2 to be used, an acrylic having a diameter of 1.7 cm as an electrostatic mask between the spray capillary 1 and the substrate 6 is used. A plate 5 was installed. By using the acrylic plate 5 as an electrostatic mask, the organic semiconductor material in the colloidal dispersion 2 selectively formed the thin film 8 on the ITO electrode 7 of the substrate 6. Table 2 shows the spray conditions of each colloidal dispersion and the evaluation results of the film thickness of the formed thin film.
実施例7で得た基板A~CのITO電極7上の薄膜8に、アルミ電極9を真空蒸着法によって成膜し、図2に示すような素子10(それぞれ素子A~C)を作製した。真空蒸着は、1×10-4Pa~4×10-4Pa程度において、抵抗加熱法によって行った。アルミ電極9の膜厚は40nm~400nmであった。ITO電極7とアルミ電極9とが重畳し、素子として機能する電極面積は、2.5mm×3.0mm(素子A)または2.5mm×2.5mm(素子B、C)となるよう設計した。
An aluminum electrode 9 was formed on the
作製した素子A~Cについて、電圧源および電流計の機能を持つソースメーター(装置名2400、KEITHLEY製)をITO電極7とアルミ電極9とに接続し、短絡光電流の時間応答を測定した。また、素子AおよびBについて、暗所下および光照射下での電流-電圧特性を測定した。
For the fabricated devices A to C, a source meter (device name 2400, manufactured by KEITHLEY) having functions of a voltage source and an ammeter was connected to the ITO electrode 7 and the aluminum electrode 9, and the time response of the short-circuit photocurrent was measured. In addition, for the devices A and B, the current-voltage characteristics were measured in the dark and under light irradiation.
なお、電圧および電流の符号については、ITO電極7側にプラス電圧が印加されているときにプラスの電圧表記とし、素子10内の電流がITO電極7からアルミ電極9に流れているときにプラスの電流表記とした。光照射にはソーラーシミュレーターを使用し、100mW/cm2の光強度が素子10に照射されるように調整した。
The sign of voltage and current is expressed as a positive voltage when a positive voltage is applied to the ITO electrode 7 side, and is positive when the current in the element 10 flows from the ITO electrode 7 to the aluminum electrode 9. Current notation. A solar simulator was used for light irradiation, and the device 10 was adjusted so that light intensity of 100 mW / cm 2 was irradiated.
素子Aにおける短絡光電流の時間応答の結果を図3の(a)に示し、暗所下および光照射下での電流-電圧特性の結果を図3の(b)に示す。図3に示すように、どちらの測定結果においても光電流が観測されており、素子Aが光電変換素子として機能していることが確認された。また電圧印加0Vの短絡光電流が観測されたため、太陽電池としても機能していることが確認できた。また、素子Aの開放電圧は約1.5Vであり、変換効率ηは、0.0015%であった。
The result of the time response of the short-circuit photocurrent in the element A is shown in FIG. 3A, and the result of the current-voltage characteristics in the dark and under light irradiation is shown in FIG. As shown in FIG. 3, a photocurrent was observed in both measurement results, and it was confirmed that the element A functions as a photoelectric conversion element. Moreover, since the short circuit photocurrent of voltage application 0V was observed, it has confirmed that it was functioning also as a solar cell. The open circuit voltage of the element A was about 1.5 V, and the conversion efficiency η was 0.0015%.
素子Bにおける短絡光電流の時間応答の結果を図4の(a)に示し、暗所下および光照射下での電流-電圧特性の結果を図4の(b)に示す。素子Bも同様に、光電変換素子として、また太陽電池としても機能していることが確認された。また、素子Bの開放電圧は約1.2Vであった。
The result of the time response of the short-circuit photocurrent in the element B is shown in FIG. 4A, and the result of the current-voltage characteristics in the dark and under light irradiation is shown in FIG. 4B. Similarly, it was confirmed that the element B also functions as a photoelectric conversion element and as a solar cell. The open circuit voltage of the element B was about 1.2V.
素子Cにおける短絡光電流の時間応答の結果を図5に示す。素子Cも同様に、光電変換素子として、また太陽電池としても機能していることが確認された。
The result of the time response of the short circuit photocurrent in the element C is shown in FIG. Similarly, it was confirmed that the element C also functions as a photoelectric conversion element and a solar cell.
<比較例4>
比較(従来法)として、ITOパターンガラス基板上に、P3HTをスピンコート法によって塗布し、基板Dを得た。P3HTの溶液は、濃度が14mg/mlとなるようP3HTをクロロベンゼン(スペクトロゾール)に溶解させ、30~40℃でスターラーを用いて一晩撹拌して作製した。基板は実施例8で使用したものと同じであり、ITO電極7付きの基板6を純水、2-プロパノール、アセトン、クロロホルムで超音波洗浄し、さらにUVオゾン洗浄を行った。洗浄した基板に、上記P3HTのクロロベンゼン溶液を用いて、スピンコート法により薄膜を作製した。回転数は1000rpm、時間は20秒とした。得られた基板Dに、実施例8と同様の方法によって、アルミ電極を真空蒸着法によって成膜して、素子Dを得た。素子として機能する電極面積は、2.5mm×2.5mmとなるよう設計した。 <Comparative Example 4>
As a comparison (conventional method), P3HT was applied by spin coating on an ITO patterned glass substrate to obtain a substrate D. A solution of P3HT was prepared by dissolving P3HT in chlorobenzene (Spectrozole) so as to have a concentration of 14 mg / ml, and stirring overnight at 30 to 40 ° C. using a stirrer. The substrate was the same as that used in Example 8, and thesubstrate 6 with the ITO electrode 7 was ultrasonically cleaned with pure water, 2-propanol, acetone and chloroform, and further UV ozone cleaned. A thin film was formed on the cleaned substrate by spin coating using the above P3HT chlorobenzene solution. The rotation speed was 1000 rpm and the time was 20 seconds. On the obtained substrate D, an aluminum electrode was formed by a vacuum deposition method in the same manner as in Example 8 to obtain an element D. The electrode area functioning as an element was designed to be 2.5 mm × 2.5 mm.
比較(従来法)として、ITOパターンガラス基板上に、P3HTをスピンコート法によって塗布し、基板Dを得た。P3HTの溶液は、濃度が14mg/mlとなるようP3HTをクロロベンゼン(スペクトロゾール)に溶解させ、30~40℃でスターラーを用いて一晩撹拌して作製した。基板は実施例8で使用したものと同じであり、ITO電極7付きの基板6を純水、2-プロパノール、アセトン、クロロホルムで超音波洗浄し、さらにUVオゾン洗浄を行った。洗浄した基板に、上記P3HTのクロロベンゼン溶液を用いて、スピンコート法により薄膜を作製した。回転数は1000rpm、時間は20秒とした。得られた基板Dに、実施例8と同様の方法によって、アルミ電極を真空蒸着法によって成膜して、素子Dを得た。素子として機能する電極面積は、2.5mm×2.5mmとなるよう設計した。 <Comparative Example 4>
As a comparison (conventional method), P3HT was applied by spin coating on an ITO patterned glass substrate to obtain a substrate D. A solution of P3HT was prepared by dissolving P3HT in chlorobenzene (Spectrozole) so as to have a concentration of 14 mg / ml, and stirring overnight at 30 to 40 ° C. using a stirrer. The substrate was the same as that used in Example 8, and the
作製した素子Dについて、実施例8と同様に、短絡光電流の時間応答を測定した。また、実施例8と同様に、短絡暗所下および光照射下での電流-電圧特性を測定した。
For the fabricated device D, the time response of the short-circuit photocurrent was measured in the same manner as in Example 8. Further, in the same manner as in Example 8, the current-voltage characteristics were measured in a short-circuit dark place and under light irradiation.
素子Dの開放電圧は約0.23Vであり、一般的な有機半導体薄膜と同等の数値を示した。また、素子Dの変換効率ηは、0.00044%であった。素子Dの結果を素子Aの結果(図3)と比較すると、素子Aは、素子Dよりも変換効率が格段に良かった。また、素子Aは、素子Dよりも開放電圧が格段に高かった。これらの特性が高いことは、光電変換素子また太陽電池として、高性能であることを示す。
The open circuit voltage of the element D is about 0.23 V, which is the same value as a general organic semiconductor thin film. Further, the conversion efficiency η of the element D was 0.00044%. When the result of the element D was compared with the result of the element A (FIG. 3), the conversion efficiency of the element A was much better than that of the element D. In addition, the open circuit voltage of the element A was much higher than that of the element D. These high characteristics indicate high performance as a photoelectric conversion element or a solar cell.
<参考例1>
実施例2と同様の方法で、P3HTをテトラヒドロフランに溶解し、DLS測定によるP3HTの平均粒径が20nm以下になるまで超音波によって分散させた。この溶液を常温で静置し、溶液の色の変化を肉眼で観察した。 <Reference Example 1>
In the same manner as in Example 2, P3HT was dissolved in tetrahydrofuran and dispersed by ultrasonic waves until the average particle diameter of P3HT as measured by DLS was 20 nm or less. This solution was allowed to stand at room temperature, and the color change of the solution was observed with the naked eye.
実施例2と同様の方法で、P3HTをテトラヒドロフランに溶解し、DLS測定によるP3HTの平均粒径が20nm以下になるまで超音波によって分散させた。この溶液を常温で静置し、溶液の色の変化を肉眼で観察した。 <Reference Example 1>
In the same manner as in Example 2, P3HT was dissolved in tetrahydrofuran and dispersed by ultrasonic waves until the average particle diameter of P3HT as measured by DLS was 20 nm or less. This solution was allowed to stand at room temperature, and the color change of the solution was observed with the naked eye.
分散させた直後は淡橙色であったが、15分後には橙色、1時間後には濃橙色、1日後には黒褐色に変化した。この結果から、時間が経過するにつれて、テトラヒドロフラン溶液中におけるP3HTの粒子の性質が変化する可能性があることがわかった。
直 後 Immediately after dispersion, the color was pale orange, but after 15 minutes it turned orange, after 1 hour it became dark orange, and after 1 day it turned black-brown. From this result, it was found that the properties of the P3HT particles in the tetrahydrofuran solution may change over time.
<実施例9>
実施例2と同様の方法で、P3HTのコロイド分散液を得た。また、実施例5と同様の方法で、PCBMのコロイド分散液を得た。これらのコロイド分散液をDMA(Differential Mobility Analyzer:低圧型DMAシステム、ワイコフ科学株式会社製)によって、コロイド粒子のサイズ分布を測定した。また、これらのコロイド分散液を走査型電子顕微鏡(FE-SEM Hitachi S4800T)で観察した。 <Example 9>
A colloidal dispersion of P3HT was obtained in the same manner as in Example 2. Also, a colloidal dispersion of PCBM was obtained in the same manner as in Example 5. The size distribution of the colloidal particles was measured for these colloidal dispersions by means of DMA (Differential Mobility Analyzer: low pressure type DMA system, manufactured by Wyckoff Scientific Co., Ltd.). These colloidal dispersions were observed with a scanning electron microscope (FE-SEM Hitachi S4800T).
実施例2と同様の方法で、P3HTのコロイド分散液を得た。また、実施例5と同様の方法で、PCBMのコロイド分散液を得た。これらのコロイド分散液をDMA(Differential Mobility Analyzer:低圧型DMAシステム、ワイコフ科学株式会社製)によって、コロイド粒子のサイズ分布を測定した。また、これらのコロイド分散液を走査型電子顕微鏡(FE-SEM Hitachi S4800T)で観察した。 <Example 9>
A colloidal dispersion of P3HT was obtained in the same manner as in Example 2. Also, a colloidal dispersion of PCBM was obtained in the same manner as in Example 5. The size distribution of the colloidal particles was measured for these colloidal dispersions by means of DMA (Differential Mobility Analyzer: low pressure type DMA system, manufactured by Wyckoff Scientific Co., Ltd.). These colloidal dispersions were observed with a scanning electron microscope (FE-SEM Hitachi S4800T).
DMAによるサイズ分布測定は、コロイド分散液を、当該DMAに備え付けのエレクトロスプレーイオン化装置を用いてエアロゾルイオン化し、中和器を用いて平衡帯電状態にした後、分級長を141mmとし、シースガス流量が10(std L/min)で大気圧条件下で動作させたDMAに、エアロゾルガス流量が1.5(std L/min)で導入することにより行った。
In the size distribution measurement by DMA, the colloidal dispersion is subjected to aerosol ionization using an electrospray ionization device provided in the DMA, brought into an equilibrium charging state using a neutralizer, and then the classification length is 141 mm, and the sheath gas flow rate is This was performed by introducing an aerosol gas flow rate of 1.5 (std L / min) into DMA operated under atmospheric pressure conditions at 10 (std L / min).
P3HTのコロイド分散液のDMAの結果を図6の(a)に示す。また、P3HTのコロイド分散液を顕微鏡で撮像した画像を図6の(b)~(d)に示す。図6の(b)~(d)は、それぞれ、1万倍、10万倍、30万倍に拡大した画像である。DMAおよび顕微鏡観察の何れにおいても、P3HTのコロイド分散液中におけるP3HTのコロイド粒子のサイズ分布は、40nm付近に数密度のピークがあった。
FIG. 6 (a) shows the DMA results of the P3HT colloidal dispersion. In addition, images obtained by imaging a P3HT colloidal dispersion with a microscope are shown in FIGS. 6B to 6D. 6B to 6D are images magnified 10,000, 100,000, and 300,000 times, respectively. In both DMA and microscopic observations, the size distribution of the P3HT colloidal particles in the P3HT colloidal dispersion had a number density peak near 40 nm.
PCBMのコロイド分散液のDMAの結果を図7の(a)に示す。また、PCBMのコロイド分散液を顕微鏡で撮像した画像を図7の(b)~(d)に示す。図7の(b)は1万倍に、(c)および(d)は10万倍に拡大した画像である。DMAおよび顕微鏡観察の何れにおいても、PCBMのコロイド分散液中におけるPCBMのコロイド粒子のサイズ分布は、30nm付近に数密度のピークがあった。
The DMA result of the colloidal dispersion of PCBM is shown in FIG. In addition, images of the PCBM colloidal dispersion taken with a microscope are shown in FIGS. 7B to 7D. In FIG. 7, (b) is an image magnified 10,000 times, and (c) and (d) are images magnified 100,000 times. In both the DMA and the microscopic observation, the size distribution of the colloidal particles of PCBM in the colloidal dispersion of PCBM had a number density peak near 30 nm.
<実施例10>
本実施例は、実施例8の素子Aに比較して、ITO電極とコロイド分散液を静電噴霧装置で噴霧して作製した薄膜との間に、スピンコート法によって作製されたP3HT薄膜が挿入されている点で異なる。 <Example 10>
In this example, a P3HT thin film produced by spin coating is inserted between the ITO electrode and a thin film produced by spraying a colloidal dispersion with an electrostatic spraying device, as compared with the element A of Example 8. Different in that it is.
本実施例は、実施例8の素子Aに比較して、ITO電極とコロイド分散液を静電噴霧装置で噴霧して作製した薄膜との間に、スピンコート法によって作製されたP3HT薄膜が挿入されている点で異なる。 <Example 10>
In this example, a P3HT thin film produced by spin coating is inserted between the ITO electrode and a thin film produced by spraying a colloidal dispersion with an electrostatic spraying device, as compared with the element A of Example 8. Different in that it is.
スピンコートに用いたP3HTの溶液は、濃度が14mg/mlとなるようP3HTをクロロベンゼン(スペクトロゾール)に溶解させ、30~40℃でスターラーを用いて一晩撹拌して作製した。基板は実施例8で使用したものと同じであり、ITO電極7付きの基板6を純水、2-プロパノール、アセトン、クロロホルムで超音波洗浄し、さらにUVオゾン洗浄を行った。洗浄した基板に、上記P3HTのクロロベンゼン溶液を用いて、スピンコート法によりP3HT薄膜を作製した。回転数は1000rpm、時間は20秒とした。P3HT薄膜の膜厚は39nmであった。
The solution of P3HT used for spin coating was prepared by dissolving P3HT in chlorobenzene (spectrosol) so as to have a concentration of 14 mg / ml and stirring it overnight at 30 to 40 ° C. using a stirrer. The substrate was the same as that used in Example 8, and the substrate 6 with the ITO electrode 7 was ultrasonically cleaned with pure water, 2-propanol, acetone and chloroform, and further UV ozone cleaned. A P3HT thin film was formed on the cleaned substrate by spin coating using the above P3HT chlorobenzene solution. The rotation speed was 1000 rpm and the time was 20 seconds. The film thickness of the P3HT thin film was 39 nm.
P3HTのコロイド分散液は、実施例2と同様の手順で作製したものである(コロイド分散液A’)。静電噴霧装置を用いて、コロイド分散液A’を上記P3HT薄膜上に塗布し、薄膜を積層し、基板Eを得た。噴霧方法は実施例7と基本的に同様であるが、印加電圧を4.3kV、塗布時間を120分とした。積層部分の膜厚は70nmであった。
The colloidal dispersion of P3HT was prepared by the same procedure as in Example 2 (colloidal dispersion A ′). The colloidal dispersion A ′ was applied onto the P3HT thin film using an electrostatic spraying apparatus, and the thin film was laminated to obtain a substrate E. The spraying method was basically the same as in Example 7, but the applied voltage was 4.3 kV and the coating time was 120 minutes. The thickness of the laminated portion was 70 nm.
得られた基板Eに、実施例8と同様の方法によって、アルミ電極を真空蒸着法によって成膜して、素子Eを得た。素子として機能する電極面積は、2.5mm×2.5mmとなるよう設計した。
An element E was obtained by depositing an aluminum electrode on the obtained substrate E by a vacuum deposition method in the same manner as in Example 8. The electrode area functioning as an element was designed to be 2.5 mm × 2.5 mm.
作製した素子Eについて、実施例8と同様に、短絡光電流の時間応答を測定した。また、実施例8と同様に、短絡暗所下および光照射下での電流-電圧特性を測定した。
For the fabricated device E, the time response of the short-circuit photocurrent was measured in the same manner as in Example 8. Further, in the same manner as in Example 8, the current-voltage characteristics were measured in a short-circuit dark place and under light irradiation.
短絡光電流の時間応答の結果を図8の(a)に示し、短絡暗所下および光照射下での電流-電圧特性結果を図8の(b)に示す。素子Eも同様に、光電変換素子として、また太陽電池としても機能していることが確認された。さらに、図8の(a)に示す素子Eにおける結果を、図3の(a)に示す素子Aにおける結果と比較すると、素子Eではさらに多くの短絡光電流が流れることがわかった。また、図8の(b)から素子Eの変換効率ηは、0.0027%であることがわかった。このことは、素子Eが素子Aよりも、光電変換素子また太陽電池として、さらに高性能であることを示す。
The result of the time response of the short-circuit photocurrent is shown in FIG. 8 (a), and the current-voltage characteristic result in the short-circuit dark place and under light irradiation is shown in FIG. 8 (b). Similarly, it was confirmed that the element E also functions as a photoelectric conversion element and as a solar cell. Further, when the result of the element E shown in FIG. 8A is compared with the result of the element A shown in FIG. 3A, it is found that more short-circuit photocurrent flows in the element E. Further, from FIG. 8B, it was found that the conversion efficiency η of the element E was 0.0027%. This indicates that the element E has higher performance than the element A as a photoelectric conversion element or a solar cell.
本発明により、比較的高い安定性を有する、非水溶性の有機半導体材料のコロイドの水分散液、およびその製造方法等を提供することができる。
According to the present invention, it is possible to provide a colloidal aqueous dispersion of a water-insoluble organic semiconductor material having a relatively high stability, a method for producing the same, and the like.
1 スプレーキャピラリー
2 コロイド分散液
3 針金状電極
4 スプレーフレーム
5 アクリル板
6 基板
7 ITO電極
8 薄膜
9 アルミ電極
10 素子 DESCRIPTION OFSYMBOLS 1 Spray capillary 2 Colloid dispersion liquid 3 Wire-like electrode 4 Spray frame 5 Acrylic board 6 Substrate 7 ITO electrode 8 Thin film 9 Aluminum electrode 10 Element
2 コロイド分散液
3 針金状電極
4 スプレーフレーム
5 アクリル板
6 基板
7 ITO電極
8 薄膜
9 アルミ電極
10 素子 DESCRIPTION OF
Claims (14)
- 非水溶性の有機半導体材料のコロイドが水に分散しているコロイド分散液の製造方法であって、
水溶性の有機溶媒中に上記有機半導体材料を動的光散乱法に基づき測定した平均粒径が50nm以下になるまで分散して溶解し、有機半導体材料を含む溶液を作製する工程Aと、
上記溶液を水に加えて攪拌する工程Bとを含むことを特徴とする製造方法。 A method for producing a colloidal dispersion in which a colloid of a water-insoluble organic semiconductor material is dispersed in water,
Step A for dispersing and dissolving the organic semiconductor material in a water-soluble organic solvent until the average particle size measured based on the dynamic light scattering method is 50 nm or less, and preparing a solution containing the organic semiconductor material;
And a step B in which the solution is added to water and stirred. - 上記工程Bは、上記工程Aの後30分以内に上記溶液を10倍体積以上で100倍体積以下の水に加えることを特徴とする請求項1に記載の製造方法。 The process according to claim 1, wherein the step B adds the solution to 10 to 100 times volume of water within 30 minutes after the step A.
- 工程Bの後、上記溶液が加えられた水から上記有機溶媒を除去する工程Cをさらに含むことを特徴とする請求項1または2に記載の製造方法。 3. The process according to claim 1 or 2, further comprising a step C of removing the organic solvent from the water to which the solution is added after the step B.
- 上記工程Aにおいて、超音波によって上記有機半導体材料を分散することを特徴とする請求項1~3の何れか1項に記載の製造方法。 The method according to any one of claims 1 to 3, wherein in the step A, the organic semiconductor material is dispersed by ultrasonic waves.
- 上記工程Bは、上記溶液を水に滴下して加えることを特徴とする請求項1~4の何れか1項に記載の製造方法。 The method according to any one of claims 1 to 4, wherein in the step B, the solution is added dropwise to water.
- 上記有機半導体材料が、ポリチオフェン、チオフェン系化合物のポリマー、フラーレン、またはフラーレン誘導体であることを特徴とする請求項1~5の何れか1項に記載の製造方法。 The production method according to any one of claims 1 to 5, wherein the organic semiconductor material is polythiophene, a polymer of a thiophene compound, fullerene, or a fullerene derivative.
- 上記有機溶媒が、テトラヒドロフラン、クロロホルム、およびエタノールからなる群より選択される少なくとも一種であることを特徴とする請求項1~6の何れか1項に記載の製造方法。 The production method according to any one of claims 1 to 6, wherein the organic solvent is at least one selected from the group consisting of tetrahydrofuran, chloroform, and ethanol.
- 上記工程Aにおいて、上記有機溶媒の温度を30~60℃の範囲内に保ちながら上記有機半導体材料を分散することを特徴とする請求項1~7の何れか1項に記載の製造方法。 The method according to any one of claims 1 to 7, wherein in the step A, the organic semiconductor material is dispersed while maintaining the temperature of the organic solvent within a range of 30 to 60 ° C.
- 請求項1~8の何れか1項に記載の製造方法によって製造されることを特徴とするコロイド分散液。 A colloidal dispersion produced by the production method according to any one of claims 1 to 8.
- 請求項9に記載のコロイド分散液を基体に付着させる付着工程を含むことを特徴とする有機薄膜素子の製造方法。 A method for producing an organic thin film element, comprising an adhesion step of adhering the colloidal dispersion liquid according to claim 9 to a substrate.
- 上記基体はスピンコーティングによって形成された半導体膜を表面に有しており、上記付着工程は当該半導体膜の少なくとも一部に、当該半導体膜と多数キャリアが同じである有機半導体が分散している上記コロイド分散液を付着させることを特徴とする請求項10に記載の製造方法。 The substrate has a semiconductor film formed by spin coating on the surface, and in the attaching step, an organic semiconductor having the same majority carrier as the semiconductor film is dispersed in at least a part of the semiconductor film. The method according to claim 10, wherein a colloidal dispersion is adhered.
- 上記付着工程において、上記コロイド分散液を静電噴霧堆積法によって基体に付着させることを特徴とする請求項10または11に記載の製造方法。 The manufacturing method according to claim 10 or 11, wherein, in the attaching step, the colloidal dispersion is attached to a substrate by an electrostatic spray deposition method.
- 上記有機薄膜素子が太陽電池素子であることを特徴とする請求項10~12の何れか1項に記載の製造方法。 The method according to any one of claims 10 to 12, wherein the organic thin film element is a solar cell element.
- 請求項10~13の何れか1項に記載の製造方法によって製造されることを特徴とする有機薄膜素子。 An organic thin film element manufactured by the manufacturing method according to any one of claims 10 to 13.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013543058A JP6120284B2 (en) | 2011-11-11 | 2012-11-09 | Colloidal dispersion, method for producing the same, and use thereof |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011248087 | 2011-11-11 | ||
JP2011-248087 | 2011-11-11 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013069794A1 true WO2013069794A1 (en) | 2013-05-16 |
Family
ID=48290159
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/079187 WO2013069794A1 (en) | 2011-11-11 | 2012-11-09 | Colloidal dispersion, method for producing same, and use of same |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6120284B2 (en) |
WO (1) | WO2013069794A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014057011A (en) * | 2012-09-13 | 2014-03-27 | Institute Of Physical & Chemical Research | Method of manufacturing organic semiconductor element, organic semiconductor element, and organic thin-film solar cell element |
WO2014208413A1 (en) * | 2013-06-24 | 2014-12-31 | 東レエンジニアリング株式会社 | Ink for electrospray device, and method of producing ink for electrospray device |
WO2024135402A1 (en) * | 2022-12-23 | 2024-06-27 | 住友化学株式会社 | Ink composition for producing photoelectric conversion elements, method for producing ink composition for producing photoelectric conversion elements, polymer compound and method for producing polymer compound |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111148801B (en) * | 2017-09-29 | 2021-12-28 | 汉阳大学校产学协力团 | Slurry for electrostatic spray deposition and method for forming coating film using the same |
WO2020240790A1 (en) | 2019-05-30 | 2020-12-03 | 三菱電機株式会社 | Power semiconductor module and power conversion device |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004067883A (en) * | 2002-08-07 | 2004-03-04 | Inst Of Physical & Chemical Res | Preparation process of fine particulate |
JP2006270061A (en) * | 2005-02-25 | 2006-10-05 | Toray Ind Inc | Photovoltaic device |
JP2011003442A (en) * | 2009-06-19 | 2011-01-06 | Saitama Univ | Method of manufacturing organic thin film element |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4698133B2 (en) * | 2003-08-08 | 2011-06-08 | 株式会社リコー | Method for forming organic semiconductor pattern |
GB2416428A (en) * | 2004-07-19 | 2006-01-25 | Seiko Epson Corp | Method for fabricating a semiconductor element from a dispersion of semiconductor particles |
-
2012
- 2012-11-09 WO PCT/JP2012/079187 patent/WO2013069794A1/en active Application Filing
- 2012-11-09 JP JP2013543058A patent/JP6120284B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004067883A (en) * | 2002-08-07 | 2004-03-04 | Inst Of Physical & Chemical Res | Preparation process of fine particulate |
JP2006270061A (en) * | 2005-02-25 | 2006-10-05 | Toray Ind Inc | Photovoltaic device |
JP2011003442A (en) * | 2009-06-19 | 2011-01-06 | Saitama Univ | Method of manufacturing organic thin film element |
Non-Patent Citations (1)
Title |
---|
HIDENOBU SHIMIZU ET AL.: "Preparation and Characterization of Water Self-dispersible Poly (3-hexylthiophene) Particles", POLYMER JOURNAL, vol. 40, no. 1, 13 November 2007 (2007-11-13), JAPAN, pages 33 - 36 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014057011A (en) * | 2012-09-13 | 2014-03-27 | Institute Of Physical & Chemical Research | Method of manufacturing organic semiconductor element, organic semiconductor element, and organic thin-film solar cell element |
WO2014208413A1 (en) * | 2013-06-24 | 2014-12-31 | 東レエンジニアリング株式会社 | Ink for electrospray device, and method of producing ink for electrospray device |
JP2015004030A (en) * | 2013-06-24 | 2015-01-08 | 東レエンジニアリング株式会社 | Ink for electrospray device and method of producing ink for electrospray device |
WO2024135402A1 (en) * | 2022-12-23 | 2024-06-27 | 住友化学株式会社 | Ink composition for producing photoelectric conversion elements, method for producing ink composition for producing photoelectric conversion elements, polymer compound and method for producing polymer compound |
Also Published As
Publication number | Publication date |
---|---|
JPWO2013069794A1 (en) | 2015-07-30 |
JP6120284B2 (en) | 2017-04-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6120284B2 (en) | Colloidal dispersion, method for producing the same, and use thereof | |
Pace et al. | Printed photodetectors | |
Lim et al. | Facile Synthesis of Colloidal CuO Nanocrystals for Light‐Harvesting Applications | |
JP5680286B2 (en) | Photoelectric conversion element | |
Park et al. | Spray deposition of electrohydrodynamically atomized polymer mixture for active layer fabrication in organic photovoltaics | |
Duraisamy et al. | Characterization of poly (3, 4-ethylenedioxythiophene): poly (styrenesulfonate) thin film deposited through electrohydrodynamic atomization technique | |
TW201528527A (en) | Photovoltaic systems and spray coating processes for producing photovoltaic systems | |
Park et al. | Fabrication of ordered bulk heterojunction organic photovoltaic cells using nanopatterning and electrohydrodynamic spray deposition methods | |
JP2017126676A (en) | Photoelectric conversion element | |
Zhao et al. | Printing photovoltaics by electrospray | |
JPWO2016158698A1 (en) | Photoelectric conversion element | |
AU2011286176A1 (en) | Processes for preparing devices and films based on conductive nanoparticles | |
Ren et al. | Inkjet printing technology for OPV applications | |
Choi et al. | Fabrication of dielectric poly (4-vinylphenol) thin films by using the electrohydrodynamic atomization technique | |
Chang et al. | Organic Photovoltaics Printed via Sheet Electrospray Enabled by Quadrupole Electrodes | |
WO2009119871A1 (en) | Organic photoelectric conversion element | |
Waheed et al. | Performance improvement of ultrasonic spray deposited polymer solar cell through droplet boundary reduction assisted by acoustic substrate vibration | |
JP2008109112A (en) | Coating liquid for photoelectric conversion layer and manufacturing method of coating liquid, and organic thin-film solar cell and its manufacturing method | |
JP2019212763A (en) | Photoelectric conversion element | |
US10916720B2 (en) | Organic photoelectric conversion device and production method thereof | |
Darwis et al. | Surfactant Free P3HT/PCBM Nanoparticles for Organic Photovoltaics (OPV) | |
JP2019522364A (en) | Solvent blends for photoactive layers | |
JP5945379B2 (en) | Method for forming organic thin film and solar cell formed using the same | |
CN107210371A (en) | Photo-electric conversion element and its manufacture method | |
Kovalenko et al. | Printable solar cells |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12848288 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2013543058 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12848288 Country of ref document: EP Kind code of ref document: A1 |