WO2013069782A1 - Method for producing thermoplastic resin composition, and molded article - Google Patents

Method for producing thermoplastic resin composition, and molded article Download PDF

Info

Publication number
WO2013069782A1
WO2013069782A1 PCT/JP2012/079164 JP2012079164W WO2013069782A1 WO 2013069782 A1 WO2013069782 A1 WO 2013069782A1 JP 2012079164 W JP2012079164 W JP 2012079164W WO 2013069782 A1 WO2013069782 A1 WO 2013069782A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoplastic resin
component
resin composition
group
acid
Prior art date
Application number
PCT/JP2012/079164
Other languages
French (fr)
Japanese (ja)
Inventor
晋太郎 小松
英浩 古▲高▼
原田 博史
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Publication of WO2013069782A1 publication Critical patent/WO2013069782A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/203Solid polymers with solid and/or liquid additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/0405Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
    • C08J5/042Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with carbon fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/045Reinforcing macromolecular compounds with loose or coherent fibrous material with vegetable or animal fibrous material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/12Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of short lengths, e.g. chopped filaments, staple fibres or bristles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/16Fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • C08J2367/03Polyesters derived from dicarboxylic acids and dihydroxy compounds the dicarboxylic acids and dihydroxy compounds having the hydroxy and the carboxyl groups directly linked to aromatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/006Additives being defined by their surface area

Definitions

  • the present invention relates to a molded article excellent in thermal conductivity and a method for producing a thermoplastic resin composition for obtaining the molded article.
  • JP-A-62-100577 Japanese Patent Laid-Open No. 4-178421 JP-A-5-86246
  • a molded body having a relatively complicated shape such as used for electric / electronic parts is generally manufactured by injection molding.
  • injection molding the thermal conductivity in the resin flow direction can be improved relatively easily, but it is very difficult to improve the thermal conductivity in the thickness direction of the molded product perpendicular to the flow direction. There was a problem that it was difficult.
  • the filler has to be highly filled, so that there is a problem that the strength of the molded body is lowered.
  • the present invention has been made in view of the above circumstances, and has a molded body excellent in electrical conductivity and strength in the thickness direction, having excellent electrical insulation as an electrical / electronic component, and the molded body It is an object of the present invention to provide a method for producing a thermoplastic resin composition for obtaining the above.
  • the present invention has the following aspects.
  • the first aspect of the present invention is: [1] Using a melt-kneading extruder provided with a nozzle, a cylinder and a screw installed in the cylinder, from the supply port provided in the cylinder, the following component (A), the following component (B) and the following component ( C) is supplied to the cylinder to melt and knead the component (A), the component (B) and the component (C) to obtain a kneaded product, and the kneaded product is fed from the nozzle to the melt kneading extruder.
  • the present invention relates to a method for producing a thermoplastic resin composition, comprising extruding to the outside and cooling the kneaded product at a cooling rate of 35 ° C./second or less.
  • thermoplastic resin composition according to [1], wherein the component (B) has a BET specific surface area of 1.0 to 5.0 m 2 / g.
  • thermoplastic resin composition according to [1] or [2], wherein the particle size distribution obtained by laser diffraction scattering measurement of the component (B) is bimodal.
  • the particle size distribution obtained by laser diffraction scattering measurement of the component (B) is maximum in the range of the volume average particle size of 1 to 5 ⁇ m and in the range of the volume average particle size of 0.1 to 1 ⁇ m, respectively.
  • the component (C) is at least one substance selected from the group consisting of carbon fiber, glass fiber, wollastonite whisker, aluminum borate whisker, and potassium titanate whisker.
  • the manufacturing method of the thermoplastic resin composition as described in any one.
  • thermoplastic resin composition according to any one of [1] to [5], wherein the component (A) is a liquid crystal polyester.
  • the liquid crystalline polyester comprises a repeating unit derived from at least one aromatic hydroxycarboxylic acid selected from the group consisting of p-hydroxybenzoic acid and 6-hydroxy-2-naphthoic acid, hydroquinone and 4,4 ′
  • the total supply amount of the components (B) and (C) is 100 parts by mass or more with respect to 100 parts by mass of the component (A).
  • a method for producing a thermoplastic resin composition is 100 parts by mass or more with respect to 100 parts by mass of the component (A).
  • the second aspect of the present invention is: [9] relates to a molded article obtained by molding the thermoplastic resin composition obtained by the production method according to any one of [1] to [8].
  • the electrical / electronic component is at least one component selected from the group consisting of a sealing material for electronic elements, an insulator, a reflector for display device, a housing for storing electronic elements, and a surface-mounted component.
  • a sealing material for electronic elements for electronic elements
  • an insulator for electronic elements
  • a reflector for display device for display device
  • a housing for storing electronic elements
  • a surface-mounted component for storing electronic elements.
  • a third aspect of the present invention uses a melt kneading extruder provided with a cylinder and a screw installed in the cylinder, and from the supply port provided in the cylinder, the following components (A), (B) and ( C) is supplied to the cylinder and melt-kneaded to produce a thermoplastic resin composition, in which the kneaded product extruded from the nozzle of the melt-kneading extruder is cooled at a cooling rate of 35 ° C / Provided is a method for producing a thermoplastic resin composition characterized by cooling in seconds or less.
  • thermoplastic resin composition (A) Thermoplastic resin (B) Alumina fine particles (C) Fibrous filler
  • BET specific surface area of the component (B) is 1.0. It is preferably ⁇ 5.0 m 2 / g.
  • the particle size distribution obtained by laser diffraction scattering measurement of the component (B) is preferably bimodal.
  • the particle size distribution obtained by laser diffraction scattering measurement of the component (B) is in the range of 1-5 ⁇ m in volume average particle size, and the volume Bimodality having maximum values in the average particle size range of 0.1 to 1 ⁇ m is preferable.
  • the component (C) is made of the group consisting of carbon fiber, glass fiber, wollastonite whisker, aluminum borate whisker, and potassium titanate whisker. It is preferably one or more selected.
  • the component (A) is preferably a liquid crystal polyester.
  • the liquid crystal polyester is a repeating product derived from an aromatic hydroxycarboxylic acid of p-hydroxybenzoic acid and / or 6-hydroxy-2-naphthoic acid.
  • the total supply amount of the components (B) and (C) is 100 parts by mass or more with respect to 100 parts by mass of the component (A).
  • the 4th aspect of this invention provides the molded object formed by shape
  • the molded body of the fourth aspect of the present invention preferably has a volume resistivity value at 23 ° C. of 1 ⁇ 10 10 ⁇ m or more.
  • the molded body of the fourth aspect of the present invention is preferably for electric / electronic parts.
  • the electrical / electronic component is composed of a group consisting of an electronic element sealing material, an insulator, a display device reflector, a housing for electronic element storage, and a surface mount component. It is preferably one or more selected.
  • the molded object which has the electrical insulation suitable as an electrical / electronic component, and was excellent in the thermal conductivity of thickness direction, and intensity
  • the method for producing a thermoplastic resin composition according to the first aspect of the present invention uses a melt-kneading extruder provided with a nozzle, a cylinder, and a screw installed in the cylinder, from a supply port provided in the cylinder.
  • the following component (A), the following component (B) and the following component (C) are supplied to the cylinder, and the component (A), the component (B) and the component (C) are melt-kneaded to obtain a kneaded product.
  • thermoplastic resin composition capable of producing a molded article excellent in electrical insulation, thermal conductivity in the thickness direction, and strength can be obtained.
  • thermal conductivity means “thermal conductivity in the thickness direction of the molded body”.
  • the “thickness direction” means a direction perpendicular to the MD direction and the TD direction of the molded product (molded plate).
  • MD direction means the injection direction of the molded product (molded plate), and “TD direction” means the width direction of the molded product (molded plate) perpendicular to the injection direction.
  • the method for producing a thermoplastic resin composition according to the third aspect of the present invention uses a melt-kneading extruder provided with a cylinder and a screw installed in the cylinder, and from the supply port provided in the cylinder, the following A method for producing a thermoplastic resin composition by supplying components (A), (B) and (C) to the cylinder and melt-kneading them, and is extruded from the nozzle of the melt-kneading extruder.
  • the kneaded product is cooled at a cooling rate of 35 ° C./second or less.
  • thermoplastic resin (B) Alumina fine particles (C) Fibrous filler
  • the cooling rate of the extruded kneaded product is set to 35 ° C./sec or less, which is lower than the conventional one, so A thermoplastic resin composition capable of producing a molded article having excellent properties, thermal conductivity in the thickness direction, and strength is obtained.
  • thermal conductivity means “thermal conductivity in the thickness direction of the molded body”.
  • the thermoplastic resin (component (A)) is preferably one that can be molded at a molding temperature of 200 to 450 ° C.
  • examples thereof include polyolefin, polystyrene, polyamide, halogenated vinyl resin, polyacetal, saturated polyester, polycarbonate, poly
  • examples thereof include aryl sulfone, polyaryl ketone, polyphenylene ether, polyphenylene sulfide, polyaryl ether ketone, polyether sulfone, polyphenylene sulfide sulfone, polyarylate, polyamide, liquid crystal polyester, and fluororesin.
  • a thermoplastic resin may be used individually by 1 type, and may use 2 or more types together as a polymer alloy.
  • the thermoplastic resin is preferably liquid crystal polyester, polyethersulfone, polyarylate, polyphenylene sulfide, polyamide 4/6 or polyamide 6T, and more preferably polyphenylene sulfide or liquid crystal polyester because of excellent heat resistance and electrical insulation. . And since it is excellent also in the thin-wall moldability in addition to the point which is excellent in heat resistance and electrical insulation, liquid crystalline polyester is especially preferable. As described above, when the liquid crystalline polyester having excellent thin-wall moldability is used as the thermoplastic resin, the moldability at the time of molding a relatively complicated shape of electric / electronic parts becomes particularly good.
  • Polyphenylene sulfide is typically a resin mainly containing a repeating unit represented by the following formula (10).
  • Such polyphenylene sulfide can be produced by a reaction of a halogen-substituted aromatic compound and an alkali sulfide disclosed in “US Pat. No. 2,513,188” and “Japanese Examined Patent Publication No. 44-27671”, “US Pat. No. 3,274,165”.
  • Examples include a method of performing a condensation reaction with sulfur chloride under a Lewis acid catalyst. Moreover, you may use the commercially available polyphenylene sulfide (for example, polyphenylene sulfide by Dainippon Ink & Chemicals, Inc.) which can be obtained easily.
  • polyphenylene sulfide for example, polyphenylene sulfide by Dainippon Ink & Chemicals, Inc.
  • the liquid crystalline polyester is a liquid crystalline polyester that exhibits liquid crystallinity in a molten state, and is preferably melted at a temperature of 450 ° C. or lower.
  • the liquid crystal polyester may be a liquid crystal polyester amide, a liquid crystal polyester ether, a liquid crystal polyester carbonate, or a liquid crystal polyester imide.
  • the “liquid crystal polyester amide” has an ester bond (—O—CO—) and an amide bond (—NH—CO—) in the polymer skeleton.
  • “Liquid crystal polyester ether” has an ester bond and an ether bond (—O—) in the polymer skeleton.
  • the “liquid crystal polyester carbonate” has an ester bond and a carbonate bond (—O—CO—O—) in the polymer skeleton.
  • the “liquid crystal polyester imide” has an ester bond and an imide structure represented by the following chemical formula in a polymer skeleton.
  • the liquid crystal polyester is preferably a wholly aromatic liquid crystal polyester using only an aromatic compound as a raw material monomer.
  • the “fully aromatic liquid crystal polyester” is, for example, a polyester called a thermotropic liquid crystal polymer, (1) Composed of a combination of aromatic dicarboxylic acid, aromatic diol and aromatic hydroxycarboxylic acid (2) Consisting of different types of aromatic hydroxycarboxylic acid (3) Combination of aromatic dicarboxylic acid and aromatic diol The thing which consists of etc. is mentioned.
  • aromatic dicarboxylic acids aromatic diols and aromatic hydroxycarboxylic acids, their ester-forming derivatives may be used as raw materials.
  • “Aromatic” is a group of cyclic unsaturated organic compounds represented by benzene.
  • liquid crystal polyester As a typical example of liquid crystal polyester, (I) An aromatic hydroxycarboxylic acid, an aromatic dicarboxylic acid, and at least one compound selected from the group consisting of an aromatic diol, an aromatic hydroxyamine, and an aromatic diamine are polymerized (polycondensed). thing, (II) a polymer obtained by polymerizing plural kinds of aromatic hydroxycarboxylic acids, (III) A polymer obtained by polymerizing an aromatic dicarboxylic acid and at least one compound selected from the group consisting of an aromatic diol, an aromatic hydroxyamine and an aromatic diamine, (IV) What polymerizes polyester, such as a polyethylene terephthalate, and aromatic hydroxycarboxylic acid is mentioned.
  • aromatic hydroxycarboxylic acid is a compound represented by the following general formula (a).
  • the aromatic dicarboxylic acid is a compound represented by the following general formula (b).
  • the aromatic diol is a compound represented by the following general formula (c).
  • the aromatic hydroxyamine is a compound represented by the following general formula (d).
  • An aromatic diamine is a compound represented by the following general formula (e).
  • Examples of polymerizable derivatives of a compound having a carboxyl group such as aromatic hydroxycarboxylic acid and aromatic dicarboxylic acid include those obtained by converting a carboxyl group into an alkoxycarbonyl group or an aryloxycarbonyl group (ester), carboxyl Examples include those obtained by converting a group into a haloformyl group (acid halide), and those obtained by converting a carboxyl group into an acyloxycarbonyl group (acid anhydride).
  • polymerizable derivatives of hydroxyl group-containing compounds such as aromatic hydroxycarboxylic acids, aromatic diols and aromatic hydroxyamines include those obtained by acylating hydroxyl groups and converting them to acyloxyl groups (acylated products) ).
  • polymerizable derivatives of amino group-containing compounds such as aromatic hydroxyamines and aromatic diamines include those obtained by acylating an amino group and converting it to an acylamino group (acylated product).
  • the liquid crystalline polyester preferably has a repeating unit represented by the following general formula (1) (hereinafter sometimes referred to as “repeating unit (1)”).
  • the repeating unit (1) and the following general formula (2) ) (Hereinafter sometimes referred to as “repeat unit (2)”) and a repeat unit represented by the following general formula (3) (hereinafter referred to as “repeat unit (3)”). More preferably).
  • Ar 1 is a phenylene group, a naphthylene group or a biphenylylene group
  • Ar 2 and Ar 3 are each independently a phenylene group, a naphthylene group, a biphenylylene group or a group represented by the following general formula (4): Yes
  • X and Y are each independently an oxygen atom or imino group
  • one or more hydrogen atoms in Ar 1 , Ar 2 and Ar 3 are each independently substituted with a halogen atom, an alkyl group or an aryl group May be.
  • Ar 4 and Ar 5 are each independently a phenylene group or a naphthylene group
  • Z is an oxygen atom, a sulfur atom, a carbonyl group, a sulfon
  • the alkyl group preferably has 1 to 10 carbon atoms. Specifically, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, n-pentyl group, n-hexyl group, n-heptyl group Group, 2-ethylhexyl group, n-octyl group, n-nonyl group and n-decyl group.
  • the aryl group preferably has 6 to 20 carbon atoms.
  • Specific examples include a phenyl group, an o-tolyl group, an m-tolyl group, a p-tolyl group, a 1-naphthyl group, and a 2-naphthyl group.
  • the number is as follows for each group represented by Ar 1 , Ar 2, or Ar 3 , respectively. Independently, it is preferably 2 or less, more preferably 1.
  • the number of carbon atoms is preferably 1 to 10.
  • Specific examples include a methylene group, an ethylidene group, an isopropylidene group, an n-butylidene group, and a 2-ethylhexylidene group.
  • the repeating unit (1) is a repeating unit derived from a predetermined aromatic hydroxycarboxylic acid.
  • Ar 1 is a 1,4-phenylene group (repeating unit derived from p-hydroxybenzoic acid), and Ar 1 is a 2,6-naphthylene group (6-hydroxy Preferred is a repeating unit derived from -2-naphthoic acid.
  • the repeating unit (2) is a repeating unit derived from a predetermined aromatic dicarboxylic acid.
  • Ar 2 is a 1,4-phenylene group (repeating unit derived from terephthalic acid), Ar 2 is a 1,3-phenylene group (repeating unit derived from isophthalic acid) ), Ar 2 is a 2,6-naphthylene group (repeating unit derived from 2,6-naphthalenedicarboxylic acid), and Ar 2 is a diphenyl ether-4,4′-diyl group (diphenyl) Preferred is a repeating unit derived from ether-4,4′-dicarboxylic acid).
  • the repeating unit (3) is a repeating unit derived from a predetermined aromatic diol, aromatic hydroxylamine or aromatic diamine.
  • Ar 3 is a 1,4-phenylene group (a repeating unit derived from hydroquinone, p-aminophenol or p-phenylenediamine), and Ar 3 is a 4,4′-biphenylylene group. (Repeating units derived from 4,4′-dihydroxybiphenyl, 4-amino-4′-hydroxybiphenyl or 4,4′-diaminobiphenyl) are preferred.
  • the content of the repeating unit (1) is the total amount of all repeating units constituting the liquid crystal polyester (the substance of each repeating unit is obtained by dividing the mass of each repeating unit constituting the liquid crystal polyester by the formula weight of each repeating unit).
  • the equivalent amount (mole) is obtained and the total of these is preferably 30 mol% or more, more preferably 30 to 80 mol%, still more preferably 40 to 70 mol%, particularly preferably 45 to 65 mol%. Mol%.
  • the content of the repeating unit (2) is preferably 35 mol% or less, more preferably 10 to 35 mol%, still more preferably 15 to 30 mol%, based on the total amount of all repeating units constituting the liquid crystal polyester. Particularly preferred is 17.5 to 27.5 mol%.
  • the content of the repeating unit (3) is preferably 35 mol% or less, more preferably 10 to 35 mol%, still more preferably 15 to 30 mol%, based on the total amount of all repeating units constituting the liquid crystal polyester. Particularly preferred is 17.5 to 27.5 mol%.
  • the higher the content of the repeating unit (1) the easier it is to improve the melt flowability, heat resistance, strength and rigidity of the liquid crystalline polyester. However, if the content is too large, the melting temperature and melt viscosity tend to increase, and the temperature required for molding. Tends to be high.
  • the ratio between the content of the repeating unit (2) and the content of the repeating unit (3) is expressed as [content of repeating unit (2)] / [content of repeating unit (3)] (mol / mol).
  • the ratio is preferably 0.9 / 1 to 1 / 0.9, more preferably 0.95 / 1 to 1 / 0.95, and still more preferably 0.98 / 1 to 1 / 0.98.
  • the liquid crystal polyester may have two or more repeating units (1) to (3) independently.
  • the liquid crystal polyester may have a repeating unit other than the repeating units (1) to (3), but the content thereof is preferably 10 with respect to the total amount of all repeating units constituting the liquid crystal polyester.
  • the mol% or less more preferably 5 mol% or less.
  • the liquid crystal polyester preferably has, as the repeating unit (3), X and Y each having an oxygen atom, that is, a repeating unit derived from a predetermined aromatic diol.
  • X and Y each have only an oxygen atom.
  • the liquid crystalline polyester comprises a repeating unit derived from at least one aromatic hydroxycarboxylic acid selected from the group consisting of p-hydroxybenzoic acid and 6-hydroxy-2-naphthoic acid as the repeating unit (1), and a repeating unit ( 2) as a repeating unit derived from one or more aromatic dicarboxylic acids selected from the group consisting of terephthalic acid, isophthalic acid and 2,6-naphthalenedicarboxylic acid, and as repeating unit (3) hydroquinone and 4,4′-dihydroxy It is preferable to have a repeating unit derived from at least one aromatic diol selected from the group consisting of biphenyl, and it is more preferable to have only these repeating units.
  • Ar 1 is a 1,4-phenylene group (repeating unit derived from p-hydroxybenzoic acid);
  • Ar 2 is 1,4 A group having a phenylene group (repeating unit derived from terephthalic acid) and a group in which Ar 2 is a 1,3-phenylene group (repeating unit derived from isophthalic acid);
  • Ar 3 is 4 as the repeating unit (3) , 4′-biphenylylene groups (repeating units derived from 4,4′-dihydroxybiphenyl) are more preferred.
  • the liquid crystal polyester is preferably produced by melt polymerizing raw material monomers corresponding to the repeating units constituting the liquid crystal polyester and solid-phase polymerizing the obtained polymer (prepolymer). Thereby, high molecular weight liquid crystal polyester having high heat resistance, strength and rigidity can be produced with good operability.
  • Melt polymerization may be carried out in the presence of a catalyst.
  • the catalyst in this case include metals such as magnesium acetate, stannous acetate, tetrabutyl titanate, lead acetate, sodium acetate, potassium acetate, and antimony trioxide.
  • nitrogen-containing heterocyclic compounds such as 4- (dimethylamino) pyridine and 1-methylimidazole, and nitrogen-containing heterocyclic compounds are preferably used.
  • the liquid crystal polyester has a flow initiation temperature of preferably 270 ° C. or higher, more preferably 270 ° C. to 400 ° C., and further preferably 280 ° C. to 380 ° C. As the flow start temperature is higher, the heat resistance, strength, and rigidity are more likely to be improved. However, if the flow start temperature is too high, the melting temperature and the melt viscosity are likely to be high, and the temperature required for molding is likely to be high. As described above, when solid phase polymerization is performed in the production of liquid crystal polyester, the flow start temperature of liquid crystal polyester can be set to 270 ° C. or higher in a relatively short time.
  • the flow start temperature is also called flow temperature or flow temperature, and the temperature is raised at a rate of 4 ° C./min under a load of 9.8 MPa (100 kg / cm 2 ) using a capillary rheometer while liquid crystal polyester is used.
  • the alumina fine particles are preferably fine particles made of ⁇ -alumina, and the content of aluminum oxide (Al 2 O 3 ) is 95% by mass or more based on the total mass of the alumina fine particles, Those having a volume average particle size of 0.1 to 50 ⁇ m are particularly suitable.
  • the volume average particle size of the alumina fine particles is preferably 0.1 to 30 ⁇ m, more preferably 0.1 to 20 ⁇ m, and particularly preferably 0.1 to 10 ⁇ m.
  • the “volume average particle diameter” of the alumina fine particles is measured using a microtrack particle size analyzer (for example, HRA manufactured by Nikkiso Co., Ltd.), and the alumina fine particles are 2% by mass aqueous sodium hexametaphosphate.
  • a microtrack particle size analyzer for example, HRA manufactured by Nikkiso Co., Ltd.
  • the alumina fine particles are 2% by mass aqueous sodium hexametaphosphate.
  • the laser beam is irradiated and the diffraction (scattering) is measured (particle size distribution measurement by laser diffraction scattering measurement).
  • the shape may be any of spherical, polyhedral and crushed particles.
  • the alumina fine particles preferably have a BET specific surface area of 1.0 to 5.0 m 2 / g, and the alumina fine particles are crushed particles in that the specific surface area tends to be relatively large. Particularly preferred.
  • the BET specific surface area of the alumina fine particles is in the range of 1.0 to 5.0 m 2 / g, when the thermoplastic resin composition obtained by the production method according to the present invention is melt-molded to obtain a molded body The damage of the mold used for molding can be further reduced, and the resulting molded product is more excellent in thermal conductivity.
  • the BET specific surface area of the alumina fine particles is more preferably 1.0 to 3.0 m 2 / g, and particularly preferably 1.0 to 2.5 m 2 / g. preferable.
  • commercially available alumina fine particles as described later may be selected from those having a BET specific surface area of 1.0 to 5.0 m 2 / g, Alumina particles having an appropriate volume average particle size (for example, about 40 to 70 ⁇ m) are prepared, crushed by various known means, and the specific surface area is increased, so that the BET specific surface area is 1.0 to 5
  • An alumina fine particle of 0.0 m 2 / g may be prepared. Examples of the crushing means at this time include a method using a pulverizer such as a jet mill, a micron mill, a ball mill, a vibration mill, and a media mill.
  • Examples of the method for measuring the BET specific surface area of alumina fine particles include the following nitrogen adsorption method. First, after the alumina fine particles are vacuum degassed at 120 ° C. for 8 hours, the adsorption isotherm by nitrogen is measured using a constant volume method. By using this adsorption isotherm, the specific surface area is calculated by the BET single point method. As an apparatus used at this time, for example, “BELSORP-mini” manufactured by Nippon BEL Co., Ltd. may be mentioned.
  • the alumina fine particles may be used as the alumina fine particles.
  • examples of commercially available products of alumina fine particles include alumina fine particles manufactured by Sumitomo Chemical Co., Ltd., Showa Denko Co., Ltd., and Nippon Light Metal Co., Ltd.
  • the BET specific surface area is preferably 1.0 to 5.0 m 2 / g, more preferably 1.0 to 3.0 m 2 / g as described above, and the volume average particle size is preferably May be selected from 0.1 to 50 ⁇ m.
  • the alumina fine particles preferably have a bimodal particle size distribution determined by laser diffraction scattering measurement.
  • the particle size distribution has a volume average particle size of 1 It is more preferable to have bimodality having local maximum values in the range of ⁇ 5 ⁇ m and the volume average particle size in the range of 0.1 to 1 ⁇ m.
  • Alumina fine particles having such a bimodal particle size distribution are commercially available.
  • alumina fine particles having a bimodal particle size distribution can be obtained by mixing two types of alumina fine particles having different particle sizes.
  • “bimodal” means that the particle size distribution has two maximum values.
  • “Maximum value” means the maximum value of intensity in one mountain-shaped waveform in a particle size distribution diagram (horizontal axis: particle size, vertical axis: intensity at the particle size) representing the distribution of the abundance ratio of particles. .
  • FIG. 1 and 2 are schematic views showing an outline of a bimodal particle distribution obtained by laser diffraction scattering measurement.
  • the horizontal axis represents the particle size
  • the right side represents the larger particle size.
  • the vertical axis represents the strength at the particle size.
  • FIG. 1 shows a typical bimodal particle size distribution, and the particle size distribution has two maximum values (a first maximum value and a second maximum value).
  • the bimodal particle size distribution is also used when the particle size distribution is such that the first maximum value appears like a shoulder peak with respect to the peak having the second maximum value.
  • the first maximum value is in the range of the volume average particle size of 0.1 to 1 ⁇ m
  • the second maximum value is in the range of the volume average particle size of 1 to 5 ⁇ m.
  • a certain alumina fine particle is more preferable.
  • the fibrous filler may be an inorganic filler or an organic filler.
  • the fibrous inorganic filler include glass fibers; carbon fibers such as pan-based carbon fibers and pitch-based carbon fibers; ceramic fibers such as silica fibers, alumina fibers and silica-alumina fibers; and metal fibers such as stainless fibers. It is done.
  • whiskers such as potassium titanate whisker, barium titanate whisker, wollastonite whisker, aluminum borate whisker, silicon nitride whisker, and silicon carbide whisker are also included.
  • the fibrous organic filler include polyester fibers and aramid fibers.
  • the fibrous filler is preferably carbon fiber, glass fiber, wollastonite whisker, aluminum borate whisker and potassium titanate whisker, and more preferably carbon fiber and glass fiber.
  • a fibrous filler may be used individually by 1 type, and may use 2 or more types together.
  • the fibrous filler preferably has a number average fiber diameter of 1 to 15 ⁇ m and a number average aspect ratio (number average fiber length / number average fiber diameter) of 10 or more.
  • the number average aspect ratio of the fibrous filler is more preferably 50 or more, and preferably 500 or less, more preferably 400 or less.
  • the number average fiber diameter and the number average fiber length of the fibrous filler can be measured by observing the fibrous filler with an electron microscope.
  • the fibrous filler for example, a commercially available product may be used as it is, or the surface is a coupling agent (silane coupling agent) in order to improve the dispersibility with respect to the thermoplastic resin and the adhesion to the thermoplastic resin.
  • a coupling agent silane coupling agent
  • Titanium coupling agents, etc. or surface treated with a surfactant or the like may be used.
  • silane coupling agent examples include methacryl silane, vinyl silane, epoxy silane, amino silane, and the like.
  • titanium coupling agent examples include titanic acid.
  • surfactant examples include higher fatty acids, higher fatty acid esters, higher fatty acid amides, higher fatty acid salts and the like.
  • thermoplastic resin other than the thermoplastic resin, the alumina fine particles, and the fibrous filler (components (A) to (C)) as long as they do not interfere with the effects of the present invention as necessary during melt-kneading.
  • Components may be supplied (blended), and the thermoplastic resin composition may contain these other components.
  • the other components include fillers and additives other than the alumina fine particles and the fibrous filler.
  • Examples of the filler other than the alumina fine particles and the fibrous filler include talc, glass flakes, silica particles, calcium carbonate and the like, and among these, talc is preferable.
  • examples of the additives include mold release improvers such as fluororesins; colorants such as dyes and pigments; antioxidants; thermal stabilizers; ultraviolet absorbers; antistatic agents; .
  • the supply amount of the alumina fine particles is larger than the supply amount of the fibrous filler by mass comparison.
  • W B mass%
  • W C mass%
  • W B / more preferably the value of W C is 2 or more, particularly preferably 3 or more.
  • the value of W B / W C is preferably 2 to 100, and more preferably 3 to 50.
  • the total supply amount of the alumina fine particles and the fibrous filler is preferably 100 parts by mass or more and more preferably 150 parts by mass or more with respect to 100 parts by mass of the thermoplastic resin supply.
  • the total supply amount of the alumina fine particles and the fibrous filler is preferably 100 to 500 parts by mass, and 150 to 400 parts by mass with respect to 100 parts by mass of the thermoplastic resin supply. Is more preferable.
  • thermoplastic resin composition is preferably obtained by extrusion melting and kneading the thermoplastic resin, alumina fine particles and fibrous filler (components (A) to (C)), and obtained by extrusion melting and kneading into pellets. .
  • a typical melt-kneading extruder used for extrusion melt-kneading includes a nozzle that is a small hole for extruding a heated melt, includes a cylinder having heating means, and supplies the raw material to be melt-kneaded to the cylinder
  • a single-screw melt kneading extruder provided with a supply port for pushing out the heated melt is preferably provided in the cylinder, and one screw is rotationally driven in the cylinder.
  • a twin-screw melt kneading extruder in which two screws are rotationally driven in different directions or in the same direction in the cylinder may be used, but a biaxial melt kneading extruder is preferable.
  • the ratio (L / D) of the effective length (L) of the screw to the diameter (D) of the screw is preferably 20 or more (where L and D are the same scale unit).
  • the kneaded product (thermoplastic resin composition) extruded from the nozzle of the melt-kneading extruder to the outside of the extruder is cooled at a cooling rate of 35 ° C./second or less.
  • the said cooling rate can be adjusted with the cooling method of the kneaded material extruded from the melt-kneading extruder, and the extrusion amount of a kneaded material, for example.
  • the cooling rate is, for example, the temperature a (° C.) of the kneaded product immediately after being extruded from the nozzle of the melt-kneading extruder, and the time after the kneaded product is extruded from the nozzle (after measuring the temperature a (° C.)).
  • the temperature of the kneaded product can be easily measured using, for example, an infrared radiation thermometer. By setting the time t to 3 to 10 seconds, for example, the cooling rate can be measured with higher accuracy.
  • the kneaded product extruded from the nozzle has a cooling rate of 35 ° C./second during cooling until it is heated again, such as until it is subjected to production of a molded body as a thermoplastic resin composition.
  • a cooling rate 35 ° C./second during cooling until it is heated again, such as until it is subjected to production of a molded body as a thermoplastic resin composition.
  • the cooling rate during this cooling operation is 35 ° C./second or less.
  • This cooling operation may be continued until at least the cooling rate does not exceed 35 ° C./second in a state where heat is naturally radiated. If the forced cooling operation is not performed on the kneaded material immediately after being extruded, the cooling rate is generally considered not to exceed 35 ° C./sec. Is.
  • the temperature b is preferably set to the temperature of the kneaded product immediately before the entrance of the cutting machine.
  • the time t is a time until the extruded kneaded material reaches the entrance of the cutting machine from the nozzle.
  • the forced cooling of the kneaded product is preferably performed by air cooling, water cooling, or the like.
  • the cooling rate of the kneaded product can be adjusted relatively easily by adjusting the conditions for spraying cooling shower water and blowing air.
  • Examples of such a strand cooling and taking device include those manufactured by Isuzu Chemical Industries and Tanaka.
  • the cooling rate during water cooling can be 35 ° C./second or less
  • the cooling rate during air cooling can be 30 ° C./second or less.
  • the extrusion rate of the kneaded product is preferably 5 to 300 kg / hour, more preferably 10 to 100 kg / hour. By setting it as such a range, the cooling rate of a kneaded material can be adjusted more easily.
  • the molded body according to the second aspect of the present invention is characterized by molding the thermoplastic resin composition obtained by the production method according to the first aspect of the present invention.
  • Such a molded article is excellent in electrical insulation, thermal conductivity and strength by using the thermoplastic resin composition.
  • the molded body according to the fourth aspect of the present invention is formed by molding a thermoplastic resin composition obtained by the production method according to the third aspect of the present invention.
  • a molded article is excellent in electrical insulation, thermal conductivity and strength by using the thermoplastic resin composition.
  • thermoplastic resin composition a suitable one can be appropriately selected depending on the shape of the target molded body, and among these, a melt molding method such as an injection molding method or an extrusion injection molding method is preferable, and an injection molding method is more preferable. preferable.
  • the injection molding method has an advantage that it is easy to mold a molded body having a complicated shape having a thin portion.
  • the molded body according to the present invention obtained by the injection molding method is useful as a part that requires heat conductivity, such as an electric / electronic part.
  • Injection molding is performed by melting the thermoplastic resin composition using an injection molding machine (for example, “Hydraulic Horizontal Molding Machine PS40E5ASE Model” manufactured by Nissei Plastic Industry Co., Ltd.) It can be performed by heating to a temperature and injecting it into a mold having the desired cavity shape.
  • the temperature at which the thermoplastic resin composition is heated and melted for injection is [Tp ′ + 10] ° C. or more and [Tp ′ + 50] ° C. or less based on the flow start temperature Tp ′ ° C. of the thermoplastic resin composition used. It is preferable to do.
  • the temperature of the mold is preferably selected from the range of room temperature (for example, 23 ° C.) to 180 ° C. from the viewpoint of the cooling rate and productivity of the thermoplastic resin composition.
  • the molded body can have a volume resistivity of 1 ⁇ 10 10 ⁇ m or more at 23 ° C.
  • the “volume specific resistance value” is a value measured according to “ASTM D257”.
  • the molded body can have a thermal conductivity of preferably 0.92 W / (m ⁇ K) or more and a bending strength of preferably 98 MPa or more, for example.
  • thermal conductivity is a value obtained from the product of thermal diffusivity, specific heat and specific gravity, and “bending strength” is a value measured according to “ASTM D790”.
  • the molded body can be applied to various uses, but is particularly suitable as an electric / electronic component because it is excellent in electrical insulation, thermal conductivity and mechanical strength.
  • the molded body is at least one selected from the group consisting of a sealing material for electronic elements, an insulator, a reflector for display device, a casing for storing electronic elements, a motor insulator for automobiles and industrial machines, and a surface mount component. It is preferable to use as a component. Further, as the surface mount component, a connector is suitable. In such electric / electronic parts, heat is generated by the operation of the electric / electronic equipment provided with these parts, and if the heat dissipation of these parts is insufficient, malfunctions occur and the reliability of the equipment decreases. Easy to do.
  • the molded body according to the present invention has a characteristic advantageous for heat dissipation in that the thermal conductivity becomes relatively isotropic as described above. Therefore, when the molded body according to the present invention is used as the electrical / electronic component, even if these components have a relatively complicated shape, the molded body according to the present invention efficiently dissipates heat due to the isotropic thermal conductivity. Realize stable operation of electrical and electronic equipment equipped with
  • the alumina fine particles and fibrous filler used in this example are as follows.
  • (Alumina fine particles) Fine low soda alumina AL-45-2 (manufactured by Showa Denko KK): volume average particle size 1.4 ⁇ m (in the particle size distribution, the volume average particle size is in the range of 1.0 to 2.0 ⁇ m and the volume average particle size It was bimodal, each having a maximum value in the range of 0.2 to 0.4 ⁇ m.), BET specific surface area 1.8 m 2 / g (Fibrous filler)
  • DIALEAD K223HE Mitsubishi Chemical Corporation
  • Carbon fiber Chopped glass fiber CS03JAPX-1 Carbon fiber Chopped glass fiber CS03JAPX-1 (Asahi Fiber Glass Co., Ltd.): Glass fiber (plate-like inorganic filler)
  • Talc X-50 Nahon Talc
  • Example 1 (Production of liquid crystal polyester composition)
  • the liquid crystal polyester obtained in Production Example 1 and the alumina fine particles and the fibrous filler were mixed in the same direction biaxial melt kneading extruder ("PCM-30HS" manufactured by Ikekai Tekko Co., Ltd.) in the ratio shown in Table 1.
  • PCM-30HS biaxial melt kneading extruder
  • the kneaded product is extruded in a strand form from the nozzle of the extruder and cooled, and then a strand cutter is used.
  • the pellet-like liquid crystal polyester composition was obtained by cutting and granulating.
  • the strand-like kneaded material was cooled by air cooling by blowing air using a strand cooling take-up device (manufactured by Isuzu Chemical Industries Ltd.).
  • the cooling rate is the time t from the nozzle to the strand cutter, which is the difference between the temperature a of the kneaded product immediately after being extruded from the nozzle of the extruder and the temperature b of the kneaded product immediately before the strand cutter entrance. The value was divided.
  • Example 2 Comparative Examples 1 and 2
  • a liquid crystal polyester composition and a molded body were produced in the same manner as in Example 1 except that the production conditions were as shown in Table 1.
  • the strand-shaped kneaded product was water-cooled by spraying cooling shower water.
  • thermo conductivity in the thickness direction A central part of the molded body (1) was cut out to obtain a sample for thermal conductivity evaluation.
  • the thermal diffusivity of this sample was measured using a laser flash method thermal constant measuring device (“TC-7000” manufactured by ULVAC-RIKO Inc.). Further, the specific heat of this sample was measured using DSC ("DSC7” manufactured by PERKIN ELMER), and the specific gravity of this sample was measured using an automatic specific gravity measuring device (“ASG-320K” manufactured by Kanto Major). .
  • the molded body (1) was measured at 23 ° C. by volume resistivity measurement in accordance with “ASTM D257” (using “Digital Super Insulation / Micro Ammeter DSM-8104” manufactured by Toa DK Corporation).
  • the molded products of Examples 1 and 2 in which the kneaded product extruded from the nozzle of the extruder was cooled at a cooling rate of 20 to 22 ° C./second were all thermal conductivity in the thickness direction. It was excellent in strength and insulation.
  • the molded product of Comparative Example 1 in which the kneaded product extruded from the nozzle of the extruder was cooled at a cooling rate of 42 ° C./second was inferior in thermal conductivity in the thickness direction.
  • the molded product of Comparative Example 2 in which the kneaded product was cooled at a cooling rate of 38 ° C./second was inferior in thermal conductivity and strength in the thickness direction.
  • the present invention can be used for manufacturing electrical / electronic components that require high heat dissipation.

Abstract

A method for producing a thermoplastic resin composition includes: using a melt-kneading extrusion machine provided with a nozzle, a cylinder, and a screw positioned within the cylinder; obtaining a mixture by supplying (A) a thermoplastic resin, (B) alumina fine particles, and (C) a fibrous filler material to the cylinder via the supply port in the cylinder, and melt-kneading the components (A, B, C); extruding the mixture via the nozzle of the melt-kneading extrusion machine to the exterior thereof; and cooling the mixture at a cooling rate of 35°C or less per second. Also, a molded article is obtained by molding the thermoplastic resin composition obtained using this production method.

Description

熱可塑性樹脂組成物の製造方法及び成形体Method for producing thermoplastic resin composition and molded body
 本発明は、熱伝導性に優れた成形体、及び該成形体を得るための熱可塑性樹脂組成物の製造方法に関する。
 本願は、2011年11月11日に、日本に出願された特願2011-247742号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a molded article excellent in thermal conductivity and a method for producing a thermoplastic resin composition for obtaining the molded article.
This application claims priority based on Japanese Patent Application No. 2011-247742 filed in Japan on November 11, 2011, the contents of which are incorporated herein by reference.
 近年、電気・電子部品の分野では、その小型化、高性能化に伴い、当該部品内での発熱が懸念されている。かかる発熱に対する放熱対策が不十分であると、熱の蓄積により、電気・電子部品の性能が低下する。したがって、電気・電子部品に使用される部材には、高い熱伝導性(高熱伝導性)を有することが望まれている。
 これまでに、高熱伝導性を必要とする部品には、主として金属材料が用いられてきたが、部品の小型化に適合させるうえで金属材料は、軽量性や成形加工性の面で難があり、樹脂材料への代替が進みつつある。
 しかしながら、樹脂材料は一般に熱伝導性が低く、樹脂材料自体の高熱伝導化は困難である。そのため、通常は樹脂材料に、銅、アルミニウム、酸化アルミニウム等の高熱伝導性材料のフィラーを高充填することによって、高熱伝導性の樹脂組成物とし、これから電気・電子部品を製造することが検討されている(例えば、特許文献1~3参照)。
In recent years, in the field of electric / electronic components, there is a concern about heat generation in the components as the size and performance thereof increase. If heat dissipation measures against such heat generation are insufficient, the performance of electric / electronic parts is degraded due to the accumulation of heat. Therefore, it is desired that members used for electric / electronic components have high thermal conductivity (high thermal conductivity).
Until now, metal materials have been mainly used for parts that require high thermal conductivity, but metal materials are difficult in terms of lightness and moldability in order to adapt to the miniaturization of parts. Alternatives to resin materials are progressing.
However, resin materials generally have low thermal conductivity, and it is difficult to increase the thermal conductivity of the resin material itself. For this reason, it is usually considered to produce a resin composition with high thermal conductivity by filling a resin material with a filler of a high thermal conductivity material such as copper, aluminum, aluminum oxide, etc. to produce an electrical / electronic component therefrom. (For example, see Patent Documents 1 to 3).
特開昭62-100577号公報JP-A-62-100577 特開平4-178421号公報Japanese Patent Laid-Open No. 4-178421 特開平5-86246号公報JP-A-5-86246
 一方、電気・電子部品に使用されるような、比較的形状が複雑な成形体は、一般に射出成形によって製造される。しかし射出成形では、比較的容易に樹脂の流動方向の熱伝導率を向上させることができるが、流動方向に対して垂直な、成形体の厚さ方向の熱伝導率を向上させることは非常に困難であるという問題点があった。さらに、樹脂に熱伝導性を付与するためには、フィラーを高充填しなければならないため、成形体の強度が低下するという問題点があった。 On the other hand, a molded body having a relatively complicated shape such as used for electric / electronic parts is generally manufactured by injection molding. However, in injection molding, the thermal conductivity in the resin flow direction can be improved relatively easily, but it is very difficult to improve the thermal conductivity in the thickness direction of the molded product perpendicular to the flow direction. There was a problem that it was difficult. Furthermore, in order to impart thermal conductivity to the resin, the filler has to be highly filled, so that there is a problem that the strength of the molded body is lowered.
 本発明は、上記事情に鑑みてなされたものであり、電気・電子用部品として好適な電気絶縁性を有し、厚さ方向の熱伝導性、及び強度に優れた成形体、並びに該成形体を得るための熱可塑性樹脂組成物の製造方法を提供することを課題とする。 The present invention has been made in view of the above circumstances, and has a molded body excellent in electrical conductivity and strength in the thickness direction, having excellent electrical insulation as an electrical / electronic component, and the molded body It is an object of the present invention to provide a method for producing a thermoplastic resin composition for obtaining the above.
上記課題を解決するため、本発明は以下の態様を有する。 In order to solve the above problems, the present invention has the following aspects.
本発明の第一の態様は、
[1]ノズル、シリンダ及び前記シリンダ内に設置されたスクリューを備えた溶融混練押出機を用い、前記シリンダに設けられた供給口から、下記成分(A)、下記成分(B)及び下記成分(C)を前記シリンダに供給して前記成分(A)、前記成分(B)及び前記成分(C)を溶融混練して混練物を得ること、前記ノズルから前記混練物を前記溶融混練押出機の外部に押し出すこと、及び前記混練物を冷却速度35℃/秒以下で冷却すること、を含む熱可塑性樹脂組成物の製造方法に関する。
 成分(A)熱可塑性樹脂
 成分(B)アルミナ微粒子
 成分(C)繊維状充填材
The first aspect of the present invention is:
[1] Using a melt-kneading extruder provided with a nozzle, a cylinder and a screw installed in the cylinder, from the supply port provided in the cylinder, the following component (A), the following component (B) and the following component ( C) is supplied to the cylinder to melt and knead the component (A), the component (B) and the component (C) to obtain a kneaded product, and the kneaded product is fed from the nozzle to the melt kneading extruder. The present invention relates to a method for producing a thermoplastic resin composition, comprising extruding to the outside and cooling the kneaded product at a cooling rate of 35 ° C./second or less.
Component (A) Thermoplastic resin Component (B) Alumina fine particle Component (C) Fibrous filler
[2]前記成分(B)のBET比表面積が1.0~5.0m/gである[1]に記載の熱可塑性樹脂組成物の製造方法。 [2] The method for producing a thermoplastic resin composition according to [1], wherein the component (B) has a BET specific surface area of 1.0 to 5.0 m 2 / g.
[3]前記成分(B)のレーザー回折散乱測定により求めた粒径分布が二峰性である[1]又は[2]に記載の熱可塑性樹脂組成物の製造方法。 [3] The method for producing a thermoplastic resin composition according to [1] or [2], wherein the particle size distribution obtained by laser diffraction scattering measurement of the component (B) is bimodal.
[4]前記成分(B)のレーザー回折散乱測定により求めた粒径分布が、体積平均粒径1~5μmの範囲内と、体積平均粒径0.1~1μmの範囲内と、にそれぞれ極大値を有する二峰性である[1]~[3]のいずれか一項に記載の熱可塑性樹脂組成物の製造方法。 [4] The particle size distribution obtained by laser diffraction scattering measurement of the component (B) is maximum in the range of the volume average particle size of 1 to 5 μm and in the range of the volume average particle size of 0.1 to 1 μm, respectively. The method for producing a thermoplastic resin composition according to any one of [1] to [3], which is bimodal having a value.
[5]前記成分(C)が、炭素繊維、ガラス繊維、ウォラストナイトウィスカー、ホウ酸アルミニウムウィスカー及びチタン酸カリウムウィスカーからなる群より選ばれる少なくとも一種の物質である[1]~[4]のいずれか一項に記載の熱可塑性樹脂組成物の製造方法。 [5] The component (C) is at least one substance selected from the group consisting of carbon fiber, glass fiber, wollastonite whisker, aluminum borate whisker, and potassium titanate whisker. The manufacturing method of the thermoplastic resin composition as described in any one.
[6]前記成分(A)が液晶ポリエステルである[1]~[5]のいずれか一項に記載の熱可塑性樹脂組成物の製造方法。 [6] The method for producing a thermoplastic resin composition according to any one of [1] to [5], wherein the component (A) is a liquid crystal polyester.
[7]前記液晶ポリエステルが、p-ヒドロキシ安息香酸及び6-ヒドロキシ-2-ナフトエ酸からなる群から選択される少なくとも一種の芳香族ヒドロキシカルボン酸に由来する繰返し単位と、ヒドロキノン及び4,4’-ジヒドロキシビフェニルからなる群から選択される少なくとも一種の芳香族ジオールに由来する繰返し単位と、テレフタル酸、イソフタル酸及び2,6-ナフタレンジカルボン酸からなる群より選ばれる少なくとも一種の芳香族ジカルボン酸に由来する繰返し単位と、を有し、液晶ポリエステルを構成する全繰返し単位の合計量に対して、前記芳香族ヒドロキシカルボン酸に由来する繰返し単位を合計で30~80モル%、前記芳香族ジオールに由来する繰返し単位を合計で10~35モル%、前記芳香族ジカルボン酸に由来する繰返し単位を合計で10~35モル%有する[6]に記載の熱可塑性樹脂組成物の製造方法。 [7] The liquid crystalline polyester comprises a repeating unit derived from at least one aromatic hydroxycarboxylic acid selected from the group consisting of p-hydroxybenzoic acid and 6-hydroxy-2-naphthoic acid, hydroquinone and 4,4 ′ A repeating unit derived from at least one aromatic diol selected from the group consisting of -dihydroxybiphenyl, and at least one aromatic dicarboxylic acid selected from the group consisting of terephthalic acid, isophthalic acid and 2,6-naphthalenedicarboxylic acid A total of 30 to 80 mol% of the repeating units derived from the aromatic hydroxycarboxylic acid, based on the total amount of all the repeating units constituting the liquid crystal polyester. 10 to 35 mol% in total of repeating units derived from the aromatic dicarboxylic acid The method for producing a thermoplastic resin composition according to [6] having 10 to 35 mol% in total of repeating units derived from.
[8]前記成分(A)100質量部に対して、前記成分(B)及び(C)の全供給量が100質量部以上である[1]~[7]のいずれか一項に記載の熱可塑性樹脂組成物の製造方法。 [8] The total supply amount of the components (B) and (C) is 100 parts by mass or more with respect to 100 parts by mass of the component (A). A method for producing a thermoplastic resin composition.
本発明の第二の態様は、
[9][1]~[8]のいずれか一項に記載の製造方法で得られた熱可塑性樹脂組成物を成形してなる成形体に関する。
The second aspect of the present invention is:
[9] relates to a molded article obtained by molding the thermoplastic resin composition obtained by the production method according to any one of [1] to [8].
[10]23℃における体積固有抵抗値が1×1010Ωm以上である[9]に記載の成形体。 [10] The molded article according to [9], wherein the volume resistivity value at 23 ° C. is 1 × 10 10 Ωm or more.
[11]電気・電子部品用である[9]又は[10]に記載の成形体。 [11] The molded article according to [9] or [10], which is for electric / electronic parts.
[12]前記電気・電子部品が、電子素子の封止材、インシュレータ、表示装置用反射板、電子素子収納用の筐体及び表面実装部品からなる群より選ばれる少なくとも一種の部品である[11]に記載の成形体。 [12] The electrical / electronic component is at least one component selected from the group consisting of a sealing material for electronic elements, an insulator, a reflector for display device, a housing for storing electronic elements, and a surface-mounted component. ] The molded object of description.
 本発明の第三の態様は、シリンダ及び前記シリンダ内に設置されたスクリューを備えた溶融混練押出機を用い、前記シリンダに設けられた供給口から、下記成分(A)、(B)及び(C)を前記シリンダに供給して溶融混練することにより、熱可塑性樹脂組成物を製造する方法であって、前記溶融混練押出機のノズルから外部に押し出された混練物を、冷却速度35℃/秒以下で冷却することを特徴とする熱可塑性樹脂組成物の製造方法を提供する。
 (A)熱可塑性樹脂
 (B)アルミナ微粒子
 (C)繊維状充填材
 本発明の第三の態様の熱可塑性樹脂組成物の製造方法においては、前記成分(B)のBET比表面積が1.0~5.0m/gであることが好ましい。
 本発明の第三の態様の熱可塑性樹脂組成物の製造方法においては、前記成分(B)のレーザー回折散乱測定により求めた粒径分布が二峰性であることが好ましい。
 本発明の第三の態様の熱可塑性樹脂組成物の製造方法においては、前記成分(B)のレーザー回折散乱測定により求めた粒径分布が、体積平均粒径1~5μmの範囲内と、体積平均粒径0.1~1μmの範囲内と、にそれぞれ極大値を有する二峰性であることが好ましい。
 本発明の第三の態様の熱可塑性樹脂組成物の製造方法においては、前記成分(C)が、炭素繊維、ガラス繊維、ウォラストナイトウィスカー、ホウ酸アルミニウムウィスカー及びチタン酸カリウムウィスカーからなる群より選ばれる一種以上であることが好ましい。
 本発明の第三の態様の熱可塑性樹脂組成物の製造方法においては、前記成分(A)が液晶ポリエステルであることが好ましい。
 本発明の第三の態様の熱可塑性樹脂組成物の製造方法においては、前記液晶ポリエステルが、p-ヒドロキシ安息香酸及び/又は6-ヒドロキシ-2-ナフトエ酸の芳香族ヒドロキシカルボン酸に由来する繰返し単位と、ヒドロキノン及び/又は4,4’-ジヒドロキシビフェニルの芳香族ジオールに由来する繰返し単位と、テレフタル酸、イソフタル酸及び2,6-ナフタレンジカルボン酸からなる群より選ばれる一種以上の芳香族ジカルボン酸に由来する繰返し単位と、を含み、液晶ポリエステルを構成する全繰返し単位の合計量に対して、前記芳香族ヒドロキシカルボン酸に由来する繰返し単位を合計で30~80モル%、前記芳香族ジオールに由来する繰返し単位を合計で10~35モル%、前記芳香族ジカルボン酸に由来する繰返し単位を合計で10~35モル%有することが好ましい。
 本発明の第三の態様の熱可塑性樹脂組成物の製造方法においては、前記成分(A)100質量部に対して、前記成分(B)及び(C)の全供給量が100質量部以上であることが好ましい。
 また、本発明の第四の態様は、前記製造方法で得られた熱可塑性樹脂組成物を成形してなることを特徴とする成形体を提供する。
 本発明の第四の態様の成形体は、23℃における体積固有抵抗値が1×1010Ωm以上であることが好ましい。
 本発明の第四の態様の成形体は、電気・電子部品用であることが好ましい。
 本発明の第四の態様の成形体においては、前記電気・電子部品が、電子素子の封止材、インシュレータ、表示装置用反射板、電子素子収納用の筐体及び表面実装部品からなる群より選ばれる一種以上であることが好ましい。
A third aspect of the present invention uses a melt kneading extruder provided with a cylinder and a screw installed in the cylinder, and from the supply port provided in the cylinder, the following components (A), (B) and ( C) is supplied to the cylinder and melt-kneaded to produce a thermoplastic resin composition, in which the kneaded product extruded from the nozzle of the melt-kneading extruder is cooled at a cooling rate of 35 ° C / Provided is a method for producing a thermoplastic resin composition characterized by cooling in seconds or less.
(A) Thermoplastic resin (B) Alumina fine particles (C) Fibrous filler In the method for producing a thermoplastic resin composition according to the third aspect of the present invention, the BET specific surface area of the component (B) is 1.0. It is preferably ˜5.0 m 2 / g.
In the method for producing a thermoplastic resin composition according to the third aspect of the present invention, the particle size distribution obtained by laser diffraction scattering measurement of the component (B) is preferably bimodal.
In the method for producing the thermoplastic resin composition of the third aspect of the present invention, the particle size distribution obtained by laser diffraction scattering measurement of the component (B) is in the range of 1-5 μm in volume average particle size, and the volume Bimodality having maximum values in the average particle size range of 0.1 to 1 μm is preferable.
In the method for producing a thermoplastic resin composition according to the third aspect of the present invention, the component (C) is made of the group consisting of carbon fiber, glass fiber, wollastonite whisker, aluminum borate whisker, and potassium titanate whisker. It is preferably one or more selected.
In the method for producing a thermoplastic resin composition of the third aspect of the present invention, the component (A) is preferably a liquid crystal polyester.
In the method for producing a thermoplastic resin composition of the third aspect of the present invention, the liquid crystal polyester is a repeating product derived from an aromatic hydroxycarboxylic acid of p-hydroxybenzoic acid and / or 6-hydroxy-2-naphthoic acid. One or more aromatic dicarboxylic acids selected from the group consisting of a unit, a repeating unit derived from an aromatic diol of hydroquinone and / or 4,4′-dihydroxybiphenyl, and terephthalic acid, isophthalic acid and 2,6-naphthalenedicarboxylic acid A total of 30 to 80 mol% of the repeating units derived from the aromatic hydroxycarboxylic acid with respect to the total amount of all repeating units constituting the liquid crystal polyester. 10 to 35 mol% of repeating units derived from the above, and repeating units derived from the aromatic dicarboxylic acid It is preferable to have 10 to 35 mol% of units in total.
In the method for producing the thermoplastic resin composition of the third aspect of the present invention, the total supply amount of the components (B) and (C) is 100 parts by mass or more with respect to 100 parts by mass of the component (A). Preferably there is.
Moreover, the 4th aspect of this invention provides the molded object formed by shape | molding the thermoplastic resin composition obtained by the said manufacturing method.
The molded body of the fourth aspect of the present invention preferably has a volume resistivity value at 23 ° C. of 1 × 10 10 Ωm or more.
The molded body of the fourth aspect of the present invention is preferably for electric / electronic parts.
In the molded body according to the fourth aspect of the present invention, the electrical / electronic component is composed of a group consisting of an electronic element sealing material, an insulator, a display device reflector, a housing for electronic element storage, and a surface mount component. It is preferably one or more selected.
 本発明によれば、電気・電子用部品として好適な電気絶縁性を有し、厚さ方向の熱伝導性、及び強度に優れた成形体、並びに該成形体を得るための熱可塑性樹脂組成物の製造方法を提供できる。 ADVANTAGE OF THE INVENTION According to this invention, the molded object which has the electrical insulation suitable as an electrical / electronic component, and was excellent in the thermal conductivity of thickness direction, and intensity | strength, and the thermoplastic resin composition for obtaining this molded object Can be provided.
レーザー回折散乱測定により求めた二峰性の粒径分布の概要(一例)を示す模式図である。It is a schematic diagram which shows the outline | summary (an example) of the bimodal particle size distribution calculated | required by the laser diffraction scattering measurement. レーザー回折散乱測定により求めた二峰性の粒径分布の概要(他の例)を示す模式図である。It is a schematic diagram which shows the outline | summary (other example) of the bimodal particle size distribution calculated | required by the laser diffraction scattering measurement.
<熱可塑性樹脂組成物の製造方法>
 本発明の第一の態様に係る熱可塑性樹脂組成物の製造方法は、ノズル、シリンダ及び前記シリンダ内に設置されたスクリューを備えた溶融混練押出機を用い、前記シリンダに設けられた供給口から、下記成分(A)、下記成分(B)及び下記成分(C)を前記シリンダに供給して前記成分(A)、前記成分(B)及び前記成分(C)を溶融混練して混練物を得ること、前記ノズルから前記混練物を前記溶融混練押出機の外部に押し出すこと、及び前記混練物を冷却速度35℃/秒以下で冷却すること、を含む。
 成分(A)熱可塑性樹脂
 成分(B)アルミナ微粒子
 成分(C)繊維状充填材
 本発明によれば、押し出された混練物の冷却速度を35℃/秒以下とし、従来よりも低減することで、電気絶縁性、厚さ方向の熱伝導性、及び強度に優れた成形体を製造可能な熱可塑性樹脂組成物が得られる。なお、以下、本明細書においては、特に断りの無い限り、「熱伝導性」とは「成形体の厚さ方向の熱伝導性」を意味するものとする。「厚さ方向」とは成形品(成形板)のMD方向、TD方向に対して垂直な方向を意味するものとする。「MD方向」とは、成形品(成形板)の射出方向 、「TD方向」とは、射出方向に対して直角な成形品(成形板)の幅方向を意味する。
<Method for producing thermoplastic resin composition>
The method for producing a thermoplastic resin composition according to the first aspect of the present invention uses a melt-kneading extruder provided with a nozzle, a cylinder, and a screw installed in the cylinder, from a supply port provided in the cylinder. The following component (A), the following component (B) and the following component (C) are supplied to the cylinder, and the component (A), the component (B) and the component (C) are melt-kneaded to obtain a kneaded product. Obtaining, extruding the kneaded material from the nozzle to the outside of the melt-kneading extruder, and cooling the kneaded material at a cooling rate of 35 ° C./second or less.
Component (A) Thermoplastic Resin Component (B) Alumina Fine Particles Component (C) Fibrous Filler According to the present invention, the cooling rate of the extruded kneaded product is set to 35 ° C./second or less, which is lower than before. Thus, a thermoplastic resin composition capable of producing a molded article excellent in electrical insulation, thermal conductivity in the thickness direction, and strength can be obtained. In the following description, unless otherwise specified, “thermal conductivity” means “thermal conductivity in the thickness direction of the molded body”. The “thickness direction” means a direction perpendicular to the MD direction and the TD direction of the molded product (molded plate). “MD direction” means the injection direction of the molded product (molded plate), and “TD direction” means the width direction of the molded product (molded plate) perpendicular to the injection direction.
本発明の第三の態様に係る熱可塑性樹脂組成物の製造方法は、シリンダ及び前記シリンダ内に設置されたスクリューを備えた溶融混練押出機を用い、前記シリンダに設けられた供給口から、下記成分(A)、(B)及び(C)を前記シリンダに供給して溶融混練することにより、熱可塑性樹脂組成物を製造する方法であって、前記溶融混練押出機のノズルから外部に押し出された混練物を、冷却速度35℃/秒以下で冷却することを特徴とする。
 (A)熱可塑性樹脂
 (B)アルミナ微粒子
 (C)繊維状充填材
 本発明によれば、押し出された混練物の冷却速度を35℃/秒以下とし、従来よりも低減することで、電気絶縁性、厚さ方向の熱伝導性、及び強度に優れた成形体を製造可能な熱可塑性樹脂組成物が得られる。なお、以下、本明細書においては、特に断りの無い限り、「熱伝導性」とは「成形体の厚さ方向の熱伝導性」を意味するものとする。
The method for producing a thermoplastic resin composition according to the third aspect of the present invention uses a melt-kneading extruder provided with a cylinder and a screw installed in the cylinder, and from the supply port provided in the cylinder, the following A method for producing a thermoplastic resin composition by supplying components (A), (B) and (C) to the cylinder and melt-kneading them, and is extruded from the nozzle of the melt-kneading extruder. The kneaded product is cooled at a cooling rate of 35 ° C./second or less.
(A) Thermoplastic resin (B) Alumina fine particles (C) Fibrous filler According to the present invention, the cooling rate of the extruded kneaded product is set to 35 ° C./sec or less, which is lower than the conventional one, so A thermoplastic resin composition capable of producing a molded article having excellent properties, thermal conductivity in the thickness direction, and strength is obtained. In the following description, unless otherwise specified, “thermal conductivity” means “thermal conductivity in the thickness direction of the molded body”.
 前記熱可塑性樹脂(成分(A))は、200~450℃の成形温度で成形できるものが好ましく、その例としては、ポリオレフィン、ポリスチレン、ポリアミド、ハロゲン化ビニル樹脂、ポリアセタール、飽和ポリエステル、ポリカーボネート、ポリアリールスルホン、ポリアリールケトン、ポリフェニレンエーテル、ポリフェニレンスルフィド、ポリアリールエーテルケトン、ポリエーテルスルホン、ポリフェニレンサルファイドスルフォン、ポリアリレート、ポリアミド、液晶ポリエステル、フッ素樹脂などが挙げられる。
 熱可塑性樹脂は、一種を単独で用いてもよいし、二種以上を併用してポリマーアロイとして用いてもよい。
The thermoplastic resin (component (A)) is preferably one that can be molded at a molding temperature of 200 to 450 ° C. Examples thereof include polyolefin, polystyrene, polyamide, halogenated vinyl resin, polyacetal, saturated polyester, polycarbonate, poly Examples thereof include aryl sulfone, polyaryl ketone, polyphenylene ether, polyphenylene sulfide, polyaryl ether ketone, polyether sulfone, polyphenylene sulfide sulfone, polyarylate, polyamide, liquid crystal polyester, and fluororesin.
A thermoplastic resin may be used individually by 1 type, and may use 2 or more types together as a polymer alloy.
 前記熱可塑性樹脂は、なかでも耐熱性及び電気絶縁性に優れる点から、液晶ポリエステル、ポリエーテルスルホン、ポリアリレート、ポリフェニレンスルフィド、ポリアミド4/6又はポリアミド6Tが好ましく、ポリフェニレンスルフィド、液晶ポリエステルがより好ましい。そして、耐熱性及び電気絶縁性に優れる点に加え、さらに薄肉成形性にも優れる点から、液晶ポリエステルが特に好ましい。このように、熱可塑性樹脂として薄肉成形性に優れる液晶ポリエステルを使用すると、比較的複雑な形状の電気・電子部品を成形する際の成形性が特に良好となる。 The thermoplastic resin is preferably liquid crystal polyester, polyethersulfone, polyarylate, polyphenylene sulfide, polyamide 4/6 or polyamide 6T, and more preferably polyphenylene sulfide or liquid crystal polyester because of excellent heat resistance and electrical insulation. . And since it is excellent also in the thin-wall moldability in addition to the point which is excellent in heat resistance and electrical insulation, liquid crystalline polyester is especially preferable. As described above, when the liquid crystalline polyester having excellent thin-wall moldability is used as the thermoplastic resin, the moldability at the time of molding a relatively complicated shape of electric / electronic parts becomes particularly good.
 以下、ポリフェニレンスルフィド及び液晶ポリエステルについて説明する。
 ポリフェニレンスルフィドは、典型的には、下記式(10)で表される繰返し単位を主として含む樹脂である。かかるポリフェニレンスルフィドの製造方法としては、「米国特許第2513188号明細書」、「特公昭44-27671号公報」に開示されているハロゲン置換芳香族化合物と硫化アルカリとの反応、「米国特許第3274165号明細書」に開示されているチオフェノール類のアルカリ触媒又は銅塩等の共存下での縮合反応を行う方法、あるいは「特公昭46-27255号公報」に開示されている、芳香族化合物と塩化硫黄とのルイス酸触媒下での縮合反応を行う方法等が挙げられる。また、容易に入手可能なポリフェニレンスルフィドの市販品(例えば、大日本インキ化学工業社製のポリフェニレンスルフィド)を用いてもよい。
Hereinafter, polyphenylene sulfide and liquid crystal polyester will be described.
Polyphenylene sulfide is typically a resin mainly containing a repeating unit represented by the following formula (10). Such polyphenylene sulfide can be produced by a reaction of a halogen-substituted aromatic compound and an alkali sulfide disclosed in “US Pat. No. 2,513,188” and “Japanese Examined Patent Publication No. 44-27671”, “US Pat. No. 3,274,165”. A method of performing a condensation reaction in the presence of an alkali catalyst or a copper salt of a thiophenol disclosed in the specification, or an aromatic compound disclosed in Japanese Patent Publication No. 46-27255 Examples include a method of performing a condensation reaction with sulfur chloride under a Lewis acid catalyst. Moreover, you may use the commercially available polyphenylene sulfide (for example, polyphenylene sulfide by Dainippon Ink & Chemicals, Inc.) which can be obtained easily.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001

 液晶ポリエステルは、溶融状態で液晶性を示す液晶ポリエステルであり、450℃以下の温度で溶融するものであることが好ましい。なお、液晶ポリエステルは、液晶ポリエステルアミドであってもよいし、液晶ポリエステルエーテルであってもよいし、液晶ポリエステルカーボネートであってもよいし、液晶ポリエステルイミドであってもよい。ここで、「液晶ポリエステルアミド」とは、エステル結合(-O-CO-)とアミド結合(-NH-CO-)をポリマー骨格中に有するものである。「液晶ポリエステルエーテル」とは、エステル結合とエーテル結合(-O-)をポリマー骨格中に有するものである。「液晶ポリエステルカーボネート」とは、エステル結合とカーボネート結合(-O-CO-O-)をポリマー骨格中に有するものである。「液晶ポリエステルイミド」とは、エステル結合と下記化学式で表されるイミド構造をポリマー骨格中に有するものである。 The liquid crystalline polyester is a liquid crystalline polyester that exhibits liquid crystallinity in a molten state, and is preferably melted at a temperature of 450 ° C. or lower. The liquid crystal polyester may be a liquid crystal polyester amide, a liquid crystal polyester ether, a liquid crystal polyester carbonate, or a liquid crystal polyester imide. Here, the “liquid crystal polyester amide” has an ester bond (—O—CO—) and an amide bond (—NH—CO—) in the polymer skeleton. “Liquid crystal polyester ether” has an ester bond and an ether bond (—O—) in the polymer skeleton. The “liquid crystal polyester carbonate” has an ester bond and a carbonate bond (—O—CO—O—) in the polymer skeleton. The “liquid crystal polyester imide” has an ester bond and an imide structure represented by the following chemical formula in a polymer skeleton.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
液晶ポリエステルは、原料モノマーとして芳香族化合物のみを用いてなる全芳香族液晶ポリエステルであることが好ましい。ここで「全芳香族液晶ポリエステル」とは、例えば、サーモトロピック液晶ポリマーと呼ばれるポリエステルであり、
(1)芳香族ジカルボン酸と芳香族ジオールと芳香族ヒドロキシカルボン酸との組み合わせからなるもの
(2)異種の芳香族ヒドロキシカルボン酸からなるもの
(3)芳香族ジカルボン酸と芳香族ジオールとの組み合わせからなるもの
等が挙げられる。なお、これらの芳香族ジカルボン酸、芳香族ジオールおよび芳香族ヒドロキシカルボン酸の代わりにそれらのエステル形成性誘導体が原料として使用されることもある。また、「芳香族」とは、ベンゼンを代表とする環状不飽和有機化合物の一群である。
The liquid crystal polyester is preferably a wholly aromatic liquid crystal polyester using only an aromatic compound as a raw material monomer. Here, the “fully aromatic liquid crystal polyester” is, for example, a polyester called a thermotropic liquid crystal polymer,
(1) Composed of a combination of aromatic dicarboxylic acid, aromatic diol and aromatic hydroxycarboxylic acid (2) Consisting of different types of aromatic hydroxycarboxylic acid (3) Combination of aromatic dicarboxylic acid and aromatic diol The thing which consists of etc. is mentioned. In addition, instead of these aromatic dicarboxylic acids, aromatic diols and aromatic hydroxycarboxylic acids, their ester-forming derivatives may be used as raw materials. “Aromatic” is a group of cyclic unsaturated organic compounds represented by benzene.
 液晶ポリエステルの典型的な例としては、
 (I)芳香族ヒドロキシカルボン酸と、芳香族ジカルボン酸と、芳香族ジオール、芳香族ヒドロキシアミン及び芳香族ジアミンからなる群から選ばれる少なくとも1種の化合物と、を重合(重縮合)させてなるもの、
 (II)複数種の芳香族ヒドロキシカルボン酸を重合させてなるもの、
 (III)芳香族ジカルボン酸と、芳香族ジオール、芳香族ヒドロキシアミン及び芳香族ジアミンからなる群から選ばれる少なくとも1種の化合物と、を重合させてなるもの、
 (IV)ポリエチレンテレフタレート等のポリエステルと、芳香族ヒドロキシカルボン酸と、を重合させてなるもの
が挙げられる。ここで、「芳香族ヒドロキシカルボン酸」とは、下記一般式(a)で表される化合物である。芳香族ジカルボン酸とは、下記一般式(b)で表される化合物である。芳香族ジオールとは、下記一般式(c)で表される化合物である。芳香族ヒドロキシアミンとは、下記一般式(d)で表される化合物である。芳香族ジアミンとは、下記一般式(e)で表される化合物である。
 (a)HO-Ar10-COOH
 (b)HOOC-Ar20-COOH
 (c)HO-Ar30-OH
 (d)NH-Ar40-OH
 (e)NH-Ar50-NH
(ただし、式中のAr10、Ar20、Ar30、Ar40およびAr50は、それぞれ同一または相異なり、2価の芳香族基を表す。)
2価の芳香族基としては、例えば、フェニレン基、ナフチレン基、ビフェニリレン基があげられる。
ここで、芳香族ヒドロキシカルボン酸、芳香族ジカルボン酸、芳香族ジオール、芳香族ヒドロキシアミン及び芳香族ジアミンは、それぞれ独立に、その一部又は全部に代えて、その重合可能な誘導体が用いられてもよい。
As a typical example of liquid crystal polyester,
(I) An aromatic hydroxycarboxylic acid, an aromatic dicarboxylic acid, and at least one compound selected from the group consisting of an aromatic diol, an aromatic hydroxyamine, and an aromatic diamine are polymerized (polycondensed). thing,
(II) a polymer obtained by polymerizing plural kinds of aromatic hydroxycarboxylic acids,
(III) A polymer obtained by polymerizing an aromatic dicarboxylic acid and at least one compound selected from the group consisting of an aromatic diol, an aromatic hydroxyamine and an aromatic diamine,
(IV) What polymerizes polyester, such as a polyethylene terephthalate, and aromatic hydroxycarboxylic acid is mentioned. Here, the “aromatic hydroxycarboxylic acid” is a compound represented by the following general formula (a). The aromatic dicarboxylic acid is a compound represented by the following general formula (b). The aromatic diol is a compound represented by the following general formula (c). The aromatic hydroxyamine is a compound represented by the following general formula (d). An aromatic diamine is a compound represented by the following general formula (e).
(A) HO—Ar 10 —COOH
(B) HOOC-Ar 20 -COOH
(C) HO—Ar 30 —OH
(D) NH 2 —Ar 40 —OH
(E) NH 2 —Ar 50 —NH 2
(However, Ar 10 , Ar 20 , Ar 30 , Ar 40 and Ar 50 in the formula are the same or different and each represents a divalent aromatic group.)
Examples of the divalent aromatic group include a phenylene group, a naphthylene group, and a biphenylylene group.
Here, the aromatic hydroxycarboxylic acid, the aromatic dicarboxylic acid, the aromatic diol, the aromatic hydroxyamine, and the aromatic diamine are each independently replaced with a part or all of the polymerizable derivative. Also good.
 芳香族ヒドロキシカルボン酸及び芳香族ジカルボン酸のようなカルボキシル基を有する化合物の重合可能な誘導体の例としては、カルボキシル基をアルコキシカルボニル基又はアリールオキシカルボニル基に変換してなるもの(エステル)、カルボキシル基をハロホルミル基に変換してなるもの(酸ハロゲン化物)、及びカルボキシル基をアシルオキシカルボニル基に変換してなるもの(酸無水物)が挙げられる。
 芳香族ヒドロキシカルボン酸、芳香族ジオール及び芳香族ヒドロキシアミンのようなヒドロキシル基を有する化合物の重合可能な誘導体の例としては、ヒドロキシル基をアシル化してアシルオキシル基に変換してなるもの(アシル化物)が挙げられる。
 芳香族ヒドロキシアミン及び芳香族ジアミンのようなアミノ基を有する化合物の重合可能な誘導体の例としては、アミノ基をアシル化してアシルアミノ基に変換してなるもの(アシル化物)が挙げられる。
Examples of polymerizable derivatives of a compound having a carboxyl group such as aromatic hydroxycarboxylic acid and aromatic dicarboxylic acid include those obtained by converting a carboxyl group into an alkoxycarbonyl group or an aryloxycarbonyl group (ester), carboxyl Examples include those obtained by converting a group into a haloformyl group (acid halide), and those obtained by converting a carboxyl group into an acyloxycarbonyl group (acid anhydride).
Examples of polymerizable derivatives of hydroxyl group-containing compounds such as aromatic hydroxycarboxylic acids, aromatic diols and aromatic hydroxyamines include those obtained by acylating hydroxyl groups and converting them to acyloxyl groups (acylated products) ).
Examples of polymerizable derivatives of amino group-containing compounds such as aromatic hydroxyamines and aromatic diamines include those obtained by acylating an amino group and converting it to an acylamino group (acylated product).
 液晶ポリエステルは、下記一般式(1)で表される繰返し単位(以下、「繰返し単位(1)」ということがある。)を有することが好ましく、繰返し単位(1)と、下記一般式(2)で表される繰返し単位(以下、「繰返し単位(2)」ということがある。)と、下記一般式(3)で表される繰返し単位(以下、「繰返し単位(3)」ということがある。)とを有することがより好ましい。 The liquid crystalline polyester preferably has a repeating unit represented by the following general formula (1) (hereinafter sometimes referred to as “repeating unit (1)”). The repeating unit (1) and the following general formula (2) ) (Hereinafter sometimes referred to as “repeat unit (2)”) and a repeat unit represented by the following general formula (3) (hereinafter referred to as “repeat unit (3)”). More preferably).
 (1)-O-Ar-CO-
 (2)-CO-Ar-CO-
 (3)-X-Ar-Y-
 (式中、Arは、フェニレン基、ナフチレン基又はビフェニリレン基であり;Ar及びArは、それぞれ独立にフェニレン基、ナフチレン基、ビフェニリレン基又は下記一般式(4)で表される基であり;X及びYは、それぞれ独立に酸素原子又はイミノ基であり;前記Ar、Ar及びAr中の一つ以上の水素原子は、それぞれ独立にハロゲン原子、アルキル基又はアリール基で置換されていてもよい。)
 (4)-Ar-Z-Ar
 (式中、Ar及びArは、それぞれ独立にフェニレン基又はナフチレン基であり;Zは、酸素原子、硫黄原子、カルボニル基、スルホニル基又はアルキリデン基である。)
(1) —O—Ar 1 —CO—
(2) —CO—Ar 2 —CO—
(3) —X—Ar 3 —Y—
(In the formula, Ar 1 is a phenylene group, a naphthylene group or a biphenylylene group; Ar 2 and Ar 3 are each independently a phenylene group, a naphthylene group, a biphenylylene group or a group represented by the following general formula (4): Yes; X and Y are each independently an oxygen atom or imino group; one or more hydrogen atoms in Ar 1 , Ar 2 and Ar 3 are each independently substituted with a halogen atom, an alkyl group or an aryl group May be.)
(4) —Ar 4 —Z—Ar 5
(In the formula, Ar 4 and Ar 5 are each independently a phenylene group or a naphthylene group; Z is an oxygen atom, a sulfur atom, a carbonyl group, a sulfonyl group, or an alkylidene group.)
 前記ハロゲン原子としては、フッ素原子、塩素原子、臭素原子及びヨウ素原子が挙げられる。
 前記アルキル基の例としては、炭素数は、1~10であることが好ましい。具体的には、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、2-エチルヘキシル基、n-オクチル基、n-ノニル基及びn-デシル基が挙げられる。
 前記アリール基の例としては、炭素数は、6~20であることが好ましい。具体的には、フェニル基、o-トリル基、m-トリル基、p-トリル基、1-ナフチル基及び2-ナフチル基が挙げられる。 前記Ar、Ar及びAr中の一つ以上の水素原子がこれらの基で置換されている場合、その数は、Ar、Ar又はArで表される前記基毎に、それぞれ独立に2個以下であることが好ましく、1個であることがより好ましい。
As said halogen atom, a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom are mentioned.
For example, the alkyl group preferably has 1 to 10 carbon atoms. Specifically, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, n-pentyl group, n-hexyl group, n-heptyl group Group, 2-ethylhexyl group, n-octyl group, n-nonyl group and n-decyl group.
For example, the aryl group preferably has 6 to 20 carbon atoms. Specific examples include a phenyl group, an o-tolyl group, an m-tolyl group, a p-tolyl group, a 1-naphthyl group, and a 2-naphthyl group. When one or more hydrogen atoms in Ar 1 , Ar 2, and Ar 3 are substituted with these groups, the number is as follows for each group represented by Ar 1 , Ar 2, or Ar 3 , respectively. Independently, it is preferably 2 or less, more preferably 1.
 前記アルキリデン基の例としては、炭素数は1~10であることが好ましい。具体的には、メチレン基、エチリデン基、イソプロピリデン基、n-ブチリデン基及び2-エチルヘキシリデン基が挙げられる。  As an example of the alkylidene group, the number of carbon atoms is preferably 1 to 10. Specific examples include a methylene group, an ethylidene group, an isopropylidene group, an n-butylidene group, and a 2-ethylhexylidene group. *
 繰返し単位(1)は、所定の芳香族ヒドロキシカルボン酸に由来する繰返し単位である。繰返し単位(1)としては、Arが1,4-フェニレン基であるもの(p-ヒドロキシ安息香酸に由来する繰返し単位)、及びArが2,6-ナフチレン基であるもの(6-ヒドロキシ-2-ナフトエ酸に由来する繰返し単位)が好ましい。 The repeating unit (1) is a repeating unit derived from a predetermined aromatic hydroxycarboxylic acid. As the repeating unit (1), Ar 1 is a 1,4-phenylene group (repeating unit derived from p-hydroxybenzoic acid), and Ar 1 is a 2,6-naphthylene group (6-hydroxy Preferred is a repeating unit derived from -2-naphthoic acid.
 繰返し単位(2)は、所定の芳香族ジカルボン酸に由来する繰返し単位である。繰返し単位(2)としては、Arが1,4-フェニレン基であるもの(テレフタル酸に由来する繰返し単位)、Arが1,3-フェニレン基であるもの(イソフタル酸に由来する繰返し単位)、Arが2,6-ナフチレン基であるもの(2,6-ナフタレンジカルボン酸に由来する繰返し単位)、及びArがジフェニルエ-テル-4,4’-ジイル基であるもの(ジフェニルエ-テル-4,4’-ジカルボン酸に由来する繰返し単位)が好ましい。 The repeating unit (2) is a repeating unit derived from a predetermined aromatic dicarboxylic acid. As the repeating unit (2), Ar 2 is a 1,4-phenylene group (repeating unit derived from terephthalic acid), Ar 2 is a 1,3-phenylene group (repeating unit derived from isophthalic acid) ), Ar 2 is a 2,6-naphthylene group (repeating unit derived from 2,6-naphthalenedicarboxylic acid), and Ar 2 is a diphenyl ether-4,4′-diyl group (diphenyl) Preferred is a repeating unit derived from ether-4,4′-dicarboxylic acid).
 繰返し単位(3)は、所定の芳香族ジオール、芳香族ヒドロキシルアミン又は芳香族ジアミンに由来する繰返し単位である。繰返し単位(3)としては、Arが1,4-フェニレン基であるもの(ヒドロキノン、p-アミノフェノール又はp-フェニレンジアミンに由来する繰返し単位)、及びArが4,4’-ビフェニリレン基であるもの(4,4’-ジヒドロキシビフェニル、4-アミノ-4’-ヒドロキシビフェニル又は4,4’-ジアミノビフェニルに由来する繰返し単位)が好ましい。 The repeating unit (3) is a repeating unit derived from a predetermined aromatic diol, aromatic hydroxylamine or aromatic diamine. As the repeating unit (3), Ar 3 is a 1,4-phenylene group (a repeating unit derived from hydroquinone, p-aminophenol or p-phenylenediamine), and Ar 3 is a 4,4′-biphenylylene group. (Repeating units derived from 4,4′-dihydroxybiphenyl, 4-amino-4′-hydroxybiphenyl or 4,4′-diaminobiphenyl) are preferred.
 繰返し単位(1)の含有量は、液晶ポリエステルを構成する全繰返し単位の合計量(液晶ポリエステルを構成する各繰返し単位の質量をその各繰返し単位の式量で割ることにより、各繰返し単位の物質量相当量(モル)を求め、それらを合計した値)に対して、好ましくは30モル%以上、より好ましくは30~80モル%、さらに好ましくは40~70モル%、特に好ましくは45~65モル%である。
 繰返し単位(2)の含有量は、液晶ポリエステルを構成する全繰返し単位の合計量に対して、好ましくは35モル%以下、より好ましくは10~35モル%、さらに好ましくは15~30モル%、特に好ましくは17.5~27.5モル%である。
 繰返し単位(3)の含有量は、液晶ポリエステルを構成する全繰返し単位の合計量に対して、好ましくは35モル%以下、より好ましくは10~35モル%、さらに好ましくは15~30モル%、特に好ましくは17.5~27.5モル%である。
 繰返し単位(1)の含有量が多いほど、液晶ポリエステルの溶融流動性、耐熱性、強度・剛性が向上し易いが、あまり多いと、溶融温度や溶融粘度が高くなり易く、成形に必要な温度が高くなり易い。
The content of the repeating unit (1) is the total amount of all repeating units constituting the liquid crystal polyester (the substance of each repeating unit is obtained by dividing the mass of each repeating unit constituting the liquid crystal polyester by the formula weight of each repeating unit). The equivalent amount (mole) is obtained and the total of these is preferably 30 mol% or more, more preferably 30 to 80 mol%, still more preferably 40 to 70 mol%, particularly preferably 45 to 65 mol%. Mol%.
The content of the repeating unit (2) is preferably 35 mol% or less, more preferably 10 to 35 mol%, still more preferably 15 to 30 mol%, based on the total amount of all repeating units constituting the liquid crystal polyester. Particularly preferred is 17.5 to 27.5 mol%.
The content of the repeating unit (3) is preferably 35 mol% or less, more preferably 10 to 35 mol%, still more preferably 15 to 30 mol%, based on the total amount of all repeating units constituting the liquid crystal polyester. Particularly preferred is 17.5 to 27.5 mol%.
The higher the content of the repeating unit (1), the easier it is to improve the melt flowability, heat resistance, strength and rigidity of the liquid crystalline polyester. However, if the content is too large, the melting temperature and melt viscosity tend to increase, and the temperature required for molding. Tends to be high.
 繰返し単位(2)の含有量と繰返し単位(3)の含有量との割合は、[繰返し単位(2)の含有量]/[繰返し単位(3)の含有量](モル/モル)で表して、好ましくは0.9/1~1/0.9、より好ましくは0.95/1~1/0.95、さらに好ましくは0.98/1~1/0.98である。 The ratio between the content of the repeating unit (2) and the content of the repeating unit (3) is expressed as [content of repeating unit (2)] / [content of repeating unit (3)] (mol / mol). The ratio is preferably 0.9 / 1 to 1 / 0.9, more preferably 0.95 / 1 to 1 / 0.95, and still more preferably 0.98 / 1 to 1 / 0.98.
 なお、液晶ポリエステルは、繰返し単位(1)~(3)を、それぞれ独立に二種以上有してもよい。また、液晶ポリエステルは、繰返し単位(1)~(3)以外の繰返し単位を有してもよいが、その含有量は、液晶ポリエステルを構成する全繰返し単位の合計量に対して、好ましくは10モル%以下、より好ましくは5モル%以下である。 The liquid crystal polyester may have two or more repeating units (1) to (3) independently. The liquid crystal polyester may have a repeating unit other than the repeating units (1) to (3), but the content thereof is preferably 10 with respect to the total amount of all repeating units constituting the liquid crystal polyester. The mol% or less, more preferably 5 mol% or less.
 液晶ポリエステルは、繰返し単位(3)として、X及びYがそれぞれ酸素原子であるものを有すること、すなわち、所定の芳香族ジオールに由来する繰返し単位を有することが好ましく、繰返し単位(3)として、X及びYがそれぞれ酸素原子であるもののみを有することがより好ましい。このようにすることで、液晶ポリエステルは溶融粘度が低くなり易い。 The liquid crystal polyester preferably has, as the repeating unit (3), X and Y each having an oxygen atom, that is, a repeating unit derived from a predetermined aromatic diol. As the repeating unit (3), More preferably, X and Y each have only an oxygen atom. By doing in this way, liquid crystalline polyester tends to become low in melt viscosity.
 液晶ポリエステルは、繰返し単位(1)としてp-ヒドロキシ安息香酸及びは6-ヒドロキシ-2-ナフトエ酸からなる群から選択される少なくとも一種の芳香族ヒドロキシカルボン酸に由来する繰返し単位と、繰返し単位(2)としてテレフタル酸、イソフタル酸及び2,6-ナフタレンジカルボン酸からなる群より選ばれる一種以上の芳香族ジカルボン酸に由来する繰返し単位と、繰返し単位(3)としてヒドロキノン及び4,4’-ジヒドロキシビフェニルからなる群から選択される少なくとも一種の芳香族ジオールに由来する繰返し単位と、を有することが好ましく、これら繰返し単位のみを有することがより好ましい。具体的には、繰返し単位(1)として、Arが1,4-フェニレン基であるもの(p-ヒドロキシ安息香酸に由来する繰返し単位);繰返し単位(2)として、Arが1,4-フェニレン基であるもの(テレフタル酸に由来する繰返し単位)、及びArが1,3-フェニレン基であるもの(イソフタル酸に由来する繰返し単位);繰返し単位(3)として、Arが4,4’-ビフェニリレン基であるもの(4,4’-ジヒドロキシビフェニルに由来する繰返し単位)からなる組合せがより好ましい。 The liquid crystalline polyester comprises a repeating unit derived from at least one aromatic hydroxycarboxylic acid selected from the group consisting of p-hydroxybenzoic acid and 6-hydroxy-2-naphthoic acid as the repeating unit (1), and a repeating unit ( 2) as a repeating unit derived from one or more aromatic dicarboxylic acids selected from the group consisting of terephthalic acid, isophthalic acid and 2,6-naphthalenedicarboxylic acid, and as repeating unit (3) hydroquinone and 4,4′-dihydroxy It is preferable to have a repeating unit derived from at least one aromatic diol selected from the group consisting of biphenyl, and it is more preferable to have only these repeating units. Specifically, as repeating unit (1), Ar 1 is a 1,4-phenylene group (repeating unit derived from p-hydroxybenzoic acid); as repeating unit (2), Ar 2 is 1,4 A group having a phenylene group (repeating unit derived from terephthalic acid) and a group in which Ar 2 is a 1,3-phenylene group (repeating unit derived from isophthalic acid); Ar 3 is 4 as the repeating unit (3) , 4′-biphenylylene groups (repeating units derived from 4,4′-dihydroxybiphenyl) are more preferred.
 液晶ポリエステルは、これを構成する繰返し単位に対応する原料モノマーを溶融重合させ、得られた重合物(プレポリマー)を固相重合させることにより、製造することが好ましい。これにより、耐熱性や強度・剛性が高い高分子量の液晶ポリエステルを操作性よく製造することができる。溶融重合は、触媒の存在下で行ってもよく、この場合の触媒の例としては、酢酸マグネシウム、酢酸第一錫、テトラブチルチタネート、酢酸鉛、酢酸ナトリウム、酢酸カリウム、三酸化アンチモン等の金属化合物や、4-(ジメチルアミノ)ピリジン、1-メチルイミダゾール等の含窒素複素環式化合物が挙げられ、含窒素複素環式化合物が好ましく用いられる。 The liquid crystal polyester is preferably produced by melt polymerizing raw material monomers corresponding to the repeating units constituting the liquid crystal polyester and solid-phase polymerizing the obtained polymer (prepolymer). Thereby, high molecular weight liquid crystal polyester having high heat resistance, strength and rigidity can be produced with good operability. Melt polymerization may be carried out in the presence of a catalyst. Examples of the catalyst in this case include metals such as magnesium acetate, stannous acetate, tetrabutyl titanate, lead acetate, sodium acetate, potassium acetate, and antimony trioxide. And nitrogen-containing heterocyclic compounds such as 4- (dimethylamino) pyridine and 1-methylimidazole, and nitrogen-containing heterocyclic compounds are preferably used.
 液晶ポリエステルは、その流動開始温度が、好ましくは270℃以上、より好ましくは270℃~400℃、さらに好ましくは280℃~380℃である。流動開始温度が高いほど、耐熱性や強度・剛性が向上し易いが、高過ぎると、溶融温度や溶融粘度が高くなり易く、成形に必要な温度が高くなり易い。
 上述のように、液晶ポリエステルの製造において固相重合を行えば、液晶ポリエステルの流動開始温度を270℃以上にすることが比較的短時間で可能である。
The liquid crystal polyester has a flow initiation temperature of preferably 270 ° C. or higher, more preferably 270 ° C. to 400 ° C., and further preferably 280 ° C. to 380 ° C. As the flow start temperature is higher, the heat resistance, strength, and rigidity are more likely to be improved. However, if the flow start temperature is too high, the melting temperature and the melt viscosity are likely to be high, and the temperature required for molding is likely to be high.
As described above, when solid phase polymerization is performed in the production of liquid crystal polyester, the flow start temperature of liquid crystal polyester can be set to 270 ° C. or higher in a relatively short time.
 なお、流動開始温度は、フロー温度又は流動温度とも呼ばれ、毛細管レオメーターを用いて、9.8MPa(100kg/cm)の荷重下、4℃/分の速度で昇温しながら、液晶ポリエステルを溶融させ、内径1mm及び長さ10mmのノズルから押し出すときに、4800Pa・s(48000ポイズ)の粘度を示す温度であり、液晶ポリエステルの分子量の目安となるものである(小出直之編、「液晶ポリマー-合成・成形・応用-」、株式会社シーエムシー、1987年6月5日、p.95参照)。 The flow start temperature is also called flow temperature or flow temperature, and the temperature is raised at a rate of 4 ° C./min under a load of 9.8 MPa (100 kg / cm 2 ) using a capillary rheometer while liquid crystal polyester is used. Is a temperature showing a viscosity of 4800 Pa · s (48000 poise) when extruded from a nozzle having an inner diameter of 1 mm and a length of 10 mm, and is a measure of the molecular weight of the liquid crystalline polyester (Naide Koide, “ “Liquid Crystal Polymers—Synthesis / Molding / Application—”, see CMC Corporation, June 5, 1987, p.
 前記アルミナ微粒子(成分(B))は、αアルミナからなる微粒子が好ましく、なかでも酸化アルミニウム(Al)の含有量が、前記アルミナ微粒子の総質量に対し、95質量%以上であり、体積平均粒径が0.1~50μmであるものが特に好適である。
 酸化アルミニウムの含有量が高いほど、得られる成形体は電気絶縁性や熱伝導性により優れるので、前記含有量は99質量%以上であることが好ましく、99.5質量%以上であることがより好ましい。
 また、前記アルミナ微粒子の体積平均粒径は、0.1~30μmであることが好ましく、0.1~20μmであることがより好ましく、0.1~10μmであることが特に好ましい。なお、ここでアルミナ微粒子の「体積平均粒径」とは、マイクロトラック粒度分析計(例えば、日機装社製HRAなど)を用いて測定されたものであり、アルミナ微粒子を2質量%ヘキサメタリン酸ナトリウム水溶液に添加し、超音波洗浄装置を用いて十分に分散させた後、レーザー光線を照射して、その回折(散乱)を測定(レーザー回折散乱測定による粒径分布測定)して求めたものである。
The alumina fine particles (component (B)) are preferably fine particles made of α-alumina, and the content of aluminum oxide (Al 2 O 3 ) is 95% by mass or more based on the total mass of the alumina fine particles, Those having a volume average particle size of 0.1 to 50 μm are particularly suitable.
The higher the content of aluminum oxide, the better the resulting molded product has better electrical insulation and thermal conductivity. Therefore, the content is preferably 99% by mass or more, more preferably 99.5% by mass or more. preferable.
The volume average particle size of the alumina fine particles is preferably 0.1 to 30 μm, more preferably 0.1 to 20 μm, and particularly preferably 0.1 to 10 μm. Here, the “volume average particle diameter” of the alumina fine particles is measured using a microtrack particle size analyzer (for example, HRA manufactured by Nikkiso Co., Ltd.), and the alumina fine particles are 2% by mass aqueous sodium hexametaphosphate. After being sufficiently dispersed using an ultrasonic cleaning device, the laser beam is irradiated and the diffraction (scattering) is measured (particle size distribution measurement by laser diffraction scattering measurement).
 前記アルミナ微粒子は、上記のような酸化アルミニウム含有量を満たすものであれば、その形状は、球状、多面体状及び破砕粒子状のいずれでもよい。
 ただし、前記アルミナ微粒子は、BET比表面積が1.0~5.0m/gであることが好ましく、比表面積が比較的大きくなり易いという点で、アルミナ微粒子の形状は破砕粒子状のものが特に好ましい。アルミナ微粒子のBET比表面積が、1.0~5.0m/gの範囲であると、本発明に係る製造方法で得られた熱可塑性樹脂組成物を溶融成形して成形体を得る際に、成形に使用する金型の破損をより低減でき、得られる成形体がより熱伝導性に優れる。このような効果にさらに優れる点から、アルミナ微粒子のBET比表面積は、1.0~3.0m/gであることがより好ましく、1.0~2.5m/gであることが特に好ましい。このような、アルミナ微粒子を得るためには、後述するような市販品のアルミナ微粒子の中から、BET比表面積が1.0~5.0m/gであるものを選択してもよいし、適当な体積平均粒径(例えば、40~70μm程度)のアルミナ粒子を準備し、これを公知の各種手段によって破砕して、その比表面積を増大させることで、BET比表面積が1.0~5.0m/gのアルミナ微粒子を調製してもよい。このときの破砕手段の例としては、ジェットミル、ミクロンミル、ボールミル、振動ミル、メディアミルなどの粉砕機を用いる方法が挙げられる。
As long as the alumina fine particles satisfy the aluminum oxide content as described above, the shape may be any of spherical, polyhedral and crushed particles.
However, the alumina fine particles preferably have a BET specific surface area of 1.0 to 5.0 m 2 / g, and the alumina fine particles are crushed particles in that the specific surface area tends to be relatively large. Particularly preferred. When the BET specific surface area of the alumina fine particles is in the range of 1.0 to 5.0 m 2 / g, when the thermoplastic resin composition obtained by the production method according to the present invention is melt-molded to obtain a molded body The damage of the mold used for molding can be further reduced, and the resulting molded product is more excellent in thermal conductivity. From the viewpoint of further excellent such effects, the BET specific surface area of the alumina fine particles is more preferably 1.0 to 3.0 m 2 / g, and particularly preferably 1.0 to 2.5 m 2 / g. preferable. In order to obtain such alumina fine particles, commercially available alumina fine particles as described later may be selected from those having a BET specific surface area of 1.0 to 5.0 m 2 / g, Alumina particles having an appropriate volume average particle size (for example, about 40 to 70 μm) are prepared, crushed by various known means, and the specific surface area is increased, so that the BET specific surface area is 1.0 to 5 An alumina fine particle of 0.0 m 2 / g may be prepared. Examples of the crushing means at this time include a method using a pulverizer such as a jet mill, a micron mill, a ball mill, a vibration mill, and a media mill.
 アルミナ微粒子のBET比表面積を測定する方法としては、例えば、次のような窒素吸着法が挙げられる。まず、アルミナ微粒子を120℃、8時間で真空脱気処理した後、定容法を用いて窒素による吸着等温線を測定する。この吸着等温線を用いることで、BET一点法により比表面積が算出される。このとき用いる装置としては、例えば、日本BEL社製「BELSORP-mini」が挙げられる。 Examples of the method for measuring the BET specific surface area of alumina fine particles include the following nitrogen adsorption method. First, after the alumina fine particles are vacuum degassed at 120 ° C. for 8 hours, the adsorption isotherm by nitrogen is measured using a constant volume method. By using this adsorption isotherm, the specific surface area is calculated by the BET single point method. As an apparatus used at this time, for example, “BELSORP-mini” manufactured by Nippon BEL Co., Ltd. may be mentioned.
 アルミナ微粒子としては、市販品を用いてもよい。アルミナ微粒子の容易に入手可能な市販品の例としては、住友化学社製、昭和電工社製及び日本軽金属社製のアルミナ微粒子等が挙げられる。これら市販品の中から、上記のようにBET比表面積が好ましくは1.0~5.0m/g、より好ましくは1.0~3.0m/gであり、体積平均粒径が好ましくは0.1~50μmであるものを選択すればよい。 Commercially available products may be used as the alumina fine particles. Examples of commercially available products of alumina fine particles include alumina fine particles manufactured by Sumitomo Chemical Co., Ltd., Showa Denko Co., Ltd., and Nippon Light Metal Co., Ltd. Among these commercially available products, the BET specific surface area is preferably 1.0 to 5.0 m 2 / g, more preferably 1.0 to 3.0 m 2 / g as described above, and the volume average particle size is preferably May be selected from 0.1 to 50 μm.
 アルミナ微粒子は、レーザー回折散乱測定により求めた粒径分布が二峰性であることが好ましく、上記のような好ましい体積平均粒径を満足するうえでは、前記粒径分布が、体積平均粒径1~5μmの範囲内と、体積平均粒径0.1~1μmの範囲内と、にそれぞれ極大値を有する二峰性であることがより好ましい。このような二峰性の粒径分布を有するアルミナ微粒子を用いることで、得られる成形体は、アルミナ微粒子がより高充填され、熱伝導性により優れたものとなる。
このような二峰性の粒径分布を有するアルミナ微粒子は、市販されている。また、二峰性の粒径分布を有するアルミナ微粒子は、粒径の異なる2種類のアルミナ微粒子を混合することにより得られる。ここで「二峰性」とは、粒径分布が2つの極大値を有することを意味する。
「極大値」とは、粒子の存在比率の分布を表した粒度分布図(横軸:粒径、縦軸:その粒径における強度)において、一つの山状波形における強度の最大値を意味する。
The alumina fine particles preferably have a bimodal particle size distribution determined by laser diffraction scattering measurement. In order to satisfy the preferable volume average particle size as described above, the particle size distribution has a volume average particle size of 1 It is more preferable to have bimodality having local maximum values in the range of ˜5 μm and the volume average particle size in the range of 0.1 to 1 μm. By using alumina fine particles having such a bimodal particle size distribution, the resulting molded body is more highly filled with alumina fine particles and becomes more excellent in thermal conductivity.
Alumina fine particles having such a bimodal particle size distribution are commercially available. Also, alumina fine particles having a bimodal particle size distribution can be obtained by mixing two types of alumina fine particles having different particle sizes. Here, “bimodal” means that the particle size distribution has two maximum values.
“Maximum value” means the maximum value of intensity in one mountain-shaped waveform in a particle size distribution diagram (horizontal axis: particle size, vertical axis: intensity at the particle size) representing the distribution of the abundance ratio of particles. .
 ここで図面を参照して、上記の「二峰性」を説明する。図1及び2は、レーザー回折散乱測定により求められた二峰性の粒分布の概要を示す模式図である。当該模式図において、横軸は粒径で、右側ほど粒径が大きいことを表す。また、縦軸はその粒径における強度を表す。図1は典型的な二峰性の粒径分布を示しており、当該粒径分布には2つの極大値(第1の極大値、第2の極大値)が存在する。また、図2に示すように、第2の極大値を持つピークに対して、第1の極大値が肩ピークのようにして現れるような粒径分布の場合も、二峰性の粒径分布とする。そして、これら二峰性の粒径分布において、第1の極大値が体積平均粒径0.1~1μmの範囲内にあり、第2の極大値が体積平均粒径1~5μmの範囲内にあるアルミナ微粒子がより好ましい。 Here, the “bimodality” will be described with reference to the drawings. 1 and 2 are schematic views showing an outline of a bimodal particle distribution obtained by laser diffraction scattering measurement. In the schematic diagram, the horizontal axis represents the particle size, and the right side represents the larger particle size. The vertical axis represents the strength at the particle size. FIG. 1 shows a typical bimodal particle size distribution, and the particle size distribution has two maximum values (a first maximum value and a second maximum value). In addition, as shown in FIG. 2, the bimodal particle size distribution is also used when the particle size distribution is such that the first maximum value appears like a shoulder peak with respect to the peak having the second maximum value. And In these bimodal particle size distributions, the first maximum value is in the range of the volume average particle size of 0.1 to 1 μm, and the second maximum value is in the range of the volume average particle size of 1 to 5 μm. A certain alumina fine particle is more preferable.
 前記繊維状充填材(成分(C))は、無機充填材であってもよいし、有機充填材であってもよい。
 前記繊維状無機充填材の例としては、ガラス繊維;パン系炭素繊維、ピッチ系炭素繊維等の炭素繊維;シリカ繊維、アルミナ繊維、シリカアルミナ繊維等のセラミック繊維;ステンレス繊維等の金属繊維が挙げられる。また、チタン酸カリウムウィスカー、チタン酸バリウムウィスカー、ウォラストナイトウィスカー、ホウ酸アルミニウムウィスカー、窒化ケイ素ウィスカー、炭化ケイ素ウィスカー等のウィスカーも挙げられる。
 前記繊維状有機充填材の例としては、ポリエステル繊維及びアラミド繊維が挙げられる。
 前記繊維状充填材は、これらの中でも、炭素繊維、ガラス繊維、ウォラストナイトウィスカー、ホウ酸アルミニウムウィスカー及びチタン酸カリウムウィスカーが好ましく、炭素繊維及びガラス繊維がより好ましい。
 繊維状充填材は、一種を単独で用いてもよいし、二種以上を併用してもよい。
The fibrous filler (component (C)) may be an inorganic filler or an organic filler.
Examples of the fibrous inorganic filler include glass fibers; carbon fibers such as pan-based carbon fibers and pitch-based carbon fibers; ceramic fibers such as silica fibers, alumina fibers and silica-alumina fibers; and metal fibers such as stainless fibers. It is done. In addition, whiskers such as potassium titanate whisker, barium titanate whisker, wollastonite whisker, aluminum borate whisker, silicon nitride whisker, and silicon carbide whisker are also included.
Examples of the fibrous organic filler include polyester fibers and aramid fibers.
Among these, the fibrous filler is preferably carbon fiber, glass fiber, wollastonite whisker, aluminum borate whisker and potassium titanate whisker, and more preferably carbon fiber and glass fiber.
A fibrous filler may be used individually by 1 type, and may use 2 or more types together.
 前記繊維状充填材は、数平均繊維径が1~15μmであり、数平均アスペクト比(数平均繊維長/数平均繊維径)が10以上であるものが好ましい。このような数平均アスペクト比を有する長い繊維状充填材を用いることで、成形体の機械的強度がより向上する。そして、繊維状充填材の数平均アスペクト比は、より好ましくは50以上であり、また、好ましくは500以下、より好ましくは400以下である。繊維状充填材の数平均繊維径及び数平均繊維長は、電子顕微鏡で繊維状充填材を観察することにより測定できる。 The fibrous filler preferably has a number average fiber diameter of 1 to 15 μm and a number average aspect ratio (number average fiber length / number average fiber diameter) of 10 or more. By using a long fibrous filler having such a number average aspect ratio, the mechanical strength of the molded body is further improved. The number average aspect ratio of the fibrous filler is more preferably 50 or more, and preferably 500 or less, more preferably 400 or less. The number average fiber diameter and the number average fiber length of the fibrous filler can be measured by observing the fibrous filler with an electron microscope.
 繊維状充填材としては、例えば、市販品をそのまま用いてもよいし、熱可塑性樹脂に対する分散性や、熱可塑性樹脂との密着性を向上させるために、表面がカップリング剤(シランカップリング剤、チタンカップリング剤等)や界面活性剤等で表面処理されたものを用いてもよい。 As the fibrous filler, for example, a commercially available product may be used as it is, or the surface is a coupling agent (silane coupling agent) in order to improve the dispersibility with respect to the thermoplastic resin and the adhesion to the thermoplastic resin. , Titanium coupling agents, etc.) or surface treated with a surfactant or the like may be used.
 前記シランカップリング剤の例としては、メタクリルシラン、ビニルシラン、エポキシシラン、アミノシラン等が挙げられ、チタンカップリング剤の例としては、チタン酸等が挙げられる。
 前記界面活性剤の例としては、高級脂肪酸、高級脂肪酸エステル、高級脂肪酸アミド、高級脂肪酸塩類等が挙げられる。
Examples of the silane coupling agent include methacryl silane, vinyl silane, epoxy silane, amino silane, and the like. Examples of the titanium coupling agent include titanic acid.
Examples of the surfactant include higher fatty acids, higher fatty acid esters, higher fatty acid amides, higher fatty acid salts and the like.
 本発明においては、溶融混練時に必要に応じて、本発明の効果を妨げない範囲内において、前記熱可塑性樹脂、アルミナ微粒子及び繊維状充填材(成分(A)~(C))以外の他の成分を供給(配合)し、熱可塑性樹脂組成物を、これら他の成分を含むものとしてもよい。
 前記他の成分の例としては、前記アルミナ微粒子及び繊維状充填材以外の充填材、添加剤が挙げられる。
In the present invention, other than the thermoplastic resin, the alumina fine particles, and the fibrous filler (components (A) to (C)) as long as they do not interfere with the effects of the present invention as necessary during melt-kneading. Components may be supplied (blended), and the thermoplastic resin composition may contain these other components.
Examples of the other components include fillers and additives other than the alumina fine particles and the fibrous filler.
 前記アルミナ微粒子及び繊維状充填材以外の充填材の例としては、タルク、ガラスフレーク、シリカ粒子、炭酸カルシウム等が挙げられ、これらの中でもタルクが好ましい。
 また、前記添加剤の例としては、フッ素樹脂等の離型改良剤;染料、顔料等の着色剤;酸化防止剤;熱安定剤;紫外線吸収剤;帯電防止剤;界面活性剤等が挙げられる。
Examples of the filler other than the alumina fine particles and the fibrous filler include talc, glass flakes, silica particles, calcium carbonate and the like, and among these, talc is preferable.
Examples of the additives include mold release improvers such as fluororesins; colorants such as dyes and pigments; antioxidants; thermal stabilizers; ultraviolet absorbers; antistatic agents; .
 本発明においては、前記アルミナ微粒子の供給量を、前記繊維状充填材の供給量よりも質量比較で多くなるようにすることが好ましい。そして、熱可塑性樹脂組成物の供給量に対するアルミナ微粒子の供給量の割合をW(質量%)、繊維状充填材の供給量の割合をW(質量%)としたときに、W/Wの値が2以上であることがより好ましく、3以上であることが特に好ましい。具体的には、W/Wの値が2~100であることが好ましく、3~50であることがより好ましい。
 また、熱可塑性樹脂の供給量100質量部に対して、アルミナ微粒子及び繊維状充填材の全供給量は、100質量部以上であることが好ましく、150質量部以上であることがより好ましい。具体的には、熱可塑性樹脂の供給量100質量部に対して、アルミナ微粒子及び繊維状充填材の全供給量は、100~500質量部であることが好ましく、150~400質量部であることがより好ましい。
In the present invention, it is preferable that the supply amount of the alumina fine particles is larger than the supply amount of the fibrous filler by mass comparison. When the ratio of the supply amount of the alumina fine particles to the supply amount of the thermoplastic resin composition is W B (mass%) and the ratio of the supply amount of the fibrous filler is W C (mass%), W B / more preferably the value of W C is 2 or more, particularly preferably 3 or more. Specifically, the value of W B / W C is preferably 2 to 100, and more preferably 3 to 50.
Further, the total supply amount of the alumina fine particles and the fibrous filler is preferably 100 parts by mass or more and more preferably 150 parts by mass or more with respect to 100 parts by mass of the thermoplastic resin supply. Specifically, the total supply amount of the alumina fine particles and the fibrous filler is preferably 100 to 500 parts by mass, and 150 to 400 parts by mass with respect to 100 parts by mass of the thermoplastic resin supply. Is more preferable.
 熱可塑性樹脂組成物は、前記熱可塑性樹脂、アルミナ微粒子及び繊維状充填材(成分(A)~(C))を押出溶融混練して得られ、押出溶融混練してペレット状として得ることが好ましい。 The thermoplastic resin composition is preferably obtained by extrusion melting and kneading the thermoplastic resin, alumina fine particles and fibrous filler (components (A) to (C)), and obtained by extrusion melting and kneading into pellets. .
 押出溶融混練に用いられる典型的な溶融混練押出機は、加熱溶融体押し出し用の小さな孔であるノズルを備え、加熱手段を有するシリンダを備え、該シリンダに溶融混練の対象となる原材料を供給するための供給口を備え、加熱溶融体を押し出すためのスクリューを前記シリンダ内に備えたものが好ましく、シリンダ内に1本のスクリューが回転駆動されるように設けられている単軸溶融混練押出機でもよいし、シリンダ内に2本のスクリューが互いに異なる方向に又は同じ方向に回転駆動されるように設けられている二軸溶融混練押出機でもよいが、二軸溶融混練押出機が好ましい。 A typical melt-kneading extruder used for extrusion melt-kneading includes a nozzle that is a small hole for extruding a heated melt, includes a cylinder having heating means, and supplies the raw material to be melt-kneaded to the cylinder A single-screw melt kneading extruder provided with a supply port for pushing out the heated melt is preferably provided in the cylinder, and one screw is rotationally driven in the cylinder. Alternatively, a twin-screw melt kneading extruder in which two screws are rotationally driven in different directions or in the same direction in the cylinder may be used, but a biaxial melt kneading extruder is preferable.
 溶融混練押出機は、スクリューの直径(D)に対するスクリューの有効長さ(L)の比率(L/D)が20以上(ここでLとDは同一のスケール単位である)であることが好ましく、このようにすることで、熱可塑性樹脂、アルミナ微粒子及び繊維状充填材がより均一に分散する。なお、ここで「スクリューの有効長さ」とは、スクリューの軸方向における長さを意味し、「スクリューの直径」とは、スクリューの呼び外径寸法を意味する。 In the melt-kneading extruder, the ratio (L / D) of the effective length (L) of the screw to the diameter (D) of the screw is preferably 20 or more (where L and D are the same scale unit). By doing in this way, a thermoplastic resin, an alumina fine particle, and a fibrous filler are disperse | distributed more uniformly. Here, “the effective length of the screw” means the length in the axial direction of the screw, and “the diameter of the screw” means the nominal outer diameter of the screw.
 本発明においては、溶融混練押出機のノズルからこの押出機の外部に押し出された混練物(熱可塑性樹脂組成物)を、冷却速度35℃/秒以下で冷却する。このようにすることで、熱可塑性樹脂組成物から得られた成形体は、優れた熱伝導性及び機械的強度を有するものとなる。 In the present invention, the kneaded product (thermoplastic resin composition) extruded from the nozzle of the melt-kneading extruder to the outside of the extruder is cooled at a cooling rate of 35 ° C./second or less. By doing in this way, the molded object obtained from the thermoplastic resin composition will have the outstanding heat conductivity and mechanical strength.
 前記冷却速度は、例えば、溶融混練押出機から押し出された混練物の冷却方法及び、及び混練物の押出量で調節できる。
 前記冷却速度は、例えば、溶融混練押出機のノズルから押し出された直後の混練物の温度a(℃)と、混練物がノズルから押し出されて(温度a(℃)を測定してから)時間t(秒)が経過した後の混練物の温度b(℃)とを測定し、温度aと温度bとの差を時間tで除する((a-b)/t)ことにより求められる。混練物の温度は、例えば、赤外放射温度計を用いて簡便に測定できる。時間tは、例えば、3~10秒に設定することで、より高い精度で冷却速度を測定できる。
The said cooling rate can be adjusted with the cooling method of the kneaded material extruded from the melt-kneading extruder, and the extrusion amount of a kneaded material, for example.
The cooling rate is, for example, the temperature a (° C.) of the kneaded product immediately after being extruded from the nozzle of the melt-kneading extruder, and the time after the kneaded product is extruded from the nozzle (after measuring the temperature a (° C.)). This is obtained by measuring the temperature b (° C.) of the kneaded material after elapse of t (seconds) and dividing the difference between the temperature a and the temperature b by the time t ((ab) / t). The temperature of the kneaded product can be easily measured using, for example, an infrared radiation thermometer. By setting the time t to 3 to 10 seconds, for example, the cooling rate can be measured with higher accuracy.
 本発明においては、ノズルから押し出された混練物は、熱可塑性樹脂組成物として成形体の製造に供するまでの間など、再度加熱を行うまでの間における冷却中に、冷却速度を35℃/秒以下とすればよい。そして、通常は、ノズルから押し出された直後の混練物は高温なので、これに何らかの強制的な冷却操作を加えて冷却する場合には、例えば、この冷却操作時の冷却速度を35℃/秒以下に制御し、少なくとも、自然に放熱させた状態で冷却速度が35℃/秒を越えないようになるまで、この冷却操作を継続すればよい。押し出された直後の混練物に、強制的な冷却操作を行わない場合には、冷却速度は通常、35℃/秒を越えることはないと考えられるが、工程に長時間を要するため、非効率的である。 In the present invention, the kneaded product extruded from the nozzle has a cooling rate of 35 ° C./second during cooling until it is heated again, such as until it is subjected to production of a molded body as a thermoplastic resin composition. What is necessary is as follows. Usually, since the kneaded material immediately after being extruded from the nozzle is hot, when cooling by adding some forced cooling operation to this, for example, the cooling rate during this cooling operation is 35 ° C./second or less. This cooling operation may be continued until at least the cooling rate does not exceed 35 ° C./second in a state where heat is naturally radiated. If the forced cooling operation is not performed on the kneaded material immediately after being extruded, the cooling rate is generally considered not to exceed 35 ° C./sec. Is.
 本発明においては、切断機を用いてノズルから押し出された混練物をペレット状等の形状に切断する場合には、前記温度bを切断機の入り口直前の混練物の温度とすることが好ましい。この場合、前記時間tは、押し出された混練物がノズルから前記切断機の入り口に到達するまでの時間となる。 In the present invention, when the kneaded product extruded from the nozzle using a cutting machine is cut into a pellet or the like, the temperature b is preferably set to the temperature of the kneaded product immediately before the entrance of the cutting machine. In this case, the time t is a time until the extruded kneaded material reaches the entrance of the cutting machine from the nozzle.
 混練物の強制的な冷却は、空冷、水冷等で行うことが好ましい。例えば、ストランド冷却引取装置を用いれば、冷却シャワー水の噴霧やエアーの吹き付けの条件を調節することで、比較的容易に混練物の冷却速度を調節できる。このようなストランド冷却引取装置としては、例えば、いすず化工機社製やタナカ社製のものが挙げられる。
 例えば、水冷時の冷却速度は、35℃/秒以下、空冷時の冷却速度は30℃/秒以下とすることができる。
The forced cooling of the kneaded product is preferably performed by air cooling, water cooling, or the like. For example, if a strand cooling take-up device is used, the cooling rate of the kneaded product can be adjusted relatively easily by adjusting the conditions for spraying cooling shower water and blowing air. Examples of such a strand cooling and taking device include those manufactured by Isuzu Chemical Industries and Tanaka.
For example, the cooling rate during water cooling can be 35 ° C./second or less, and the cooling rate during air cooling can be 30 ° C./second or less.
 混練物の押出量は、5~300kg/時間であることが好ましく、10~100kg/時間であることがより好ましい。このような範囲とすることで、混練物の冷却速度をより容易に調節できる。 The extrusion rate of the kneaded product is preferably 5 to 300 kg / hour, more preferably 10 to 100 kg / hour. By setting it as such a range, the cooling rate of a kneaded material can be adjusted more easily.
<成形体>
 本発明の第二の態様に係る成形体は、前記本発明の第一の態様における製造方法で得られた熱可塑性樹脂組成物を成形してなることを特徴とする。
 かかる成形体は、前記熱可塑性樹脂組成物を用いたことで、電気絶縁性、熱伝導性及び強度に優れる。
<Molded body>
The molded body according to the second aspect of the present invention is characterized by molding the thermoplastic resin composition obtained by the production method according to the first aspect of the present invention.
Such a molded article is excellent in electrical insulation, thermal conductivity and strength by using the thermoplastic resin composition.
 本発明の第四の態様に係る成形体は、前記本発明の第三の態様における製造方法で得られた熱可塑性樹脂組成物を成形してなることを特徴とする。
 かかる成形体は、前記熱可塑性樹脂組成物を用いたことで、電気絶縁性、熱伝導性及び強度に優れる。
The molded body according to the fourth aspect of the present invention is formed by molding a thermoplastic resin composition obtained by the production method according to the third aspect of the present invention.
Such a molded article is excellent in electrical insulation, thermal conductivity and strength by using the thermoplastic resin composition.
 熱可塑性樹脂組成物の成形方法は、目的とする成形体の形状によって好適なものを適宜選択でき、なかでも、射出成形法、押出射出成形法等の溶融成形法が好ましく、射出成形法がより好ましい。射出成形法は、薄肉部を有するような複雑な形状の成形体を成形し易いという利点を有する。射出成形法で得られた本発明に係る成形体は、電気・電子部品等の、特に熱伝導性が必要とされる部品として有用である。 As the molding method of the thermoplastic resin composition, a suitable one can be appropriately selected depending on the shape of the target molded body, and among these, a melt molding method such as an injection molding method or an extrusion injection molding method is preferable, and an injection molding method is more preferable. preferable. The injection molding method has an advantage that it is easy to mold a molded body having a complicated shape having a thin portion. The molded body according to the present invention obtained by the injection molding method is useful as a part that requires heat conductivity, such as an electric / electronic part.
 射出成形は、射出成形機(例えば、日精樹脂工業社製「油圧式横型成形機PS40E5ASE型」)を用いて、前記熱可塑性樹脂組成物を溶融させ、溶融した熱可塑性樹脂組成物を、適切な温度に加熱して、所望のキャビティ形状を有する金型内に射出することにより行うことができる。射出するために熱可塑性樹脂組成物を加熱溶融させる温度は、使用する熱可塑性樹脂組成物の流動開始温度Tp’℃を基点として、[Tp’+10]℃以上、[Tp’+50]℃以下とすることが好ましい。また、金型の温度は、熱可塑性樹脂組成物の冷却速度と生産性の点から、室温(例えば、23℃)~180℃の範囲から選択することが好ましい。 Injection molding is performed by melting the thermoplastic resin composition using an injection molding machine (for example, “Hydraulic Horizontal Molding Machine PS40E5ASE Model” manufactured by Nissei Plastic Industry Co., Ltd.) It can be performed by heating to a temperature and injecting it into a mold having the desired cavity shape. The temperature at which the thermoplastic resin composition is heated and melted for injection is [Tp ′ + 10] ° C. or more and [Tp ′ + 50] ° C. or less based on the flow start temperature Tp ′ ° C. of the thermoplastic resin composition used. It is preferable to do. The temperature of the mold is preferably selected from the range of room temperature (for example, 23 ° C.) to 180 ° C. from the viewpoint of the cooling rate and productivity of the thermoplastic resin composition.
 前記成形体は、例えば、23℃における体積固有抵抗値を1×1010Ωm以上とすることができる。ここで、「体積固有抵抗値」は、「ASTM D257」に準拠して測定した値である。
 また、前記成形体は、例えば、熱伝導率を好ましくは0.92W/(m・K)以上とすることができ、曲げ強度を好ましくは98MPa以上とすることができる。ここで、「熱伝導率」は、熱拡散率、比熱及び比重の積から求められた値であり、「曲げ強度」は、「ASTM D790」に準拠して測定した値である。
For example, the molded body can have a volume resistivity of 1 × 10 10 Ωm or more at 23 ° C. Here, the “volume specific resistance value” is a value measured according to “ASTM D257”.
In addition, the molded body can have a thermal conductivity of preferably 0.92 W / (m · K) or more and a bending strength of preferably 98 MPa or more, for example. Here, “thermal conductivity” is a value obtained from the product of thermal diffusivity, specific heat and specific gravity, and “bending strength” is a value measured according to “ASTM D790”.
 前記成形体は、各種用途に適用できるが、特に電気絶縁性、熱伝導性及び機械的強度に優れる点から、電気・電子部品として好適である。なかでも、前記成形体は、電子素子の封止材、インシュレータ、表示装置用反射板、電子素子収納用の筐体、自動車・産業機械用モーターインシュレータ及び表面実装部品からなる群より選ばれる一種以上の部品としての使用が好適である。また、前記表面実装部品としては、コネクターが好適である。このような電気・電子部品においては、これら部品を備えた電気・電子機器の稼動によって発熱し、且つこれら部品の放熱性が不十分であると、誤作動等が生じて機器の信頼性が低下し易い。これに対して本発明に係る成形体は、上記のように、熱伝導率が比較的等方性になるという、放熱に有利な特性を有している。したがって、本発明に係る成形体は、前記電気・電子部品として使用したとき、これら部品が比較的複雑な形状であったとしても、熱伝導率の等方性により効率よく放熱して、これら部品を備えた電気・電子機器の安定的な稼動を実現する。 The molded body can be applied to various uses, but is particularly suitable as an electric / electronic component because it is excellent in electrical insulation, thermal conductivity and mechanical strength. Among these, the molded body is at least one selected from the group consisting of a sealing material for electronic elements, an insulator, a reflector for display device, a casing for storing electronic elements, a motor insulator for automobiles and industrial machines, and a surface mount component. It is preferable to use as a component. Further, as the surface mount component, a connector is suitable. In such electric / electronic parts, heat is generated by the operation of the electric / electronic equipment provided with these parts, and if the heat dissipation of these parts is insufficient, malfunctions occur and the reliability of the equipment decreases. Easy to do. On the other hand, the molded body according to the present invention has a characteristic advantageous for heat dissipation in that the thermal conductivity becomes relatively isotropic as described above. Therefore, when the molded body according to the present invention is used as the electrical / electronic component, even if these components have a relatively complicated shape, the molded body according to the present invention efficiently dissipates heat due to the isotropic thermal conductivity. Realize stable operation of electrical and electronic equipment equipped with
 以下、具体的実施例により、本発明についてさらに詳しく説明する。ただし、本発明は、以下に示す実施例に何ら限定されるものではない。なお、液晶ポリエステルの流動開始温度は、以下の方法で測定した。 Hereinafter, the present invention will be described in more detail with reference to specific examples. However, the present invention is not limited to the following examples. In addition, the flow start temperature of liquid crystalline polyester was measured with the following method.
(液晶ポリエステルの流動開始温度の測定)
 フローテスター(島津製作所社製、CFT-500型)を用いて、液晶ポリエステル約2gを、内径1mm及び長さ10mmのノズルを有するダイを取り付けたシリンダに充填し、9.8MPa(100kg/cm)の荷重下、4℃/分の速度で昇温しながら、液晶ポリエステルを溶融させ、ノズルから押し出し、4800Pa・s(48000ポイズ)の粘度を示す温度を測定した。
(Measurement of flow start temperature of liquid crystal polyester)
Using a flow tester (manufactured by Shimadzu Corp., CFT-500 type), about 2 g of liquid crystal polyester was filled into a cylinder equipped with a die having a nozzle having an inner diameter of 1 mm and a length of 10 mm, and 9.8 MPa (100 kg / cm 2). The liquid crystal polyester was melted while being heated at a rate of 4 ° C./min under a load of 4), extruded from a nozzle, and a temperature showing a viscosity of 4800 Pa · s (48000 poise) was measured.
 本実施例で使用したアルミナ微粒子及び繊維状充填材は、以下の通りである。
(アルミナ微粒子)
 微粒低ソーダアルミナAL-45-2(昭和電工社製):体積平均粒径1.4μm(粒径分布においては、体積平均粒径1.0~2.0μmの範囲内と、体積平均粒径0.2~0.4μmの範囲内とに、それぞれ1つずつ極大値を有する二峰性であった。)、BET比表面積1.8m/g
(繊維状充填材)
 ダイアリードK223HE(三菱化学社製):炭素繊維
 チョップドガラス繊維CS03JAPX-1(旭ファイバーガラス社製):ガラス繊維(板状無機充填材)
 タルクX-50(日本タルク社製):タルク
The alumina fine particles and fibrous filler used in this example are as follows.
(Alumina fine particles)
Fine low soda alumina AL-45-2 (manufactured by Showa Denko KK): volume average particle size 1.4 μm (in the particle size distribution, the volume average particle size is in the range of 1.0 to 2.0 μm and the volume average particle size It was bimodal, each having a maximum value in the range of 0.2 to 0.4 μm.), BET specific surface area 1.8 m 2 / g
(Fibrous filler)
DIALEAD K223HE (Mitsubishi Chemical Corporation): Carbon fiber Chopped glass fiber CS03JAPX-1 (Asahi Fiber Glass Co., Ltd.): Glass fiber (plate-like inorganic filler)
Talc X-50 (Nihon Talc): Talc
<液晶ポリエステルの製造>
[製造例1]
 攪拌装置、トルクメータ、窒素ガス導入管、温度計及び還流冷却器を備えた反応器に、p-ヒドロキシ安息香酸994.5g(7.2モル)、4,4’-ジヒドロキシビフェニル446.9g(2.4モル)、テレフタル酸299.0g(1.8モル)、イソフタル酸99.7g(0.6モル)及び無水酢酸1347.6g(13.2モル)を仕込み、反応器内を十分に窒素ガスで置換した後、窒素ガス気流下で撹拌しながら30分かけて150℃まで昇温し、この温度(150℃)を保持して1時間還流させた。
 次いで、留出する副生成物の酢酸及び未反応の無水酢酸を留去しながら、2時間50分かけて320℃まで昇温し、トルクの上昇が認められた時点を反応終了点としてプレポリマーを得た。
 得られたプレポリマーを室温まで冷却し、粗粉砕機で粉砕後、窒素ガス雰囲気下、室温から250℃まで1時間かけて昇温し、250℃から285℃まで5時間かけて昇温し、285℃で3時間保持することにより、固相重合を行った。固相重合終了後、得られた液晶ポリエステルの流動開始温度は、327℃であった。
<Manufacture of liquid crystal polyester>
[Production Example 1]
To a reactor equipped with a stirrer, a torque meter, a nitrogen gas inlet tube, a thermometer and a reflux condenser, 994.5 g (7.2 mol) of p-hydroxybenzoic acid, 446.9 g of 4,4′-dihydroxybiphenyl ( 2.4 mol), 299.0 g (1.8 mol) of terephthalic acid, 99.7 g (0.6 mol) of isophthalic acid, and 1347.6 g (13.2 mol) of acetic anhydride. After substituting with nitrogen gas, the temperature was raised to 150 ° C. over 30 minutes with stirring under a nitrogen gas stream, and this temperature (150 ° C.) was maintained and refluxed for 1 hour.
Next, while distilling off the by-product acetic acid and unreacted acetic anhydride to be distilled off, the temperature was raised to 320 ° C. over 2 hours and 50 minutes. Got.
The obtained prepolymer was cooled to room temperature, pulverized with a coarse pulverizer, then heated in a nitrogen gas atmosphere from room temperature to 250 ° C. over 1 hour, raised from 250 ° C. to 285 ° C. over 5 hours, Solid-state polymerization was performed by holding at 285 ° C. for 3 hours. After the completion of the solid phase polymerization, the flow initiation temperature of the obtained liquid crystal polyester was 327 ° C.
<液晶ポリエステル組成物及び成形体の製造>
[実施例1]
(液晶ポリエステル組成物の製造)
 製造例1で得られた液晶ポリエステル、並びに前記アルミナ微粒子及び繊維状充填材を、表1に示す割合で、同方向二軸溶融混練押出機(池貝鉄工社製「PCM-30HS」)のシリンダに、このシリンダに設けられた供給口から供給し、次いで、330℃で溶融混練した後、表1に示すように、混練物を前記押出機のノズルからストランド状に押し出して冷却し、ストランドカッターで裁断して造粒することにより、ペレット状の液晶ポリエステル組成物を得た。このとき、ストランド状の混練物は、ストランド冷却引取装置(いすず化工機社製)を用い、エアーの吹き付けによる空冷で冷却した。また、冷却速度は、押出機のノズルから押し出された直後の混練物の温度aと、ストランドカッター入り口直前の混練物の温度bとの差を、ノズルからストランドカッターに到達するまでの時間tで割った値とした。
<Production of Liquid Crystalline Polyester Composition and Molded Body>
[Example 1]
(Production of liquid crystal polyester composition)
The liquid crystal polyester obtained in Production Example 1 and the alumina fine particles and the fibrous filler were mixed in the same direction biaxial melt kneading extruder ("PCM-30HS" manufactured by Ikekai Tekko Co., Ltd.) in the ratio shown in Table 1. Then, after supplying from the supply port provided in this cylinder and then melt-kneading at 330 ° C., as shown in Table 1, the kneaded product is extruded in a strand form from the nozzle of the extruder and cooled, and then a strand cutter is used. The pellet-like liquid crystal polyester composition was obtained by cutting and granulating. At this time, the strand-like kneaded material was cooled by air cooling by blowing air using a strand cooling take-up device (manufactured by Isuzu Chemical Industries Ltd.). The cooling rate is the time t from the nozzle to the strand cutter, which is the difference between the temperature a of the kneaded product immediately after being extruded from the nozzle of the extruder and the temperature b of the kneaded product immediately before the strand cutter entrance. The value was divided.
(成形体の製造)
 射出成形機(日精樹脂工業社製「PS40E5ASE型」)を用いて、上記で得られた液晶ポリエステル組成物を、シリンダ温度350℃、金型温度130℃、射出率30cm3/sの条件で射出成形し、以下に示す形状の二種の成形体(成形体(1)及び(2))を得た。
 成形体(1):64mm×64mm×1mm
 成形体(2):126mm×12mm×6mm
(Manufacture of molded products)
Using an injection molding machine (“PS40E5ASE type” manufactured by Nissei Plastic Industry Co., Ltd.), the liquid crystal polyester composition obtained above was injected under the conditions of a cylinder temperature of 350 ° C., a mold temperature of 130 ° C., and an injection rate of 30 cm 3 / s. It shape | molded and obtained two types of molded objects (shaped body (1) and (2)) of the shape shown below.
Molded body (1): 64 mm × 64 mm × 1 mm
Molded body (2): 126 mm × 12 mm × 6 mm
[実施例2、比較例1~2]
 製造条件を表1に示す通りとしたこと以外は、実施例1と同様に液晶ポリエステル組成物及び成形体を製造した。なお、ストランド状の混練物の水冷は、冷却シャワー水の噴霧により行った。
[Example 2, Comparative Examples 1 and 2]
A liquid crystal polyester composition and a molded body were produced in the same manner as in Example 1 except that the production conditions were as shown in Table 1. The strand-shaped kneaded product was water-cooled by spraying cooling shower water.
<成形体の評価>
 上記各実施例及び比較例で得られた成形体について、下記方法により、厚さ方向の熱伝導率(W/(m・K))、曲げ強度(MPa)及び体積固有抵抗値(Ωm)を測定し、厚さ方向の熱伝導性、強度及び絶縁性を評価した。結果を表1に示す。
<Evaluation of molded body>
With respect to the molded bodies obtained in each of the above Examples and Comparative Examples, the thermal conductivity (W / (m · K)), bending strength (MPa) and volume resistivity (Ωm) in the thickness direction were determined by the following methods. Measured and evaluated for thermal conductivity, strength and insulation in the thickness direction. The results are shown in Table 1.
(厚さ方向の熱伝導率の測定)
 成形体(1)の中央部を切り出し、熱伝導率評価用サンプルとした。このサンプルについて、レーザーフラッシュ法熱定数測定装置(アルバック理工株式会社製「TC-7000」)を用いて、熱拡散率を測定した。また、DSC(PERKIN ELMER社製「DSC7」)を用いてこのサンプルの比熱を、さらに、自動比重測定装置(関東メジャー社製「ASG-320K」)を用いてこのサンプルの比重を、それぞれ測定した。そして、熱伝導率を、熱拡散率、比熱及び比重の積から求めた([熱伝導率]=[熱拡散率]×[比熱]×[比重])。
(Measurement of thermal conductivity in the thickness direction)
A central part of the molded body (1) was cut out to obtain a sample for thermal conductivity evaluation. The thermal diffusivity of this sample was measured using a laser flash method thermal constant measuring device (“TC-7000” manufactured by ULVAC-RIKO Inc.). Further, the specific heat of this sample was measured using DSC ("DSC7" manufactured by PERKIN ELMER), and the specific gravity of this sample was measured using an automatic specific gravity measuring device ("ASG-320K" manufactured by Kanto Major). . The thermal conductivity was determined from the product of thermal diffusivity, specific heat and specific gravity ([thermal conductivity] = [thermal diffusivity] × [specific heat] × [specific gravity]).
(曲げ強度の測定)
 成形体(2)について、「ASTM D790」に準拠して測定した。
(Measurement of bending strength)
The molding (2) was measured according to “ASTM D790”.
(体積固体抵抗値の測定)
 成形体(1)について、「ASTM D257」に準拠した体積固有抵抗測定(東亜ディーケーケー社製「デジタル超絶縁/微少電流計DSM-8104」を使用)により、23℃で測定した。
(Measurement of volume solid resistance)
The molded body (1) was measured at 23 ° C. by volume resistivity measurement in accordance with “ASTM D257” (using “Digital Super Insulation / Micro Ammeter DSM-8104” manufactured by Toa DK Corporation).
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003

 上記結果から明らかなように、押出機のノズルから押し出した混練物を、20~22℃/秒の冷却速度で冷却した実施例1~2の成形体は、いずれも厚さ方向の熱伝導性、強度及び絶縁性に優れていた。これに対して、押出機のノズルから押し出した混練物を、42℃/秒の冷却速度で冷却した比較例1の成形体は、厚さ方向の熱伝導性が劣っていた。また、混練物を、38℃/秒の冷却速度で冷却した比較例2の成形体は、厚さ方向の熱伝導性及び強度が劣っていた。 As is clear from the above results, the molded products of Examples 1 and 2 in which the kneaded product extruded from the nozzle of the extruder was cooled at a cooling rate of 20 to 22 ° C./second were all thermal conductivity in the thickness direction. It was excellent in strength and insulation. On the other hand, the molded product of Comparative Example 1 in which the kneaded product extruded from the nozzle of the extruder was cooled at a cooling rate of 42 ° C./second was inferior in thermal conductivity in the thickness direction. In addition, the molded product of Comparative Example 2 in which the kneaded product was cooled at a cooling rate of 38 ° C./second was inferior in thermal conductivity and strength in the thickness direction.
 本発明は、高い放熱性が求められる電気・電子部品の製造に利用可能である。 The present invention can be used for manufacturing electrical / electronic components that require high heat dissipation.

Claims (12)

  1.  ノズル、シリンダ及び前記シリンダ内に設置されたスクリューを備えた溶融混練押出機を用い、前記シリンダに設けられた供給口から、下記成分(A)、下記成分(B)及び下記成分(C)を前記シリンダに供給して前記成分(A)、前記成分(B)及び前記成分(C)を溶融混練して混練物を得ること、
    前記ノズルから前記混練物を前記溶融混練押出機の外部に押し出すこと、及び
    前記混練物を冷却速度35℃/秒以下で冷却すること、を含む熱可塑性樹脂組成物の製造方法。
     成分(A)熱可塑性樹脂
     成分(B)アルミナ微粒子
     成分(C)繊維状充填材
    Using a melt-kneading extruder equipped with a nozzle, a cylinder and a screw installed in the cylinder, the following component (A), the following component (B) and the following component (C) are supplied from a supply port provided in the cylinder. Supplying the cylinder and melt-kneading the component (A), the component (B) and the component (C) to obtain a kneaded product,
    A method for producing a thermoplastic resin composition, comprising: extruding the kneaded material from the nozzle to the outside of the melt-kneading extruder; and cooling the kneaded material at a cooling rate of 35 ° C./second or less.
    Component (A) Thermoplastic resin Component (B) Alumina fine particle Component (C) Fibrous filler
  2.  前記成分(B)のBET比表面積が1.0~5.0m/gである請求項1に記載の熱可塑性樹脂組成物の製造方法。 The method for producing a thermoplastic resin composition according to claim 1, wherein the component (B) has a BET specific surface area of 1.0 to 5.0 m 2 / g.
  3.  前記成分(B)のレーザー回折散乱測定により求めた粒径分布が二峰性である請求項1又は2に記載の熱可塑性樹脂組成物の製造方法。 The method for producing a thermoplastic resin composition according to claim 1 or 2, wherein the particle size distribution obtained by laser diffraction scattering measurement of the component (B) is bimodal.
  4.  前記成分(B)のレーザー回折散乱測定により求めた粒径分布が、
     体積平均粒径1~5μmの範囲内と、
     体積平均粒径0.1~1μmの範囲内と、
    にそれぞれ極大値を有する二峰性である請求項1~3のいずれか一項に記載の熱可塑性樹脂組成物の製造方法。
    The particle size distribution obtained by laser diffraction scattering measurement of the component (B) is
    Within a volume average particle size range of 1-5 μm,
    A volume average particle size in the range of 0.1 to 1 μm;
    The method for producing a thermoplastic resin composition according to any one of claims 1 to 3, wherein each of the two has a maximal value.
  5.  前記成分(C)が、炭素繊維、ガラス繊維、ウォラストナイトウィスカー、ホウ酸アルミニウムウィスカー及びチタン酸カリウムウィスカーからなる群より選ばれる少なくとも一種の物質である請求項1~4のいずれか一項に記載の熱可塑性樹脂組成物の製造方法。 The component (C) is at least one substance selected from the group consisting of carbon fiber, glass fiber, wollastonite whisker, aluminum borate whisker and potassium titanate whisker. The manufacturing method of the thermoplastic resin composition of description.
  6.  前記成分(A)が液晶ポリエステルである請求項1~5のいずれか一項に記載の熱可塑性樹脂組成物の製造方法。 The method for producing a thermoplastic resin composition according to any one of claims 1 to 5, wherein the component (A) is a liquid crystal polyester.
  7.  前記液晶ポリエステルが、
     p-ヒドロキシ安息香酸及び6-ヒドロキシ-2-ナフトエ酸からなる群から選択される少なくとも一種の芳香族ヒドロキシカルボン酸に由来する繰返し単位と、
     ヒドロキノン及び4,4’-ジヒドロキシビフェニルからなる群から選択される少なくとも一種の芳香族ジオールに由来する繰返し単位と、
     テレフタル酸、イソフタル酸及び2,6-ナフタレンジカルボン酸からなる群より選ばれる少なくとも一種の芳香族ジカルボン酸に由来する繰返し単位と、
    を有し、
     液晶ポリエステルを構成する全繰返し単位の合計量に対して、前記芳香族ヒドロキシカルボン酸に由来する繰返し単位を合計で30~80モル%、前記芳香族ジオールに由来する繰返し単位を合計で10~35モル%、前記芳香族ジカルボン酸に由来する繰返し単位を合計で10~35モル%有する請求項6に記載の熱可塑性樹脂組成物の製造方法。
    The liquid crystal polyester is
    repeating units derived from at least one aromatic hydroxycarboxylic acid selected from the group consisting of p-hydroxybenzoic acid and 6-hydroxy-2-naphthoic acid;
    Repeating units derived from at least one aromatic diol selected from the group consisting of hydroquinone and 4,4′-dihydroxybiphenyl;
    Repeating units derived from at least one aromatic dicarboxylic acid selected from the group consisting of terephthalic acid, isophthalic acid and 2,6-naphthalenedicarboxylic acid;
    Have
    The total number of repeating units derived from the aromatic hydroxycarboxylic acid is 30 to 80 mol%, and the total number of repeating units derived from the aromatic diol is 10 to 35, based on the total amount of all repeating units constituting the liquid crystal polyester. The method for producing a thermoplastic resin composition according to claim 6, wherein the thermoplastic resin composition has a total of 10 to 35 mol% of repeating units derived from the aromatic dicarboxylic acid.
  8.  前記成分(A)100質量部に対して、前記成分(B)及び(C)の全供給量が100質量部以上である請求項1~7のいずれか一項に記載の熱可塑性樹脂組成物の製造方法。 The thermoplastic resin composition according to any one of claims 1 to 7, wherein a total supply amount of the components (B) and (C) is 100 parts by mass or more with respect to 100 parts by mass of the component (A). Manufacturing method.
  9.  請求項1~8のいずれか一項に記載の製造方法で得られた熱可塑性樹脂組成物を成形してなる成形体。 A molded product obtained by molding the thermoplastic resin composition obtained by the production method according to any one of claims 1 to 8.
  10.  23℃における体積固有抵抗値が1×1010Ωm以上である請求項9に記載の成形体。 The molded product according to claim 9, wherein the volume resistivity value at 23 ° C. is 1 × 10 10 Ωm or more.
  11.  電気・電子部品用である請求項9又は10に記載の成形体。 The molded article according to claim 9 or 10, which is for electric / electronic parts.
  12.  前記電気・電子部品が、電子素子の封止材、インシュレータ、表示装置用反射板、電子素子収納用の筐体及び表面実装部品からなる群より選ばれる少なくとも一種の部品である請求項11に記載の成形体。 The electrical / electronic component is at least one component selected from the group consisting of a sealing material for electronic elements, an insulator, a reflector for a display device, a housing for storing electronic elements, and a surface mounting component. Molded body.
PCT/JP2012/079164 2011-11-11 2012-11-09 Method for producing thermoplastic resin composition, and molded article WO2013069782A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-247742 2011-11-11
JP2011247742A JP2013103968A (en) 2011-11-11 2011-11-11 Method for producing thermoplastic resin composition, and molded body

Publications (1)

Publication Number Publication Date
WO2013069782A1 true WO2013069782A1 (en) 2013-05-16

Family

ID=48290147

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/079164 WO2013069782A1 (en) 2011-11-11 2012-11-09 Method for producing thermoplastic resin composition, and molded article

Country Status (3)

Country Link
JP (1) JP2013103968A (en)
TW (1) TW201334945A (en)
WO (1) WO2013069782A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017089207A1 (en) * 2015-11-26 2017-06-01 Robert Bosch Gmbh Electrical device having a covering material
WO2018123745A1 (en) * 2016-12-27 2018-07-05 日立化成株式会社 Resin composition and electronic component device
WO2021029268A1 (en) * 2019-08-09 2021-02-18 住友化学株式会社 Liquid crystal polyester resin pellets and liquid crystal polyester resin molded article

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220010058A1 (en) * 2018-11-09 2022-01-13 Sumitomo Chemical Company, Limited Liquid crystal polyester resin composition and molded article

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4855242A (en) * 1971-11-13 1973-08-03
JPS50119097A (en) * 1974-03-05 1975-09-18
JPS5146350A (en) * 1974-10-17 1976-04-20 Toray Industries SEIKEIYOKYOKAHORIAMIDOJUSHISOSEIBUTSUNO SEIZOHOHO
JPH0776018A (en) * 1993-09-08 1995-03-20 Mitsubishi Gas Chem Co Inc Preparation of resin molding material
JPH08192425A (en) * 1995-01-18 1996-07-30 Polyplastics Co Cooling of string like thermoplastic resin or string like molten thermoplastic resin composition
JP2001310323A (en) * 2000-04-28 2001-11-06 Sumitomo Chem Co Ltd Method for manufacturing thermoplastic resin composition
JP2006035677A (en) * 2004-07-28 2006-02-09 Polyplastics Co Manufacturing method of liquid crystalline resin composition
JP2011037919A (en) * 2009-08-06 2011-02-24 Teijin Ltd Thermally conductive bar-shaped resin compact
JP2011184681A (en) * 2010-02-10 2011-09-22 Toyota Central R&D Labs Inc Resin composition and method of producing the same
JP2011224924A (en) * 2010-04-22 2011-11-10 Umg Abs Ltd Method of manufacturing polylactic acid thermoplastic resin pellet
JP2012188624A (en) * 2011-03-14 2012-10-04 Kaneka Corp Method for producing high-heat conductivity resin composition, and method for producing molding

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4855242A (en) * 1971-11-13 1973-08-03
JPS50119097A (en) * 1974-03-05 1975-09-18
JPS5146350A (en) * 1974-10-17 1976-04-20 Toray Industries SEIKEIYOKYOKAHORIAMIDOJUSHISOSEIBUTSUNO SEIZOHOHO
JPH0776018A (en) * 1993-09-08 1995-03-20 Mitsubishi Gas Chem Co Inc Preparation of resin molding material
JPH08192425A (en) * 1995-01-18 1996-07-30 Polyplastics Co Cooling of string like thermoplastic resin or string like molten thermoplastic resin composition
JP2001310323A (en) * 2000-04-28 2001-11-06 Sumitomo Chem Co Ltd Method for manufacturing thermoplastic resin composition
JP2006035677A (en) * 2004-07-28 2006-02-09 Polyplastics Co Manufacturing method of liquid crystalline resin composition
JP2011037919A (en) * 2009-08-06 2011-02-24 Teijin Ltd Thermally conductive bar-shaped resin compact
JP2011184681A (en) * 2010-02-10 2011-09-22 Toyota Central R&D Labs Inc Resin composition and method of producing the same
JP2011224924A (en) * 2010-04-22 2011-11-10 Umg Abs Ltd Method of manufacturing polylactic acid thermoplastic resin pellet
JP2012188624A (en) * 2011-03-14 2012-10-04 Kaneka Corp Method for producing high-heat conductivity resin composition, and method for producing molding

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017089207A1 (en) * 2015-11-26 2017-06-01 Robert Bosch Gmbh Electrical device having a covering material
US10937714B2 (en) 2015-11-26 2021-03-02 Robert Bosch Gmbh Electrical device having a covering material
WO2018123745A1 (en) * 2016-12-27 2018-07-05 日立化成株式会社 Resin composition and electronic component device
JPWO2018123745A1 (en) * 2016-12-27 2019-10-31 日立化成株式会社 Resin composition and electronic component device
JP2022125150A (en) * 2016-12-27 2022-08-26 昭和電工マテリアルズ株式会社 Resin composition and electronic component device
WO2021029268A1 (en) * 2019-08-09 2021-02-18 住友化学株式会社 Liquid crystal polyester resin pellets and liquid crystal polyester resin molded article
JP2021028383A (en) * 2019-08-09 2021-02-25 住友化学株式会社 Liquid crystal polyester resin pellet and liquid crystal polyester resin molded article

Also Published As

Publication number Publication date
TW201334945A (en) 2013-09-01
JP2013103968A (en) 2013-05-30

Similar Documents

Publication Publication Date Title
JP6500140B2 (en) Liquid crystalline polyester composition
KR101986075B1 (en) Liquid crystal polyester composition, method for producing liquid crystal polyester composition, and molded product
TWI762742B (en) Liquid crystal polyester resin composition and molded article
TWI475041B (en) Compact camera module
JP5633338B2 (en) Liquid crystalline polyester composition
TWI773853B (en) Liquid crystal polyester resin composition and molded article
JP2009263640A (en) Thermally conductive resin composition and use of the same
JP5136324B2 (en) Liquid crystalline resin composition and molded article comprising the same
US8262933B2 (en) Thermoplastic resin composition, method for producing the same, and molded article obtained from the same
JP6025241B2 (en) Method for producing foam molded article and resin composition
EP3029107A1 (en) Liquid crystalline polyester composition
JP6693423B2 (en) Liquid crystalline polyester resin composition for camera module and molded product for camera module comprising the same
JP2018168320A (en) Liquid crystal polyester composition and molded body
JP7256759B2 (en) resin composition
WO2013069782A1 (en) Method for producing thermoplastic resin composition, and molded article
EP3738996B1 (en) Pellet mixture and injection molded product
WO2012128124A1 (en) Method for manufacturing liquid crystal polyester molded bodies
JP5903732B2 (en) Liquid crystal polyester composition and molded body
KR20150050405A (en) Liquid crystal polyester composition
JP2019045607A (en) Camera module, manufacturing method of camera module, and liquid crystal polyester resin composition for camera module
JP2010065179A (en) Liquid crystalline polyester resin composition and molded product formed by using the same
WO2022153945A1 (en) Liquid crystal polyester composition, method for producing liquid crystal polyester composition, and method for producing injection molded article
JP2005060443A (en) Resin composition for lamp unit member, lamp unit member obtained from the same
WO2021044991A1 (en) Liquid crystal polyester composition and molded body

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12848285

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12848285

Country of ref document: EP

Kind code of ref document: A1