WO2013069589A1 - Reflective screen and projection display device provided with same - Google Patents

Reflective screen and projection display device provided with same Download PDF

Info

Publication number
WO2013069589A1
WO2013069589A1 PCT/JP2012/078577 JP2012078577W WO2013069589A1 WO 2013069589 A1 WO2013069589 A1 WO 2013069589A1 JP 2012078577 W JP2012078577 W JP 2012078577W WO 2013069589 A1 WO2013069589 A1 WO 2013069589A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
reflective screen
projection
display device
region
Prior art date
Application number
PCT/JP2012/078577
Other languages
French (fr)
Japanese (ja)
Inventor
誠二 大橋
豪 鎌田
康 浅岡
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2013069589A1 publication Critical patent/WO2013069589A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/54Accessories
    • G03B21/56Projection screens
    • G03B21/60Projection screens characterised by the nature of the surface
    • G03B21/602Lenticular screens
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/54Accessories
    • G03B21/56Projection screens
    • G03B21/60Projection screens characterised by the nature of the surface

Definitions

  • the present invention relates to a reflective screen that reflects projected light and a projection display device including the same.
  • Patent Document 1 discloses a projection display device having a recursive screen that reflects light in the incident direction and a beam splitter arranged on a recursive light path of an image reflected from the screen.
  • Patent Document 2 discloses an image display device having a retroreflective screen and a light beam expanding element arranged in proximity to the screen. The light beam expanding element expands each light beam so that the magnification rate is larger in the horizontal visual field direction than the observer's vertical visual field.
  • JP 56-29223 A Japanese Patent Laid-Open No. 2001-42251
  • Patent Document 1 has a problem that any observer needs to place a projector in the very vicinity of the eye, which places a heavy burden on the viewer, such as wearing a helmet or glasses.
  • the conventional screen has a problem that the overall brightness of the observed image is lowered or uneven depending on the positional relationship between the screen or the projector and the observer.
  • the technique of Patent Document 2 also has a problem that band-like unevenness may occur in the brightness of the observed image depending on the positional relationship between the screen or projector and the observer.
  • the above object is achieved by a reflective screen that reflects projected light and having a plurality of types of reflective regions having different light distribution characteristics of the reflected light.
  • the reflection type screen of the present invention is characterized in that the plurality of types of reflection areas have diffuse reflection areas that diffusely reflect the projection light.
  • the reflection type screen of the present invention is characterized in that the plurality of types of reflection areas have retroreflection areas for retroreflecting the projection light.
  • the reflective screen according to the invention is characterized in that the retroreflective region has light distribution anisotropy.
  • the retroreflective region includes a first retroreflective region that does not have the light distribution anisotropy and a second retroreflective region that has the light distribution anisotropy. It is characterized by that.
  • the reflection type screen of the present invention is characterized in that the light distribution anisotropy has a vertical light distribution angle wider than a horizontal light distribution angle.
  • the reflection type screen of the present invention is characterized in that the plurality of types of reflection regions are mixed and distributed uniformly.
  • the reflection type screen of the present invention is characterized in that the size of the minute unit area of the plurality of types of reflection areas is smaller than the size of one pixel of the projected image.
  • the reflection type screen of the present invention is characterized in that the size of the minute unit area of the plurality of types of reflection areas is approximately equal to the size of one pixel of the projected image.
  • a reflective screen that reflects projection light, comprising a retroreflective region that retroreflects the projection light and a light transmissive region that transmits incident light.
  • the reflective screen according to the invention is characterized in that the retroreflective region has light distribution anisotropy.
  • the reflection type screen of the present invention is characterized in that the light distribution anisotropy has a vertical light distribution angle wider than a horizontal light distribution angle.
  • the reflection type screen according to the present invention is characterized in that the retroreflective area and the light transmission area are mixed and distributed uniformly.
  • the reflection type screen of the present invention is characterized in that a light incident plane and a light emission plane of the light transmission region are substantially parallel.
  • the reflection type screen according to the present invention is characterized in that the light transmission regions are arranged on both sides of the retroreflection region.
  • the object is a projection type display device comprising: a projection optical unit that projects an image displayed on a display element; and a projection image processing unit that sends out pixel data to each pixel of the display element.
  • a projection display device comprising the reflective screen described in any one of the above.
  • the reflective screen is used as an image display unit of a projection display device.
  • the projection display device includes a projection optical unit and a projection image processing unit.
  • the projection optical unit has a light source, a display element, and a projection optical system.
  • a transmissive liquid crystal display element is used as the display element.
  • the transmissive liquid crystal display element is disposed between the light source and the projection optical system.
  • a plurality of pixels are arranged in a matrix in the image display area of the transmissive liquid crystal display element. An image is displayed in the image display area by writing pixel data from the projection image processing unit to each pixel.
  • transmitted light including image information is obtained.
  • This transmitted light is projected onto a reflective screen at a predetermined distance from the image display area via a projection optical system.
  • the projected light is reflected by the reflective screen, and the observer can see the image on the screen.
  • FIG. 1 shows a state in which the installed reflective screen 10 is viewed in an oblique direction.
  • FIG. 1 shows the light reflecting surface side of the reflective screen 10.
  • the reflective screen 10 has a rectangular thin plate shape having a long side parallel to the horizontal direction and a short side parallel to the vertical direction.
  • the light reflecting surface of the reflective screen 10 has two types of reflecting regions having different light distribution characteristics of the reflected light.
  • One is a diffuse reflection area that diffusely reflects the projection light, and the other is a retroreflection area that retroreflects the projection light.
  • the light distribution means a change or distribution of luminous intensity (cd) with respect to an emission angle of reflected light on a light reflection surface of the reflective screen 10.
  • the light distribution angle is used to indicate the extent of the reflected light.
  • the light distribution angle is indicated by the maximum spread angle at which the reference luminous intensity can be obtained.
  • the difference in light distribution characteristics can be expressed by the width of the light distribution angle.
  • the light distribution characteristic of the reflected light in the diffuse reflection area has a relatively wide light distribution angle
  • the light distribution characteristic of the reflected light in the retroreflection area has a light distribution angle narrower than the light distribution angle of the diffuse reflection area.
  • FIG. 1 shows a predetermined rectangular region 10a of the light reflecting surface of the reflective screen 10 drawn forward and enlarged.
  • rectangular minute unit areas divided into a total of 16 pieces, four in the horizontal direction and four in the vertical direction are shown for convenience.
  • the size of one minute unit region is smaller than the size of one pixel of an image projected on the light reflecting surface of the reflective screen 10 from the projection optical system of the projection display device.
  • the diffuse reflection area 12 is indicated by a solid minute unit area.
  • the retroreflective region 14 is shown as a minute unit region that is hatched with a straight line drawn from the upper right to the lower left.
  • One diffuse reflection region 12 is disposed on the right side and the lower side adjacent to one retroreflective region 14, and one diffuse reflection region is adjacent to both of these two diffuse reflection regions 12. 12 is arranged.
  • the area ratio of the retroreflection area 14 and the diffuse reflection area 12 is 1: 3 in a rectangular area defined by four adjacent minute unit areas.
  • the rectangular areas are arranged in a matrix within the light reflection surface of the reflective screen 10. As described above, the diffuse reflection area 12 and the retroreflection area 14 are mixed and uniformly distributed in the light reflection surface of the reflective screen 10.
  • FIG. 1 a predetermined diffuse reflection area 12 of the rectangular area 10a and a minute unit area of the retroreflection area 14 are drawn forward.
  • FIG. 1 also shows the light distribution characteristic 16 of the reflected light in the diffuse reflection area 12 and the light distribution characteristic 18 of the reflected light in the retroreflection area 14.
  • the light distribution characteristics 16 and 18 in FIG. 1 exemplify a case where projection light is incident on the light reflection surface of the reflective screen 10 perpendicularly.
  • the reflected light from the diffuse reflection region 12 has a light distribution characteristic 16 that is substantially uniform and has a relatively wide light distribution angle around an axis perpendicular to the light reflection surface without depending on the incident angle of the projection light.
  • the reflected light from the retroreflective region 14 has a light distribution characteristic 18 that has a light distribution angle that is substantially uniform around an axis parallel to the incident light and narrower than that of the diffuse reflection region 12.
  • the reflected light from the diffuse reflection region 12 has the same light distribution characteristic as the light distribution characteristic 16 shown in FIG. .
  • the reflected light of the incident light obliquely incident on the diffuse reflection region 12 has a substantially uniform and relatively wide light distribution angle around an axis perpendicular to the light reflecting surface without depending on the incident angle of the projected light.
  • the reflected light of the incident light obliquely incident on the retroreflective region 14 has a light distribution characteristic that has a light distribution angle that is substantially uniform around an axis parallel to the incident direction of the projected light and narrower than the diffuse reflection region 12.
  • the reflected light from the diffuse reflection region 12 is diffused almost evenly around an axis perpendicular to the light reflecting surface of the reflective screen 10 without depending on the incident angle of the projection light. For this reason, an observer observing the light reflection surface of the reflective screen 10 can see the reflected light from the diffuse reflection region 12 at any position in front of the light reflection surface.
  • the reflected light from the retroreflective region 14 has directivity that gives the strongest intensity in the direction parallel to the incident direction of the projection light. For this reason, most of the reflected light in the retroreflective region 14 returns to the direction of the projection light emission source. Therefore, among the observers who observe the light reflection surface of the reflective screen 10, only the observer whose eye position is in the vicinity of the projection optical unit of the projection display device can see the reflected light of the retroreflective region 14.
  • FIG. 2 shows a corner cube 15 as an example of a retroreflector disposed in the retroreflective region 14.
  • the corner cube 15 has a structure in which, for example, three reflecting flat plates 15xy, 15yz, and 15zx are combined so as to be orthogonal to each other with the reflecting surface inside.
  • the incident light lin incident on the corner cube 15 is reflected at the point a of the reflective flat plate 15xy, incident on the reflective flat plate 15yz, reflected at the point b, and further incident on the reflective flat plate 15zx and reflected at the point c.
  • the emitted light lout is emitted in parallel to the incident light lin without depending on the incident angle of the incident light lin.
  • the corner cube 15 By arranging the corner cube 15 having such a light reflecting action in the retroreflective region 14, most of the reflected light in the retroreflective region 14 can be returned to the direction of the emission source of the projection light.
  • the number of corner cubes 15 arranged in the retroreflective area 14 may be one, or a large number of minute corner cubes 15 may be densely arranged on the plane of the retroreflective area 14.
  • the corner cube 15 can also be a prism structure cut along a plane including the ends of three sides extending from one vertex of a glass or resin cube.
  • the reflective screen 10 can be manufactured by embossing a transparent resin.
  • a large number of areas for forming the retroreflective areas 14 in which the minute corner cubes 15 are densely formed and areas for forming the diffusely reflective areas 12 in which the fine concavo-convex structure is densely provided to give strong light scattering properties are arranged at an area ratio of 1: 3.
  • a reflection type screen 10 is prepared by preparing a mold and pressing a transparent resin with the mold.
  • a large reflective screen can be produced by connecting a plurality of reflective screens 10 together.
  • the reflective screen 10 can also be manufactured by the following two-stage process.
  • a mold in which retroreflective regions 14 in which minute corner cubes 15 are densely arranged is arranged on the entire surface is prepared, and a transparent resin is stamped with the mold.
  • a material having a diffusing component such as barium sulfate
  • a material having a diffusing component is poured from the light incident surface side to the small corner cube 15, so that the diffuse reflection region 14 region is made.
  • the refractive index of the material having a diffusing component is larger than the refractive index of air, a material layer having a diffusing component may be formed on the surface side where light does not enter the minute corner cube 15.
  • FIG. 3A shows a state in which the reflective screen 10 at the time of image projection is viewed from vertically upward to downward.
  • FIG. 3B shows a state in which the right side from substantially the center of the reflective screen 10 is viewed in the horizontal direction parallel to the light reflecting surface of the reflective screen 10.
  • the projection display device PJ1 is arranged at a predetermined distance forward from substantially the center of the light reflection surface (light projection surface) of the reflection type screen 10 as viewed from vertically above to below.
  • the projection display device PJ1 is fixed to the ceiling at substantially the same height as the upper end of the reflective screen 10.
  • a transmissive liquid crystal display element is disposed between the light source and the projection optical system in the projection display device PJ1.
  • the light emitted from the projection optical system of the projection display device PJ1 is enlarged and projected, and the light L1r toward the right end of the reflection type screen 10, the light L1l toward the left end, the light L1t toward the upper end of the reflection type screen 10, and the lower end.
  • the projection light in the area surrounded by the light L1b is reflected by the reflective screen 10.
  • Three observers O1, O2, and O3 are observing the reflective screen 10 at a predetermined distance in front of the light reflecting surface of the reflective screen 10.
  • Three observers O 1, O 2, and O 3 are arranged in a line in parallel with the reflective screen 10. Further, the observer O ⁇ b> 1 is located on the left side of the reflective screen 10 when viewed toward the light reflecting surface of the reflective screen 10.
  • the observer O2 is located on the right side of the reflective screen 10.
  • the observer O3 is located closer to the observer O1 than the projection display device PJ1 between the observers O1 and O2.
  • the projection display device PJ2 is mounted on the head of the observer O2. Although not shown, a transmissive liquid crystal display element is disposed between the light source and the projection optical system in the projection display device PJ2. The light emitted from the projection optical system of the projection display device PJ2 is enlarged and projected, and the light L2r toward the right end of the reflection type screen 10, the light L2l toward the left end, the light L2t toward the upper end of the reflection type screen 10, and the lower end. The projection light in the area surrounded by the light L ⁇ b> 2 b is reflected by the reflective screen 10.
  • the projection display device PJ3 is mounted on the head of the observer O3. Although not shown, a transmissive liquid crystal display element is disposed between the light source and the projection optical system in the projection display device PJ3. The light emitted from the projection optical system of the projection display device PJ3 is enlarged and projected, and the light L3r toward the right end of the reflective screen 10, the light L3l toward the left end, the light L3t toward the upper end of the reflective screen 10, and the lower end. The projection light in the area surrounded by the light L3b is reflected by the reflective screen 10.
  • Predetermined image data is synchronously sent from a projection image processing unit (not shown) to each of the transmissive liquid crystal display elements of the three projection display devices PJ1, PJ2, and PJ3. Further, the intensity of the projection light from the projection display device PJ1 is adjusted to be higher than the intensity of the projection light from the projection display devices PJ2 and PJ3. The intensity of the projection light of the projection display devices PJ1, PJ2, and PJ3 can be changed by adjusting the luminance data of the image sent from the projection image processing unit to each transmissive liquid crystal display element. Alternatively, the emission light intensity of the light source of the projection display device PJ1 may be set higher than the emission light intensity of the light sources of the projection display devices PJ2 and PJ3 in advance.
  • the projection light emitted from the projection display device PJ1 is reflected by the diffuse reflection area 12 and the retroreflection area 14 that are mixed and uniformly distributed in the light reflection surface of the reflective screen 10. Of these reflected lights, most of the reflected light from the retroreflective region 14 returns to the projection display device PJ1, and thus none of the observers O1, O2, and O3 can see.
  • the reflected light R from the diffuse reflection region 12 has a substantially uniform and wide light distribution angle around an axis perpendicular to the light reflecting surface without depending on the incident angle of the projection light, so that any observer O1, O2 , O3 can also be observed with almost equal brightness.
  • the diffuse reflection region 12 has an area three times wider than the retroreflection region 14. Therefore, regardless of the observation position, all the observers O1, O2, and O3 can observe the image from the projection display device PJ1 with relatively high luminance. In this way, the image from the projection display device PJ1 can be provided in common to all the observers O1, O2, and O3.
  • the projection light emitted from the projection display device PJ2 is reflected by the diffuse reflection area 12 and the retroreflection area 14 which are mixed and uniformly distributed in the light reflection surface of the reflective screen 10.
  • the reflected lights most of the reflected light at the retroreflective region 14 returns to the projection display device PJ2 side, so that only the observer O2 whose left eye El and right eye Er are located in the vicinity of the projection display device PJ2. Can be seen. Even if the intensity of the projection light emitted from the projection display device PJ2 is low, the reflected light with high luminance can be returned to the observer O2 side due to the light distribution characteristics of the retroreflective region 14.
  • the observers O1 and O3 whose left eye El and right eye Er are not positioned in the vicinity of the projection display device PJ2 cannot see the reflected light in the retroreflective region 14 of the projection light emitted from the projection display device PJ2. .
  • the reflected light R of the projection light emitted from the projection display device PJ2 at the diffuse reflection region 12 has a substantially uniform and wide light distribution angle around an axis perpendicular to the light reflection surface without depending on the incident angle of the projection light. Therefore, any observer O1, O2, O3 can be observed.
  • the intensity of the projection light emitted from the projection display device PJ2 is sufficiently lower than the intensity of the projection light emitted from the projection display device PJ1. For this reason, any of the observers O1, O2, and O3 has the projection light emitted from the projection display device PJ1 out of the reflected light in the diffuse reflection region 12 of the projection light emitted from the projection display devices PJ1 and PJ2. Only the reflected light can be recognized.
  • the projection light emitted from the projection display device PJ3 is reflected by the diffuse reflection area 12 and the retroreflection area 14 which are mixed and uniformly distributed in the light reflection surface of the reflective screen 10.
  • the reflected light most of the reflected light from the retroreflective region 14 returns to the projection display device PJ3 side, so only the observer O3 whose left eye El and right eye Er are located in the vicinity of the projection display device PJ3. Can be seen. Even if the intensity of the projection light emitted from the projection display device PJ3 is low, the reflected light with high luminance can be returned to the observer O3 side due to the light distribution characteristics of the retroreflective region 14.
  • the reflected light R of the projection light emitted from the projection display device PJ3 at the diffuse reflection region 12 has a substantially uniform and wide light distribution angle around an axis perpendicular to the light reflection surface without depending on the incident angle of the projection light. Therefore, any observer O1, O2, O3 can be observed.
  • the intensity of the projection light emitted from the projection display devices PJ3 and PJ2 is sufficiently lower than the intensity of the projection light emitted from the projection display device PJ1. Therefore, any of the observers O1, O2, and O3 is emitted from the projection display device PJ1 out of the reflected light R in the diffuse reflection region 12 of the projection light emitted from the projection display devices PJ1, PJ2, and PJ3.
  • the reflective screen 10 according to the present embodiment and the projection display devices PJ1, PJ2, and PJ3 having the same can be used for various purposes, for example, when a movie is shown. From the projection display device PJ1, a movie image is projected onto the reflective screen 10. The projection display device PJ2 projects a Japanese subtitle image on the reflective screen 10. The projection display device PJ3 projects an English subtitle image onto the reflective screen 10. By doing so, the viewer O1 has no subtitles, the viewer O2 has Japanese subtitles, and the viewer O3 has English subtitles, so that the movie can be viewed simultaneously.
  • the observer O1 does not necessarily have to be at the same position as the projection display device PJ1 from the reflective screen 10, and may be a position where the images of the projection display devices PJ2 and PJ3 cannot be seen by the eyes. For example, you may be located in the direction where the distance from the reflective screen 10 goes away.
  • FIG. 4 shows a state where the installed reflective screen 20 is viewed in an oblique direction.
  • FIG. 4 shows the light reflecting surface side of the reflective screen 20.
  • the reflective screen 20 has a rectangular thin plate shape having a long side parallel to the horizontal direction and a short side parallel to the vertical direction.
  • the reflective screen 20 has a structure in which a rear sheet 20a and a front sheet 20b are bonded together.
  • retroreflectors similar to those used in the retroreflective region 14 of Example 1 are formed densely on the entire surface.
  • the bonding surface with the back sheet 20a on the back surface of the front sheet 20b is formed smoothly.
  • the surface of the front sheet 20b is the light incident / exit side.
  • a diffusion reflection area for diffusing and reflecting the projection light and a vertical diffusion area for diffusing the light only in the vertical direction are formed on the surface of the front sheet 20b.
  • two types of reflection regions having different light distribution characteristics of reflected light are formed on the light reflection surface of the reflective screen 20 according to the present embodiment.
  • One is a diffuse reflection area that diffusely reflects the projection light
  • the other is a retroreflection area that retroreflects the projection light with light distribution anisotropy.
  • the light distribution anisotropy means that the light distribution angle in the reference direction is different from the light distribution angle in the direction orthogonal to the reference direction.
  • the retroreflective region of this embodiment has a light distribution anisotropy in which the vertical light distribution angle is wider than the horizontal light distribution angle when the reflected light is emitted in the normal direction of the light reflecting surface. Yes.
  • FIG. 4 shows a predetermined rectangular area 20c of the light reflecting surface of the reflective screen 20 drawn forward and enlarged.
  • a rectangular minute unit area divided into a total of 16 pieces of four in the horizontal direction and four in the vertical direction is shown for convenience.
  • the size of one minute unit region is smaller than the size of one pixel of an image projected on the light reflecting surface of the reflective screen 20 from the projection optical system of the projection display device.
  • the diffuse reflection area 22 is indicated by a solid minute unit area.
  • the retroreflective region 24 is shown as a minute unit region that is hatched with a straight line drawn from the upper left to the lower right.
  • One diffuse reflection region 22 is disposed on the right side and the lower side adjacent to one retroreflective region 24, and one diffuse reflection region is adjacent to both of these two diffuse reflection regions 22. 22 is arranged.
  • the area ratio of the retroreflection area 24 and the diffuse reflection area 22 is 1: 3 in a rectangular area defined by four adjacent minute unit areas. The rectangular areas are arranged in a matrix within the light reflection surface of the reflective screen 20. As described above, the diffuse reflection area 22 and the retroreflection area 24 are mixed and uniformly distributed in the light reflection surface of the reflective screen 20.
  • FIG. 4 a predetermined diffuse reflection area 22 of the rectangular area 20c and a minute unit area of the retroreflection area 24 are drawn forward.
  • FIG. 4 also shows the light distribution characteristic 16 of the reflected light in the diffuse reflection area 22 and the light distribution characteristic 28 of the reflected light in the retroreflection area 24.
  • the light distribution characteristics 16 and 28 in FIG. 4 exemplify the case where the projection light is incident on the light reflection surface of the reflective screen 20 perpendicularly.
  • the reflected light from the diffuse reflection region 22 has the same light distribution characteristic 16 as in the first embodiment.
  • the reflected light from the retroreflective region 24 has a horizontal light distribution angle substantially equal to the light distribution angle of the light distribution characteristic 18 of the first embodiment with respect to an axis parallel to the incident light, and the vertical light distribution angle is horizontal. It has a light distribution characteristic 28 that is wider than the light distribution angle in the direction.
  • the reflected light of the incident light obliquely incident on the retroreflective region 24 has a light distribution angle in the horizontal direction narrower than that of the diffuse reflection region 22 with respect to an axis parallel to the incident direction of the projection light, and a vertical light distribution angle is diffused
  • the light distribution characteristic is close to the light distribution angle of the reflection region 22.
  • the reflected light from the diffuse reflection region 22 is diffused almost uniformly around the axis perpendicular to the light reflection surface of the reflective screen 20 without depending on the incident angle of the projection light. For this reason, an observer observing the light reflection surface of the reflective screen 20 can see the reflected light from the diffuse reflection region 22 at any position in front of the light reflection surface.
  • the reflected light from the retroreflective region 24 has a directivity in which the intensity of light parallel to the incident direction of the projected light is highest in the horizontal direction and diffuses in the vertical direction. For this reason, most of the reflected light from the retroreflective region 24 diffuses in the vertical direction and does not spread in the horizontal direction, but returns to the projection light emission source side. Therefore, only the observer who observes the light reflecting surface of the reflective screen 20 and has the eye position in any one of the vertical directions of the position where the projection optical unit of the projection display device is disposed is retroreflected. The reflected light in the region 24 can be seen.
  • FIG. 5 shows an example of the structure of the retroreflective region 24.
  • FIG. 5A is a perspective view showing a part of the retroreflective region 24.
  • the rear sheet 20a a transparent resin sheet in which minute right-angle prisms extending in a columnar shape in the vertical direction are continuously provided in the horizontal direction is used.
  • the front sheet 20b a transparent resin sheet is used in which a kamaboko-shaped lens extending in the horizontal direction is continuously provided in the vertical direction. Even with such a configuration, the retroreflective region 24 having light distribution anisotropy that diffuses in the vertical direction and has recursion in the horizontal direction can be produced.
  • FIGS. 5B and 5C show the structure of the retroreflective region 24 in a state viewed in the horizontal direction parallel to the light reflecting surface of the reflective screen 20.
  • the rear sheet 20a of the retroreflective region 24 shown in FIG. 5 (b) is a transparent resin sheet in which many corner cubes shown in FIG.
  • the front sheet 20b is a transparent resin sheet on which one kamaboko-shaped lens extending in the horizontal direction is arranged. Also with this configuration, the retroreflective region 24 having light distribution anisotropy that diffuses in the vertical direction and has recursion in the horizontal direction can be produced.
  • the rear sheet 20a of the retroreflective region 24 shown in FIG. 5C has the same configuration as the rear sheet 20a shown in FIG.
  • the front sheet 20b has the same configuration as the front sheet 20b shown in FIG. Also with this configuration, the retroreflective region 24 having light distribution anisotropy that diffuses in the vertical direction and has recursion in the horizontal direction can be produced.
  • the rear sheet 20a is manufactured by embossing a transparent resin with a mold having a predetermined retroreflective shape.
  • the front sheet 20b is a type in which a large number of areas for forming the retroreflective area 24 in which a wide light distribution angle is obtained in the vertical direction and a plurality of areas for forming the diffuse reflection area 22 having light scattering properties are arranged at an area ratio of 1: 3.
  • a transparent resin is embossed with the mold.
  • the reflective screen 20 is manufactured by bonding the surface of the manufactured rear sheet 20a and the back surface of the front sheet 20b with a transparent adhesive having a predetermined refractive index. A large reflective screen can be produced by connecting a plurality of reflective screens 20 together.
  • the transparent resin material polycarbonate, acrylic resin, or the like can be used.
  • FIG. 6A shows a state in which the reflective screen 20 at the time of image projection is viewed from vertically upward to downward.
  • FIG. 6B shows a state in which the right side from substantially the center of the reflective screen 20 is viewed in the horizontal direction parallel to the light reflecting surface of the reflective screen 20.
  • the projection display device PJ1 is arranged at a predetermined distance forward from substantially the center of the light reflection surface of the reflection type screen 20 as viewed from vertically above to below.
  • the projection display device PJ1 is fixed to the ceiling at substantially the same height as the upper end of the reflective screen 20.
  • the projection display device PJ2 is disposed at a predetermined distance forward from the right side of the light reflection surface of the reflective screen 20.
  • the projection display device PJ2 is fixed to the ceiling at the same height as the projection display device PJ1 on the right side of the projection display device PJ1 when viewed toward the light reflection surface of the reflection screen 20.
  • the projection display device PJ3 is disposed at a predetermined distance forward from the left side of the light reflection surface of the reflective screen 20.
  • the projection display device PJ3 is fixed to the ceiling at the same height as the projection display device PJ1 on the left side of the projection display device PJ1 when viewed toward the light reflection surface of the reflection screen 20. Since the configuration and the like of the projection display devices PJ1, PJ2, and PJ3 are the same as those shown in the first embodiment, description thereof is omitted.
  • Three observers O1, O2, and O3 are observing the reflective screen 20 at a predetermined distance in front of the light reflecting surface of the reflective screen 20.
  • the observer O2 is almost directly below the projection display device PJ2.
  • the observer O3 is almost directly below the projection display device PJ3.
  • the observer O1 is on the left side of the observer O3 when looking toward the light reflecting surface of the reflective screen 20.
  • Predetermined image data is synchronously sent from a projection image processing unit (not shown) to each of the transmissive liquid crystal display elements of the three projection display devices PJ1, PJ2, and PJ3. Further, the intensity of the projection light from the projection display device PJ1 is adjusted to be higher than the intensity of the projection light from the projection display devices PJ2 and PJ3. The intensity of the projection light of the projection display devices PJ1, PJ2, and PJ3 can be changed by adjusting the luminance data of the image sent from the projection image processing unit to each transmissive liquid crystal display element. Alternatively, the emission light intensity of the light source of the projection display device PJ1 may be set higher than the emission light intensity of the light sources of the projection display devices PJ2 and PJ3 in advance.
  • the projection light emitted from the projection display device PJ1 is reflected by the diffuse reflection area 22 and the retroreflection area 24 that are mixed and uniformly distributed in the light reflection surface of the reflective screen 20.
  • the reflected light at the retroreflective region 24 diffuses in the vertical direction but does not diffuse in the horizontal direction, and most returns to the direction of the projection display device PJ1. For this reason, none of the observers O1, O2, and O3 can see the image from the projection display device PJ1.
  • the reflected light R from the diffuse reflection region 22 has a substantially uniform and wide light distribution angle around an axis perpendicular to the light reflection surface without depending on the incident angle of the projection light, so that any observer O1, O2 , O3 can also be observed with almost equal brightness.
  • the diffuse reflection area 22 has an area three times wider than the retroreflection area 24. Therefore, regardless of the observation position, all the observers O1, O2, and O3 can observe the image from the projection display device PJ1 with relatively high luminance. In this way, the image from the projection display device PJ1 can be provided in common to all the observers O1, O2, and O3.
  • the projection light emitted from the projection display device PJ2 is reflected by the diffuse reflection area 22 and the retroreflection area 24 which are mixed and uniformly distributed in the light reflection surface of the reflection type screen 20.
  • the reflected light at the retroreflective region 24 is recursive in the horizontal direction and returns to the direction of the projection display device PJ2, but the light distribution anisotropy having a wide light distribution angle in the vertical direction. It spreads in the vertical direction. For this reason, only an observer O2 positioned vertically below the projection display device PJ2 can see the reflected light of the projection light emitted from the projection display device PJ2.
  • the reflected light with high luminance can be returned to the observer O2 side due to the light distribution characteristics of the retroreflection region 24.
  • the observers O1 and O3 whose left eye El and right eye Er are not positioned in the vicinity of the projection display device PJ2 cannot see the reflected light in the retroreflective region 24 of the projection light emitted from the projection display device PJ2. .
  • the projection light emitted from the projection display device PJ3 is reflected by the diffuse reflection area 22 and the retroreflection area 24 which are mixed and uniformly distributed in the light reflection surface of the reflection type screen 20.
  • the reflected light at the retroreflective region 24 returns to the direction of the projection display device PJ3 in the horizontal plane, but has a light distribution anisotropy with a wide light distribution angle in the vertical direction. Spread. Therefore, only the observer O3 positioned vertically below the projection display device PJ3 can see the reflected light of the projection light emitted from the projection display device PJ3.
  • the reflected light with high luminance can be returned to the observer O3 side due to the light distribution characteristics of the retroreflection region 24.
  • the observers O1 and O2 whose left eye El and right eye Er are not positioned in the vicinity of the projection display device PJ3 cannot see the reflected light in the retroreflective region 24 of the projection light emitted from the projection display device PJ3. .
  • the reflected light R at the diffuse reflection area 22 of the projection light emitted from the projection display device PJ3 has a substantially uniform and wide light distribution angle around an axis perpendicular to the light reflection surface without depending on the incident angle of the projection light. Therefore, any observer O1, O2, O3 can be observed.
  • the intensity of the projection light emitted from the projection display device PJ3 is sufficiently lower than the intensity of the projection light emitted from the projection display device PJ1. Therefore, any of the observers O1, O2, and O3 is emitted from the projection display device PJ1 out of the reflected light in the diffuse reflection region 22 of the projection light emitted from the projection display devices PJ1, PJ2, and PJ3. Only the reflected light of the projected light can be recognized. Except when the projection display device PJ1 projects an extremely dark image, any of the observers O1, O2, and O3 recognizes the reflected light in the diffuse reflection area 22 of the projection light emitted from the projection display devices PJ3 and PJ2. Can not.
  • the reflection type screen 20 according to the present embodiment and the projection type display devices PJ1, PJ2, and PJ3 having the same can be used for various purposes, for example, when a movie is shown.
  • a movie image is projected onto the reflective screen 20.
  • the projection display device PJ2 projects a Japanese subtitle image on the reflective screen 10.
  • the projection display device PJ3 projects an English subtitle image onto the reflective screen 10. In this way, no observer wears a projection display on his head, the observer O1 has no subtitles, the observer O2 has Japanese subtitles, the observer O3 has English subtitles, and the movie Can be watched simultaneously.
  • FIG. 7 shows a state in which the installed reflective screen 30 is viewed in an oblique direction.
  • FIG. 7 shows the light reflecting surface side of the reflective screen 30.
  • the reflective screen 30 has a rectangular thin plate shape having a long side parallel to the horizontal direction and a short side parallel to the vertical direction.
  • the reflective screen 30 has a rear sheet 30a and a front sheet 30b. Since the configuration of the rear seat 30a is the same as that of the rear seat 20a of the second embodiment, and the configuration of the front seat 30b is the same as that of the front seat 20b of the second embodiment, description thereof is omitted.
  • the size of one minute unit region of the diffuse reflection region 32 is substantially equal to the size of one pixel of the image projected from the projection optical system of the projection display device onto the light reflection surface of the reflection screen 30.
  • the size of one retroreflective region 34 is substantially equal to the size of one pixel of an image projected on the light reflecting surface of the reflective screen 30 from the projection optical system of the projection display device. Since the configuration of the reflective screen 30 other than this point is the same as that of the reflective screen 20 of the second embodiment, the description thereof is omitted.
  • FIG. 8A shows a state in which the reflective screen 30 at the time of image projection is viewed from vertically upward to downward.
  • FIG. 8B shows a state in which the right side from substantially the center of the reflective screen 30 is viewed in the horizontal direction parallel to the light reflecting surface of the reflective screen 30.
  • the projection display device PJ1 is disposed at a predetermined distance from the right side of the light reflecting surface of the reflective screen 30 to the front.
  • the projection display device PJ ⁇ b> 1 is fixed to the ceiling at substantially the same height as the upper end of the reflective screen 30.
  • the projection light emitted from the projection display device PJ1 is reflected by the diffuse reflection area 32 and the retroreflection area 34 that are mixed and uniformly distributed in the light reflection surface of the reflection type screen 30.
  • the reflected light at the retroreflective region 34 diffuses in the vertical direction but does not diffuse in the horizontal direction, and most returns to the direction of the projection display device PJ1. For this reason, only the observer O2 positioned vertically below the projection display device PJ1 can see the reflected light in the retroreflection region 34.
  • the reflected light R from the diffuse reflection region 32 has a substantially uniform and wide light distribution angle around an axis perpendicular to the light reflecting surface without depending on the incident angle of the projection light, so that any observer O1, O2 , O3 can also be observed with almost equal brightness.
  • the diffuse reflection area 32 has an area three times wider than the retroreflection area 34. Therefore, regardless of the observation position, all the observers O1, O2, and O3 can observe the image from the projection display device PJ1 with relatively high luminance. The observer O2 can see both the light reflected by the diffuse reflection area 32 and the retroreflection area 34.
  • the reflective screen 30 according to the present embodiment and the projection display device PJ1 having the same can be used for various purposes, for example, when a movie is shown. From the projection display device PJ 1, a movie image is projected onto the diffuse reflection area 32 of the reflection screen 30, and a Japanese subtitle image is projected onto the retroreflection area 34. By doing this, it is possible for any viewer to watch a movie at the same time, without wearing a projection display device on the head, with the viewers O1 and O2 having no subtitles and the viewer O3 having Japanese subtitles. It becomes.
  • the observers O1 and O3 do not necessarily have to be at the same position as the projection display device PJ1 from the reflection type screen 30, and the reflected light from the retroreflective region 34 returning in the direction of the projection display device PJ1. As long as the position is not in the eyes, for example, the distance from the reflective screen 30 may be away.
  • FIG. 9 shows a state where the installed reflective screen 40 is viewed in an oblique direction.
  • FIG. 9 shows the light reflecting surface side of the reflective screen 40.
  • the reflective screen 40 has a rectangular thin plate shape having a long side parallel to the horizontal direction and a short side parallel to the vertical direction.
  • the diffuse reflection area 32 of the present embodiment has the same configuration as the diffuse reflection area 32 of the third embodiment.
  • the retroreflective region of the present embodiment includes a retroreflective region 44 having no light distribution anisotropy and a retroreflective region 34 having light distribution anisotropy.
  • the retroreflective area 44 of the present embodiment has the same configuration as the retroreflective area 14 of the first embodiment.
  • the retroreflective area 34 of the present embodiment has the same configuration as the retroreflective area 34 of the third embodiment.
  • One retroreflective region 34 is arranged adjacent to the right side of one retroreflective region 44, and two diffuse reflective regions 32 are further adjacent to the lower stage of these two retroreflective regions 44, 34. Has been placed.
  • the area ratio of the retroreflection area 44, the retroreflection area 34, and the diffuse reflection area 32 is 1: 1: 2 in a rectangular area defined by four adjacent minute unit areas.
  • the rectangular areas are arranged in a matrix within the light reflecting surface of the reflective screen 40.
  • the diffuse reflection area 32 and the retroreflection areas 44 and 34 are mixed and uniformly distributed in the light reflection surface of the reflective screen 40.
  • the size of one minute unit area of the diffuse reflection area 32 is approximately equal to the size of one pixel of the image projected on the light reflection surface of the reflection screen 30 from the projection optical system of the projection display device.
  • the size of one retroreflective region 34 and one retroreflective region 44 is the size of one pixel of an image projected on the light reflecting surface of the reflective screen 40 from the projection optical system of the projection display device. Is almost equal to Since the configuration of the reflective screen 40 other than this point is the same as that of the reflective screen 10 of the first embodiment, the description thereof is omitted.
  • Three observers O1, O2, and O3 are observing the reflective screen 40 at a predetermined distance in front of the light reflecting surface of the reflective screen 40.
  • the observer O3 is almost directly below the projection display device PJ1.
  • the observer O2 is on the right side of the observer O3 as viewed toward the light reflecting surface of the reflective screen 40.
  • the observer O1 is on the left side of the observer O3 as viewed toward the light reflecting surface of the reflective screen 40.
  • Predetermined image data is sent from a projection image processing unit (not shown) to the transmissive liquid crystal display element of the projection display device PJ1.
  • news movie image data is written in the pixels projected on the minute unit area of the diffuse reflection area 32 of the reflective screen 40.
  • Japanese subtitle image data is written in the pixels projected on the retroreflective area 34.
  • black data is written in the pixels projected on the retroreflective area 44.
  • the projection light emitted from the projection display device PJ1 is reflected by the diffuse reflection area 32 and the retroreflection areas 34 and 44 that are mixed and uniformly distributed in the light reflection surface of the reflection type screen 40.
  • the reflected light at the retroreflective areas 34 and 44 does not diffuse in the horizontal direction, and most of the reflected light returns to the direction of the projection display device PJ1. For this reason, only the observer O3 positioned vertically below the projection display device PJ1 can see the reflected light in the retroreflective region 34.
  • the reflected light R from the diffuse reflection region 32 has a substantially uniform and wide light distribution angle around an axis perpendicular to the light reflecting surface without depending on the incident angle of the projection light, so that any observer O1, O2 , O3 can also be observed with almost equal brightness. Therefore, all the observers O1, O2, and O3 can see the image from the projection display device PJ1 regardless of the observation position. The observer O3 can see both the light reflected by the diffuse reflection area 32 and the retroreflection area 34.
  • the projection display device PJ2 is mounted on the head of the observer O2.
  • the image data of the projection display device PJ2 is, for example, a news commentary, and is sent from the projection image processing unit in synchronization with the image data of the projection display device PJ1.
  • the projection light emitted from the projection display device PJ2 is reflected by the diffuse reflection area 32 and the retroreflection areas 34 and 44 that are mixed and uniformly distributed in the light reflection surface of the reflection type screen 40. Of the reflected light, most of the reflected light from the retroreflective region 44 returns to the projection display device PJ2 side, so that only the observer O2 whose left eye El and right eye Er are located in the vicinity of the projection display device PJ2. Can be seen.
  • the reflected light with high luminance can be returned to the observer O2 side by the light distribution characteristic of the retroreflection region 44.
  • the observers O1 and O3 whose left eye El and right eye Er are not positioned in the vicinity of the projection display device PJ2 cannot see the reflected light in the retroreflective region 44 of the projection light emitted from the projection display device PJ2. .
  • the reflected light R at the diffuse reflection area 32 of the projection light emitted from the projection display device PJ2 has a substantially uniform and wide light distribution angle around an axis perpendicular to the light reflection surface without depending on the incident angle of the projection light. Therefore, any observer O1, O2, O3 can be observed.
  • the intensity of the projection light emitted from the projection display device PJ2 is sufficiently lower than the intensity of the projection light emitted from the projection display device PJ1.
  • any of the observers O1, O2, and O3 has the projection light emitted from the projection display device PJ1 out of the reflected light in the diffuse reflection region 32 of the projection light emitted from the projection display devices PJ1 and PJ2. Only the reflected light can be recognized. Except when the projection display device PJ1 displays an extremely dark image, none of the observers O1, O2, and O3 can recognize the reflected light in the diffuse reflection region 32 of the projection light emitted from the projection display device PJ2.
  • the reflective screen 40 according to the present embodiment and the projection display device PJ1 having the same can be used for various purposes, for example, when a news movie is shown. From the projection display device PJ1, a news movie image is projected onto the diffuse reflection area 32 of the reflective screen 40, and a Japanese subtitle image is projected onto the retroreflection area. By doing so, the viewers O1 and O2 can view a news movie simultaneously without subtitles and the viewer O3 with Japanese subtitles.
  • the observer O1 does not necessarily have to be at the same position as the projection display device PJ1 at a distance from the reflection type screen 40, and the reflected light from the retroreflective areas 34 and 44 returning in the direction of the projection display device PJ1. As long as the distance from the reflective screen 40 is increased, the distance from the reflective screen 40 may be increased.
  • each minute unit area of the reflection type screen 40 of the present embodiment corresponds to each pixel of the projection display device PJ1, the pixels projected on the diffuse reflection region 32 and the retroreflection regions 34 and 44 in the projection display device PJ1.
  • the type of image data can be made different between the pixels projected onto the screen. Thereby, a plurality of types of image information can be displayed on one projection display device PJ1.
  • unlike the first and second embodiments it is possible to output a plurality of types of images with one projection display device PJ1.
  • an image of the news commentary is projected from the projection display device PJ2 onto the diffuse reflection area 32 and the retroreflection areas 34 and 44 of the reflection type screen 40.
  • the observer O2 can watch the news movie while reading the news commentary instead of the Japanese subtitles. Since most of the reflected light from the retroreflective region 44 of the reflective screen 40 returns to the projection display device PJ2 side, the observer O2 sees a bright image even if the output image of the projection display device PJ2 is low. Can do. For this reason, size reduction of the projection type display apparatus PJ2 can be achieved.
  • Patent Document 1 (Comparison with conventional technology)
  • the recursive screen described in Patent Document 1 can be observed by a plurality of observers, but each observer needs to have a projector placed in the immediate vicinity of the eyes, and a burden on the viewer such as wearing a helmet or glasses. Is big. Although it is possible to separate the eyes from the projector with a half mirror or the like, the brightness is reduced to 1 ⁇ 2 or less by the half mirror, but the positional relationship between the eyes and the projector needs to be strict in the end, and the burden is not reduced. Further, when the eyes are directed obliquely with respect to the screen, the brightness of the entire screen is lowered. Furthermore, when the position of the observer is deviated from a predetermined distance from the screen, unevenness is visually recognized. In addition, when the distance between the screen and the eyes is shorter or longer than the distance between the screen and the projector, a phenomenon occurs in which the central portion of the image is bright and the peripheral portion is dark.
  • the reflected light in the diffuse reflection area of the projected light emitted from the projection display device PJ1 is viewed by any observer without wearing a helmet or glasses. Can do. Further, even if the observation position with respect to the reflective screen is changed, the observers can see a uniform and bright image without unevenness.
  • the reflective screen according to this embodiment is used when an observer stands or sits, moves in front, back, left, or right in front of the screen, or when multiple observers with different heights try to view an image at the same time. In response to various conditions such as the above, there is diversity that can be used without causing a decrease in brightness or unevenness.
  • the reflective screen according to this embodiment can be used for various purposes.
  • the reflection type screen described in Patent Document 2 is provided with an enlarging means immediately before the recursive screen, and the horizontal enlargement ratio is larger than the vertical enlargement ratio, but the reflected light diffusing means is fixed.
  • the reflection characteristics cannot be switched.
  • the change in luminance when the eye is displaced in the horizontal direction with respect to the projector is small, but the change in the vertical direction and the front-rear direction is not changed, and the influence is great.
  • the shape of the display unevenness is not a concentric circle but a band shape.
  • the reflective screen according to the present embodiment an image can be selectively projected onto each area from one or a plurality of projection display devices.
  • the reflective screen according to the present embodiment has diversity that can be used under various conditions.
  • the projection display device PJ2 projects two images with a predetermined parallax on the reflective screen 10 to give the observer O2 a three-dimensional solid. You can show the video.
  • the projection display device PJ3 projects two images with a predetermined parallax on the reflective screen 10 to give the observer O2 a three-dimensional solid. You can show the video.
  • FIG. 11 shows a state where the installed reflective screen 50 is viewed in an oblique direction.
  • the reflective screen 50 is disposed in the vicinity of the window 60 for taking in outside light indoors.
  • the reflective screen 50 is attached to the indoor side of the window 60 so as to cover the entire window 60.
  • FIG. 11 shows the light reflecting surface side of the reflective screen 50.
  • the reflective screen 50 has, for example, a rectangular thin plate shape having a long side parallel to the horizontal direction and a short side parallel to the vertical direction in accordance with the shape of the window 60.
  • the reflective screen 50 includes a retroreflective area 54 that retroreflects the projected light and a light transmissive area 52 that transmits incident light from the window 60 in the opposite direction to the projected light.
  • the light distribution characteristic of the reflected light in the retroreflection area 54 has a relatively narrow light distribution angle.
  • FIG. 11 shows a predetermined rectangular region 50a of the light reflecting surface of the reflective screen 50, which is drawn forward and enlarged.
  • the size of one minute unit region is smaller than the size of one pixel of an image projected on the light reflecting surface of the reflective screen 50 from the projection optical system of the projection display device.
  • the light transmission region 52 is indicated by a solid minute unit region.
  • the retroreflective region 54 is shown as a minute unit region that is hatched in a diagonal cross lattice pattern.
  • One light transmission region 52 is disposed on the right side and the lower side adjacent to one retroreflection region 54, and one light transmission region is adjacent to both of these two light transmission regions 52. 52 is arranged.
  • the area ratio of the retroreflection area 54 and the light transmission area 52 is 1: 3 in a rectangular area defined by four adjacent minute unit areas. The rectangular areas are arranged in a matrix within the light reflecting surface of the reflective screen 50.
  • the light transmission area 52 and the retroreflection area 54 are mixed and uniformly distributed in the light reflection surface of the reflective screen 50.
  • the retroreflective region 54 may have the light distribution anisotropy described in the first embodiment. In that case, the light distribution anisotropy is characterized in that the light distribution angle in the vertical direction is wider than the light distribution angle in the horizontal direction.
  • the light incident on the light transmission region 52 is transmitted through the reflective screen 50. For this reason, an observer observing the light reflection surface of the reflective screen 50 can see the scenery outside the window 60 through the light transmission region 52 at any position in front of the light reflection surface.
  • the reflected light from the retroreflective region 54 has directivity that gives the strongest intensity in the direction parallel to the incident direction of the projection light. For this reason, most of the reflected light in the retroreflection area 54 returns to the direction of the emission source of the projection light. Therefore, among the observers who observe the light reflection surface of the reflection type screen 50, only the observer whose eye position is in the vicinity of the projection optical unit of the projection display device can see the reflected light of the retroreflective region 54.
  • FIG. 12 shows a configuration example of the reflective screen 50.
  • Fig.12 (a) has shown transparent resin sheet 50 'which has the shape similar to the back side sheet
  • FIG. 12A shows a cross section in which the transparent resin sheet 50 ′ is spread in the vertical plane and cut in the horizontal direction.
  • the surface of the transparent resin sheet 50 ' has a smooth planar shape.
  • convex portions 54 ′ and concave portions 56 each having a prismatic prism shape with a right-angled cross section are alternately arranged. Note that a corner cube shape may be used instead of the columnar prism shape.
  • FIG. 12B shows a part of the reflective screen 50 of the present embodiment.
  • FIG. 12B shows a cross section in which the reflective screen 50 is expanded in the vertical plane and cut in the horizontal direction.
  • the surface of the reflective screen 50 has a smooth planar shape.
  • retroreflective areas 54 and light transmissive areas 52 having a cross section of a right-angle prism are alternately arranged.
  • the light transmission region 52 is produced by embedding the concave portion 56 of the transparent resin sheet 50 ′ shown in FIG. 12A with a resin material having the same refractive index as the material for forming the reflective screen 50 up to the height of the virtual line 58. Yes.
  • the light incident plane and the light exit plane of the light transmission region 52 are formed substantially in parallel.
  • light transmission regions 52 are arranged on both sides of the retroreflection region 54.
  • FIG. 12C shows a light reflection / transmission operation on the reflection type screen 50.
  • the reflective screen 50 is arranged with the formation surface of the retroreflective region 54 of the reflective screen 50 facing the window 60 side, the external light lo incident from the window 60 is a transparent parallel plate as shown in FIG. The light passes through the light transmission region 52 and enters the room.
  • the light lr projected from the indoor to the reflective screen 50 is retroreflected by the retroreflection area 54 and returns to the emission source of the projection light.
  • region 54 can be changed by adjusting the height of the virtual line 58 shown to Fig.12 (a), and embedding with a resin material. Thereby, the transmitted light amount in the light transmission region 52 and the reflected light amount in the retroreflection region 54 can be adjusted.
  • FIG. 13 shows a state in which the reflective screen 50 at the time of image projection is viewed from vertically upward to downward.
  • Three observers O1, O2, and O3 are observing the reflective screen 50 at a predetermined distance in front of the light reflecting surface of the reflective screen 50.
  • Three observers O 1, O 2, and O 3 are arranged in a line parallel to the reflective screen 50. Further, the observer O ⁇ b> 1 is located on the left side of the reflective screen 50 when viewed toward the light reflecting surface of the reflective screen 50.
  • the observer O2 is located on the right side of the reflective screen 50.
  • the observer O3 is located approximately at the center of the reflective screen 50.
  • the projection display device PJ1 is mounted on the head of the observer O3. Although not shown, a transmissive liquid crystal display element is arranged between the light source and the projection optical system in the projection display device PJ1. The light emitted from the projection optical system of the projection display device PJ1 is enlarged and projected, and the projection light in the region surrounded by the light L1r toward the right end and the light L1l toward the left end of the reflection type screen 50 is reflected by the reflection type screen 50.
  • the light emitted from the projection optical system of the projection display device PJ1 is enlarged and projected, and the projection light in the region surrounded by the light L1r toward the right end and the light L1l toward the left end of the reflection type screen 50 is reflected by the reflection type screen 50.
  • the projection light emitted from the projection display device PJ1 is incident on the light transmission area 52 and the retroreflection area 14 which are mixed and uniformly distributed in the light reflection surface of the reflection type screen 50. Most of the projection light incident on the light transmission region 52 is transmitted through the light transmission region 52. Since the amount of reflected light in the light transmission region 52 is extremely weak, none of the observers O1, O2, and O3 can see the reflected light in the light transmission region 52.
  • the reflected light in the retroreflective region 54 returns to the projection display device PJ1 side, so that only the observer O3 whose left eye El and right eye Er are located in the vicinity of the projection display device PJ1 can see. Even if the intensity of the projection light emitted from the projection display device PJ1 is low, the reflected light with high luminance can be returned to the observer O3 side by the light distribution characteristic of the retroreflection region 54. On the other hand, the observers O1 and O2 whose left eye El and right eye Er are not positioned in the vicinity of the projection display device PJ1 cannot see the reflected light in the retroreflective region 54 of the projection light emitted from the projection display device PJ1. .
  • the observer O3 can see the image emitted from the projection display device PJ1 onto the reflective screen 50 together with the outside scenery S.
  • the contrast between the projected image and the scenery S can be adjusted by adjusting the amount of the projection light from the projection display device PJ1. Only the projection image can be observed by increasing the amount of the projection light from the projection display device PJ1. Further, the amount of reflected light in the retroreflective region 54 may be adjusted from the amount of light transmitted in the light transmitting region 52 of the reflective screen 50. It is also possible to observe only the projected image by increasing the amount of reflected light in the retroreflective region 54.
  • the reflective screen 50 according to the present embodiment and the projection display device PJ1 having the same can be used for various purposes. That is, it functions as a retroreflective screen for the observer O3 who has installed the projection display device PJ1 in the vicinity of the eye, and the observers O1 and O2 who have not installed the projection display device PJ1 in the vicinity of the eye It is possible to provide a screen (see-through screen) that serves as a window through which the scenery of the camera can be observed.
  • the reflected light of the projection light that has entered the retroreflective region 54 has a light distribution characteristic that is a substantially uniform and relatively narrow light distribution angle around an axis parallel to the incident direction of the projection light.
  • the projection display device PJ1 is placed on the observer O3 by further arranging a retroreflective region whose vertical light distribution angle is larger than the horizontal light distribution angle as described in the first embodiment. It may be attached to the ceiling directly above.
  • a rectangular minute unit region is shown which is divided into 16 pieces, that is, four in the horizontal direction and four in the vertical direction in the rectangular region 10a and the like, but the present invention is not limited to this.
  • the minute unit area in the rectangular area 10a does not have to be a rectangle, but may be a triangle, a pentagon or more polygon, or a circle. Further, the division of the minute unit area in the rectangular area 10a may not be 16 but may be a plurality.
  • the retroreflective areas may be locally arranged with respect to the diffuse reflection area in the rectangular area 10a, or may be arranged discretely.
  • predetermined image data is sent from the projection image processing unit in synchronization with each of the transmissive liquid crystal display elements of the three projection display devices PJ1, PJ2, and PJ3.
  • image data different from the projection data of the projection display device PJ1 may be asynchronously sent from the projection image processing unit to the transmissive liquid crystal display element of the projection display device PJ2. In this way, while watching a movie on the projection display device PJ1, it is possible to view character information such as news that is not related to the movie from the projection display device PJ2.
  • the present invention can be widely used in the field of a reflective screen that reflects projection light and a projection display device including the same.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Projection Apparatus (AREA)
  • Overhead Projectors And Projection Screens (AREA)

Abstract

The purpose of the present invention is to provide a reflective screen having versatility that enables the screen to be used in accordance with various conditions, and a projection display device provided with the same. A light reflecting surface of a reflective screen (10) has a diffuse reflection region (12) that diffuses and reflects projected light, and a retro-reflective region (14) that retro-reflects projected light. The light distribution characteristics of the reflected light of the diffuse reflection region (12) are such that the light distribution angle is relatively wide, and the light distribution characteristics of the reflected light of the retro-reflective region (14) are such that the light distribution angle is narrower than that of the diffuse reflection region. On the light reflecting surface of the reflective screen (10), the diffuse reflection region (12) and the retro-reflective region (14) are mixed and uniformly distributed.

Description

反射型スクリーン及びそれを備えた投射型表示装置Reflective screen and projection display device including the same
 本発明は、投射光を反射する反射型スクリーン及びそれを備えた投射型表示装置に関する。 The present invention relates to a reflective screen that reflects projected light and a projection display device including the same.
 特許文献1には、光を入射した方向に反射する再帰性スクリーンと、当該スクリーンから反射される映像の再帰光経路上に配置されたビームスプリッタとを有する投射型表示装置が開示されている。
 特許文献2には、再帰反射性スクリーン及び当該スクリーンに近接配置された光束拡大素子を有する映像表示装置が開示されている。光束拡大素子は、拡大率が観察者の垂直視野よりも水平視野の方向に大きくなるように各光束を拡大する。
Patent Document 1 discloses a projection display device having a recursive screen that reflects light in the incident direction and a beam splitter arranged on a recursive light path of an image reflected from the screen.
Patent Document 2 discloses an image display device having a retroreflective screen and a light beam expanding element arranged in proximity to the screen. The light beam expanding element expands each light beam so that the magnification rate is larger in the horizontal visual field direction than the observer's vertical visual field.
特開昭56-29223号公報JP 56-29223 A 特開2001-42251号公報Japanese Patent Laid-Open No. 2001-42251
 しかしながら、特許文献1の技術ではいずれの観察者も眼の極近傍にプロジェクターが配置される必要があり、ヘルメットやメガネ装着など視聴者への負担が大きいという問題を有している。従来のスクリーンでは、スクリーンやプロジェクターと観察者との位置関係に依存して、観察される画像の全体の輝度が低下したり、むらが生じたりするという問題を有している。また、特許文献2の技術でもスクリーンやプロジェクターと観察者との位置関係に依存して、観察される画像の輝度に帯状のむらが生じ得るという問題を有している。このような従来のスクリーンでは、観察者と同じ水平位置でスクリーンから同じ距離にプロジェクターを配置する必要がある。従って、従来のスクリーンには、観察者が立ち見をしたり座って見たりしたり、あるいは、観察者達の身長が異なっているような様々な条件に対応して、輝度低下やむらを生じさせずに利用できる多様性がない。 However, the technique disclosed in Patent Document 1 has a problem that any observer needs to place a projector in the very vicinity of the eye, which places a heavy burden on the viewer, such as wearing a helmet or glasses. The conventional screen has a problem that the overall brightness of the observed image is lowered or uneven depending on the positional relationship between the screen or the projector and the observer. Further, the technique of Patent Document 2 also has a problem that band-like unevenness may occur in the brightness of the observed image depending on the positional relationship between the screen or projector and the observer. In such a conventional screen, it is necessary to arrange the projector at the same horizontal position as the observer and at the same distance from the screen. Therefore, conventional screens cause brightness reduction and unevenness in response to various conditions such as the observer standing or sitting, or having different heights. There is no diversity available.
 本発明の目的は、様々な条件に対応して利用できる多様性を有する反射型スクリーン及びそれを備えた投射型表示装置を提供することにある。 An object of the present invention is to provide a reflective screen having diversity that can be used in response to various conditions, and a projection display device including the same.
 上記目的は、投射光を反射する反射型スクリーンであって、反射光の配光特性が異なる複数種類の反射領域を有することを特徴とする反射型スクリーンによって達成される。 The above object is achieved by a reflective screen that reflects projected light and having a plurality of types of reflective regions having different light distribution characteristics of the reflected light.
 上記本発明の反射型スクリーンであって、前記複数種類の反射領域は、前記投射光を拡散反射する拡散反射領域を有することを特徴とする。 The reflection type screen of the present invention is characterized in that the plurality of types of reflection areas have diffuse reflection areas that diffusely reflect the projection light.
 上記本発明の反射型スクリーンであって、前記複数種類の反射領域は、前記投射光を再帰反射する再帰反射領域を有することを特徴とする。 The reflection type screen of the present invention is characterized in that the plurality of types of reflection areas have retroreflection areas for retroreflecting the projection light.
 上記本発明の反射型スクリーンであって、前記再帰反射領域は、配光異方性を有することを特徴とする。 The reflective screen according to the invention is characterized in that the retroreflective region has light distribution anisotropy.
 上記本発明の反射型スクリーンであって、前記再帰反射領域は、前記配光異方性を有さない第1再帰反射領域と、前記配光異方性を有する第2再帰反射領域とを有することを特徴とする。 In the reflective screen of the present invention, the retroreflective region includes a first retroreflective region that does not have the light distribution anisotropy and a second retroreflective region that has the light distribution anisotropy. It is characterized by that.
 上記本発明の反射型スクリーンであって、前記配光異方性は、鉛直方向の配光角が水平方向の配光角より広いことを特徴とする。 The reflection type screen of the present invention is characterized in that the light distribution anisotropy has a vertical light distribution angle wider than a horizontal light distribution angle.
 上記本発明の反射型スクリーンであって、前記複数種類の反射領域は混在して一様に分布していることを特徴とする。 The reflection type screen of the present invention is characterized in that the plurality of types of reflection regions are mixed and distributed uniformly.
 上記本発明の反射型スクリーンであって、前記複数種類の反射領域の微小単位領域の大きさは、投射された画像の1画素の大きさよりも小さいことを特徴とする。 The reflection type screen of the present invention is characterized in that the size of the minute unit area of the plurality of types of reflection areas is smaller than the size of one pixel of the projected image.
 上記本発明の反射型スクリーンであって、前記複数種類の反射領域の微小単位領域の大きさは、投射された画像の1画素の大きさにほぼ等しいことを特徴とする。 The reflection type screen of the present invention is characterized in that the size of the minute unit area of the plurality of types of reflection areas is approximately equal to the size of one pixel of the projected image.
 上記目的は、投射光を反射する反射型スクリーンであって、前記投射光を再帰反射する再帰反射領域と、入射光を透過させる光透過領域とを有することを特徴とする反射型スクリーンによって達成される。 The above object is achieved by a reflective screen that reflects projection light, comprising a retroreflective region that retroreflects the projection light and a light transmissive region that transmits incident light. The
 上記本発明の反射型スクリーンであって、前記再帰反射領域は、配光異方性を有することを特徴とする。 The reflective screen according to the invention is characterized in that the retroreflective region has light distribution anisotropy.
 上記本発明の反射型スクリーンであって、前記配光異方性は、鉛直方向の配光角が水平方向の配光角より広いことを特徴とする。 The reflection type screen of the present invention is characterized in that the light distribution anisotropy has a vertical light distribution angle wider than a horizontal light distribution angle.
 上記本発明の反射型スクリーンであって、前記再帰反射領域と前記光透過領域は混在して一様に分布していることを特徴とする。 The reflection type screen according to the present invention is characterized in that the retroreflective area and the light transmission area are mixed and distributed uniformly.
 上記本発明の反射型スクリーンであって、前記光透過領域の光入射平面と光射出平面はほぼ平行であることを特徴とする。 The reflection type screen of the present invention is characterized in that a light incident plane and a light emission plane of the light transmission region are substantially parallel.
 上記本発明の反射型スクリーンであって、前記再帰反射領域を挟んで両側に前記光透過領域が配置されていることを特徴とする。 The reflection type screen according to the present invention is characterized in that the light transmission regions are arranged on both sides of the retroreflection region.
 上記目的は、表示素子に表示された画像を投射する投射光学部と、前記表示素子の各画素に画素データを送出する投射画像処理部とを備えた投射型表示装置であって、さらに、上記のいずれかに記載の反射型スクリーンを備えていることを特徴とする投射型表示装置によって達成される。 The object is a projection type display device comprising: a projection optical unit that projects an image displayed on a display element; and a projection image processing unit that sends out pixel data to each pixel of the display element. This is achieved by a projection display device comprising the reflective screen described in any one of the above.
 本発明によれば、様々な条件に対応して利用できる多様性を有する反射型スクリーン及びそれを備えた投射型表示装置を実現できる。 According to the present invention, it is possible to realize a reflective screen having diversity that can be used in response to various conditions and a projection display device including the same.
本発明の第1の実施の形態の実施例1に係る反射型スクリーンを説明する図である。It is a figure explaining the reflective screen which concerns on Example 1 of the 1st Embodiment of this invention. 本発明の第1の実施の形態の実施例1に係る反射型スクリーンで用いる再帰反射器の一例を示す図である。It is a figure which shows an example of the retroreflector used with the reflective screen which concerns on Example 1 of the 1st Embodiment of this invention. 本発明の第1の実施の形態の実施例1に係る反射型スクリーン及びそれを備えた投射型表示装置を説明する図である。It is a figure explaining the reflection type screen which concerns on Example 1 of the 1st Embodiment of this invention, and a projection type display apparatus provided with the same. 本発明の第1の実施の形態の実施例2に係る反射型スクリーンを説明する図である。It is a figure explaining the reflection type screen which concerns on Example 2 of the 1st Embodiment of this invention. 本発明の第1の実施の形態の実施例2に係る反射型スクリーンで用いる再帰反射領域の構造例を示す図である。It is a figure which shows the structural example of the retroreflection area | region used with the reflective screen which concerns on Example 2 of the 1st Embodiment of this invention. 本発明の第1の実施の形態の実施例2に係る反射型スクリーン及びそれを備えた投射型表示装置を説明する図である。It is a figure explaining the reflection type screen which concerns on Example 2 of the 1st Embodiment of this invention, and a projection type display apparatus provided with the same. 本発明の第1の実施の形態の実施例3に係る反射型スクリーンを説明する図である。It is a figure explaining the reflection type screen which concerns on Example 3 of the 1st Embodiment of this invention. 本発明の第1の実施の形態の実施例3に係る反射型スクリーン及びそれを備えた投射型表示装置を説明する図である。It is a figure explaining the reflection type screen which concerns on Example 3 of the 1st Embodiment of this invention, and a projection type display apparatus provided with the same. 本発明の第1の実施の形態の実施例4に係る反射型スクリーンを説明する図である。It is a figure explaining the reflection type screen which concerns on Example 4 of the 1st Embodiment of this invention. 本発明の第1の実施の形態の実施例4に係る反射型スクリーン及びそれを備えた投射型表示装置を説明する図である。It is a figure explaining the reflection type screen which concerns on Example 4 of the 1st Embodiment of this invention, and a projection type display apparatus provided with the same. 本発明の第2の実施の形態に係る反射型スクリーンの構成を示す図である。It is a figure which shows the structure of the reflection type screen which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施の形態に係る反射型スクリーンの構成を示す図である。It is a figure which shows the structure of the reflection type screen which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施の形態に係る反射型スクリーン及びそれを備えた投射型表示装置を説明する図である。It is a figure explaining the reflection type screen which concerns on the 2nd Embodiment of this invention, and a projection type display apparatus provided with the same.
[第1の実施の形態]
 本発明の第1の実施の形態による反射型スクリーン及びそれを備えた投射型表示装置について、図1乃至図10を用いて説明する。なお、以下の全ての図面においては、理解を容易にするため、各構成要素の寸法や比率などは適宜異ならせて図示している。
[First Embodiment]
A reflective screen according to a first embodiment of the present invention and a projection display device including the same will be described with reference to FIGS. In all the following drawings, the dimensions and ratios of the respective constituent elements are appropriately varied for easy understanding.
(実施例1)
 まず、本実施の形態の実施例1に係る反射型スクリーン及びそれを備えた投射型表示装置について説明する。一般に、反射型スクリーンは、投射型表示装置の画像表示部として用いられる。投射型表示装置は、投射光学部と投射画像処理部とを有している。投射光学部は光源と表示素子と投射光学系とを有している。表示素子として例えば透過型液晶表示素子が用いられる。透過型液晶表示素子は光源と投射光学系との間に配置される。透過型液晶表示素子の画像表示領域には複数の画素がマトリクス状に配置されている。各画素に投射画像処理部から画素データを書き込むことにより画像表示領域に画像が表示される。光源からの光を画像表示領域に照射すると画像情報を含む透過光が得られる。この透過光は投射光学系を介して画像表示領域から所定距離にある反射型スクリーンに投射される。投射光は反射型スクリーンで反射され、観察者はスクリーン上の画像を見ることができる。
Example 1
First, a reflective screen according to Example 1 of the present embodiment and a projection display device including the same will be described. In general, the reflective screen is used as an image display unit of a projection display device. The projection display device includes a projection optical unit and a projection image processing unit. The projection optical unit has a light source, a display element, and a projection optical system. For example, a transmissive liquid crystal display element is used as the display element. The transmissive liquid crystal display element is disposed between the light source and the projection optical system. A plurality of pixels are arranged in a matrix in the image display area of the transmissive liquid crystal display element. An image is displayed in the image display area by writing pixel data from the projection image processing unit to each pixel. When the image display area is irradiated with light from the light source, transmitted light including image information is obtained. This transmitted light is projected onto a reflective screen at a predetermined distance from the image display area via a projection optical system. The projected light is reflected by the reflective screen, and the observer can see the image on the screen.
 図1は、設置した反射型スクリーン10を斜め方向に見た状態を示している。図1には反射型スクリーン10の光反射面側が示されている。反射型スクリーン10は水平方向に平行な長辺と鉛直方向に平行な短辺とを有する長方形の薄板形状を有している。 FIG. 1 shows a state in which the installed reflective screen 10 is viewed in an oblique direction. FIG. 1 shows the light reflecting surface side of the reflective screen 10. The reflective screen 10 has a rectangular thin plate shape having a long side parallel to the horizontal direction and a short side parallel to the vertical direction.
 本実施例による反射型スクリーン10の光反射面は、反射光の配光特性が異なる2種類の反射領域を有している。1つは投射光を拡散反射する拡散反射領域であり、他の1つは投射光を再帰反射する再帰反射領域である。本実施形態で配光とは、反射型スクリーン10の光反射面での反射光の射出角度に対する光度(cd)の変化又は分布をいう。また、反射光の広がりの程度を示すために配光角を用いる。配光角は、基準光度が得られる最大の広がり角度で示される。配光特性の差異は、配光角の広狭で表現できる。拡散反射領域での反射光の配光特性は、配光角が相対的に広く、再帰反射領域での反射光の配光特性は拡散反射領域の配光角より配光角が狭い。 The light reflecting surface of the reflective screen 10 according to the present embodiment has two types of reflecting regions having different light distribution characteristics of the reflected light. One is a diffuse reflection area that diffusely reflects the projection light, and the other is a retroreflection area that retroreflects the projection light. In the present embodiment, the light distribution means a change or distribution of luminous intensity (cd) with respect to an emission angle of reflected light on a light reflection surface of the reflective screen 10. The light distribution angle is used to indicate the extent of the reflected light. The light distribution angle is indicated by the maximum spread angle at which the reference luminous intensity can be obtained. The difference in light distribution characteristics can be expressed by the width of the light distribution angle. The light distribution characteristic of the reflected light in the diffuse reflection area has a relatively wide light distribution angle, and the light distribution characteristic of the reflected light in the retroreflection area has a light distribution angle narrower than the light distribution angle of the diffuse reflection area.
 図1は、反射型スクリーン10の光反射面の所定の矩形領域10aを前方に引き出して拡大して示している。矩形領域10a内には便宜的に水平方向に4個、鉛直方向に4個の計16個に区分された矩形の微小単位領域が示されている。1個の微小単位領域の大きさは、投射型表示装置の投射光学系から反射型スクリーン10の光反射面に投射された画像の1画素の大きさより小さい。 FIG. 1 shows a predetermined rectangular region 10a of the light reflecting surface of the reflective screen 10 drawn forward and enlarged. In the rectangular area 10a, rectangular minute unit areas divided into a total of 16 pieces, four in the horizontal direction and four in the vertical direction are shown for convenience. The size of one minute unit region is smaller than the size of one pixel of an image projected on the light reflecting surface of the reflective screen 10 from the projection optical system of the projection display device.
 拡散反射領域12は無地の微小単位領域で示されている。再帰反射領域14は右上から左下に引いた直線でハッチングが施された微小単位領域で示されている。1個の再帰反射領域14に隣接して右側と下側にそれぞれ1個の拡散反射領域12が配置され、さらにこれらの2個の拡散反射領域12の双方に隣接して1個の拡散反射領域12が配置されている。隣り合う4個の微小単位領域で画定される矩形領域内で再帰反射領域14と拡散反射領域12の面積割合は1:3になっている。反射型スクリーン10の光反射面内でこの矩形領域がマトリクス状に配置されている。このように、反射型スクリーン10の光反射面内で拡散反射領域12と再帰反射領域14は混在して一様に分布している。 The diffuse reflection area 12 is indicated by a solid minute unit area. The retroreflective region 14 is shown as a minute unit region that is hatched with a straight line drawn from the upper right to the lower left. One diffuse reflection region 12 is disposed on the right side and the lower side adjacent to one retroreflective region 14, and one diffuse reflection region is adjacent to both of these two diffuse reflection regions 12. 12 is arranged. The area ratio of the retroreflection area 14 and the diffuse reflection area 12 is 1: 3 in a rectangular area defined by four adjacent minute unit areas. The rectangular areas are arranged in a matrix within the light reflection surface of the reflective screen 10. As described above, the diffuse reflection area 12 and the retroreflection area 14 are mixed and uniformly distributed in the light reflection surface of the reflective screen 10.
 図1では、矩形領域10aの所定の拡散反射領域12と再帰反射領域14の微小単位領域を前方に引き出して示している。図1はまた、拡散反射領域12での反射光の配光特性16と再帰反射領域14での反射光の配光特性18を示している。図1の配光特性16、18は、反射型スクリーン10の光反射面に垂直に投射光が入射した場合を例示している。拡散反射領域12での反射光は、投射光の入射角度に依存せずに光反射面に垂直な軸周りにほぼ均等で相対的に広い配光角となる配光特性16を有する。一方、再帰反射領域14での反射光は、入射光に平行な軸周りにほぼ均等で拡散反射領域12より狭い配光角となる配光特性18を有する。 In FIG. 1, a predetermined diffuse reflection area 12 of the rectangular area 10a and a minute unit area of the retroreflection area 14 are drawn forward. FIG. 1 also shows the light distribution characteristic 16 of the reflected light in the diffuse reflection area 12 and the light distribution characteristic 18 of the reflected light in the retroreflection area 14. The light distribution characteristics 16 and 18 in FIG. 1 exemplify a case where projection light is incident on the light reflection surface of the reflective screen 10 perpendicularly. The reflected light from the diffuse reflection region 12 has a light distribution characteristic 16 that is substantially uniform and has a relatively wide light distribution angle around an axis perpendicular to the light reflection surface without depending on the incident angle of the projection light. On the other hand, the reflected light from the retroreflective region 14 has a light distribution characteristic 18 that has a light distribution angle that is substantially uniform around an axis parallel to the incident light and narrower than that of the diffuse reflection region 12.
 仮に、投射光が反射型スクリーン10の光反射面に斜めに入射した場合であっても、拡散反射領域12での反射光は、図1に示す配光特性16と同様の配光特性を有する。すなわち、拡散反射領域12に斜めに入射した投射光の反射光は、投射光の入射角度に依存せずに光反射面に垂直な軸周りにほぼ均等で相対的に広い配光角となる配光特性を有する。一方、再帰反射領域14に斜めに入射した投射光の反射光は、投射光の入射方向に平行な軸周りにほぼ均等で拡散反射領域12より狭い配光角となる配光特性を有する。 Even if the projection light is obliquely incident on the light reflection surface of the reflective screen 10, the reflected light from the diffuse reflection region 12 has the same light distribution characteristic as the light distribution characteristic 16 shown in FIG. . In other words, the reflected light of the incident light obliquely incident on the diffuse reflection region 12 has a substantially uniform and relatively wide light distribution angle around an axis perpendicular to the light reflecting surface without depending on the incident angle of the projected light. Has optical properties. On the other hand, the reflected light of the incident light obliquely incident on the retroreflective region 14 has a light distribution characteristic that has a light distribution angle that is substantially uniform around an axis parallel to the incident direction of the projected light and narrower than the diffuse reflection region 12.
 従って、拡散反射領域12での反射光は、投射光の入射角度に依存せずに反射型スクリーン10の光反射面に垂直な軸周りにほぼ均等に拡散する。このため、反射型スクリーン10の光反射面を観察している観察者は、光反射面の前方のどの位置にいても拡散反射領域12からの反射光を見ることができる。一方、再帰反射領域14での反射光は、投射光の入射方向に平行な方向の強度が最も強くなる指向性を有している。このため、再帰反射領域14での反射光の大部分は投射光の射出源の方向に戻ってくる。よって、反射型スクリーン10の光反射面を観察する観察者のうち、投射型表示装置の投射光学部近傍に目の位置がある観察者だけが再帰反射領域14の反射光を見ることができる。 Therefore, the reflected light from the diffuse reflection region 12 is diffused almost evenly around an axis perpendicular to the light reflecting surface of the reflective screen 10 without depending on the incident angle of the projection light. For this reason, an observer observing the light reflection surface of the reflective screen 10 can see the reflected light from the diffuse reflection region 12 at any position in front of the light reflection surface. On the other hand, the reflected light from the retroreflective region 14 has directivity that gives the strongest intensity in the direction parallel to the incident direction of the projection light. For this reason, most of the reflected light in the retroreflective region 14 returns to the direction of the projection light emission source. Therefore, among the observers who observe the light reflection surface of the reflective screen 10, only the observer whose eye position is in the vicinity of the projection optical unit of the projection display device can see the reflected light of the retroreflective region 14.
 図2は再帰反射領域14に配置される再帰反射器の一例としてのコーナーキューブ15を示している。コーナーキューブ15は、例えば3枚の反射平板15xy、15yz、15zxを反射面を内側にして互いに直交させて組み合わせた構造を有している。コーナーキューブ15に入射した入射光linは、例えば反射平板15xyのa点で反射して反射平板15yzに入射してb点で反射し、さらに、反射平板15zxに入射してc点で反射してコーナーキューブ15から射出する。この射出光loutは、入射光linの入射角に依存せずに入射光linに平行に射出する。このような光反射作用を有するコーナーキューブ15を再帰反射領域14に配置することにより、再帰反射領域14での反射光の大部分を投射光の射出源の方向に戻すことができる。再帰反射領域14に配置するコーナーキューブ15は1つでもよいし、微小のコーナーキューブ15を再帰反射領域14の平面に多数密集させて配列してもよい。なお、コーナーキューブ15は、ガラスや樹脂製の立方体の1つの頂点から延びる3辺の終端を含む平面で切断したプリズム構造を用いることもできる。 FIG. 2 shows a corner cube 15 as an example of a retroreflector disposed in the retroreflective region 14. The corner cube 15 has a structure in which, for example, three reflecting flat plates 15xy, 15yz, and 15zx are combined so as to be orthogonal to each other with the reflecting surface inside. The incident light lin incident on the corner cube 15 is reflected at the point a of the reflective flat plate 15xy, incident on the reflective flat plate 15yz, reflected at the point b, and further incident on the reflective flat plate 15zx and reflected at the point c. Inject from the corner cube 15. The emitted light lout is emitted in parallel to the incident light lin without depending on the incident angle of the incident light lin. By arranging the corner cube 15 having such a light reflecting action in the retroreflective region 14, most of the reflected light in the retroreflective region 14 can be returned to the direction of the emission source of the projection light. The number of corner cubes 15 arranged in the retroreflective area 14 may be one, or a large number of minute corner cubes 15 may be densely arranged on the plane of the retroreflective area 14. The corner cube 15 can also be a prism structure cut along a plane including the ends of three sides extending from one vertex of a glass or resin cube.
 本実施例による反射型スクリーン10は、透明樹脂を型押しして作製することができる。微小コーナーキューブ15を密集させた再帰反射領域14の形成用領域と微細凹凸構造を密集させて強光散乱性を付与した拡散反射領域12の形成用領域を1:3の面積割合で多数配置した型を用意して、当該型で透明樹脂を型押しして反射型スクリーン10が作製される。大型の反射型スクリーンは複数の反射型スクリーン10を繋ぎ合わせて作製できる。
 また、反射型スクリーン10は次の2段階のプロセスで作製することもできる。まず、微小コーナーキューブ15を密集させた再帰反射領域14が全面に配置された型を用意して、当該型で透明樹脂を型押しして作製する。次に拡散反射させたい領域のみ、スクリーン印刷法を用いて、微小コーナーキューブ15への光入射面側から、拡散成分を有する材料(硫酸バリウムなど)を流しこむことで、拡散反射領14域を形成する。
 なお、拡散成分を有する材料の屈折率が、空気の屈折率よりも大きければ、微小コーナーキューブ15へ光が入射しない面側に、拡散成分を有する材料層を形成しても構わない。
The reflective screen 10 according to the present embodiment can be manufactured by embossing a transparent resin. A large number of areas for forming the retroreflective areas 14 in which the minute corner cubes 15 are densely formed and areas for forming the diffusely reflective areas 12 in which the fine concavo-convex structure is densely provided to give strong light scattering properties are arranged at an area ratio of 1: 3. A reflection type screen 10 is prepared by preparing a mold and pressing a transparent resin with the mold. A large reflective screen can be produced by connecting a plurality of reflective screens 10 together.
The reflective screen 10 can also be manufactured by the following two-stage process. First, a mold in which retroreflective regions 14 in which minute corner cubes 15 are densely arranged is arranged on the entire surface is prepared, and a transparent resin is stamped with the mold. Next, only in the region to be diffusely reflected, by using a screen printing method, a material having a diffusing component (such as barium sulfate) is poured from the light incident surface side to the small corner cube 15, so that the diffuse reflection region 14 region is made. Form.
If the refractive index of the material having a diffusing component is larger than the refractive index of air, a material layer having a diffusing component may be formed on the surface side where light does not enter the minute corner cube 15.
 次に、図3を用いて本実施例に係る反射型スクリーン10を備えた投射型表示装置について説明する。図3(a)は、画像投射時の反射型スクリーン10を鉛直上方から下方に向かって見た状態を示している。図3(b)は、反射型スクリーン10のほぼ中央から右側を反射型スクリーン10の光反射面に平行に水平方向に見た状態を示している。図3(a)に示すように、鉛直上方から下方に向かって見て、反射型スクリーン10の光反射面(光投射面)のほぼ中央から前方に所定距離で投射型表示装置PJ1が配置されている。また、図3(b)に示すように、投射型表示装置PJ1は、反射型スクリーン10の上端とほぼ同じ高さで天井に固定されて配置されている。 Next, a projection display device including the reflective screen 10 according to the present embodiment will be described with reference to FIG. FIG. 3A shows a state in which the reflective screen 10 at the time of image projection is viewed from vertically upward to downward. FIG. 3B shows a state in which the right side from substantially the center of the reflective screen 10 is viewed in the horizontal direction parallel to the light reflecting surface of the reflective screen 10. As shown in FIG. 3 (a), the projection display device PJ1 is arranged at a predetermined distance forward from substantially the center of the light reflection surface (light projection surface) of the reflection type screen 10 as viewed from vertically above to below. ing. Further, as shown in FIG. 3B, the projection display device PJ1 is fixed to the ceiling at substantially the same height as the upper end of the reflective screen 10.
 図示は省略しているが投射型表示装置PJ1内部には光源と投射光学系との間に透過型液晶表示素子が配置されている。投射型表示装置PJ1の投射光学系から射出した光は拡大投射され、反射型スクリーン10の右端に向かう光L1rと左端に向かう光L1l、及び反射型スクリーン10の上端に向かう光L1tと下端に向かう光L1bで囲まれた領域の投射光が反射型スクリーン10で反射される。 Although not shown, a transmissive liquid crystal display element is disposed between the light source and the projection optical system in the projection display device PJ1. The light emitted from the projection optical system of the projection display device PJ1 is enlarged and projected, and the light L1r toward the right end of the reflection type screen 10, the light L1l toward the left end, the light L1t toward the upper end of the reflection type screen 10, and the lower end. The projection light in the area surrounded by the light L1b is reflected by the reflective screen 10.
 反射型スクリーン10の光反射面の前方に所定距離で3人の観察者O1、O2、O3が反射型スクリーン10を観察している。3人の観察者O1、O2、O3は反射型スクリーン10に平行に一列に並んでいる。また、反射型スクリーン10の光反射面に向かって見て、観察者O1は反射型スクリーン10の左寄りに位置している。観察者O2は反射型スクリーン10の右寄りに位置している。観察者O3は観察者O1とO2の間で投射型表示装置PJ1より観察者O1側に位置している。 Three observers O1, O2, and O3 are observing the reflective screen 10 at a predetermined distance in front of the light reflecting surface of the reflective screen 10. Three observers O 1, O 2, and O 3 are arranged in a line in parallel with the reflective screen 10. Further, the observer O <b> 1 is located on the left side of the reflective screen 10 when viewed toward the light reflecting surface of the reflective screen 10. The observer O2 is located on the right side of the reflective screen 10. The observer O3 is located closer to the observer O1 than the projection display device PJ1 between the observers O1 and O2.
 観察者O2の頭部には投射型表示装置PJ2が装着されている。図示は省略しているが投射型表示装置PJ2内部には光源と投射光学系との間に透過型液晶表示素子が配置されている。投射型表示装置PJ2の投射光学系から射出した光は拡大投射され、反射型スクリーン10の右端に向かう光L2rと左端に向かう光L2l、及び反射型スクリーン10の上端に向かう光L2tと下端に向かう光L2bで囲まれた領域の投射光が反射型スクリーン10で反射される。 The projection display device PJ2 is mounted on the head of the observer O2. Although not shown, a transmissive liquid crystal display element is disposed between the light source and the projection optical system in the projection display device PJ2. The light emitted from the projection optical system of the projection display device PJ2 is enlarged and projected, and the light L2r toward the right end of the reflection type screen 10, the light L2l toward the left end, the light L2t toward the upper end of the reflection type screen 10, and the lower end. The projection light in the area surrounded by the light L <b> 2 b is reflected by the reflective screen 10.
 観察者O3の頭部には投射型表示装置PJ3が装着されている。図示は省略しているが投射型表示装置PJ3内部には光源と投射光学系との間に透過型液晶表示素子が配置されている。投射型表示装置PJ3の投射光学系から射出した光は拡大投射され、反射型スクリーン10の右端に向かう光L3rと左端に向かう光L3l、及び反射型スクリーン10の上端に向かう光L3tと下端に向かう光L3bで囲まれた領域の投射光が反射型スクリーン10で反射される。 The projection display device PJ3 is mounted on the head of the observer O3. Although not shown, a transmissive liquid crystal display element is disposed between the light source and the projection optical system in the projection display device PJ3. The light emitted from the projection optical system of the projection display device PJ3 is enlarged and projected, and the light L3r toward the right end of the reflective screen 10, the light L3l toward the left end, the light L3t toward the upper end of the reflective screen 10, and the lower end. The projection light in the area surrounded by the light L3b is reflected by the reflective screen 10.
 3つの投射型表示装置PJ1、PJ2、PJ3の各透過型液晶表示素子には、不図示の投射画像処理部から、それぞれ所定の画像データが同期して送出される。また、投射型表示装置PJ1からの投射光の強度は、投射型表示装置PJ2、PJ3からの投射光の強度より高くなるように調整されている。投射型表示装置PJ1、PJ2、PJ3の投射光の強度は、投射画像処理部から各透過型液晶表示素子に送出される画像の輝度データを調整して変えることができる。あるいは、予め、投射型表示装置PJ1の光源の射出光強度を投射型表示装置PJ2、PJ3の光源の射出光強度より高くしておいてもよい。 Predetermined image data is synchronously sent from a projection image processing unit (not shown) to each of the transmissive liquid crystal display elements of the three projection display devices PJ1, PJ2, and PJ3. Further, the intensity of the projection light from the projection display device PJ1 is adjusted to be higher than the intensity of the projection light from the projection display devices PJ2 and PJ3. The intensity of the projection light of the projection display devices PJ1, PJ2, and PJ3 can be changed by adjusting the luminance data of the image sent from the projection image processing unit to each transmissive liquid crystal display element. Alternatively, the emission light intensity of the light source of the projection display device PJ1 may be set higher than the emission light intensity of the light sources of the projection display devices PJ2 and PJ3 in advance.
 さて、このような状態で、各観察者O1、O2、O3が観察できる画像について説明する。投射型表示装置PJ1から射出された投射光は、反射型スクリーン10の光反射面内で混在して一様に分布している拡散反射領域12と再帰反射領域14で反射される。これらの反射光のうち再帰反射領域14での反射光は、その大部分が投射型表示装置PJ1に戻るため、いずれの観察者O1、O2、O3も見ることができない。一方、拡散反射領域12での反射光Rは、投射光の入射角度に依存せずに光反射面に垂直な軸周りにほぼ均等で広い配光角となるので、いずれの観察者O1、O2、O3もほぼ等しい明るさで観察することができる。さらに、拡散反射領域12は再帰反射領域14より3倍広い面積を有している。従って、観察位置によらず全ての観察者O1、O2、O3が投射型表示装置PJ1からの映像を相対的に高輝度で観察することができる。このように、投射型表示装置PJ1からの映像は全ての観察者O1、O2、O3に共通に提供できる。 Now, an image that can be observed by each of the observers O1, O2, and O3 in such a state will be described. The projection light emitted from the projection display device PJ1 is reflected by the diffuse reflection area 12 and the retroreflection area 14 that are mixed and uniformly distributed in the light reflection surface of the reflective screen 10. Of these reflected lights, most of the reflected light from the retroreflective region 14 returns to the projection display device PJ1, and thus none of the observers O1, O2, and O3 can see. On the other hand, the reflected light R from the diffuse reflection region 12 has a substantially uniform and wide light distribution angle around an axis perpendicular to the light reflecting surface without depending on the incident angle of the projection light, so that any observer O1, O2 , O3 can also be observed with almost equal brightness. Further, the diffuse reflection region 12 has an area three times wider than the retroreflection region 14. Therefore, regardless of the observation position, all the observers O1, O2, and O3 can observe the image from the projection display device PJ1 with relatively high luminance. In this way, the image from the projection display device PJ1 can be provided in common to all the observers O1, O2, and O3.
 次に、投射型表示装置PJ2から射出された投射光は、反射型スクリーン10の光反射面内で混在して一様に分布している拡散反射領域12と再帰反射領域14で反射される。これらの反射光のうち再帰反射領域14での反射光は、その大部分が投射型表示装置PJ2側に戻るため、投射型表示装置PJ2の近傍に左目Elおよび右目Erが位置する観察者O2だけが見ることができる。投射型表示装置PJ2から射出された投射光の強度が低くても、再帰反射領域14の配光特性により高輝度の反射光を観察者O2側に戻すことができる。一方、投射型表示装置PJ2の近傍に左目Elおよび右目Erが位置しない観察者O1、O3は、投射型表示装置PJ2から射出された投射光の再帰反射領域14での反射光を見ることができない。 Next, the projection light emitted from the projection display device PJ2 is reflected by the diffuse reflection area 12 and the retroreflection area 14 which are mixed and uniformly distributed in the light reflection surface of the reflective screen 10. Of these reflected lights, most of the reflected light at the retroreflective region 14 returns to the projection display device PJ2 side, so that only the observer O2 whose left eye El and right eye Er are located in the vicinity of the projection display device PJ2. Can be seen. Even if the intensity of the projection light emitted from the projection display device PJ2 is low, the reflected light with high luminance can be returned to the observer O2 side due to the light distribution characteristics of the retroreflective region 14. On the other hand, the observers O1 and O3 whose left eye El and right eye Er are not positioned in the vicinity of the projection display device PJ2 cannot see the reflected light in the retroreflective region 14 of the projection light emitted from the projection display device PJ2. .
 投射型表示装置PJ2から射出された投射光の拡散反射領域12での反射光Rは、投射光の入射角度に依存せずに光反射面に垂直な軸周りにほぼ均等で広い配光角となるので、いずれの観察者O1、O2、O3も観察可能である。しかしながら、投射型表示装置PJ2から射出された投射光の強度は、投射型表示装置PJ1から射出された投射光の強度より十分に低い。このため、いずれの観察者O1、O2、O3も、投射型表示装置PJ1およびPJ2から射出された投射光の拡散反射領域12での反射光のうち、投射型表示装置PJ1から射出された投射光の反射光だけを認識できる。投射型表示装置PJ1が極端に暗い画像を映し出す場合を除き、いずれの観察者O1、O2、O3も投射型表示装置PJ2から射出された投射光の拡散反射領域12での反射光を認識できない。なお、ここでは説明の都合上、投射型表示装置PJ3からの投射光については無視している。 The reflected light R of the projection light emitted from the projection display device PJ2 at the diffuse reflection region 12 has a substantially uniform and wide light distribution angle around an axis perpendicular to the light reflection surface without depending on the incident angle of the projection light. Therefore, any observer O1, O2, O3 can be observed. However, the intensity of the projection light emitted from the projection display device PJ2 is sufficiently lower than the intensity of the projection light emitted from the projection display device PJ1. For this reason, any of the observers O1, O2, and O3 has the projection light emitted from the projection display device PJ1 out of the reflected light in the diffuse reflection region 12 of the projection light emitted from the projection display devices PJ1 and PJ2. Only the reflected light can be recognized. Except when the projection display device PJ1 projects an extremely dark image, none of the observers O1, O2, and O3 can recognize the reflected light in the diffuse reflection area 12 of the projection light emitted from the projection display device PJ2. Here, for convenience of explanation, the projection light from the projection display device PJ3 is ignored.
 次に、投射型表示装置PJ3から射出された投射光は、反射型スクリーン10の光反射面内で混在して一様に分布している拡散反射領域12と再帰反射領域14で反射される。これらの反射光のうち再帰反射領域14での反射光は、その大部分が投射型表示装置PJ3側に戻るため、投射型表示装置PJ3の近傍に左目Elおよび右目Erが位置する観察者O3だけが見ることができる。投射型表示装置PJ3から射出された投射光の強度が低くても、再帰反射領域14の配光特性により高輝度の反射光を観察者O3側に戻すことができる。一方、投射型表示装置PJ3の近傍に左目Elおよび右目Erが位置しない観察者O1、O2は、投射型表示装置PJ3から射出された投射光の再帰反射領域14での反射光を見ることができない。 Next, the projection light emitted from the projection display device PJ3 is reflected by the diffuse reflection area 12 and the retroreflection area 14 which are mixed and uniformly distributed in the light reflection surface of the reflective screen 10. Of these reflected light, most of the reflected light from the retroreflective region 14 returns to the projection display device PJ3 side, so only the observer O3 whose left eye El and right eye Er are located in the vicinity of the projection display device PJ3. Can be seen. Even if the intensity of the projection light emitted from the projection display device PJ3 is low, the reflected light with high luminance can be returned to the observer O3 side due to the light distribution characteristics of the retroreflective region 14. On the other hand, observers O1 and O2 whose left eye El and right eye Er are not located in the vicinity of the projection display device PJ3 cannot see the reflected light in the retroreflective region 14 of the projection light emitted from the projection display device PJ3. .
 投射型表示装置PJ3から射出された投射光の拡散反射領域12での反射光Rは、投射光の入射角度に依存せずに光反射面に垂直な軸周りにほぼ均等で広い配光角となるので、いずれの観察者O1、O2、O3も観察可能である。しかしながら、投射型表示装置PJ3及びPJ2から射出された投射光の強度は、投射型表示装置PJ1から射出された投射光の強度より十分に低い。このため、いずれの観察者O1、O2、O3も、投射型表示装置PJ1、PJ2、およびPJ3から射出された投射光の拡散反射領域12での反射光Rのうち、投射型表示装置PJ1から射出された投射光の反射光だけを認識できる。投射型表示装置PJ1が極端に暗い画像を映し出す場合を除き、いずれの観察者O1、O2、O3も投射型表示装置PJ3及びPJ2から射出された投射光の拡散反射領域12での反射光を認識できない。 The reflected light R of the projection light emitted from the projection display device PJ3 at the diffuse reflection region 12 has a substantially uniform and wide light distribution angle around an axis perpendicular to the light reflection surface without depending on the incident angle of the projection light. Therefore, any observer O1, O2, O3 can be observed. However, the intensity of the projection light emitted from the projection display devices PJ3 and PJ2 is sufficiently lower than the intensity of the projection light emitted from the projection display device PJ1. Therefore, any of the observers O1, O2, and O3 is emitted from the projection display device PJ1 out of the reflected light R in the diffuse reflection region 12 of the projection light emitted from the projection display devices PJ1, PJ2, and PJ3. Only the reflected light of the projected light can be recognized. Except when the projection display device PJ1 projects an extremely dark image, any of the observers O1, O2, and O3 recognizes the reflected light in the diffuse reflection region 12 of the projection light emitted from the projection display devices PJ3 and PJ2. Can not.
 本実施例による反射型スクリーン10及びそれを備えた投射型表示装置PJ1、PJ2、PJ3は例えば映画の上映時に多目的に利用できる。投射型表示装置PJ1からは映画の画像を反射型スクリーン10に投射する。投射型表示装置PJ2からは日本語字幕の画像を反射型スクリーン10に投射する。投射型表示装置PJ3からは英語字幕の画像を反射型スクリーン10に投射する。こうすることにより、観察者O1は字幕無しで、観察者O2は日本語字幕付きで、観察者O3は英語字幕付きで、映画を同時視聴することが可能となる。
 なお、観察者O1は、必ずしも反射型スクリーン10からの距離が投射型表示装置PJ1と同一の位置にある必要がなく、投射型表示装置PJ2、PJ3の映像が目に入らない位置であればよく、例えば反射型スクリーン10からの距離が遠ざかる方向に位置していてもよい。
The reflective screen 10 according to the present embodiment and the projection display devices PJ1, PJ2, and PJ3 having the same can be used for various purposes, for example, when a movie is shown. From the projection display device PJ1, a movie image is projected onto the reflective screen 10. The projection display device PJ2 projects a Japanese subtitle image on the reflective screen 10. The projection display device PJ3 projects an English subtitle image onto the reflective screen 10. By doing so, the viewer O1 has no subtitles, the viewer O2 has Japanese subtitles, and the viewer O3 has English subtitles, so that the movie can be viewed simultaneously.
It should be noted that the observer O1 does not necessarily have to be at the same position as the projection display device PJ1 from the reflective screen 10, and may be a position where the images of the projection display devices PJ2 and PJ3 cannot be seen by the eyes. For example, you may be located in the direction where the distance from the reflective screen 10 goes away.
(実施例2)
 次に、本実施の形態の実施例2に係る反射型スクリーン及びそれを備えた投射型表示装置について説明する。図4は、設置した反射型スクリーン20を斜め方向に見た状態を示している。図4には反射型スクリーン20の光反射面側が示されている。反射型スクリーン20は水平方向に平行な長辺と鉛直方向に平行な短辺とを有する長方形の薄板形状を有している。
(Example 2)
Next, a reflective screen according to Example 2 of the present embodiment and a projection display device including the same will be described. FIG. 4 shows a state where the installed reflective screen 20 is viewed in an oblique direction. FIG. 4 shows the light reflecting surface side of the reflective screen 20. The reflective screen 20 has a rectangular thin plate shape having a long side parallel to the horizontal direction and a short side parallel to the vertical direction.
 反射型スクリーン20は、後側シート20aと前側シート20bとを貼り合わせた構造を有している。後側シート20aには、実施例1の再帰反射領域14で用いたのと同様の再帰反射器が全面に密集して形成されている。前側シート20bの裏面の後側シート20aとの貼り合わせ面は平滑に形成されている。前側シート20bの表面は光入出射側である。前側シート20bの表面には投射光を拡散反射する拡散反射領域と光を鉛直方向だけに拡散させる鉛直方向拡散領域とが形成されている。このような後側シート20aと前側シート20bの組合せにより、本実施例による反射型スクリーン20の光反射面は、反射光の配光特性が異なる2種類の反射領域が形成される。1つは投射光を拡散反射する拡散反射領域であり、他の1つは配光異方性を有して投射光を再帰反射する再帰反射領域である。配光異方性とは、基準方向の配光角と基準方向に直交する方向の配光角とが異なることをいう。本実施例の再帰反射領域は、反射光が光反射面の法線方向に射出する場合に、鉛直方向の配光角が水平方向の配光角より広くなる配光異方性を有している。 The reflective screen 20 has a structure in which a rear sheet 20a and a front sheet 20b are bonded together. On the rear sheet 20a, retroreflectors similar to those used in the retroreflective region 14 of Example 1 are formed densely on the entire surface. The bonding surface with the back sheet 20a on the back surface of the front sheet 20b is formed smoothly. The surface of the front sheet 20b is the light incident / exit side. A diffusion reflection area for diffusing and reflecting the projection light and a vertical diffusion area for diffusing the light only in the vertical direction are formed on the surface of the front sheet 20b. By such a combination of the rear sheet 20a and the front sheet 20b, two types of reflection regions having different light distribution characteristics of reflected light are formed on the light reflection surface of the reflective screen 20 according to the present embodiment. One is a diffuse reflection area that diffusely reflects the projection light, and the other is a retroreflection area that retroreflects the projection light with light distribution anisotropy. The light distribution anisotropy means that the light distribution angle in the reference direction is different from the light distribution angle in the direction orthogonal to the reference direction. The retroreflective region of this embodiment has a light distribution anisotropy in which the vertical light distribution angle is wider than the horizontal light distribution angle when the reflected light is emitted in the normal direction of the light reflecting surface. Yes.
 図4は、反射型スクリーン20の光反射面の所定の矩形領域20cを前方に引き出して拡大して示している。矩形領域20c内には便宜的に水平方向に4個、鉛直方向に4個の計16個に区分された矩形の微小単位領域が示されている。1個の微小単位領域の大きさは、投射型表示装置の投射光学系から反射型スクリーン20の光反射面に投射された画像の1画素の大きさより小さい。 FIG. 4 shows a predetermined rectangular area 20c of the light reflecting surface of the reflective screen 20 drawn forward and enlarged. In the rectangular area 20c, a rectangular minute unit area divided into a total of 16 pieces of four in the horizontal direction and four in the vertical direction is shown for convenience. The size of one minute unit region is smaller than the size of one pixel of an image projected on the light reflecting surface of the reflective screen 20 from the projection optical system of the projection display device.
 拡散反射領域22は無地の微小単位領域で示されている。再帰反射領域24は左上から右下に引いた直線でハッチングが施された微小単位領域で示されている。1個の再帰反射領域24に隣接して右側と下側にそれぞれ1個の拡散反射領域22が配置され、さらにこれらの2個の拡散反射領域22の双方に隣接して1個の拡散反射領域22が配置されている。隣り合う4個の微小単位領域で画定される矩形領域内で再帰反射領域24と拡散反射領域22の面積割合は1:3になっている。反射型スクリーン20の光反射面内でこの矩形領域がマトリクス状に配置されている。このように、反射型スクリーン20の光反射面内で拡散反射領域22と再帰反射領域24は混在して一様に分布している。 The diffuse reflection area 22 is indicated by a solid minute unit area. The retroreflective region 24 is shown as a minute unit region that is hatched with a straight line drawn from the upper left to the lower right. One diffuse reflection region 22 is disposed on the right side and the lower side adjacent to one retroreflective region 24, and one diffuse reflection region is adjacent to both of these two diffuse reflection regions 22. 22 is arranged. The area ratio of the retroreflection area 24 and the diffuse reflection area 22 is 1: 3 in a rectangular area defined by four adjacent minute unit areas. The rectangular areas are arranged in a matrix within the light reflection surface of the reflective screen 20. As described above, the diffuse reflection area 22 and the retroreflection area 24 are mixed and uniformly distributed in the light reflection surface of the reflective screen 20.
 図4では、矩形領域20cの所定の拡散反射領域22と再帰反射領域24の微小単位領域を前方に引き出して示している。図4はまた、拡散反射領域22での反射光の配光特性16と再帰反射領域24での反射光の配光特性28を示している。図4の配光特性16、28は、反射型スクリーン20の光反射面に垂直に投射光が入射した場合を例示している。拡散反射領域22での反射光は、実施例1と同じ配光特性16を有する。一方、再帰反射領域24での反射光は、入射光に平行な軸について水平方向の配光角が実施例1の配光特性18の配光角にほぼ等しく、鉛直方向の配光角は水平方向の配光角より広くなる配光特性28を有する。 In FIG. 4, a predetermined diffuse reflection area 22 of the rectangular area 20c and a minute unit area of the retroreflection area 24 are drawn forward. FIG. 4 also shows the light distribution characteristic 16 of the reflected light in the diffuse reflection area 22 and the light distribution characteristic 28 of the reflected light in the retroreflection area 24. The light distribution characteristics 16 and 28 in FIG. 4 exemplify the case where the projection light is incident on the light reflection surface of the reflective screen 20 perpendicularly. The reflected light from the diffuse reflection region 22 has the same light distribution characteristic 16 as in the first embodiment. On the other hand, the reflected light from the retroreflective region 24 has a horizontal light distribution angle substantially equal to the light distribution angle of the light distribution characteristic 18 of the first embodiment with respect to an axis parallel to the incident light, and the vertical light distribution angle is horizontal. It has a light distribution characteristic 28 that is wider than the light distribution angle in the direction.
 仮に、投射光が反射型スクリーン20の光反射面に斜めに入射した場合であっても、拡散反射領域22での反射光は、図4に示す配光特性16と同様の配光特性を有する。すなわち、拡散反射領域22に斜めに入射した投射光の反射光は、投射光の入射角度に依存せずに光反射面に垂直な軸周りにほぼ均等で相対的に広い配光角となる配光特性を有する。一方、再帰反射領域24に斜めに入射した投射光の反射光は、投射光の入射方向に平行な軸について水平方向の配光角が拡散反射領域22より狭く、鉛直方向の配光角が拡散反射領域22の配光角に近い配光特性を有する。 Even if the projection light is obliquely incident on the light reflection surface of the reflective screen 20, the reflected light from the diffuse reflection region 22 has the same light distribution characteristic as the light distribution characteristic 16 shown in FIG. . In other words, the reflected light of the incident light obliquely incident on the diffuse reflection region 22 has a substantially uniform and relatively wide light distribution angle around an axis perpendicular to the light reflecting surface without depending on the incident angle of the projected light. Has optical properties. On the other hand, the reflected light of the incident light obliquely incident on the retroreflective region 24 has a light distribution angle in the horizontal direction narrower than that of the diffuse reflection region 22 with respect to an axis parallel to the incident direction of the projection light, and a vertical light distribution angle is diffused The light distribution characteristic is close to the light distribution angle of the reflection region 22.
 従って、拡散反射領域22での反射光は、投射光の入射角度に依存せずに反射型スクリーン20の光反射面に垂直な軸周りにほぼ均等に拡散する。このため、反射型スクリーン20の光反射面を観察している観察者は、光反射面の前方のどの位置にいても拡散反射領域22からの反射光を見ることができる。一方、再帰反射領域24での反射光は、水平方向では投射光の入射方向と平行な光の強度が最も高く且つ鉛直方向では拡散する指向性を有している。このため、再帰反射領域24での反射光の大部分は鉛直方向に拡散しつつ水平方向には広がらずに投射光の射出源側に戻ってくる。よって、反射型スクリーン20の光反射面を観察する観察者のうち、投射型表示装置の投射光学部が配置されている位置の鉛直方向のいずれかに目の位置がある観察者だけが再帰反射領域24の反射光を見ることができる。 Therefore, the reflected light from the diffuse reflection region 22 is diffused almost uniformly around the axis perpendicular to the light reflection surface of the reflective screen 20 without depending on the incident angle of the projection light. For this reason, an observer observing the light reflection surface of the reflective screen 20 can see the reflected light from the diffuse reflection region 22 at any position in front of the light reflection surface. On the other hand, the reflected light from the retroreflective region 24 has a directivity in which the intensity of light parallel to the incident direction of the projected light is highest in the horizontal direction and diffuses in the vertical direction. For this reason, most of the reflected light from the retroreflective region 24 diffuses in the vertical direction and does not spread in the horizontal direction, but returns to the projection light emission source side. Therefore, only the observer who observes the light reflecting surface of the reflective screen 20 and has the eye position in any one of the vertical directions of the position where the projection optical unit of the projection display device is disposed is retroreflected. The reflected light in the region 24 can be seen.
 図5は再帰反射領域24の構造例を示している。図5(a)は再帰反射領域24の一部を示す斜視図である。後側シート20aとして、鉛直方向に柱状に延びる微小な直角プリズムが水平方向に連設されている透明樹脂シートが用いられている。前側シート20bとして、水平方向に延びるかまぼこ状レンズが鉛直方向に連設されている透明樹脂シートが用いられている。このような構成によっても、鉛直方向に拡散し水平方向に再帰性を有する配光異方性を備えた再帰反射領域24を作製できる。 FIG. 5 shows an example of the structure of the retroreflective region 24. FIG. 5A is a perspective view showing a part of the retroreflective region 24. As the rear sheet 20a, a transparent resin sheet in which minute right-angle prisms extending in a columnar shape in the vertical direction are continuously provided in the horizontal direction is used. As the front sheet 20b, a transparent resin sheet is used in which a kamaboko-shaped lens extending in the horizontal direction is continuously provided in the vertical direction. Even with such a configuration, the retroreflective region 24 having light distribution anisotropy that diffuses in the vertical direction and has recursion in the horizontal direction can be produced.
 図5(b)、(c)は、反射型スクリーン20の光反射面に平行に水平方向に見た状態での再帰反射領域24の構造を示している。図5(b)に示す再帰反射領域24の後側シート20aは、図2に示したコーナーキューブを表面に多数密集させた透明樹脂シートである。また、前側シート20bは、水平方向に延びる1つのかまぼこ状レンズが配置された透明樹脂シートである。この構成によっても、鉛直方向に拡散し水平方向に再帰性を有する配光異方性を備えた再帰反射領域24を作製できる。 FIGS. 5B and 5C show the structure of the retroreflective region 24 in a state viewed in the horizontal direction parallel to the light reflecting surface of the reflective screen 20. The rear sheet 20a of the retroreflective region 24 shown in FIG. 5 (b) is a transparent resin sheet in which many corner cubes shown in FIG. The front sheet 20b is a transparent resin sheet on which one kamaboko-shaped lens extending in the horizontal direction is arranged. Also with this configuration, the retroreflective region 24 having light distribution anisotropy that diffuses in the vertical direction and has recursion in the horizontal direction can be produced.
 図5(c)に示す再帰反射領域24の後側シート20aは図5(b)に示す後側シート20aと同一構成である。前側シート20bは、図5(a)に示す前側シート20bと同一構成である。この構成によっても、鉛直方向に拡散し水平方向に再帰性を有する配光異方性を備えた再帰反射領域24を作製できる。 The rear sheet 20a of the retroreflective region 24 shown in FIG. 5C has the same configuration as the rear sheet 20a shown in FIG. The front sheet 20b has the same configuration as the front sheet 20b shown in FIG. Also with this configuration, the retroreflective region 24 having light distribution anisotropy that diffuses in the vertical direction and has recursion in the horizontal direction can be produced.
 本実施例による後側シート20aは、所定の再帰反射形状を形成した型で透明樹脂を型押しして作製される。前側シート20bは、鉛直方向に広い配光角が得られる再帰反射領域24の形成用領域と光散乱性を付与した拡散反射領域22の形成用領域を1:3の面積割合で多数配置した型を用意して、当該型で透明樹脂を型押しして得られる。作製した後側シート20aの表面と前側シート20bの裏面とを所定の屈折率を有する透明接着剤で接着して反射型スクリーン20が作製される。大型の反射型スクリーンは複数の反射型スクリーン20を繋ぎ合わせて作製できる。透明樹脂材料としては、ポリカーボネートやアクリル樹脂等を用いることができる。 The rear sheet 20a according to the present embodiment is manufactured by embossing a transparent resin with a mold having a predetermined retroreflective shape. The front sheet 20b is a type in which a large number of areas for forming the retroreflective area 24 in which a wide light distribution angle is obtained in the vertical direction and a plurality of areas for forming the diffuse reflection area 22 having light scattering properties are arranged at an area ratio of 1: 3. And a transparent resin is embossed with the mold. The reflective screen 20 is manufactured by bonding the surface of the manufactured rear sheet 20a and the back surface of the front sheet 20b with a transparent adhesive having a predetermined refractive index. A large reflective screen can be produced by connecting a plurality of reflective screens 20 together. As the transparent resin material, polycarbonate, acrylic resin, or the like can be used.
 次に、図6を用いて本実施例に係る反射型スクリーン20を備えた投射型表示装置について説明する。図6(a)は、画像投射時の反射型スクリーン20を鉛直上方から下方に向かって見た状態を示している。図6(b)は、反射型スクリーン20のほぼ中央から右側を反射型スクリーン20の光反射面に平行に水平方向に見た状態を示している。図6(a)に示すように、鉛直上方から下方に向かって見て、反射型スクリーン20の光反射面のほぼ中央から前方に所定距離で投射型表示装置PJ1が配置されている。また、図6(b)に示すように、投射型表示装置PJ1は、反射型スクリーン20の上端とほぼ同じ高さで天井に固定されて配置されている。投射型表示装置PJ2は、反射型スクリーン20の光反射面の右側から前方に所定距離に配置されている。投射型表示装置PJ2は、反射型スクリーン20の光反射面に向かって見て投射型表示装置PJ1の右側で投射型表示装置PJ1とほぼ同じ高さで天井に固定されて配置されている。投射型表示装置PJ3は、反射型スクリーン20の光反射面の左側から前方に所定距離に配置されている。投射型表示装置PJ3は、反射型スクリーン20の光反射面に向かって見て投射型表示装置PJ1の左側で投射型表示装置PJ1とほぼ同じ高さで天井に固定されて配置されている。投射型表示装置PJ1、PJ2、PJ3の構成等は実施例1に示したものと同一なので説明は省略する。 Next, a projection display device including the reflective screen 20 according to the present embodiment will be described with reference to FIG. FIG. 6A shows a state in which the reflective screen 20 at the time of image projection is viewed from vertically upward to downward. FIG. 6B shows a state in which the right side from substantially the center of the reflective screen 20 is viewed in the horizontal direction parallel to the light reflecting surface of the reflective screen 20. As shown in FIG. 6 (a), the projection display device PJ1 is arranged at a predetermined distance forward from substantially the center of the light reflection surface of the reflection type screen 20 as viewed from vertically above to below. In addition, as shown in FIG. 6B, the projection display device PJ1 is fixed to the ceiling at substantially the same height as the upper end of the reflective screen 20. The projection display device PJ2 is disposed at a predetermined distance forward from the right side of the light reflection surface of the reflective screen 20. The projection display device PJ2 is fixed to the ceiling at the same height as the projection display device PJ1 on the right side of the projection display device PJ1 when viewed toward the light reflection surface of the reflection screen 20. The projection display device PJ3 is disposed at a predetermined distance forward from the left side of the light reflection surface of the reflective screen 20. The projection display device PJ3 is fixed to the ceiling at the same height as the projection display device PJ1 on the left side of the projection display device PJ1 when viewed toward the light reflection surface of the reflection screen 20. Since the configuration and the like of the projection display devices PJ1, PJ2, and PJ3 are the same as those shown in the first embodiment, description thereof is omitted.
 反射型スクリーン20の光反射面の前方に所定距離で3人の観察者O1、O2、O3が反射型スクリーン20を観察している。観察者O2は投射型表示装置PJ2のほぼ真下にいる。また、観察者O3は投射型表示装置PJ3のほぼ真下にいる。観察者O1は反射型スクリーン20の光反射面に向かって見て観察者O3の左側にいる。 Three observers O1, O2, and O3 are observing the reflective screen 20 at a predetermined distance in front of the light reflecting surface of the reflective screen 20. The observer O2 is almost directly below the projection display device PJ2. Further, the observer O3 is almost directly below the projection display device PJ3. The observer O1 is on the left side of the observer O3 when looking toward the light reflecting surface of the reflective screen 20.
 3つの投射型表示装置PJ1、PJ2、PJ3の各透過型液晶表示素子には、不図示の投射画像処理部から、それぞれ所定の画像データが同期して送出される。また、投射型表示装置PJ1からの投射光の強度は、投射型表示装置PJ2、PJ3からの投射光の強度より高くなるように調整されている。投射型表示装置PJ1、PJ2、PJ3の投射光の強度は、投射画像処理部から各透過型液晶表示素子に送出される画像の輝度データを調整して変えることができる。あるいは、予め、投射型表示装置PJ1の光源の射出光強度を投射型表示装置PJ2、PJ3の光源の射出光強度より高くしておいてもよい。 Predetermined image data is synchronously sent from a projection image processing unit (not shown) to each of the transmissive liquid crystal display elements of the three projection display devices PJ1, PJ2, and PJ3. Further, the intensity of the projection light from the projection display device PJ1 is adjusted to be higher than the intensity of the projection light from the projection display devices PJ2 and PJ3. The intensity of the projection light of the projection display devices PJ1, PJ2, and PJ3 can be changed by adjusting the luminance data of the image sent from the projection image processing unit to each transmissive liquid crystal display element. Alternatively, the emission light intensity of the light source of the projection display device PJ1 may be set higher than the emission light intensity of the light sources of the projection display devices PJ2 and PJ3 in advance.
 さて、このような状態で、各観察者O1、O2、O3が観察できる画像について説明する。投射型表示装置PJ1から射出された投射光は、反射型スクリーン20の光反射面内で混在して一様に分布している拡散反射領域22と再帰反射領域24で反射される。これらの反射光のうち再帰反射領域24での反射光は、鉛直方向には拡散するが水平方向には拡散せずに大部分が投射型表示装置PJ1の方向に戻る。このため、いずれの観察者O1、O2、O3も投射型表示装置PJ1からの映像を見ることができない。一方、拡散反射領域22での反射光Rは、投射光の入射角度に依存せずに光反射面に垂直な軸周りにほぼ均等で広い配光角となるので、いずれの観察者O1、O2、O3もほぼ等しい明るさで観察することができる。さらに、拡散反射領域22は再帰反射領域24より3倍広い面積を有している。従って、観察位置によらず全ての観察者O1、O2、O3が投射型表示装置PJ1からの映像を相対的に高輝度で観察することができる。このように、投射型表示装置PJ1からの映像は全ての観察者O1、O2、O3に共通に提供できる。 Now, an image that can be observed by each of the observers O1, O2, and O3 in such a state will be described. The projection light emitted from the projection display device PJ1 is reflected by the diffuse reflection area 22 and the retroreflection area 24 that are mixed and uniformly distributed in the light reflection surface of the reflective screen 20. Of these reflected lights, the reflected light at the retroreflective region 24 diffuses in the vertical direction but does not diffuse in the horizontal direction, and most returns to the direction of the projection display device PJ1. For this reason, none of the observers O1, O2, and O3 can see the image from the projection display device PJ1. On the other hand, the reflected light R from the diffuse reflection region 22 has a substantially uniform and wide light distribution angle around an axis perpendicular to the light reflection surface without depending on the incident angle of the projection light, so that any observer O1, O2 , O3 can also be observed with almost equal brightness. Further, the diffuse reflection area 22 has an area three times wider than the retroreflection area 24. Therefore, regardless of the observation position, all the observers O1, O2, and O3 can observe the image from the projection display device PJ1 with relatively high luminance. In this way, the image from the projection display device PJ1 can be provided in common to all the observers O1, O2, and O3.
 次に、投射型表示装置PJ2から射出された投射光は、反射型スクリーン20の光反射面内で混在して一様に分布している拡散反射領域22と再帰反射領域24で反射される。これらの反射光のうち再帰反射領域24での反射光は水平方向には再帰性を有するので投射型表示装置PJ2の方向に戻るが、鉛直方向には広い配光角となる配光異方性を持つので鉛直方向に拡散する。このため、投射型表示装置PJ2の鉛直下方に位置する観察者O2だけが投射型表示装置PJ2から射出された投射光の反射光を見ることができる。投射型表示装置PJ2から射出された投射光の強度が低くても、再帰反射領域24の配光特性により高輝度の反射光を観察者O2側に戻すことができる。一方、投射型表示装置PJ2の近傍に左目Elおよび右目Erが位置しない観察者O1、O3は、投射型表示装置PJ2から射出された投射光の再帰反射領域24での反射光を見ることができない。 Next, the projection light emitted from the projection display device PJ2 is reflected by the diffuse reflection area 22 and the retroreflection area 24 which are mixed and uniformly distributed in the light reflection surface of the reflection type screen 20. Of these reflected lights, the reflected light at the retroreflective region 24 is recursive in the horizontal direction and returns to the direction of the projection display device PJ2, but the light distribution anisotropy having a wide light distribution angle in the vertical direction. It spreads in the vertical direction. For this reason, only an observer O2 positioned vertically below the projection display device PJ2 can see the reflected light of the projection light emitted from the projection display device PJ2. Even if the intensity of the projection light emitted from the projection display device PJ2 is low, the reflected light with high luminance can be returned to the observer O2 side due to the light distribution characteristics of the retroreflection region 24. On the other hand, the observers O1 and O3 whose left eye El and right eye Er are not positioned in the vicinity of the projection display device PJ2 cannot see the reflected light in the retroreflective region 24 of the projection light emitted from the projection display device PJ2. .
 投射型表示装置PJ2から射出された投射光の拡散反射領域22での反射光Rは、投射光の入射角度に依存せずに光反射面に垂直な軸周りにほぼ均等で広い配光角となるので、いずれの観察者O1、O2、O3も観察可能である。しかしながら、投射型表示装置PJ2から射出された投射光の強度は、投射型表示装置PJ1から射出された投射光の強度より十分に低い。このため、いずれの観察者O1、O2、O3も、投射型表示装置PJ1およびPJ2から射出された投射光の拡散反射領域22での反射光のうち、投射型表示装置PJ1から射出された投射光の反射光だけを認識できる。投射型表示装置PJ1が極端に暗い画像を映し出す場合を除き、いずれの観察者O1、O2、O3も投射型表示装置PJ2から射出された投射光の拡散反射領域22での反射光を認識できない。なお、ここでは説明の都合上、投射型表示装置PJ3からの投射光については無視している。 The reflected light R at the diffuse reflection region 22 of the projection light emitted from the projection display device PJ2 has a substantially uniform and wide light distribution angle around an axis perpendicular to the light reflection surface without depending on the incident angle of the projection light. Therefore, any observer O1, O2, O3 can be observed. However, the intensity of the projection light emitted from the projection display device PJ2 is sufficiently lower than the intensity of the projection light emitted from the projection display device PJ1. For this reason, any of the observers O1, O2, and O3 has the projection light emitted from the projection display device PJ1 out of the reflected light in the diffuse reflection region 22 of the projection light emitted from the projection display devices PJ1 and PJ2. Only the reflected light can be recognized. Except when the projection display device PJ1 projects an extremely dark image, none of the observers O1, O2, and O3 can recognize the reflected light in the diffuse reflection area 22 of the projection light emitted from the projection display device PJ2. Here, for convenience of explanation, the projection light from the projection display device PJ3 is ignored.
 次に、投射型表示装置PJ3から射出された投射光は、反射型スクリーン20の光反射面内で混在して一様に分布している拡散反射領域22と再帰反射領域24で反射される。これらの反射光のうち再帰反射領域24での反射光は水平面内では投射型表示装置PJ3の方向に戻るが、鉛直方向には広い配光角となる配光異方性を持つので鉛直方向に拡散する。このため、投射型表示装置PJ3の鉛直下方に位置する観察者O3だけが投射型表示装置PJ3から射出された投射光の反射光を見ることができる。投射型表示装置PJ3から射出された投射光の強度が低くても、再帰反射領域24の配光特性により高輝度の反射光を観察者O3側に戻すことができる。一方、投射型表示装置PJ3の近傍に左目Elおよび右目Erが位置しない観察者O1、O2は、投射型表示装置PJ3から射出された投射光の再帰反射領域24での反射光を見ることができない。 Next, the projection light emitted from the projection display device PJ3 is reflected by the diffuse reflection area 22 and the retroreflection area 24 which are mixed and uniformly distributed in the light reflection surface of the reflection type screen 20. Of these reflected lights, the reflected light at the retroreflective region 24 returns to the direction of the projection display device PJ3 in the horizontal plane, but has a light distribution anisotropy with a wide light distribution angle in the vertical direction. Spread. Therefore, only the observer O3 positioned vertically below the projection display device PJ3 can see the reflected light of the projection light emitted from the projection display device PJ3. Even if the intensity of the projection light emitted from the projection display device PJ3 is low, the reflected light with high luminance can be returned to the observer O3 side due to the light distribution characteristics of the retroreflection region 24. On the other hand, the observers O1 and O2 whose left eye El and right eye Er are not positioned in the vicinity of the projection display device PJ3 cannot see the reflected light in the retroreflective region 24 of the projection light emitted from the projection display device PJ3. .
 投射型表示装置PJ3から射出された投射光の拡散反射領域22での反射光Rは、投射光の入射角度に依存せずに光反射面に垂直な軸周りにほぼ均等で広い配光角となるので、いずれの観察者O1、O2、O3も観察可能である。しかしながら、投射型表示装置PJ3から射出された投射光の強度は、投射型表示装置PJ1から射出された投射光の強度より十分に低い。このため、いずれの観察者O1、O2、O3も、投射型表示装置PJ1、PJ2、及びPJ3から射出された投射光の拡散反射領域22での反射光のうち、投射型表示装置PJ1から射出された投射光の反射光だけを認識できる。投射型表示装置PJ1が極端に暗い画像を映し出す場合を除き、いずれの観察者O1、O2、O3も投射型表示装置PJ3及びPJ2から射出された投射光の拡散反射領域22での反射光を認識できない。 The reflected light R at the diffuse reflection area 22 of the projection light emitted from the projection display device PJ3 has a substantially uniform and wide light distribution angle around an axis perpendicular to the light reflection surface without depending on the incident angle of the projection light. Therefore, any observer O1, O2, O3 can be observed. However, the intensity of the projection light emitted from the projection display device PJ3 is sufficiently lower than the intensity of the projection light emitted from the projection display device PJ1. Therefore, any of the observers O1, O2, and O3 is emitted from the projection display device PJ1 out of the reflected light in the diffuse reflection region 22 of the projection light emitted from the projection display devices PJ1, PJ2, and PJ3. Only the reflected light of the projected light can be recognized. Except when the projection display device PJ1 projects an extremely dark image, any of the observers O1, O2, and O3 recognizes the reflected light in the diffuse reflection area 22 of the projection light emitted from the projection display devices PJ3 and PJ2. Can not.
 本実施例による反射型スクリーン20及びそれを備えた投射型表示装置PJ1、PJ2、PJ3は例えば映画の上映時に多目的に利用できる。投射型表示装置PJ1からは映画の画像を反射型スクリーン20に投射する。投射型表示装置PJ2からは日本語字幕の画像を反射型スクリーン10に投射する。投射型表示装置PJ3からは英語字幕の画像を反射型スクリーン10に投射する。こうすることにより、いずれの観察者も投射型表示装置を頭に装着せずに、観察者O1は字幕無しで、観察者O2は日本語字幕付きで、観察者O3は英語字幕付きで、映画を同時視聴することが可能となる。
 なお、観察者O1は、必ずしも反射型スクリーン10からの距離が投射型表示装置PJ1と同一の位置にある必要がなく、投射型表示装置PJ2、PJ3の映像が目に入らない位置であればよく、例えば反射型スクリーン10からの距離が遠ざかる方向に位置していてもよい。
The reflection type screen 20 according to the present embodiment and the projection type display devices PJ1, PJ2, and PJ3 having the same can be used for various purposes, for example, when a movie is shown. From the projection display device PJ1, a movie image is projected onto the reflective screen 20. The projection display device PJ2 projects a Japanese subtitle image on the reflective screen 10. The projection display device PJ3 projects an English subtitle image onto the reflective screen 10. In this way, no observer wears a projection display on his head, the observer O1 has no subtitles, the observer O2 has Japanese subtitles, the observer O3 has English subtitles, and the movie Can be watched simultaneously.
It should be noted that the observer O1 does not necessarily have to be at the same position as the projection display device PJ1 from the reflective screen 10, and may be a position where the images of the projection display devices PJ2 and PJ3 cannot be seen by the eyes. For example, you may be located in the direction where the distance from the reflective screen 10 goes away.
(実施例3)
 次に、本実施の形態の実施例3に係る反射型スクリーン及びそれを備えた投射型表示装置について説明する。図7は、設置した反射型スクリーン30を斜め方向に見た状態を示している。図7には反射型スクリーン30の光反射面側が示されている。反射型スクリーン30は水平方向に平行な長辺と鉛直方向に平行な短辺とを有する長方形の薄板形状を有している。
(Example 3)
Next, a reflective screen according to Example 3 of the present embodiment and a projection display device including the same will be described. FIG. 7 shows a state in which the installed reflective screen 30 is viewed in an oblique direction. FIG. 7 shows the light reflecting surface side of the reflective screen 30. The reflective screen 30 has a rectangular thin plate shape having a long side parallel to the horizontal direction and a short side parallel to the vertical direction.
 反射型スクリーン30は、後側シート30aと前側シート30bとを有している。後側シート30aの構成は実施例2の後側シート20aと同様であり、前側シート30bの構成は実施例2の前側シート20bと同様であるのでそれらの説明は省略する。 The reflective screen 30 has a rear sheet 30a and a front sheet 30b. Since the configuration of the rear seat 30a is the same as that of the rear seat 20a of the second embodiment, and the configuration of the front seat 30b is the same as that of the front seat 20b of the second embodiment, description thereof is omitted.
 図7は、反射型スクリーン30の光反射面の所定の矩形領域30cを前方に引き出して拡大して示している。矩形領域30c内には水平方向に4画素、鉛直方向に4画素の計16画素に区分された矩形の微小単位領域が示されている。実施例1及び2では、1個の微小単位領域の大きさは、投射型表示装置の投射光学系から反射型スクリーンの光反射面に投射された画像の1画素の大きさより小さい。これに対し、本実施例では、1個の微小単位領域の大きさは、投射型表示装置の投射光学系から反射型スクリーン30の光反射面に投射された画像の1画素の大きさにほぼ等しいことを特徴とする。 FIG. 7 shows a predetermined rectangular region 30c of the light reflecting surface of the reflection type screen 30 drawn forward and enlarged. In the rectangular area 30c, a rectangular minute unit area divided into a total of 16 pixels of 4 pixels in the horizontal direction and 4 pixels in the vertical direction is shown. In the first and second embodiments, the size of one minute unit region is smaller than the size of one pixel of an image projected on the light reflecting surface of the reflective screen from the projection optical system of the projection display device. On the other hand, in this embodiment, the size of one minute unit region is approximately the size of one pixel of the image projected on the light reflecting surface of the reflective screen 30 from the projection optical system of the projection display device. It is characterized by being equal.
 つまり、拡散反射領域32の1個の微小単位領域の大きさが投射型表示装置の投射光学系から反射型スクリーン30の光反射面に投射された画像の1画素の大きさにほぼ等しい。また、1個の再帰反射領域34の大きさが投射型表示装置の投射光学系から反射型スクリーン30の光反射面に投射された画像の1画素の大きさにほぼ等しい。この点以外の反射型スクリーン30の構成は実施例2の反射型スクリーン20と同構成なので説明は省略する。 That is, the size of one minute unit region of the diffuse reflection region 32 is substantially equal to the size of one pixel of the image projected from the projection optical system of the projection display device onto the light reflection surface of the reflection screen 30. The size of one retroreflective region 34 is substantially equal to the size of one pixel of an image projected on the light reflecting surface of the reflective screen 30 from the projection optical system of the projection display device. Since the configuration of the reflective screen 30 other than this point is the same as that of the reflective screen 20 of the second embodiment, the description thereof is omitted.
 次に、図8を用いて本実施例に係る反射型スクリーン30を備えた投射型表示装置について説明する。図8(a)は、画像投射時の反射型スクリーン30を鉛直上方から下方に向かって見た状態を示している。図8(b)は、反射型スクリーン30のほぼ中央から右側を反射型スクリーン30の光反射面に平行に水平方向に見た状態を示している。図8(a)に示すように、反射型スクリーン30の光反射面の右側から前方に所定距離で投射型表示装置PJ1が配置されている。また、図8(b)に示すように、投射型表示装置PJ1は、反射型スクリーン30の上端とほぼ同じ高さで天井に固定されて配置されている。 Next, a projection display device including the reflective screen 30 according to the present embodiment will be described with reference to FIG. FIG. 8A shows a state in which the reflective screen 30 at the time of image projection is viewed from vertically upward to downward. FIG. 8B shows a state in which the right side from substantially the center of the reflective screen 30 is viewed in the horizontal direction parallel to the light reflecting surface of the reflective screen 30. As shown in FIG. 8A, the projection display device PJ1 is disposed at a predetermined distance from the right side of the light reflecting surface of the reflective screen 30 to the front. Further, as shown in FIG. 8B, the projection display device PJ <b> 1 is fixed to the ceiling at substantially the same height as the upper end of the reflective screen 30.
 反射型スクリーン30の光反射面の前方に所定距離で3人の観察者O1、O2、O3が反射型スクリーン30を観察している。観察者O2は投射型表示装置PJ1のほぼ真下にいる。また、観察者O3は反射型スクリーン30に向かって見て反射型スクリーン30のほぼ中央に位置している。観察者O1は反射型スクリーン30の光反射面に向かって見て観察者O3の左側にいる。 Three observers O1, O2, and O3 are observing the reflective screen 30 at a predetermined distance in front of the light reflecting surface of the reflective screen 30. The observer O2 is almost directly below the projection display device PJ1. In addition, the observer O3 is located almost at the center of the reflective screen 30 when viewed toward the reflective screen 30. The observer O1 is on the left side of the observer O3 when looking toward the light reflecting surface of the reflective screen 30.
 投射型表示装置PJ1の透過型液晶表示素子には、不図示の投射画像処理部から、所定の画像データが送出される。反射型スクリーン30の拡散反射領域32の微小単位領域に投射される画素には例えば映画の画像データが書き込まれる。再帰反射領域34に投射される画素には例えば日本語字幕の画像データが書き込まれる。 Predetermined image data is sent from a projection image processing unit (not shown) to the transmissive liquid crystal display element of the projection display device PJ1. For example, movie image data is written in the pixels projected on the minute unit area of the diffuse reflection area 32 of the reflective screen 30. For example, Japanese subtitle image data is written in the pixels projected on the retroreflective area 34.
 さて、このような状態で、各観察者O1、O2、O3が観察できる画像について説明する。投射型表示装置PJ1から射出された投射光は、反射型スクリーン30の光反射面内で混在して一様に分布している拡散反射領域32と再帰反射領域34で反射される。これらの反射光のうち再帰反射領域34での反射光は、鉛直方向には拡散するが水平方向には拡散せずに大部分が投射型表示装置PJ1の方向に戻る。このため、投射型表示装置PJ1の鉛直下方に位置する観察者O2だけが再帰反射領域34での反射光を見ることができる。一方、拡散反射領域32での反射光Rは、投射光の入射角度に依存せずに光反射面に垂直な軸周りにほぼ均等で広い配光角となるので、いずれの観察者O1、O2、O3もほぼ等しい明るさで観察することができる。さらに、拡散反射領域32は再帰反射領域34より3倍広い面積を有している。従って、観察位置によらず全ての観察者O1、O2、O3が投射型表示装置PJ1からの映像を相対的に高輝度で観察することができる。観察者O2は、拡散反射領域32と再帰反射領域34で反射される光の双方を見ることができる。 Now, an image that can be observed by each of the observers O1, O2, and O3 in such a state will be described. The projection light emitted from the projection display device PJ1 is reflected by the diffuse reflection area 32 and the retroreflection area 34 that are mixed and uniformly distributed in the light reflection surface of the reflection type screen 30. Of these reflected lights, the reflected light at the retroreflective region 34 diffuses in the vertical direction but does not diffuse in the horizontal direction, and most returns to the direction of the projection display device PJ1. For this reason, only the observer O2 positioned vertically below the projection display device PJ1 can see the reflected light in the retroreflection region 34. On the other hand, the reflected light R from the diffuse reflection region 32 has a substantially uniform and wide light distribution angle around an axis perpendicular to the light reflecting surface without depending on the incident angle of the projection light, so that any observer O1, O2 , O3 can also be observed with almost equal brightness. Further, the diffuse reflection area 32 has an area three times wider than the retroreflection area 34. Therefore, regardless of the observation position, all the observers O1, O2, and O3 can observe the image from the projection display device PJ1 with relatively high luminance. The observer O2 can see both the light reflected by the diffuse reflection area 32 and the retroreflection area 34.
 本実施例による反射型スクリーン30及びそれを備えた投射型表示装置PJ1は例えば映画の上映時に多目的に利用できる。投射型表示装置PJ1からは映画の画像を反射型スクリーン30の拡散反射領域32に投射し、日本語字幕の画像を再帰反射領域34に投射する。こうすることにより、いずれの観察者も投射型表示装置を頭に装着せずに、観察者O1、O2は字幕無しで、観察者O3は日本語字幕付きで、映画を同時視聴することが可能となる。なお、観察者O1、O3は、必ずしも反射型スクリーン30からの距離が投射型表示装置PJ1と同一の位置にある必要がなく、投射型表示装置PJ1の方向に戻る再帰反射領域34からの反射光が目に入らない位置であればよく、例えば反射型スクリーン30からの距離が遠ざかる方向に位置していてもよい。 The reflective screen 30 according to the present embodiment and the projection display device PJ1 having the same can be used for various purposes, for example, when a movie is shown. From the projection display device PJ 1, a movie image is projected onto the diffuse reflection area 32 of the reflection screen 30, and a Japanese subtitle image is projected onto the retroreflection area 34. By doing this, it is possible for any viewer to watch a movie at the same time, without wearing a projection display device on the head, with the viewers O1 and O2 having no subtitles and the viewer O3 having Japanese subtitles. It becomes. The observers O1 and O3 do not necessarily have to be at the same position as the projection display device PJ1 from the reflection type screen 30, and the reflected light from the retroreflective region 34 returning in the direction of the projection display device PJ1. As long as the position is not in the eyes, for example, the distance from the reflective screen 30 may be away.
 本実施例の反射型スクリーン30の各微小単位領域が投射型表示装置PJ1の各画素に対応しているので、投射型表示装置PJ1において拡散反射領域32に投射する画素と再帰反射領域34に投射する画素とで画像データの種類を異ならせることができる。これにより、1台の投射型表示装置PJ1で2種類の画像情報を表示することができる。このように本実施例によれば、実施例1及び2と異なり1台の投射型表示装置PJ1で複数種類の映像を出力することが可能になる。 Since each minute unit area of the reflection type screen 30 of this embodiment corresponds to each pixel of the projection display device PJ1, the projection type display device PJ1 projects pixels to the diffuse reflection area 32 and the retroreflection area 34. Different types of image data can be used for different pixels. Thereby, two types of image information can be displayed by one projection type display apparatus PJ1. As described above, according to the present embodiment, unlike the first and second embodiments, it is possible to output a plurality of types of images with one projection display device PJ1.
(実施例4)
 次に、本実施の形態の実施例4に係る反射型スクリーン及びそれを備えた投射型表示装置について説明する。図9は、設置した反射型スクリーン40を斜め方向に見た状態を示している。図9には反射型スクリーン40の光反射面側が示されている。反射型スクリーン40は水平方向に平行な長辺と鉛直方向に平行な短辺とを有する長方形の薄板形状を有している。
(Example 4)
Next, a reflective screen according to Example 4 of the present embodiment and a projection display device including the same will be described. FIG. 9 shows a state where the installed reflective screen 40 is viewed in an oblique direction. FIG. 9 shows the light reflecting surface side of the reflective screen 40. The reflective screen 40 has a rectangular thin plate shape having a long side parallel to the horizontal direction and a short side parallel to the vertical direction.
 図9は、反射型スクリーン40の光反射面の所定の矩形領域40aを前方に引き出して拡大して示している。矩形領域40a内には水平方向に4画素、鉛直方向に4画素の計16画素に区分された矩形の微小単位領域が示されている。実施例1及び2では、1個の微小単位領域の大きさは、投射型表示装置の投射光学系から反射型スクリーンの光反射面に投射された画像の1画素の大きさより小さい。これに対し、本実施例では実施例3と同様に、1個の微小単位領域の大きさは、投射型表示装置の投射光学系から反射型スクリーン40の光反射面に投射された画像の1画素の大きさにほぼ等しいことを特徴とする。 FIG. 9 shows a predetermined rectangular region 40a of the light reflecting surface of the reflective screen 40, which is drawn forward and enlarged. In the rectangular area 40a, a rectangular minute unit area divided into a total of 16 pixels of 4 pixels in the horizontal direction and 4 pixels in the vertical direction is shown. In the first and second embodiments, the size of one minute unit region is smaller than the size of one pixel of an image projected on the light reflecting surface of the reflective screen from the projection optical system of the projection display device. On the other hand, in this embodiment, as in the third embodiment, the size of one minute unit region is 1 of the image projected on the light reflecting surface of the reflective screen 40 from the projection optical system of the projection display device. It is characterized by being approximately equal to the size of a pixel.
 本実施例の拡散反射領域32は実施例3の拡散反射領域32と同様の構成である。本実施例の再帰反射領域は、配光異方性を有さない再帰反射領域44と、配光異方性を有する再帰反射領域34とを有している。本実施例の再帰反射領域44は実施例1の再帰反射領域14と同様の構成である。本実施例の再帰反射領域34は実施例3の再帰反射領域34と同様の構成である。1個の再帰反射領域44の右側に隣接して1個の再帰反射領域34が配置され、さらにこれらの2個の再帰反射領域44、34の下段に隣接して2個の拡散反射領域32が配置されている。隣り合う4個の微小単位領域で画定される矩形領域内で再帰反射領域44と再帰反射領域34と拡散反射領域32の面積割合は1:1:2になっている。反射型スクリーン40の光反射面内でこの矩形領域がマトリクス状に配置されている。このように、反射型スクリーン40の光反射面内で拡散反射領域32と再帰反射領域44、34は混在して一様に分布している。 The diffuse reflection area 32 of the present embodiment has the same configuration as the diffuse reflection area 32 of the third embodiment. The retroreflective region of the present embodiment includes a retroreflective region 44 having no light distribution anisotropy and a retroreflective region 34 having light distribution anisotropy. The retroreflective area 44 of the present embodiment has the same configuration as the retroreflective area 14 of the first embodiment. The retroreflective area 34 of the present embodiment has the same configuration as the retroreflective area 34 of the third embodiment. One retroreflective region 34 is arranged adjacent to the right side of one retroreflective region 44, and two diffuse reflective regions 32 are further adjacent to the lower stage of these two retroreflective regions 44, 34. Has been placed. The area ratio of the retroreflection area 44, the retroreflection area 34, and the diffuse reflection area 32 is 1: 1: 2 in a rectangular area defined by four adjacent minute unit areas. The rectangular areas are arranged in a matrix within the light reflecting surface of the reflective screen 40. As described above, the diffuse reflection area 32 and the retroreflection areas 44 and 34 are mixed and uniformly distributed in the light reflection surface of the reflective screen 40.
 拡散反射領域32の1個の微小単位領域の大きさは投射型表示装置の投射光学系から反射型スクリーン30の光反射面に投射された画像の1画素の大きさにほぼ等しい。また、1個の再帰反射領域34、及び1個の再帰反射領域44の大きさは投射型表示装置の投射光学系から反射型スクリーン40の光反射面に投射された画像の1画素の大きさにほぼ等しい。この点以外の反射型スクリーン40の構成は実施例1の反射型スクリーン10と同様なので説明は省略する。 The size of one minute unit area of the diffuse reflection area 32 is approximately equal to the size of one pixel of the image projected on the light reflection surface of the reflection screen 30 from the projection optical system of the projection display device. The size of one retroreflective region 34 and one retroreflective region 44 is the size of one pixel of an image projected on the light reflecting surface of the reflective screen 40 from the projection optical system of the projection display device. Is almost equal to Since the configuration of the reflective screen 40 other than this point is the same as that of the reflective screen 10 of the first embodiment, the description thereof is omitted.
 次に、図10を用いて本実施例に係る反射型スクリーン40を備えた投射型表示装置について説明する。図10(a)は、画像投射時の反射型スクリーン40を鉛直上方から下方に向かって見た状態を示している。図10(b)は、反射型スクリーン40のほぼ中央から右側を反射型スクリーン40の光反射面に平行に水平方向に見た状態を示している。図10(a)に示すように、反射型スクリーン40の光反射面の中央から前方に所定距離で投射型表示装置PJ1が配置されている。また、図10(b)に示すように、投射型表示装置PJ1は、反射型スクリーン40の上端とほぼ同じ高さで天井に固定されて配置されている。 Next, a projection type display device provided with the reflective screen 40 according to the present embodiment will be described with reference to FIG. FIG. 10A shows a state in which the reflective screen 40 during image projection is viewed from vertically upward to downward. FIG. 10B shows a state in which the right side from substantially the center of the reflective screen 40 is viewed in the horizontal direction parallel to the light reflecting surface of the reflective screen 40. As shown in FIG. 10A, the projection display device PJ1 is disposed at a predetermined distance forward from the center of the light reflecting surface of the reflective screen 40. Further, as shown in FIG. 10B, the projection display device PJ1 is fixed and arranged on the ceiling at substantially the same height as the upper end of the reflective screen 40.
 反射型スクリーン40の光反射面の前方に所定距離で3人の観察者O1、O2、O3が反射型スクリーン40を観察している。観察者O3は投射型表示装置PJ1のほぼ真下にいる。また、観察者O2は反射型スクリーン40の光反射面に向かって見て観察者O3の右側にいる。観察者O1は反射型スクリーン40の光反射面に向かって見て観察者O3の左側にいる。 Three observers O1, O2, and O3 are observing the reflective screen 40 at a predetermined distance in front of the light reflecting surface of the reflective screen 40. The observer O3 is almost directly below the projection display device PJ1. Further, the observer O2 is on the right side of the observer O3 as viewed toward the light reflecting surface of the reflective screen 40. The observer O1 is on the left side of the observer O3 as viewed toward the light reflecting surface of the reflective screen 40.
 投射型表示装置PJ1の透過型液晶表示素子には、不図示の投射画像処理部から、所定の画像データが送出される。反射型スクリーン40の拡散反射領域32の微小単位領域に投射される画素には例えばニュース映画の画像データが書き込まれる。再帰反射領域34に投射される画素には例えば日本語字幕の画像データが書き込まれる。再帰反射領域44に投射される画素には例えば黒データが書き込まれる。 Predetermined image data is sent from a projection image processing unit (not shown) to the transmissive liquid crystal display element of the projection display device PJ1. For example, news movie image data is written in the pixels projected on the minute unit area of the diffuse reflection area 32 of the reflective screen 40. For example, Japanese subtitle image data is written in the pixels projected on the retroreflective area 34. For example, black data is written in the pixels projected on the retroreflective area 44.
 さて、このような状態で、各観察者O1、O2、O3が観察できる画像について説明する。投射型表示装置PJ1から射出された投射光は、反射型スクリーン40の光反射面内で混在して一様に分布している拡散反射領域32と再帰反射領域34、44で反射される。これらの反射光のうち再帰反射領域34、44での反射光は、水平方向に拡散せず大部分が投射型表示装置PJ1の方向に戻る。このため、投射型表示装置PJ1の鉛直下方に位置する観察者O3だけが再帰反射領域34での反射光を見ることができる。一方、拡散反射領域32での反射光Rは、投射光の入射角度に依存せずに光反射面に垂直な軸周りにほぼ均等で広い配光角となるので、いずれの観察者O1、O2、O3もほぼ等しい明るさで観察することができる。従って、観察位置によらず全ての観察者O1、O2、O3が投射型表示装置PJ1からの映像を見ることができる。観察者O3は、拡散反射領域32と再帰反射領域34で反射される光の双方を見ることができる。 Now, an image that can be observed by each of the observers O1, O2, and O3 in such a state will be described. The projection light emitted from the projection display device PJ1 is reflected by the diffuse reflection area 32 and the retroreflection areas 34 and 44 that are mixed and uniformly distributed in the light reflection surface of the reflection type screen 40. Of these reflected lights, the reflected light at the retroreflective areas 34 and 44 does not diffuse in the horizontal direction, and most of the reflected light returns to the direction of the projection display device PJ1. For this reason, only the observer O3 positioned vertically below the projection display device PJ1 can see the reflected light in the retroreflective region 34. On the other hand, the reflected light R from the diffuse reflection region 32 has a substantially uniform and wide light distribution angle around an axis perpendicular to the light reflecting surface without depending on the incident angle of the projection light, so that any observer O1, O2 , O3 can also be observed with almost equal brightness. Therefore, all the observers O1, O2, and O3 can see the image from the projection display device PJ1 regardless of the observation position. The observer O3 can see both the light reflected by the diffuse reflection area 32 and the retroreflection area 34.
 観察者O2の頭部には投射型表示装置PJ2が装着されている。投射型表示装置PJ2の画像データは例えばニュース解説文であり、投射型表示装置PJ1の画像データと同期して投射画像処理部から送出されている。投射型表示装置PJ2から射出された投射光は、反射型スクリーン40の光反射面内で混在して一様に分布している拡散反射領域32と再帰反射領域34、44で反射される。これらの反射光のうち再帰反射領域44での反射光は、その大部分が投射型表示装置PJ2側に戻るため、投射型表示装置PJ2の近傍に左目Elおよび右目Erが位置する観察者O2だけが見ることができる。投射型表示装置PJ2から射出された投射光の強度が低くても、再帰反射領域44の配光特性により高輝度の反射光を観察者O2側に戻すことができる。一方、投射型表示装置PJ2の近傍に左目Elおよび右目Erが位置しない観察者O1、O3は、投射型表示装置PJ2から射出された投射光の再帰反射領域44での反射光を見ることができない。 The projection display device PJ2 is mounted on the head of the observer O2. The image data of the projection display device PJ2 is, for example, a news commentary, and is sent from the projection image processing unit in synchronization with the image data of the projection display device PJ1. The projection light emitted from the projection display device PJ2 is reflected by the diffuse reflection area 32 and the retroreflection areas 34 and 44 that are mixed and uniformly distributed in the light reflection surface of the reflection type screen 40. Of the reflected light, most of the reflected light from the retroreflective region 44 returns to the projection display device PJ2 side, so that only the observer O2 whose left eye El and right eye Er are located in the vicinity of the projection display device PJ2. Can be seen. Even if the intensity of the projection light emitted from the projection display device PJ2 is low, the reflected light with high luminance can be returned to the observer O2 side by the light distribution characteristic of the retroreflection region 44. On the other hand, the observers O1 and O3 whose left eye El and right eye Er are not positioned in the vicinity of the projection display device PJ2 cannot see the reflected light in the retroreflective region 44 of the projection light emitted from the projection display device PJ2. .
 投射型表示装置PJ2から射出された投射光の拡散反射領域32での反射光Rは、投射光の入射角度に依存せずに光反射面に垂直な軸周りにほぼ均等で広い配光角となるので、いずれの観察者O1、O2、O3も観察可能である。しかしながら、投射型表示装置PJ2から射出された投射光の強度は、投射型表示装置PJ1から射出された投射光の強度より十分に低い。このため、いずれの観察者O1、O2、O3も、投射型表示装置PJ1およびPJ2から射出された投射光の拡散反射領域32での反射光のうち、投射型表示装置PJ1から射出された投射光の反射光だけを認識できる。投射型表示装置PJ1が極端に暗い画像を映し出す場合を除き、いずれの観察者O1、O2、O3も投射型表示装置PJ2から射出された投射光の拡散反射領域32での反射光を認識できない。 The reflected light R at the diffuse reflection area 32 of the projection light emitted from the projection display device PJ2 has a substantially uniform and wide light distribution angle around an axis perpendicular to the light reflection surface without depending on the incident angle of the projection light. Therefore, any observer O1, O2, O3 can be observed. However, the intensity of the projection light emitted from the projection display device PJ2 is sufficiently lower than the intensity of the projection light emitted from the projection display device PJ1. For this reason, any of the observers O1, O2, and O3 has the projection light emitted from the projection display device PJ1 out of the reflected light in the diffuse reflection region 32 of the projection light emitted from the projection display devices PJ1 and PJ2. Only the reflected light can be recognized. Except when the projection display device PJ1 displays an extremely dark image, none of the observers O1, O2, and O3 can recognize the reflected light in the diffuse reflection region 32 of the projection light emitted from the projection display device PJ2.
 本実施例による反射型スクリーン40及びそれを備えた投射型表示装置PJ1は例えばニュース映画の上映時に多目的に利用できる。投射型表示装置PJ1からはニュース映画の画像を反射型スクリーン40の拡散反射領域32に投射し、日本語字幕の画像を再帰反射領域34に投射する。こうすることにより、観察者O1、O2は字幕無しで、観察者O3は日本語字幕付きで、ニュース映画を同時視聴することが可能となる。なお、観察者O1は、必ずしも反射型スクリーン40からの距離が投射型表示装置PJ1と同一の位置にある必要がなく、投射型表示装置PJ1の方向に戻る再帰反射領域34,44からの反射光が目に入らない位置であればよく、例えば反射型スクリーン40からの距離が遠ざかる方向に位置していてもよい。 The reflective screen 40 according to the present embodiment and the projection display device PJ1 having the same can be used for various purposes, for example, when a news movie is shown. From the projection display device PJ1, a news movie image is projected onto the diffuse reflection area 32 of the reflective screen 40, and a Japanese subtitle image is projected onto the retroreflection area. By doing so, the viewers O1 and O2 can view a news movie simultaneously without subtitles and the viewer O3 with Japanese subtitles. The observer O1 does not necessarily have to be at the same position as the projection display device PJ1 at a distance from the reflection type screen 40, and the reflected light from the retroreflective areas 34 and 44 returning in the direction of the projection display device PJ1. As long as the distance from the reflective screen 40 is increased, the distance from the reflective screen 40 may be increased.
 本実施例の反射型スクリーン40の各微小単位領域が投射型表示装置PJ1の各画素に対応しているので、投射型表示装置PJ1において拡散反射領域32に投射する画素と再帰反射領域34、44に投射する画素とで画像データの種類を異ならせることができる。これにより、1台の投射型表示装置PJ1で複数種類の画像情報を表示することができる。このように本実施例によれば、実施例1及び2と異なり1台の投射型表示装置PJ1で複数種類の映像を出力することが可能になる。 Since each minute unit area of the reflection type screen 40 of the present embodiment corresponds to each pixel of the projection display device PJ1, the pixels projected on the diffuse reflection region 32 and the retroreflection regions 34 and 44 in the projection display device PJ1. The type of image data can be made different between the pixels projected onto the screen. Thereby, a plurality of types of image information can be displayed on one projection display device PJ1. As described above, according to the present embodiment, unlike the first and second embodiments, it is possible to output a plurality of types of images with one projection display device PJ1.
 さらに、投射型表示装置PJ2からはニュース解説文の画像を反射型スクリーン40の拡散反射領域32、再帰反射領域34、44に投射する。こうすることにより、観察者O2は日本語字幕の代わりにニュース解説文を読みながらニュース映画を視聴することが可能となる。反射型スクリーン40の再帰反射領域44からの反射光は大部分が投射型表示装置PJ2側に戻るため、投射型表示装置PJ2の出力画像の輝度が低くても観察者O2は明るい映像を見ることができる。このため投射型表示装置PJ2の小型化を図ることができる。 Further, an image of the news commentary is projected from the projection display device PJ2 onto the diffuse reflection area 32 and the retroreflection areas 34 and 44 of the reflection type screen 40. By doing so, the observer O2 can watch the news movie while reading the news commentary instead of the Japanese subtitles. Since most of the reflected light from the retroreflective region 44 of the reflective screen 40 returns to the projection display device PJ2 side, the observer O2 sees a bright image even if the output image of the projection display device PJ2 is low. Can do. For this reason, size reduction of the projection type display apparatus PJ2 can be achieved.
(従来技術との比較)
 特許文献1に記載された再帰性スクリーンは、複数の観察者で観察可能だが、いずれの観察者も眼の極近傍にプロジェクターが配置される必要があり、ヘルメットやメガネ装着など視聴者への負担が大きい。ハーフミラーなどでプロジェクターと眼を離すことは可能だが、ハーフミラーにより1/2以下に輝度が下がる一方で、結局は眼とプロジェクターの位置関係は厳密である必要があり負担は軽減されない。また、スクリーンに対し斜め方向に眼を向けると画面全体の輝度が低下してしまう。さらに、観察者の位置がスクリーンからの所定距離からずれた場合はむらが視認されてしまう。また、スクリーンと眼の距離がスクリーンとプロジェクターの距離よりも近い場合や遠い場合は共に画像の中央部が明るく周辺部が暗くなる現象が生じてしまう。
(Comparison with conventional technology)
The recursive screen described in Patent Document 1 can be observed by a plurality of observers, but each observer needs to have a projector placed in the immediate vicinity of the eyes, and a burden on the viewer such as wearing a helmet or glasses. Is big. Although it is possible to separate the eyes from the projector with a half mirror or the like, the brightness is reduced to ½ or less by the half mirror, but the positional relationship between the eyes and the projector needs to be strict in the end, and the burden is not reduced. Further, when the eyes are directed obliquely with respect to the screen, the brightness of the entire screen is lowered. Furthermore, when the position of the observer is deviated from a predetermined distance from the screen, unevenness is visually recognized. In addition, when the distance between the screen and the eyes is shorter or longer than the distance between the screen and the projector, a phenomenon occurs in which the central portion of the image is bright and the peripheral portion is dark.
 これに対し、本実施の形態による反射型スクリーンによれば、投射型表示装置PJ1から射出された投射光の拡散反射領域での反射光は、いずれの観察者もヘルメットやメガネ装着なしに見ることができる。また、反射型スクリーンに対する観察位置を変えても観察者達はむらのない均一で明るい画像を見ることができる。本実施の形態による反射型スクリーンは、観察者が立ち見をしたり座って見たりスクリーンの前方で前後左右に移動したり、あるいは、身長が異なる複数の観察者が同時に映像を見ようとしたりする場合のような様々な条件に対応して、輝度低下やむらを生じさせずに利用できる多様性を備えている。本実施の形態による反射型スクリーンは多様な目的に利用することができる。 On the other hand, according to the reflective screen according to the present embodiment, the reflected light in the diffuse reflection area of the projected light emitted from the projection display device PJ1 is viewed by any observer without wearing a helmet or glasses. Can do. Further, even if the observation position with respect to the reflective screen is changed, the observers can see a uniform and bright image without unevenness. The reflective screen according to this embodiment is used when an observer stands or sits, moves in front, back, left, or right in front of the screen, or when multiple observers with different heights try to view an image at the same time. In response to various conditions such as the above, there is diversity that can be used without causing a decrease in brightness or unevenness. The reflective screen according to this embodiment can be used for various purposes.
 特許文献2に記載された反射型スクリーンは、再帰性スクリーンの直前に拡大手段を設け、水平方向への拡大率を鉛直方向の拡大率より大きくしているが、反射光の拡散手段が固定されており反射特性を切り替えることはできない。また、プロジェクターに対して眼が水平方向へずれた場合の輝度の変化は小さくなるが、鉛直方向や前後方向への変化は変わらず影響が大きい。表示むらの形状は同心円ではなく帯状となる。3次元立体映像を投射する場合は水平方向の指向性を高くして映像を分離する必要があるので、水平方向へ拡散を強めることは3次元立体映像の作成を困難にする。3次元立体映像では人の眼の間隔として約6.5cm程度の分離が必要であり、一方で多人数の視聴を可能にするには少なくとも30cm以上の分離が必要であるので、多人数で3次元立体映像を見るのは不可能である。また、観察者と同じ水平位置でスクリーンから同じ距離にプロジェクターを配置する必要があるので、観察者が立ったり座ったり、あるいは複数の観察者の身長が異なるなどの様々な条件では利用できない。 The reflection type screen described in Patent Document 2 is provided with an enlarging means immediately before the recursive screen, and the horizontal enlargement ratio is larger than the vertical enlargement ratio, but the reflected light diffusing means is fixed. The reflection characteristics cannot be switched. In addition, the change in luminance when the eye is displaced in the horizontal direction with respect to the projector is small, but the change in the vertical direction and the front-rear direction is not changed, and the influence is great. The shape of the display unevenness is not a concentric circle but a band shape. When projecting a 3D stereoscopic video, it is necessary to separate the video by increasing the directivity in the horizontal direction. Therefore, increasing the diffusion in the horizontal direction makes it difficult to create a 3D stereoscopic video. In the 3D stereoscopic image, separation of about 6.5 cm is necessary as the distance between human eyes, and on the other hand, separation of at least 30 cm is necessary to enable viewing by a large number of people. It is impossible to see a 3D image. Further, since it is necessary to arrange the projector at the same horizontal position as the observer at the same distance from the screen, the projector cannot be used under various conditions such as an observer standing or sitting, or a plurality of observers having different heights.
 これに対し、本実施の形態による反射型スクリーンによれば、1台あるいは複数台の投射型表示装置から選択的に各領域に映像を投射することができる。また、本実施の形態による反射型スクリーンによれば様々な条件で利用できる多様性を有している。また、例えば、第1の実施の形態の実施例1において、投射型表示装置PJ2から所定の視差を生じさせた2つの画像を反射型スクリーン10に投射することにより、観察者O2に3次元立体映像を見せることができる。同様にして投射型表示装置PJ3から所定の視差を生じさせた2つの画像を反射型スクリーン10に投射することにより、観察者O3に3次元立体映像を見せることができる。 On the other hand, according to the reflective screen according to the present embodiment, an image can be selectively projected onto each area from one or a plurality of projection display devices. In addition, the reflective screen according to the present embodiment has diversity that can be used under various conditions. In addition, for example, in Example 1 of the first embodiment, the projection display device PJ2 projects two images with a predetermined parallax on the reflective screen 10 to give the observer O2 a three-dimensional solid. You can show the video. Similarly, by projecting two images having a predetermined parallax from the projection display device PJ3 onto the reflective screen 10, it is possible to show a three-dimensional stereoscopic image to the observer O3.
[第2の実施の形態]
 本発明の第2の実施の形態による反射型スクリーン及びそれを備えた投射型表示装置について、図11乃至図13を用いて説明する。図11は、設置した反射型スクリーン50を斜め方向に見た状態を示している。反射型スクリーン50は、屋内に外光を取り入れる窓60の近傍に配置されている。反射型スクリーン50は窓60全体を覆うように窓60の屋内側に取り付けられている。図11には反射型スクリーン50の光反射面側が示されている。反射型スクリーン50は窓60の形状に合わせて例えば水平方向に平行な長辺と鉛直方向に平行な短辺とを有する長方形の薄板形状を有している。
[Second Embodiment]
A reflective screen and a projection display device having the same according to a second embodiment of the present invention will be described with reference to FIGS. FIG. 11 shows a state where the installed reflective screen 50 is viewed in an oblique direction. The reflective screen 50 is disposed in the vicinity of the window 60 for taking in outside light indoors. The reflective screen 50 is attached to the indoor side of the window 60 so as to cover the entire window 60. FIG. 11 shows the light reflecting surface side of the reflective screen 50. The reflective screen 50 has, for example, a rectangular thin plate shape having a long side parallel to the horizontal direction and a short side parallel to the vertical direction in accordance with the shape of the window 60.
 本実施形態による反射型スクリーン50は、投射光を再帰反射する再帰反射領域54と、投射光に対し逆方向となる窓60からの入射光を透過する光透過領域52とを有している。再帰反射領域54での反射光の配光特性は相対的に配光角が狭い。 The reflective screen 50 according to the present embodiment includes a retroreflective area 54 that retroreflects the projected light and a light transmissive area 52 that transmits incident light from the window 60 in the opposite direction to the projected light. The light distribution characteristic of the reflected light in the retroreflection area 54 has a relatively narrow light distribution angle.
 図11は、反射型スクリーン50の光反射面の所定の矩形領域50aを前方に引き出して拡大して示している。矩形領域50a内には便宜的に水平方向に4個、鉛直方向に4個の計16個に区分された矩形の微小単位領域が示されている。1個の微小単位領域の大きさは、投射型表示装置の投射光学系から反射型スクリーン50の光反射面に投射された画像の1画素の大きさより小さい。 FIG. 11 shows a predetermined rectangular region 50a of the light reflecting surface of the reflective screen 50, which is drawn forward and enlarged. In the rectangular area 50a, a rectangular minute unit area divided into a total of 16 pieces, four in the horizontal direction and four in the vertical direction, is shown for convenience. The size of one minute unit region is smaller than the size of one pixel of an image projected on the light reflecting surface of the reflective screen 50 from the projection optical system of the projection display device.
 光透過領域52は無地の微小単位領域で示されている。再帰反射領域54は斜め十字格子状のハッチングが施された微小単位領域で示されている。1個の再帰反射領域54に隣接して右側と下側にそれぞれ1個の光透過領域52が配置され、さらにこれらの2個の光透過領域52の双方に隣接して1個の光透過領域52が配置されている。隣り合う4個の微小単位領域で画定される矩形領域内で再帰反射領域54と光透過領域52の面積割合は1:3になっている。反射型スクリーン50の光反射面内でこの矩形領域がマトリクス状に配置されている。このように、反射型スクリーン50の光反射面内で光透過領域52と再帰反射領域54は混在して一様に分布している。なお、再帰反射領域54は、第1の実施の形態で説明した配光異方性を有していてもよい。その場合、配光異方性は、鉛直方向の配光角が水平方向の配光角より広いことを特徴とする。 The light transmission region 52 is indicated by a solid minute unit region. The retroreflective region 54 is shown as a minute unit region that is hatched in a diagonal cross lattice pattern. One light transmission region 52 is disposed on the right side and the lower side adjacent to one retroreflection region 54, and one light transmission region is adjacent to both of these two light transmission regions 52. 52 is arranged. The area ratio of the retroreflection area 54 and the light transmission area 52 is 1: 3 in a rectangular area defined by four adjacent minute unit areas. The rectangular areas are arranged in a matrix within the light reflecting surface of the reflective screen 50. As described above, the light transmission area 52 and the retroreflection area 54 are mixed and uniformly distributed in the light reflection surface of the reflective screen 50. Note that the retroreflective region 54 may have the light distribution anisotropy described in the first embodiment. In that case, the light distribution anisotropy is characterized in that the light distribution angle in the vertical direction is wider than the light distribution angle in the horizontal direction.
 光透過領域52に入射した光は反射型スクリーン50を透過する。このため、反射型スクリーン50の光反射面を観察している観察者は、光反射面の前方のどの位置にいても光透過領域52を通して窓60の外の景色を見ることができる。一方、再帰反射領域54での反射光は、投射光の入射方向に平行な方向の強度が最も強くなる指向性を有している。このため、再帰反射領域54での反射光の大部分は投射光の射出源の方向に戻ってくる。よって、反射型スクリーン50の光反射面を観察する観察者のうち、投射型表示装置の投射光学部近傍に目の位置がある観察者だけが再帰反射領域54の反射光を見ることができる。 The light incident on the light transmission region 52 is transmitted through the reflective screen 50. For this reason, an observer observing the light reflection surface of the reflective screen 50 can see the scenery outside the window 60 through the light transmission region 52 at any position in front of the light reflection surface. On the other hand, the reflected light from the retroreflective region 54 has directivity that gives the strongest intensity in the direction parallel to the incident direction of the projection light. For this reason, most of the reflected light in the retroreflection area 54 returns to the direction of the emission source of the projection light. Therefore, among the observers who observe the light reflection surface of the reflection type screen 50, only the observer whose eye position is in the vicinity of the projection optical unit of the projection display device can see the reflected light of the retroreflective region 54.
 図12は反射型スクリーン50の構成例を示している。図12(a)は、図5(a)に示す後側シート20aと同様の形状を有する透明樹脂シート50´を示している。図12(a)は、透明樹脂シート50´を鉛直面内で広げて水平方向に切断した断面を示している。透明樹脂シート50´の表面は平滑な平面形状を有している。透明樹脂シート50´の裏面は断面が直角三角形の柱状プリズム形状となる凸部54´と凹部56が交互に並んでいる。なお、柱状プリズム形状に代えて、コーナーキューブ形状にしてもよい。 FIG. 12 shows a configuration example of the reflective screen 50. Fig.12 (a) has shown transparent resin sheet 50 'which has the shape similar to the back side sheet | seat 20a shown to Fig.5 (a). FIG. 12A shows a cross section in which the transparent resin sheet 50 ′ is spread in the vertical plane and cut in the horizontal direction. The surface of the transparent resin sheet 50 'has a smooth planar shape. On the back surface of the transparent resin sheet 50 ′, convex portions 54 ′ and concave portions 56 each having a prismatic prism shape with a right-angled cross section are alternately arranged. Note that a corner cube shape may be used instead of the columnar prism shape.
 図12(b)は、本実施形態の反射型スクリーン50の一部を示している。図12(b)は、反射型スクリーン50を鉛直面内で広げて水平方向に切断した断面を示している。反射型スクリーン50の表面は平滑な平面形状を有している。反射型スクリーン50の裏面は断面が直角プリズム形状となる再帰反射領域54と光透過領域52とが交互に並んでいる。光透過領域52は、図12(a)に示す透明樹脂シート50´の凹部56を仮想線58の高さまで反射型スクリーン50の形成材料と同一の屈折率を有する樹脂材料で埋め込んで作製されている。光透過領域52の光入射平面と光射出平面はほぼ平行に形成されている。また、再帰反射領域54を挟んで両側に光透過領域52が配置されている。 FIG. 12B shows a part of the reflective screen 50 of the present embodiment. FIG. 12B shows a cross section in which the reflective screen 50 is expanded in the vertical plane and cut in the horizontal direction. The surface of the reflective screen 50 has a smooth planar shape. On the back surface of the reflective screen 50, retroreflective areas 54 and light transmissive areas 52 having a cross section of a right-angle prism are alternately arranged. The light transmission region 52 is produced by embedding the concave portion 56 of the transparent resin sheet 50 ′ shown in FIG. 12A with a resin material having the same refractive index as the material for forming the reflective screen 50 up to the height of the virtual line 58. Yes. The light incident plane and the light exit plane of the light transmission region 52 are formed substantially in parallel. In addition, light transmission regions 52 are arranged on both sides of the retroreflection region 54.
 図12(c)は、反射型スクリーン50での光反射/透過動作を示している。反射型スクリーン50の再帰反射領域54の形成面を窓60側に向けて反射型スクリーン50を配置すると、図12(c)に示すように、窓60から入射した外光loは透明平行平板の光透過領域52を透過して屋内に入射する。一方、屋内から反射型スクリーン50へ投射した光lrは、再帰反射領域54で再帰反射して投射光の射出源に戻る。 FIG. 12C shows a light reflection / transmission operation on the reflection type screen 50. When the reflective screen 50 is arranged with the formation surface of the retroreflective region 54 of the reflective screen 50 facing the window 60 side, the external light lo incident from the window 60 is a transparent parallel plate as shown in FIG. The light passes through the light transmission region 52 and enters the room. On the other hand, the light lr projected from the indoor to the reflective screen 50 is retroreflected by the retroreflection area 54 and returns to the emission source of the projection light.
 なお、図12(a)に示す仮想線58の高さを調節して樹脂材料で埋め込むことにより光透過領域52と再帰反射領域54の面積割合を変えることができる。これにより、光透過領域52での透過光量と再帰反射領域54での反射光量を調節することができる。 In addition, the area ratio of the light transmission area | region 52 and the retroreflection area | region 54 can be changed by adjusting the height of the virtual line 58 shown to Fig.12 (a), and embedding with a resin material. Thereby, the transmitted light amount in the light transmission region 52 and the reflected light amount in the retroreflection region 54 can be adjusted.
 次に、図13を用いて本実施例に係る反射型スクリーン50を備えた投射型表示装置について説明する。図13は、画像投射時の反射型スクリーン50を鉛直上方から下方に向かって見た状態を示している。 Next, a projection type display device provided with a reflective screen 50 according to the present embodiment will be described with reference to FIG. FIG. 13 shows a state in which the reflective screen 50 at the time of image projection is viewed from vertically upward to downward.
 反射型スクリーン50の光反射面の前方に所定距離で3人の観察者O1、O2、O3が反射型スクリーン50を観察している。3人の観察者O1、O2、O3は反射型スクリーン50に平行に一列に並んでいる。また、反射型スクリーン50の光反射面に向かって見て、観察者O1は反射型スクリーン50の左寄りに位置している。観察者O2は反射型スクリーン50の右寄りに位置している。観察者O3は反射型スクリーン50のほぼ中央に位置している。 Three observers O1, O2, and O3 are observing the reflective screen 50 at a predetermined distance in front of the light reflecting surface of the reflective screen 50. Three observers O 1, O 2, and O 3 are arranged in a line parallel to the reflective screen 50. Further, the observer O <b> 1 is located on the left side of the reflective screen 50 when viewed toward the light reflecting surface of the reflective screen 50. The observer O2 is located on the right side of the reflective screen 50. The observer O3 is located approximately at the center of the reflective screen 50.
 観察者O3の頭部には投射型表示装置PJ1が装着されている。図示は省略しているが投射型表示装置PJ1内部には光源と投射光学系との間に透過型液晶表示素子が配置されている。投射型表示装置PJ1の投射光学系から射出した光は拡大投射され、反射型スクリーン50の右端に向かう光L1rと左端に向かう光L1lで囲まれた領域の投射光が反射型スクリーン50で反射される。 The projection display device PJ1 is mounted on the head of the observer O3. Although not shown, a transmissive liquid crystal display element is arranged between the light source and the projection optical system in the projection display device PJ1. The light emitted from the projection optical system of the projection display device PJ1 is enlarged and projected, and the projection light in the region surrounded by the light L1r toward the right end and the light L1l toward the left end of the reflection type screen 50 is reflected by the reflection type screen 50. The
 さて、このような状態で、各観察者O1、O2、O3が観察できる画像について説明する。投射型表示装置PJ1から射出された投射光は、反射型スクリーン50の光反射面内で混在して一様に分布している光透過領域52と再帰反射領域14に入射する。光透過領域52に入射した投射光はその大部分が光透過領域52を透過してしまう。光透過領域52での反射光量は極めて弱いので、いずれの観察者O1、O2、O3も光透過領域52での反射光を見ることができない。 Now, an image that can be observed by each of the observers O1, O2, and O3 in this state will be described. The projection light emitted from the projection display device PJ1 is incident on the light transmission area 52 and the retroreflection area 14 which are mixed and uniformly distributed in the light reflection surface of the reflection type screen 50. Most of the projection light incident on the light transmission region 52 is transmitted through the light transmission region 52. Since the amount of reflected light in the light transmission region 52 is extremely weak, none of the observers O1, O2, and O3 can see the reflected light in the light transmission region 52.
 再帰反射領域54での反射光は、その大部分が投射型表示装置PJ1側に戻るため、投射型表示装置PJ1の近傍に左目Elおよび右目Erが位置する観察者O3だけが見ることができる。投射型表示装置PJ1から射出された投射光の強度が低くても、再帰反射領域54の配光特性により高輝度の反射光を観察者O3側に戻すことができる。一方、投射型表示装置PJ1の近傍に左目Elおよび右目Erが位置しない観察者O1、O2は、投射型表示装置PJ1から射出された投射光の再帰反射領域54での反射光を見ることができない。 Most of the reflected light in the retroreflective region 54 returns to the projection display device PJ1 side, so that only the observer O3 whose left eye El and right eye Er are located in the vicinity of the projection display device PJ1 can see. Even if the intensity of the projection light emitted from the projection display device PJ1 is low, the reflected light with high luminance can be returned to the observer O3 side by the light distribution characteristic of the retroreflection region 54. On the other hand, the observers O1 and O2 whose left eye El and right eye Er are not positioned in the vicinity of the projection display device PJ1 cannot see the reflected light in the retroreflective region 54 of the projection light emitted from the projection display device PJ1. .
 屋外の光は窓60を通り反射型スクリーン50の光透過領域52から屋内に入射するので、いずれの観察者O1、O2、O3も屋外の景色Sを見ることができる。このようにして、反射型スクリーン50を観察する観察者O1、O2は外の景色Sだけを見ることができる。 Since outdoor light passes through the window 60 and enters the light transmission area 52 of the reflective screen 50, any observer O1, O2, O3 can see the outdoor scenery S. In this way, the observers O1 and O2 who observe the reflective screen 50 can see only the outside scenery S.
 観察者O3は、外の景色Sと共に投射型表示装置PJ1から反射型スクリーン50に射出された画像を見ることができる。投射型表示装置PJ1からの投射光の光量を調節することにより、投射画像と景色Sとのコントラストを調整することができる。投射型表示装置PJ1からの投射光の光量を高くすることにより投射画像だけを観察できるようにすることもできる。また、反射型スクリーン50の光透過領域52での透過光量より再帰反射領域54での反射光量を調整してもよい。再帰反射領域54での反射光量を多くすることにより投射画像だけを観察できるようにすることもできる。 The observer O3 can see the image emitted from the projection display device PJ1 onto the reflective screen 50 together with the outside scenery S. The contrast between the projected image and the scenery S can be adjusted by adjusting the amount of the projection light from the projection display device PJ1. Only the projection image can be observed by increasing the amount of the projection light from the projection display device PJ1. Further, the amount of reflected light in the retroreflective region 54 may be adjusted from the amount of light transmitted in the light transmitting region 52 of the reflective screen 50. It is also possible to observe only the projected image by increasing the amount of reflected light in the retroreflective region 54.
 本実施例による反射型スクリーン50及びそれを備えた投射型表示装置PJ1は多目的に利用できる。すなわち、投射型表示装置PJ1を眼の近傍に設置した観察者O3には再帰反射性スクリーンとして機能し、投射型表示装置PJ1を眼の近傍に設置していない観察者O1、O2には、外の景色を観察できる窓としての役割を果たすスクリーン(シースルースクリーン)を提供することができる。 The reflective screen 50 according to the present embodiment and the projection display device PJ1 having the same can be used for various purposes. That is, it functions as a retroreflective screen for the observer O3 who has installed the projection display device PJ1 in the vicinity of the eye, and the observers O1 and O2 who have not installed the projection display device PJ1 in the vicinity of the eye It is possible to provide a screen (see-through screen) that serves as a window through which the scenery of the camera can be observed.
 本実施形態では、再帰反射領域54に入射した投射光の反射光は、投射光の入射方向に平行な軸周りにほぼ均等で比較的狭い配光角となる配光特性を有するようにしている。これに代えて、第1の実施形態で説明したような、鉛直方向の配光角が水平方向の配光角より広い再帰反射領域をさらに配置することにより、投射型表示装置PJ1を観察者O3の直上の天井に取り付けるようにしてもよい。 In the present embodiment, the reflected light of the projection light that has entered the retroreflective region 54 has a light distribution characteristic that is a substantially uniform and relatively narrow light distribution angle around an axis parallel to the incident direction of the projection light. . Instead, the projection display device PJ1 is placed on the observer O3 by further arranging a retroreflective region whose vertical light distribution angle is larger than the horizontal light distribution angle as described in the first embodiment. It may be attached to the ceiling directly above.
 本発明は、上記実施の形態に限らず種々の変形が可能である。
 例えば上記実施の形態では、矩形領域10a等で水平方向に4個、鉛直方向に4個の計16個に区分された矩形の微小単位領域を示しているが、本発明はこれに限られない。矩形領域10a内の微小単位領域は矩形である必要はなく、三角形や五角形以上の多角形や円形であってもよい。また、矩形領域10a内の微小単位領域の区分は16個でなくてもよく複数であればよい。また、矩形領域10a内で拡散反射領域に対し再帰反射領域は局所的に配置されていてもよいし、離散的に配置されていてもよい。
The present invention is not limited to the above embodiment, and various modifications can be made.
For example, in the above-described embodiment, a rectangular minute unit region is shown which is divided into 16 pieces, that is, four in the horizontal direction and four in the vertical direction in the rectangular region 10a and the like, but the present invention is not limited to this. . The minute unit area in the rectangular area 10a does not have to be a rectangle, but may be a triangle, a pentagon or more polygon, or a circle. Further, the division of the minute unit area in the rectangular area 10a may not be 16 but may be a plurality. In addition, the retroreflective areas may be locally arranged with respect to the diffuse reflection area in the rectangular area 10a, or may be arranged discretely.
 上記実施の形態では、3つの投射型表示装置PJ1、PJ2、PJ3の各透過型液晶表示素子に対し、投射画像処理部からそれぞれ所定の画像データが同期して送出されるようにしているが、本発明はこれに限られない。例えば、投射型表示装置PJ2の透過型液晶表示素子には、投射型表示装置PJ1の投射データと異なる画像データを投射画像処理部から非同期で送出してもよい。こうすることにより、投射型表示装置PJ1により映画を見ながら、それとは関連のない例えばニュース等の文字情報を投射型表示装置PJ2から見ることができる。 In the above embodiment, predetermined image data is sent from the projection image processing unit in synchronization with each of the transmissive liquid crystal display elements of the three projection display devices PJ1, PJ2, and PJ3. The present invention is not limited to this. For example, image data different from the projection data of the projection display device PJ1 may be asynchronously sent from the projection image processing unit to the transmissive liquid crystal display element of the projection display device PJ2. In this way, while watching a movie on the projection display device PJ1, it is possible to view character information such as news that is not related to the movie from the projection display device PJ2.
 なお、上記詳細な説明で説明した事項は組み合わせることが可能である。 Note that the items described in the above detailed description can be combined.
 本発明は、投射光を反射する反射型スクリーン及びそれを備えた投射型表示装置の分野において広く利用可能である。 The present invention can be widely used in the field of a reflective screen that reflects projection light and a projection display device including the same.
10、20、30、40、50 反射型スクリーン
10a、20c、30c、40a、50a 矩形領域
12、22、32 拡散反射領域
14、24、34 再帰反射領域
15 コーナーキューブ
15xy、15yz、15zx 反射平板
16、18、28 配光特性
20a 後側シート
20b 前側シート
60 窓
PJ1、PJ2、PJ3 投射型表示装置
O1、O2、O3 観察者
10, 20, 30, 40, 50 Reflective screen 10a, 20c, 30c, 40a, 50a Rectangular area 12, 22, 32 Diffuse reflection area 14, 24, 34 Retroreflection area 15 Corner cube 15xy, 15yz, 15zx Reflective flat plate 16 , 18, 28 Light distribution characteristics 20a Rear sheet 20b Front sheet 60 Window PJ1, PJ2, PJ3 Projection display devices O1, O2, O3 Observer

Claims (16)

  1.  投射光を反射する反射型スクリーンであって、
     反射光の配光特性が異なる複数種類の反射領域を有すること
     を特徴とする反射型スクリーン。
    A reflective screen for reflecting the projected light,
    A reflective screen characterized by having a plurality of types of reflective regions having different light distribution characteristics of reflected light.
  2.  請求項1記載の反射型スクリーンであって、
     前記複数種類の反射領域は、
     前記投射光を拡散反射する拡散反射領域を有すること
     を特徴とする反射型スクリーン。
    The reflective screen according to claim 1,
    The plurality of types of reflection regions are:
    A reflection type screen having a diffuse reflection region for diffusing and reflecting the projection light.
  3.  請求項1又は2に記載の反射型スクリーンであって、
     前記複数種類の反射領域は、
     前記投射光を再帰反射する再帰反射領域を有すること
     を特徴とする反射型スクリーン。
    The reflective screen according to claim 1 or 2,
    The plurality of types of reflection regions are:
    A reflective screen comprising a retroreflective region that retroreflects the projection light.
  4.  請求3記載の反射型スクリーンであって、
     前記再帰反射領域は、配光異方性を有すること
     を特徴とする反射型スクリーン。
    A reflective screen according to claim 3,
    The retroreflective region has a light distribution anisotropy.
  5.  請求項4記載の反射型スクリーンであって、
     前記再帰反射領域は、
     前記配光異方性を有さない第1再帰反射領域と、前記配光異方性を有する第2再帰反射領域とを有すること
     を特徴とする反射型スクリーン。
    The reflective screen according to claim 4,
    The retroreflective region is
    A reflective screen comprising: a first retroreflective region having no light distribution anisotropy; and a second retroreflective region having the light distribution anisotropy.
  6.  請求項4又は5に記載の反射型スクリーンであって、
     前記配光異方性は、鉛直方向の配光角が水平方向の配光角より広いこと
     を特徴とする反射型スクリーン。
    The reflective screen according to claim 4 or 5,
    The reflection type screen, wherein the light distribution anisotropy is such that a vertical light distribution angle is wider than a horizontal light distribution angle.
  7.  請求項1乃至6のいずれか1項に記載の反射型スクリーンであって、
     前記複数種類の反射領域は混在して一様に分布していること
     を特徴とする反射型スクリーン。
    The reflective screen according to any one of claims 1 to 6,
    The reflection type screen characterized in that the plurality of types of reflection areas are mixed and distributed uniformly.
  8.  請求項7記載の反射型スクリーンであって、
     前記複数種類の反射領域の微小単位領域の大きさは、投射された画像の1画素の大きさよりも小さいこと
     を特徴とする反射型スクリーン。
    The reflective screen according to claim 7,
    The reflection type screen characterized in that the size of the minute unit area of the plurality of types of reflection areas is smaller than the size of one pixel of the projected image.
  9.  請求項7記載の反射型スクリーンであって、
     前記複数種類の反射領域の微小単位領域の大きさは、投射された画像の1画素の大きさにほぼ等しいこと
     を特徴とする反射型スクリーン。
    The reflective screen according to claim 7,
    The reflection type screen characterized in that the size of the minute unit area of the plurality of types of reflection areas is approximately equal to the size of one pixel of the projected image.
  10.  投射光を反射する反射型スクリーンであって、
     前記投射光を再帰反射する再帰反射領域と、
     入射光を透過させる光透過領域と
     を有することを特徴とする反射型スクリーン。
    A reflective screen for reflecting the projected light,
    A retroreflective region that retroreflects the projection light;
    A reflective screen, comprising: a light transmission region that transmits incident light.
  11.  請求項10記載の反射型スクリーンであって、
     前記再帰反射領域は、配光異方性を有すること
     を特徴とする反射型スクリーン。
    The reflective screen according to claim 10, wherein
    The retroreflective region has a light distribution anisotropy.
  12.  請求項11記載の反射型スクリーンであって、
     前記配光異方性は、鉛直方向の配光角が水平方向の配光角より広いこと
     を特徴とする反射型スクリーン。
    The reflective screen according to claim 11,
    The reflection type screen, wherein the light distribution anisotropy is such that a vertical light distribution angle is wider than a horizontal light distribution angle.
  13.  請求項10乃至12のいずれか1項に記載の反射型スクリーンであって、
     前記再帰反射領域と前記光透過領域は混在して一様に分布していること
     を特徴とする反射型スクリーン。
    The reflective screen according to any one of claims 10 to 12,
    The reflection type screen, wherein the retroreflection area and the light transmission area are mixed and distributed uniformly.
  14.  請求項13記載の反射型スクリーンであって、
     前記光透過領域の光入射平面と光射出平面はほぼ平行であること
     を特徴とする反射型スクリーン。
    The reflective screen according to claim 13,
    The reflection type screen, wherein a light incident plane and a light emission plane of the light transmission region are substantially parallel.
  15.  請求項14記載の反射型スクリーンであって、
     前記再帰反射領域を挟んで両側に前記光透過領域が配置されていること
     を特徴とする反射型スクリーン。
    The reflective screen according to claim 14, wherein
    The reflection type screen, wherein the light transmission regions are arranged on both sides of the retroreflection region.
  16.  表示素子に表示された画像を投射する投射光学部と、前記表示素子の各画素に画素データを送出する投射画像処理部とを備えた投射型表示装置であって、
     さらに、請求項1乃至15のいずれか1項に記載の反射型スクリーンを備えていること
     を特徴とする投射型表示装置。
    A projection type display device comprising: a projection optical unit that projects an image displayed on a display element; and a projection image processing unit that transmits pixel data to each pixel of the display element,
    Furthermore, the projection type display apparatus provided with the reflection type screen of any one of Claims 1 thru | or 15.
PCT/JP2012/078577 2011-11-10 2012-11-05 Reflective screen and projection display device provided with same WO2013069589A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-246761 2011-11-10
JP2011246761 2011-11-10

Publications (1)

Publication Number Publication Date
WO2013069589A1 true WO2013069589A1 (en) 2013-05-16

Family

ID=48289963

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/078577 WO2013069589A1 (en) 2011-11-10 2012-11-05 Reflective screen and projection display device provided with same

Country Status (1)

Country Link
WO (1) WO2013069589A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014115593A (en) * 2012-12-12 2014-06-26 Dainippon Printing Co Ltd Reflection screen and image display device
WO2015158999A1 (en) * 2014-04-16 2015-10-22 Commissariat A L'energie Atomique Et Aux Energies Alternatives System for displaying an image on a windshield
US20170059862A1 (en) * 2015-08-28 2017-03-02 Commissariat à I'énergie atomique et aux énergies alternatives Screen provided with retroreflective microstructures
JP2020122965A (en) * 2014-05-27 2020-08-13 ミラヴィズ,インコーポレイテッド Method for optimizing retroreflective display system

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02170150A (en) * 1988-12-23 1990-06-29 Sony Corp Reflection type screen
JPH0496041A (en) * 1990-08-13 1992-03-27 Kikuchi Kagaku Kenkyusho:Kk Projecting screen
JPH05150368A (en) * 1991-11-28 1993-06-18 Sony Corp Reflection type screen
JPH10186522A (en) * 1996-12-24 1998-07-14 Hitachi Ltd Directional reflection screen and picture display device
JP2000352784A (en) * 1999-06-11 2000-12-19 Hitachi Ltd Directional reflection screen and image display device
JP2001108939A (en) * 1999-10-07 2001-04-20 Hitachi Ltd Picture display device and screen
JP2006154143A (en) * 2004-11-26 2006-06-15 Olympus Corp Front projector system
JP2008216592A (en) * 2007-03-02 2008-09-18 Tadashi Yamauchi Image projection system and screen used therefor
JP2009122567A (en) * 2007-11-19 2009-06-04 Seiko Epson Corp Screen and projection system
JP2011095309A (en) * 2009-10-27 2011-05-12 Panasonic Electric Works Co Ltd Video display system, and illuminator
JP2011197674A (en) * 2010-03-17 2011-10-06 Seiko Epson Corp Display system and screen

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02170150A (en) * 1988-12-23 1990-06-29 Sony Corp Reflection type screen
JPH0496041A (en) * 1990-08-13 1992-03-27 Kikuchi Kagaku Kenkyusho:Kk Projecting screen
JPH05150368A (en) * 1991-11-28 1993-06-18 Sony Corp Reflection type screen
JPH10186522A (en) * 1996-12-24 1998-07-14 Hitachi Ltd Directional reflection screen and picture display device
JP2000352784A (en) * 1999-06-11 2000-12-19 Hitachi Ltd Directional reflection screen and image display device
JP2001108939A (en) * 1999-10-07 2001-04-20 Hitachi Ltd Picture display device and screen
JP2006154143A (en) * 2004-11-26 2006-06-15 Olympus Corp Front projector system
JP2008216592A (en) * 2007-03-02 2008-09-18 Tadashi Yamauchi Image projection system and screen used therefor
JP2009122567A (en) * 2007-11-19 2009-06-04 Seiko Epson Corp Screen and projection system
JP2011095309A (en) * 2009-10-27 2011-05-12 Panasonic Electric Works Co Ltd Video display system, and illuminator
JP2011197674A (en) * 2010-03-17 2011-10-06 Seiko Epson Corp Display system and screen

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014115593A (en) * 2012-12-12 2014-06-26 Dainippon Printing Co Ltd Reflection screen and image display device
WO2015158999A1 (en) * 2014-04-16 2015-10-22 Commissariat A L'energie Atomique Et Aux Energies Alternatives System for displaying an image on a windshield
US20170038585A1 (en) * 2014-04-16 2017-02-09 Commissariat à l'Energie Atomique et aux Energies Alternatives System for displaying an image on a windshield
US9977240B2 (en) 2014-04-16 2018-05-22 Commissariat à l'Energie Atomique et aux Energies Alternatives System for displaying an image on a windshield
US10585280B2 (en) 2014-04-16 2020-03-10 Commissariat À L'energie Atomique Et Aux Energies Alternative Method of manufacturing a screen comprising transparent portions and retroreflective portions
JP2020122965A (en) * 2014-05-27 2020-08-13 ミラヴィズ,インコーポレイテッド Method for optimizing retroreflective display system
US11099475B2 (en) 2014-05-27 2021-08-24 Mirraviz, Inc. Methods for optimizing retro-reflective display systems
US20170059862A1 (en) * 2015-08-28 2017-03-02 Commissariat à I'énergie atomique et aux énergies alternatives Screen provided with retroreflective microstructures
US9835860B2 (en) * 2015-08-28 2017-12-05 Commissariat à l'énergie atomique et aux énergies alternatives Screen provided with retroreflective microstructures
US9939639B2 (en) 2015-08-28 2018-04-10 Commissariat À L'energie Atomique Et Aux Énergies Alternatives Screen provided with retroreflective microstructures

Similar Documents

Publication Publication Date Title
US7562983B2 (en) Three-dimensional display device
US9715117B2 (en) Autostereoscopic three dimensional display
US8749722B2 (en) Display device displaying an image for a first viewpoint and an image for a second viewpoint
US8040617B2 (en) Real image display device with wide viewing angle
US5764411A (en) Apparatus for displaying an image
TWI581010B (en) Thin film type controlled viewing window back light unit and thin flat type controlled viewing window display using the same
US9274345B2 (en) Multiple view display
US20130114007A1 (en) Auto-stereoscopic multi-dimensional display component and display thereof
JP2014029356A (en) Light source device, display device, and electronic apparatus
JP5069360B2 (en) 3D display device
KR101258584B1 (en) Volumetric type 3-Dimension Image Display Device
JP2014511509A (en) Front projection glassless-free continuous 3D display
US20070139767A1 (en) Stereoscopic image display apparatus
JP4703477B2 (en) 3D display device
WO2013069589A1 (en) Reflective screen and projection display device provided with same
JP2002148561A (en) Stereoscopic display
JP2013104915A (en) Light source device, display device, and electronic apparatus
US7296901B2 (en) Projection display
JP5888742B2 (en) 3D display device
JP7497733B2 (en) Image display device
JP4747408B2 (en) Screen and 3D display system using it
WO2022249800A1 (en) Spatial floating image display device and light source device
JPWO2002025369A1 (en) Image display device
JPH08149520A (en) Stereoscopic video image display device
CN112399169A (en) Projection array type naked-eye 3D display system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12848615

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12848615

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP