WO2013069478A1 - Film-forming method - Google Patents

Film-forming method Download PDF

Info

Publication number
WO2013069478A1
WO2013069478A1 PCT/JP2012/077733 JP2012077733W WO2013069478A1 WO 2013069478 A1 WO2013069478 A1 WO 2013069478A1 JP 2012077733 W JP2012077733 W JP 2012077733W WO 2013069478 A1 WO2013069478 A1 WO 2013069478A1
Authority
WO
WIPO (PCT)
Prior art keywords
tabular grains
dispersion
film
substrate
tabular
Prior art date
Application number
PCT/JP2012/077733
Other languages
French (fr)
Japanese (ja)
Inventor
公明 宮本
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2013069478A1 publication Critical patent/WO2013069478A1/en

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/842Coating a support with a liquid magnetic dispersion
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D1/00Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/38Paints containing free metal not provided for above in groups C09D5/00 - C09D5/36
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/70Additives characterised by shape, e.g. fibres, flakes or microspheres
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/68Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent
    • G11B5/70Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer
    • G11B5/714Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the dimension of the magnetic particles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/016Additives defined by their aspect ratio
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles

Definitions

  • the present invention relates to a film forming method in which a plurality of tabular grains are arranged on a substrate while suppressing overlapping of each other, and in particular, an optical function, a photoelectric conversion function, or a filter function in which tabular grains select or absorb or reflect wavelengths.
  • the present invention relates to a film forming method for forming a functional film having various functions.
  • Patent Document 1 discloses an EL element provided with an optical sheet having a configuration in which flat particles having an average aspect ratio of 2 or more are dispersed in a transparent resin.
  • mica such as mascobite (muscovite), phlogopite (phlogopite), biotite (biotite), sericite (sericite), fluorine phlogopite (artificial mica), etc.
  • Patent Document 1 discloses that silver halides such as silver chloride, silver bromide, silver iodide, silver iodobromide, silver bromochloride, silver iodochloride and silver iodobromochloride whose shape is controlled in a flat shape as flat grains. Etc. are also disclosed.
  • Patent Document 2 discloses a hydrophilic film provided on a substrate, and the hydrophilic film is formed from fine particles containing a phyllosilicate dispersed in a film and a binder, and the binder is formed of a fine particle and a base. The material and the fine particles are joined together.
  • the phyllosilicate fine particles are flat particles having an aspect ratio of 3 or more.
  • Patent Document 2 since the flat particles are arranged and arranged in parallel with each other and in parallel with the substrate, the arrangement in which the hydroxyl groups are arranged on the surface can be maintained, so that hydrophilicity is maintained. It is disclosed.
  • Patent Documents 1 and 2 disclose that flat particles are used, but only flat particles are used, and these flat particles are arranged on the substrate without overlapping, and have a predetermined function. It does not form a functional film that develops. In recent years, attempts have been made to develop a predetermined function by uniformly arranging flat particles or tabular particles on a substrate so that they are not heavy.
  • Patent Document 3 discloses that a photoelectric conversion semiconductor layer is formed by a coating method using a dispersion containing tabular grains of CIS, CIGS, and CAIS. In Patent Document 3, it is estimated that the photoelectric conversion semiconductor layer is a film in which the photoelectric conversion semiconductor layer is densely packed and the photoelectric conversion efficiency is increased.
  • An object of the present invention is to provide a film forming method capable of solving the problems based on the prior art and arranging a plurality of tabular grains on a substrate while suppressing overlapping of each other.
  • the present invention is a film forming method in which a dispersion liquid containing tabular grains is applied to a substrate, and the dispersion liquid is dried to form a film, wherein the tabular grains have an aspect ratio of 1:
  • the contact angle with respect to the dispersion is 20 ° or less, and the ratio of the sum of the maximum projected areas of all tabular grains to the area of the substrate region coated with the dispersion is 0.5.
  • the following amounts of tabular grains are contained, and the dispersion provides a film forming method characterized in that the drying rate is 2 cm / s or less in terms of the change rate of the film thickness.
  • the ratio is ⁇ / V between the thickness ⁇ of the tabular grains and the drying speed V of the dispersion.
  • the time T is preferably T> 2.5 ⁇ 10 ⁇ 7 (s).
  • the present invention it is possible to form on the substrate a film in which a plurality of tabular grains having an aspect ratio of 1:10 or more are arranged in a state where they are suppressed from overlapping each other.
  • (A) is a schematic diagram for demonstrating a board
  • (b) is a schematic diagram which shows the liquid film formed with a dispersion liquid. It is a typical perspective view which shows an example of the film formed with the film-forming method of embodiment of this invention.
  • (A) is a schematic perspective view for demonstrating the force which acts on square tabular grain
  • (b) is a schematic diagram for demonstrating the force which acts on the end surface of square tabular grain
  • (C) is a schematic view for demonstrating the force which acts on the upper surface of a square tabular grain. It is a graph which shows the relationship between the contact angle in case a tabular grain is a square, and the acting force.
  • (A), (b) is a schematic diagram which shows the overlap of the tabular grain at the time of changing a contact angle.
  • (A) to (c) are schematic diagrams showing the overlap of tabular grains when the coverage is changed.
  • (A) to (c) are schematic views showing the overlap of tabular grains when the drying speed is changed.
  • the film forming method of the present invention is a method in which a dispersion containing tabular grains is used, and after coating this dispersion on a substrate, the dispersion is dried to form a film.
  • the tabular grains are randomly oriented in the dispersion before coating, and after the dispersion, coating, and after the drying, the capillary force acting on the tabular grains is within a certain range. It prevents particles from overlapping and becoming non-parallel to the substrate surface, and creates a highly regular layered structure.
  • the method for applying the dispersion is not particularly limited. For example, the spin coating method, the casting method, the roll coating method, the flow coating method, the printing method, the dip coating method, the casting film forming method, and the bar coating method. A gravure printing method or the like can be used.
  • the tabular grains have an aspect ratio of 1:10 or more.
  • the tabular grains have a contact angle with respect to the dispersion of 20 ° or less.
  • the tabular grains are contained in the dispersion in such an amount that the ratio of the sum of the maximum projected areas of all the tabular grains and the area of the substrate region coated with the dispersion is 0.5 or less.
  • the dispersion liquid preferably has a drying rate of 2 cm / s or less in terms of a change rate of the film thickness.
  • the method for drying the dispersion is not particularly limited as long as the rate of change in film thickness is preferably 2 cm / s or less, and natural drying, known drying methods, and the like can be used as appropriate. .
  • the aspect ratio of the tabular grains is defined by the thickness of the tabular grains: the representative diameter of the tabular grains.
  • the representative diameter of the tabular grains is the diameter of the inscribed circle.
  • Tabular grains do not include acicular grains. If the aspect ratio of the tabular grains is less than 1:10, the tabular grains become heavy, and the acceleration necessary for moving the tabular grains in the dispersion cannot be obtained. Further, it is difficult to produce tabular grains having an aspect ratio of 1:30 or more. For this reason, the upper limit of the aspect ratio is 1:30.
  • the thickness of the tabular grain is preferably 5 to 50 nm.
  • the ratio of the sum of the maximum projected areas of tabular grains and all tabular grains contained in the dispersion and the area of the substrate region coated with the dispersion is defined as the coverage.
  • the tabular grains are contained in the dispersion so that the coverage is 0.5 or less. If the coverage exceeds 0.5, the tabular grains are in a very dense state, so that even if the other definition of the film forming method of the present invention is satisfied, the overlap of the tabular grains cannot be avoided. For example, when the tabular grains in the dispersion liquid remain in the arrangement state and the dispersion liquid shrinks in the thickness direction, there are cases where overlap occurs due to the randomness of the arrangement.
  • the application area 12 to which the dispersion liquid is applied is called a substrate area.
  • the entire surface of the substrate 10 becomes the application region 12, that is, the substrate region.
  • the coverage is 0.05 or less, as long as the dispersion is well dispersed in the dispersion, no overlap due to randomness occurs. For this reason, the lower limit of the coverage is set to 0.05.
  • the shape of the tabular grains is triangular, quadrangular, or hexagonal, the ratio of the sum of the maximum projected areas of all tabular grains to the substrate region coated with the dispersion is 100% in a single layer without overlapping. Is the theoretical maximum. If the shape of the tabular grains is circular, the ratio of the sum of the maximum projected areas of all tabular grains to the substrate region coated with the dispersion is the theoretical maximum of 83% in a single layer with no overlap.
  • the dispersion is applied to the surface 10a of the substrate 10 to form a liquid film 14 as shown in FIG.
  • the liquid film 14 is preferably 2 cm / s or less at the rate of change of the film thickness d.
  • the changing speed of the film thickness d is the drying speed.
  • the film thickness d is the distance from the surface 10a of the substrate 10 to the surface of the liquid film 14 (liquid surface 14a).
  • the above-mentioned prescribed dispersion liquid is applied to the surface 10a of the substrate 10 to form a liquid film 14, and then the liquid film 14 composed of the dispersion liquid. Dry.
  • the tabular grains 16 are randomly oriented in the liquid film 14.
  • a coating film 20 having one layer disposed on the surface 10 a of the substrate 10 can be formed without a plurality of tabular grains 16 overlapping each other.
  • the area of the overlapping portion is treated as not overlapping tabular grains up to 5% of the sum of the maximum projected areas of all tabular grains.
  • the ratio at which the tabular grains overlap is called the stack rate. That is, when the stack rate is up to 5%, tabular grains are treated as not overlapping.
  • Component force F 21 of the force F 2 acts in a direction to raise the tabular grains 16
  • the component force F 22 acts in the direction along the tabular grains 16 in the upper surface 16b.
  • the component force F 11 and the component force F 22 are forces acting in the direction in which the overlap of the tabular grains 16 is removed.
  • various forces act on the upper tabular grains 16, and as a sum of these, a tensile force acts on the tabular grains 16 so that the overlap is removed.
  • the tensile force F acting on the upper tabular grains 16 is expressed by the following mathematical formula 1.
  • l (el) is the wet side length
  • is the surface tension
  • is the contact angle.
  • the contact angle can be adjusted by a combination of the tabular grain composition and the dispersion composition.
  • the dispersion is water, PVA (polyvinyl alcohol), PVP (polyvinyl pyrrolidone) or the like is adsorbed on the surface in order to reduce the contact angle.
  • the dispersion is a solvent, it is preferable to select an olefin having a small contact angle.
  • the upper tabular grains 16 are inclined obliquely, and the lower tabular grains as described above are formed by the meniscus M 1 (see FIG. 3 (b)) formed on the end face 16a.
  • a force that pulls the tabular grains 16 acts in the direction overlapping the grains 16, and acts in a direction to separate the tabular grains 16 from the lower tabular grains 16 by the meniscus M 2 (see FIG. 3C) formed on the upper surface 16 b of the tabular grains 16.
  • the power to do works.
  • the force acting in the direction away from the tabular grains 16 on the lower side is such that the liquid film 14 acts at a position that is 1 to 2 times the thickness of the tabular grains 16, so the tabular grains on the upper side of the liquid film 14 only during the thickness.
  • a force is applied to 16 in the direction away from the lower tabular grains 16.
  • the thickness of the tabular grains 16 is ⁇ (cm) and the drying speed of the liquid film 14 (dispersion) is V (cm / s)
  • the thickness ⁇ of the tabular grains 16 and the liquid film 14 (dispersion) is a preferable drying speed of 2 cm / s or less when the thickness ⁇ of the tabular grains 16 is 10 nm.
  • the upper and lower limits of time T (s) are defined by the upper and lower limits of the thickness of tabular grain 16.
  • the thickness of the tabular grains 16 is preferably 5 to 50 nm as described above. If the thickness of the tabular grain 16 is less than 5 nm, no meniscus is formed. On the other hand, when the thickness of the tabular grains exceeds 50 nm, the aspect ratio of the tabular grains is 1:10 or more, so that the grain diameter becomes large exceeding 500 nm.
  • a part of the tabular grains is in contact with the surface 10a of the substrate 10 and a part protrudes from the liquid film 14.
  • the liquid film 14 may dry without being tilted obliquely by Brownian motion and dragged by capillary force. In such a case, the overlap of tabular grains is difficult to be eliminated.
  • the particle was a metal flat plate having a size of 10 nm (thickness) ⁇ 110 nm (side length) ⁇ 110 nm (side length) and a specific gravity of 10.
  • This metal flat plate has an aspect ratio of 11.
  • the calculation area of the numerical analysis was set to 550 nm ⁇ 550 nm ⁇ 100 nm (depth). That is, the volume of the dispersion is 550 nm ⁇ 550 nm ⁇ 100 nm (depth).
  • the drying rate was the rate of change of the height of the calculation area.
  • the dispersion had a specific gravity of 1, a surface tension of 20 mN / m, a viscosity of 1 mPa ⁇ s, and a zeta potential of 80 mV.
  • the coverage, drying speed, contact angle, and friction coefficient were as shown in Table 1 below.
  • the number of particles contained in the dispersion is proportional to the coverage, and is 11 when the coverage is 0.5. Under the initial conditions, the calculation starts from the same three-dimensional arrangement. When the coverage is 0.3, the number of particles is 6, and when the coverage is 0.7, the number of particles is 15.
  • FIG. 5A shows the result when the contact angle is 45 °
  • FIG. 5B shows the result when the contact angle is 20 °.
  • the tabular grains overlap.
  • the tabular grains do not overlap when the contact angle is 20 °.
  • the overlap of the tabular grains is avoided by setting the contact angle to 20 °.
  • the coverage is 0.5 or less. Therefore, for the samples 110 to 112 using square tabular grains and changing the coverage of the square tabular grains, the overlap at the time of film formation was examined by numerical analysis. The results are shown in FIGS. 6 (a) to (c).
  • the same analysis method as the numerical analysis of the contact angle described above was used, and the same analysis conditions were used. For this reason, the detailed description about numerical analysis is abbreviate
  • the coverage, drying speed, contact angle, and friction coefficient were as shown in Table 2 below.
  • FIG. 6A shows the result when the coverage is 0.3
  • FIG. 6B shows the result when the coverage is 0.5
  • FIG. 6C shows the result when the coverage is 0.7.
  • FIGS. 6A to 6C when the coverage is 0.7, there is much overlap.
  • the coverage is 0.5
  • the overlap is significantly improved as compared with the coverage of 0.7.
  • the tabular grains do not overlap.
  • the overlap of tabular grains can be improved by setting the coverage to 0.5 or less.
  • Table 2 above since the contact angle is 45 °, the force for moving the tabular grains hardly works according to FIG. For this reason, it is thought that it overlapped when the coverage was 0.5.
  • the drying speed (change speed of the film thickness d of the liquid film 14 shown in FIG. 1B) is set to 2 cm / s or less. Therefore, for the samples 120 to 122 in which square tabular grains were used and the coverage of the square tabular grains was changed, the overlap at the time of film formation was examined by numerical analysis. The results are shown in FIGS. 7 (a) to (c).
  • the same analysis method as the numerical analysis of the contact angle described above was used, and the same analysis conditions were used. For this reason, the detailed description about numerical analysis is abbreviate
  • the coverage, drying speed, contact angle, and friction coefficient were as shown in Table 3 below.
  • FIG. 7A shows the result when the drying speed is 10 cm / s
  • FIG. 7B shows the result when the drying speed is 5 cm / s
  • FIG. 7C shows the result when the drying speed is 2 cm / s.
  • the tabular grain overlap is large when the drying speed is 5 cm / s and 10 cm / s.
  • the drying speed is 2 cm / s
  • the tabular grains do not overlap.
  • the overlap of tabular grains can be improved by setting the drying rate to 2 cm / s or less.
  • the film forming method of the present invention it is possible to form a single-layered film in which a plurality of tabular grains are arranged on a substrate while being prevented from overlapping each other.
  • the composition of the tabular grains and the like according to the function of the functional film are selected as appropriate so that the wavelength can be selected and absorbed or reflected, and the photoelectric conversion has the function of generating charges by optical absorption.
  • It can be set as the functional film or functional layer which has a function or a filter function and has various functions. Examples of the filter function include a color filter, an infrared reflection filter, and a projection screen.
  • a magnetic recording medium layer can be formed by the film forming method of the present invention.
  • a tabular magnetic body is used as the tabular grain
  • hexagonal ferrite is used as the tabular magnetic body.
  • the hexagonal ferrite include barium ferrite, strontium ferrite, lead ferrite, calcium ferrite substitutes, and Co substitutes.
  • Specific examples include magnetoplumbite-type barium ferrite and strontium ferrite, magnetoplumbite-type ferrite whose particle surface is coated with spinel, and magnetoplumbite-type barium ferrite and strontium ferrite partially containing a spinel phase.
  • Al, Si, S, Sc, Ti, V, Cr, Cu, Y, Mo, Rh, Pd, Ag, Sn, Sb, Te, Ba, Ta, W, Re, Au, Hg , Pb, Bi, La, Ce, Pr, Nd, P, Co, Mn, Zn, Ni, Sr, B, Ge, Nb, and Zr may be included.
  • an element such as Co—Zn, Co—Ti, Co—Ti—Zr, Co—Ti—Zn, Ni—Ti—Zn, Nb—Zn—Co, Sb—Zn—Co, or Nb—Zn is added. Things can be used. Some raw materials and manufacturing methods contain specific impurities.
  • a nonmagnetic support is used for the substrate.
  • the nonmagnetic support include known ones such as biaxially stretched polyethylene terephthalate, polyethylene naphthalate, polyamide, polyamideimide, and aromatic polyamide. Among these, polyethylene terephthalate, polyethylene naphthalate, or polyamide is used.
  • the tabular grain used for the film-forming method of this invention can be comprised with a metal compound.
  • the metal compound include a metal salt, a metal complex, and an organometallic compound.
  • the metal in the metal compound include silver, gold, platinum, palladium, copper, nickel, and cobalt, and among these, silver or gold is particularly preferable.
  • the acid that forms the metal salt may be either an inorganic acid or an organic acid.
  • hydrohalic acids such as nitric acid; hydrochloric acid, hydrobromic acid, hydroiodic acid, etc. are mentioned.
  • hydrohalic acids such as nitric acid; hydrochloric acid, hydrobromic acid, hydroiodic acid, etc. are mentioned.
  • an organic acid According to the objective, it can select suitably, For example, carboxylic acid, a sulfonic acid, etc. are mentioned.
  • Examples of the carboxylic acid include acetic acid, butyric acid, oxalic acid, stearic acid, behenic acid, lauric acid, and benzoic acid.
  • Examples of the sulfonic acid include methyl sulfonic acid.
  • Examples of the metal salt include silver nitrate, chloroauric acid, and chloroplatinic acid.
  • a chelating agent which forms a metal complex According to the objective, it can select suitably, For example, acetylacetonate, EDTA, etc. are mentioned.
  • the metal compound includes an acid of a halogenated complex of a metal ion (for example, chloroauric acid, chloroplatinic acid, etc.) and an alkali metal salt (for example, sodium chloroaurate, sodium tetrachloropalladate, etc.).
  • a metal ion for example, chloroauric acid, chloroplatinic acid, etc.
  • an alkali metal salt for example, sodium chloroaurate, sodium tetrachloropalladate, etc.
  • the tabular grains composed of the above-described metal compound have absorption derived from surface plasmon resonance from the visible range to the near infrared range, and exhibit a vivid color development. Therefore, a coloring material or a colorant such as an inkjet or a color filter, It can be used as an infrared absorbing material or an electromagnetic shielding material.
  • a photoelectric conversion layer can be formed by the film forming method of the present invention.
  • the tabular grains those having a CuAu type structure and having elements of Group Ib, Group IIIb and Group VIb of the short period type periodic table as components are used.
  • a specific element of Group Ib for example, at least one element selected from Cu and Ag is used.
  • the group IIIb element is, for example, at least one element selected from In, Ga, and Al.
  • the group VIb element is, for example, at least one element selected from S, Se, and Te.
  • Cu—In—S, Cu—In—Ga—S, Cu—In—Al—S, Cu—In—Ga—Se, Cu—In—Al—Se, and Ag—In— are preferable.
  • organic solvent for coating the tabular grains hydrophobic alkanes, alkenes, cycloalkanes, benzenes, amines, alcohols and the like are used.
  • those having a boiling point of 100 ° C. to 180 ° C. are difficult to dry during coating and are relatively easy to dry after coating.
  • octane, nonane, decane, dimethylcyclohexane, isopropylcyclohexane, cycloheptane, cyclooctane, toluene, xylene, p-ethyltoluene, ethylbenzene, 2-octaneamine, 1-butanol, 1-hexanol, 2-hexanol , 3-hexanol, 2-amino-1-butanol, and the like can be used.
  • a substrate on which a coating agent containing tabular grains is applied a glass substrate, a stainless steel substrate, or the like can be used.
  • a flexible substrate is used.
  • the substrate is preferably a flexible substrate in order to enable roll-to-roll manufacturing.
  • a polyimide base that can withstand temperatures up to about 400 ° C.
  • thin aluminum that can withstand temperatures up to about 500 ° C.
  • An anodized substrate made of a metal base material mainly composed of bismuth is used.
  • a photoelectric conversion semiconductor layer is formed by applying a coating agent containing tabular grains on a substrate, performing heat treatment at 200 ° C. to 470 ° C. in an inert gas atmosphere, and pressing at 5 MPa to 20 MPa.
  • the present invention is basically configured as described above.
  • the film forming method of the present invention has been described in detail above.
  • the present invention is not limited to the above-described embodiment, and various modifications or changes may be made without departing from the spirit of the present invention. is there.

Abstract

A film-forming method for forming a film by coating a substrate with a dispersion containing a tabular grain, and drying the dispersion. The tabular grain has an aspect ratio of 1:10 or more, and has a contact angle in relation to the dispersion of 20° or less. The dispersion includes the tabular grain in a quantity such that the ratio of the sum of the total grain projected area of all the tabular grain to the area of the substrate region coated with the dispersion is 0.5 or less. The drying speed of the dispersion is 2cm/s or less in terms of the rate of change of the film thickness.

Description

成膜方法Deposition method
 本発明は、基板上に複数の平板粒子を、互いに重なることを抑制して配置させる成膜方法に関し、特に、平板粒子が波長選択して吸収または反射する光学機能、光電変換機能、またはフィルター機能を有し、種々の機能を発現する機能膜を形成する成膜方法に関する。 The present invention relates to a film forming method in which a plurality of tabular grains are arranged on a substrate while suppressing overlapping of each other, and in particular, an optical function, a photoelectric conversion function, or a filter function in which tabular grains select or absorb or reflect wavelengths. The present invention relates to a film forming method for forming a functional film having various functions.
 現在、扁平粒子を用いて所定の機能を発揮する機能膜を形成することが種々なされている(特許文献1、2参照)。
 例えば、特許文献1には、透明樹脂中に平均アスペクト比が2以上の扁平粒子が分散されている構成の光学シートが設けられたEL素子が開示されている。
 特許文献1では、扁平粒子として、マスコバイト(白雲母)、フロゴバイト(金雲母)、バイオタイト(黒雲母)、セリサイト(絹雲母)、フッ素金雲母(人造雲母)等の雲母(マイカ)類、カオリン(クレー)、タルク(滑石)、モンモリロナイト等の他、薄片状の、酸化アルミニウム・酸化チタン・酸化亜鉛・酸化ケイ素やこれらを複合したもの、平板状の炭酸カルシウム等が例示されている。特許文献1には、扁平粒子として、平板状に形状制御された塩化銀、臭化銀、沃化銀、沃臭化銀、臭塩化銀、沃塩化銀、沃臭塩化銀等のハロゲン化銀等が用いられることも開示されている。
Currently, various functional films that exhibit a predetermined function using flat particles have been formed (see Patent Documents 1 and 2).
For example, Patent Document 1 discloses an EL element provided with an optical sheet having a configuration in which flat particles having an average aspect ratio of 2 or more are dispersed in a transparent resin.
In patent document 1, mica (mica) such as mascobite (muscovite), phlogopite (phlogopite), biotite (biotite), sericite (sericite), fluorine phlogopite (artificial mica), etc. In addition to kaolin (clay), talc (talc), montmorillonite, etc., flaky aluminum oxide / titanium oxide / zinc oxide / silicon oxide, a composite of these, and flat calcium carbonate are exemplified. Patent Document 1 discloses that silver halides such as silver chloride, silver bromide, silver iodide, silver iodobromide, silver bromochloride, silver iodochloride and silver iodobromochloride whose shape is controlled in a flat shape as flat grains. Etc. are also disclosed.
 特許文献2には、基材上に設けられた親水性膜が開示されており、この親水性膜は膜中に分散されたフィロケイ酸塩を含む微粒子とバインダーから形成され、バインダーが微粒子と基材および微粒子同士とを接合している。フィロ珪酸塩の微粒子は、アスペクト比が3以上の扁平粒子である。特許文献2では、扁平状粒子は、互いにほぼ平行に、かつ基板に平行に並ぶ形で配列し、積層するため、水酸基が表面に並んだ配列を維持できるため、親水性が保たれることが開示されている。 Patent Document 2 discloses a hydrophilic film provided on a substrate, and the hydrophilic film is formed from fine particles containing a phyllosilicate dispersed in a film and a binder, and the binder is formed of a fine particle and a base. The material and the fine particles are joined together. The phyllosilicate fine particles are flat particles having an aspect ratio of 3 or more. In Patent Document 2, since the flat particles are arranged and arranged in parallel with each other and in parallel with the substrate, the arrangement in which the hydroxyl groups are arranged on the surface can be maintained, so that hydrophilicity is maintained. It is disclosed.
特開2010-114026号公報JP 2010-1114026 A 特開2010-90461号公報JP 2010-90461 A 特開2011-192862号公報JP 2011-192862 A
 特許文献1、2には、扁平粒子を用いることは開示されているものの、単に扁平粒子を用いているだけであって、この扁平粒子を、基板上に重なることなく配置し、所定の機能を発現する機能膜を形成するものではない。近年では、基板上に扁平粒子または平板粒子が重さならいように、かつ均一に配置して、所定の機能を発現させることが試みられている。例えば、特許文献3には、CIS、CIGS、CAISの平板粒子を含む分散液を用いて塗布法により光電変換半導体層を形成することが開示されている。特許文献3では、光電変換半導体層が密に充填された膜となっており、光電変換効率が高くなったと推定されている。 Patent Documents 1 and 2 disclose that flat particles are used, but only flat particles are used, and these flat particles are arranged on the substrate without overlapping, and have a predetermined function. It does not form a functional film that develops. In recent years, attempts have been made to develop a predetermined function by uniformly arranging flat particles or tabular particles on a substrate so that they are not heavy. For example, Patent Document 3 discloses that a photoelectric conversion semiconductor layer is formed by a coating method using a dispersion containing tabular grains of CIS, CIGS, and CAIS. In Patent Document 3, it is estimated that the photoelectric conversion semiconductor layer is a film in which the photoelectric conversion semiconductor layer is densely packed and the photoelectric conversion efficiency is increased.
 しかしながら、LB膜のように液面上に粒子を整列させて引き上げる手法はあるものの、基板上に直接塗布して、基板上に粒子を重なることなく配置し、所定の機能を発現する機能膜を得る技術は確立されていない。
 また、球状粒子では十分な被覆率を得るためには粒子数を増やさねばならず、凝集して均一な膜が得られないという問題がある。また、球状粒子では粒径を大きくすると凝集しにくくなるが、膜が厚くなってしまい、薄膜化できないという問題がある。
However, although there is a method of aligning particles on the liquid surface and pulling up like a LB film, a functional film that directly coats on the substrate and arranges the particles on the substrate without overlapping to express a predetermined function. The technology to obtain is not established.
In addition, in order to obtain a sufficient coverage with spherical particles, the number of particles must be increased, and there is a problem that a uniform film cannot be obtained by aggregation. In addition, spherical particles are less likely to aggregate when the particle size is increased, but there is a problem that the film becomes thick and cannot be thinned.
 本発明の目的は、前記従来技術に基づく問題点を解消し、基板上に複数の平板粒子を、互いに重なることを抑制して配置させることができる成膜方法を提供することにある。 An object of the present invention is to provide a film forming method capable of solving the problems based on the prior art and arranging a plurality of tabular grains on a substrate while suppressing overlapping of each other.
 上記目的を達成するために、本発明は、平板粒子を含む分散液を基板に塗布し、分散液を乾燥させて被膜を形成する成膜方法であって、平板粒子は、アスペクト比が1:10以上であるとともに、分散液に対する接触角が20°以下であり、分散液には、全平板粒子の最大投影面積の和と分散液が塗布された基板領域の面積との比が0.5以下の量の平板粒子が含まれており、分散液は、乾燥速度が膜厚の変化速度で2cm/s以下であることを特徴とする成膜方法を提供するものである。 In order to achieve the above object, the present invention is a film forming method in which a dispersion liquid containing tabular grains is applied to a substrate, and the dispersion liquid is dried to form a film, wherein the tabular grains have an aspect ratio of 1: The contact angle with respect to the dispersion is 20 ° or less, and the ratio of the sum of the maximum projected areas of all tabular grains to the area of the substrate region coated with the dispersion is 0.5. The following amounts of tabular grains are contained, and the dispersion provides a film forming method characterized in that the drying rate is 2 cm / s or less in terms of the change rate of the film thickness.
 平板粒子の厚さをδ(cm)とし、分散液の乾燥速度をV(cm/s)とするとき、平板粒子の厚さδと分散液の乾燥速度Vとの比率δ/Vで表わされる時間Tは、T>2.5×10-7(s)であることが好ましい。 When the thickness of the tabular grains is δ (cm) and the drying speed of the dispersion is V (cm / s), the ratio is δ / V between the thickness δ of the tabular grains and the drying speed V of the dispersion. The time T is preferably T> 2.5 × 10 −7 (s).
 本発明によれば、基板上に、アスペクト比が1:10以上の平板粒子が複数、互いに重なることが抑制された状態で配置された被膜を形成することができる。 According to the present invention, it is possible to form on the substrate a film in which a plurality of tabular grains having an aspect ratio of 1:10 or more are arranged in a state where they are suppressed from overlapping each other.
(a)は、基板領域を説明するための模式図であり、(b)は、分散液により形成される液膜を示す模式図である。(A) is a schematic diagram for demonstrating a board | substrate area | region, (b) is a schematic diagram which shows the liquid film formed with a dispersion liquid. 本発明の実施形態の成膜方法で形成される被膜の一例を示す模式的斜視図である。It is a typical perspective view which shows an example of the film formed with the film-forming method of embodiment of this invention. (a)は、四角の平板粒子に作用する力を説明するための模式的斜視図であり、(b)は、四角の平板粒子の端面に作用する力を説明するための模式図であり、(c)は、四角の平板粒子の上面に作用する力を説明するための模式視図である。(A) is a schematic perspective view for demonstrating the force which acts on square tabular grain, (b) is a schematic diagram for demonstrating the force which acts on the end surface of square tabular grain, (C) is a schematic view for demonstrating the force which acts on the upper surface of a square tabular grain. 平板粒子が四角の場合の接触角と、作用する力との関係を示すグラフである。It is a graph which shows the relationship between the contact angle in case a tabular grain is a square, and the acting force. (a)、(b)は、接触角を変えた場合の平板粒子の重なりを示す模式図である。(A), (b) is a schematic diagram which shows the overlap of the tabular grain at the time of changing a contact angle. (a)~(c)は、被覆率を変えた場合の平板粒子の重なりを示す模式図である。(A) to (c) are schematic diagrams showing the overlap of tabular grains when the coverage is changed. (a)~(c)は、乾燥速度を変えた場合の平板粒子の重なりを示す模式図である。(A) to (c) are schematic views showing the overlap of tabular grains when the drying speed is changed.
 以下に、添付の図面に示す好適実施形態に基づいて、本発明の成膜方法を詳細に説明する。
 本発明の成膜方法は、平板粒子を含む分散液が用いられ、この分散液を基板に塗布した後、分散液を乾燥させて被膜を形成する方法である。
 本発明の成膜方法は、平板粒子が塗布前の分散液中ではランダムに配向しており、分散液、塗布後、乾燥終了までに平板粒子に働く毛管力をある範囲にすることで、平板粒子が重なり合って基板表面と非平行な状態になることを防ぎ、規則性の高い層状構造を作るものである。
 なお、分散液の塗布方法は、特に限定されるものではなく、例えば、スピンコート法、キャスト法、ロールコート法、フローコート法、プリント法、ディップコート法、流延成膜法、バーコート法、グラビア印刷法等を用いることができる。
Hereinafter, a film forming method of the present invention will be described in detail based on preferred embodiments shown in the accompanying drawings.
The film forming method of the present invention is a method in which a dispersion containing tabular grains is used, and after coating this dispersion on a substrate, the dispersion is dried to form a film.
In the film forming method of the present invention, the tabular grains are randomly oriented in the dispersion before coating, and after the dispersion, coating, and after the drying, the capillary force acting on the tabular grains is within a certain range. It prevents particles from overlapping and becoming non-parallel to the substrate surface, and creates a highly regular layered structure.
The method for applying the dispersion is not particularly limited. For example, the spin coating method, the casting method, the roll coating method, the flow coating method, the printing method, the dip coating method, the casting film forming method, and the bar coating method. A gravure printing method or the like can be used.
 本発明において、平板粒子は、アスペクト比が1:10以上である。また、平板粒子は、分散液に対する接触角が20°以下である。また、平板粒子は、分散液中に、全平板粒子の最大投影面積の和と分散液が塗布された基板領域の面積との比で0.5以下となる量含まれる。
 また、本発明において、分散液は、乾燥速度が膜厚の変化速度で2cm/s以下であることが好ましい。なお、分散液の乾燥方法は、好ましくは膜厚の変化速度で2cm/s以下とすることができれば、特に限定されるものではなく、自然乾燥、公知の乾燥方法等を適宜利用することができる。
In the present invention, the tabular grains have an aspect ratio of 1:10 or more. The tabular grains have a contact angle with respect to the dispersion of 20 ° or less. Further, the tabular grains are contained in the dispersion in such an amount that the ratio of the sum of the maximum projected areas of all the tabular grains and the area of the substrate region coated with the dispersion is 0.5 or less.
In the present invention, the dispersion liquid preferably has a drying rate of 2 cm / s or less in terms of a change rate of the film thickness. The method for drying the dispersion is not particularly limited as long as the rate of change in film thickness is preferably 2 cm / s or less, and natural drying, known drying methods, and the like can be used as appropriate. .
 平板粒子のアスペクト比は、平板粒子の厚さ:平板粒子の代表径で規定される。この平板粒子を代表径とは、内接円の直径である。なお、平板粒子に針状粒子は含まれない。
 平板粒子のアスペクト比が1:10未満では、平板粒子が重くなり、分散液内において平板粒子を移動させるに必要な加速度が得られない。また、平板粒子は、アスペクト比が1:30以上のものは生成が難しい。このため、アスペクト比の上限は1:30とする。
 なお、平板粒子の厚さは、5~50nmであることが好ましい。
The aspect ratio of the tabular grains is defined by the thickness of the tabular grains: the representative diameter of the tabular grains. The representative diameter of the tabular grains is the diameter of the inscribed circle. Tabular grains do not include acicular grains.
If the aspect ratio of the tabular grains is less than 1:10, the tabular grains become heavy, and the acceleration necessary for moving the tabular grains in the dispersion cannot be obtained. Further, it is difficult to produce tabular grains having an aspect ratio of 1:30 or more. For this reason, the upper limit of the aspect ratio is 1:30.
The thickness of the tabular grain is preferably 5 to 50 nm.
 本発明において、分散液中に含まれる平板粒子、全平板粒子の最大投影面積の和と分散液が塗布された基板領域の面積との比を、被覆率とする。上述のように、平板粒子は分散液に被覆率が0.5以下となる量含まれている。被覆率が0.5を超えると、平板粒子が極めて密集した状態であるため、本発明の成膜方法の他の規定を満たしても、平板粒子の重なりを回避できない。例えば、分散液中の平板粒子が配置状態のままで、分散液が厚み方向に収縮すると、配置のランダム性のために重なりが生じるものがある。 In the present invention, the ratio of the sum of the maximum projected areas of tabular grains and all tabular grains contained in the dispersion and the area of the substrate region coated with the dispersion is defined as the coverage. As described above, the tabular grains are contained in the dispersion so that the coverage is 0.5 or less. If the coverage exceeds 0.5, the tabular grains are in a very dense state, so that even if the other definition of the film forming method of the present invention is satisfied, the overlap of the tabular grains cannot be avoided. For example, when the tabular grains in the dispersion liquid remain in the arrangement state and the dispersion liquid shrinks in the thickness direction, there are cases where overlap occurs due to the randomness of the arrangement.
 ここで、図1(a)に示すように、基板10に分散液が塗布される場合、この分散液が塗布される塗布領域12のことを基板領域という。分散液が基板10の全面に塗布される場合には、基板10全面が、塗布領域12、すなわち、基板領域となる。
 また、被覆率が0.05以下であると、分散液中で、よく分散している限り、ランダム性に起因する重なりは生じない。このため、被覆率の下限値は、0.05とする。
 なお、平板粒子の形状が、三角形、四角形または六角形であれば、全平板粒子の最大投影面積の和が、分散液が塗布された基板領域に占める割合が、重なりのない1層では100%が理論最大である。平板粒子の形状が、円形であれば、全平板粒子の最大投影面積の和が、分散液が塗布された基板領域に占める割合は、重なりのない1層では83%が理論最大である。
Here, as shown in FIG. 1A, when the dispersion liquid is applied to the substrate 10, the application area 12 to which the dispersion liquid is applied is called a substrate area. When the dispersion liquid is applied to the entire surface of the substrate 10, the entire surface of the substrate 10 becomes the application region 12, that is, the substrate region.
In addition, when the coverage is 0.05 or less, as long as the dispersion is well dispersed in the dispersion, no overlap due to randomness occurs. For this reason, the lower limit of the coverage is set to 0.05.
If the shape of the tabular grains is triangular, quadrangular, or hexagonal, the ratio of the sum of the maximum projected areas of all tabular grains to the substrate region coated with the dispersion is 100% in a single layer without overlapping. Is the theoretical maximum. If the shape of the tabular grains is circular, the ratio of the sum of the maximum projected areas of all tabular grains to the substrate region coated with the dispersion is the theoretical maximum of 83% in a single layer with no overlap.
 分散液は、図1(b)に示すように、基板10の表面10aに塗布されて液膜14となる。この液膜14は、膜厚dの変化速度で2cm/s以下であることが好ましい。この膜厚dの変化速度が乾燥速度である。なお、膜厚dとは、基板10の表面10aから液膜14の表面(液面14a)までの距離のことである。 The dispersion is applied to the surface 10a of the substrate 10 to form a liquid film 14 as shown in FIG. The liquid film 14 is preferably 2 cm / s or less at the rate of change of the film thickness d. The changing speed of the film thickness d is the drying speed. The film thickness d is the distance from the surface 10a of the substrate 10 to the surface of the liquid film 14 (liquid surface 14a).
 本発明においては、例えば、図1(b)に示すように、基板10の表面10aに、上述の規定の分散液を塗布して液膜14とし、その後、分散液で構成される液膜14を乾燥させる。このとき、液膜14内では、平板粒子16がランダムに配向している。上述の規定の分散液および平板粒子とすることにより、塗布後から乾燥終了迄の間に液面14aが時間とともに下がっていく際、各平板粒子16には重なりが外れる方向に力が作用し、平板粒子16が重なり合って基板10の表面10aと非平行な状態になることが抑制される。これにより、例えば、図2に示すように、平板粒子16が複数互いに重なることなく、基板10の表面10aに配置された層を1層有する被膜20を形成することができる。
 なお、本発明においては、平板粒子が重なっている場合、その重なり部分の面積が、全平板粒子の最大投影面積の和の5%までは、平板粒子が重なっていないとして扱う。この平板粒子が重なる割合をスタック率という。すなわち、スタック率が5%までは、平板粒子が重なっていないとして扱う。
In the present invention, for example, as shown in FIG. 1B, the above-mentioned prescribed dispersion liquid is applied to the surface 10a of the substrate 10 to form a liquid film 14, and then the liquid film 14 composed of the dispersion liquid. Dry. At this time, the tabular grains 16 are randomly oriented in the liquid film 14. By using the above-mentioned prescribed dispersion and tabular grains, when the liquid surface 14a is lowered with time from the application to the end of drying, a force acts on each tabular grain 16 in the direction in which the overlap is removed, It is suppressed that the tabular grains 16 overlap and become non-parallel to the surface 10 a of the substrate 10. Thereby, for example, as shown in FIG. 2, a coating film 20 having one layer disposed on the surface 10 a of the substrate 10 can be formed without a plurality of tabular grains 16 overlapping each other.
In the present invention, when tabular grains are overlapped, the area of the overlapping portion is treated as not overlapping tabular grains up to 5% of the sum of the maximum projected areas of all tabular grains. The ratio at which the tabular grains overlap is called the stack rate. That is, when the stack rate is up to 5%, tabular grains are treated as not overlapping.
 以下、本発明の数値限定理由について詳細に説明する。
 まず、接触角の数値限定理由について詳細に説明する。
 図3(a)に示すように、例えば、液膜14の内で2つの四角の平板粒子16が重なっており、かつ上側の平板粒子16が液膜14の液面14aから一部が突出している状態において、上側の平板粒子16に作用する力と、接触角との関係を調べた。図3(a)に示すように、上側の平板粒子16は斜めに傾いている。
Hereinafter, the reason for limiting the numerical value of the present invention will be described in detail.
First, the reason for limiting the numerical value of the contact angle will be described in detail.
As shown in FIG. 3A, for example, two square tabular grains 16 overlap in the liquid film 14, and the upper tabular grains 16 partially protrude from the liquid surface 14a of the liquid film 14. In this state, the relationship between the force acting on the upper tabular grains 16 and the contact angle was examined. As shown in FIG. 3A, the upper tabular grains 16 are inclined obliquely.
 図3(b)に示すように、上側の平板粒子16の端面16aにメニスカスMが生じており、この端面16aにおいて液面14aと接する部分には、接触角φに沿う力Fが作用する。この力Fの分力F11が平板粒子16を引っ張る方向に作用し、分力F12が平板粒子16を下げる方向に作用する。
 また、図3(c)に示すように、上側の平板粒子16の上面16bにメニスカスMが生じており、この上面16bにおいて液面14aと接する部分には、接触角φに沿う力Fが作用する。この力Fの分力F21が平板粒子16を上げる方向に作用し、分力F22が平板粒子16を上面16bに沿う方向に作用する。分力F11と分力F22が、平板粒子16の重なりが外れる方向に作用する力である。
 このように、上側の平板粒子16には種々の力が作用するが、これらの総和として、平板粒子16には重なりが外れるように引張力が作用する。この上側の平板粒子16に作用する引張力Fは、下記数式1により表わされる。なお、下記数式1において、l(エル)は濡れ辺長、σは表面張力、φは接触角である。
As shown in FIG. 3 (b), and the meniscus M 1 on the end face 16a of the upper tabular grains 16 occurs, the portion in contact with the liquid surface 14a in the end face 16a, the force F 1 along the contact angle φ is acting To do. The component force F 11 of the force F 1 acts in the direction of pulling the tabular grains 16, and the component force F 12 acts in the direction of lowering the tabular grains 16.
Further, as shown in FIG. 3C, a meniscus M 2 is formed on the upper surface 16b of the upper tabular grain 16, and the force F 2 along the contact angle φ is applied to the portion of the upper surface 16b in contact with the liquid surface 14a. Act. Component force F 21 of the force F 2 acts in a direction to raise the tabular grains 16, the component force F 22 acts in the direction along the tabular grains 16 in the upper surface 16b. The component force F 11 and the component force F 22 are forces acting in the direction in which the overlap of the tabular grains 16 is removed.
As described above, various forces act on the upper tabular grains 16, and as a sum of these, a tensile force acts on the tabular grains 16 so that the overlap is removed. The tensile force F acting on the upper tabular grains 16 is expressed by the following mathematical formula 1. In the following formula 1, l (el) is the wet side length, σ is the surface tension, and φ is the contact angle.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 上記数式1において、引張力Fをσlで割って無次元化すると、上側の平板粒子16に作用する力は、接触角φに依存する。その結果を図4に示す。図4に示すように、接触角φが45°以下で、平板粒子16の重なりが外れる方向に力が働く。接触角が20°以下になると平板粒子16の重なりが外れる方向に力がより働く。このため、本発明において、平板粒子16の液膜14、すなわち、分散液との接触角を20°以下とする。このように、接触角を20°以下とすることにより、平板粒子16を移動させる力がより働き、平板粒子16の重なりを回避することができる。 In Formula 1 above, if the tensile force F is divided by σl to make it dimensionless, the force acting on the upper tabular grains 16 depends on the contact angle φ. The result is shown in FIG. As shown in FIG. 4, when the contact angle φ is 45 ° or less, a force acts in a direction in which the tabular grains 16 are not overlapped. When the contact angle is 20 ° or less, the force acts more in the direction in which the tabular grains 16 are separated from each other. For this reason, in this invention, the contact angle with the liquid film 14 of the tabular grain 16, ie, a dispersion liquid, shall be 20 degrees or less. Thus, by setting the contact angle to 20 ° or less, the force for moving the tabular grains 16 works more, and the overlap of the tabular grains 16 can be avoided.
 なお、接触角は、平板粒子の組成と、分散液の組成との組み合わせにより、接触角を調整することができる。
 分散液が水の場合には、接触角を小さくするために、PVA(ポリビニルアルコール)、PVP(ポリビニルピロリドン)等を表面に吸着させる。また、分散液が溶剤の場合、接触角が小さいオレフィンを選択することが好ましい。
The contact angle can be adjusted by a combination of the tabular grain composition and the dispersion composition.
When the dispersion is water, PVA (polyvinyl alcohol), PVP (polyvinyl pyrrolidone) or the like is adsorbed on the surface in order to reduce the contact angle. When the dispersion is a solvent, it is preferable to select an olefin having a small contact angle.
 ここで、図3(a)に示すように、上側の平板粒子16は斜めに傾いており、端面16aにできるメニスカスM(図3(b)参照)により、上述のように下側の平板粒子16と重なる方向に平板粒子16を引張る力が働き、平板粒子16の上面16bにできるメニスカスM(図3(c)参照)により平板粒子16を下側の平板粒子16から離す方向に作用する力が働く。下側の平板粒子16から離す方向に作用する力は、液膜14が平板粒子16の厚さの1~2倍のところで働くことから、液膜14がその厚さの間だけ上側の平板粒子16に下側の平板粒子16から離す方向に力が働く。
 そこで、平板粒子16の厚さをδ(cm)とし、液膜14(分散液)の乾燥速度をV(cm/s)とするとき、平板粒子16の厚さδと液膜14(分散液)の乾燥速度Vとの比率δ/Vで表わされる時間T(s)は、平板粒子16の厚さδが10nmのとき、好ましい乾燥速度は2cm/s以下であることから、時間T=10(nm)/(2cm/s)=5×10-7(s)が限度になる。よって、時間T>5×10-7(s)、すなわち、時間T>50(μs)となる。
Here, as shown in FIG. 3 (a), the upper tabular grains 16 are inclined obliquely, and the lower tabular grains as described above are formed by the meniscus M 1 (see FIG. 3 (b)) formed on the end face 16a. A force that pulls the tabular grains 16 acts in the direction overlapping the grains 16, and acts in a direction to separate the tabular grains 16 from the lower tabular grains 16 by the meniscus M 2 (see FIG. 3C) formed on the upper surface 16 b of the tabular grains 16. The power to do works. The force acting in the direction away from the tabular grains 16 on the lower side is such that the liquid film 14 acts at a position that is 1 to 2 times the thickness of the tabular grains 16, so the tabular grains on the upper side of the liquid film 14 only during the thickness. A force is applied to 16 in the direction away from the lower tabular grains 16.
Accordingly, when the thickness of the tabular grains 16 is δ (cm) and the drying speed of the liquid film 14 (dispersion) is V (cm / s), the thickness δ of the tabular grains 16 and the liquid film 14 (dispersion) The time T (s) represented by the ratio δ / V with the drying speed V of) is a preferable drying speed of 2 cm / s or less when the thickness δ of the tabular grains 16 is 10 nm. The limit is (nm) / (2 cm / s) = 5 × 10 −7 (s). Therefore, time T> 5 × 10 −7 (s), that is, time T> 50 (μs).
 なお、時間T(s)の上限および下限は、平板粒子16の厚さの上限および下限により規定される。
 ここで、平板粒子16の厚さは、上述のように5~50nmが好ましい。平板粒子16の厚さが5nm未満では、メニスカスが形成されない。
 一方、平板粒子の厚さが50nmを超えると、平板粒子のアスペクト比が1:10以上であるため、粒子径が500nmを超える大きなものとなる。このとき、図1(b)に示すように液膜14を基板10の表面10aに形成した初期状態で、平板粒子の一部が基板10の表面10aに接し、一部が液膜14から突出したような直立状態であると、ブラウン運動で斜めに傾くこともなく、毛管力で引きずられることなく液膜14が乾いてしまうことがある。このような場合、平板粒子の重なりが解消されにくい。
 このように、平板粒子16の厚さの上限値(最大値)は50nmであり、時間T=25×10-7(s)、すなわち、時間T=250(μs)が上限値となる。
 一方、平板粒子16の厚さの下限値(最小値)は5nmであり、時間T=2.5×10-7(s)、すなわち、時間T=25(μs)が下限値となる。
The upper and lower limits of time T (s) are defined by the upper and lower limits of the thickness of tabular grain 16.
Here, the thickness of the tabular grains 16 is preferably 5 to 50 nm as described above. If the thickness of the tabular grain 16 is less than 5 nm, no meniscus is formed.
On the other hand, when the thickness of the tabular grains exceeds 50 nm, the aspect ratio of the tabular grains is 1:10 or more, so that the grain diameter becomes large exceeding 500 nm. At this time, in the initial state in which the liquid film 14 is formed on the surface 10a of the substrate 10 as shown in FIG. 1B, a part of the tabular grains is in contact with the surface 10a of the substrate 10 and a part protrudes from the liquid film 14. In such an upright state, the liquid film 14 may dry without being tilted obliquely by Brownian motion and dragged by capillary force. In such a case, the overlap of tabular grains is difficult to be eliminated.
Thus, the upper limit (maximum value) of the thickness of the tabular grains 16 is 50 nm, and the time T = 25 × 10 −7 (s), that is, the time T = 250 (μs) is the upper limit.
On the other hand, the lower limit (minimum value) of the thickness of the tabular grain 16 is 5 nm, and the time T = 2.5 × 10 −7 (s), that is, the time T = 25 (μs) is the lower limit.
 さらに、接触角について、四角の平板粒子を用い、この四角の平板粒子の接触角を変えたサンプル100およびサンプル101を用いて、数値解析により、被膜形成時の重なりを調べた。その結果を図5(a)、(b)に示す。
 数値解析には、「メソシミュレーションコンソーシアム」が配布した、SNAP-Lver2.2.1というシミュレーター((財)総合研究奨励会)を用いた。下記数式2に示すような熱揺動項を追加したナビエストークスの式と、それぞれの粒子に働く、粘弾性接触力、トルク、毛管力、静電力、分子間力、および粘性抵抗による運動方程式を組み合わせて解いた。下記数式2(ナビエストークスの式)は、時間偏微分方程式であり、その計算時間ステップを10-12秒とした。
Further, regarding the contact angle, square tabular grains were used, and the overlap at the time of film formation was examined by numerical analysis using Sample 100 and Sample 101 in which the contact angles of the square tabular grains were changed. The results are shown in FIGS. 5 (a) and 5 (b).
For the numerical analysis, a simulator called “SNAP-Lver 2.2.1” distributed by the “Meso Simulation Consortium” was used. Naviestokes' formula with the addition of thermal fluctuation term as shown in the following formula 2 and equations of motion by viscoelastic contact force, torque, capillary force, electrostatic force, intermolecular force, and viscous resistance acting on each particle. Solved by combining. The following formula 2 (Naviestokes formula) is a time partial differential equation, and the calculation time step is 10 −12 seconds.
 粒子は、大きさが10nm(厚さ)×110nm(辺の長さ)×110nm(辺の長さ)の金属平板とし、比重を10とした。この金属平板は、アスペクト比が11である。なお、計算可視化上、粒子の結合で表現される。
 数値解析の計算領域は、550nm×550nm×100nm(深さ)とした。すなわち、分散液の体積が550nm×550nm×100nm(深さ)である。乾燥速度は、計算領域の高さの変化速度とした。
The particle was a metal flat plate having a size of 10 nm (thickness) × 110 nm (side length) × 110 nm (side length) and a specific gravity of 10. This metal flat plate has an aspect ratio of 11. In addition, for calculation visualization, it is expressed as a combination of particles.
The calculation area of the numerical analysis was set to 550 nm × 550 nm × 100 nm (depth). That is, the volume of the dispersion is 550 nm × 550 nm × 100 nm (depth). The drying rate was the rate of change of the height of the calculation area.
 分散液は、比重を1とし、表面張力を20mN/mとし、粘度を1mPa・sとし、ゼーター電位を80mVとした。
 数値解析条件のうち、被覆率、乾燥速度、接触角、および摩擦係数は下記表1に示す条件とした。
 分散液の含まれる粒子数は、被覆率に比例しており、被覆率が0.5のとき11ヶであり、初期条件では配置は3次元的に同一のものから計算を開始する。なお、被覆率が0.3では粒子数は6ヶ、被覆率が0.7では粒子数は15ヶである。
The dispersion had a specific gravity of 1, a surface tension of 20 mN / m, a viscosity of 1 mPa · s, and a zeta potential of 80 mV.
Of the numerical analysis conditions, the coverage, drying speed, contact angle, and friction coefficient were as shown in Table 1 below.
The number of particles contained in the dispersion is proportional to the coverage, and is 11 when the coverage is 0.5. Under the initial conditions, the calculation starts from the same three-dimensional arrangement. When the coverage is 0.3, the number of particles is 6, and when the coverage is 0.7, the number of particles is 15.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 図5(a)は接触角が45°の結果であり、(b)は接触角が20°の結果である。
 図5(a)に示すように接触角が45°では、平板粒子が重なっている。一方、図5(b)に示すように接触角が20°では、平板粒子の重なっていない。このように、接触角を20°とすることにより、平板粒子の重なりが回避されている。
FIG. 5A shows the result when the contact angle is 45 °, and FIG. 5B shows the result when the contact angle is 20 °.
As shown in FIG. 5A, when the contact angle is 45 °, the tabular grains overlap. On the other hand, as shown in FIG. 5B, the tabular grains do not overlap when the contact angle is 20 °. Thus, the overlap of the tabular grains is avoided by setting the contact angle to 20 °.
 次に、被覆率の数値限定理由について詳細に説明する。
 本発明においては、被覆率を0.5以下としている。そこで、四角の平板粒子を用い、この四角の平板粒子の被覆率を変えたサンプル110~112について、数値解析により、被膜形成時の重なりを調べた。その結果を図6(a)~(c)に示す。
 数値解析については、上述の接触角の数値解析と同様の解析方法を用い、同様の解析条件とした。このため、数値解析についての詳細な説明は省略する。なお、数値解析条件のうち、被覆率、乾燥速度、接触角、および摩擦係数は下記表2に示す条件とした。
Next, the reason for limiting the numerical value of the coverage will be described in detail.
In the present invention, the coverage is 0.5 or less. Therefore, for the samples 110 to 112 using square tabular grains and changing the coverage of the square tabular grains, the overlap at the time of film formation was examined by numerical analysis. The results are shown in FIGS. 6 (a) to (c).
For the numerical analysis, the same analysis method as the numerical analysis of the contact angle described above was used, and the same analysis conditions were used. For this reason, the detailed description about numerical analysis is abbreviate | omitted. Of the numerical analysis conditions, the coverage, drying speed, contact angle, and friction coefficient were as shown in Table 2 below.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 図6(a)は被覆率が0.3の結果であり、(b)は被覆率が0.5の結果であり、(c)は被覆率が0.7の結果である。図6(a)~(c)に示すように、被覆率が0.7では、重なりが多い。一方、被覆率が0.5では、被覆率が0.7のものよりも、重なりが大幅に改善されている。さらには、被覆率が0.3では、平板粒子が重なっていない。このように、被覆率を0.5以下とすることにより、平板粒子の重なりを改善することができる。
 なお、上記表2に示すように、接触角が45°であることから、図4によると、平板粒子を動かす力が、ほとんど働かない。このため、被覆率が0.5では重なってしまったと考えられる。
FIG. 6A shows the result when the coverage is 0.3, FIG. 6B shows the result when the coverage is 0.5, and FIG. 6C shows the result when the coverage is 0.7. As shown in FIGS. 6A to 6C, when the coverage is 0.7, there is much overlap. On the other hand, when the coverage is 0.5, the overlap is significantly improved as compared with the coverage of 0.7. Furthermore, when the coverage is 0.3, the tabular grains do not overlap. Thus, the overlap of tabular grains can be improved by setting the coverage to 0.5 or less.
As shown in Table 2 above, since the contact angle is 45 °, the force for moving the tabular grains hardly works according to FIG. For this reason, it is thought that it overlapped when the coverage was 0.5.
 次に、乾燥速度の数値限定理由について詳細に説明する。
 本発明においては、乾燥速度(図1(b)に示す液膜14の膜厚dの変化速度)を2cm/s以下としている。そこで、四角の平板粒子を用い、この四角の平板粒子の被覆率を変えたサンプル120~122について、数値解析により、被膜形成時の重なりを調べた。その結果を図7(a)~(c)に示す。
 数値解析については、上述の接触角の数値解析と同様の解析方法を用い、同様の解析条件とした。このため、数値解析についての詳細な説明は省略する。なお、数値解析条件のうち、被覆率、乾燥速度、接触角、および摩擦係数は下記表3に示す条件とした。
Next, the reason for limiting the numerical value of the drying speed will be described in detail.
In the present invention, the drying speed (change speed of the film thickness d of the liquid film 14 shown in FIG. 1B) is set to 2 cm / s or less. Therefore, for the samples 120 to 122 in which square tabular grains were used and the coverage of the square tabular grains was changed, the overlap at the time of film formation was examined by numerical analysis. The results are shown in FIGS. 7 (a) to (c).
For the numerical analysis, the same analysis method as the numerical analysis of the contact angle described above was used, and the same analysis conditions were used. For this reason, the detailed description about numerical analysis is abbreviate | omitted. Of the numerical analysis conditions, the coverage, drying speed, contact angle, and friction coefficient were as shown in Table 3 below.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 図7(a)は乾燥速度が10cm/sの結果であり、(b)は乾燥速度が5cm/sの結果であり、(c)は乾燥速度が2cm/sの結果である。図7(a)~(c)に示すように、乾燥速度が5cm/s、および10cm/sでは、平板粒子の重なりが多い。一方、乾燥速度が2cm/sでは、平板粒子が重なっていない。このように、乾燥速度を2cm/s以下とすることにより、平板粒子の重なりを改善することができる。 FIG. 7A shows the result when the drying speed is 10 cm / s, FIG. 7B shows the result when the drying speed is 5 cm / s, and FIG. 7C shows the result when the drying speed is 2 cm / s. As shown in FIGS. 7 (a) to 7 (c), the tabular grain overlap is large when the drying speed is 5 cm / s and 10 cm / s. On the other hand, when the drying speed is 2 cm / s, the tabular grains do not overlap. Thus, the overlap of tabular grains can be improved by setting the drying rate to 2 cm / s or less.
 本発明の成膜方法によれば、複数の平板粒子を基板上に、互いに重なることが抑制されて配置された一層構造の被膜を形成することができる。この被膜については、平板粒子の組成等を機能膜の機能に応じたものが適宜選択することにより、波長選択して吸収または反射する光学機能、光学的吸収により電荷を生成する機能を有する光電変換機能、またはフィルター機能を備えた、種々の機能を有する機能膜または機能層とすることができる。このフィルター機能を有するものとしては、例えば、色フィルター、赤外反射フィルター、およびプロジェクションスクリーン等である。 According to the film forming method of the present invention, it is possible to form a single-layered film in which a plurality of tabular grains are arranged on a substrate while being prevented from overlapping each other. For this coating, the composition of the tabular grains and the like according to the function of the functional film are selected as appropriate so that the wavelength can be selected and absorbed or reflected, and the photoelectric conversion has the function of generating charges by optical absorption. It can be set as the functional film or functional layer which has a function or a filter function and has various functions. Examples of the filter function include a color filter, an infrared reflection filter, and a projection screen.
 本発明の成膜方法により、例えば、磁気記録媒体層を形成することができる。この場合、平板粒子には平板状磁性体が用いられ、この平板状磁性体としては、六方晶フェライトが用いられる。六方晶フェライトとしては、バリウムフェライト、ストロンチウムフェライト、鉛フェライト、カルシウムフェライトの各置換体、Co置換体等がある。具体的にはマグネトプランバイト型のバリウムフェライトおよびストロンチウムフェライト、スピネルで粒子表面を被覆したマグネトプランバイト型フェライト、更に一部スピネル相を含有したマグネトプランバイト型のバリウムフェライトおよびストロンチウムフェライト等が挙げられ、その他所定の原子以外にAl、Si、S、Sc、Ti、V、Cr、Cu、Y、Mo、Rh、Pd、Ag、Sn、Sb、Te、Ba、Ta、W、Re、Au、Hg、Pb、Bi、La、Ce、Pr、Nd、P、Co、Mn、Zn、Ni、Sr、B、Ge、Nb、およびZr等の原子を含んでもかまわない。一般にはCo-Zn、Co-Ti、Co-Ti-Zr、Co-Ti-Zn、Ni-Ti-Zn、Nb-Zn-Co、Sb-Zn-Co、またはNb-Zn等の元素を添加した物を使用することができる。原料・製法によっては特有の不純物を含有するものもある。 For example, a magnetic recording medium layer can be formed by the film forming method of the present invention. In this case, a tabular magnetic body is used as the tabular grain, and hexagonal ferrite is used as the tabular magnetic body. Examples of the hexagonal ferrite include barium ferrite, strontium ferrite, lead ferrite, calcium ferrite substitutes, and Co substitutes. Specific examples include magnetoplumbite-type barium ferrite and strontium ferrite, magnetoplumbite-type ferrite whose particle surface is coated with spinel, and magnetoplumbite-type barium ferrite and strontium ferrite partially containing a spinel phase. Other than the predetermined atoms, Al, Si, S, Sc, Ti, V, Cr, Cu, Y, Mo, Rh, Pd, Ag, Sn, Sb, Te, Ba, Ta, W, Re, Au, Hg , Pb, Bi, La, Ce, Pr, Nd, P, Co, Mn, Zn, Ni, Sr, B, Ge, Nb, and Zr may be included. In general, an element such as Co—Zn, Co—Ti, Co—Ti—Zr, Co—Ti—Zn, Ni—Ti—Zn, Nb—Zn—Co, Sb—Zn—Co, or Nb—Zn is added. Things can be used. Some raw materials and manufacturing methods contain specific impurities.
 平板状磁性体層においては、基板に非磁性支持体が用いられる。この非磁性体支持体としては、二軸延伸を行ったポリエチレンテレフタレート、ポリエチレンナフタレート、ポリアミド、ポリアミドイミド、および芳香族ポリアミド等の公知のものが挙げられる。これらの中でもポリエチレンテレフタレート、ポリエチレンナフタレート、またはポリアミドが用いられる。 In the flat magnetic layer, a nonmagnetic support is used for the substrate. Examples of the nonmagnetic support include known ones such as biaxially stretched polyethylene terephthalate, polyethylene naphthalate, polyamide, polyamideimide, and aromatic polyamide. Among these, polyethylene terephthalate, polyethylene naphthalate, or polyamide is used.
 また、本発明の成膜方法に用いられる平板粒子は、金属化合物で構成することができる。この金属化合物としては、例えば、金属塩、金属錯体、および有機金属化合物等である。
 金属化合物における金属としては、例えば、銀、金、白金、パラジウム、銅、ニッケル、およびコバルト等が挙げられ、これらの中でも、銀または金が特に好ましい。金属塩を形成する酸としては、無機酸および有機酸のいずれであってもよい。無機酸としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、硝酸;塩酸、臭化水素酸、ヨウ化水素酸等のハロゲン化水素酸等が挙げられる。有機酸としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、カルボン酸、スルホン酸等が挙げられる。
Moreover, the tabular grain used for the film-forming method of this invention can be comprised with a metal compound. Examples of the metal compound include a metal salt, a metal complex, and an organometallic compound.
Examples of the metal in the metal compound include silver, gold, platinum, palladium, copper, nickel, and cobalt, and among these, silver or gold is particularly preferable. The acid that forms the metal salt may be either an inorganic acid or an organic acid. There is no restriction | limiting in particular as an inorganic acid, According to the objective, it can select suitably, For example, hydrohalic acids, such as nitric acid; hydrochloric acid, hydrobromic acid, hydroiodic acid, etc. are mentioned. There is no restriction | limiting in particular as an organic acid, According to the objective, it can select suitably, For example, carboxylic acid, a sulfonic acid, etc. are mentioned.
 カルボン酸としては、例えば、酢酸、酪酸、シュウ酸、ステアリン酸、ベヘン酸、ラウリン酸、および安息香酸等が挙げられる。
 スルホン酸としては、例えば、メチルスルホン酸等が挙げられる。金属塩としては、例えば、硝酸銀、塩化金酸、および塩化白金酸等が挙げられる。
 金属錯体を形成するキレート剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、アセチルアセトナート、およびEDTA等が挙げられる。また、上記の金属塩と配位子とで錯体を形成してもよく、この配位子としては、例えば、イミダゾール、ピリジン、およびフェニルメチルスルフィド等が挙げられる。
 なお、金属化合物には、金属イオンのハロゲン化錯体の酸(例えば、塩化金酸、塩化白金酸等)、およびアルカリ金属塩(例えば、塩化金酸ナトリウム、テトラクロロパラジウム酸ナトリウム等)も含まれる。
Examples of the carboxylic acid include acetic acid, butyric acid, oxalic acid, stearic acid, behenic acid, lauric acid, and benzoic acid.
Examples of the sulfonic acid include methyl sulfonic acid. Examples of the metal salt include silver nitrate, chloroauric acid, and chloroplatinic acid.
There is no restriction | limiting in particular as a chelating agent which forms a metal complex, According to the objective, it can select suitably, For example, acetylacetonate, EDTA, etc. are mentioned. Moreover, you may form a complex with said metal salt and a ligand, and examples of this ligand include imidazole, pyridine, and phenylmethyl sulfide.
In addition, the metal compound includes an acid of a halogenated complex of a metal ion (for example, chloroauric acid, chloroplatinic acid, etc.) and an alkali metal salt (for example, sodium chloroaurate, sodium tetrachloropalladate, etc.). .
 上述の金属化合物で構成された平板粒子は、可視域から近赤外域に表面プラズモン共鳴由来の吸収を有しており、鮮やかな発色を示すため、インクジェット、カラーフィルタ等の色材もしくは着色剤、赤外線吸収材料、または電磁波遮蔽材料等として利用することができる。 The tabular grains composed of the above-described metal compound have absorption derived from surface plasmon resonance from the visible range to the near infrared range, and exhibit a vivid color development. Therefore, a coloring material or a colorant such as an inkjet or a color filter, It can be used as an infrared absorbing material or an electromagnetic shielding material.
 さらには、本発明の成膜方法により、例えば、光電変換層を形成することができる。この場合、平板粒子には、CuAu型構造を有し、短周期型周期律表第Ib族、第IIIb族および第VIb族の元素を成分として有するものが用いられる。
 第Ib族の具体的な元素としては、例えば、CuおよびAgから選ばれる少なくとも1種の元素である。第IIIb族の元素としては、例えば、In、GaおよびAlから選ばれる少なくとも1種の元素である。第VIb族の元素としては、例えば、S、SeおよびTeから選ばれる少なくとも1種の元素である。これらの中で、好ましくは、Cu-In-S、Cu-In-Ga-S、Cu-In-Al-S、Cu-In-Ga-Se、Cu-In-Al-Se、Ag-In-S、Ag-In-Se、Ag-In-Ga-Se、Ag-In-Al-Se、Ag-Ga-TeおよびAg-Ga-Al-Teの組合せである。
Furthermore, for example, a photoelectric conversion layer can be formed by the film forming method of the present invention. In this case, as the tabular grains, those having a CuAu type structure and having elements of Group Ib, Group IIIb and Group VIb of the short period type periodic table as components are used.
As a specific element of Group Ib, for example, at least one element selected from Cu and Ag is used. The group IIIb element is, for example, at least one element selected from In, Ga, and Al. The group VIb element is, for example, at least one element selected from S, Se, and Te. Among these, Cu—In—S, Cu—In—Ga—S, Cu—In—Al—S, Cu—In—Ga—Se, Cu—In—Al—Se, and Ag—In— are preferable. A combination of S, Ag—In—Se, Ag—In—Ga—Se, Ag—In—Al—Se, Ag—Ga—Te, and Ag—Ga—Al—Te.
 平板粒子を塗布するための有機溶媒としては、疎水性のアルカン類、アルケン類、シクロアルカン類、ベンゼン類、アミン類およびアルコール類等が用いられる。好ましくは、塗布中は乾燥しにくく、塗布後に乾燥が比較的容易である、沸点100℃~180℃のものが望ましい。具体的には、オクタン、ノナン、デカン、ジメチルシクロヘキサン、イソプロピルシクロヘキサン、シクロヘプタン、シクロオクタン、トルエン、キシレン、p-エチルトルエン、エチルベンゼン、2-オクタンアミン、1-ブタノール、1-ヘキサノール、2-ヘキサノール、3-ヘキサノール、または2-アミノ-1-ブタノール等を用いることができる。 As the organic solvent for coating the tabular grains, hydrophobic alkanes, alkenes, cycloalkanes, benzenes, amines, alcohols and the like are used. Preferably, those having a boiling point of 100 ° C. to 180 ° C. are difficult to dry during coating and are relatively easy to dry after coating. Specifically, octane, nonane, decane, dimethylcyclohexane, isopropylcyclohexane, cycloheptane, cyclooctane, toluene, xylene, p-ethyltoluene, ethylbenzene, 2-octaneamine, 1-butanol, 1-hexanol, 2-hexanol , 3-hexanol, 2-amino-1-butanol, and the like can be used.
 平板粒子を含む塗布剤が塗布される基板としては、ガラス基板、およびステンレス基板等を用いることができる。これ以外に、フレキシブル基板が用いられる。基板としては、ロール・ツー・ロール製造を可能とするためフレキシブル基板であることが好ましく、この場合、400℃程度までの温度に耐えられるポリイミドベース、500℃程度までの温度に耐えられる肉薄のアルミニウムを主成分とした金属基材の陽極酸化基板等が用いられる。
 基板上に平板粒子を含む塗布剤を塗布し、不活性ガス雰囲気下、200℃~470℃で加熱処理後、5MPa~20MPaでプレスすることにより、光電変換半導体層が形成される。
As a substrate on which a coating agent containing tabular grains is applied, a glass substrate, a stainless steel substrate, or the like can be used. In addition, a flexible substrate is used. The substrate is preferably a flexible substrate in order to enable roll-to-roll manufacturing. In this case, a polyimide base that can withstand temperatures up to about 400 ° C., and thin aluminum that can withstand temperatures up to about 500 ° C. An anodized substrate made of a metal base material mainly composed of bismuth is used.
A photoelectric conversion semiconductor layer is formed by applying a coating agent containing tabular grains on a substrate, performing heat treatment at 200 ° C. to 470 ° C. in an inert gas atmosphere, and pressing at 5 MPa to 20 MPa.
 本発明は、基本的に以上のように構成されるものである。以上、本発明の成膜方法について詳細に説明したが、本発明は上記実施形態に限定されず、本発明の主旨を逸脱しない範囲において、種々の改良または変更をしてもよいのはもちろんである。 The present invention is basically configured as described above. The film forming method of the present invention has been described in detail above. However, the present invention is not limited to the above-described embodiment, and various modifications or changes may be made without departing from the spirit of the present invention. is there.
 10 基板
 12 基板領域
 14 液膜
 16 平板粒子
10 substrate 12 substrate region 14 liquid film 16 tabular grain

Claims (3)

  1.  平板粒子を含む分散液を基板に塗布し、前記分散液を乾燥させて被膜を形成する成膜方法であって、
     前記平板粒子は、アスペクト比が1:10以上であるとともに、前記分散液に対する接触角が20°以下であり、
     前記分散液には、全平板粒子の最大投影面積の和と前記分散液が塗布された基板領域の面積との比が0.5以下の量の前記平板粒子が含まれており、
     前記分散液は、乾燥速度が膜厚の変化速度で2cm/s以下であることを特徴とする成膜方法。
    A film forming method in which a dispersion containing tabular grains is applied to a substrate, and the dispersion is dried to form a film,
    The tabular grains have an aspect ratio of 1:10 or more and a contact angle with respect to the dispersion of 20 ° or less.
    The dispersion includes the tabular grains in an amount of a ratio of the sum of the maximum projected areas of all the tabular grains and the area of the substrate region coated with the dispersion of 0.5 or less,
    The film forming method, wherein the dispersion liquid has a drying rate of 2 cm / s or less as a change rate of the film thickness.
  2.  前記平板粒子の厚さをδ(cm)とし、前記分散液の乾燥速度をV(cm/s)とするとき、前記平板粒子の厚さδと前記分散液の乾燥速度Vとの比率δ/Vで表わされる時間Tは、T>2.5×10-7(s)である請求項1に記載の成膜方法。 When the thickness of the tabular grains is δ (cm) and the drying speed of the dispersion is V (cm / s), the ratio of the thickness δ of the tabular grains and the drying speed V of the dispersion δ / 2. The film forming method according to claim 1, wherein the time T represented by V is T> 2.5 × 10 −7 (s).
  3.  前記平板粒子の形状は、三角形、四角形または六角形である請求項1または2に記載の成膜方法。
     
    The film forming method according to claim 1, wherein the tabular grain has a triangular, quadrangular, or hexagonal shape.
PCT/JP2012/077733 2011-11-11 2012-10-26 Film-forming method WO2013069478A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-247135 2011-11-11
JP2011247135A JP2013103152A (en) 2011-11-11 2011-11-11 Film-forming method

Publications (1)

Publication Number Publication Date
WO2013069478A1 true WO2013069478A1 (en) 2013-05-16

Family

ID=48289858

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/077733 WO2013069478A1 (en) 2011-11-11 2012-10-26 Film-forming method

Country Status (3)

Country Link
JP (1) JP2013103152A (en)
TW (1) TW201332667A (en)
WO (1) WO2013069478A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04275376A (en) * 1991-03-01 1992-09-30 Teikoku Piston Ring Co Ltd Pigment for aquatic actifouling paint and aquatic antifouling paint composition
JP2004519545A (en) * 2001-01-30 2004-07-02 ザ、プロクター、エンド、ギャンブル、カンパニー Coatings for modifying hard surfaces and methods of applying the same
JP2006095358A (en) * 2004-09-28 2006-04-13 Sk Kaken Co Ltd Film forming method
JP2010253362A (en) * 2009-04-23 2010-11-11 Toyota Motor Corp Method of estimating pigment orientation state

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04275376A (en) * 1991-03-01 1992-09-30 Teikoku Piston Ring Co Ltd Pigment for aquatic actifouling paint and aquatic antifouling paint composition
JP2004519545A (en) * 2001-01-30 2004-07-02 ザ、プロクター、エンド、ギャンブル、カンパニー Coatings for modifying hard surfaces and methods of applying the same
JP2006095358A (en) * 2004-09-28 2006-04-13 Sk Kaken Co Ltd Film forming method
JP2010253362A (en) * 2009-04-23 2010-11-11 Toyota Motor Corp Method of estimating pigment orientation state

Also Published As

Publication number Publication date
JP2013103152A (en) 2013-05-30
TW201332667A (en) 2013-08-16

Similar Documents

Publication Publication Date Title
CN101060922B (en) Colloidal photonic crystals using colloidal nanoparticles and method for preparation thereof
Boudreau et al. Deposition of oriented zeolite A films: in situ and secondary growth
CN107085255B (en) Optical member and method for producing same
Jaber et al. 2D assembly of gold–PNIPAM core–shell nanocrystals
JP5967099B2 (en) Optical reflection film and optical reflector using the same
Liu et al. The vertical deposition self-assembly process and the formation mechanism of poly (styrene-co-methacrylic acid) photonic crystals on polyester fabrics
JP5939257B2 (en) Near-infrared shielding film and near-infrared shielding body
Ge et al. Colloidal inks from bumpy colloidal nanoparticles for the assembly of ultrasmooth and uniform structural colors
TW201700283A (en) Layer-by-layer assembled multilayer lamination transfer films
US20230084516A1 (en) Plasmonic Nanoparticle Layers with Controlled Orientation
Wang et al. Spherical antireflection coatings by large-area convective assembly of monolayer silica microspheres
WO2017066795A2 (en) Microsphere-based coatings for radiative cooling under direct sunlight
Yu et al. Quasi-static motion of microparticles at the depinning contact line of an evaporating droplet on PDMS surface
Lee et al. Uniform coating of self-assembled noniridescent colloidal nanostructures using the Marangoni effect and polymers
ES2677703T3 (en) Precursor solutions of nanocomposites derived from a solution
Okubo et al. Drying dissipative structures of the thermosensitive gels of poly (N-isopropyl acrylamide) on a cover glass
WO2013069478A1 (en) Film-forming method
Fleury et al. Transparent coatings made from spray deposited colloidal suspensions
KR20180111192A (en) Two dimensional hybrid nanopatternd structures through spontaneous self-assembly of plasmonic nanoparticles on a hydrogel colloidal crystal monolayer
TWI404637B (en) Inkjet recording media
US20150024177A1 (en) Method of fabricating single crystal colloidal monolayer on substrate and display device comprising the substrate
Zhu et al. Si wire supported MnO2/Al/fluorocarbon 3D core/shell nanoenergetic arrays with long-term storage stability
Okubo et al. Kinetic aspects in the drying dissipative crack patterns of colloidal crystals
Tolstoy et al. Ordered honeycomb-like network of MnO2· nH2O nanocrystals formed on the surface of a Mn (OAc) 2 solution drop upon interaction with O3 gas
Kim et al. Multilayer film deposition of Ag and SiO2 nanoparticles using a spin coating process

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12848054

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12848054

Country of ref document: EP

Kind code of ref document: A1