WO2013069438A1 - Fixed constant-velocity universal joint - Google Patents

Fixed constant-velocity universal joint Download PDF

Info

Publication number
WO2013069438A1
WO2013069438A1 PCT/JP2012/077189 JP2012077189W WO2013069438A1 WO 2013069438 A1 WO2013069438 A1 WO 2013069438A1 JP 2012077189 W JP2012077189 W JP 2012077189W WO 2013069438 A1 WO2013069438 A1 WO 2013069438A1
Authority
WO
WIPO (PCT)
Prior art keywords
track groove
joint
track
center
joint member
Prior art date
Application number
PCT/JP2012/077189
Other languages
French (fr)
Japanese (ja)
Inventor
健太 山崎
博康 蛭川
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Priority to EP12847560.5A priority Critical patent/EP2778454B1/en
Priority to CN201280054894.1A priority patent/CN103917797B/en
Priority to US14/351,651 priority patent/US9206855B2/en
Publication of WO2013069438A1 publication Critical patent/WO2013069438A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/16Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts
    • F16D3/24Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts comprising balls, rollers, or the like between overlapping driving faces, e.g. cogs, on both coupling parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/16Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts
    • F16D3/20Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members
    • F16D3/22Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts
    • F16D3/223Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts the rolling members being guided in grooves in both coupling parts
    • F16D3/2233Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts the rolling members being guided in grooves in both coupling parts where the track is made up of two curves with a point of inflexion in between, i.e. S-track joints
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/16Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts
    • F16D3/20Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members
    • F16D3/22Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts
    • F16D3/223Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts the rolling members being guided in grooves in both coupling parts
    • F16D3/224Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts the rolling members being guided in grooves in both coupling parts the groove centre-lines in each coupling part lying on a sphere
    • F16D3/2245Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts the rolling members being guided in grooves in both coupling parts the groove centre-lines in each coupling part lying on a sphere where the groove centres are offset from the joint centre
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/16Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts
    • F16D3/20Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members
    • F16D3/22Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts
    • F16D3/223Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts the rolling members being guided in grooves in both coupling parts
    • F16D2003/22306Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts the rolling members being guided in grooves in both coupling parts having counter tracks, i.e. ball track surfaces which diverge in opposite directions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/16Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts
    • F16D3/20Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members
    • F16D3/22Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts
    • F16D3/223Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts the rolling members being guided in grooves in both coupling parts
    • F16D2003/22309Details of grooves

Definitions

  • the present invention relates to a fixed type constant velocity universal joint, and more particularly, to a fixed type constant velocity universal joint that is used in a power transmission system of an automobile or various industrial machines and allows only angular displacement between two axes of a driving side and a driven side. About.
  • a sliding constant velocity universal joint that allows angular displacement and axial displacement is usually incorporated on the inboard side (differential side), and on the outboard side (wheel side). Incorporates a fixed constant velocity universal joint that allows only angular displacement.
  • the constant velocity universal joint 101 is an eight-ball type Zepper type constant velocity universal joint, and mainly includes an outer joint member 102, an inner joint member 103, a ball 104, and a cage 105. Eight track grooves 107 are formed on the spherical inner peripheral surface 106 of the outer joint member 102 at equal intervals in the circumferential direction and along the axial direction.
  • Track grooves 109 facing the track grooves 107 of the outer joint member 102 are formed on the spherical outer peripheral surface 108 of the inner joint member 103 at equal intervals in the circumferential direction and along the axial direction.
  • a ball 104 is disposed between the track grooves 107 and 109 that make a pair of the outer joint member 102 and the inner joint member 103 (facing each other in the radial direction).
  • a cage 105 that holds the balls 104 at predetermined intervals in the circumferential direction is disposed.
  • the outer periphery of the outer joint member 102 and the outer periphery of the shaft connected to the inner joint member 103 are covered with boots, and grease is enclosed as a lubricant inside the joint (not shown).
  • the center of curvature of the peripheral surface 113 is formed at the joint center O.
  • the curvature center Oo of the ball track center line x of the track groove 107 of the outer joint member 102 and the curvature center Oi of the ball track center line y of the track groove 109 of the inner joint member 103 are relative to the joint center O. Are offset equally on both sides in the axial direction.
  • the maximum operating angle ⁇ max which is the main function of the fixed type constant velocity universal joint 101, causes interference between the inlet chamfer 110 provided at the open end (inner peripheral edge) of the outer joint member 102 and the shaft 111.
  • the shaft diameter d of the shaft 111 is determined for each joint size in order to ensure an allowable transmission torque. If the entrance chamfer 110 is made large, the length of the track groove 107 (hereinafter referred to as “effective track length”) of the outer joint member 102 with which the ball 104 comes into contact is insufficient, and the ball 104 falls off the track groove 107 and rotates. Torque cannot be transmitted.
  • the maximum operating angle ⁇ max is about 47 °.
  • the 8-ball type constant velocity universal joint described above has a smaller track offset, a larger number of balls, and a smaller diameter than the conventional 6-ball type constant velocity universal joint.
  • each wedge angle formed between the track grooves 107 and 109 forming a pair of the outer joint member 102 and the inner joint member 103 in an operating angle of 0 ° is open toward the opening side of the outer joint member 102.
  • the spherical contact portions 106 and 112 of the outer joint member 102 and the cage 105 and the spherical contact portions 108 and 113 of the inner joint member 103 and the cage 105 are caused by the axial force acting on the ball 104 from the track grooves 107 and 109.
  • the load that acts on the is generated in a certain direction. Therefore, there is a limit to further increasing efficiency and reducing heat generation.
  • FIG. 16A is a longitudinal sectional view of the constant velocity universal joint 121 in a state where the operating angle is 0 °
  • FIG. 16B is a schematic diagram showing a state where the constant velocity universal joint 121 has a high operating angle.
  • the constant velocity universal joint 121 mainly includes an outer joint member 122, an inner joint member 123, a ball 124, and a cage 125.
  • the constant velocity universal joint 121 has a plane including the ball track center line x of the eight track grooves 127 of the outer joint member 122 and the joint center O with respect to the joint axis nn.
  • the track grooves 127 are inclined and formed in opposite directions with the track grooves 127 adjacent to each other in the circumferential direction.
  • the ball track center line y of the track groove 129 of the inner joint member 123 is perpendicular to the joint axis nn including the joint center O at the operating angle of 0 ° (including the joint center O at the operating angle of 0 °).
  • the plane is formed in a mirror image symmetry with the ball trajectory center line x of the track groove 127 to be a pair of the outer joint member 122 with respect to the plane (P) extending in the direction of
  • the track groove 127 formed on the spherical inner peripheral surface 126 of the outer joint member 122 extends in an arc shape along the axial direction, and the center of curvature thereof is located at the joint center O.
  • the track groove 129 formed on the spherical outer peripheral surface 128 of the inner joint member 123 extends in an arc shape along the axial direction, and the center of curvature thereof is located at the joint center O.
  • Balls 124 are interposed at the intersections of the track grooves 127 and 129 forming a pair of the outer joint member 122 and the inner joint member 123 (opposing in the radial direction).
  • a cage 125 that holds the balls 124 at predetermined intervals in the circumferential direction is disposed.
  • the center of curvature of the spherical outer peripheral surface 132 of the cage 125 fitting with the spherical inner peripheral surface 126 of the outer joint member 122 and the spherical inner peripheral surface 133 of the cage 125 fitting with the spherical outer peripheral surface 128 of the inner joint member 123 are , Both are formed at the joint center O.
  • the center of curvature of the ball track center lines x and y of the paired track grooves 127 and 129 is not offset in the axial direction with respect to the joint center O, but forms a pair.
  • the track grooves 127 and 129 intersect, and the ball 124 is interposed at the intersecting portion.
  • the track grooves 127 and 129 of the joint members 122 and 123 are adjacent to each other in the circumferential direction and are inclined in opposite directions.
  • a force in the opposite direction from the ball 124 acts on the pocket portion 125 a adjacent to the circumferential direction of the cage 125.
  • the cage 125 is stabilized at the joint center O position by the forces in the opposite directions.
  • the above-described track groove intersection type fixed constant velocity universal joint 121 is excellent as a low heat generation joint, as shown in FIG. 16B, when the inlet chamfer 130 of the outer joint member 122 is enlarged, the curvature of the track groove 127 is increased. Due to the structure in which the center coincides with the joint center O, the effective track length of the track groove 127 of the outer joint member 122 is insufficient, and the ball 124 drops off from the track groove 127 when the high operating angle ⁇ is taken. There is a problem that the operating angle cannot be achieved.
  • FIGS. 12a and 12b A longitudinal sectional view and a front view of the constant velocity universal joint are shown in FIGS. 12a and 12b, respectively.
  • the track groove 147 of the outer joint member 142 includes a joint center O in a state where the operating angle is 0 °, and is a plane (joint joint) perpendicular to the joint axis nn.
  • the back side and the opening side with respect to the center plane are arc-shaped track grooves 147a and linear track grooves 147b with the joint center O as the center of curvature, respectively.
  • the track groove 149 of the inner joint member 143 has an arcuate track groove 149a and a straight track groove 149b with the joint center O as the center of curvature at the opening side and the back side of the joint center plane, respectively. It is what.
  • the track grooves 147 and 149 are inclined in the circumferential direction with respect to the joint axis line, and the inclination directions are adjacent to each other in the track grooves 147A, 147B and 149A and 149B adjacent to each other in the circumferential direction. It is formed in the opposite direction.
  • Balls 144 are disposed at the intersections of the track grooves 147A, 149A and 147B, 149B forming a pair of the outer joint member 142 and the inner joint member 143.
  • the wedge angle formed between the track grooves 147A and 149A and the direction between the opening 147B and 149B are formed.
  • the direction in which the wedge angle opens is opposite to each other, and a force in a direction opposite to the ball 144 acts on the pocket portion 145a adjacent to the circumferential direction of the cage 145, so that the cage 145 is stable at the joint center O position.
  • each ball 144 Since the track grooves 147 and 149 and the ball 144 are normally in contact with each other at a contact angle (about 30 ° to 45 °), the track grooves 147 and 149 and the ball 144 are connected to each other as shown in FIG.
  • the track grooves 147 and 149 are in contact with each other at a position indicated by a broken line on the side surface side of the track grooves 147 and 149 slightly apart from the groove bottom of 149.
  • each ball 144 When the joint takes an operating angle, each ball 144 has a wedge angle component (not shown) due to the intersection of the track grooves 147 and 149 and a wedge angle due to the joint radial expansion between the groove bottoms of the track grooves 147 and 149. Both components ⁇ act.
  • the wedge angle component ⁇ due to the joint radial expansion between the groove bottoms of the track grooves 147 and 149 is in the phase ranges of 0 ° to 90 ° and 270 ° to 360 ° in FIG. Is located between the linear track grooves 147b and 149b, and a force toward the opening acts on the ball 144 in this phase range due to the wedge angle component ⁇ 1 that opens toward the opening.
  • the ball 144 in the phase range of 90 ° to 270 ° is positioned between the arc-shaped track grooves 147a and 149a, the ball in this phase range has a wedge angle component ⁇ 2 generated by the radial expansion of the joint.
  • each of the outer joint member and the inner joint member has a track groove in order to improve efficiency by reducing torque loss and heat generation.
  • An arc-shaped first track groove portion that can form an intersecting portion (intersecting track) in cooperation with the side is provided to cover a range of frequently used operating angles, and each of the track grooves of both joint members has a first
  • the present inventors have arrived at a novel idea of providing a second track groove portion having a shape different from that of the one track groove portion to cover a range of a high operating angle that is less frequently used.
  • the idea is to offset the center of curvature of the arc-shaped first track groove portion to the opening side with respect to the joint center in order to increase the effective track length with respect to the maximum operating angle and to increase the operating angle. did.
  • the present invention created to achieve the above object includes an outer joint member having a plurality of track grooves extending in the axial direction on a spherical inner peripheral surface and having an opening side and a back side spaced apart in the axial direction, and a spherical shape. Torque is transmitted by interposing between the outer joint member track groove and the inner joint member track groove formed on the outer peripheral surface with a plurality of track grooves paired with the outer joint member track groove.
  • a fixed type comprising a plurality of balls and a cage having a spherical outer peripheral surface and a spherical inner peripheral surface that hold the balls and fit to the spherical inner peripheral surface of the outer joint member and the spherical outer peripheral surface of the inner joint member, respectively.
  • the track groove of the outer joint member includes a first track groove portion located on the back side and a second track groove portion located on the opening side, and the first track groove portion is located on the opening side with respect to the joint center.
  • Offset A circular arc shape having a center of curvature at the position and is inclined in the circumferential direction with respect to the axis of the joint, and the inclined directions are formed in opposite directions in the first track groove portions adjacent to each other in the circumferential direction.
  • the track groove portion has a different shape from the first track groove portion in order to increase the effective track length with respect to the maximum operating angle, and is connected to the first track groove portion on the opening side from the joint center.
  • the groove is characterized in that it is formed mirror-symmetrically with the track groove that forms a pair of the outer joint member with reference to the joint center plane in the state where the operating angle is 0 °.
  • the “joint axis” means a longitudinal axis serving as the center of rotation of the joint, and indicates a joint axis NN in an embodiment described later.
  • the “joint center plane in a state where the operating angle is 0 °” is a plane including the joint center and extending in a direction orthogonal to the axis of the joint in a state where the operating angle is 0 °.
  • the second track groove portion for increasing the effective track length provided on the opening side is connected to the first track groove portion on the opening side from the joint center (inner joint joint).
  • the second track groove portion provided on the back side is connected to the first track groove portion on the back side from the joint center). That is, in the fixed type constant velocity universal joint according to the present invention, the formation of the first track groove portion that forms a cross track excellent in the effect of suppressing torque loss or the like as compared with the constant velocity universal joint 141 shown in FIG. It means that the range is expanded. Therefore, high efficiency can be achieved by suppressing torque loss and heat generation in the normal operating angle range.
  • the arc-shaped first track groove portion has a center of curvature that is offset toward the opening side with respect to the joint center, this offset amount is effective in suppressing torque loss and the like obtained by adopting the above-described configuration.
  • the efficiency of the joint By appropriately adjusting within a range where (the efficiency of the joint) is not impaired, it is possible to effectively increase the length of the second track groove portion (effective track length) and increase the operating angle. Therefore, according to the present invention, it is possible to realize a fixed type constant velocity universal joint that can take a high operating angle while having low torque loss and heat generation, high efficiency, and excellent durability.
  • this angle ⁇ is used.
  • the angle ⁇ can be set to 3 to 10 ° to be widely used for various types of vehicles.
  • the angle ⁇ is defined as the smallest angle formed by the straight line on the joint center plane when the operating angle is 0 °.
  • the center of curvature of the first track groove portion may be disposed on an inclined axis N′-N ′ inclined in the circumferential direction with respect to the joint axis NN (see FIG. 4 and FIG. 5). Further, it may be arranged at a position offset in the radial direction with respect to the tilt axis N′-N ′ (see FIG. 10).
  • the track groove depth on the back side of the joint can be adjusted according to the offset amount, so that the optimal track It becomes possible to ensure the groove depth.
  • the second track groove portion may have an arc-shaped portion having a center of curvature at a position that is radially outward of the first track groove portion and offset toward the opening side from the joint center.
  • the effective track length can be increased to increase the maximum operating angle.
  • the second track groove portion includes only the arc-shaped portion described above, and the arc-shaped portion may be smoothly connected to the first track groove portion, or may include the arc-shaped portion and the linear portion.
  • the linear portion may be smoothly connected to the first track groove portion.
  • the number of torque transmission balls is 8, 10, or 12. In this way, it is possible to realize a fixed type constant velocity universal joint that is lightweight, compact, highly efficient, and capable of obtaining a high operating angle, and thus a drive shaft of an automobile.
  • FIG. 15a It is a schematic diagram which shows the state which the fixed type constant velocity universal joint shown to FIG. 15a took the maximum operating angle. It is a longitudinal cross-sectional view of the conventional fixed type constant velocity universal joint. It is a schematic diagram which shows the state which the fixed type constant velocity universal joint shown to FIG. 16a took the high operating angle.
  • FIG. 1a shows a partial longitudinal sectional view of a fixed type constant velocity universal joint 1 (hereinafter also simply referred to as “constant velocity universal joint 1”) according to the first embodiment of the present invention, and FIG. The front view when seen from the opening side is shown.
  • the constant velocity universal joint 1 is classified as a track groove intersection type, and mainly includes an outer joint member 2, an inner joint member 3, a ball 4 and a cage 5.
  • eight track grooves 7 extending in the axial direction are formed on the spherical inner peripheral surface 6 of the outer joint member 2, and each track groove 7 is formed with respect to the joint axis NN.
  • the angle ⁇ is inclined in the circumferential direction, and the inclined direction is formed in opposite directions by the track grooves 7 (7A, 7B) adjacent in the circumferential direction.
  • eight track grooves 9 extending in the axial direction are formed on the spherical outer peripheral surface 8 of the inner joint member 3, and each track groove 9 extends along the joint axis NN.
  • the angle ⁇ is inclined in the circumferential direction, and the inclined direction is formed in opposite directions by the track grooves 9 (9A, 9B) adjacent in the circumferential direction.
  • the balls 4 are respectively arranged at the intersections of the track grooves 7 and 9 forming a pair of the outer joint member 2 and the inner joint member 3. Details of the track grooves 7 (7A, 7B) of the outer joint member 2 and the track grooves 9 (9A, 9B) of the inner joint member 3 will be described later.
  • ball trajectory centerline is used in the following to accurately indicate the form (inclined state, curved state, etc.) and shape of the track grooves 7 and 9.
  • the center line of the ball trajectory means a locus drawn by the center of the ball 4 when the ball 4 interposed between the pair of track grooves 7 and 9 moves along the track grooves 7 and 9. Accordingly, the inclined state and the curved state of the track grooves 7 and 9 are the same as the inclined state and the curved state of the ball track center line.
  • the track groove 7 of the outer joint member 2 has a ball track line X. More specifically, the track groove 7 is provided on the back side, and an arc-shaped ball trajectory center line Xa having a center of curvature at a point Oo1 offset from the joint center O by the dimension f1 (see FIG. 4) on the opening side.
  • the first track groove portion 7a is provided on the opening side, and the second track groove portion 7b has an arc-shaped ball trajectory center line Xb curved in the opposite direction to the first track groove portion 7a.
  • the second track groove portion 7b of the present embodiment is composed of only an arc-shaped portion having a shape different from that of the first track groove portion 7a (curved in the opposite direction), and the ball track center line Xb (the back end portion thereof). Are smoothly connected to the opening side end of the ball track center line Xa of the first track groove 7a.
  • the offset point Oo1 which is the center of curvature of the first track groove portion 7a, is an inclined axis N′-N ′ inclined with respect to the joint axis NN by an angle ⁇ (see FIG. 4; however, regarding the angle ⁇ 2) and is not radially offset with respect to the joint center O.
  • the track groove 7 of the outer joint member 2 is connected to the joint axis NN.
  • the track grooves 7 of the outer joint member 2 are given the reference numerals of the track grooves 7A and 7B due to the difference in the inclination direction.
  • the plane M including the ball track center line X and the joint center O of the track groove 7A is inclined by an angle ⁇ with respect to the joint axis NN.
  • the track groove 7B adjacent to the track groove 7A in the circumferential direction is inclined by an angle ⁇ with respect to the joint axis NN in the direction opposite to the inclination direction of the track groove 7A.
  • the entire area of the ball track center line X of the track groove 7A (and 7B), that is, both the ball track center line Xa of the first track groove portion 7a and the ball track center line Xb of the second track groove portion 7b are flat. It is formed on M.
  • the present invention is not limited to this, and a mode in which only the ball trajectory center line Xa of the first track groove portion 7a is included in the plane M can also be adopted.
  • a plane M including at least the ball track center line Xa of the first track groove 7a and the joint center O is inclined by an angle ⁇ in the circumferential direction with respect to the joint axis NN, and the inclined direction is in the circumferential direction.
  • the adjacent first track groove portions 7a may be formed in opposite directions.
  • reference numeral 7 is attached, and reference numerals 7a and 7b are attached to the first and second track groove portions, respectively.
  • reference numerals 7A and 7B are given, reference numerals 7Aa and 7Ba are assigned to the first track groove portions of the track grooves 7A and 7B, and second tracks of the track grooves 7A and 7B are given.
  • Reference numerals 7Ab and 7Bb are attached to the grooves, respectively. The same applies to the track grooves 9 of the inner joint member 3 described in detail below.
  • the track groove 9 of the inner joint member 3 has a ball track center line Y. More specifically, the track groove 9 has a first track groove portion 9a having an arc-shaped ball trajectory center line Ya centered on a point Oi1 offset by a dimension f1 (see FIG. 5) on the back side with respect to the joint center O. And a second track groove portion 9b having an arcuate ball trajectory center line Yb which is provided on the back side and is curved in a direction opposite to the first track groove portion 9a.
  • the second track groove portion 9b of the present embodiment is composed of only an arc-shaped portion having a different shape (curved in the opposite direction) from the first track groove portion 9a, and the opening side end portion of the ball trajectory center line Yb is
  • the first track groove 9a is smoothly connected to the back end of the ball track center line Ya.
  • the offset point Oi1 that is the center of curvature of the first track groove portion 9a is an inclined axis N′-N ′ inclined with respect to the joint axis NN by an angle ⁇ (see FIG. 5; (See FIG. 3b) and is not offset radially relative to the joint center O.
  • the track groove 9 of the inner joint member 3 is inclined in the circumferential direction with respect to the joint axis NN.
  • the state of being present will be described in detail.
  • the track grooves 9 of the inner joint member 3 are given the reference numerals of the track grooves 9A and 9B because of the difference in the inclination direction.
  • the plane Q including the ball track center line Y and the joint center O of the track groove 9A is inclined by an angle ⁇ with respect to the joint axis NN.
  • the track groove 9B adjacent to the track groove 9A in the circumferential direction has a plane Q including the ball track center line Y and the joint center O of the track groove 9B with respect to the joint axis NN.
  • the track groove 9A is inclined by an angle ⁇ in the direction opposite to the inclination direction of the track groove 9A.
  • the inclination angle ⁇ with respect to the joint axis NN of the plane Q (and the plane M described above) takes into consideration the operability of the constant velocity universal joint 1 and the spherical width F of the inner joint member 3 on the closest side of the track groove 9.
  • the angle is preferably 4 ° to 12 °.
  • the entire region of the ball track center line Y of the track groove 9A that is, the ball track center line Ya of the first track groove portion 9a and the ball track of the second track groove portion 9b. Both center lines Yb are formed on the plane Q.
  • the present invention is not limited to this, and a mode in which only the ball trajectory center line Ya of the first track groove portion 9a is included in the plane Q can also be implemented. Accordingly, the plane Q including at least the ball track center line Ya of the first track groove 9a and the joint center O is inclined in the circumferential direction with respect to the joint axis NN, and the inclined direction is adjacent to the first track in the circumferential direction. It suffices if the grooves 9a are formed in opposite directions.
  • the ball track center line Y of the track groove 9 of the inner joint member 3 is based on the joint center plane P in a state where the operating angle is 0 °. It is formed mirror-symmetric with the center line X.
  • the cross-sectional shapes of the track grooves 7 and 9 of both joint members 2 and 3 are formed in an elliptical shape or a Gothic arch shape, and the track grooves 7 and 9 and the ball 4 are 30 ° to 45 °. It is a so-called angular contact that makes contact with a contact angle of about °. Therefore, the ball 4 is in contact with the track grooves 7 and 9 on the side surface side of the track grooves 7 and 9 that are slightly apart from the groove bottoms of the track grooves 7 and 9.
  • FIG. 4 is a cross-sectional view of the track groove 7A shown in FIG. 2A as viewed on a plane M including the ball trajectory center line X and the joint center O.
  • FIG. 4 is not strictly a longitudinal sectional view in the plane including the joint axis NN, but in the plane including the inclined axis N′-N ′ inclined by the angle ⁇ with respect to the joint axis NN.
  • a longitudinal section is shown. 4 shows only the track groove 7A of the outer joint member 2, the track groove 7B is merely inclined in the direction opposite to the track groove 7A, and other configurations are the same as the track groove 7A. Therefore, the detailed description shown in the figure is omitted.
  • a track groove 7A having a ball track center line X is formed along the axial direction.
  • the track groove 7A includes a first track groove portion 7Aa having an arc-shaped ball trajectory center line Xa having a center of curvature at a point Oo1 offset by a dimension f1 on the opening side with respect to the joint center O, and the first track groove portion 7Aa.
  • Arc-shaped ball trajectory center line Xb curved in the opposite direction, more specifically, an arc-shaped ball centered on a point Oo2 radially outside the first track groove 7Aa and having a larger offset amount than the offset point Oo1.
  • a second track groove portion 7Ab having a ball track center line Xb is composed only of an arc-shaped portion, and the back end portion of the ball track center line Xb is the opening side end portion A (both offset points Oo1 of the ball track center line Xa of the first track groove portion 7Aa. , Oo2 and the point where the straight line L1 of the track groove 7A intersects the ball trajectory center line X).
  • a straight line connecting the opening side end A of the first track groove portion 7Aa and the joint center O is L2
  • the ball track center line X of the track groove 7A and the joint center O (FIG. 2a).
  • the plane including the angle ⁇ ′ formed by the perpendicular K at the joint center O of the joint axis N′-N ′ projected above is inclined by the angle ⁇ with respect to the joint axis NN.
  • the first track groove portion 7Aa and the second track groove portion 7Ab of the outer joint member 2 are each formed by a single arc-shaped portion.
  • the present invention is not limited to this, and the track groove depth and the like are considered. And may be formed of a plurality of arc-shaped portions.
  • FIG. 5 is a cross-sectional view of the track groove 9A of FIG. Therefore, strictly speaking, FIG. 5 is not a longitudinal sectional view in a plane including the joint axis NN but is inclined axis N ′ inclined by an angle ⁇ with respect to the joint axis NN, as in FIG. A cross section in a plane including -N 'is shown. Further, FIG. 5 shows only the track groove 9A of the inner joint member 3, but the track groove 9B is merely inclined in the opposite direction to the track groove 9A, and other configurations are the same as the track groove 9A. Therefore, the detailed description shown in the figure is omitted.
  • the track groove 9A includes a first track groove portion 9Aa having an arc-shaped ball trajectory center line Ya whose center of curvature is a point Oi1 offset from the joint center O by a dimension f1 on the back side, and the first track groove portion 9Aa. More specifically, an arc-shaped ball trajectory centered at a point Oi2 that is radially outward of the ball trajectory centerline Ya of the first track groove 9Aa and that has a larger offset amount than the offset point Oi1. And a second track groove 9Ab having a center line Yb.
  • the second track groove portion 9Ab consists of only an arc-shaped portion, and the opening side end portion of the ball track center line Yb is the back end portion B (both offset points Oi1) of the ball track center line Ya of the first track groove portion 9Aa. , Oi2 and the point where the straight line R1 of the track groove 9A intersects the ball trajectory center line Y).
  • a straight line connecting the back end B of the first track groove portion 9Aa and the joint center O is R2
  • the plane Q including the straight line R2 the ball track center line Y of the track groove 9A and the joint center O (FIG. 3b).
  • the plane including the angle ⁇ ′ formed by the perpendicular K at the joint center O of the joint axis N′-N ′ projected above is inclined by the angle ⁇ with respect to the joint axis NN.
  • the first track groove portion 9Aa and the second track groove portion 9Ab of the inner joint member 3 are each formed by a single arc-shaped portion, but both the track groove portions 9Aa and 9Ab are formed by the outer joint member 2 described above.
  • each may be formed by a plurality of arcs in consideration of the track groove depth and the like.
  • an angle ⁇ formed by the straight lines L2 and R2 with respect to the joint center plane P in a state where the operating angle is 0 ° will be described.
  • the ball 4 moves by ⁇ / 2 with respect to the plane P of the outer joint member 2 and the inner joint member 3.
  • the angle ⁇ is determined from 1 ⁇ 2 of the frequently used operating angle, and the range of the track groove with which the ball 4 contacts is determined within the frequently used operating angle range.
  • the operating angle that is frequently used is defined.
  • the common angle of the joint refers to an operating angle generated in a fixed type constant velocity universal joint of the front drive shaft when the steering is in a straight traveling state in an automobile when one person rides on a horizontal and flat road surface.
  • the service angle is usually selected and determined between 2 ° and 15 ° according to the design conditions for each vehicle type.
  • the frequently used operating angle is not the high operating angle that occurs when the above-mentioned automobile is turned right or left at an intersection, for example, but the operating angle that occurs in a fixed constant velocity universal joint on a curved road that runs continuously This is also determined according to the design conditions for each vehicle type.
  • the operating angle that is frequently used is targeted at a maximum of 20 °.
  • the angle ⁇ formed by the straight lines L2 and R2 with respect to the joint center plane P in the state where the operating angle is 0 ° is set to 3 ° to 10 °.
  • the angle ⁇ is not limited to 3 ° to 10 °, and can be appropriately set according to the design conditions of the vehicle type. By setting the angle ⁇ to 3 ° to 10 °, it can be used for various types of vehicles.
  • the opening-side end A of the ball track center line Xa of the first track groove 7Aa in FIG. 4 is the ball when moved to the most opening side along the axial direction when the operating angle is frequently used. 4 becomes the center position.
  • the rear end B of the ball track center line Ya of the first track groove 9 ⁇ / b> Aa has moved to the innermost side along the axial direction when the operating angle is frequently used. Becomes the center position of the ball 4 at the time. Since it is set in this way, in the range of operating angles where the frequency of use is high, the ball 4 has the first track groove portions 7Aa and 9Aa of the outer joint member 2 and the inner joint member 3, and the inclination direction is opposite to these. It is located within the range of the first track grooves 7Ba and 9Ba (see FIGS. 2 and 3), that is, within the range of the intersecting track.
  • the contact force between the spherical outer circumferential surface 12 of the cage 5 and the spherical inner circumferential surface 6 of the outer joint member 2, and the spherical inner circumferential surface 13 of the cage 5 and the inner side is suppressed to the maximum, and the smooth operability of the joint at the time of high load and high speed rotation is ensured. Therefore, torque loss and heat generation are effectively suppressed. High efficiency can be achieved.
  • the second track groove portion 7b having a shape different from that of the first track groove portion 7a is provided on the opening side of the track groove 7 of the outer joint member 2 in order to increase the effective track length and increase the operating angle.
  • the first track groove portions 7a, 9a of the joint members 2, 3 are provided. If the center of curvature is arranged at the joint center O, there is a restriction on further increasing the operating angle. The reason will be described in detail with reference to FIG.
  • FIG. 14 shows that the first track groove portion 7Aa ′ having an arc-shaped ball trajectory center line Xa ′ with the joint center O as the center of curvature is curved in the opposite direction to the first track groove portion 7Aa ′ on the spherical inner peripheral surface.
  • a track groove comprising a second track groove portion 7Ab ′ having an arc-shaped ball track center line Xb ′ smoothly connected to the opening side end portion A ′ of the first track groove portion 7Aa ′ (ball track center line Xa ′). It is principal part sectional drawing of the outer joint member in which 7A 'was formed.
  • the position (angle ⁇ ′) of the opening-side end A ′ of the first track groove 7Aa ′ is the same as that of the outer joint member 2 constituting the constant velocity universal joint 1 according to the first embodiment of the present invention described above. is there.
  • the outer joint member 2 ' that forms a pair on the inner periphery of the outer joint member 2' shown in FIG. 14 on the spherical outer peripheral surface with reference to the joint center plane P at an operating angle of 0 °.
  • An inner joint member in which a track groove that is mirror-imaged with the 'track groove 7A' is provided.
  • the length (effective track length) of the second track groove portion 7Ab ′ can be increased as compared with the case where it is disposed at the offset point Oox2 in FIG.
  • the case where the present invention shown in FIG. 6a is applied is the one shown in FIG. 6b (the outer joint member 2 ′
  • the center of curvature of the first track groove portion 7Aa ′ is located at the joint center O and has the same structure as that shown in FIG.
  • the track margin means the track groove 7 (7 ′ of the ball 4 and the outer joint member 2 (2 ′) when the joint takes an operating angle (maximum operating angle in FIGS. 6a and 6b) ⁇ . ) To the edge of the inlet chamfer 10 of the outer joint member 2 (2 ′).
  • the track margin will be explained in more detail.
  • the straight line connecting the center point Ob of the ball 4 and the joint center O is inclined by ⁇ / 2 with respect to the joint center plane P.
  • the dimension z from the contact point Cp between the ball and the track groove to the edge of the entrance chamfer 10 is the track margin, and the embodiment of the present invention shown in FIG. 6a is compared with the comparison shown in FIG. 6b.
  • the track margin (dimension z) is increased.
  • the second track groove portion 7b (7Ab, 7Bb) having Xb is provided and the center of curvature of the first track groove portion 7a (7Aa, 7Ba) is positioned at the point Oo1 offset from the joint center O to the opening side, A large track margin can be secured to increase the maximum operating angle of the joint.
  • the effect of suppressing torque loss and heat generation decreases (the efficiency of the joint decreases). If the offset amount of the first track groove portions 7a, 9a is adjusted so that the suppression effect is not excessively reduced, the effect of suppressing torque loss and the like due to the use of the joint common angle range, which is frequently used, is covered with the cross track structure. In this case, the first track groove portions 7a and 9a exceed the negative portion obtained by offsetting the centers of curvature in the axial direction with respect to the joint center O.
  • the balls 4 arranged in the circumferential direction are temporarily divided into the first track groove portion and the second track groove portion in the range of the high operating angle. . Accordingly, the force acting from the balls 4 on the pockets 5a of the cage 5 is not balanced, and the contact portion between the spherical outer circumferential surface 12 of the cage 5 and the spherical inner circumferential surface 6 of the outer joint member 2, and the cage Although a contact force is generated at the contact portion between the spherical inner peripheral surface 13 of the inner surface 5 and the spherical outer peripheral surface 8 of the inner joint member 3, the range of high operating angles is less frequently used.
  • the constant velocity universal joint 1 according to the present invention can effectively suppress torque loss and heat generation as compared with the constant velocity universal joint 141 shown in FIG. From the above, according to the present invention, it is possible to realize a fixed type constant velocity universal joint capable of taking a high operating angle while having high efficiency and low durability with little torque loss and heat generation. .
  • the clearance between the pocket portion 5a of the cage 5 and the ball 4 may be set as a clearance.
  • the clearance width of the clearance is preferably set to about 0 to 40 ⁇ m.
  • FIG. 7a and 7b show perspective views of the outer joint member 2 and the inner joint member 3 which are constituent members of the constant velocity universal joint 1 described above.
  • This perspective view three-dimensionally shows the track grooves described so far.
  • track grooves 7A and 7B inclined in the circumferential direction with respect to the joint axis NN (not shown) are alternately formed on the spherical inner peripheral surface 6 of the outer joint member 2, and the track The inclination directions of the grooves 7A and 7B are opposite to each other.
  • the track grooves 7A and 7B are composed of first track groove portions 7Aa and 7Ba and second track groove portions 7Ab and 7Bb, respectively.
  • An inlet chamfer 10 is provided at the open end of the outer joint member 2.
  • track grooves 9A and 9B inclined in the circumferential direction with respect to the joint axial line NN are alternately formed.
  • the inclination directions of the track grooves 9A and 9B are opposite to each other.
  • the track grooves 9A and 9B are composed of first track groove portions 9Aa and 9Ba and second track groove portions 9Ab and 9Bb, respectively.
  • FIG. 8 shows a front drive shaft 20 of an automobile incorporating the fixed type constant velocity universal joint 1 according to the first embodiment of the present invention.
  • the fixed type constant velocity universal joint 1 is connected to one end of an intermediate shaft 11, and a sliding type constant velocity universal joint (in the example shown, a tripod type constant velocity universal joint) 15 is connected to the other end of the intermediate shaft 11.
  • a sliding type constant velocity universal joint in the example shown, a tripod type constant velocity universal joint
  • bellows-like boots 16 a and 16 b are provided between the outer peripheral surface of the fixed type constant velocity universal joint 1 and the outer peripheral surface of the shaft 11 and between the outer peripheral surface of the sliding type constant velocity universal joint 15 and the outer peripheral surface of the shaft 11.
  • bellows-like boots 16 a and 16 b are provided between the outer peripheral surface of the fixed type constant velocity universal joint 1 and the outer peripheral surface of the shaft 11 and between the outer peripheral surface of the sliding type constant velocity universal joint 15 and the outer peripheral surface of the shaft 11.
  • boot bands 18 are attached and fixed by boot bands 18 respectively
  • the constant velocity universal joint 1 according to the first embodiment of the present invention has been described above. However, the constant velocity universal joint 1 can be variously modified without departing from the gist of the present invention. .
  • a constant velocity universal joint according to another embodiment of the present invention will be described. However, in the following, the configuration different from that of the first embodiment will be described mainly, and members / parts having the same functions as those of the first embodiment will be denoted by the same reference numerals and redundant description will be omitted.
  • FIG. 9 shows a cross-sectional view of a main part of a fixed type constant velocity universal joint according to the second embodiment of the present invention.
  • This figure is a cross-sectional view of an outer joint member used by being incorporated in a fixed type constant velocity universal joint. More specifically, like FIG. 4, a plane including a ball track center line X and a joint center O of a track groove 7A. It is sectional drawing of the outer joint member seen by M (refer FIG. 2a).
  • the second track groove portion provided in the track groove of the outer joint member and the inner joint member is curved in a straight portion and an arc portion (on the opposite side to the first track groove portion).
  • the configuration is different from the constant velocity universal joint of the first embodiment described above in that it is formed of an arc-shaped portion.
  • the curvature center Oo2 of the ball track center line Xb of the second track groove portion 7b of the outer joint member 2 is equal to the curvature center Oo1 of the first track groove portion 7a (the ball track center line Xa thereof) and the first track groove portion 7a ( The ball trajectory center line Xa) is moved from the straight line L1 connecting the opening side end A to the opening side by f2. Therefore, the linear portion (the back end portion) of the ball track center line Xb of the second track groove portion 7b is connected to the opening side end portion A of the ball track center line Xa of the first track groove portion 7a.
  • the arc-shaped portion of the ball track center line Xb of the second track groove portion 7b is connected to the opening side end portion (point C).
  • the track-track center line Y of the track groove 9 of the inner joint member 3 makes the track groove 7 used as the pair of the outer joint member 2 on the basis of the joint center plane P in the state of 0 degree of operation angles.
  • FIG. 10 shows a cross-sectional view of a main part of a fixed type constant velocity universal joint according to a third embodiment of the present invention.
  • This figure is a cross-sectional view of an outer joint member used by being incorporated in a fixed type constant velocity universal joint. More specifically, similar to FIGS. 4 and 9, the ball track center line X of the track groove 7A and the joint center are shown. It is sectional drawing of the outer joint member seen in the plane M (refer FIG. 2a) containing O.
  • the center of curvature of the ball track center line of the first track groove portion provided in the track grooves of the outer joint member and the inner joint member is mainly open side with respect to the joint center O.
  • the tilt axis (axis tilted in the circumferential direction with respect to the joint axis NN) is offset in the radial direction with respect to N′-N ′, and this
  • the configuration of the ball track center line of the second track groove portion is adjusted to correspond to the configuration of the fixed type constant velocity universal joint according to the first embodiment described above.
  • the center of curvature Oo1 of the ball track center line Xa of the first track groove portion 7a of the outer joint member 2 is offset to the opening side with respect to the joint center O and has a radius with respect to the inclined axis N′-N ′.
  • the direction is offset by fr. That is, it is offset by fr in the radial direction on the joint center plane P in a state where the operating angle including the perpendicular K is 0 °.
  • the position of the curvature center Oo2 of the ball track center line Xb of the second track groove portion 7b is adjusted so as to smoothly connect to the opening side end A of the ball track center line Xa of the first track groove portion 7a.
  • the ball track center line Y of the track groove 9 of the inner joint member 3 is a ball of the track groove 7 that forms a pair of the outer joint member 2 with reference to the joint center plane P in a state where the operating angle is 0 °. It is formed mirror-symmetric with the orbit center line X.
  • FIG. 11 shows a cross-sectional view of a cage used in a fixed type constant velocity universal joint according to a fourth embodiment of the present invention. That is, the fixed type constant velocity universal joint of this embodiment is the first embodiment in that a cage in which the spherical outer peripheral surface and the center of curvature of the spherical inner peripheral surface are offset in the axial direction with respect to the joint center O is used. The configuration is different from that of the fixed type constant velocity universal joint.
  • the center of curvature Oc1 of the spherical outer peripheral surface 12 of the cage 5 is offset from the joint center O by the dimension f3 toward the opening side.
  • the curvature center Oc2 is offset from the joint center O by a dimension f3 on the back side.
  • the thickness of the cage 5 gradually increases toward the opening side, and the strength of the cage 5 particularly at a high operating angle can be improved.
  • the balls 4 arranged in the circumferential direction are divided into the first track groove portions 7Aa, 9Aa (7Ba, 9Ba) and the second track groove portions 7Ab, 9Ab (7Bb, 9Bb). Temporarily separated.
  • the number of the balls 4 is eight, but is not limited thereto. Although illustration is omitted, for example, the present invention can be preferably applied to a fixed type constant velocity universal joint in which the number of balls is 10 or 12.
  • the fixed type constant velocity universal joint of the above-described embodiment is configured such that the second track groove portion (the ball trajectory center line Xb thereof) is configured by only an arc-shaped portion or a combination of an arc-shaped portion and a linear portion. It was supposed to be, but it is not limited to this. In short, any shape can be used as long as the shape is different from the ball track center line Xa of the first track groove portion and the effective track length can be increased to increase the operating angle. Or a straight line. In addition, either one or both of the first track groove portion and the second track groove portion may be formed not by a single arc-shaped portion but by a plurality of arc-shaped portions in consideration of the track groove depth and the like.
  • the present invention is applied to a fixed type constant velocity universal joint in which track grooves are arranged at a constant pitch in the circumferential direction.
  • the present invention can be preferably applied.
  • the inclination angle ⁇ of the track groove (first track groove portion) with respect to the joint axis NN is made equal in all the track grooves.
  • the present invention is not limited to this. If the inclination angle ⁇ of the track groove (first track groove portion) of the outer joint member and the inner joint member that make a pair (opposite in the radial direction) is equal, the mutual distance between the track grooves (first track groove portions)
  • the inclination angle ⁇ may be varied.
  • each inclination angle should be set so that the axial force of the ball acting on all the pockets in the circumferential direction of the cage is balanced as a whole.
  • the present invention is applied to the fixed type constant velocity universal joint configured such that the track groove and the ball are in contact with each other with an angle of contact (angular contact).
  • the present invention is not limited to this, and the present invention is not limited to this.
  • the present invention can also be preferably applied to a fixed type constant velocity universal joint in which the cross-sectional shape of the groove is formed in an arc shape and the track groove and the ball are in circular contact.

Abstract

The track grooves (7) of an outside joint member (2) comprise first track groove parts (7a) located toward the interior and second track groove parts (7b) located toward the opening. The first track groove parts (7a) form arched shapes having a center of curvature which, with respect to the joint center, is offset to the aperture side, and these track groove parts are formed inclined in the circumferential direction with respect to the joint axis line (N-N), with the direction of inclination being in the opposite direction at the adjacent first track groove parts (7a) in the circumferential direction. The second track groove parts (7b) have a different shape than the first track groove parts (7a), in order to increase the effective track length with respect to the maximum operating angle, and are connected to the first track groove parts (7a) closer to the opening side than the joint center (O). When the joint center plane (P) with an operating angle of 0° is taken as the reference, the track grooves (9) of an inside joint member (3) are formed mirror-symmetrical with respect to the track grooves (7) of the outside joint member (2) with which a track-groove pair is formed.

Description

固定式等速自在継手Fixed constant velocity universal joint
 本発明は、固定式等速自在継手に関し、詳しくは、自動車や各種産業機械の動力伝達系において使用され、駆動側と従動側の二軸間で角度変位のみを許容する固定式等速自在継手に関する。 The present invention relates to a fixed type constant velocity universal joint, and more particularly, to a fixed type constant velocity universal joint that is used in a power transmission system of an automobile or various industrial machines and allows only angular displacement between two axes of a driving side and a driven side. About.
 例えば、自動車のフロント用ドライブシャフトにおいて、通常、インボード側(デファレンシャル側)には、角度変位および軸方向変位を許容する摺動式等速自在継手が組み込まれ、アウトボード側(車輪側)には、角度変位のみを許容する固定式等速自在継手が組み込まれる。 For example, in a front drive shaft of an automobile, a sliding constant velocity universal joint that allows angular displacement and axial displacement is usually incorporated on the inboard side (differential side), and on the outboard side (wheel side). Incorporates a fixed constant velocity universal joint that allows only angular displacement.
 アウトボード側に使用されている固定式等速自在継手の一例を、図15aに示す等速自在継手101の作動角0°の状態における縦断面図、および図15bに示す同等速自在継手101が最大作動角を取った状態の概要図に基づいて説明する。等速自在継手101は、8個ボールタイプのツェッパ型等速自在継手であり、外側継手部材102、内側継手部材103、ボール104および保持器105を主な構成とする。外側継手部材102の球状内周面106には8本のトラック溝107が円周方向等間隔に、かつ軸方向に沿って形成されている。内側継手部材103の球状外周面108には、外側継手部材102のトラック溝107と対向するトラック溝109が円周方向等間隔に、かつ軸方向に沿って形成されている。外側継手部材102と内側継手部材103の対をなす(半径方向で対向する)トラック溝107,109間にボール104が配置されている。外側継手部材102の球状内周面106と内側継手部材103の球状外周面108の間に、ボール104を円周方向所定間隔で保持する保持器105が配置されている。外側継手部材102の外周と、内側継手部材103に連結されたシャフトの外周とをブーツで覆い、継手内部には、潤滑剤としてグリースが封入されている(図示省略)。 An example of a fixed type constant velocity universal joint used on the outboard side is a longitudinal sectional view of the constant velocity universal joint 101 shown in FIG. 15A in a state where the operating angle is 0 °, and an equivalent velocity universal joint 101 shown in FIG. 15B. A description will be given based on a schematic diagram of a state where the maximum operating angle is taken. The constant velocity universal joint 101 is an eight-ball type Zepper type constant velocity universal joint, and mainly includes an outer joint member 102, an inner joint member 103, a ball 104, and a cage 105. Eight track grooves 107 are formed on the spherical inner peripheral surface 106 of the outer joint member 102 at equal intervals in the circumferential direction and along the axial direction. Track grooves 109 facing the track grooves 107 of the outer joint member 102 are formed on the spherical outer peripheral surface 108 of the inner joint member 103 at equal intervals in the circumferential direction and along the axial direction. A ball 104 is disposed between the track grooves 107 and 109 that make a pair of the outer joint member 102 and the inner joint member 103 (facing each other in the radial direction). Between the spherical inner peripheral surface 106 of the outer joint member 102 and the spherical outer peripheral surface 108 of the inner joint member 103, a cage 105 that holds the balls 104 at predetermined intervals in the circumferential direction is disposed. The outer periphery of the outer joint member 102 and the outer periphery of the shaft connected to the inner joint member 103 are covered with boots, and grease is enclosed as a lubricant inside the joint (not shown).
 図15aに示すように、外側継手部材102の球状内周面106と嵌合する保持器105の球状外周面112、および内側継手部材103の球状外周面108と嵌合する保持器105の球状内周面113の曲率中心は、いずれも継手中心Oに形成されている。これに対し、外側継手部材102のトラック溝107のボール軌道中心線xの曲率中心Ooと、内側継手部材103のトラック溝109のボール軌道中心線yの曲率中心Oiとは、継手中心Oに対して軸方向両側に等距離オフセットされている。これにより、継手が作動角をとった場合、外側継手部材102と内側継手部材103の両軸線がなす角度を二等分する平面上にボール104が常に案内され、二軸間で等速に回転トルクが伝達される。 As shown in FIG. 15 a, the spherical inner surface 112 of the cage 105 that fits with the spherical inner circumferential surface 106 of the outer joint member 102 and the spherical inner surface of the cage 105 that fits with the spherical outer circumferential surface 108 of the inner joint member 103. The center of curvature of the peripheral surface 113 is formed at the joint center O. In contrast, the curvature center Oo of the ball track center line x of the track groove 107 of the outer joint member 102 and the curvature center Oi of the ball track center line y of the track groove 109 of the inner joint member 103 are relative to the joint center O. Are offset equally on both sides in the axial direction. As a result, when the joint takes an operating angle, the ball 104 is always guided on a plane that bisects the angle formed by the two axes of the outer joint member 102 and the inner joint member 103, and rotates at a constant speed between the two axes. Torque is transmitted.
 図15bに示すように、固定式等速自在継手101の主要機能である最大作動角θmaxは、外側継手部材102の開口端(内周縁部)に設けられる入口チャンファ110とシャフト111とが干渉する角度に依存する。シャフト111の軸径dは、許容伝達トルクを確保するためにジョイントサイズ毎に決められている。入口チャンファ110を大きくとると、ボール104が接触する外側継手部材102のトラック溝107の長さ(以下、「有効トラック長さ」という)が不足し、ボール104がトラック溝107から脱落して回転トルクが伝達できなくなる。このため、外側継手部材102の有効トラック長さを確保しつつ、入口チャンファ110を如何に設定するかが、作動角を確保する上で重要なファクターとなる。図15aおよび図15bに示す等速自在継手101では、外側継手部材102のトラック溝107のボール軌道中心線xの曲率中心Ooが軸方向開口側にオフセットされているので、最大作動角の面で有利であり、最大作動角θmaxは47°程度である。 As shown in FIG. 15 b, the maximum operating angle θmax, which is the main function of the fixed type constant velocity universal joint 101, causes interference between the inlet chamfer 110 provided at the open end (inner peripheral edge) of the outer joint member 102 and the shaft 111. Depends on the angle. The shaft diameter d of the shaft 111 is determined for each joint size in order to ensure an allowable transmission torque. If the entrance chamfer 110 is made large, the length of the track groove 107 (hereinafter referred to as “effective track length”) of the outer joint member 102 with which the ball 104 comes into contact is insufficient, and the ball 104 falls off the track groove 107 and rotates. Torque cannot be transmitted. Therefore, how to set the inlet chamfer 110 while securing the effective track length of the outer joint member 102 is an important factor in securing the operating angle. In the constant velocity universal joint 101 shown in FIGS. 15a and 15b, since the center of curvature Oo of the ball track center line x of the track groove 107 of the outer joint member 102 is offset toward the axial opening side, Advantageously, the maximum operating angle θmax is about 47 °.
 また、上述した8個ボールタイプの等速自在継手は、従来の6個ボールタイプの等速自在継手に比べて、トラックオフセット量を小さくし、ボールの個数を増やし、かつ直径を小さくしたことにより、軽量・コンパクトでトルク損失の少ない高効率な等速自在継手を実現している。しかし、作動角0°の状態で外側継手部材102と内側継手部材103の対をなすトラック溝107,109間に形成される各くさび角が、外側継手部材102の開口側に向けて開いているので、トラック溝107,109からボール104に作用する軸方向の力により、外側継手部材102と保持器105の球面接触部106,112および内側継手部材103と保持器105の球面接触部108,113に作用する荷重が一定方向に向かって発生する。そのため、更なる高効率化や低発熱化に限度がある。 In addition, the 8-ball type constant velocity universal joint described above has a smaller track offset, a larger number of balls, and a smaller diameter than the conventional 6-ball type constant velocity universal joint. Lightweight, compact and highly efficient constant velocity universal joints with low torque loss. However, each wedge angle formed between the track grooves 107 and 109 forming a pair of the outer joint member 102 and the inner joint member 103 in an operating angle of 0 ° is open toward the opening side of the outer joint member 102. Therefore, the spherical contact portions 106 and 112 of the outer joint member 102 and the cage 105 and the spherical contact portions 108 and 113 of the inner joint member 103 and the cage 105 are caused by the axial force acting on the ball 104 from the track grooves 107 and 109. The load that acts on the is generated in a certain direction. Therefore, there is a limit to further increasing efficiency and reducing heat generation.
 そこで、更なる高効率化や低発熱化を実現すべく、図16aおよび図16bに示すトラック溝交差タイプの固定式等速自在継手121が提案されている(例えば、下記の特許文献1を参照)。図16aは、等速自在継手121の作動角0°の状態における縦断面図であり、図16bは、等速自在継手121が高作動角を取った状態を示す概要図である。図16aに示すように、この等速自在継手121は、外側継手部材122、内側継手部材123、ボール124および保持器125を主な構成とする。この等速自在継手121は、図示は省略するが、外側継手部材122の8本のトラック溝127のボール軌道中心線xと継手中心Oとを含む平面が、継手の軸線n-nに対して傾斜すると共にその傾斜方向が周方向に隣り合うトラック溝127で互いに反対方向に形成されている。そして、内側継手部材123のトラック溝129のボール軌道中心線yは、作動角0°の状態の継手中心平面(作動角0°の状態で継手中心Oを含んで継手の軸線n-nと直交する方向に延びる平面)Pを基準として、外側継手部材122の対となるトラック溝127のボール軌道中心線xと鏡像対称に形成されている。 Therefore, in order to achieve further higher efficiency and lower heat generation, a track groove intersecting type fixed constant velocity universal joint 121 shown in FIGS. 16a and 16b has been proposed (see, for example, Patent Document 1 below). ). FIG. 16A is a longitudinal sectional view of the constant velocity universal joint 121 in a state where the operating angle is 0 °, and FIG. 16B is a schematic diagram showing a state where the constant velocity universal joint 121 has a high operating angle. As shown in FIG. 16a, the constant velocity universal joint 121 mainly includes an outer joint member 122, an inner joint member 123, a ball 124, and a cage 125. Although not shown, the constant velocity universal joint 121 has a plane including the ball track center line x of the eight track grooves 127 of the outer joint member 122 and the joint center O with respect to the joint axis nn. The track grooves 127 are inclined and formed in opposite directions with the track grooves 127 adjacent to each other in the circumferential direction. The ball track center line y of the track groove 129 of the inner joint member 123 is perpendicular to the joint axis nn including the joint center O at the operating angle of 0 ° (including the joint center O at the operating angle of 0 °). The plane is formed in a mirror image symmetry with the ball trajectory center line x of the track groove 127 to be a pair of the outer joint member 122 with respect to the plane (P) extending in the direction of
 図16aに示すように、外側継手部材122の球状内周面126に形成されたトラック溝127は、軸方向に沿って円弧状に延び、その曲率中心は継手中心Oに位置する。内側継手部材123の球状外周面128に形成されたトラック溝129は、軸方向に沿って円弧状に延び、その曲率中心は継手中心Oに位置する。外側継手部材122と内側継手部材123の対をなす(半径方向に対向する)トラック溝127,129の交差部にボール124が介在している。外側継手部材122の球状内周面126と内側継手部材123の球状外周面128の間に、ボール124を円周方向所定間隔で保持する保持器125が配置されている。外側継手部材122の球状内周面126と嵌合する保持器125の球状外周面132、および内側継手部材123の球状外周面128と嵌合する保持器125の球状内周面133の曲率中心は、いずれも継手中心Oに形成されている。この等速自在継手121では、上記のとおり、対をなすトラック溝127,129のボール軌道中心線x,yの曲率中心は継手中心Oに対して軸方向にオフセットされていないが、対をなすトラック溝127,129が交差し、この交差部にボール124が介在する。これにより、継手が作動角をとった場合、外側継手部材122と内側継手部材123の両軸線がなす角度を二等分する平面上にボール124が常に案内され、二軸間で等速に回転トルクが伝達されることになる。 16A, the track groove 127 formed on the spherical inner peripheral surface 126 of the outer joint member 122 extends in an arc shape along the axial direction, and the center of curvature thereof is located at the joint center O. The track groove 129 formed on the spherical outer peripheral surface 128 of the inner joint member 123 extends in an arc shape along the axial direction, and the center of curvature thereof is located at the joint center O. Balls 124 are interposed at the intersections of the track grooves 127 and 129 forming a pair of the outer joint member 122 and the inner joint member 123 (opposing in the radial direction). Between the spherical inner peripheral surface 126 of the outer joint member 122 and the spherical outer peripheral surface 128 of the inner joint member 123, a cage 125 that holds the balls 124 at predetermined intervals in the circumferential direction is disposed. The center of curvature of the spherical outer peripheral surface 132 of the cage 125 fitting with the spherical inner peripheral surface 126 of the outer joint member 122 and the spherical inner peripheral surface 133 of the cage 125 fitting with the spherical outer peripheral surface 128 of the inner joint member 123 are , Both are formed at the joint center O. In this constant velocity universal joint 121, as described above, the center of curvature of the ball track center lines x and y of the paired track grooves 127 and 129 is not offset in the axial direction with respect to the joint center O, but forms a pair. The track grooves 127 and 129 intersect, and the ball 124 is interposed at the intersecting portion. Thereby, when the joint takes an operating angle, the ball 124 is always guided on a plane that bisects the angle formed by both the outer joint member 122 and the inner joint member 123, and rotates at a constant speed between the two axes. Torque is transmitted.
 上述したトラック溝交差タイプの固定式等速自在継手121において、両継手部材122,123のトラック溝127,129は、周方向に隣り合うトラック溝で傾斜方向が互いに反対方向に形成されているので、保持器125の周方向に隣り合うポケット部125aにはボール124から相反する方向の力が作用する。この相反する方向の力により保持器125は継手中心O位置で安定する。このため、保持器125の球状外周面132と外側継手部材122の球状内周面126との接触力、および保持器125の球状内周面133と内側継手部材123の球状外周面128との接触力が抑制される。これにより、高負荷時や高速回転時に継手が円滑に作動するため、トルク損失や発熱が抑えられ、耐久性が向上する。 In the track groove crossing type fixed constant velocity universal joint 121 described above, the track grooves 127 and 129 of the joint members 122 and 123 are adjacent to each other in the circumferential direction and are inclined in opposite directions. A force in the opposite direction from the ball 124 acts on the pocket portion 125 a adjacent to the circumferential direction of the cage 125. The cage 125 is stabilized at the joint center O position by the forces in the opposite directions. Therefore, the contact force between the spherical outer circumferential surface 132 of the cage 125 and the spherical inner circumferential surface 126 of the outer joint member 122 and the contact between the spherical inner circumferential surface 133 of the cage 125 and the spherical outer circumferential surface 128 of the inner joint member 123. Force is suppressed. As a result, the joint operates smoothly during high loads and high-speed rotation, so torque loss and heat generation are suppressed, and durability is improved.
特開2009-250365号JP 2009-250365 A
 上述したトラック溝交差タイプの固定式等速自在継手121は、低発熱ジョイントとしては優れているものの、図16bに示すように、外側継手部材122の入口チャンファ130を大きくすると、トラック溝127の曲率中心が継手中心Oに一致している構造上、外側継手部材122のトラック溝127の有効トラック長さが不足し、高作動角θを取ったときにボール124がトラック溝127から脱落し、高作動角化が図れないという問題がある。 Although the above-described track groove intersection type fixed constant velocity universal joint 121 is excellent as a low heat generation joint, as shown in FIG. 16B, when the inlet chamfer 130 of the outer joint member 122 is enlarged, the curvature of the track groove 127 is increased. Due to the structure in which the center coincides with the joint center O, the effective track length of the track groove 127 of the outer joint member 122 is insufficient, and the ball 124 drops off from the track groove 127 when the high operating angle θ is taken. There is a problem that the operating angle cannot be achieved.
 そこで、本願発明者らは、上述したトラック溝交差タイプの固定式等速自在継手の高作動角化を図るために、両継手部材のトラック溝に直線状の部分を設けることを検討した。この等速自在継手の縦断面図および正面図を、図12aおよび図12bにそれぞれ示す。図12aに示すように、この等速自在継手141において、外側継手部材142のトラック溝147は、作動角0°の状態で継手中心Oを含んで継手の軸線n-nと直交する平面(継手中心平面)を境にしてその奥側および開口側を、それぞれ、継手中心Oを曲率中心とする円弧状のトラック溝147aおよび直線状のトラック溝147bとしたものである。一方、内側継手部材143のトラック溝149は、継手中心平面を境にしてその開口側および奥側を、それぞれ、継手中心Oを曲率中心とする円弧状のトラック溝149aおよび直線状のトラック溝149bとしたものである。 Therefore, the inventors of the present application have studied to provide a linear portion in the track groove of both joint members in order to increase the operating angle of the above-described fixed constant velocity universal joint of the track groove intersection type. A longitudinal sectional view and a front view of the constant velocity universal joint are shown in FIGS. 12a and 12b, respectively. As shown in FIG. 12a, in this constant velocity universal joint 141, the track groove 147 of the outer joint member 142 includes a joint center O in a state where the operating angle is 0 °, and is a plane (joint joint) perpendicular to the joint axis nn. The back side and the opening side with respect to the center plane) are arc-shaped track grooves 147a and linear track grooves 147b with the joint center O as the center of curvature, respectively. On the other hand, the track groove 149 of the inner joint member 143 has an arcuate track groove 149a and a straight track groove 149b with the joint center O as the center of curvature at the opening side and the back side of the joint center plane, respectively. It is what.
 そして、図12bに示すように、トラック溝147,149は、それぞれ、継手の軸線に対して周方向に傾斜すると共にその傾斜方向が周方向に隣り合うトラック溝147A,147Bおよび149A,149Bで互いに反対方向に形成されている。外側継手部材142および内側継手部材143の対をなすトラック溝147A,149Aおよび147B,149Bの各交差部にボール144が配置されている。したがって、図示のような作動角0°の状態で両継手部材142,143が相対回転すると、トラック溝147A,149Aの間に形成されるくさび角の開く方向と、147B,149Bの間に形成されるくさび角の開く方向とが互いに反対方向となり、保持器145の周方向に隣り合うポケット部145aにボール144から相反する方向の力が作用することから、保持器145は継手中心O位置で安定する。このため、保持器145の球状外周面152と外側継手部材142の球状内周面146との接触力、および保持器145の球状内周面153と内側継手部材143の球状外周面148との接触力が抑制され、継手の作動性が向上する結果、トルク損失や発熱が抑えられ、耐久性が向上する。 As shown in FIG. 12b, the track grooves 147 and 149 are inclined in the circumferential direction with respect to the joint axis line, and the inclination directions are adjacent to each other in the track grooves 147A, 147B and 149A and 149B adjacent to each other in the circumferential direction. It is formed in the opposite direction. Balls 144 are disposed at the intersections of the track grooves 147A, 149A and 147B, 149B forming a pair of the outer joint member 142 and the inner joint member 143. Therefore, when the joint members 142 and 143 rotate relative to each other at an operating angle of 0 ° as shown in the figure, the wedge angle formed between the track grooves 147A and 149A and the direction between the opening 147B and 149B are formed. The direction in which the wedge angle opens is opposite to each other, and a force in a direction opposite to the ball 144 acts on the pocket portion 145a adjacent to the circumferential direction of the cage 145, so that the cage 145 is stable at the joint center O position. To do. Therefore, the contact force between the spherical outer circumferential surface 152 of the cage 145 and the spherical inner circumferential surface 146 of the outer joint member 142 and the contact between the spherical inner circumferential surface 153 of the cage 145 and the spherical outer circumferential surface 148 of the inner joint member 143. As a result of the force being suppressed and the operability of the joint being improved, torque loss and heat generation are suppressed, and durability is improved.
 上記したように、外側継手部材142のトラック溝147のうち、継手中心平面から開口側の領域に直線状のトラック溝147bを形成すれば、有効トラック長さを増加させて高作動角化を図ることができる。ところが、上述した構成では、使用頻度の多い作動角を取ったときに、継手のトルク損失や発熱の抑制という面で問題があることが判明した。この理由を図13に基づいて説明する。 As described above, in the track groove 147 of the outer joint member 142, if the linear track groove 147b is formed in the opening side region from the joint center plane, the effective track length is increased to increase the operating angle. be able to. However, it has been found that the above-described configuration has a problem in terms of suppressing torque loss and heat generation of the joint when an operating angle with a high frequency of use is taken. The reason for this will be described with reference to FIG.
 トラック溝147,149とボール144は、通常、接触角(30°~45°程度)をもって接触しているので、トラック溝147,149とボール144とは、図13に示すようにトラック溝147、149の溝底より少し離れたトラック溝147,149の側面側の破線で示す位置で接触している。継手が作動角を取ったとき、各ボール144には、トラック溝147,149の交差によるくさび角成分(図示省略)と、トラック溝147,149の溝底間の継手半径方向の拡がりによるくさび角成分αの両方が作用する。そのうち、トラック溝147,149の交差によるくさび角成分については、トラック溝147,149の傾斜方向が互いに反対方向になっているため、ボール144から保持器145のポケット部145aに相反する方向の力が作用ことにより、打消し合い、力がバランスすることとなる。 Since the track grooves 147 and 149 and the ball 144 are normally in contact with each other at a contact angle (about 30 ° to 45 °), the track grooves 147 and 149 and the ball 144 are connected to each other as shown in FIG. The track grooves 147 and 149 are in contact with each other at a position indicated by a broken line on the side surface side of the track grooves 147 and 149 slightly apart from the groove bottom of 149. When the joint takes an operating angle, each ball 144 has a wedge angle component (not shown) due to the intersection of the track grooves 147 and 149 and a wedge angle due to the joint radial expansion between the groove bottoms of the track grooves 147 and 149. Both components α act. Among them, with respect to the wedge angle component due to the intersection of the track grooves 147 and 149, since the inclination directions of the track grooves 147 and 149 are opposite to each other, the force in the direction opposite to the pocket portion 145 a of the cage 145 from the ball 144. Will cancel each other out and balance the force.
 ところが、図13に示すように、トラック溝147,149の溝底間の継手半径方向の拡がりによるくさび角成分αについては、図12bにおいて、0°~90°および270°~360°の位相範囲にあるボール144は直線状のトラック溝147b,149b間に位置し、この位相範囲のボール144には開口側に向けて開いたくさび角成分α1により開口側への力が作用する。一方、90°~270°の位相範囲にあるボール144は円弧状のトラック溝147a,149a間に位置するので、この位相範囲のボールには継手の半径方向の拡がりにより発生するくさび角成分α2が0であり、ボール144の押出力は発生しない。したがって、各ボール144に対して、トラック溝147,149の交差によるくさび角成分と、トラック溝147,149の溝底間の継手半径方向の拡がりによるくさび角成分αとを合わせると、保持器145の各ポケット部145aにボール144から作用する力が釣り合わず、保持器145の球状外周面152と外側継手部材142の球状内周面146との接触力、および保持器145の球状内周面153と内側継手部材143の球状外周面148との接触力を低減させることができないという問題が生じる。特に、常用角を含む使用頻度の多い作動角の範囲では、トルク損失や発熱の抑制という面で大きな問題があることが判明した。 However, as shown in FIG. 13, the wedge angle component α due to the joint radial expansion between the groove bottoms of the track grooves 147 and 149 is in the phase ranges of 0 ° to 90 ° and 270 ° to 360 ° in FIG. Is located between the linear track grooves 147b and 149b, and a force toward the opening acts on the ball 144 in this phase range due to the wedge angle component α1 that opens toward the opening. On the other hand, since the ball 144 in the phase range of 90 ° to 270 ° is positioned between the arc-shaped track grooves 147a and 149a, the ball in this phase range has a wedge angle component α2 generated by the radial expansion of the joint. 0, and the pushing force of the ball 144 is not generated. Therefore, when the wedge angle component due to the intersection of the track grooves 147 and 149 and the wedge angle component α due to the joint radial expansion between the groove bottoms of the track grooves 147 and 149 are combined with each ball 144, the cage 145 is obtained. The forces acting from the balls 144 on the respective pocket portions 145a are not balanced, the contact force between the spherical outer circumferential surface 152 of the cage 145 and the spherical inner circumferential surface 146 of the outer joint member 142, and the spherical inner circumferential surface 153 of the cage 145. And the contact force between the outer peripheral surface 148 of the inner joint member 143 cannot be reduced. In particular, it has been found that there is a significant problem in terms of torque loss and suppression of heat generation in the range of operating angles that are frequently used, including normal angles.
 以上の実情に鑑み、本発明は、トルク損失および発熱が少なく高効率で、耐久性に優れるものでありながら、高作動角を取ることができる固定式等速自在継手を提供することを目的とする。 In view of the above circumstances, it is an object of the present invention to provide a fixed type constant velocity universal joint capable of taking a high operating angle while having low torque loss and heat generation, high efficiency and excellent durability. To do.
 本願発明者らは、上記の目的を達成するために種々検討した結果、トルク損失および発熱を少なくして高効率化を図るために、外側継手部材および内側継手部材のトラック溝のそれぞれに、相手側と協働して交差部(交差トラック)を形成し得る円弧状の第1トラック溝部を設けて使用頻度の多い作動角の範囲をカバーすると共に、両継手部材のトラック溝のそれぞれに、第1トラック溝部とは異なる形状を有する第2トラック溝部を設けて使用頻度の少ない高作動角の範囲をカバーするという新規な着想に至った。これに加えて、最大作動角に対する有効トラック長さを増加させて高作動角化を図るために、円弧状の第1トラック溝部の曲率中心を継手中心に対して開口側にオフセットさせることを着想した。 As a result of various studies to achieve the above-mentioned object, the inventors of the present application have found that each of the outer joint member and the inner joint member has a track groove in order to improve efficiency by reducing torque loss and heat generation. An arc-shaped first track groove portion that can form an intersecting portion (intersecting track) in cooperation with the side is provided to cover a range of frequently used operating angles, and each of the track grooves of both joint members has a first The present inventors have arrived at a novel idea of providing a second track groove portion having a shape different from that of the one track groove portion to cover a range of a high operating angle that is less frequently used. In addition to this, the idea is to offset the center of curvature of the arc-shaped first track groove portion to the opening side with respect to the joint center in order to increase the effective track length with respect to the maximum operating angle and to increase the operating angle. did.
 上記の目的を達成するために創案された本発明は、球状内周面に軸方向に延びる複数のトラック溝が形成され、軸方向に離間する開口側と奥側を有する外側継手部材と、球状外周面に外側継手部材のトラック溝と対をなす複数のトラック溝が形成された内側継手部材と、外側継手部材のトラック溝と内側継手部材のトラック溝との間に介在してトルクを伝達する複数のボールと、このボールを保持し、外側継手部材の球状内周面および内側継手部材の球状外周面にそれぞれ嵌合する球状外周面および球状内周面を有する保持器とを備えた固定式等速自在継手において、外側継手部材のトラック溝は奥側に位置する第1トラック溝部と開口側に位置する第2トラック溝部とからなり、第1トラック溝部は、継手中心に対して開口側にオフセットした位置に曲率中心を有する円弧状をなし、かつ継手の軸線に対して周方向に傾斜すると共にその傾斜方向が周方向に隣り合う第1トラック溝部で互いに反対方向に形成されており、第2トラック溝部は、最大作動角に対する有効トラック長さを増加させるために第1トラック溝部とは異なる形状を有し、かつ継手中心よりも開口側で第1トラック溝部と接続され、内側継手部材のトラック溝は、作動角0°の状態の継手中心平面を基準として、外側継手部材の対となるトラック溝と鏡像対称に形成されていることを特徴とする。なお、ここでいう「継手の軸線」とは、継手の回転中心となる長手方向の軸線を意味し、後述する実施形態における継手の軸線N-Nを指す。また「作動角0°の状態の継手中心平面」とは、厳密に言うと、作動角0°の状態で継手中心を含んで継手の軸線と直交する方向に延びる平面である。 The present invention created to achieve the above object includes an outer joint member having a plurality of track grooves extending in the axial direction on a spherical inner peripheral surface and having an opening side and a back side spaced apart in the axial direction, and a spherical shape. Torque is transmitted by interposing between the outer joint member track groove and the inner joint member track groove formed on the outer peripheral surface with a plurality of track grooves paired with the outer joint member track groove. A fixed type comprising a plurality of balls and a cage having a spherical outer peripheral surface and a spherical inner peripheral surface that hold the balls and fit to the spherical inner peripheral surface of the outer joint member and the spherical outer peripheral surface of the inner joint member, respectively. In the constant velocity universal joint, the track groove of the outer joint member includes a first track groove portion located on the back side and a second track groove portion located on the opening side, and the first track groove portion is located on the opening side with respect to the joint center. Offset A circular arc shape having a center of curvature at the position and is inclined in the circumferential direction with respect to the axis of the joint, and the inclined directions are formed in opposite directions in the first track groove portions adjacent to each other in the circumferential direction. The track groove portion has a different shape from the first track groove portion in order to increase the effective track length with respect to the maximum operating angle, and is connected to the first track groove portion on the opening side from the joint center. The groove is characterized in that it is formed mirror-symmetrically with the track groove that forms a pair of the outer joint member with reference to the joint center plane in the state where the operating angle is 0 °. Here, the “joint axis” means a longitudinal axis serving as the center of rotation of the joint, and indicates a joint axis NN in an embodiment described later. Strictly speaking, the “joint center plane in a state where the operating angle is 0 °” is a plane including the joint center and extending in a direction orthogonal to the axis of the joint in a state where the operating angle is 0 °.
 本発明では、外側継手部材のトラック溝において、その開口側に設けられる有効トラック長さを増加させるための第2トラック溝部が継手中心よりも開口側で第1トラック溝部に接続される(内側継手部材のトラック溝においては、その奥側に設けられる第2トラック溝部が継手中心よりも奥側で第1トラック溝部に接続される)。これはすなわち、本発明に係る固定式等速自在継手では、図12aに示す等速自在継手141と比較して、トルク損失等の抑制効果に優れた交差トラックを形成する第1トラック溝部の形成範囲が拡大されることを意味する。そのため、常用作動角の範囲におけるトルク損失や発熱を抑制して高効率化を図ることができる。その一方で、円弧状の第1トラック溝部は、継手中心に対して開口側にオフセットした曲率中心を有することから、このオフセット量を、上記構成を採用したことにより得られるトルク損失等の抑制効果(継手の効率性)が損なわれない範囲で適宜調整することにより、第2トラック溝部の長さ(有効トラック長さ)を効果的に増加させて高作動角化を図ることができる。従って、本発明によれば、トルク損失および発熱が少なく高効率で、耐久性に優れるものでありながら、高作動角を取ることができる固定式等速自在継手を実現することができる。 In the present invention, in the track groove of the outer joint member, the second track groove portion for increasing the effective track length provided on the opening side is connected to the first track groove portion on the opening side from the joint center (inner joint joint). In the track groove of the member, the second track groove portion provided on the back side is connected to the first track groove portion on the back side from the joint center). That is, in the fixed type constant velocity universal joint according to the present invention, the formation of the first track groove portion that forms a cross track excellent in the effect of suppressing torque loss or the like as compared with the constant velocity universal joint 141 shown in FIG. It means that the range is expanded. Therefore, high efficiency can be achieved by suppressing torque loss and heat generation in the normal operating angle range. On the other hand, since the arc-shaped first track groove portion has a center of curvature that is offset toward the opening side with respect to the joint center, this offset amount is effective in suppressing torque loss and the like obtained by adopting the above-described configuration. By appropriately adjusting within a range where (the efficiency of the joint) is not impaired, it is possible to effectively increase the length of the second track groove portion (effective track length) and increase the operating angle. Therefore, according to the present invention, it is possible to realize a fixed type constant velocity universal joint that can take a high operating angle while having low torque loss and heat generation, high efficiency, and excellent durability.
 第1トラック溝部と第2トラック溝部とが接続される点と継手中心とを結ぶ直線が作動角0°の状態の継手中心平面に対してなす角度をβとしたとき、この角度βを使用状態等に応じて適宜設定することにより、固定式等速自在継手の高効率化を適切に実現することができる。特に自動車用等速自在継手の常用作動角度範囲を考慮すると、角度βを3~10°に設定にすることで種々の車種に汎用することができる。なお、ここでいう角度βは、上記の直線が作動角0°の状態の継手中心平面上の直線となす角の中で最小のものと定義する。 When the angle formed by the straight line connecting the point where the first track groove portion and the second track groove portion are connected to the joint center with respect to the joint center plane in the state where the operating angle is 0 ° is β, this angle β is used. By appropriately setting according to the above, high efficiency of the fixed type constant velocity universal joint can be appropriately realized. In particular, considering the normal operating angle range of the constant velocity universal joint for automobiles, the angle β can be set to 3 to 10 ° to be widely used for various types of vehicles. Here, the angle β is defined as the smallest angle formed by the straight line on the joint center plane when the operating angle is 0 °.
 第1トラック溝部の曲率中心は、継手中心に対して開口側にオフセットされている限りにおいて、その半径方向位置を任意に設定することができる。すなわち、第1トラック溝部の曲率中心は、継手の軸線N-Nに対して周方向に傾斜した傾斜軸N’-N’上に配置しても良いし(図4や図5等を参照)、傾斜軸N’-N’に対して半径方向にオフセットした位置に配置しても良い(図10を参照)。第1トラック溝部の曲率中心を継手の軸線に対して半径方向にオフセットさせた場合には、そのオフセット量に応じて継手の奥側のトラック溝深さを調整することができるので、最適なトラック溝深さを確保することが可能となる。 As long as the center of curvature of the first track groove is offset toward the opening with respect to the joint center, the position in the radial direction can be arbitrarily set. That is, the center of curvature of the first track groove portion may be disposed on an inclined axis N′-N ′ inclined in the circumferential direction with respect to the joint axis NN (see FIG. 4 and FIG. 5). Further, it may be arranged at a position offset in the radial direction with respect to the tilt axis N′-N ′ (see FIG. 10). When the center of curvature of the first track groove is offset in the radial direction with respect to the axis of the joint, the track groove depth on the back side of the joint can be adjusted according to the offset amount, so that the optimal track It becomes possible to ensure the groove depth.
 保持器の球状外周面の曲率中心を、継手中心に対して開口側にオフセットした位置に配置し、保持器の球状内周面の曲率中心を、継手中心に対して奥側にオフセットした位置に配置することができる。このようにすれば、保持器の肉厚を開口側に向かって徐々に厚くすることができるので、特に高作動角時の保持器の強度を確保して継手の信頼性を高めることができる。 Place the center of curvature of the spherical outer peripheral surface of the cage at a position offset to the opening side with respect to the joint center, and position the center of curvature of the spherical inner peripheral surface of the cage to the back side with respect to the joint center. Can be arranged. In this way, the thickness of the cage can be gradually increased toward the opening side, so that the strength of the cage can be secured particularly at a high operating angle, and the reliability of the joint can be improved.
 第2トラック溝部は、第1トラック溝部の半径方向外側で、かつ継手中心よりも開口側にオフセットされた位置を曲率中心とした円弧状部分を有するものとすることができる。これにより、有効トラック長さを増加させて最大作動角を大きくすることができる。この場合、第2トラック溝部は、上記の円弧状部分のみからなり、この円弧状部分が第1トラック溝部に滑らかに接続されたものとしても良いし、上記の円弧状部分と直線状部分とからなり、直線状部分が第1トラック溝部に滑らかに接続されたものとしても良い。 The second track groove portion may have an arc-shaped portion having a center of curvature at a position that is radially outward of the first track groove portion and offset toward the opening side from the joint center. As a result, the effective track length can be increased to increase the maximum operating angle. In this case, the second track groove portion includes only the arc-shaped portion described above, and the arc-shaped portion may be smoothly connected to the first track groove portion, or may include the arc-shaped portion and the linear portion. Thus, the linear portion may be smoothly connected to the first track groove portion.
 トルク伝達ボールの個数は、8個、10個又は12個の何れかとするのが望ましい。このようにすれば、軽量コンパクトで、高効率で、高作動角が取れる固定式等速自在継手、ひいては自動車のドライブシャフトを実現することができる。 It is desirable that the number of torque transmission balls is 8, 10, or 12. In this way, it is possible to realize a fixed type constant velocity universal joint that is lightweight, compact, highly efficient, and capable of obtaining a high operating angle, and thus a drive shaft of an automobile.
 本発明により、トルク損失および発熱が少なく高効率で、耐久性に優れるものでありながら、高作動角を取ることができるコンパクトな固定式等速自在継手を実現することができる。 According to the present invention, it is possible to realize a compact fixed type constant velocity universal joint capable of taking a high operating angle while having low torque loss and heat generation, high efficiency and excellent durability.
本発明の第1実施形態に係る固定式等速自在継手の部分縦断面図である。It is a fragmentary longitudinal cross-sectional view of the fixed type constant velocity universal joint which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る固定式等速自在継手の正面図である。It is a front view of the fixed type constant velocity universal joint which concerns on 1st Embodiment of this invention. 外側継手部材の部分縦断面図である。It is a partial longitudinal cross-sectional view of an outer joint member. 外側継手部材の正面図である。It is a front view of an outer joint member. 内側継手部材の背面図である。It is a rear view of an inner joint member. 内側継手部材の側面図である。It is a side view of an inner joint member. 内側継手部材の正面図である。It is a front view of an inner joint member. 外側継手部材のトラック溝の詳細を示す部分縦断面図である。It is a fragmentary longitudinal cross-section which shows the detail of the track groove of an outer joint member. 内側継手部材のトラック溝の詳細を示す縦断面図である。It is a longitudinal cross-sectional view which shows the detail of the track groove of an inner side coupling member. 図1に示す等速自在継手が最大作動角を取った状態を示す概要図である。It is a schematic diagram which shows the state which the constant velocity universal joint shown in FIG. 1 took the maximum operating angle. 図14に示す等速自在継手が最大作動角を取った状態を示す概要図である。It is a schematic diagram which shows the state which the constant velocity universal joint shown in FIG. 14 took the maximum operating angle. 外側継手部材の斜視図である。It is a perspective view of an outside joint member. 内側継手部材の斜視図である。It is a perspective view of an inner joint member. 図1に示す固定式等速自在継手が組み込まれた自動車用ドライブシャフトの一例を示す図であるIt is a figure which shows an example of the drive shaft for motor vehicles in which the fixed type constant velocity universal joint shown in FIG. 1 was integrated. 本発明の第2実施形態に係る固定式等速自在継手で使用される外側継手部材の縦断面図である。It is a longitudinal cross-sectional view of the outer joint member used with the fixed type constant velocity universal joint which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係る固定式等速自在継手で使用される外側継手部材の縦断面図である。It is a longitudinal cross-sectional view of the outer joint member used with the fixed type constant velocity universal joint which concerns on 3rd Embodiment of this invention. 本発明の第4実施形態に係る固定式等速自在継手で使用される保持器の部分縦断面図である。It is a fragmentary longitudinal cross-sectional view of the holder | retainer used with the fixed type constant velocity universal joint which concerns on 4th Embodiment of this invention. 本発明に至る過程で検討した固定式等速自在継手の部分縦断面図である。It is the fragmentary longitudinal cross-section of the fixed type constant velocity universal joint examined in the process leading to the present invention. 本発明に至る過程で検討した固定式等速自在継手の右側面図である。It is a right view of the fixed type constant velocity universal joint examined in the process leading to the present invention. 図12aに示す固定式等速自在継手が作動角をとった状態を示す部分断面図であり、本発明に至る過程における技術的知見を説明する図である。It is a fragmentary sectional view showing the state where the fixed type constant velocity universal joint shown in Drawing 12a took an operating angle, and is a figure explaining the technical knowledge in the process leading to the present invention. 本発明に至る過程における技術的知見を説明する図である。It is a figure explaining the technical knowledge in the process leading to the present invention. 従来の固定式等速自在継手の縦断面図である。It is a longitudinal cross-sectional view of the conventional fixed type constant velocity universal joint. 図15aに示す固定式等速自在継手が最大作動角を取った状態を示す概要図である。It is a schematic diagram which shows the state which the fixed type constant velocity universal joint shown to FIG. 15a took the maximum operating angle. 従来の固定式等速自在継手の縦断面図である。It is a longitudinal cross-sectional view of the conventional fixed type constant velocity universal joint. 図16aに示す固定式等速自在継手が高作動角を取った状態を示す概要図である。It is a schematic diagram which shows the state which the fixed type constant velocity universal joint shown to FIG. 16a took the high operating angle.
 本発明の実施の形態を図面に基づいて説明する。 Embodiments of the present invention will be described with reference to the drawings.
 図1aに本発明の第1実施形態に係る固定式等速自在継手1(以下、単に「等速自在継手1」ともいう)の部分縦断面図を示し、図1bに等速自在継手1を開口側からみたときの正面図を示す。この等速自在継手1は、トラック溝交差タイプに分類されるものであり、外側継手部材2、内側継手部材3、ボール4および保持器5を主な構成とする。図2にも示すように、外側継手部材2の球状内周面6には軸方向に延びる8本のトラック溝7が形成されており、各トラック溝7は、継手の軸線N-Nに対して周方向に角度γ傾斜すると共にその傾斜方向が周方向に隣り合うトラック溝7(7A,7B)で互いに反対方向に形成されている。また、図3にも示すように、内側継手部材3の球状外周面8には軸方向に延びる8本のトラック溝9が形成されており、各トラック溝9は、継手の軸線N-Nに対して周方向に角度γ傾斜すると共にその傾斜方向が周方向に隣り合うトラック溝9(9A,9B)で互いに反対方向に形成されている。そして、外側継手部材2と内側継手部材3の対をなすトラック溝7,9の各交差部にボール4がそれぞれ配置されている。外側継手部材2のトラック溝7(7A,7B)、および内側継手部材3のトラック溝9(9A,9B)の詳細については後述する。 FIG. 1a shows a partial longitudinal sectional view of a fixed type constant velocity universal joint 1 (hereinafter also simply referred to as “constant velocity universal joint 1”) according to the first embodiment of the present invention, and FIG. The front view when seen from the opening side is shown. The constant velocity universal joint 1 is classified as a track groove intersection type, and mainly includes an outer joint member 2, an inner joint member 3, a ball 4 and a cage 5. As shown in FIG. 2, eight track grooves 7 extending in the axial direction are formed on the spherical inner peripheral surface 6 of the outer joint member 2, and each track groove 7 is formed with respect to the joint axis NN. Thus, the angle γ is inclined in the circumferential direction, and the inclined direction is formed in opposite directions by the track grooves 7 (7A, 7B) adjacent in the circumferential direction. Further, as shown in FIG. 3, eight track grooves 9 extending in the axial direction are formed on the spherical outer peripheral surface 8 of the inner joint member 3, and each track groove 9 extends along the joint axis NN. On the other hand, the angle γ is inclined in the circumferential direction, and the inclined direction is formed in opposite directions by the track grooves 9 (9A, 9B) adjacent in the circumferential direction. Then, the balls 4 are respectively arranged at the intersections of the track grooves 7 and 9 forming a pair of the outer joint member 2 and the inner joint member 3. Details of the track grooves 7 (7A, 7B) of the outer joint member 2 and the track grooves 9 (9A, 9B) of the inner joint member 3 will be described later.
 ここで、トラック溝7,9の形態(傾斜状態や湾曲状態など)や形状を的確に示すために、以下では「ボール軌道中心線」なる用語を用いる。ボール軌道中心線とは、対をなすトラック溝7,9間に介在するボール4がトラック溝7,9に沿って移動するときに、ボール4の中心が描く軌跡を意味する。したがって、トラック溝7,9の傾斜状態や湾曲状態はそのボール軌道中心線の傾斜状態や湾曲状態と同じである。 Here, the term “ball trajectory centerline” is used in the following to accurately indicate the form (inclined state, curved state, etc.) and shape of the track grooves 7 and 9. The center line of the ball trajectory means a locus drawn by the center of the ball 4 when the ball 4 interposed between the pair of track grooves 7 and 9 moves along the track grooves 7 and 9. Accordingly, the inclined state and the curved state of the track grooves 7 and 9 are the same as the inclined state and the curved state of the ball track center line.
 外側継手部材2のトラック溝7はボール軌道線Xを有する。詳述すると、トラック溝7は、奥側に設けられ、継手中心Oに対して開口側に寸法f1(図4参照)だけオフセットした点Oo1を曲率中心とした円弧状のボール軌道中心線Xaを有する第1トラック溝部7aと、開口側に設けられ、第1トラック溝部7aとは反対方向に湾曲した円弧状のボール軌道中心線Xbを有する第2トラック溝部7bとからなる。すなわち、本実施形態の第2トラック溝部7bは、第1トラック溝部7aとは形状の異なる(反対方向に湾曲した)円弧状部分のみからなり、そのボール軌道中心線Xb(の奥側端部)は、第1トラック溝部7aのボール軌道中心線Xaの開口側端部に滑らかに接続されている。また、第1トラック溝部7aの曲率中心であるオフセット点Oo1は、継手の軸線N-Nに対して角度γだけ傾斜した傾斜軸N’-N’(図4を参照。但し、角度γについては図2aを参照)上に配置されており、継手中心Oに対して半径方向にオフセットしていない。 The track groove 7 of the outer joint member 2 has a ball track line X. More specifically, the track groove 7 is provided on the back side, and an arc-shaped ball trajectory center line Xa having a center of curvature at a point Oo1 offset from the joint center O by the dimension f1 (see FIG. 4) on the opening side. The first track groove portion 7a is provided on the opening side, and the second track groove portion 7b has an arc-shaped ball trajectory center line Xb curved in the opposite direction to the first track groove portion 7a. That is, the second track groove portion 7b of the present embodiment is composed of only an arc-shaped portion having a shape different from that of the first track groove portion 7a (curved in the opposite direction), and the ball track center line Xb (the back end portion thereof). Are smoothly connected to the opening side end of the ball track center line Xa of the first track groove 7a. Further, the offset point Oo1, which is the center of curvature of the first track groove portion 7a, is an inclined axis N′-N ′ inclined with respect to the joint axis NN by an angle γ (see FIG. 4; however, regarding the angle γ 2) and is not radially offset with respect to the joint center O.
 図2aおよび図2bにそれぞれ示す外側継手部材2の部分縦断面図および開口側から見た正面図(右側面図)を参照しながら、外側継手部材2のトラック溝7が継手の軸線N-Nに対して周方向に角度γだけ傾斜している状態を詳細に説明する。外側継手部材2のトラック溝7は、その傾斜方向の違いから、トラック溝7A,7Bの符号を付す。図2aに示すように、トラック溝7Aのボール軌道中心線Xと継手中心Oを含む平面Mは、継手の軸線N-Nに対して角度γだけ傾斜している。そして、図示は省略するが、トラック溝7Aと周方向に隣り合うトラック溝7Bは、継手の軸線N-Nに対して、トラック溝7Aの傾斜方向とは反対方向に角度γだけ傾斜している。本実施形態では、トラック溝7A(および7B)のボール軌道中心線Xの全域、すなわち、第1トラック溝部7aのボール軌道中心線Xaおよび第2トラック溝部7bのボール軌道中心線Xbの双方が平面M上に形成されている。しかし、これに限られるものではなく、第1トラック溝部7aのボール軌道中心線Xaのみが平面Mに含まれている形態を採用することもできる。したがって、少なくとも第1トラック溝部7aのボール軌道中心線Xaと継手中心Oを含む平面Mが、継手の軸線N-Nに対して周方向に角度γだけ傾斜すると共に、その傾斜方向が周方向に隣り合う第1トラック溝部7aで互いに反対方向に形成されていればよい。 Referring to the partial longitudinal sectional view of the outer joint member 2 shown in FIGS. 2a and 2b and the front view (right side view) seen from the opening side, the track groove 7 of the outer joint member 2 is connected to the joint axis NN. In the following, the state of being inclined by the angle γ in the circumferential direction will be described in detail. The track grooves 7 of the outer joint member 2 are given the reference numerals of the track grooves 7A and 7B due to the difference in the inclination direction. As shown in FIG. 2a, the plane M including the ball track center line X and the joint center O of the track groove 7A is inclined by an angle γ with respect to the joint axis NN. Although not shown, the track groove 7B adjacent to the track groove 7A in the circumferential direction is inclined by an angle γ with respect to the joint axis NN in the direction opposite to the inclination direction of the track groove 7A. . In this embodiment, the entire area of the ball track center line X of the track groove 7A (and 7B), that is, both the ball track center line Xa of the first track groove portion 7a and the ball track center line Xb of the second track groove portion 7b are flat. It is formed on M. However, the present invention is not limited to this, and a mode in which only the ball trajectory center line Xa of the first track groove portion 7a is included in the plane M can also be adopted. Therefore, a plane M including at least the ball track center line Xa of the first track groove 7a and the joint center O is inclined by an angle γ in the circumferential direction with respect to the joint axis NN, and the inclined direction is in the circumferential direction. The adjacent first track groove portions 7a may be formed in opposite directions.
 ここで、トラック溝の符号について補足する。外側継手部材2のトラック溝全体を指す場合は符号7を付し、その第1および第2トラック溝部に符号7a,7bをそれぞれ付している。さらに、傾斜方向が互いに異なるトラック溝を区別するために符号7A,7Bを付し、トラック溝7A,7Bの第1トラック溝部に符号7Aa,7Baを、また、トラック溝7A,7Bの第2トラック溝部に符号7Ab,7Bbをそれぞれ付している。以下に詳述する内側継手部材3のトラック溝9についても同様の要領で符号を付している。 Suppose here that the track groove codes are supplemented. When referring to the entire track groove of the outer joint member 2, reference numeral 7 is attached, and reference numerals 7a and 7b are attached to the first and second track groove portions, respectively. Further, in order to distinguish track grooves having different inclination directions, reference numerals 7A and 7B are given, reference numerals 7Aa and 7Ba are assigned to the first track groove portions of the track grooves 7A and 7B, and second tracks of the track grooves 7A and 7B are given. Reference numerals 7Ab and 7Bb are attached to the grooves, respectively. The same applies to the track grooves 9 of the inner joint member 3 described in detail below.
 内側継手部材3のトラック溝9はボール軌道中心線Yを有する。詳述すると、トラック溝9は、継手中心Oに対して奥側に寸法f1(図5参照)だけオフセットした点Oi1を曲率中心とした円弧状のボール軌道中心線Yaを有する第1トラック溝部9aと、奥側に設けられ、第1トラック溝部9aとは反対方向に湾曲した円弧状のボール軌道中心線Ybを有する第2トラック溝部9bとからなる。すなわち、本実施形態の第2トラック溝部9bは、第1トラック溝部9aとは形状の異なる(反対方向に湾曲した)円弧状部分のみからなり、そのボール軌道中心線Ybの開口側端部は、第1トラック溝部9aのボール軌道中心線Yaの奥側端部に滑らかに接続されている。また、第1トラック溝部9aの曲率中心であるオフセット点Oi1は、継手の軸線N-Nに対して角度γだけ傾斜した傾斜軸N’-N’(図5を参照。但し、角度γについては図3bを参照)上に配置されており、継手中心Oに対して半径方向にオフセットしていない。 The track groove 9 of the inner joint member 3 has a ball track center line Y. More specifically, the track groove 9 has a first track groove portion 9a having an arc-shaped ball trajectory center line Ya centered on a point Oi1 offset by a dimension f1 (see FIG. 5) on the back side with respect to the joint center O. And a second track groove portion 9b having an arcuate ball trajectory center line Yb which is provided on the back side and is curved in a direction opposite to the first track groove portion 9a. That is, the second track groove portion 9b of the present embodiment is composed of only an arc-shaped portion having a different shape (curved in the opposite direction) from the first track groove portion 9a, and the opening side end portion of the ball trajectory center line Yb is The first track groove 9a is smoothly connected to the back end of the ball track center line Ya. Further, the offset point Oi1 that is the center of curvature of the first track groove portion 9a is an inclined axis N′-N ′ inclined with respect to the joint axis NN by an angle γ (see FIG. 5; (See FIG. 3b) and is not offset radially relative to the joint center O.
 図3a~図3cにそれぞれ示す内側継手部材3の背面図、側面図および正面図を参照しながら、内側継手部材3のトラック溝9が継手の軸線N-Nに対して周方向に傾斜している状態を詳細に説明する。内側継手部材3のトラック溝9は、その傾斜方向の違いから、トラック溝9A,9Bの符号を付す。図3bに示すように、トラック溝9Aのボール軌道中心線Yと継手中心Oを含む平面Qは、継手の軸線N-Nに対して角度γだけ傾斜している。そして、図示は省略するが、トラック溝9Aに周方向に隣り合うトラック溝9Bは、トラック溝9Bのボール軌道中心線Yと継手中心Oを含む平面Qが、継手の軸線N-Nに対して、トラック溝9Aの傾斜方向とは反対方向に角度γだけ傾斜している。平面Q(および上述した平面M)の継手の軸線N-Nに対する傾斜角γは、等速自在継手1の作動性および内側継手部材3のトラック溝9の最も接近した側の球面幅Fを考慮し、4°~12°にすることが好ましい。また、上述した外側継手部材2と同様、本実施形態では、トラック溝9Aのボール軌道中心線Yの全域、すなわち、第1トラック溝部9aのボール軌道中心線Yaおよび第2トラック溝部9bのボール軌道中心線Ybの双方が平面Q上に形成されている。しかし、これに限られるものではなく、第1トラック溝部9aのボール軌道中心線Yaのみが平面Qに含まれている形態も実施することができる。したがって、少なくとも第1トラック溝部9aのボール軌道中心線Yaと継手中心Oを含む平面Qが継手の軸線N-Nに対して周方向に傾斜すると共にその傾斜方向が周方向に隣り合う第1トラック溝部9aで互いに反対方向に形成されていればよい。 Referring to the rear view, side view, and front view of the inner joint member 3 shown in FIGS. 3a to 3c, the track groove 9 of the inner joint member 3 is inclined in the circumferential direction with respect to the joint axis NN. The state of being present will be described in detail. The track grooves 9 of the inner joint member 3 are given the reference numerals of the track grooves 9A and 9B because of the difference in the inclination direction. As shown in FIG. 3b, the plane Q including the ball track center line Y and the joint center O of the track groove 9A is inclined by an angle γ with respect to the joint axis NN. Although not shown, the track groove 9B adjacent to the track groove 9A in the circumferential direction has a plane Q including the ball track center line Y and the joint center O of the track groove 9B with respect to the joint axis NN. The track groove 9A is inclined by an angle γ in the direction opposite to the inclination direction of the track groove 9A. The inclination angle γ with respect to the joint axis NN of the plane Q (and the plane M described above) takes into consideration the operability of the constant velocity universal joint 1 and the spherical width F of the inner joint member 3 on the closest side of the track groove 9. In addition, the angle is preferably 4 ° to 12 °. Further, like the outer joint member 2 described above, in the present embodiment, the entire region of the ball track center line Y of the track groove 9A, that is, the ball track center line Ya of the first track groove portion 9a and the ball track of the second track groove portion 9b. Both center lines Yb are formed on the plane Q. However, the present invention is not limited to this, and a mode in which only the ball trajectory center line Ya of the first track groove portion 9a is included in the plane Q can also be implemented. Accordingly, the plane Q including at least the ball track center line Ya of the first track groove 9a and the joint center O is inclined in the circumferential direction with respect to the joint axis NN, and the inclined direction is adjacent to the first track in the circumferential direction. It suffices if the grooves 9a are formed in opposite directions.
 以上の構成から、内側継手部材3のトラック溝9のボール軌道中心線Yは、作動角0°の状態の継手中心平面Pを基準として、外側継手部材2の対となるトラック溝7のボール軌道中心線Xと鏡像対称に形成されている。なお、図示は省略するが、両継手部材2,3のトラック溝7,9の横断面形状は楕円形状やゴシックアーチ形状に形成されており、トラック溝7,9とボール4は30°~45°程度の接触角をもって接触する、いわゆるアンギュラコンタクトとなっている。したがって、ボール4は、トラック溝7,9の溝底より少し離れたトラック溝7,9の側面側でトラック溝7,9と接触している。 From the above configuration, the ball track center line Y of the track groove 9 of the inner joint member 3 is based on the joint center plane P in a state where the operating angle is 0 °. It is formed mirror-symmetric with the center line X. Although not shown, the cross-sectional shapes of the track grooves 7 and 9 of both joint members 2 and 3 are formed in an elliptical shape or a Gothic arch shape, and the track grooves 7 and 9 and the ball 4 are 30 ° to 45 °. It is a so-called angular contact that makes contact with a contact angle of about °. Therefore, the ball 4 is in contact with the track grooves 7 and 9 on the side surface side of the track grooves 7 and 9 that are slightly apart from the groove bottoms of the track grooves 7 and 9.
 次に、図4に示す外側継手部材2の部分縦断面図に基づいて、外側継手部材2の縦断面より見たトラック溝の詳細を説明する。なお、図4は、図2a中に示すトラック溝7Aのボール軌道中心線Xと継手中心Oを含む平面Mで見た断面図である。したがって、図4は、厳密には継手の軸線N-Nを含む平面における縦断面図ではなく、継手の軸線N-Nに対して角度γだけ傾斜した傾斜軸N’-N’を含む平面における縦断面を示している。また、図4には、外側継手部材2のトラック溝7Aのみを示しているが、トラック溝7Bは、トラック溝7Aと反対方向に傾斜しているだけで、その他の構成はトラック溝7Aと同じであることから、図示しての詳細な説明は省略する。 Next, details of the track grooves as seen from the longitudinal section of the outer joint member 2 will be described based on the partial longitudinal sectional view of the outer joint member 2 shown in FIG. 4 is a cross-sectional view of the track groove 7A shown in FIG. 2A as viewed on a plane M including the ball trajectory center line X and the joint center O. FIG. Accordingly, FIG. 4 is not strictly a longitudinal sectional view in the plane including the joint axis NN, but in the plane including the inclined axis N′-N ′ inclined by the angle γ with respect to the joint axis NN. A longitudinal section is shown. 4 shows only the track groove 7A of the outer joint member 2, the track groove 7B is merely inclined in the direction opposite to the track groove 7A, and other configurations are the same as the track groove 7A. Therefore, the detailed description shown in the figure is omitted.
 外側継手部材2の球状内周面6には、ボール軌道中心線Xを有するトラック溝7Aが軸方向に沿って形成されている。このトラック溝7Aは、継手中心Oに対して開口側に寸法f1だけオフセットした点Oo1を曲率中心とした円弧状のボール軌道中心線Xaを有する第1トラック溝部7Aaと、この第1トラック溝部7Aaとは反対方向に湾曲した円弧状のボール軌道中心線Xb、より詳しくは、第1トラック溝部7Aaの半径方向外側で、かつオフセット点Oo1よりオフセット量が大きい点Oo2を曲率中心とした円弧状のボール軌道中心線Xbを有する第2トラック溝部7Abとからなる。すなわち、第2トラック溝部7Aaは円弧状部分のみからなり、そのボール軌道中心線Xbの奥側端部は、第1トラック溝部7Aaのボール軌道中心線Xaの開口側端部A(両オフセット点Oo1,Oo2を結ぶ直線L1とトラック溝7Aのボール軌道中心線Xとが交わる点)に滑らかに接続されている。第1トラック溝部7Aaの開口側端部Aと継手中心Oとを結ぶ直線をL2としたとき、この直線L2と、トラック溝7Aのボール軌道中心線Xと継手中心Oを含む平面M(図2a参照)上に投影された継手の軸線N’-N’の継手中心Oにおける垂線Kとがなす角度β’を含む平面は、継手の軸線N-Nに対して角度γだけ傾斜している。上記の垂線Kは作動角0°の状態の継手中心平面P上にある。したがって、直線L2が作動角0°の状態の継手中心平面Pに対してなす角度βは、sinβ=sinβ’×cosγの関係になる。本実施形態では、外側継手部材2の第1トラック溝部7Aaおよび第2トラック溝部7Abを、それぞれ単一の円弧状部分で形成しているが、これに限られず、トラック溝深さなどを考慮して複数の円弧状部分で形成してもよい。 On the spherical inner peripheral surface 6 of the outer joint member 2, a track groove 7A having a ball track center line X is formed along the axial direction. The track groove 7A includes a first track groove portion 7Aa having an arc-shaped ball trajectory center line Xa having a center of curvature at a point Oo1 offset by a dimension f1 on the opening side with respect to the joint center O, and the first track groove portion 7Aa. Arc-shaped ball trajectory center line Xb curved in the opposite direction, more specifically, an arc-shaped ball centered on a point Oo2 radially outside the first track groove 7Aa and having a larger offset amount than the offset point Oo1. And a second track groove portion 7Ab having a ball track center line Xb. That is, the second track groove portion 7Aa is composed only of an arc-shaped portion, and the back end portion of the ball track center line Xb is the opening side end portion A (both offset points Oo1 of the ball track center line Xa of the first track groove portion 7Aa. , Oo2 and the point where the straight line L1 of the track groove 7A intersects the ball trajectory center line X). When a straight line connecting the opening side end A of the first track groove portion 7Aa and the joint center O is L2, the plane M including the straight line L2, the ball track center line X of the track groove 7A and the joint center O (FIG. 2a). Reference) The plane including the angle β ′ formed by the perpendicular K at the joint center O of the joint axis N′-N ′ projected above is inclined by the angle γ with respect to the joint axis NN. The perpendicular line K is on the joint center plane P with an operating angle of 0 °. Therefore, the angle β formed with respect to the joint center plane P in a state where the straight line L2 has an operating angle of 0 ° has a relationship of sin β = sin β ′ × cos γ. In the present embodiment, the first track groove portion 7Aa and the second track groove portion 7Ab of the outer joint member 2 are each formed by a single arc-shaped portion. However, the present invention is not limited to this, and the track groove depth and the like are considered. And may be formed of a plurality of arc-shaped portions.
 同様に、図5に基づいて、内側継手部材3の縦断面よりトラック溝の詳細を説明する。図5は、図3bのトラック溝9Aのボール軌道中心線Yと継手中心Oを含む平面Qで見た断面図である。したがって、厳密にいうと図5は、図4と同様に、継手の軸線N-Nを含む平面における縦断面図ではなく、継手の軸線N-Nに対して角度γだけ傾斜した傾斜軸N’-N’を含む平面における断面を示している。また、図5には、内側継手部材3のトラック溝9Aのみを示しているが、トラック溝9Bは、トラック溝9Aと反対方向に傾斜しているだけで、その他の構成はトラック溝9Aと同じであるので、図示しての詳細な説明は省略する。 Similarly, the details of the track groove will be described from the longitudinal section of the inner joint member 3 based on FIG. FIG. 5 is a cross-sectional view of the track groove 9A of FIG. Therefore, strictly speaking, FIG. 5 is not a longitudinal sectional view in a plane including the joint axis NN but is inclined axis N ′ inclined by an angle γ with respect to the joint axis NN, as in FIG. A cross section in a plane including -N 'is shown. Further, FIG. 5 shows only the track groove 9A of the inner joint member 3, but the track groove 9B is merely inclined in the opposite direction to the track groove 9A, and other configurations are the same as the track groove 9A. Therefore, the detailed description shown in the figure is omitted.
 内側継手部材3の球状外周面8には、ボール軌道中心線Yを有するトラック溝9Aが軸方向に沿って形成されている。このトラック溝9Aは、継手中心Oに対して寸法f1だけ奥側にオフセットした点Oi1を曲率中心とした円弧状のボール軌道中心線Yaを有する第1トラック溝部9Aaと、この第1トラック溝部9Aaとは反対方向に湾曲した、より詳しくは、第1トラック溝部9Aaのボール軌道中心線Yaの半径方向外側で、かつオフセット点Oi1よりオフセット量が大きい点Oi2を曲率中心とした円弧状のボール軌道中心線Ybを有する第2のトラック溝部9Abとからなる。すなわち、第2トラック溝部9Abは円弧状部分のみからなり、そのボール軌道中心線Ybの開口側端部は、第1トラック溝部9Aaのボール軌道中心線Yaの奥側端部B(両オフセット点Oi1,Oi2を結ぶ直線R1とトラック溝9Aのボール軌道中心線Yとが交わる点)に滑らかに接続されている。第1トラック溝部9Aaの奥側端部Bと継手中心Oとを結ぶ直線をR2としたとき、この直線R2と、トラック溝9Aのボール軌道中心線Yと継手中心Oを含む平面Q(図3b参照)上に投影された継手の軸線N’-N’の継手中心Oにおける垂線Kとがなす角度β’を含む平面は、継手の軸線N-Nに対して角度γだけ傾斜している。上記の垂線Kは作動角0°の状態の継手中心平面P上にある。したがって、直線R2が作動角0°の状態の継手中心平面Pに対してなす角度βは、sinβ=sinβ’×cosγの関係になる。本実施形態では、内側継手部材3の第1トラック溝部9Aaおよび第2トラック溝部9Abをそれぞれ単一の円弧状部分で形成しているが、両トラック溝部9Aa,9Abは、前述した外側継手部材2のトラック溝と同様に、トラック溝深さなどを考慮して、それぞれ複数の円弧で形成してもよい。 On the spherical outer peripheral surface 8 of the inner joint member 3, a track groove 9A having a ball track center line Y is formed along the axial direction. The track groove 9A includes a first track groove portion 9Aa having an arc-shaped ball trajectory center line Ya whose center of curvature is a point Oi1 offset from the joint center O by a dimension f1 on the back side, and the first track groove portion 9Aa. More specifically, an arc-shaped ball trajectory centered at a point Oi2 that is radially outward of the ball trajectory centerline Ya of the first track groove 9Aa and that has a larger offset amount than the offset point Oi1. And a second track groove 9Ab having a center line Yb. That is, the second track groove portion 9Ab consists of only an arc-shaped portion, and the opening side end portion of the ball track center line Yb is the back end portion B (both offset points Oi1) of the ball track center line Ya of the first track groove portion 9Aa. , Oi2 and the point where the straight line R1 of the track groove 9A intersects the ball trajectory center line Y). When a straight line connecting the back end B of the first track groove portion 9Aa and the joint center O is R2, the plane Q including the straight line R2, the ball track center line Y of the track groove 9A and the joint center O (FIG. 3b). Reference) The plane including the angle β ′ formed by the perpendicular K at the joint center O of the joint axis N′-N ′ projected above is inclined by the angle γ with respect to the joint axis NN. The perpendicular line K is on the joint center plane P with an operating angle of 0 °. Accordingly, the angle β formed with respect to the joint center plane P in a state where the straight line R2 has an operating angle of 0 ° has a relationship of sin β = sin β ′ × cos γ. In the present embodiment, the first track groove portion 9Aa and the second track groove portion 9Ab of the inner joint member 3 are each formed by a single arc-shaped portion, but both the track groove portions 9Aa and 9Ab are formed by the outer joint member 2 described above. Similarly to the track groove, each may be formed by a plurality of arcs in consideration of the track groove depth and the like.
 次に、直線L2、R2が作動角0°の状態の継手中心平面Pに対してなす角度βについて説明する。作動角θを取ったとき、外側継手部材2および内側継手部材3の上記平面Pに対して、ボール4がθ/2だけ移動する。使用頻度が多い作動角の1/2より角度βを決め、使用頻度が多い作動角の範囲においてボール4が接触するトラック溝の範囲を決める。ここで、使用頻度が多い作動角について定義する。まず、継手の常用角とは、水平で平坦な路面上で1名乗車時の自動車において、ステアリングを直進状態にした時にフロント用ドライブシャフトの固定式等速自在継手で生じる作動角をいう。常用角は、通常、2°~15°の間で車種ごとの設計条件に応じて選択・決定される。そして、使用頻度の多い作動角とは、上記の自動車が、例えば、交差点の右折・左折時などに生じる高作動角ではなく、連続走行する曲線道路などで固定式等速自在継手に生じる作動角をいい、これも車種ごとの設計条件に応じて決定される。使用頻度の多い作動角は最大20°を目処とする。これにより、直線L2、R2が作動角0°の状態の継手中心平面Pに対してなす角度βを3°~10°と設定する。ただし、角度βは3°~10°に限定されるものではなく、車種の設計条件に応じて適宜設定することができる。角度βを3°~10°に設定することで種々の車種に汎用することができる。 Next, an angle β formed by the straight lines L2 and R2 with respect to the joint center plane P in a state where the operating angle is 0 ° will be described. When the operating angle θ is taken, the ball 4 moves by θ / 2 with respect to the plane P of the outer joint member 2 and the inner joint member 3. The angle β is determined from ½ of the frequently used operating angle, and the range of the track groove with which the ball 4 contacts is determined within the frequently used operating angle range. Here, the operating angle that is frequently used is defined. First, the common angle of the joint refers to an operating angle generated in a fixed type constant velocity universal joint of the front drive shaft when the steering is in a straight traveling state in an automobile when one person rides on a horizontal and flat road surface. The service angle is usually selected and determined between 2 ° and 15 ° according to the design conditions for each vehicle type. The frequently used operating angle is not the high operating angle that occurs when the above-mentioned automobile is turned right or left at an intersection, for example, but the operating angle that occurs in a fixed constant velocity universal joint on a curved road that runs continuously This is also determined according to the design conditions for each vehicle type. The operating angle that is frequently used is targeted at a maximum of 20 °. Thus, the angle β formed by the straight lines L2 and R2 with respect to the joint center plane P in the state where the operating angle is 0 ° is set to 3 ° to 10 °. However, the angle β is not limited to 3 ° to 10 °, and can be appropriately set according to the design conditions of the vehicle type. By setting the angle β to 3 ° to 10 °, it can be used for various types of vehicles.
 上記の角度βにより、図4において、第1トラック溝部7Aaのボール軌道中心線Xaの開口側端部Aは、使用頻度が多い作動角時に軸方向に沿って最も開口側に移動したときのボール4の中心位置となる。同様に、内側継手部材3では、図5において、第1トラック溝部9Aaのボール軌道中心線Yaの奥側端部Bは、使用頻度が多い作動角時に軸方向に沿って最も奥側に移動したときのボール4の中心位置となる。このように設定されているので、使用頻度が多い作動角の範囲では、ボール4は、外側継手部材2および内側継手部材3の第1トラック溝部7Aa,9Aa、およびこれらとは傾斜方向が反対の第1トラック溝部7Ba,9Ba(図2,図3参照)の範囲内、すなわち交差トラックの範囲内に位置する。 4, the opening-side end A of the ball track center line Xa of the first track groove 7Aa in FIG. 4 is the ball when moved to the most opening side along the axial direction when the operating angle is frequently used. 4 becomes the center position. Similarly, in the inner joint member 3, in FIG. 5, the rear end B of the ball track center line Ya of the first track groove 9 </ b> Aa has moved to the innermost side along the axial direction when the operating angle is frequently used. Becomes the center position of the ball 4 at the time. Since it is set in this way, in the range of operating angles where the frequency of use is high, the ball 4 has the first track groove portions 7Aa and 9Aa of the outer joint member 2 and the inner joint member 3, and the inclination direction is opposite to these. It is located within the range of the first track grooves 7Ba and 9Ba (see FIGS. 2 and 3), that is, within the range of the intersecting track.
 この場合、保持器5の周方向に隣り合うポケット部5aにボール4から相反する方向の力が作用するため、両継手部材2,3の第1トラック溝部7a,9aの曲率中心が継手中心Oに位置するのであれば、保持器5は継手中心Oの位置で安定することとなる。保持器5が継手中心Oの位置で安定すれば、保持器5の球状外周面12と外側継手部材2の球状内周面6との接触力、および保持器5の球状内周面13と内側継手部材3の球状外周面8との接触力が最大限に抑制され、高負荷時や高速回転時における継手の円滑な作動性が確保されるため、トルク損失や発熱を効果的に抑制して高効率化を達成することができる。 In this case, since forces in opposite directions from the balls 4 act on the pockets 5a adjacent to the circumferential direction of the cage 5, the centers of curvature of the first track grooves 7a, 9a of the joint members 2, 3 are the joint center O. The cage 5 is stabilized at the position of the joint center O. If the cage 5 is stabilized at the position of the joint center O, the contact force between the spherical outer circumferential surface 12 of the cage 5 and the spherical inner circumferential surface 6 of the outer joint member 2, and the spherical inner circumferential surface 13 of the cage 5 and the inner side The contact force with the spherical outer peripheral surface 8 of the joint member 3 is suppressed to the maximum, and the smooth operability of the joint at the time of high load and high speed rotation is ensured. Therefore, torque loss and heat generation are effectively suppressed. High efficiency can be achieved.
 しかしながら、有効トラック長さを増加させて高作動角化を図るべく、外側継手部材2のトラック溝7の開口部側に第1トラック溝部7aとは異なる形状の第2トラック溝部7bを設けた場合(特に、本実施形態のように、第1トラック溝部7aとは反対方向に湾曲した円弧状の第2トラック溝部7bを設けた場合)、両継手部材2,3の第1トラック溝部7a,9aの曲率中心を継手中心Oに配置すると、より一層の高作動角度化を図る上で制約が生じる。その理由を、図14を参照しながら詳述する。 However, when the second track groove portion 7b having a shape different from that of the first track groove portion 7a is provided on the opening side of the track groove 7 of the outer joint member 2 in order to increase the effective track length and increase the operating angle. (Especially when the arc-shaped second track groove portion 7b curved in the direction opposite to the first track groove portion 7a is provided as in the present embodiment), the first track groove portions 7a, 9a of the joint members 2, 3 are provided. If the center of curvature is arranged at the joint center O, there is a restriction on further increasing the operating angle. The reason will be described in detail with reference to FIG.
 図14は、球状内周面に、継手中心Oを曲率中心とした円弧状のボール軌道中心線Xa’を有する第1トラック溝部7Aa’と、第1トラック溝部7Aa’とは反対方向に湾曲し、第1トラック溝部7Aa’(ボール軌道中心線Xa’)の開口側端部A’に滑らかに接続された円弧状のボール軌道中心線Xb’を有する第2トラック溝部7Ab’とからなるトラック溝7A’が形成された外側継手部材の要部断面図である。なお、第1トラック溝部7Aa’の開口側端部A’の位置(角度β’)は、上述した本発明の第1実施形態に係る等速自在継手1を構成する外側継手部材2と同じである。また、図示は省略するが、図14に示す外側継手部材2’の内周には、球状外周面に、作動角0°の状態の継手中心平面Pを基準として、対をなす外側継手部材2’のトラック溝7A’と鏡像対称のトラック溝が形成された内側継手部材が配設される。 FIG. 14 shows that the first track groove portion 7Aa ′ having an arc-shaped ball trajectory center line Xa ′ with the joint center O as the center of curvature is curved in the opposite direction to the first track groove portion 7Aa ′ on the spherical inner peripheral surface. A track groove comprising a second track groove portion 7Ab ′ having an arc-shaped ball track center line Xb ′ smoothly connected to the opening side end portion A ′ of the first track groove portion 7Aa ′ (ball track center line Xa ′). It is principal part sectional drawing of the outer joint member in which 7A 'was formed. The position (angle β ′) of the opening-side end A ′ of the first track groove 7Aa ′ is the same as that of the outer joint member 2 constituting the constant velocity universal joint 1 according to the first embodiment of the present invention described above. is there. Although not shown, the outer joint member 2 'that forms a pair on the inner periphery of the outer joint member 2' shown in FIG. 14 on the spherical outer peripheral surface with reference to the joint center plane P at an operating angle of 0 °. An inner joint member in which a track groove that is mirror-imaged with the 'track groove 7A' is provided.
 この場合、有効トラック長さを増加させるためには、外側継手部材2’の第2トラック溝部7Ab’の長さ、さらに言えば第2トラック溝部7Ab’の曲率半径をできるだけ小さくすることが有効となる。すなわち、外側継手部材2’の開口端に設けられている入口チャンファ10の角度が定まっていると仮定すると、第2トラック溝部7Ab’(ボール軌道中心線Xb’)の曲率中心を、図14中のオフセット点Oox1に配置した場合の方が、図14中のオフセット点Oox2に配置する場合よりも第2トラック溝部7Ab’の長さ(有効トラック長さ)を増加することができる。しかしながら、第2トラック溝部7Ab’の曲率半径を小さくすればするほど、継手が高作動角をとったときに、この外側継手部材2’のトラック溝7A’と、これと対をなす内側継手部材のトラック溝との間に形成されるくさび角が大きくなってボールを開口側に押し出す力が高まることから、保持器5のポケット部5aに発生する荷重が高くなり、継手の耐久性及び強度が低下する。 In this case, in order to increase the effective track length, it is effective to reduce the length of the second track groove portion 7Ab ′ of the outer joint member 2 ′, more specifically, the radius of curvature of the second track groove portion 7Ab ′ as much as possible. Become. That is, assuming that the angle of the inlet chamfer 10 provided at the opening end of the outer joint member 2 ′ is fixed, the center of curvature of the second track groove portion 7Ab ′ (ball track center line Xb ′) is shown in FIG. In the case where the second track groove portion 7Ab ′ is disposed at the offset point Oox1, the length (effective track length) of the second track groove portion 7Ab ′ can be increased as compared with the case where it is disposed at the offset point Oox2 in FIG. However, the smaller the radius of curvature of the second track groove portion 7Ab 'is, the more the joint has a higher operating angle, the more the track groove 7A' of the outer joint member 2 'and the inner joint member paired therewith. Since the wedge angle formed with the track groove increases and the force pushing the ball toward the opening increases, the load generated in the pocket portion 5a of the cage 5 increases, and the durability and strength of the joint are increased. descend.
 このような問題が生じるのを可及的に防止すべく、本発明では、上述したように、外側継手部材2の第1トラック溝部7aの曲率中心を継手中心Oから開口側にオフセットした点Oo1に位置させることとした。このようにすれば、第1トラック溝部の曲率中心位置以外の設計条件を同じくする限りにおいては、図6aに示す本発明を適用した場合の方が、図6bに示すもの(外側継手部材2’の第1トラック溝部7Aa’の曲率中心を継手中心Oに配置したものであって、図14に示すものと同一構造)と比較して、第2トラック溝部の曲率中心を奥側に位置させることが可能となる(図6aに示す第2トラック溝部7Abの曲率中心となるオフセット点Oo2の位置と、図6bに示す第2トラック溝部7Ab’の曲率中心となるオフセット点Oo2’の位置とを参照)ので、トラック余裕量を増加させることができる。ここで、「トラック余裕量」とは、継手が作動角(図6aおよび図6bでは最大作動角)θをとったときにおけるボール4と外側継手部材2(2’)のトラック溝7(7’)との接触点Cpから、外側継手部材2(2’)の入口チャンファ10の縁部に至るまでの寸法zである。詳述すると、接触点Cpから、接触点の軌跡と入口チャンファ10の縁部の交点までの距離である。従って、これが大きいほど、ボールがトラック溝から脱落し難い構造であると言え、継手の最大作動角を大きくするうえで有利となる。 In order to prevent such a problem from occurring as much as possible, in the present invention, as described above, the point Oo1 where the center of curvature of the first track groove portion 7a of the outer joint member 2 is offset from the joint center O to the opening side. It was decided to be located at. In this way, as long as the design conditions other than the center of curvature of the first track groove portion are the same, the case where the present invention shown in FIG. 6a is applied is the one shown in FIG. 6b (the outer joint member 2 ′ The center of curvature of the first track groove portion 7Aa ′ is located at the joint center O and has the same structure as that shown in FIG. (Refer to the position of the offset point Oo2 serving as the center of curvature of the second track groove portion 7Ab shown in FIG. 6a and the position of the offset point Oo2 ′ serving as the center of curvature of the second track groove portion 7Ab ′ shown in FIG. 6b). Therefore, the track margin can be increased. Here, the “track margin” means the track groove 7 (7 ′ of the ball 4 and the outer joint member 2 (2 ′) when the joint takes an operating angle (maximum operating angle in FIGS. 6a and 6b) θ. ) To the edge of the inlet chamfer 10 of the outer joint member 2 (2 ′). More specifically, it is the distance from the contact point Cp to the intersection of the locus of the contact point and the edge of the entrance chamfer 10. Therefore, it can be said that the larger this is, the more difficult the ball is to drop off from the track groove, which is advantageous in increasing the maximum operating angle of the joint.
 なお、トラック余裕量についてより詳しく説明しておく。継手が最大作動角θをとったとき、図6aおよび図6bに示すように、ボール4の中心点Obと継手中心Oとを結ぶ直線は、継手中心平面Pに対してθ/2だけ傾斜する。このとき、ボールとトラック溝との接触点Cpから入口チャンファ10の縁部に至るまでの寸法zがトラック余裕量であり、図6aに示す本発明の実施形態の方が、図6bに示す比較対象に比べてトラック余裕量(寸法z)が増加している。 In addition, the track margin will be explained in more detail. When the joint takes the maximum operating angle θ, as shown in FIGS. 6a and 6b, the straight line connecting the center point Ob of the ball 4 and the joint center O is inclined by θ / 2 with respect to the joint center plane P. . At this time, the dimension z from the contact point Cp between the ball and the track groove to the edge of the entrance chamfer 10 is the track margin, and the embodiment of the present invention shown in FIG. 6a is compared with the comparison shown in FIG. 6b. Compared to the target, the track margin (dimension z) is increased.
 従って、外側継手部材2のトラック溝7(7A,7B)の開口側に、第1トラック溝部7a(7Aa,7Ba)のボール軌道中心線Xaとは反対側に湾曲した円弧状のボール軌道中心線Xbを有する第2トラック溝部7b(7Ab,7Bb)を設けると共に、第1トラック溝部7a(7Aa,7Ba)の曲率中心を継手中心Oから開口側にオフセットした点Oo1に位置させるようにすれば、トラック余裕量を大きく確保して、継手の最大作動角を大きくすることができる。 Accordingly, an arc-shaped ball track center line curved to the opposite side of the ball track center line Xa of the first track groove portion 7a (7Aa, 7Ba) on the opening side of the track groove 7 (7A, 7B) of the outer joint member 2. If the second track groove portion 7b (7Ab, 7Bb) having Xb is provided and the center of curvature of the first track groove portion 7a (7Aa, 7Ba) is positioned at the point Oo1 offset from the joint center O to the opening side, A large track margin can be secured to increase the maximum operating angle of the joint.
 なお、第1トラック溝部7a,9aの曲率中心の継手中心Oに対するオフセット量が大きくなるほど、トルク損失や発熱の抑制効果が薄れる(継手の効率性が低下する)こととなるが、トルク損失等の抑制効果が過度に薄れない程度に、第1トラック溝部7a,9aのオフセット量を調整すれば、使用頻度の多い継手常用角の範囲を交差トラック構造でカバーしたことによるトルク損失等の抑制効果が、第1トラック溝部7a,9aの曲率中心を継手中心Oに対して軸方向にオフセットさせたことによるマイナス分を上回る。また、本発明に係る等速自在継手1の構造上、高作動角の範囲では、周方向に配置されたボール4が、第1トラック溝部と第2トラック溝部とに一時的に分かれて位置する。これに伴い、保持器5の各ポケット部5aにボール4から作用する力が釣り合わず、保持器5の球状外周面12と外側継手部材2の球状内周面6との接触部、および保持器5の球状内周面13と内側継手部材3の球状外周面8との接触部で接触力が発生するが、高作動角の範囲は使用頻度が少ない。従って、本発明に係る等速自在継手1は、総合的にみると、図12に示した等速自在継手141と比較して、トルク損失や発熱を効果的に抑制することができる。以上のことから、本発明によれば、トルク損失および発熱が少なく高効率で、耐久性に優れるものでありながら、高作動角を取ることができる固定式等速自在継手を実現することができる。 As the amount of offset of the first track groove portions 7a and 9a with respect to the joint center O with respect to the curvature increases, the effect of suppressing torque loss and heat generation decreases (the efficiency of the joint decreases). If the offset amount of the first track groove portions 7a, 9a is adjusted so that the suppression effect is not excessively reduced, the effect of suppressing torque loss and the like due to the use of the joint common angle range, which is frequently used, is covered with the cross track structure. In this case, the first track groove portions 7a and 9a exceed the negative portion obtained by offsetting the centers of curvature in the axial direction with respect to the joint center O. In addition, due to the structure of the constant velocity universal joint 1 according to the present invention, the balls 4 arranged in the circumferential direction are temporarily divided into the first track groove portion and the second track groove portion in the range of the high operating angle. . Accordingly, the force acting from the balls 4 on the pockets 5a of the cage 5 is not balanced, and the contact portion between the spherical outer circumferential surface 12 of the cage 5 and the spherical inner circumferential surface 6 of the outer joint member 2, and the cage Although a contact force is generated at the contact portion between the spherical inner peripheral surface 13 of the inner surface 5 and the spherical outer peripheral surface 8 of the inner joint member 3, the range of high operating angles is less frequently used. Therefore, the constant velocity universal joint 1 according to the present invention can effectively suppress torque loss and heat generation as compared with the constant velocity universal joint 141 shown in FIG. From the above, according to the present invention, it is possible to realize a fixed type constant velocity universal joint capable of taking a high operating angle while having high efficiency and low durability with little torque loss and heat generation. .
 なお、本実施形態の等速自在継手1においては、保持器5のポケット部5aとボール4との嵌め合いをすきま設定にしてもよい。この場合、前記すきまのすきま幅は0~40μm程度に設定するのが好ましい。すきま設定にすることにより、保持器5のポケット部5aに保持されたボール4をスムーズに作動させることができ、更なるトルク損失の低減を図ることができる。 In the constant velocity universal joint 1 of the present embodiment, the clearance between the pocket portion 5a of the cage 5 and the ball 4 may be set as a clearance. In this case, the clearance width of the clearance is preferably set to about 0 to 40 μm. By setting the clearance, the ball 4 held in the pocket portion 5a of the cage 5 can be operated smoothly, and torque loss can be further reduced.
 図7aおよび図7bに、以上で説明した等速自在継手1の構成部材である外側継手部材2および内側継手部材3の斜視図をそれぞれ示す。この斜視図は、これまでに説明したトラック溝を立体的に示している。図7aに示すように、外側継手部材2の球状内周面6に、継手の軸線N-N(図示省略)に対して周方向に傾斜したトラック溝7A,7Bが交互に形成され、かつトラック溝7A,7Bの傾斜方向は互いに反対方向となっている。トラック溝7A,7Bは、それぞれ、第1トラック溝部7Aa,7Baと第2トラック溝部7Ab,7Bbとからなる。外側継手部材2の開口端に入口チャンファ10が設けられている。また、図7bに示すように、内側継手部材3の球状外周面8には、継手の軸線N-N(図示省略)に対して周方向に傾斜したトラック溝9A,9Bが交互に形成され、かつトラック溝9A,9Bの傾斜方向は互いに反対方向となっている。トラック溝9A,9Bは、それぞれ、第1トラック溝部9Aa,9Baと第2トラック溝部9Ab,9Bbとからなる。 7a and 7b show perspective views of the outer joint member 2 and the inner joint member 3 which are constituent members of the constant velocity universal joint 1 described above. This perspective view three-dimensionally shows the track grooves described so far. As shown in FIG. 7a, track grooves 7A and 7B inclined in the circumferential direction with respect to the joint axis NN (not shown) are alternately formed on the spherical inner peripheral surface 6 of the outer joint member 2, and the track The inclination directions of the grooves 7A and 7B are opposite to each other. The track grooves 7A and 7B are composed of first track groove portions 7Aa and 7Ba and second track groove portions 7Ab and 7Bb, respectively. An inlet chamfer 10 is provided at the open end of the outer joint member 2. Further, as shown in FIG. 7b, on the spherical outer peripheral surface 8 of the inner joint member 3, track grooves 9A and 9B inclined in the circumferential direction with respect to the joint axial line NN (not shown) are alternately formed. The inclination directions of the track grooves 9A and 9B are opposite to each other. The track grooves 9A and 9B are composed of first track groove portions 9Aa and 9Ba and second track groove portions 9Ab and 9Bb, respectively.
 図8は、本発明の第1の実施形態に係る固定式等速自在継手1を組み込んだ自動車のフロント用ドライブシャフト20を示す。固定式等速自在継手1は中間シャフト11の一端に連結され、中間シャフト11の他端には摺動式等速自在継手(図示例はトリポード型等速自在継手)15が連結されている。固定式等速自在継手1の外周面とシャフト11の外周面との間、および摺動式等速自在継手15の外周面とシャフト11の外周面との間には、蛇腹状ブーツ16a,16bがブーツバンド18によりそれぞれ取り付け固定されている。継手内部には、潤滑剤としてのグリースが封入されている。本発明に係る固定式等速自在継手1を使用したので、トルク損失や発熱が小さく高効率で、かつ高作動角が取れ、軽量・コンパクトな自動車用ドライブシャフト20が実現される。 FIG. 8 shows a front drive shaft 20 of an automobile incorporating the fixed type constant velocity universal joint 1 according to the first embodiment of the present invention. The fixed type constant velocity universal joint 1 is connected to one end of an intermediate shaft 11, and a sliding type constant velocity universal joint (in the example shown, a tripod type constant velocity universal joint) 15 is connected to the other end of the intermediate shaft 11. Between the outer peripheral surface of the fixed type constant velocity universal joint 1 and the outer peripheral surface of the shaft 11 and between the outer peripheral surface of the sliding type constant velocity universal joint 15 and the outer peripheral surface of the shaft 11, bellows- like boots 16 a and 16 b are provided. Are attached and fixed by boot bands 18 respectively. Grease as a lubricant is sealed inside the joint. Since the fixed type constant velocity universal joint 1 according to the present invention is used, a lightweight and compact automobile drive shaft 20 is realized that has low torque loss and heat generation, high efficiency, and a high operating angle.
 以上、本発明の第1実施形態に係る等速自在継手1について説明を行ったが、等速自在継手1には、本発明の要旨を逸脱しない範囲で種々の変更を施すことが可能である。以下、本発明の他の実施形態に係る等速自在継手について説明を行う。但し、以下では、上述した第1実施形態と異なる構成について重点的に説明を行い、第1実施形態と同様の機能を奏する部材・部位には同一の符号を付して重複説明を省略する。 The constant velocity universal joint 1 according to the first embodiment of the present invention has been described above. However, the constant velocity universal joint 1 can be variously modified without departing from the gist of the present invention. . Hereinafter, a constant velocity universal joint according to another embodiment of the present invention will be described. However, in the following, the configuration different from that of the first embodiment will be described mainly, and members / parts having the same functions as those of the first embodiment will be denoted by the same reference numerals and redundant description will be omitted.
 図9に、本発明の第2実施形態に係る固定式等速自在継手の要部断面図を示す。同図は、固定式等速自在継手に組み込んで使用される外側継手部材の断面図であり、より詳しくは、図4と同様、トラック溝7Aのボール軌道中心線Xと継手中心Oを含む平面M(図2a参照)で見た外側継手部材の断面図である。そして、この実施形態の等速自在継手は、外側継手部材および内側継手部材のトラック溝に設けた第2トラック溝部が、直線状部分と円弧状部分(第1トラック溝部とは反対側に湾曲した円弧状部分)とからなる点において、上述した第1の実施形態の等速自在継手と構成を異にしている。 FIG. 9 shows a cross-sectional view of a main part of a fixed type constant velocity universal joint according to the second embodiment of the present invention. This figure is a cross-sectional view of an outer joint member used by being incorporated in a fixed type constant velocity universal joint. More specifically, like FIG. 4, a plane including a ball track center line X and a joint center O of a track groove 7A. It is sectional drawing of the outer joint member seen by M (refer FIG. 2a). In the constant velocity universal joint of this embodiment, the second track groove portion provided in the track groove of the outer joint member and the inner joint member is curved in a straight portion and an arc portion (on the opposite side to the first track groove portion). The configuration is different from the constant velocity universal joint of the first embodiment described above in that it is formed of an arc-shaped portion.
 詳述すると、外側継手部材2の第2トラック溝部7bのボール軌道中心線Xbの曲率中心Oo2は、第1トラック溝部7a(のボール軌道中心線Xa)の曲率中心Oo1と第1トラック溝部7a(のボール軌道中心線Xa)の開口側端部Aとを結ぶ直線L1から開口側にf2だけ移動させた位置にある。そのため、第1トラック溝部7aのボール軌道中心線Xaの開口側端部Aに第2トラック溝部7bのボール軌道中心線Xbの直線状部分(の奥側端部)が接続され、この直線状部分の開口側端部(点C)に第2トラック溝部7bのボール軌道中心線Xbの円弧状部分が接続されている。そして、図示は省略するが、内側継手部材3のトラック溝9のボール軌道中心線Yは、作動角0°の状態の継手中心平面Pを基準として、外側継手部材2の対となるトラック溝7のボール軌道中心線Xと鏡像対称に形成されている。 Specifically, the curvature center Oo2 of the ball track center line Xb of the second track groove portion 7b of the outer joint member 2 is equal to the curvature center Oo1 of the first track groove portion 7a (the ball track center line Xa thereof) and the first track groove portion 7a ( The ball trajectory center line Xa) is moved from the straight line L1 connecting the opening side end A to the opening side by f2. Therefore, the linear portion (the back end portion) of the ball track center line Xb of the second track groove portion 7b is connected to the opening side end portion A of the ball track center line Xa of the first track groove portion 7a. The arc-shaped portion of the ball track center line Xb of the second track groove portion 7b is connected to the opening side end portion (point C). And although illustration is abbreviate | omitted, the track-track center line Y of the track groove 9 of the inner joint member 3 makes the track groove 7 used as the pair of the outer joint member 2 on the basis of the joint center plane P in the state of 0 degree of operation angles. Are formed in mirror image symmetry with the ball trajectory center line X.
 図10に、本発明の第3実施形態に係る固定式等速自在継手の要部断面図を示す。同図は、固定式等速自在継手に組み込んで使用される外側継手部材の断面図であり、より詳しくは、図4および図9と同様に、トラック溝7Aのボール軌道中心線Xと継手中心Oを含む平面M(図2a参照)で見た外側継手部材の断面図である。この実施形態の等速自在継手は、主に、外側継手部材および内側継手部材のトラック溝に設けた第1トラック溝部のボール軌道中心線の曲率中心が、それぞれ、継手中心Oに対して開口側および奥側にオフセットしていることに加え、傾斜軸(継手の軸線N-Nに対して周方向に傾斜した軸)N’-N’に対して半径方向にオフセットしている点、およびこれに対応して第2トラック溝部のボール軌道中心線の構成を調整した点において、上述した第1の実施形態に係る固定式等速自在継手と構成を異にしている。 FIG. 10 shows a cross-sectional view of a main part of a fixed type constant velocity universal joint according to a third embodiment of the present invention. This figure is a cross-sectional view of an outer joint member used by being incorporated in a fixed type constant velocity universal joint. More specifically, similar to FIGS. 4 and 9, the ball track center line X of the track groove 7A and the joint center are shown. It is sectional drawing of the outer joint member seen in the plane M (refer FIG. 2a) containing O. FIG. In the constant velocity universal joint of this embodiment, the center of curvature of the ball track center line of the first track groove portion provided in the track grooves of the outer joint member and the inner joint member is mainly open side with respect to the joint center O. In addition to being offset to the back side, the tilt axis (axis tilted in the circumferential direction with respect to the joint axis NN) is offset in the radial direction with respect to N′-N ′, and this The configuration of the ball track center line of the second track groove portion is adjusted to correspond to the configuration of the fixed type constant velocity universal joint according to the first embodiment described above.
 詳述すると、外側継手部材2の第1トラック溝部7aのボール軌道中心線Xaの曲率中心Oo1は、継手中心Oに対して開口側にオフセットすると共に、傾斜軸N’-N’に対して半径方向にfrだけオフセットしている。すなわち、垂線Kを含む作動角0°の状態の継手中心平面P上で半径方向にfrだけオフセットしている。これに伴い、第2トラック溝部7bのボール軌道中心線Xbの曲率中心Oo2は、第1トラック溝部7aのボール軌道中心線Xaの開口側端部Aに滑らかに接続するよう位置が調整されている。この構成により、継手の奥側のトラック溝深さを調整することができる。図示は省略するが、内側継手部材3のトラック溝9のボール軌道中心線Yは、作動角0°の状態の継手中心平面Pを基準として、外側継手部材2の対となるトラック溝7のボール軌道中心線Xと鏡像対称に形成されている。 More specifically, the center of curvature Oo1 of the ball track center line Xa of the first track groove portion 7a of the outer joint member 2 is offset to the opening side with respect to the joint center O and has a radius with respect to the inclined axis N′-N ′. The direction is offset by fr. That is, it is offset by fr in the radial direction on the joint center plane P in a state where the operating angle including the perpendicular K is 0 °. Accordingly, the position of the curvature center Oo2 of the ball track center line Xb of the second track groove portion 7b is adjusted so as to smoothly connect to the opening side end A of the ball track center line Xa of the first track groove portion 7a. . With this configuration, the depth of the track groove on the back side of the joint can be adjusted. Although not shown, the ball track center line Y of the track groove 9 of the inner joint member 3 is a ball of the track groove 7 that forms a pair of the outer joint member 2 with reference to the joint center plane P in a state where the operating angle is 0 °. It is formed mirror-symmetric with the orbit center line X.
 図11に、本発明の第4実施形態に係る固定式等速自在継手で使用される保持器の断面図を示す。すなわち、この実施形態の固定式等速自在継手は、球状外周面および球状内周面の曲率中心を継手中心Oに対して軸方向にオフセットさせた保持器を用いる点において、第1の実施形態に係る固定式等速自在継手と構成を異にしている。 FIG. 11 shows a cross-sectional view of a cage used in a fixed type constant velocity universal joint according to a fourth embodiment of the present invention. That is, the fixed type constant velocity universal joint of this embodiment is the first embodiment in that a cage in which the spherical outer peripheral surface and the center of curvature of the spherical inner peripheral surface are offset in the axial direction with respect to the joint center O is used. The configuration is different from that of the fixed type constant velocity universal joint.
 詳述すると、図11に示すように、この保持器5の球状外周面12の曲率中心Oc1は継手中心Oに対して開口側に寸法f3だけオフセットしており、また、球状内周面13の曲率中心Oc2は継手中心Oに対して奥側に寸法f3だけオフセットしている。かかる構成により、開口側に向かって保持器5の肉厚が徐々に厚くなり、特に高作動角時の保持器5の強度を向上することができる。前述したように、高作動角の範囲では、周方向に配置されたボール4が、第1トラック溝部7Aa,9Aa(7Ba,9Ba)と、第2トラック溝部7Ab,9Ab(7Bb,9Bb)とに一時的に分かれて位置する。この場合、第2トラック溝部7Ab,9Ab(7Bb,9Bb)に位置するボール4から保持器5のポケット部5aに開口側に押圧する力が作用するが、開口側に向かって保持器5の肉厚が徐々に厚くなっているので、保持器5の強度を向上することができる。また、奥側のトラック溝7,9(第1トラック溝部7a,9b)のトラック溝深さを増加させることができる。 More specifically, as shown in FIG. 11, the center of curvature Oc1 of the spherical outer peripheral surface 12 of the cage 5 is offset from the joint center O by the dimension f3 toward the opening side. The curvature center Oc2 is offset from the joint center O by a dimension f3 on the back side. With such a configuration, the thickness of the cage 5 gradually increases toward the opening side, and the strength of the cage 5 particularly at a high operating angle can be improved. As described above, in the range of the high operating angle, the balls 4 arranged in the circumferential direction are divided into the first track groove portions 7Aa, 9Aa (7Ba, 9Ba) and the second track groove portions 7Ab, 9Ab (7Bb, 9Bb). Temporarily separated. In this case, a force is applied to the opening side from the ball 4 positioned in the second track groove portions 7Ab, 9Ab (7Bb, 9Bb) to the pocket portion 5a of the cage 5, but the meat of the cage 5 moves toward the opening side. Since the thickness is gradually increased, the strength of the cage 5 can be improved. In addition, the depth of the track grooves 7 and 9 (first track groove portions 7a and 9b) on the back side can be increased.
 以上で説明した本発明に係る固定式等速自在継手では、ボール4の個数を8個としたが、これに限られるものではない。図示は省略するが、例えば、ボールの個数を10個又は12個とした固定式等速自在継手にも本発明は好ましく適用することができる。 In the fixed type constant velocity universal joint according to the present invention described above, the number of the balls 4 is eight, but is not limited thereto. Although illustration is omitted, for example, the present invention can be preferably applied to a fixed type constant velocity universal joint in which the number of balls is 10 or 12.
 また、以上の実施形態の固定式等速自在継手は、第2トラック溝部(のボール軌道中心線Xb)を円弧状部分のみで構成したもの、あるいは円弧状部分と直線状部分の組合せで構成したものとしたが、これに限られるものではない。要は、第1トラック溝部のボール軌道中心線Xaとは形状が異なり、有効トラック長さを増加させて高作動角化を図り得る形状であれば適宜の形状にすることができ、例えば、楕円や直線状であってもよい。また、第1トラック溝部および第2トラック溝部の何れか一方又は双方は、それぞれ単一の円弧状部分ではなく、トラック溝深さなどを考慮して複数の円弧状部分で形成してもよい。 Further, the fixed type constant velocity universal joint of the above-described embodiment is configured such that the second track groove portion (the ball trajectory center line Xb thereof) is configured by only an arc-shaped portion or a combination of an arc-shaped portion and a linear portion. It was supposed to be, but it is not limited to this. In short, any shape can be used as long as the shape is different from the ball track center line Xa of the first track groove portion and the effective track length can be increased to increase the operating angle. Or a straight line. In addition, either one or both of the first track groove portion and the second track groove portion may be formed not by a single arc-shaped portion but by a plurality of arc-shaped portions in consideration of the track groove depth and the like.
 また、以上では、トラック溝を周方向に等ピッチで配置した固定式等速自在継手に本発明を適用した場合を示したが、トラック溝を不等ピッチで配置した固定式等速自在継手にも本発明は好ましく適用し得る。また、以上で説明した固定式等速自継手においては、継手の軸線N-Nに対するトラック溝(第1トラック溝部)の傾斜角γをすべてのトラック溝において等しいものとしたが、これに限られず、対をなす(半径方向で対向する)外側継手部材と内側継手部材のトラック溝(第1トラック溝部)の傾斜角γが等しく形成されていれば、トラック溝(第1トラック溝部)の相互間で傾斜角γを異ならせても構わない。要は、保持器の周方向すべてのポケット部に作用するボールの軸方向の力が、全体として釣り合うように各傾斜角度が設定されていればよい。また、以上では、トラック溝とボールとが接触角をもって接触する(アンギュラコンタクトする)ように構成された固定式等速自在継手に本発明を適用したが、これに限られず、本発明は、トラック溝の横断面形状が円弧状に形成され、トラック溝とボールとがサーキュラコンタクトするように構成された固定式等速自在継手にも好ましく適用することができる。 In the above, the case where the present invention is applied to a fixed type constant velocity universal joint in which track grooves are arranged at a constant pitch in the circumferential direction has been described. In addition, the present invention can be preferably applied. Further, in the fixed type constant velocity self-joint described above, the inclination angle γ of the track groove (first track groove portion) with respect to the joint axis NN is made equal in all the track grooves. However, the present invention is not limited to this. If the inclination angle γ of the track groove (first track groove portion) of the outer joint member and the inner joint member that make a pair (opposite in the radial direction) is equal, the mutual distance between the track grooves (first track groove portions) The inclination angle γ may be varied. In short, each inclination angle should be set so that the axial force of the ball acting on all the pockets in the circumferential direction of the cage is balanced as a whole. Further, in the above, the present invention is applied to the fixed type constant velocity universal joint configured such that the track groove and the ball are in contact with each other with an angle of contact (angular contact). However, the present invention is not limited to this, and the present invention is not limited to this. The present invention can also be preferably applied to a fixed type constant velocity universal joint in which the cross-sectional shape of the groove is formed in an arc shape and the track groove and the ball are in circular contact.
 本発明は前述した実施形態に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲内において、さらに種々の形態で実施し得ることは勿論のことであり、本発明の範囲は、特許請求の範囲によって示され、さらに特許請求の範囲に記載の均等の意味、および範囲内のすべての変更を含む。 The present invention is not limited to the above-described embodiments, and can of course be implemented in various forms without departing from the scope of the present invention. The scope of the present invention is not limited to patents. It includes the equivalent meanings recited in the claims and the equivalents recited in the claims, and all modifications within the scope.
1   固定式等速自在継手(等速自在継手)
2   外側継手部材
3   内側継手部材
4   ボール
5   保持器
6   球状内周面
7   トラック溝
7a  第1トラック溝部
7b  第2トラック溝部
8   球状外周面
9   トラック溝
9a  第1トラック溝部
9b  第2トラック溝部
12  球状外周面
13  球状内周面
20  ドライブシャフト
A   開口側端部
B   奥側端部
K   垂線
L1,L2   直線
M   ボール軌道中心線を含む平面
N   継手の軸線
N’  傾斜軸
O   継手中心
P   継手中心平面
Q   ボール軌道中心線を含む平面
R1,R2   直線
X   ボール軌道中心線
Y   ボール軌道中心線
γ   傾斜角
β   角度
θ   作動角
1 Fixed type constant velocity universal joint (constant velocity universal joint)
2 outer joint member 3 inner joint member 4 ball 5 cage 6 spherical inner peripheral surface 7 track groove 7a first track groove portion 7b second track groove portion 8 spherical outer peripheral surface 9 track groove 9a first track groove portion 9b second track groove portion 12 spherical shape Outer peripheral surface 13 Spherical inner peripheral surface 20 Drive shaft A Open side end B Back side end K Perpendicular line L1, L2 Straight line M Flat surface including ball track center line N Joint axis N 'Inclined axis O Joint center P Joint center plane Q Plane R1, R2 including the ball trajectory center line Straight line X Ball trajectory center line Y Ball trajectory center line γ Inclination angle β Angle θ Operating angle

Claims (9)

  1.  球状内周面に軸方向に延びる複数のトラック溝が形成され、軸方向に離間する開口側と奥側を有する外側継手部材と、球状外周面に前記外側継手部材のトラック溝と対をなす複数のトラック溝が形成された内側継手部材と、前記外側継手部材のトラック溝と前記内側継手部材のトラック溝との間に介在してトルクを伝達する複数のボールと、ボールを保持し、前記外側継手部材の球状内周面および前記内側継手部材の球状外周面にそれぞれ嵌合する球状外周面および球状内周面を有する保持器とを備えた固定式等速自在継手において、
     前記外側継手部材のトラック溝は、奥側に位置する第1トラック溝部と開口側に位置する第2トラック溝部とからなり、前記第1トラック溝部は、継手中心に対して開口側にオフセットした位置に曲率中心を有する円弧状をなし、かつ継手の軸線に対して周方向に傾斜すると共にその傾斜方向が周方向に隣り合う前記第1トラック溝部で互いに反対方向に形成されており、前記第2トラック溝部は、最大作動角に対する有効トラック長さを増加させるために前記第1トラック溝部とは異なる形状を有し、かつ継手中心よりも開口側で前記第1トラック溝部と接続されており、
     前記内側継手部材のトラック溝は、作動角0°の状態の継手中心平面を基準として、前記外側継手部材の対となるトラック溝と鏡像対称に形成されていることを特徴とする固定式等速自在継手。
    A plurality of track grooves extending in the axial direction are formed on the spherical inner peripheral surface, and an outer joint member having an opening side and a back side that are separated in the axial direction, and a plurality of pairs that form pairs with the track grooves of the outer joint member on the spherical outer peripheral surface An inner joint member formed with a track groove, a plurality of balls that are interposed between the track groove of the outer joint member and the track groove of the inner joint member, and that transmit the torque; In a fixed type constant velocity universal joint comprising a spherical inner peripheral surface of a joint member and a spherical outer peripheral surface and a cage having a spherical inner peripheral surface that are fitted to the spherical outer peripheral surface of the inner joint member, respectively.
    The track groove of the outer joint member includes a first track groove portion located on the back side and a second track groove portion located on the opening side, and the first track groove portion is offset to the opening side with respect to the joint center. The first track groove portions adjacent to each other in the circumferential direction are inclined in the circumferential direction with respect to the joint axis, and are inclined in the opposite directions to each other. The track groove has a shape different from that of the first track groove in order to increase the effective track length with respect to the maximum operating angle, and is connected to the first track groove on the opening side from the joint center,
    The track groove of the inner joint member is formed in a mirror image symmetry with the track groove forming a pair of the outer joint member with respect to a joint center plane at an operating angle of 0 °. Universal joint.
  2.  前記第1トラック溝部と前記第2トラック溝部とが接続される点と継手中心とを結ぶ直線が、作動角0°の状態の継手中心平面に対してなす角度βを3°~10°に設定したことを特徴とする請求項1に記載の固定式等速自在継手。 The angle β formed by the straight line connecting the point where the first track groove portion and the second track groove portion are connected to the joint center is set to 3 ° to 10 ° with respect to the joint center plane in the state where the operating angle is 0 °. The fixed type constant velocity universal joint according to claim 1, wherein the fixed type constant velocity universal joint is provided.
  3.  前記第1トラック溝部の曲率中心を、継手の軸線に対して周方向に傾斜した傾斜軸上に配置したことを特徴とする請求項1又は2に記載の固定式等速自在継手。 The fixed constant velocity universal joint according to claim 1 or 2, wherein the center of curvature of the first track groove portion is arranged on an inclined axis inclined in a circumferential direction with respect to an axis of the joint.
  4.  前記第1トラック溝部の曲率中心を、継手の軸線に対して周方向に傾斜した傾斜軸に対し、半径方向にオフセットした位置に配置したことを特徴とする請求項1又は2に記載の固定式等速自在継手。 3. The fixed type according to claim 1, wherein the center of curvature of the first track groove is disposed at a position offset in a radial direction with respect to an inclined axis inclined in a circumferential direction with respect to an axis of the joint. Constant velocity universal joint.
  5.  前記保持器の球状外周面の曲率中心を、継手中心に対して開口側にオフセットした位置に配置し、前記保持器の球状内周面の曲率中心を、継手中心に対して奥側にオフセットした位置に配置した請求項1~4の何れか一項に記載の固定式等速自在継手。 The center of curvature of the spherical outer peripheral surface of the cage is arranged at a position offset to the opening side with respect to the joint center, and the center of curvature of the spherical inner peripheral surface of the cage is offset to the back side with respect to the joint center. The fixed type constant velocity universal joint according to any one of claims 1 to 4, which is disposed at a position.
  6.  前記第2トラック溝部は、前記第1トラック溝部の半径方向外側で、かつ継手中心よりも開口側にオフセットされた位置を曲率中心とした円弧状部分を有することを特徴とする請求項1~5の何れか一項に記載の固定式等速自在継手。 The second track groove portion has an arcuate portion having a center of curvature at a position that is radially outward of the first track groove portion and offset toward the opening side from the joint center. The fixed type constant velocity universal joint as described in any one of the above.
  7.  前記第2トラック溝部は、前記円弧状部分のみからなり、この円弧状部分が前記第1トラック溝部に滑らかに接続されていることを特徴とする請求項6に記載の固定式等速自在継手。 The fixed type constant velocity universal joint according to claim 6, wherein the second track groove portion includes only the arc-shaped portion, and the arc-shaped portion is smoothly connected to the first track groove portion.
  8.  前記第2トラック溝部は、前記円弧状部分と直線状部分とからなり、この直線状部分が前記第1トラック溝部に滑らかに接続されていることを特徴とする請求項6に記載の固定式等速自在継手。 The fixed type according to claim 6, wherein the second track groove portion includes the arc-shaped portion and a linear portion, and the linear portion is smoothly connected to the first track groove portion. Fast universal joint.
  9.  前記ボールの個数を8個、10個又は12個の何れかとしたことを特徴とする請求項1~8の何れか一項に記載の固定式等速自在継手。 The fixed type constant velocity universal joint according to any one of claims 1 to 8, wherein the number of the balls is 8, 10, or 12.
PCT/JP2012/077189 2011-11-11 2012-10-22 Fixed constant-velocity universal joint WO2013069438A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP12847560.5A EP2778454B1 (en) 2011-11-11 2012-10-22 Fixed constant-velocity universal joint
CN201280054894.1A CN103917797B (en) 2011-11-11 2012-10-22 Fixed-type constant-velocity Hooks coupling universal coupling
US14/351,651 US9206855B2 (en) 2011-11-11 2012-10-22 Fixed type constant-velocity universal joint

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-247445 2011-11-11
JP2011247445A JP5964030B2 (en) 2011-11-11 2011-11-11 Fixed constant velocity universal joint

Publications (1)

Publication Number Publication Date
WO2013069438A1 true WO2013069438A1 (en) 2013-05-16

Family

ID=48289821

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/077189 WO2013069438A1 (en) 2011-11-11 2012-10-22 Fixed constant-velocity universal joint

Country Status (5)

Country Link
US (1) US9206855B2 (en)
EP (1) EP2778454B1 (en)
JP (1) JP5964030B2 (en)
CN (1) CN103917797B (en)
WO (1) WO2013069438A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103867590A (en) * 2014-04-02 2014-06-18 上海纳铁福传动系统有限公司 Telescopic ball cage constant velocity universal joint

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012165096A1 (en) * 2011-05-30 2012-12-06 Ntn株式会社 Fixed constant velocity universal joint
JP5912419B2 (en) * 2011-06-07 2016-04-27 Ntn株式会社 Fixed constant velocity universal joint
JP5936855B2 (en) * 2011-12-15 2016-06-22 Ntn株式会社 Fixed constant velocity universal joint
JP5955732B2 (en) * 2012-10-03 2016-07-20 Ntn株式会社 Fixed constant velocity universal joint
DE102013103155B4 (en) * 2013-03-27 2017-08-24 Gkn Driveline International Gmbh Constant velocity joint in the form of a counter-track joint
JP6114644B2 (en) * 2013-06-26 2017-04-12 Ntn株式会社 Fixed constant velocity universal joint
KR101792163B1 (en) 2016-07-01 2017-10-31 이래오토모티브시스템 주식회사 Fixed-type constant velocity joint
JP6863785B2 (en) * 2017-03-17 2021-04-21 Ntn株式会社 Fixed constant velocity universal joint
CN106870582B (en) * 2017-04-06 2023-08-08 秦皇岛老虎重工有限公司 Universal coupling for tilt angle bearing
KR102502089B1 (en) * 2018-07-05 2023-02-20 게케엔 드리펠린 인터나쇼날 게엠베하 constant velocity joint
DE102019202535A1 (en) * 2019-02-25 2020-08-27 Volkswagen Aktiengesellschaft Constant velocity fixed joint
DE102019105195A1 (en) * 2019-02-28 2020-09-03 Neapco Intellectual Property Holdings, Llc Constant velocity swivel

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004332815A (en) * 2003-05-07 2004-11-25 Ntn Corp Fixed type constant speed universal joint
JP2007270997A (en) * 2006-03-31 2007-10-18 Ntn Corp Fixed type constant velocity universal joint
JP2009250365A (en) * 2008-04-08 2009-10-29 Ntn Corp Constant velocity universal joint

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2319100A (en) * 1940-09-21 1943-05-11 Borg Warner Constant velocity joint
FR2792045B1 (en) * 1999-04-06 2001-06-29 Gkn Glaenzer Spicer HOMOCINETIC BALL JOINT
US6431988B1 (en) * 1999-09-17 2002-08-13 Ntn Corporation Fixed type constant velocity joint and assembling method therefor
DE10033491C2 (en) * 2000-07-10 2003-11-20 Gkn Loebro Gmbh Fixed constant-velocity ball joint with pairs of balls, the tracks of which lie in symmetrical planes
WO2005028894A1 (en) * 2003-08-22 2005-03-31 Gkn Driveline Deutschland Gmbh Constant-velocity joint with low radial displacement of the balls
JP2005195100A (en) * 2004-01-07 2005-07-21 Ntn Corp Fixed type constant velocity universal joint and its manufacturing method
DE602005025450D1 (en) * 2004-01-15 2011-02-03 Honda Motor Co Ltd HOMOKINETIC JOINT
JP2007218353A (en) * 2006-02-16 2007-08-30 Ntn Corp Fixed type constant velocity universal joint
WO2008018290A1 (en) * 2006-08-07 2008-02-14 Ntn Corporation Fixed constant velocity universal joint
WO2008043384A1 (en) * 2006-10-13 2008-04-17 Gkn Driveline International Gmbh Constant velocity ball joint in the form of a counter track joint
JP5101430B2 (en) * 2008-08-11 2012-12-19 Ntn株式会社 Fixed constant velocity universal joint
JP2011106490A (en) * 2009-11-13 2011-06-02 Ntn Corp Fixed constant velocity universal joint
WO2010064577A1 (en) 2008-12-02 2010-06-10 Ntn株式会社 Fixed constant velocity universal joint
CN102822548B (en) * 2010-04-02 2015-07-01 Ntn株式会社 Constant velocity universal joint
US8852005B2 (en) * 2011-11-09 2014-10-07 Hyundai Wia Corporation Angled offset ball type constant velocity joint for vehicle
KR101310250B1 (en) * 2011-11-16 2013-09-24 금호석유화학 주식회사 Asphalt compositions modified by styrenic block copolymer and vegetable wax

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004332815A (en) * 2003-05-07 2004-11-25 Ntn Corp Fixed type constant speed universal joint
JP2007270997A (en) * 2006-03-31 2007-10-18 Ntn Corp Fixed type constant velocity universal joint
JP2009250365A (en) * 2008-04-08 2009-10-29 Ntn Corp Constant velocity universal joint

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2778454A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103867590A (en) * 2014-04-02 2014-06-18 上海纳铁福传动系统有限公司 Telescopic ball cage constant velocity universal joint

Also Published As

Publication number Publication date
JP5964030B2 (en) 2016-08-03
CN103917797A (en) 2014-07-09
JP2013104462A (en) 2013-05-30
US9206855B2 (en) 2015-12-08
EP2778454A4 (en) 2016-07-27
EP2778454A1 (en) 2014-09-17
EP2778454B1 (en) 2022-06-22
US20140243104A1 (en) 2014-08-28
CN103917797B (en) 2016-06-15

Similar Documents

Publication Publication Date Title
JP5964030B2 (en) Fixed constant velocity universal joint
JP5912419B2 (en) Fixed constant velocity universal joint
WO2012165096A1 (en) Fixed constant velocity universal joint
WO2013069434A1 (en) Fixed constant-velocity universal joint
WO2014054366A1 (en) Fixed constant-velocity universal joint
JP6113459B2 (en) Fixed constant velocity universal joint
WO2014057781A1 (en) Fixed-type constant-velocity universal joint
WO2013088905A1 (en) Fixed constant velocity universal joint
JP5955747B2 (en) Fixed constant velocity universal joint
JP5882050B2 (en) Fixed constant velocity universal joint
JP5885997B2 (en) Fixed constant velocity universal joint
JP5885998B2 (en) Fixed constant velocity universal joint
JP6173675B2 (en) Fixed constant velocity universal joint

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12847560

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14351651

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012847560

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE