WO2013069123A1 - Control device for gas turbine power-generating plant - Google Patents
Control device for gas turbine power-generating plant Download PDFInfo
- Publication number
- WO2013069123A1 WO2013069123A1 PCT/JP2011/075873 JP2011075873W WO2013069123A1 WO 2013069123 A1 WO2013069123 A1 WO 2013069123A1 JP 2011075873 W JP2011075873 W JP 2011075873W WO 2013069123 A1 WO2013069123 A1 WO 2013069123A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- flow rate
- spray
- fuel
- air
- compressor
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C3/00—Gas-turbine plants characterised by the use of combustion products as the working fluid
- F02C3/20—Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products
- F02C3/30—Adding water, steam or other fluids for influencing combustion, e.g. to obtain cleaner exhaust gases
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C3/00—Gas-turbine plants characterised by the use of combustion products as the working fluid
- F02C3/20—Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products
- F02C3/30—Adding water, steam or other fluids for influencing combustion, e.g. to obtain cleaner exhaust gases
- F02C3/305—Increasing the power, speed, torque or efficiency of a gas turbine or the thrust of a turbojet engine by injecting or adding water, steam or other fluids
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C7/00—Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
- F02C7/08—Heating air supply before combustion, e.g. by exhaust gases
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C9/00—Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
- F02C9/26—Control of fuel supply
- F02C9/28—Regulating systems responsive to plant or ambient parameters, e.g. temperature, pressure, rotor speed
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2260/00—Function
- F05D2260/20—Heat transfer, e.g. cooling
- F05D2260/212—Heat transfer, e.g. cooling by water injection
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2270/00—Control
- F05D2270/01—Purpose of the control system
- F05D2270/05—Purpose of the control system to affect the output of the engine
- F05D2270/053—Explicitly mentioned power
Definitions
- the present invention relates to a control device for a gas turbine power plant including a compressor, a combustor, a turbine, and a generator.
- a gas turbine power plant includes a compressor that pressurizes combustion air, a combustor that mixes and burns the pressurized combustion air and gas turbine fuel (hereinafter referred to as fuel) to generate high-temperature combustion gas, and combustion. And a turbine that drives a compressor and a generator using gas.
- a premixed combustion system in which air and fuel are premixed and burned is employed in order to reduce the amount of nitrogen oxide emissions generated in the combustor.
- the premixed combustion method the combustor is composed of a plurality of burners and a fuel system, and the premixed combustion part of the combustor is divided into a plurality of parts by these burners and the fuel system, and the combustion part is increased or decreased according to the operation load.
- There has been proposed a method (combustion switching) of reducing the used fuel system and the combustion portion in accordance with an increase in the fuel flow rate when the load increases see, for example, Patent Document 1).
- FIG. 9 shows changes in the generator load (upper stage) and fuel flow rate (lower stage) of a conventional gas turbine power plant
- FIG. 10 shows a sectional view of the burner constituting the combustor of the conventional gas turbine power plant
- FIG. FIG. 12 shows changes in fuel flow rate (upper stage) and fuel-air ratio (lower stage) due to combustion switching at the time of load drop in a conventional gas turbine power plant, with respect to gas turbine load in a gas turbine power plant.
- the flow rate of fuel supplied to the combustor decreases between the load drop start time Tsl and the load drop end time Tfl as the generator load drops.
- the combustor is composed of a plurality of burners (a, b1, b2, b3, b4 in the figure) as shown in FIG. 10, and each burner is supplied with fuel from a respective fuel supply system.
- all fuel supply systems are used to ignite all burners and maintain combustion.
- the fuel supply system to be used is reduced as the fuel flow rate decreases, and the plurality of burners are extinguished sequentially.
- combustion switching is Specifically, for example, as shown from the left side to the right side of FIG. 10, the burners are sequentially extinguished in the order of b4, b3, b2, b1, and a from the state where the burners a, b1, b2, b3, and b4 are ignited. And use fuel supply system.
- FIG. 12 shows changes in the fuel flow rate and the fuel-air ratio (ratio of fuel flow rate to air flow rate) at the time of this combustion switching.
- the behavior of the fuel flow rate is shown on the top and the behavior of the fuel-air ratio is shown on the bottom.
- the fuel flow rate and the fuel-air ratio increase stepwise. Such a phenomenon destabilizes combustion and increases NOx concentration.
- the present invention has been made based on the above-mentioned matters, and its purpose is to stably maintain the fuel-air ratio at the time of switching the combustion when the load of the generator is reduced while the intake spray device is in operation. It achieves combustion stabilization and low NOx.
- a first aspect of the present invention is a compressor for pressurizing combustion air, and a spray water supplied to a flow of air sucked into the compressor via a spray flow rate control valve.
- a fuel flow rate control means for calculating a fuel flow rate command value to the combustor, and a fuel that compensates for an increase in fuel / air ratio in the combustor that occurs at the time of combustion switching when the load of the generator drops. Calculate the air ratio correction command signal and Based on the positive command signal, and that a control means for controlling an opening degree of the opening degree of the
- the second invention is a compressor that pressurizes combustion air, and an intake spray device that sprays droplets of spray water supplied via a spray flow rate control valve to a flow of air sucked into the compressor.
- a combustor that mixes and burns the combustion air with fuel to generate a high-temperature combustion gas and switches combustion during operation; and a turbine that drives the compressor and generator using the combustion gas;
- a fuel flow meter for measuring the flow rate of fuel supplied to the combustor, an air flow meter for measuring the flow rate of air sucked into the compressor, and a flow rate of the spray water supplied to the spray device
- a control device for a gas turbine power plant comprising: a spray flow meter; an atmospheric condition detector for measuring atmospheric temperature, humidity, and the like; and a spray flow rate control valve for controlling a flow rate of the spray water, wherein the combustor Calculate the fuel flow rate command value to Charge flow control means, air flow control means for calculating an air flow command value to the compressor, each measured value of the air flow
- the third invention is a compressor that pressurizes combustion air, an intake spray device that sprays droplets of spray water on the flow of air sucked into the compressor, and the combustion air mixed with fuel
- a combustor that generates high-temperature combustion gas by combustion and switches combustion during operation, a turbine that drives the compressor and generator using the combustion gas, and a fuel flow rate that is supplied to the combustor
- a fuel flow meter for measuring the flow rate, an air flow meter for measuring the flow rate of air sucked into the compressor, a spray flow meter for measuring the flow rate of the spray water supplied to the spray device, and the temperature and humidity of the atmosphere
- a control device for a gas turbine power plant comprising an atmospheric condition detector for measuring the air flow and a compressor inlet inner blade for controlling the flow rate of air sucked into the compressor, wherein the fuel flow rate to the combustor
- Fuel flow control means for calculating command value
- Spray flow rate control means for calculating a spray flow rate command value to the spray device, the measured values of
- a fourth aspect of the invention is a compressor for pressurizing combustion air, and an intake spray device for spraying droplets of spray water supplied via a spray flow rate control valve to a flow of air sucked into the compressor.
- a combustor that mixes and burns the combustion air with fuel to generate a high-temperature combustion gas and switches combustion during operation; and a turbine that drives the compressor and generator using the combustion gas;
- a fuel flow meter for measuring the flow rate of fuel supplied to the combustor, an air flow meter for measuring the flow rate of air sucked into the compressor, and a flow rate of the spray water supplied to the spray device
- Gas turbine power generation plan with inner wing A fuel flow rate control means for calculating a fuel flow rate command value for the combustor, an air flow rate control means for calculating an air
- the intake spray amount and / or the air flow rate are controlled so as to compensate in advance for fluctuations in the fuel-air ratio due to combustion switching, unstable combustion during combustion switching can be suppressed. As a result, combustion stabilization and NOx reduction at the time of load drop of the gas turbine power plant can be achieved.
- FIG. 1 is a system configuration diagram showing a gas turbine power plant provided with a first embodiment of a control device for a gas turbine power plant of the present invention.
- FIG. It is a flowchart figure which shows the processing flow of 1st Embodiment of the control apparatus of the gas turbine power plant of this invention. It is a characteristic view which shows the characteristic of the fuel flow rate command signal in 1st Embodiment of the control apparatus of the gas turbine power plant of this invention. It is a characteristic figure showing change of spray flow rate command signal (upper stage), spray flow rate (middle stage), and fuel-air ratio (lower stage) in a 1st embodiment of a control device of a gas turbine power plant of the present invention.
- FIG. 1 is a system configuration diagram showing a gas turbine power plant equipped with a first embodiment of a control device for a gas turbine power plant of the present invention
- FIG. 2 is a first diagram of a control device for a gas turbine power plant of the present invention
- FIG. 3 is a flow chart showing the processing flow of the embodiment
- FIG. 3 is a characteristic diagram showing characteristics of the fuel flow rate command signal in the first embodiment of the control device for the gas turbine power plant of the present invention
- a gas turbine power plant includes a compressor 1 that pressurizes combustion air, a combustor 2 that mixes and burns combustion air and fuel to generate high-temperature combustion gas, and compresses the combustion gas.
- the turbine 4 that drives the machine 1 and the generator 70 and the intake spray device 3 that sprays droplets on the flow of air sucked into the compressor 1 are roughly configured.
- the air flow rate sucked into the compressor 1 is adjusted by the compressor inlet inner blade 11, and the fuel flow rate supplied to the combustor 2 is adjusted by the fuel flow rate control valve 12, and sprayed from the intake spray device 3 to the air flow.
- the spray flow rate is adjusted by the spray flow rate control valve 13.
- a control device 24 is provided for controlling the spray flow rate adjusting valve 13 so as to increase the spray flow rate before switching to combustion.
- the control device 24 calculates the intake air flow rate and outputs it as air flow rate command signals Uigv 31 and 41, and the fuel flow rate control circuit 22 calculates the fuel flow rate and outputs it as fuel flow rate command signals Ucmb 32 and 42. And a spray flow rate control circuit 23 that calculates the spray flow rate and outputs it as a spray flow rate command signal Uwac 33.
- the spray flow rate control circuit 23 measures, as inputs, a detection signal of an air flow meter 51 that measures an air flow rate sucked into the compressor 1 and a fuel flow rate supplied to the combustor 2. Detection signal of the fuel flow meter 52, detection signal of the spray flow meter 53 that measures the spray flow rate sprayed from the intake spray device 3, and detection signal of the atmospheric condition detector 54 that measures the temperature, humidity, pressure, etc. of the atmosphere And at least one of an air flow rate command signal Uigv 41 output from the air flow rate control circuit 21 and a fuel flow rate command signal Ucmb 42 output from the fuel flow rate control circuit 22.
- the signal may be used as long as it can be used for calculation of the spray flow rate.
- the spray flow rate control circuit 23 generates a spray flow rate command signal Uwac 33 that is input to the spray flow rate adjustment valve 13 as an output.
- the air flow meter 51 is not limited to the one that directly measures the air flow rate, and may be any device that can identify the air flow rate, such as a device that calculates the air flow rate based on pressure.
- the air flow control circuit 21 and the fuel flow control circuit 22 have, as inputs, a detection signal from the air flow meter 51, a detection signal from the fuel flow meter 52, a detection signal from the spray flow meter 53, and a detection from the atmospheric condition detector 54.
- the gas turbine power generation receives at least one of the signal, the air flow rate command signal Uigv31, the fuel flow rate command signal Ucmb32, the spray flow rate command signal Uwac33, the rotation speed of the compressor 1, and the load of the gas turbine 4.
- the air flow rate control circuit 21 calculates the air flow rate
- the fuel flow rate control circuit 22 calculates the fuel flow rate
- the air flow rate control circuit 21 outputs air.
- the flow rate command signals Uigv 31 and 41 and the fuel flow rate control circuit 22 generate fuel flow rate command signals Ucmb 32 and 42.
- the air flow rate command signal Uigv 31 is output from the air flow rate control circuit 21 to the operation end of the compressor inlet inner blade 11, and the air flow rate is controlled by changing the opening degree of the compressor inlet inner blade 11.
- the fuel flow rate command signal Ucmb 32 is output from the fuel flow rate control circuit 22 to the fuel flow rate adjustment valve 12, and the fuel flow rate is controlled by changing the opening of the fuel flow rate adjustment valve 12.
- the spray flow rate command signal Uwac 33 is output from the spray flow rate control circuit 23 to the spray flow rate control valve 13, and the spray flow rate is controlled by changing the opening of the spray flow rate control valve 13.
- the spray flow rate control circuit 23 determines the spray flow rate according to the atmospheric state and the state quantity of the gas turbine plant, and outputs the spray flow rate command signal Uwac 33 to the spray flow rate control valve 13. To do.
- a spray flow rate (hereinafter referred to as a compensated spray flow rate) that compensates for an increase in the fuel-air ratio accompanying the combustion switching is determined from a certain time before the combustion switching time until the combustion switching is completed.
- the output of the flow rate command signal Uwac 33 is a feature of the first embodiment of the present invention.
- the predetermined time is a time until the change in the spray flow rate affects the fuel-air ratio.
- step S101 it is determined whether or not the gas turbine power plant is in a load drop state.
- a determination method for example, the detection signal of the air flow meter 51 or the air flow rate command signal Uigv31 or the detection signal of the fuel flow meter 52 or the fuel flow rate command signal Ucmb32 is monitored, and these signals are monitored as time passes.
- a known method for determining a load drop in a gas turbine power plant may be used. If it is determined that the gas turbine power plant is at a load drop, the determination is YES and the process proceeds to step S102. If it is determined that the load is not at a load drop, the determination is NO and the process proceeds to step S105.
- step S102 the time difference between the current time and the time Tsw at which the combustion switching is predicted to be performed is calculated, and whether or not this time difference is longer than the time ⁇ Twac until the fuel / air ratio is affected by the change in the spray flow rate. To be judged. That is, it is determined whether or not the current time is earlier than the preferred time (fuel / air ratio compensation control start time) Tsw ⁇ Twac for starting the fuel / air ratio compensation control.
- the time ⁇ Twac until the fuel / air ratio is affected by the change in the spray flow rate is a value determined in advance based on experiments and calculations. For example, when time ⁇ Twac is the time from when the droplets are sprayed from the intake spray device 3 to the time when the droplet reaches the inlet of the combustor 2, the amount of droplets sprayed from the intake spray device 3 and the combustor 2 The amount of droplets reaching the inlet can be measured or calculated and determined from the delay in change.
- the amount of droplets sprayed from the intake spray device 3 is a spray flow rate measured by the spray flow meter 53, and the amount of droplets reaching the inlet of the combustor 2 is determined from the supply air flow rate to the combustor 2.
- the flow rate is obtained by subtracting the intake air flow rate of the compressor 1.
- the supply air flow rate to the combustor 2 is a value measured by a flow meter (not shown) provided at the air inlet of the combustor 2, and the intake air flow rate of the compressor 1 is measured by the air flow meter 51. Is the value to be
- the fuel-air ratio compensation control start time Tsw- ⁇ Twac is determined based on the fuel flow command signal Ucmb32, the detection signal from the fuel flow meter 52, the air flow command signal Uigv31, the detection signal from the air flow meter 51, or the load on the generator. It is the time specified based on
- FIG. 3 shows a time-series change of the fuel flow rate command signal Ucmb32.
- the fuel flow rate command signal Ucmb decreases with time as the load drops, reaches Ccmb at time Tsw, and combustion switching is started.
- the fuel flow rate command signal Ucmb at time Tsw- ⁇ Twac can be approximated as Ccmb + ⁇ Twac ⁇ dUcmb / dT, where dUcmb / dT is the amount of change per unit time of the fuel flow rate command signal Ucmb32.
- Ccmb is a value determined according to a predetermined sequence or rule.
- step S102 if it is determined in step S102 that the current time is ⁇ Twac or more before the predicted combustion switching time Tsw, YES is determined and the process proceeds to step S103, where the current time is ⁇ Twac relative to the predicted combustion switching time Tsw. If it is determined that it is not before, NO is determined and the process proceeds to step S105.
- step S103 a spray flow rate that compensates for an increase in the fuel-air ratio that is expected to occur at the combustion switching predicted time Tsw is calculated and output as a spray flow rate command signal Uwac33.
- a spray flow rate command signal Uwac33 As a method for determining the spray flow rate to compensate for the increase in the fuel-air ratio, as shown in the change in the spray flow rate in the middle of FIG. 4, the spray flow rate obtained by increasing the additional amount ⁇ Qwac with respect to the spray flow rate Qwac0 at the time Tsw- ⁇ Twac. The compensation spray flow rate is good.
- the additional amount ⁇ Qwac is predetermined based on experiments and calculations. Specifically, for example, as shown in FIG. 12, at the combustion switching time Tsw, the fuel flow rate per fuel flow supply system used is increased from Qf1 to Qf2, and the fuel-air ratio is increased from N1 to N2.
- Qa is the supply air flow rate to the combustor 2 at the combustion switching time Tsw or the time Tsw ⁇ Twac.
- the spray flow rate obtained by increasing the spray flow rate Qwac0 at a predetermined rate is used as the compensated spray flow rate, and is a value determined according to a predetermined procedure as described above.
- it may be an amount that compensates for an increase in the fuel-air ratio at the time of switching combustion.
- step S104 it is determined whether combustion switching is completed.
- Combustion switching completion determination methods include a method of determining that combustion switching has been completed when a predetermined time has elapsed from the start of combustion switching, or that combustion switching has been completed when the exhaust gas temperature or exhaust flow rate has reached a predetermined value. There are methods to judge. Alternatively, any other method may be used as long as it is a known method for detecting completion of combustion switching. If it is determined that the combustion switching has been completed, it is determined YES and the process proceeds to step S105. If it is determined that the combustion switching has not been completed, NO is determined and the process returns to step S103.
- step S105 follow-up control is performed so that the spray flow rate becomes the desired spray flow rate.
- the desired spray flow rate is, for example, the spray flow rate required for the combustion air to reach a predetermined humidity, or the spray flow rate required for the ratio of the predetermined spray flow rate to the air flow rate, for the operation purpose at that time.
- the spray flow rate required for the combustion air to reach a predetermined humidity is, for example, the difference between the amount of water vapor for achieving the predetermined humidity and the amount of water vapor in the atmosphere. These values are calculated based on the air flow rate and humidity.
- the air flow rate is calculated based on the detection signal of the air flow meter 51 or the air flow rate command signal Uigv31, and the humidity is calculated based on the detection signal of the atmospheric condition detector 54 that measures the atmospheric temperature, humidity, pressure, and the like. Is done.
- the spray flow rate required to reach a predetermined spray flow rate / air flow rate ratio is, for example, a value obtained by multiplying the predetermined spray flow rate / air flow rate rate by the air flow rate.
- the air flow rate is calculated based on the detection signal of the air flow meter 51 or the air flow rate command signal Uigv31.
- the spray flow rate adjusting valve 13 is controlled to follow the desired spray flow rate from the start of load lowering to the time Tsw ⁇ Twac, and thereafter until the combustion switching completion time Tcom.
- the fuel-air ratio compensation control is performed so as to increase, and after the combustion switching completion time Tcom, the follow-up control is performed again to the desired spray flow rate.
- the spray flow rate is increased from Qwac0 to Qwac0 + ⁇ Qwac after reaching time Tsw- ⁇ Twac, thereby increasing the combustion air flow rate and the fuel-air ratio in the lower part of FIG. It drops like a solid line.
- the reduction in the fuel-air ratio here is caused by an increase in the air flow rate compared to the conventional air flow rate.
- the fuel-air ratio increases due to combustion switching.
- the mode of increase in the fuel / air ratio that occurs at the time of conventional combustion switching (indicated by the broken line in the lower part of FIG. 4) is shown in FIG. It can change like the aspect displayed with the continuous line of 4 lower stage, and can suppress the raise amount of fuel-air ratio.
- the intake spray amount is controlled so as to compensate for the fluctuation of the fuel-air ratio in advance. Combustion can be suppressed. As a result, combustion stabilization and NOx reduction at the time of load drop of the gas turbine power plant can be achieved.
- FIG. 5 is a system configuration diagram showing a gas turbine power plant equipped with the second embodiment of the control device for the gas turbine power plant of the present invention
- FIG. 6 is a second diagram of the control device for the gas turbine power plant of the present invention
- FIG. 7 is a flowchart showing a processing flow of the embodiment, and FIG. 7 is an air flow rate command signal (upper stage), an air flow rate (middle stage), and a fuel-air ratio in the second embodiment of the control device of the gas turbine power plant of the present invention. It is a characteristic view which shows the change of (lower stage).
- 5 to FIG. 7, the same reference numerals as those shown in FIG. 1 to FIG. 4 are the same parts, and detailed description thereof will be omitted.
- the spray flow rate is increased before the combustion switching.
- a control device 24 for controlling the flow control valve 13 is provided.
- the second embodiment is different in that it includes a control device 24 that controls the opening of the compressor inlet inner blade 11 so as to increase the air flow rate before the combustion switching.
- Other facilities constituting the gas turbine power plant are the same as those in the first embodiment.
- the operations of the spray flow rate control circuit 23 and the air flow rate control circuit 21 in the control device 24 are different from those of the first embodiment.
- the fuel / air ratio is compensated and controlled using the spray flow rate.
- the fuel / air ratio is compensated and controlled using the air flow rate. For this reason, various signals used for fuel-air ratio compensation are input to the spray flow rate control circuit 23 in FIG. 1, but are input to the air flow rate control circuit 21 in FIG.
- the spray flow rate control circuit 23 outputs a spray flow rate command signal Uwac 33 such that the spray flow rate follows the desired spray flow rate.
- the air flow rate control circuit 21 measures the detection signal of the air flow meter 51 that measures the air flow rate sucked into the compressor 1 and the fuel flow rate supplied to the combustor 2 as inputs. Detection signal of the fuel flow meter 52, detection signal of the spray flow meter 53 that measures the spray flow rate sprayed from the intake spray device 3, and detection signal of the atmospheric condition detector 54 that measures the temperature, humidity, pressure, etc. of the atmosphere And at least one of a fuel flow rate command signal Ucmb 62 output from the fuel flow rate control circuit 22 and a spray flow rate command signal Uwac 63 output from the spray flow rate control circuit 23.
- other signals may be used as long as they can be used for the calculation of the air flow rate.
- the air flow rate control circuit 21 generates an air flow rate command signal Uigv31 that is input to the compressor inlet inner blade 11 as an output.
- the air flow rate control circuit 21 determines the opening of the compressor inlet inner blade 11 so that the air flow rate satisfying a predetermined condition is sucked into the compressor 1, and the air flow rate command Output as signal Uigv31. At this time, the air flow rate that compensates for the increase in the fuel-air ratio accompanying the combustion switching is determined and output as the air flow rate command signal Uigv31 until the combustion switching is completed from a certain time before the combustion switching time.
- the predetermined time is a time until the change in the air flow rate affects the fuel-air ratio.
- step S201 it is determined whether or not the gas turbine power plant is in a load drop state. The determination is performed by the same determination method as in the first embodiment. If it is determined that the gas turbine power plant is at a load drop, the determination is YES and the process proceeds to step S202. If it is determined that the load is not at a load drop, the determination is NO and the process proceeds to step S205.
- step S202 the time difference between the current time and the time Tsw at which the combustion switching is predicted to be performed is calculated, and the time difference until the change in the opening of the compressor inlet inner blade 11 affects the fuel-air ratio. It is determined whether or not the time is greater than ⁇ Tigv. In other words, it is determined whether or not the current time is earlier than the preferred time (fuel / air ratio compensation control start time) Tsw ⁇ Tigv for starting the fuel / air ratio compensation control. If it is determined that the current time is ⁇ Tigv or more before the predicted combustion switching time Tsw, the determination is YES and the process proceeds to step S203. If it is determined that the current time is not before ⁇ Tigv before the predicted combustion switching time Tsw. , NO is determined, the process proceeds to step S205.
- step S203 an air flow rate that compensates for an increase in the fuel / air ratio that is expected to occur at the combustion switching prediction time Tsw is calculated and output as an air flow rate command signal Uigv31.
- the air flow rate Qigv0 at time Tsw- ⁇ Tigv is determined in advance by experiments and calculations.
- the air flow rate obtained by increasing the compensation air flow rate ⁇ Qigv may be calculated, or the air flow rate obtained by increasing the air flow rate Qigv0 at a predetermined rate may be calculated.
- step S204 it is determined whether combustion switching is completed. The determination is performed by the same determination method as in the first embodiment. If it is determined that the combustion switching has been completed, it is determined YES and the process proceeds to step S205. If it is determined that the combustion switching has not been completed, NO is determined and the process returns to step S203.
- step S205 the air flow rate is controlled to follow the desired air flow rate.
- the desired air flow rate is, for example, an air flow rate required to achieve a predetermined fuel-air ratio, or an air flow rate required to satisfy a relationship with a predetermined gas turbine load. Any known method for determining the hourly air flow rate may be used.
- the compressor inlet inner blade 11 is controlled to follow the desired air flow rate until the time Tsw ⁇ Tigv after the gas turbine power plant starts load drop, and then the combustion switching completion time is reached.
- the fuel-air ratio compensation control is performed until Tcom, and after the combustion switching completion time Tcom, the desired air flow rate is again controlled in step S205.
- the air flow rate is increased from Qigv0 to Qigv0 + ⁇ Qigv after reaching time Tsw- ⁇ Tigv, thereby increasing the combustion air flow rate and the fuel-air ratio in the lower part of FIG. It drops like a solid line.
- the reduction in the fuel-air ratio here is due to an increase in the air flow rate compared to the conventional air flow rate.
- the fuel-air ratio increases due to combustion switching.
- the mode of increase in the fuel / air ratio that occurs at the time of conventional combustion switching is shown in FIG. 7 can be changed as shown in the lower solid line, and the fuel / air ratio increase can be suppressed.
- the spray flow rate control circuit 23 is operated as shown in the flowchart of FIG. 2 according to the first embodiment.
- This embodiment is particularly effective when the spray flow rate cannot be used beyond a certain operating range.
- the air flow rate is controlled so as to compensate for the fluctuation of the fuel-air ratio in advance, so that unstable combustion at the time of combustion switching is prevented. Can be suppressed. As a result, combustion stabilization and NOx reduction at the time of gas turbine power plant load drop can be achieved.
- the control range of the spray flow rate is limited, and it is possible to cope with the case where the spray flow rate cannot be used beyond a certain operation range, and the above-described effects can be achieved.
- FIG. 8 is a characteristic diagram showing changes in the air flow rate command signal (upper stage) and the fuel-air ratio (lower stage) in the third embodiment of the control device for the gas turbine power plant of the present invention.
- the same reference numerals as those shown in FIGS. 1 to 7 are the same parts, and detailed description thereof will be omitted.
- the third embodiment of the gas turbine power plant according to the present invention is a combination of the first embodiment and the second embodiment, and includes stabilization of combustion during load drop of the gas turbine power plant.
- the spray flow rate control valve 13 is controlled so as to increase the spray flow rate before switching the combustion, and the opening of the compressor inlet inner blade 11 is increased so as to increase the air flow rate before switching the combustion.
- a control device 24 for controlling is provided.
- Other facilities constituting the gas turbine power plant are the same as those in the first embodiment.
- the spray flow rate adjusting valve 13 is controlled to follow the desired spray flow rate, and the compressor inlet inner blade 11 is controlled to follow the desired spray flow rate. Thereafter, until the time Tsw- ⁇ Tigv, the spray flow rate adjustment valve 13 is subjected to fuel-air ratio compensation control, while the compressor inlet inner blade 11 continues to follow the desired spray flow rate. After that, until the time Tcom, the spray flow rate adjustment valve 13 and the compressor inlet inner blade 11 are respectively subjected to fuel-air ratio compensation control. After time Tcom, the spray flow rate adjusting valve 13 is again subjected to desired spray flow rate tracking control, and the compressor inlet inner blade 11 is subjected to desired spray flow rate tracking control.
- the combustion air flow rate becomes the sum of the desired spray flow rate and the desired air flow rate from the load drop start to time Tsw- ⁇ Twac as shown by the solid line in the upper part of FIG. Then, it increases from time Tsw- ⁇ Twac to time Tsw- ⁇ Tigv, and further increases immediately after time Tsw- ⁇ Tigv.
- the combustion air flow rate follows the sum of the desired spray flow rate and the desired air flow rate.
- the change in the fuel-air ratio is equivalent to the conventional case (indicated by the dotted line) from the load drop start to the time Tsw- ⁇ Twac as shown by the solid line in the lower part of FIG. Then, it decreases from time Tsw- ⁇ Twac to time Tsw- ⁇ Tigv, and further decreases immediately after time Tsw- ⁇ Tigv. This is due to the change in the combustion air flow rate described above. Thereafter, the fuel-air ratio rises due to combustion switching at time Tsw.
- the gas turbine system including the control device 24 having the spray flow rate adjustment function and the air flow rate adjustment function at the same time is the gas turbine system including the control device 24 having only the spray flow rate adjustment function (the lower broken line in FIG. 8).
- the amount of increase in the combustion air flow rate can be significantly changed to ⁇ Qigv + ⁇ Qwac.
- the responsiveness of changes in the combustion air flow rate can be improved, the fuel-air ratio can be reduced in a short time during the fuel-air ratio compensation control, and the time during which the fuel-air ratio is low can be shortened.
- FIG. 8 shows an example in which ⁇ Twac is longer than ⁇ Tigv. Even when the magnitude relationship between the two is reversed, the gas turbine system including the control device 24 having both the spray flow rate adjustment function and the air flow rate adjustment function is Compared to a gas turbine system having a control device 24 having only a spray flow rate adjustment function and a gas turbine system having a control device 24 having only an air flow rate adjustment function, the range of the fuel-air ratio that can be compensated is widened. It is possible to improve the responsiveness of changes in the combustion air flow rate, to reduce the fuel / air ratio in a short time during fuel / air ratio compensation control, and to shorten the time when the fuel / air ratio is low There is no change.
- the control device for a gas turbine power plant of the present invention described above, it is possible to obtain the same effects as those of the first and second embodiments described above, and to compensate the fuel air.
- the range of the ratio can be widened.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Regulation And Control Of Combustion (AREA)
Abstract
A control device for a gas turbine power-generating plant provided with: a compressor (1) for pressurizing the combustion air; an air intake spraying device (3) that sprays sprayed water droplets supplied via a spray flow adjustment valve (13) into the flow of air suctioned into the compressor (1); a combustor (2) that mixes/combusts the combustion air with the fuel to generate high temperature combustion gas and switches combustion during operation; a turbine (4) that drives the compressor (1) and a power generator (70) using the combustion gas; a spray flow adjustment valve (13) for controlling the flow of sprayed water; and a compressor inlet inner blade (11) that controls the flow of air suctioned into the compressor (1). The control device is provided with a control means (24), which computes a fuel-air ratio-correction command signal to compensate for the increased fuel-air ratio in the combustor (2) that occurs during switching of combustion when the load on the power generator (70) is reduced and which, based on the fuel-air ratio-correction command signal, controls the degree of opening of the compressor inlet inner blade (11) and/or the degree of opening of the spray flow adjustment valve (13).
Description
本発明は、圧縮機、燃焼器、タービン及び発電機を備えたガスタービン発電プラントの制御装置に関する。
The present invention relates to a control device for a gas turbine power plant including a compressor, a combustor, a turbine, and a generator.
ガスタービン発電プラントは、燃焼用空気を加圧する圧縮機と、加圧された燃焼用空気とガスタービン燃料(以下燃料)とを混合・燃焼して高温の燃焼ガスを発生する燃焼器と、燃焼ガスを用いて圧縮機及び発電機を駆動するタービンとを備えている。
A gas turbine power plant includes a compressor that pressurizes combustion air, a combustor that mixes and burns the pressurized combustion air and gas turbine fuel (hereinafter referred to as fuel) to generate high-temperature combustion gas, and combustion. And a turbine that drives a compressor and a generator using gas.
このようなガスタービン発電プラントにおける燃料制御方式として、燃焼器内で生じる窒素酸化物の排出量を低減するために、空気と燃料を予め混合して燃焼する予混合燃焼方式が採用されている。予混合燃焼方式は、燃焼器を複数のバーナと燃料系統とで構成し、これらバーナと燃料系統によって、燃焼器の予混合燃焼部分を複数に分割し、運転負荷に応じて燃焼部分を増減するものである。負荷上昇時には、燃料流量の増加に応じて使用燃料系統と燃焼部分を減らす方法(燃焼切換)が提案されている(例えば、特許文献1参照)。
As a fuel control system in such a gas turbine power plant, a premixed combustion system in which air and fuel are premixed and burned is employed in order to reduce the amount of nitrogen oxide emissions generated in the combustor. In the premixed combustion method, the combustor is composed of a plurality of burners and a fuel system, and the premixed combustion part of the combustor is divided into a plurality of parts by these burners and the fuel system, and the combustion part is increased or decreased according to the operation load. Is. There has been proposed a method (combustion switching) of reducing the used fuel system and the combustion portion in accordance with an increase in the fuel flow rate when the load increases (see, for example, Patent Document 1).
一方、ガスタービン発電プラントの出力・効率の向上を図るために、燃焼用空気に液滴を噴霧する吸気噴霧装置を圧縮機入口に設けたものがある(例えば、特許文献2参照)。吸気噴霧装置の制御方法として、ガスタービン発電プラントの定格運転後に吸気噴霧装置への水の供給を開始し、負荷を下げる場合には、吸気噴霧装置で噴霧する水量を下げるものが開示されている(例えば、特許文献3参照)。
On the other hand, in order to improve the output / efficiency of a gas turbine power plant, there is an intake spray device that sprays droplets on combustion air at the compressor inlet (see, for example, Patent Document 2). As a control method of the intake spray device, there is disclosed a method of starting the supply of water to the intake spray device after the rated operation of the gas turbine power plant and reducing the amount of water sprayed by the intake spray device when reducing the load. (For example, refer to Patent Document 3).
負荷降下時の燃焼切換においては、燃料流量の減少に伴って、燃料流量を分配する燃料系統が低減されるため、使用燃料系統の1本当たりに供給されている燃料流量は増加することになる。このため、燃焼切換時には、燃料流量と空気流量の比(燃空比)が上昇し、燃焼状態が不安定となりNOx濃度が上昇することが知られている。
In combustion switching at the time of load drop, as the fuel flow rate decreases, the fuel system that distributes the fuel flow rate is reduced, so the fuel flow rate that is supplied per used fuel system increases. . For this reason, at the time of combustion switching, it is known that the ratio between the fuel flow rate and the air flow rate (fuel / air ratio) increases, the combustion state becomes unstable, and the NOx concentration increases.
負荷降下時の燃焼切換に伴う燃空比上昇について図9~図12を用いて説明する。図9は従来のガスタービン発電プラントの発電機負荷(上段)と燃料流量(下段)の変化、図10は従来のガスタービン発電プラントの燃焼器を構成するバーナの配置断面、図11は従来のガスタービン発電プラントにおけるガスタービン負荷に対するバーナ毎の燃料流量特性、図12は従来のガスタービン発電プラントにおける負荷降下時の燃焼切換に伴う燃料流量(上段)と燃空比(下段)の変化を示す特性図である。
The increase in the fuel-air ratio that accompanies combustion switching when the load drops will be described with reference to FIGS. FIG. 9 shows changes in the generator load (upper stage) and fuel flow rate (lower stage) of a conventional gas turbine power plant, FIG. 10 shows a sectional view of the burner constituting the combustor of the conventional gas turbine power plant, and FIG. FIG. 12 shows changes in fuel flow rate (upper stage) and fuel-air ratio (lower stage) due to combustion switching at the time of load drop in a conventional gas turbine power plant, with respect to gas turbine load in a gas turbine power plant. FIG.
図9に示すように、ガスタービン発電プラントにおいては、発電機の負荷降下に伴い、負荷降下開始時刻Tslと負荷降下終了時刻Tflの間において、燃焼器に供給する燃料流量が低減する。
As shown in FIG. 9, in the gas turbine power plant, the flow rate of fuel supplied to the combustor decreases between the load drop start time Tsl and the load drop end time Tfl as the generator load drops.
燃焼器は、図10に示すように複数のバーナ(図中a、b1、b2、b3、b4)で構成されており、各バーナはそれぞれの燃料供給系統から燃料を供給されている。ガスタービン発電プラントの定格運転時には、全ての燃料供給系統を使用して全てのバーナを着火して燃焼を維持する。定格運転から負荷降下する際には、燃料流量の減少に伴って使用する燃料供給系統を減らすと共に、複数のバーナを順次消火していく。このような一連の動作を燃焼切換と呼ぶ。具体的には、例えば図10の左側から右側に示すように、バーナa、b1、b2、b3、b4が点火している状態から、b4、b3、b2、b1、aの順にバーナを順次消火していくと共に使用燃料供給系統を減らしていく。
The combustor is composed of a plurality of burners (a, b1, b2, b3, b4 in the figure) as shown in FIG. 10, and each burner is supplied with fuel from a respective fuel supply system. During rated operation of a gas turbine power plant, all fuel supply systems are used to ignite all burners and maintain combustion. When the load drops from the rated operation, the fuel supply system to be used is reduced as the fuel flow rate decreases, and the plurality of burners are extinguished sequentially. Such a series of operations is called combustion switching. Specifically, for example, as shown from the left side to the right side of FIG. 10, the burners are sequentially extinguished in the order of b4, b3, b2, b1, and a from the state where the burners a, b1, b2, b3, and b4 are ignited. And use fuel supply system.
このような負荷降下時の燃焼切換においては、図11に示すように、全燃料流量の減少と共に、燃料流量を分配する燃料系統(使用燃料供給系統)を減らしていく。このため、使用燃料系統の1本当たりに供給される燃料流量は増大することになる。この燃焼切換時の燃料流量と燃空比(燃料流量と空気流量の比)の変化を示したものが図12である。燃料流量の挙動を上段に、燃空比の挙動を下段に示している。図12に示すように燃焼切換(図中の時刻Tsw)の直後に燃料流量と燃空比がステップ的に上昇する。このような現象は燃焼を不安定化させてNOx濃度を高める。
In such combustion switching at the time of load drop, as shown in FIG. 11, the fuel system (used fuel supply system) that distributes the fuel flow is reduced as the total fuel flow decreases. For this reason, the fuel flow rate supplied per one fuel system used increases. FIG. 12 shows changes in the fuel flow rate and the fuel-air ratio (ratio of fuel flow rate to air flow rate) at the time of this combustion switching. The behavior of the fuel flow rate is shown on the top and the behavior of the fuel-air ratio is shown on the bottom. As shown in FIG. 12, immediately after the combustion switching (time Tsw in the figure), the fuel flow rate and the fuel-air ratio increase stepwise. Such a phenomenon destabilizes combustion and increases NOx concentration.
一方、上述した吸気噴霧装置は、負荷降下により噴霧する水量が減少するため、燃焼切換の際には、すでに噴霧水量が無しの状態、又は微少量の状態にあり、上述した燃焼切換時の燃焼不安定化を改善する制御手段は備えていなかった。
On the other hand, since the above-described intake spray device reduces the amount of water sprayed due to a load drop, the combustion water at the time of switching the combustion is already in a state where there is no sprayed water amount or a very small amount at the time of combustion switching. There was no control means to improve destabilization.
本発明は上述の事柄に基づいてなされたもので、その目的は、吸気噴霧装置を作動中の状態において、発電機の負荷降下の際の燃焼切換時の燃空比を安定に維持することにより、燃焼安定化と低NOx化を実現させるものである。
The present invention has been made based on the above-mentioned matters, and its purpose is to stably maintain the fuel-air ratio at the time of switching the combustion when the load of the generator is reduced while the intake spray device is in operation. It achieves combustion stabilization and low NOx.
上記の目的を達成するために、第1の発明は、燃焼用空気を加圧する圧縮機と、前記圧縮機に吸込まれる空気の流れに噴霧流量調節弁を介して供給された噴霧水の液滴を噴霧する吸気噴霧装置と、前記燃焼用空気を燃料と混合・燃焼して高温の燃焼ガスを発生させ、運転中に燃焼切換えを行う燃焼器と、前記燃焼ガスを用いて前記圧縮機及び発電機を駆動するタービンと、前記噴霧水の流量を制御する噴霧流量調節弁と、前記圧縮機に吸込まれる空気の流量を制御する圧縮機入口内翼とを備えたガスタービン発電プラントの制御装置であって、前記燃焼器への燃料流量指令値を演算する燃料流量制御手段と、前記発電機の負荷降下の際の燃焼切換え時に発生する前記燃焼器での燃空比上昇を補償する燃空比補正指令信号を演算し、該燃空比補正指令信号に基づいて、前記圧縮機入口内翼の開度又は/及び前記噴霧流量調節弁の開度を制御する制御手段とを備えたものとする。
In order to achieve the above object, a first aspect of the present invention is a compressor for pressurizing combustion air, and a spray water supplied to a flow of air sucked into the compressor via a spray flow rate control valve. An intake spray device for spraying droplets; a combustor that mixes and burns the combustion air with fuel to generate high-temperature combustion gas, and switches combustion during operation; and the compressor using the combustion gas and Control of a gas turbine power plant comprising a turbine for driving a generator, a spray flow rate adjusting valve for controlling the flow rate of the spray water, and a compressor inlet inner blade for controlling the flow rate of air sucked into the compressor A fuel flow rate control means for calculating a fuel flow rate command value to the combustor, and a fuel that compensates for an increase in fuel / air ratio in the combustor that occurs at the time of combustion switching when the load of the generator drops. Calculate the air ratio correction command signal and Based on the positive command signal, and that a control means for controlling an opening degree of the opening degree of the compressor inlet in the wing and / or the spray flow rate control valve.
また、第2の発明は、燃焼用空気を加圧する圧縮機と、前記圧縮機に吸込まれる空気の流れに噴霧流量調節弁を介して供給された噴霧水の液滴を噴霧する吸気噴霧装置と、前記燃焼用空気を燃料と混合・燃焼して高温の燃焼ガスを発生させ、運転中に燃焼切換えを行う燃焼器と、前記燃焼ガスを用いて前記圧縮機及び発電機を駆動するタービンと、前記燃焼器に供給される燃料流量を計測する燃料流量計と、前記圧縮機に吸込まれる空気流量を計測する空気流量計と、前記噴霧装置に供給される前記噴霧水の流量を計測する噴霧流量計と、大気の温度や湿度などを計測する大気条件検出器と、前記噴霧水の流量を制御する噴霧流量調節弁とを備えたガスタービン発電プラントの制御装置であって、前記燃焼器への燃料流量指令値を演算する燃料流量制御手段と、前記圧縮機への空気流量指令値を演算する空気流量制御手段と、前記空気流量計と前記燃料流量計と前記噴霧流量計と前記大気条件検出器の各計測値と前記燃料流量指令値と前記空気流量指令値とを取り込み、前記発電機の負荷降下の際の燃焼切換え時に発生する前記燃焼器での燃空比上昇を補償する噴霧流量補正指令値と該噴霧流量補正指令値による制御開始時刻を演算し、前記制御開始時刻から前記噴霧流量補正指令値を付加した噴霧流量指令値に基づいて前記噴霧流量調節弁の開度を制御する噴霧流量制御手段とを備えたものとする。
The second invention is a compressor that pressurizes combustion air, and an intake spray device that sprays droplets of spray water supplied via a spray flow rate control valve to a flow of air sucked into the compressor. A combustor that mixes and burns the combustion air with fuel to generate a high-temperature combustion gas and switches combustion during operation; and a turbine that drives the compressor and generator using the combustion gas; A fuel flow meter for measuring the flow rate of fuel supplied to the combustor, an air flow meter for measuring the flow rate of air sucked into the compressor, and a flow rate of the spray water supplied to the spray device A control device for a gas turbine power plant, comprising: a spray flow meter; an atmospheric condition detector for measuring atmospheric temperature, humidity, and the like; and a spray flow rate control valve for controlling a flow rate of the spray water, wherein the combustor Calculate the fuel flow rate command value to Charge flow control means, air flow control means for calculating an air flow command value to the compressor, each measured value of the air flow meter, the fuel flow meter, the spray flow meter, and the atmospheric condition detector, and A spray flow rate correction command value that takes in the fuel flow rate command value and the air flow rate command value and compensates for an increase in the fuel-air ratio in the combustor that occurs at the time of combustion switching when the load of the generator drops. A spray flow rate control means for calculating a control start time based on the command value and controlling the opening of the spray flow rate control valve based on the spray flow rate command value to which the spray flow rate correction command value is added from the control start time. Shall.
更に、第3の発明は、燃焼用空気を加圧する圧縮機と、前記圧縮機に吸込まれる空気の流れに噴霧水の液滴を噴霧する吸気噴霧装置と、前記燃焼用空気を燃料と混合・燃焼して高温の燃焼ガスを発生させ、運転中に燃焼切換えを行う燃焼器と、前記燃焼ガスを用いて前記圧縮機及び発電機を駆動するタービンと、前記燃焼器に供給される燃料流量を計測する燃料流量計と、前記圧縮機に吸込まれる空気流量を計測する空気流量計と、前記噴霧装置に供給される前記噴霧水の流量を計測する噴霧流量計と、大気の温度や湿度などを計測する大気条件検出器と、前記圧縮機に吸込まれる空気の流量を制御する圧縮機入口内翼とを備えたガスタービン発電プラントの制御装置であって、前記燃焼器への燃料流量指令値を演算する燃料流量制御手段と、前記噴霧装置への噴霧流量指令値を演算する噴霧流量制御手段と、前記空気流量計と前記燃料流量計と前記噴霧流量計と前記大気条件検出器の各計測値と前記燃料流量指令値と前記噴霧流量指令値とを取り込み、前記発電機の負荷降下の際の燃焼切換え時に発生する前記燃焼器での燃空比上昇を補償する空気流量補正指令値と該空気流量補正指令値による制御開始時刻を演算し、前記制御開始時刻から前記空気流量補正指令値を付加した空気流量指令値に基づいて前記圧縮機入口内翼の開度を制御する空気流量制御手段とを備えたものとする。
Furthermore, the third invention is a compressor that pressurizes combustion air, an intake spray device that sprays droplets of spray water on the flow of air sucked into the compressor, and the combustion air mixed with fuel A combustor that generates high-temperature combustion gas by combustion and switches combustion during operation, a turbine that drives the compressor and generator using the combustion gas, and a fuel flow rate that is supplied to the combustor A fuel flow meter for measuring the flow rate, an air flow meter for measuring the flow rate of air sucked into the compressor, a spray flow meter for measuring the flow rate of the spray water supplied to the spray device, and the temperature and humidity of the atmosphere A control device for a gas turbine power plant comprising an atmospheric condition detector for measuring the air flow and a compressor inlet inner blade for controlling the flow rate of air sucked into the compressor, wherein the fuel flow rate to the combustor Fuel flow control means for calculating command value Spray flow rate control means for calculating a spray flow rate command value to the spray device, the measured values of the air flow meter, the fuel flow meter, the spray flow meter, the atmospheric condition detector, and the fuel flow rate command value, The spray flow rate command value is taken in, and an air flow rate correction command value that compensates for an increase in the fuel / air ratio in the combustor that occurs at the time of combustion switching at the time of load drop of the generator and control start by the air flow rate correction command value Air flow control means for calculating the time and controlling the opening degree of the compressor inlet inner blade based on the air flow rate command value to which the air flow rate correction command value is added from the control start time is provided.
また、第4の発明は、燃焼用空気を加圧する圧縮機と、前記圧縮機に吸込まれる空気の流れに噴霧流量調節弁を介して供給された噴霧水の液滴を噴霧する吸気噴霧装置と、前記燃焼用空気を燃料と混合・燃焼して高温の燃焼ガスを発生させ、運転中に燃焼切換えを行う燃焼器と、前記燃焼ガスを用いて前記圧縮機及び発電機を駆動するタービンと、前記燃焼器に供給される燃料流量を計測する燃料流量計と、前記圧縮機に吸込まれる空気流量を計測する空気流量計と、前記噴霧装置に供給される前記噴霧水の流量を計測する噴霧流量計と、大気の温度や湿度などを計測する大気条件検出器と、前記噴霧水の流量を制御する噴霧流量調節弁と、前記圧縮機に吸込まれる空気の流量を制御する圧縮機入口内翼とを備えたガスタービン発電プラントの制御装置であって、前記燃焼器への燃料流量指令値を演算する燃料流量制御手段と、前記圧縮機への空気流量指令値を演算する空気流量制御手段と、前記空気流量計と前記燃料流量計と前記噴霧流量計と前記大気条件検出器の各計測値と前記燃料流量指令値と前記空気流量指令値とを取り込み、前記発電機の負荷降下の際の燃焼切換え時に発生する前記燃焼器での燃空比上昇を補償する噴霧流量補正指令値と該噴霧流量補正指令値による制御開始時刻を演算し、前記制御開始時刻から前記噴霧流量補正指令値を付加した噴霧流量指令値に基づいて前記噴霧流量調節弁の開度を制御する噴霧流量制御手段とを備え、前記空気流量制御手段は、前記空気流量計と前記燃料流量計と前記噴霧流量計と前記大気条件検出器の各計測値と前記燃料流量指令値と前記噴霧流量指令値とを取り込み、前記発電機の負荷降下の際の燃焼切換え時に発生する前記燃焼器での燃空比上昇を補償する空気流量補正指令値と該空気流量補正指令値による制御開始時刻を演算し、前記制御開始時刻から前記空気流量補正指令値を付加した空気流量指令値に基づいて前記圧縮機入口内翼の開度を制御するものとする。
A fourth aspect of the invention is a compressor for pressurizing combustion air, and an intake spray device for spraying droplets of spray water supplied via a spray flow rate control valve to a flow of air sucked into the compressor. A combustor that mixes and burns the combustion air with fuel to generate a high-temperature combustion gas and switches combustion during operation; and a turbine that drives the compressor and generator using the combustion gas; A fuel flow meter for measuring the flow rate of fuel supplied to the combustor, an air flow meter for measuring the flow rate of air sucked into the compressor, and a flow rate of the spray water supplied to the spray device A spray flow meter, an atmospheric condition detector for measuring atmospheric temperature and humidity, a spray flow rate control valve for controlling the flow rate of the spray water, and a compressor inlet for controlling the flow rate of air sucked into the compressor Gas turbine power generation plan with inner wing A fuel flow rate control means for calculating a fuel flow rate command value for the combustor, an air flow rate control means for calculating an air flow rate command value for the compressor, the air flow meter, and the fuel The combustor that takes in each measured value of the flow meter, the spray flow meter, and the atmospheric condition detector, the fuel flow rate command value, and the air flow rate command value, and is generated at the time of combustion switching at the time of load drop of the generator Based on the spray flow rate command value obtained by calculating the spray flow rate correction command value that compensates for the increase in the fuel / air ratio in the engine and the control start time based on the spray flow rate correction command value and adding the spray flow rate correction command value from the control start time Spray flow rate control means for controlling the opening degree of the spray flow rate control valve, and the air flow rate control means includes measured values of the air flow meter, the fuel flow meter, the spray flow meter, and the atmospheric condition detector. And the fuel flow An air flow rate correction command value and an air flow rate correction command value that take in the command value and the spray flow rate command value and compensate for an increase in the fuel-air ratio in the combustor that occurs at the time of combustion switching at the time of load reduction of the generator Is calculated, and the opening degree of the compressor inlet inner blade is controlled based on the air flow rate command value to which the air flow rate correction command value is added from the control start time.
本発明によれば、燃焼切換による燃空比の変動を先行的に補償するように吸気噴霧量又は/及び空気流量を制御するので、燃焼切換時の不安定燃焼を抑制できる。この結果、ガスタービン発電プラントの負荷降下時の燃焼安定化と低NOx化とが図れる。
According to the present invention, since the intake spray amount and / or the air flow rate are controlled so as to compensate in advance for fluctuations in the fuel-air ratio due to combustion switching, unstable combustion during combustion switching can be suppressed. As a result, combustion stabilization and NOx reduction at the time of load drop of the gas turbine power plant can be achieved.
<第1の実施の形態>
以下、本発明のガスタービン発電プラントの制御装置の第1の実施の形態を図面を用いて説明する。図1は本発明のガスタービン発電プラントの制御装置の第1の実施の形態を備えたガスタービン発電プラントを示すシステム構成図、図2は本発明のガスタービン発電プラントの制御装置の第1の実施の形態の処理フローを示すフローチャート図、図3は本発明のガスタービン発電プラントの制御装置の第1の実施の形態における燃料流量指令信号の特性を示す特性図、図4は本発明のガスタービン発電プラントの制御装置の第1の実施の形態における燃料流量指令信号(上段)、噴霧流量(中段)、及び燃空比(下段)の変化を示す特性図である。
図1において、ガスタービン発電プラントは、燃焼用空気を加圧する圧縮機1と、燃焼用空気と燃料を混合・燃焼して高温の燃焼ガスを発生する燃焼器2と、燃焼ガスを用いて圧縮機1及び発電機70を駆動するタービン4と、圧縮機1に吸込まれる空気の流れに液滴を噴霧する吸気噴霧装置3とにより、大略構成されている。 <First Embodiment>
Hereinafter, a first embodiment of a control device for a gas turbine power plant according to the present invention will be described with reference to the drawings. FIG. 1 is a system configuration diagram showing a gas turbine power plant equipped with a first embodiment of a control device for a gas turbine power plant of the present invention, and FIG. 2 is a first diagram of a control device for a gas turbine power plant of the present invention. FIG. 3 is a flow chart showing the processing flow of the embodiment, FIG. 3 is a characteristic diagram showing characteristics of the fuel flow rate command signal in the first embodiment of the control device for the gas turbine power plant of the present invention, and FIG. It is a characteristic view which shows the change of the fuel flow rate command signal (upper stage), spray flow rate (middle stage), and fuel-air ratio (lower stage) in 1st Embodiment of the control apparatus of a turbine power plant.
In FIG. 1, a gas turbine power plant includes acompressor 1 that pressurizes combustion air, a combustor 2 that mixes and burns combustion air and fuel to generate high-temperature combustion gas, and compresses the combustion gas. The turbine 4 that drives the machine 1 and the generator 70 and the intake spray device 3 that sprays droplets on the flow of air sucked into the compressor 1 are roughly configured.
以下、本発明のガスタービン発電プラントの制御装置の第1の実施の形態を図面を用いて説明する。図1は本発明のガスタービン発電プラントの制御装置の第1の実施の形態を備えたガスタービン発電プラントを示すシステム構成図、図2は本発明のガスタービン発電プラントの制御装置の第1の実施の形態の処理フローを示すフローチャート図、図3は本発明のガスタービン発電プラントの制御装置の第1の実施の形態における燃料流量指令信号の特性を示す特性図、図4は本発明のガスタービン発電プラントの制御装置の第1の実施の形態における燃料流量指令信号(上段)、噴霧流量(中段)、及び燃空比(下段)の変化を示す特性図である。
図1において、ガスタービン発電プラントは、燃焼用空気を加圧する圧縮機1と、燃焼用空気と燃料を混合・燃焼して高温の燃焼ガスを発生する燃焼器2と、燃焼ガスを用いて圧縮機1及び発電機70を駆動するタービン4と、圧縮機1に吸込まれる空気の流れに液滴を噴霧する吸気噴霧装置3とにより、大略構成されている。 <First Embodiment>
Hereinafter, a first embodiment of a control device for a gas turbine power plant according to the present invention will be described with reference to the drawings. FIG. 1 is a system configuration diagram showing a gas turbine power plant equipped with a first embodiment of a control device for a gas turbine power plant of the present invention, and FIG. 2 is a first diagram of a control device for a gas turbine power plant of the present invention. FIG. 3 is a flow chart showing the processing flow of the embodiment, FIG. 3 is a characteristic diagram showing characteristics of the fuel flow rate command signal in the first embodiment of the control device for the gas turbine power plant of the present invention, and FIG. It is a characteristic view which shows the change of the fuel flow rate command signal (upper stage), spray flow rate (middle stage), and fuel-air ratio (lower stage) in 1st Embodiment of the control apparatus of a turbine power plant.
In FIG. 1, a gas turbine power plant includes a
圧縮機1に吸込まれる空気流量は圧縮機入口内翼11により調節され、燃焼器2に供給される燃料流量は燃料流量調節弁12により調節され、吸気噴霧装置3から空気の流れに噴霧される噴霧流量は噴霧流量調節弁13により調節される。これらの調節装置11,12,13は制御装置24からの指令信号によりそれぞれ制御されている。
The air flow rate sucked into the compressor 1 is adjusted by the compressor inlet inner blade 11, and the fuel flow rate supplied to the combustor 2 is adjusted by the fuel flow rate control valve 12, and sprayed from the intake spray device 3 to the air flow. The spray flow rate is adjusted by the spray flow rate control valve 13. These adjusting devices 11, 12 and 13 are respectively controlled by command signals from the control device 24.
本実施の形態は、ガスタービン発電プラントの負荷降下に際して、発電機70の出力を下げ(発電機70の負荷降下という)、燃焼器2に供給する燃料流量が低減したときに発生する燃焼切換時の燃焼器2内の燃空比を安定に維持するために、燃焼切換前に噴霧流量を増加させるように噴霧流量調節弁13を制御する制御装置24を備えている。
In the present embodiment, when the load of the gas turbine power plant is lowered, the output of the generator 70 is lowered (referred to as a load drop of the generator 70), and the combustion switching occurs when the flow rate of fuel supplied to the combustor 2 is reduced. In order to stably maintain the fuel-air ratio in the combustor 2, a control device 24 is provided for controlling the spray flow rate adjusting valve 13 so as to increase the spray flow rate before switching to combustion.
制御装置24は、吸込空気流量を算出して空気流量指令信号Uigv31及び41として出力する空気流量制御回路21と、燃料流量を算出して燃料流量指令信号Ucmb32及び42として出力する燃料流量制御回路22と、噴霧流量を算出して噴霧流量指令信号Uwac33として出力する噴霧流量制御回路23とを備えている。
The control device 24 calculates the intake air flow rate and outputs it as air flow rate command signals Uigv 31 and 41, and the fuel flow rate control circuit 22 calculates the fuel flow rate and outputs it as fuel flow rate command signals Ucmb 32 and 42. And a spray flow rate control circuit 23 that calculates the spray flow rate and outputs it as a spray flow rate command signal Uwac 33.
噴霧流量制御回路23は、図1に示すように、入力として、圧縮機1に吸込まれる空気流量を計測する空気流量計51の検知信号と、燃焼器2に供給される燃料流量を計測する燃料流量計52の検知信号と、吸気噴霧装置3から噴霧される噴霧流量を計測する噴霧流量計53の検知信号と、大気の温度や湿度や圧力などを計測する大気条件検出器54の検知信号と、空気流量制御回路21から出力される空気流量指令信号Uigv41と、燃料流量制御回路22から出力される燃料流量指令信号Ucmb42とのうち少なくとも1つ以上を受ける。但し、噴霧流量の計算に使用できるものであれば、その信号を用いてもよい。また、噴霧流量制御回路23は、出力として噴霧流量調節弁13に入力される噴霧流量指令信号Uwac33を生成する。なお、空気流量計51は、空気流量を直接計測するものだけではなく、例えば圧力に基づいて空気流量を計算するものなど、空気流量を特定できるものであればよい。
As shown in FIG. 1, the spray flow rate control circuit 23 measures, as inputs, a detection signal of an air flow meter 51 that measures an air flow rate sucked into the compressor 1 and a fuel flow rate supplied to the combustor 2. Detection signal of the fuel flow meter 52, detection signal of the spray flow meter 53 that measures the spray flow rate sprayed from the intake spray device 3, and detection signal of the atmospheric condition detector 54 that measures the temperature, humidity, pressure, etc. of the atmosphere And at least one of an air flow rate command signal Uigv 41 output from the air flow rate control circuit 21 and a fuel flow rate command signal Ucmb 42 output from the fuel flow rate control circuit 22. However, the signal may be used as long as it can be used for calculation of the spray flow rate. Further, the spray flow rate control circuit 23 generates a spray flow rate command signal Uwac 33 that is input to the spray flow rate adjustment valve 13 as an output. The air flow meter 51 is not limited to the one that directly measures the air flow rate, and may be any device that can identify the air flow rate, such as a device that calculates the air flow rate based on pressure.
空気流量制御回路21と燃料流量制御回路22は、入力として、空気流量計51の検知信号と、燃料流量計52の検知信号と、噴霧流量計53の検知信号と、大気条件検出器54の検知信号と、空気流量指令信号Uigv31と、燃料流量指令信号Ucmb32と、噴霧流量指令信号Uwac33と、圧縮機1の回転数と、ガスタービン4の負荷とのうち少なくとも一つ以上を受け、ガスタービン発電プラントの負荷降下時の状態量の変化に基づいて、空気流量制御回路21は空気流量を計算して、燃料流量制御回路22は燃料流量を計算して、出力として、空気流量制御回路21は空気流量指令信号Uigv31と41、燃料流量制御回路22は燃料流量指令信号Ucmb32と42を生成する。
The air flow control circuit 21 and the fuel flow control circuit 22 have, as inputs, a detection signal from the air flow meter 51, a detection signal from the fuel flow meter 52, a detection signal from the spray flow meter 53, and a detection from the atmospheric condition detector 54. The gas turbine power generation receives at least one of the signal, the air flow rate command signal Uigv31, the fuel flow rate command signal Ucmb32, the spray flow rate command signal Uwac33, the rotation speed of the compressor 1, and the load of the gas turbine 4. Based on the change in state quantity at the time of plant load drop, the air flow rate control circuit 21 calculates the air flow rate, the fuel flow rate control circuit 22 calculates the fuel flow rate, and as an output, the air flow rate control circuit 21 outputs air. The flow rate command signals Uigv 31 and 41 and the fuel flow rate control circuit 22 generate fuel flow rate command signals Ucmb 32 and 42.
空気流量指令信号Uigv31は空気流量制御回路21から圧縮機入口内翼11の操作端に出力され、この圧縮機入口内翼11の開度を変化させることで、空気流量が制御されている。燃料流量指令信号Ucmb32は燃料流量制御回路22から燃料流量調節弁12に出力され、この燃料流量調節弁12の開度を変化させることで、燃料流量が制御されている。噴霧流量指令信号Uwac33は噴霧流量制御回路23から噴霧流量調節弁13に出力され、この噴霧流量調節弁13の開度を変化させることで、噴霧流量が制御されている。
The air flow rate command signal Uigv 31 is output from the air flow rate control circuit 21 to the operation end of the compressor inlet inner blade 11, and the air flow rate is controlled by changing the opening degree of the compressor inlet inner blade 11. The fuel flow rate command signal Ucmb 32 is output from the fuel flow rate control circuit 22 to the fuel flow rate adjustment valve 12, and the fuel flow rate is controlled by changing the opening of the fuel flow rate adjustment valve 12. The spray flow rate command signal Uwac 33 is output from the spray flow rate control circuit 23 to the spray flow rate control valve 13, and the spray flow rate is controlled by changing the opening of the spray flow rate control valve 13.
ガスタービン発電プラントの負荷降下時において、噴霧流量制御回路23は、大気の状態やガスタービンプラントの状態量に応じて、噴霧流量を決定し、噴霧流量指令信号Uwac33を噴霧流量調節弁13に出力する。この際、燃焼切換時刻よりも一定時間前から燃焼切換が完了するまでの間は、燃焼切換に伴う燃空比上昇を先行的に補償する噴霧流量(以下、補償噴霧流量)を決定し、噴霧流量指令信号Uwac33として出力するのが本発明の第1の実施の形態の特徴である。ここで、前記一定時間とは、噴霧流量変化が燃空比に影響を与えるまでの時間である。
At the time of load drop of the gas turbine power plant, the spray flow rate control circuit 23 determines the spray flow rate according to the atmospheric state and the state quantity of the gas turbine plant, and outputs the spray flow rate command signal Uwac 33 to the spray flow rate control valve 13. To do. At this time, a spray flow rate (hereinafter referred to as a compensated spray flow rate) that compensates for an increase in the fuel-air ratio accompanying the combustion switching is determined from a certain time before the combustion switching time until the combustion switching is completed. The output of the flow rate command signal Uwac 33 is a feature of the first embodiment of the present invention. Here, the predetermined time is a time until the change in the spray flow rate affects the fuel-air ratio.
次に、噴霧流量制御回路23の動作機構を図2~図4を用いて説明する。
図2において、まず、ステップS101でガスタービン発電プラントが負荷降下時であるか否かを判断する。判断方法としては、例えば、空気流量計51の検知信号または空気流量指令信号Uigv31、あるいは、燃料流量計52の検知信号または燃料流量指令信号Ucmb32等をモニタし、これらの信号が、時間の経過と共に低下していればガスタービン発電プラントは負荷降下時であると判断する方法がある。この判断方法以外に、公知のガスタービン発電プラントの負荷降下の判断方法であっても良い。ガスタービン発電プラントが負荷降下時であると判断されれば、YESと判断されてステップS102へ進み、負荷降下時以外と判断されれば、NOと判断されてステップS105へ進む。 Next, the operation mechanism of the spray flowrate control circuit 23 will be described with reference to FIGS.
In FIG. 2, first, in step S101, it is determined whether or not the gas turbine power plant is in a load drop state. As a determination method, for example, the detection signal of theair flow meter 51 or the air flow rate command signal Uigv31 or the detection signal of the fuel flow meter 52 or the fuel flow rate command signal Ucmb32 is monitored, and these signals are monitored as time passes. There is a method for judging that the gas turbine power plant is at the time of load drop if it is lowered. In addition to this determination method, a known method for determining a load drop in a gas turbine power plant may be used. If it is determined that the gas turbine power plant is at a load drop, the determination is YES and the process proceeds to step S102. If it is determined that the load is not at a load drop, the determination is NO and the process proceeds to step S105.
図2において、まず、ステップS101でガスタービン発電プラントが負荷降下時であるか否かを判断する。判断方法としては、例えば、空気流量計51の検知信号または空気流量指令信号Uigv31、あるいは、燃料流量計52の検知信号または燃料流量指令信号Ucmb32等をモニタし、これらの信号が、時間の経過と共に低下していればガスタービン発電プラントは負荷降下時であると判断する方法がある。この判断方法以外に、公知のガスタービン発電プラントの負荷降下の判断方法であっても良い。ガスタービン発電プラントが負荷降下時であると判断されれば、YESと判断されてステップS102へ進み、負荷降下時以外と判断されれば、NOと判断されてステップS105へ進む。 Next, the operation mechanism of the spray flow
In FIG. 2, first, in step S101, it is determined whether or not the gas turbine power plant is in a load drop state. As a determination method, for example, the detection signal of the
ステップS102では、現在の時刻と燃焼切換が行われると予測される時刻Tswとの時間差が演算され、この時間差が噴霧流量変化によって燃空比に影響を与えるまでの時間ΔTwacより大きいか否かが判断される。つまり、現在時刻が燃空比補償制御を開始するのに好ましい時刻(燃空比補償制御開始時刻)Tsw-ΔTwacより前か否かが判断される。
In step S102, the time difference between the current time and the time Tsw at which the combustion switching is predicted to be performed is calculated, and whether or not this time difference is longer than the time ΔTwac until the fuel / air ratio is affected by the change in the spray flow rate. To be judged. That is, it is determined whether or not the current time is earlier than the preferred time (fuel / air ratio compensation control start time) Tsw−ΔTwac for starting the fuel / air ratio compensation control.
噴霧流量変化によって燃空比に影響を与えるまでの時間ΔTwacは、予め実験・計算などに基づいて定めた値である。例えば、時間ΔTwacを液滴が吸気噴霧装置3から噴霧されてから、燃焼器2の入口に到達するまでの時間とすると、吸気噴霧装置3から噴霧された液滴の量と、燃焼器2の入口に到達した液滴の量を実測または計算し、変化の遅れから定めることができる。吸気噴霧装置3から噴霧された液滴の量は、噴霧流量計53により計測される噴霧流量であり、燃焼器2の入口に到達した液滴の量は、燃焼器2への供給空気流量から圧縮機1の吸込空気流量を差し引いた流量とする。燃焼器2への供給空気流量は、燃焼器2の空気入口に設けられた流量計(図では省略)により計測される値であり、圧縮機1の吸込空気流量は、空気流量計51により計測される値である。
The time ΔTwac until the fuel / air ratio is affected by the change in the spray flow rate is a value determined in advance based on experiments and calculations. For example, when time ΔTwac is the time from when the droplets are sprayed from the intake spray device 3 to the time when the droplet reaches the inlet of the combustor 2, the amount of droplets sprayed from the intake spray device 3 and the combustor 2 The amount of droplets reaching the inlet can be measured or calculated and determined from the delay in change. The amount of droplets sprayed from the intake spray device 3 is a spray flow rate measured by the spray flow meter 53, and the amount of droplets reaching the inlet of the combustor 2 is determined from the supply air flow rate to the combustor 2. The flow rate is obtained by subtracting the intake air flow rate of the compressor 1. The supply air flow rate to the combustor 2 is a value measured by a flow meter (not shown) provided at the air inlet of the combustor 2, and the intake air flow rate of the compressor 1 is measured by the air flow meter 51. Is the value to be
燃空比補償制御開始時刻Tsw-ΔTwacは、燃料流量指令信号Ucmb32、または、燃料流量計52の検知信号、または、空気流量指令信号Uigv31、または、空気流量計51の検知信号、発電機の負荷に基づいて特定される時刻である。
The fuel-air ratio compensation control start time Tsw-ΔTwac is determined based on the fuel flow command signal Ucmb32, the detection signal from the fuel flow meter 52, the air flow command signal Uigv31, the detection signal from the air flow meter 51, or the load on the generator. It is the time specified based on
燃空比補償制御開始時刻Tsw-ΔTwacの算出方法を図3を用いて説明する。図3は燃料流量指令信号Ucmb32の時系列の変化を示す。燃料流量指令信号Ucmbは負荷降下に従って時間とともに低下して行き、時刻Tswの時にCcmbに到達し、燃焼切換が開始される。
(1)時刻Tsw-ΔTwacにおける燃料流量指令信号Ucmbは、燃料流量指令信号Ucmb32の単位時間当たりの変化量をdUcmb/dTとすれば、Ccmb+ΔTwac×dUcmb/dTと近似できる。ここで、Ccmbは予め定めたシーケンスないしルールに従って定められた値である。
(2)したがって、条件Ucmb=Ccmb+ΔTwac×dUcmb/dTが満たされた場合、現在の時刻が時刻Tsw-ΔTwacであると判断する。 A method for calculating the fuel-air ratio compensation control start time Tsw-ΔTwac will be described with reference to FIG. FIG. 3 shows a time-series change of the fuel flow rate command signal Ucmb32. The fuel flow rate command signal Ucmb decreases with time as the load drops, reaches Ccmb at time Tsw, and combustion switching is started.
(1) The fuel flow rate command signal Ucmb at time Tsw-ΔTwac can be approximated as Ccmb + ΔTwac × dUcmb / dT, where dUcmb / dT is the amount of change per unit time of the fuel flow rate command signal Ucmb32. Here, Ccmb is a value determined according to a predetermined sequence or rule.
(2) Therefore, when the condition Ucmb = Ccmb + ΔTwac × dUcmb / dT is satisfied, it is determined that the current time is time Tsw−ΔTwac.
(1)時刻Tsw-ΔTwacにおける燃料流量指令信号Ucmbは、燃料流量指令信号Ucmb32の単位時間当たりの変化量をdUcmb/dTとすれば、Ccmb+ΔTwac×dUcmb/dTと近似できる。ここで、Ccmbは予め定めたシーケンスないしルールに従って定められた値である。
(2)したがって、条件Ucmb=Ccmb+ΔTwac×dUcmb/dTが満たされた場合、現在の時刻が時刻Tsw-ΔTwacであると判断する。 A method for calculating the fuel-air ratio compensation control start time Tsw-ΔTwac will be described with reference to FIG. FIG. 3 shows a time-series change of the fuel flow rate command signal Ucmb32. The fuel flow rate command signal Ucmb decreases with time as the load drops, reaches Ccmb at time Tsw, and combustion switching is started.
(1) The fuel flow rate command signal Ucmb at time Tsw-ΔTwac can be approximated as Ccmb + ΔTwac × dUcmb / dT, where dUcmb / dT is the amount of change per unit time of the fuel flow rate command signal Ucmb32. Here, Ccmb is a value determined according to a predetermined sequence or rule.
(2) Therefore, when the condition Ucmb = Ccmb + ΔTwac × dUcmb / dT is satisfied, it is determined that the current time is time Tsw−ΔTwac.
図2に戻り、ステップS102で現在時刻が燃焼切換予測時刻TswよりもΔTwac以上前であると判断されれば、YESと判断されてステップS103へ進み、現在時刻が燃焼切換予測時刻TswよりもΔTwac以上前でないと判断されれば、NOと判断されてステップS105へ進む。
Returning to FIG. 2, if it is determined in step S102 that the current time is ΔTwac or more before the predicted combustion switching time Tsw, YES is determined and the process proceeds to step S103, where the current time is ΔTwac relative to the predicted combustion switching time Tsw. If it is determined that it is not before, NO is determined and the process proceeds to step S105.
ステップS103では、燃焼切換予測時刻Tswに起こると予想される燃空比上昇を補償する噴霧流量を算出し、噴霧流量指令信号Uwac33として出力する。燃空比上昇を補償する噴霧流量の決定方法としては、図4の中段の噴霧流量の変化に示すように、時刻Tsw-ΔTwacでの噴霧流量Qwac0に対し、付加量ΔQwacを増加した噴霧流量を補償噴霧流量とするとよい。
In step S103, a spray flow rate that compensates for an increase in the fuel-air ratio that is expected to occur at the combustion switching predicted time Tsw is calculated and output as a spray flow rate command signal Uwac33. As a method for determining the spray flow rate to compensate for the increase in the fuel-air ratio, as shown in the change in the spray flow rate in the middle of FIG. 4, the spray flow rate obtained by increasing the additional amount ΔQwac with respect to the spray flow rate Qwac0 at the time Tsw-ΔTwac. The compensation spray flow rate is good.
付加量ΔQwacは、実験や計算などに基づいて予め定められたものである。具体的には、例えば、図12に示すように、燃焼切換時刻Tswにおいて、使用燃料流量供給系統の1本当たりの燃料流量がQf1からQf2に増加され、燃空比がN1からN2に上昇する場合、付加量ΔQwacは、燃料流量を用いてΔQwac = (Qf2-Qf1)/Qf1×Qa、あるいは、燃空比を用いてΔQwac = (N2-N1)/N1×Qaで算出することができる。ここで、Qaは、燃焼切換時刻Tsw、または、時刻Tsw-ΔTwacでの燃焼器2への供給空気流量である。
The additional amount ΔQwac is predetermined based on experiments and calculations. Specifically, for example, as shown in FIG. 12, at the combustion switching time Tsw, the fuel flow rate per fuel flow supply system used is increased from Qf1 to Qf2, and the fuel-air ratio is increased from N1 to N2. In this case, the additional amount ΔQwac can be calculated as ΔQwac = (Qf2−Qf1) / Qf1 × Qa using the fuel flow rate, or ΔQwac = (N2−N1) / N1 × Qa using the fuel-air ratio. Here, Qa is the supply air flow rate to the combustor 2 at the combustion switching time Tsw or the time Tsw−ΔTwac.
この式の根拠を以下に説明する。燃焼切換直前の燃空比はN1=Qf1/Qaであり、従来の燃焼切換直後の燃空比はN2=Qf2/Qaとなる。ここで、空気流量をQa+ΔQwacと補償し、燃焼切換直後の燃空比を燃焼切換直前と同等の値N1に保つようにするためには、Qf1/Qa = Qf2/(Qa+ΔQwac) を満たす必要がある。この式を変形するとΔQwac = (Qf2-Qf1)/Qf1×Qaが導出され、N2=Qf2/QaとN1=Qf1/Qaを代入して燃空比で表すと、ΔQwac = (N2-N1)/N1×Qaが導出される。
The basis for this formula is explained below. The fuel-air ratio immediately before combustion switching is N1 = Qf1 / Qa, and the fuel-air ratio immediately after conventional combustion switching is N2 = Qf2 / Qa. Here, it is necessary to satisfy Qf1 / Qaa = Qf2 / (Qa + ΔQwac) in order to compensate the air flow rate as Qa + ΔQwac and keep the fuel-air ratio immediately after combustion switching at the same value N1 as immediately before combustion switching. . By transforming this equation, ΔQwac = (Qf2-Qf1) / Qf1 × Qa is derived, and when N2 = Qf2 / Qa and N1 = Qf1 / Qa are substituted and expressed as fuel-air ratio, ΔQwac = (N2-N1) / N1 × Qa is derived.
なお、補償噴霧流量の決定方法としては、噴霧流量Qwac0を予め定めた割合で増加した噴霧流量を補償噴霧流量とする方法もあり、このように予め定められた手順に従って決定された値であっても、燃焼切換時の燃空比上昇を補償する量であればよい。
As a method for determining the compensated spray flow rate, there is also a method in which the spray flow rate obtained by increasing the spray flow rate Qwac0 at a predetermined rate is used as the compensated spray flow rate, and is a value determined according to a predetermined procedure as described above. However, it may be an amount that compensates for an increase in the fuel-air ratio at the time of switching combustion.
ステップS104では、燃焼切換が完了したか否かを判断する。燃焼切換完了判断方法としては、燃焼切換開始から予め定めた一定時間が経過したら燃焼切換が完了したと判断する方法や、排気温度または排気流量が予め定めた値に達したら燃焼切換が完了したと判断する方法等がある。あるいはその他、公知の燃焼切換完了の検知方法であればどのような方法でも良い。燃焼切換が完了したと判断されれば、YESと判断されてステップS105へ進み、燃焼切換が完了していないと判断されれば、NOと判断されてステップS103へ戻る。
In step S104, it is determined whether combustion switching is completed. Combustion switching completion determination methods include a method of determining that combustion switching has been completed when a predetermined time has elapsed from the start of combustion switching, or that combustion switching has been completed when the exhaust gas temperature or exhaust flow rate has reached a predetermined value. There are methods to judge. Alternatively, any other method may be used as long as it is a known method for detecting completion of combustion switching. If it is determined that the combustion switching has been completed, it is determined YES and the process proceeds to step S105. If it is determined that the combustion switching has not been completed, NO is determined and the process returns to step S103.
ステップS105では、噴霧流量が所望噴霧流量になるように追従制御する。所望噴霧流量とは、例えば、燃焼用空気が予め定めた湿度になるために要する噴霧流量、または、予め定めた噴霧流量と空気流量の割合になるために要する噴霧流量など、その時の運転目的に必要になる噴霧流量である。燃焼用空気が予め定めた湿度になるために要する噴霧流量は、具体的には、例えば、予め定めた湿度になるための水蒸気量と、大気中の水蒸気量の差である。これらの値は、空気流量と、湿度に基づいて計算される。また、空気流量は、空気流量計51の検知信号または空気流量指令信号Uigv31に基づいて計算され、湿度は大気の温度や湿度や圧力などを計測する大気条件検出器54の検知信号に基づいて計算される。
In step S105, follow-up control is performed so that the spray flow rate becomes the desired spray flow rate. The desired spray flow rate is, for example, the spray flow rate required for the combustion air to reach a predetermined humidity, or the spray flow rate required for the ratio of the predetermined spray flow rate to the air flow rate, for the operation purpose at that time. Necessary spray flow rate. Specifically, the spray flow rate required for the combustion air to reach a predetermined humidity is, for example, the difference between the amount of water vapor for achieving the predetermined humidity and the amount of water vapor in the atmosphere. These values are calculated based on the air flow rate and humidity. The air flow rate is calculated based on the detection signal of the air flow meter 51 or the air flow rate command signal Uigv31, and the humidity is calculated based on the detection signal of the atmospheric condition detector 54 that measures the atmospheric temperature, humidity, pressure, and the like. Is done.
予め定めた噴霧流量と空気流量の割合になるために要する噴霧流量は、具体的には、例えば、予め定めた噴霧流量と空気流量の割合に空気流量を乗じた値である。空気流量は、空気流量計51の検知信号または空気流量指令信号Uigv31に基づいて計算される。
Specifically, the spray flow rate required to reach a predetermined spray flow rate / air flow rate ratio is, for example, a value obtained by multiplying the predetermined spray flow rate / air flow rate rate by the air flow rate. The air flow rate is calculated based on the detection signal of the air flow meter 51 or the air flow rate command signal Uigv31.
そして、噴霧流量計53より計測された噴霧流量に基づいて、噴霧流量が所望噴霧流量に追従するように、P制御、またはPI制御、またはPID制御が実行される。追従制御する方法は、噴霧流量が所望噴霧流量より多い場合はより少ない量を噴霧するような噴霧流量指令信号Uwac33を出力し、その逆の場合はより多い量を噴霧するような噴霧流量指令信号Uwac33を出力するような方法であれば、公知のどのような方法でもよい。
Then, based on the spray flow rate measured by the spray flow meter 53, P control, PI control, or PID control is executed so that the spray flow rate follows the desired spray flow rate. In the follow-up control method, when the spray flow rate is higher than the desired spray flow rate, the spray flow rate command signal Uwac 33 that sprays a smaller amount is output, and vice versa, the spray flow rate command signal that sprays a larger amount. Any known method may be used as long as it outputs Uwac33.
噴霧流量制御回路23を、以上述べた図2のフローチャートのように動作させた場合の、噴霧流量指令信号Uwac33と、吸気噴霧装置3からの噴霧流量と、燃焼器2の燃空比の推移を、図4を用いて説明する。
Changes in the spray flow rate command signal Uwac 33, the spray flow rate from the intake spray device 3, and the fuel-air ratio of the combustor 2 when the spray flow rate control circuit 23 is operated as shown in the flowchart of FIG. This will be described with reference to FIG.
噴霧流量調節弁13は、図4の上段に示すように、負荷下降開始から時刻Tsw-ΔTwacまでの間、所望噴霧流量に追従制御され、その後、燃焼切換完了時刻Tcomまでの間は、噴霧流量を増加させるように燃空比補償制御され,燃焼切換完了時刻Tcomの後に、再び所望噴霧流量に追従制御される。
As shown in the upper part of FIG. 4, the spray flow rate adjusting valve 13 is controlled to follow the desired spray flow rate from the start of load lowering to the time Tsw−ΔTwac, and thereafter until the combustion switching completion time Tcom. The fuel-air ratio compensation control is performed so as to increase, and after the combustion switching completion time Tcom, the follow-up control is performed again to the desired spray flow rate.
この際、噴霧流量は図4の中段に示すように、時刻Tsw-ΔTwacに到達した後に、Qwac0からQwac0+ΔQwacに増加され、これにより燃焼用空気流量が増加し、燃空比が図4の下段の実線のように低下する。ここでの燃空比の低下は、空気流量が従来の空気流量より増加したことによって生じる。その後、時刻Tswにおいて燃焼切換により燃空比が上昇する。この際に、燃焼切換の発生時刻の前から予め燃空比を低下させる制御を行うことにより、従来の燃焼切換時に起こる燃空比上昇の態様(図4の下段の破線で表示)が、図4の下段の実線で表示する態様のように変更し、燃空比の上昇量を抑制できる。
At this time, as shown in the middle part of FIG. 4, the spray flow rate is increased from Qwac0 to Qwac0 + ΔQwac after reaching time Tsw-ΔTwac, thereby increasing the combustion air flow rate and the fuel-air ratio in the lower part of FIG. It drops like a solid line. The reduction in the fuel-air ratio here is caused by an increase in the air flow rate compared to the conventional air flow rate. Thereafter, at the time Tsw, the fuel-air ratio increases due to combustion switching. At this time, by performing control to lower the fuel / air ratio in advance before the time of occurrence of combustion switching, the mode of increase in the fuel / air ratio that occurs at the time of conventional combustion switching (indicated by the broken line in the lower part of FIG. 4) is shown in FIG. It can change like the aspect displayed with the continuous line of 4 lower stage, and can suppress the raise amount of fuel-air ratio.
上述した本発明のガスタービン発電プラントの制御装置の第1の実施の形態によれば、燃空比の変動を先行的に補償するように吸気噴霧量を制御するので、燃焼切換時の不安定燃焼を抑制できる。この結果、ガスタービン発電プラントの負荷降下時の燃焼安定化と低NOx化とが図れる。
According to the first embodiment of the control device for a gas turbine power plant of the present invention described above, the intake spray amount is controlled so as to compensate for the fluctuation of the fuel-air ratio in advance. Combustion can be suppressed. As a result, combustion stabilization and NOx reduction at the time of load drop of the gas turbine power plant can be achieved.
<第2の実施の形態>
以下、本発明のガスタービン発電プラントの制御装置の第2の実施の形態を図面を用いて説明する。図5は本発明のガスタービン発電プラントの制御装置の第2の実施の形態を備えたガスタービン発電プラントを示すシステム構成図、図6は本発明のガスタービン発電プラントの制御装置の第2の実施の形態の処理フローを示すフローチャート図、図7は本発明のガスタービン発電プラントの制御装置の第2の実施の形態における空気流量指令信号(上段)、空気流量(中段)、及び燃空比(下段)の変化を示す特性図である。図5~図7において、図1~図4に示す符号と同符号のものは同一部分であるので、その詳細な説明は省略する。 <Second Embodiment>
Hereinafter, a second embodiment of a control device for a gas turbine power plant according to the present invention will be described with reference to the drawings. FIG. 5 is a system configuration diagram showing a gas turbine power plant equipped with the second embodiment of the control device for the gas turbine power plant of the present invention, and FIG. 6 is a second diagram of the control device for the gas turbine power plant of the present invention. FIG. 7 is a flowchart showing a processing flow of the embodiment, and FIG. 7 is an air flow rate command signal (upper stage), an air flow rate (middle stage), and a fuel-air ratio in the second embodiment of the control device of the gas turbine power plant of the present invention. It is a characteristic view which shows the change of (lower stage). 5 to FIG. 7, the same reference numerals as those shown in FIG. 1 to FIG. 4 are the same parts, and detailed description thereof will be omitted.
以下、本発明のガスタービン発電プラントの制御装置の第2の実施の形態を図面を用いて説明する。図5は本発明のガスタービン発電プラントの制御装置の第2の実施の形態を備えたガスタービン発電プラントを示すシステム構成図、図6は本発明のガスタービン発電プラントの制御装置の第2の実施の形態の処理フローを示すフローチャート図、図7は本発明のガスタービン発電プラントの制御装置の第2の実施の形態における空気流量指令信号(上段)、空気流量(中段)、及び燃空比(下段)の変化を示す特性図である。図5~図7において、図1~図4に示す符号と同符号のものは同一部分であるので、その詳細な説明は省略する。 <Second Embodiment>
Hereinafter, a second embodiment of a control device for a gas turbine power plant according to the present invention will be described with reference to the drawings. FIG. 5 is a system configuration diagram showing a gas turbine power plant equipped with the second embodiment of the control device for the gas turbine power plant of the present invention, and FIG. 6 is a second diagram of the control device for the gas turbine power plant of the present invention. FIG. 7 is a flowchart showing a processing flow of the embodiment, and FIG. 7 is an air flow rate command signal (upper stage), an air flow rate (middle stage), and a fuel-air ratio in the second embodiment of the control device of the gas turbine power plant of the present invention. It is a characteristic view which shows the change of (lower stage). 5 to FIG. 7, the same reference numerals as those shown in FIG. 1 to FIG. 4 are the same parts, and detailed description thereof will be omitted.
本発明のガスタービン発電プラントの第1の実施の形態においては、ガスタービン発電プラントの負荷降下時の燃焼安定化と低NOx化のために、燃焼切換の前に噴霧流量を増加させるように噴霧流量調節弁13を制御する制御装置24を備えている。これに対し、第2の実施形態においては、燃焼切換の前に空気流量を増加させるように圧縮機入口内翼11の開度を制御する制御装置24を備えている点が異なる。その他のガスタービン発電プラントを構成する設備等は第1の実施形態と同一である。
In the first embodiment of the gas turbine power plant according to the present invention, in order to stabilize combustion and reduce NOx when the load of the gas turbine power plant drops, the spray flow rate is increased before the combustion switching. A control device 24 for controlling the flow control valve 13 is provided. On the other hand, the second embodiment is different in that it includes a control device 24 that controls the opening of the compressor inlet inner blade 11 so as to increase the air flow rate before the combustion switching. Other facilities constituting the gas turbine power plant are the same as those in the first embodiment.
より具体的には、第1の実施の形態と比較して、制御装置24の中にある噴霧流量制御回路23と空気流量制御回路21の動作が異なる。第1の実施の形態においては、噴霧流量を用いて燃空比を補償制御したが、第2の実施の形態においては、空気流量を用いて燃空比を補償制御する。このため、燃空比補償に使う各種信号が、図1では噴霧流量制御回路23に入力されていたのに対して、図5では空気流量制御回路21に入力されている。
More specifically, the operations of the spray flow rate control circuit 23 and the air flow rate control circuit 21 in the control device 24 are different from those of the first embodiment. In the first embodiment, the fuel / air ratio is compensated and controlled using the spray flow rate. In the second embodiment, the fuel / air ratio is compensated and controlled using the air flow rate. For this reason, various signals used for fuel-air ratio compensation are input to the spray flow rate control circuit 23 in FIG. 1, but are input to the air flow rate control circuit 21 in FIG.
本実施の形態において、噴霧流量制御回路23は、噴霧流量が所望噴霧流量に追従するような噴霧流量指令信号Uwac33を出力している。
In this embodiment, the spray flow rate control circuit 23 outputs a spray flow rate command signal Uwac 33 such that the spray flow rate follows the desired spray flow rate.
空気流量制御回路21は、図5に示すように、入力として、圧縮機1に吸込まれる空気流量を計測する空気流量計51の検知信号と、燃焼器2に供給される燃料流量を計測する燃料流量計52の検知信号と、吸気噴霧装置3から噴霧される噴霧流量を計測する噴霧流量計53の検知信号と、大気の温度や湿度や圧力などを計測する大気条件検出器54の検知信号と、燃料流量制御回路22から出力される燃料流量指令信号Ucmb62と、噴霧流量制御回路23から出力される噴霧流量指令信号Uwac63とのうち少なくとも一つ以上を受ける。但し、空気流量の計算に使用できる信号であれば、他の信号御を用いてもよい。また、空気流量制御回路21は、出力として、圧縮機入口内翼11に入力される空気流量指令信号Uigv31を生成する。
As shown in FIG. 5, the air flow rate control circuit 21 measures the detection signal of the air flow meter 51 that measures the air flow rate sucked into the compressor 1 and the fuel flow rate supplied to the combustor 2 as inputs. Detection signal of the fuel flow meter 52, detection signal of the spray flow meter 53 that measures the spray flow rate sprayed from the intake spray device 3, and detection signal of the atmospheric condition detector 54 that measures the temperature, humidity, pressure, etc. of the atmosphere And at least one of a fuel flow rate command signal Ucmb 62 output from the fuel flow rate control circuit 22 and a spray flow rate command signal Uwac 63 output from the spray flow rate control circuit 23. However, other signals may be used as long as they can be used for the calculation of the air flow rate. Further, the air flow rate control circuit 21 generates an air flow rate command signal Uigv31 that is input to the compressor inlet inner blade 11 as an output.
ガスタービン発電プラントの負荷降下において、空気流量制御回路21は、予め定めた条件を満たす空気流量が圧縮機1に吸込されるように、圧縮機入口内翼11の開度を決め、空気流量指令信号Uigv31として出力する。この際、燃焼切換時刻よりも一定時間前から燃焼切換が完了するまでの間、燃焼切換に伴う燃空比上昇を先行的に補償する空気流量を決定し、空気流量指令信号Uigv31として出力するのが本発明の第2の実施の形態の特徴である。ここで、前記一定時間とは、空気流量変化が燃空比に影響を与えるまでの時間である。
In the load drop of the gas turbine power plant, the air flow rate control circuit 21 determines the opening of the compressor inlet inner blade 11 so that the air flow rate satisfying a predetermined condition is sucked into the compressor 1, and the air flow rate command Output as signal Uigv31. At this time, the air flow rate that compensates for the increase in the fuel-air ratio accompanying the combustion switching is determined and output as the air flow rate command signal Uigv31 until the combustion switching is completed from a certain time before the combustion switching time. These are the features of the second embodiment of the present invention. Here, the predetermined time is a time until the change in the air flow rate affects the fuel-air ratio.
次に、空気流量制御回路21の動作機構を図5~図7を用いて説明する。
空気流量制御回路21のフローは、第1の実施の形態における噴霧流量制御回路23のフローと比較して、操作対象が噴霧流量ではなく吸込空気流量であることが異なるが、内部動作の論理は同様である。
図6において、まず、ステップS201でガスタービン発電プラントが負荷降下時であるか否かを判断する。第1の実施の形態と同様の判断方法で判断する。ガスタービン発電プラントが負荷降下時であると判断されれば、YESと判断されてステップS202へ進み、負荷降下時以外と判断されれば、NOと判断されてステップS205へ進む。 Next, the operation mechanism of the air flowrate control circuit 21 will be described with reference to FIGS.
The flow of the air flowrate control circuit 21 is different from the flow of the spray flow rate control circuit 23 in the first embodiment in that the operation target is not the spray flow rate but the suction air flow rate. It is the same.
In FIG. 6, first, in step S201, it is determined whether or not the gas turbine power plant is in a load drop state. The determination is performed by the same determination method as in the first embodiment. If it is determined that the gas turbine power plant is at a load drop, the determination is YES and the process proceeds to step S202. If it is determined that the load is not at a load drop, the determination is NO and the process proceeds to step S205.
空気流量制御回路21のフローは、第1の実施の形態における噴霧流量制御回路23のフローと比較して、操作対象が噴霧流量ではなく吸込空気流量であることが異なるが、内部動作の論理は同様である。
図6において、まず、ステップS201でガスタービン発電プラントが負荷降下時であるか否かを判断する。第1の実施の形態と同様の判断方法で判断する。ガスタービン発電プラントが負荷降下時であると判断されれば、YESと判断されてステップS202へ進み、負荷降下時以外と判断されれば、NOと判断されてステップS205へ進む。 Next, the operation mechanism of the air flow
The flow of the air flow
In FIG. 6, first, in step S201, it is determined whether or not the gas turbine power plant is in a load drop state. The determination is performed by the same determination method as in the first embodiment. If it is determined that the gas turbine power plant is at a load drop, the determination is YES and the process proceeds to step S202. If it is determined that the load is not at a load drop, the determination is NO and the process proceeds to step S205.
ステップS202では、現在の時刻と燃焼切換が行われると予測される時刻Tswとの時間差が演算され、この時間差が圧縮機入口内翼11の開度の変化が燃空比に影響を与えるまでの時間ΔTigvより大きいか否かが判断される。つまり、現在時刻が燃空比補償制御を開始するのに好ましい時刻(燃空比補償制御開始時刻)Tsw-ΔTigvより前か否かが判断される。現在時刻が燃焼切換予測時刻TswよりもΔTigv以上前であると判断されれば、YESと判断されてステップS203へ進み、現在時刻が燃焼切換予測時刻TswよりもΔTigv上前でないと判断されれば、NOと判断されてステップS205へ進む。
In step S202, the time difference between the current time and the time Tsw at which the combustion switching is predicted to be performed is calculated, and the time difference until the change in the opening of the compressor inlet inner blade 11 affects the fuel-air ratio. It is determined whether or not the time is greater than ΔTigv. In other words, it is determined whether or not the current time is earlier than the preferred time (fuel / air ratio compensation control start time) Tsw−ΔTigv for starting the fuel / air ratio compensation control. If it is determined that the current time is ΔTigv or more before the predicted combustion switching time Tsw, the determination is YES and the process proceeds to step S203. If it is determined that the current time is not before ΔTigv before the predicted combustion switching time Tsw. , NO is determined, the process proceeds to step S205.
ステップS203では、燃焼切換予測時刻Tswに起こると予想される燃空比上昇を補償する空気流量を算出し、空気流量指令信号Uigv31として出力している。燃空比上昇を補償する空気流量の決定方法としては、図7の中段の空気流量の特性図に示すように、時刻Tsw-ΔTigvでの空気流量Qigv0に対し、実験・計算などにより予め定めた補償空気流量ΔQigvを増加させた空気流量を算出するか、あるいは、空気流量Qigv0を予め定めた割合で増加させた空気流量を算出させても良い。
In step S203, an air flow rate that compensates for an increase in the fuel / air ratio that is expected to occur at the combustion switching prediction time Tsw is calculated and output as an air flow rate command signal Uigv31. As a method for determining the air flow rate that compensates for the increase in the fuel-air ratio, as shown in the air flow characteristic diagram in the middle of FIG. 7, the air flow rate Qigv0 at time Tsw-ΔTigv is determined in advance by experiments and calculations. The air flow rate obtained by increasing the compensation air flow rate ΔQigv may be calculated, or the air flow rate obtained by increasing the air flow rate Qigv0 at a predetermined rate may be calculated.
ステップS204では、燃焼切換が完了したか否かを判断する。第1の実施の形態と同様の判断方法で判断する。燃焼切換が完了したと判断されれば、YESと判断されてステップS205へ進み、燃焼切換が完了していないと判断されれば、NOと判断されてステップS203へ戻る。
In step S204, it is determined whether combustion switching is completed. The determination is performed by the same determination method as in the first embodiment. If it is determined that the combustion switching has been completed, it is determined YES and the process proceeds to step S205. If it is determined that the combustion switching has not been completed, NO is determined and the process returns to step S203.
ステップS205では、空気流量を所望空気流量に追従制御させる。所望空気流量とは、例えば、予め定めた燃空比になるために要する空気流量、または、予め定めたガスタービン負荷との関係を満たすために要する空気流量であって、その決定方法は、起動時の空気流量を定める公知の任意の方法でよい。
In step S205, the air flow rate is controlled to follow the desired air flow rate. The desired air flow rate is, for example, an air flow rate required to achieve a predetermined fuel-air ratio, or an air flow rate required to satisfy a relationship with a predetermined gas turbine load. Any known method for determining the hourly air flow rate may be used.
空気流量制御回路21を、以上述べた図6のフローチャート図のように動作させた場合の、空気流量指令信号Uigv31と、圧縮機1に吸込まれる空気流量と、燃焼器2の燃空比の推移を、図7を用いて説明する。
When the air flow rate control circuit 21 is operated as shown in the flowchart of FIG. 6 described above, the air flow rate command signal Uigv 31, the air flow rate sucked into the compressor 1, and the fuel-air ratio of the combustor 2 The transition will be described with reference to FIG.
圧縮機入口内翼11は、図7の上段に示すように、ガスタービン発電プラントが負荷降下を開始してから時刻Tsw-ΔTigvまでは、所望空気流量に追従制御され、その後、燃焼切換完了時刻Tcomまでの間は、燃空比補償制御をされ、燃焼切換完了時刻Tcomの後に、再びステップS205により所望空気流量に追従制御される。
As shown in the upper part of FIG. 7, the compressor inlet inner blade 11 is controlled to follow the desired air flow rate until the time Tsw−ΔTigv after the gas turbine power plant starts load drop, and then the combustion switching completion time is reached. The fuel-air ratio compensation control is performed until Tcom, and after the combustion switching completion time Tcom, the desired air flow rate is again controlled in step S205.
その際、空気流量は、図7の中段に示すように、時刻Tsw-ΔTigvに到達後、Qigv0からQigv0+ΔQigvに増加され、これにより燃焼用空気流量が増加し、燃空比が図7の下段の実線のように低下する。ここでの燃空比の低下は、空気流量が従来の空気流量よりも増加したことによるものである。その後、時刻Tswにおいて燃焼切換により燃空比は上昇する。この際に、燃焼切換の発生時刻の前から予め燃空比を低下させる制御を行うことにより、従来の燃焼切換時に起こる燃空比上昇の態様(図7の下段の破線で表示)が、図7の下段の実線で表示する態様のように変更させることができ、燃空比上昇量を抑制できる。
At that time, as shown in the middle part of FIG. 7, the air flow rate is increased from Qigv0 to Qigv0 + ΔQigv after reaching time Tsw-ΔTigv, thereby increasing the combustion air flow rate and the fuel-air ratio in the lower part of FIG. It drops like a solid line. The reduction in the fuel-air ratio here is due to an increase in the air flow rate compared to the conventional air flow rate. Thereafter, at the time Tsw, the fuel-air ratio increases due to combustion switching. At this time, by performing control to lower the fuel / air ratio in advance before the time of occurrence of combustion switching, the mode of increase in the fuel / air ratio that occurs at the time of conventional combustion switching (indicated by the broken line in the lower part of FIG. 7) is shown in FIG. 7 can be changed as shown in the lower solid line, and the fuel / air ratio increase can be suppressed.
このように、空気流量制御回路21を、以上述べた図6のフローチャート図のように動作させると、噴霧流量制御回路23を図2のフローチャート図のように動作させた第1の実施の形態の場合と同様の効果を得られる。本実施例は、特に、噴霧流量の制御がある操作範囲を超えては使用できないような場合に有効である。
Thus, when the air flow rate control circuit 21 is operated as shown in the flowchart of FIG. 6 described above, the spray flow rate control circuit 23 is operated as shown in the flowchart of FIG. 2 according to the first embodiment. The same effect as the case can be obtained. This embodiment is particularly effective when the spray flow rate cannot be used beyond a certain operating range.
上述した本発明のガスタービン発電プラントの制御装置の第2の実施形態によれば、燃空比の変動を先行的に補償するように空気流量を制御するので、燃焼切換時の不安定燃焼を抑制できる。この結果、ガスタービン発電プラント負荷降下時の燃焼安定化と低NOx化とが図れる。
According to the second embodiment of the control device for a gas turbine power plant of the present invention described above, the air flow rate is controlled so as to compensate for the fluctuation of the fuel-air ratio in advance, so that unstable combustion at the time of combustion switching is prevented. Can be suppressed. As a result, combustion stabilization and NOx reduction at the time of gas turbine power plant load drop can be achieved.
また、適用するガスタービン発電プラントにおいて、噴霧流量の制御範囲が限定されていて、ある操作範囲を超えて使用できないような場合にも対応可能となり、上述した効果を奏することができる。
Also, in the applied gas turbine power plant, the control range of the spray flow rate is limited, and it is possible to cope with the case where the spray flow rate cannot be used beyond a certain operation range, and the above-described effects can be achieved.
<第3の実施の形態>
以下、本発明のガスタービン発電プラントの制御装置の第3の実施の形態を図面を用いて説明する。図8は本発明のガスタービン発電プラントの制御装置の第3の実施の形態における空気流量指令信号(上段)、及び燃空比(下段)の変化を示す特性図である。図8において、図1~図7に示す符号と同符号のものは同一部分であるので、その詳細な説明は省略する。
本発明のガスタービン発電プラントの第3の実施の形態は、第1の実施の形態と第2の実施の形態を組み合わせたものであって、ガスタービン発電プラントの負荷降下時の燃焼安定化と低NOx化のために、燃焼切換の前に噴霧流量を増加させるように噴霧流量調節弁13を制御し、燃焼切換の前に空気流量を増加させるように圧縮機入口内翼11の開度を制御する制御装置24を備えている。その他のガスタービン発電プラントを構成する設備等は第1の実施の形態と同一である。 <Third Embodiment>
Hereinafter, a third embodiment of a control device for a gas turbine power plant according to the present invention will be described with reference to the drawings. FIG. 8 is a characteristic diagram showing changes in the air flow rate command signal (upper stage) and the fuel-air ratio (lower stage) in the third embodiment of the control device for the gas turbine power plant of the present invention. In FIG. 8, the same reference numerals as those shown in FIGS. 1 to 7 are the same parts, and detailed description thereof will be omitted.
The third embodiment of the gas turbine power plant according to the present invention is a combination of the first embodiment and the second embodiment, and includes stabilization of combustion during load drop of the gas turbine power plant. In order to reduce NOx, the spray flowrate control valve 13 is controlled so as to increase the spray flow rate before switching the combustion, and the opening of the compressor inlet inner blade 11 is increased so as to increase the air flow rate before switching the combustion. A control device 24 for controlling is provided. Other facilities constituting the gas turbine power plant are the same as those in the first embodiment.
以下、本発明のガスタービン発電プラントの制御装置の第3の実施の形態を図面を用いて説明する。図8は本発明のガスタービン発電プラントの制御装置の第3の実施の形態における空気流量指令信号(上段)、及び燃空比(下段)の変化を示す特性図である。図8において、図1~図7に示す符号と同符号のものは同一部分であるので、その詳細な説明は省略する。
本発明のガスタービン発電プラントの第3の実施の形態は、第1の実施の形態と第2の実施の形態を組み合わせたものであって、ガスタービン発電プラントの負荷降下時の燃焼安定化と低NOx化のために、燃焼切換の前に噴霧流量を増加させるように噴霧流量調節弁13を制御し、燃焼切換の前に空気流量を増加させるように圧縮機入口内翼11の開度を制御する制御装置24を備えている。その他のガスタービン発電プラントを構成する設備等は第1の実施の形態と同一である。 <Third Embodiment>
Hereinafter, a third embodiment of a control device for a gas turbine power plant according to the present invention will be described with reference to the drawings. FIG. 8 is a characteristic diagram showing changes in the air flow rate command signal (upper stage) and the fuel-air ratio (lower stage) in the third embodiment of the control device for the gas turbine power plant of the present invention. In FIG. 8, the same reference numerals as those shown in FIGS. 1 to 7 are the same parts, and detailed description thereof will be omitted.
The third embodiment of the gas turbine power plant according to the present invention is a combination of the first embodiment and the second embodiment, and includes stabilization of combustion during load drop of the gas turbine power plant. In order to reduce NOx, the spray flow
本実施の形態における燃焼器2に供給される燃焼用空気流量と、燃焼器2の燃空比の推移を、図8を用いて説明する。
The transition of the flow rate of combustion air supplied to the combustor 2 and the fuel-air ratio of the combustor 2 in the present embodiment will be described with reference to FIG.
負荷降下開始から時刻Tsw-ΔTwacまで、噴霧流量調節弁13は所望噴霧流量に追従制御され、圧縮機入口内翼11は所望噴霧流量に追従制御される。その後、時刻Tsw-ΔTigvまでの間、噴霧流量調節弁13は燃空比補償制御され、一方で、圧縮機入口内翼11は所望噴霧流量への追従制御が続く。その後、時刻Tcomまでの間、噴霧流量調節弁13と圧縮機入口内翼11はそれぞれ燃空比補償制御される。時刻Tcomの後に、再び、噴霧流量調節弁13は所望噴霧流量追従制御され、圧縮機入口内翼11は所望噴霧流量追従制御される。
From the load drop start to time Tsw-ΔTwac, the spray flow rate adjusting valve 13 is controlled to follow the desired spray flow rate, and the compressor inlet inner blade 11 is controlled to follow the desired spray flow rate. Thereafter, until the time Tsw-ΔTigv, the spray flow rate adjustment valve 13 is subjected to fuel-air ratio compensation control, while the compressor inlet inner blade 11 continues to follow the desired spray flow rate. After that, until the time Tcom, the spray flow rate adjustment valve 13 and the compressor inlet inner blade 11 are respectively subjected to fuel-air ratio compensation control. After time Tcom, the spray flow rate adjusting valve 13 is again subjected to desired spray flow rate tracking control, and the compressor inlet inner blade 11 is subjected to desired spray flow rate tracking control.
この際、燃焼用空気流量は、図8の上段の実線のように、負荷降下開始から時刻Tsw-ΔTwacまで、所望噴霧流量と所望空気流量の和の値になる。そして続く時刻Tsw-ΔTwacから時刻Tsw-ΔTigvまでの間は増加し、時刻Tsw-ΔTigvの直後にさらに大きく増加する。これは、時刻Tsw-ΔTwacから時刻Tsw-ΔTigvまでの間には、噴霧流量調節弁13だけで燃焼用空気流量を増加させるが、時刻Tsw-ΔTigvから時刻Tcomまでの間には、噴霧流量調節弁13と圧縮機入口内翼11の両方によって燃焼用空気流量を増加させるためである。時刻Tcomの後、燃焼用空気流量は、所望噴霧流量と所望空気流量の和の値に追従していく。
At this time, the combustion air flow rate becomes the sum of the desired spray flow rate and the desired air flow rate from the load drop start to time Tsw-ΔTwac as shown by the solid line in the upper part of FIG. Then, it increases from time Tsw-ΔTwac to time Tsw-ΔTigv, and further increases immediately after time Tsw-ΔTigv. This increases the combustion air flow rate only by the spray flow rate control valve 13 from time Tsw-ΔTwac to time Tsw-ΔTigv, but from time Tsw-ΔTigv to time Tcom, This is because the combustion air flow rate is increased by both the valve 13 and the compressor inlet inner blade 11. After the time Tcom, the combustion air flow rate follows the sum of the desired spray flow rate and the desired air flow rate.
燃空比の推移は、図8の下段の実線のように、負荷降下開始から時刻Tsw-ΔTwacまで、従来の場合(点線で表示)と同等である。そして、時刻Tsw-ΔTwacから時刻Tsw-ΔTigvまでの間に低下し、時刻Tsw-ΔTigvの直後にさらに大きく低下する。これは、上述の燃焼量用空気流量の変化によるものである。その後、燃空比は、時刻Tswにおいて燃焼切換により上昇する。
The change in the fuel-air ratio is equivalent to the conventional case (indicated by the dotted line) from the load drop start to the time Tsw-ΔTwac as shown by the solid line in the lower part of FIG. Then, it decreases from time Tsw-ΔTwac to time Tsw-ΔTigv, and further decreases immediately after time Tsw-ΔTigv. This is due to the change in the combustion air flow rate described above. Thereafter, the fuel-air ratio rises due to combustion switching at time Tsw.
このように、噴霧流量調整機能と空気流量調整機能を同時に持つ制御装置24を備えたガスタービンシステムは、噴霧流量調整機能のみを持つ制御装置24を備えたガスタービンシステム(図8の下段の破線で表示)や空気流量調整機能のみを持つ制御装置24を備えたガスタービンシステムと比較して、燃焼用空気流量の増加幅をΔQigv+ΔQwacとより大幅に変化できるので、補償可能な燃空比の範囲が広くなる。また、燃焼用空気流量の変化の応答性も向上でき、燃空比補償制御の際に短時間で燃空比を低下でき、燃空比が低い状態になっている時間を短縮できる。
As described above, the gas turbine system including the control device 24 having the spray flow rate adjustment function and the air flow rate adjustment function at the same time is the gas turbine system including the control device 24 having only the spray flow rate adjustment function (the lower broken line in FIG. 8). Compared with a gas turbine system equipped with a control device 24 having only an air flow rate adjustment function, the amount of increase in the combustion air flow rate can be significantly changed to ΔQigv + ΔQwac. The range of becomes wide. In addition, the responsiveness of changes in the combustion air flow rate can be improved, the fuel-air ratio can be reduced in a short time during the fuel-air ratio compensation control, and the time during which the fuel-air ratio is low can be shortened.
なお、図8はΔTwacがΔTigvよりも長い場合の例であり、両者の大小関係が逆の場合でも、噴霧流量調整機能と空気流量調整機能を同時に持つ制御装置24を備えたガスタービンシステムが、噴霧流量調整機能のみを持つ制御装置24を備えたガスタービンシステムや空気流量調整機能のみを持つ制御装置24を備えたガスタービンシステムと比較して、補償可能な燃空比の範囲が広くなることと、燃焼用空気流量の変化の応答性も向上できること、燃空比補償制御の際に短時間で燃空比を低下できることと、燃空比が低い状態になっている時間を短縮できることには変わりはない。
FIG. 8 shows an example in which ΔTwac is longer than ΔTigv. Even when the magnitude relationship between the two is reversed, the gas turbine system including the control device 24 having both the spray flow rate adjustment function and the air flow rate adjustment function is Compared to a gas turbine system having a control device 24 having only a spray flow rate adjustment function and a gas turbine system having a control device 24 having only an air flow rate adjustment function, the range of the fuel-air ratio that can be compensated is widened. It is possible to improve the responsiveness of changes in the combustion air flow rate, to reduce the fuel / air ratio in a short time during fuel / air ratio compensation control, and to shorten the time when the fuel / air ratio is low There is no change.
上述した本発明のガスタービン発電プラントの制御装置の第3の実施の形態によれば、上述した第1及び第2の実施の形態と同様な効果を得ることができるとともに、補償可能な燃空比の範囲を広くすることができる。
According to the third embodiment of the control device for a gas turbine power plant of the present invention described above, it is possible to obtain the same effects as those of the first and second embodiments described above, and to compensate the fuel air. The range of the ratio can be widened.
1 圧縮機
2 燃焼器
3 吸気噴霧装置
4 タービン
11 圧縮機入口内翼
12 燃料流量調節弁
13 噴霧流量調節弁
21 空気流量制御回路
22 燃料流量制御回路
23 噴霧流量制御回路
24 制御装置
31 空気流量指令信号
32 燃料流量指令信号
33 噴霧流量指令信号
41 空気流量指令信号
42 燃料流量指令信号
51 空気流量計
52 燃料流量計
53 噴霧流量計
54 大気条件検出器
62 燃料流量指令信号
63 噴霧流量指令信号
70 発電機 DESCRIPTION OFSYMBOLS 1 Compressor 2 Combustor 3 Intake spray device 4 Turbine 11 Compressor inlet inner blade 12 Fuel flow rate control valve 13 Spray flow rate control valve 21 Air flow rate control circuit 22 Fuel flow rate control circuit 23 Spray flow rate control circuit 24 Control device 31 Air flow rate command Signal 32 Fuel flow command signal 33 Spray flow command signal 41 Air flow command signal 42 Fuel flow command signal 51 Air flow meter 52 Fuel flow meter 53 Spray flow meter 54 Atmospheric condition detector 62 Fuel flow command signal 63 Spray flow command signal 70 Power generation Machine
2 燃焼器
3 吸気噴霧装置
4 タービン
11 圧縮機入口内翼
12 燃料流量調節弁
13 噴霧流量調節弁
21 空気流量制御回路
22 燃料流量制御回路
23 噴霧流量制御回路
24 制御装置
31 空気流量指令信号
32 燃料流量指令信号
33 噴霧流量指令信号
41 空気流量指令信号
42 燃料流量指令信号
51 空気流量計
52 燃料流量計
53 噴霧流量計
54 大気条件検出器
62 燃料流量指令信号
63 噴霧流量指令信号
70 発電機 DESCRIPTION OF
Claims (4)
- 燃焼用空気を加圧する圧縮機(1)と、前記圧縮機(1)に吸込まれる空気の流れに噴霧流量調節弁(13)を介して供給された噴霧水の液滴を噴霧する吸気噴霧装置(3)と、前記燃焼用空気を燃料と混合・燃焼して高温の燃焼ガスを発生させ、運転中に燃焼切換えを行う燃焼器(2)と、前記燃焼ガスを用いて前記圧縮機(1)及び発電機(70)を駆動するタービン(4)と、前記噴霧水の流量を制御する噴霧流量調節弁(13)と、前記圧縮機(1)に吸込まれる空気の流量を制御する圧縮機入口内翼(11)とを備えたガスタービン発電プラントの制御装置であって、
前記燃焼器(2)への燃料流量指令値(32)を演算する燃料流量制御手段(22)と、
前記発電機(70)の負荷降下の際の燃焼切換え時に発生する前記燃焼器(2)での燃空比上昇を補償する燃空比補正指令信号を演算し、該燃空比補正指令信号に基づいて、前記圧縮機入口内翼(11)の開度又は/及び前記噴霧流量調節弁(13)の開度を制御する制御手段(24)とを備えた
ことを特徴とするガスタービン発電プラントの制御装置。 A compressor (1) for pressurizing combustion air, and an intake spray for spraying droplets of spray water supplied via a spray flow rate control valve (13) to the flow of air sucked into the compressor (1) An apparatus (3), a combustor (2) that mixes and burns the combustion air with fuel to generate a high-temperature combustion gas and switches combustion during operation, and the compressor ( 1) A turbine (4) for driving the generator (70), a spray flow rate adjusting valve (13) for controlling the flow rate of the spray water, and a flow rate of air sucked into the compressor (1). A control device for a gas turbine power plant comprising a compressor inlet inner blade (11),
Fuel flow rate control means (22) for calculating a fuel flow rate command value (32) to the combustor (2);
A fuel / air ratio correction command signal that compensates for an increase in the fuel / air ratio in the combustor (2) that is generated at the time of combustion switching at the time of load drop of the generator (70) is calculated, and the fuel / air ratio correction command signal is calculated. And a control means (24) for controlling the opening degree of the compressor inlet inner blade (11) and / or the opening degree of the spray flow rate adjusting valve (13). Control device. - 燃焼用空気を加圧する圧縮機(1)と、前記圧縮機(1)に吸込まれる空気の流れに噴霧流量調節弁(13)を介して供給された噴霧水の液滴を噴霧する吸気噴霧装置(3)と、前記燃焼用空気を燃料と混合・燃焼して高温の燃焼ガスを発生させ、運転中に燃焼切換えを行う燃焼器(2)と、前記燃焼ガスを用いて前記圧縮機(1)及び発電機(70)を駆動するタービン(4)と、前記燃焼器(2)に供給される燃料流量を計測する燃料流量計(52)と、前記圧縮機(1)に吸込まれる空気流量を計測する空気流量計(51)と、前記噴霧装置(3)に供給される前記噴霧水の流量を計測する噴霧流量計(53)と、大気の温度や湿度などを計測する大気条件検出器(54)と、前記噴霧水の流量を制御する噴霧流量調節弁(13)とを備えたガスタービン発電プラントの制御装置であって、
前記燃焼器(2)への燃料流量指令値(32)を演算する燃料流量制御手段(22)と、
前記圧縮機(1)への空気流量指令値(31)を演算する空気流量制御手段(21)と、
前記空気流量計(51)と前記燃料流量計(52)と前記噴霧流量計(53)と前記大気条件検出器(54)の各計測値と前記燃料流量指令値(32)と前記空気流量指令値(31)とを取り込み、前記発電機(70)の負荷降下の際の燃焼切換え時に発生する前記燃焼器(2)での燃空比上昇を補償する噴霧流量補正指令値と該噴霧流量補正指令値による制御開始時刻を演算し、前記制御開始時刻から前記噴霧流量補正指令値を付加した噴霧流量指令値(33)に基づいて前記噴霧流量調節弁(13)の開度を制御する噴霧流量制御手段(23)とを備えた
ことを特徴とするガスタービン発電プラントの制御装置。 A compressor (1) for pressurizing combustion air, and an intake spray for spraying droplets of spray water supplied via a spray flow rate control valve (13) to the flow of air sucked into the compressor (1) An apparatus (3), a combustor (2) that mixes and burns the combustion air with fuel to generate a high-temperature combustion gas and switches combustion during operation, and the compressor ( 1) and a turbine (4) for driving a generator (70), a fuel flow meter (52) for measuring the flow rate of fuel supplied to the combustor (2), and the compressor (1). An air flow meter (51) for measuring the air flow rate, a spray flow meter (53) for measuring the flow rate of the spray water supplied to the spray device (3), and atmospheric conditions for measuring the temperature and humidity of the atmosphere A detector (54) and a spray flow rate control valve (13) for controlling the flow rate of the spray water; A control device for a gas turbine power plant was e,
Fuel flow rate control means (22) for calculating a fuel flow rate command value (32) to the combustor (2);
An air flow rate control means (21) for calculating an air flow rate command value (31) to the compressor (1);
The measured values of the air flow meter (51), the fuel flow meter (52), the spray flow meter (53), and the atmospheric condition detector (54), the fuel flow command value (32), and the air flow command Value (31), and a spray flow rate correction command value for compensating for an increase in the fuel-air ratio in the combustor (2) generated at the time of combustion switching at the time of load drop of the generator (70) and the spray flow rate correction A spray flow rate for calculating the control start time based on the command value and controlling the opening of the spray flow rate control valve (13) based on the spray flow rate command value (33) to which the spray flow rate correction command value is added from the control start time. A control device for a gas turbine power plant, comprising a control means (23). - 燃焼用空気を加圧する圧縮機(1)と、前記圧縮機(1)に吸込まれる空気の流れに噴霧水の液滴を噴霧する吸気噴霧装置(3)と、前記燃焼用空気を燃料と混合・燃焼して高温の燃焼ガスを発生させ、運転中に燃焼切換えを行う燃焼器(2)と、前記燃焼ガスを用いて前記圧縮機(1)及び発電機(70)を駆動するタービン(4)と、前記燃焼器(2)に供給される燃料流量を計測する燃料流量計(52)と、前記圧縮機(1)に吸込まれる空気流量を計測する空気流量計(51)と、前記噴霧装置(3)に供給される前記噴霧水の流量を計測する噴霧流量計(53)と、大気の温度や湿度などを計測する大気条件検出器(54)と、前記圧縮機(1)に吸込まれる空気の流量を制御する圧縮機入口内翼(11)とを備えたガスタービン発電プラントの制御装置であって、
前記燃焼器(2)への燃料流量指令値(32)を演算する燃料流量制御手段(22)と、
前記噴霧装置(3)への噴霧流量指令値(33)を演算する噴霧流量制御手段(23)と、
前記空気流量計(51)と前記燃料流量計(52)と前記噴霧流量計(53)と前記大気条件検出器(54)の各計測値と前記燃料流量指令値(32)と前記噴霧流量指令値(33)とを取り込み、前記発電機(70)の負荷降下の際の燃焼切換え時に発生する前記燃焼器(2)での燃空比上昇を補償する空気流量補正指令値と該空気流量補正指令値による制御開始時刻を演算し、前記制御開始時刻から前記空気流量補正指令値を付加した空気流量指令値(31)に基づいて前記圧縮機入口内翼(11)の開度を制御する空気流量制御手段(21)とを備えた
ことを特徴とするガスタービン発電プラントの制御装置。 A compressor (1) for pressurizing combustion air; an intake spray device (3) for spraying droplets of spray water on a flow of air sucked into the compressor (1); and the combustion air as fuel A combustor (2) that generates a high-temperature combustion gas by mixing and burning and switches combustion during operation, and a turbine that drives the compressor (1) and the generator (70) using the combustion gas ( 4), a fuel flow meter (52) for measuring the flow rate of fuel supplied to the combustor (2), an air flow meter (51) for measuring the flow rate of air sucked into the compressor (1), A spray flow meter (53) for measuring the flow rate of the spray water supplied to the spray device (3), an atmospheric condition detector (54) for measuring atmospheric temperature, humidity and the like, and the compressor (1) Including a compressor inlet inner blade (11) for controlling a flow rate of air sucked into the compressor A control apparatus for an electric plant,
Fuel flow rate control means (22) for calculating a fuel flow rate command value (32) to the combustor (2);
Spray flow rate control means (23) for calculating a spray flow rate command value (33) to the spray device (3);
The measured values of the air flow meter (51), the fuel flow meter (52), the spray flow meter (53), and the atmospheric condition detector (54), the fuel flow command value (32), and the spray flow command. Value (33), and an air flow rate correction command value for compensating for an increase in the fuel / air ratio in the combustor (2) generated at the time of combustion switching at the time of load drop of the generator (70) and the air flow rate correction Air for controlling the opening of the compressor inlet inner blade (11) based on an air flow rate command value (31) obtained by calculating a control start time based on the command value and adding the air flow rate correction command value from the control start time. A control device for a gas turbine power plant, comprising: a flow rate control means (21). - 燃焼用空気を加圧する圧縮機(1)と、前記圧縮機(1)に吸込まれる空気の流れに噴霧流量調節弁(13)を介して供給された噴霧水の液滴を噴霧する吸気噴霧装置(3)と、前記燃焼用空気を燃料と混合・燃焼して高温の燃焼ガスを発生させ、運転中に燃焼切換えを行う燃焼器(2)と、前記燃焼ガスを用いて前記圧縮機(1)及び発電機(70)を駆動するタービン(4)と、前記燃焼器(2)に供給される燃料流量を計測する燃料流量計(52)と、前記圧縮機(1)に吸込まれる空気流量を計測する空気流量計(51)と、前記噴霧装置(3)に供給される前記噴霧水の流量を計測する噴霧流量計(53)と、大気の温度や湿度などを計測する大気条件検出器(54)と、前記噴霧水の流量を制御する噴霧流量調節弁(13)と、前記圧縮機(1)に吸込まれる空気の流量を制御する圧縮機入口内翼(11)とを備えたガスタービン発電プラントの制御装置であって、
前記燃焼器(2)への燃料流量指令値(32)を演算する燃料流量制御手段(22)と、
前記圧縮機(1)への空気流量指令値(31)を演算する空気流量制御手段(21)と、
前記空気流量計(51)と前記燃料流量計(52)と前記噴霧流量計(53)と前記大気条件検出器(54)の各計測値と前記燃料流量指令値(32)と前記空気流量指令値(31)とを取り込み、前記発電機(70)の負荷降下の際の燃焼切換え時に発生する前記燃焼器(2)での燃空比上昇を補償する噴霧流量補正指令値と該噴霧流量補正指令値による制御開始時刻を演算し、前記制御開始時刻から前記噴霧流量補正指令値を付加した噴霧流量指令値(33)に基づいて前記噴霧流量調節弁(13)の開度を制御する噴霧流量制御手段(23)とを備え、
前記空気流量制御手段(21)は、前記空気流量計(51)と前記燃料流量計(52)と前記噴霧流量計(53)と前記大気条件検出器(54)の各計測値と前記燃料流量指令値(32)と前記噴霧流量指令値(33)とを取り込み、前記発電機(70)の負荷降下の際の燃焼切換え時に発生する前記燃焼器(2)での燃空比上昇を補償する空気流量補正指令値と該空気流量補正指令値による制御開始時刻を演算し、前記制御開始時刻から前記空気流量補正指令値を付加した空気流量指令値(31)に基づいて前記圧縮機入口内翼(11)の開度を制御する
ことを特徴とするガスタービン発電プラントの制御装置。 A compressor (1) for pressurizing combustion air, and an intake spray for spraying droplets of spray water supplied via a spray flow rate control valve (13) to the flow of air sucked into the compressor (1) An apparatus (3), a combustor (2) that mixes and burns the combustion air with fuel to generate a high-temperature combustion gas and switches combustion during operation, and the compressor ( 1) and a turbine (4) for driving a generator (70), a fuel flow meter (52) for measuring the flow rate of fuel supplied to the combustor (2), and the compressor (1). An air flow meter (51) for measuring the air flow rate, a spray flow meter (53) for measuring the flow rate of the spray water supplied to the spray device (3), and atmospheric conditions for measuring the temperature and humidity of the atmosphere A detector (54), a spray flow rate control valve (13) for controlling the flow rate of the spray water, A control device for a gas turbine power plant including a compressor inlet in the wing for controlling the flow rate of the air sucked into the serial compressor (1) (11),
Fuel flow rate control means (22) for calculating a fuel flow rate command value (32) to the combustor (2);
An air flow rate control means (21) for calculating an air flow rate command value (31) to the compressor (1);
The measured values of the air flow meter (51), the fuel flow meter (52), the spray flow meter (53), and the atmospheric condition detector (54), the fuel flow command value (32), and the air flow command Value (31), and a spray flow rate correction command value for compensating for an increase in the fuel-air ratio in the combustor (2) generated at the time of combustion switching at the time of load drop of the generator (70) and the spray flow rate correction A spray flow rate for calculating the control start time based on the command value and controlling the opening of the spray flow rate control valve (13) based on the spray flow rate command value (33) to which the spray flow rate correction command value is added from the control start time. Control means (23),
The air flow rate control means (21) includes the measured values of the air flow meter (51), the fuel flow meter (52), the spray flow meter (53), and the atmospheric condition detector (54), and the fuel flow rate. The command value (32) and the spray flow rate command value (33) are taken in to compensate for the increase in the fuel / air ratio in the combustor (2) that occurs at the time of combustion switching when the load of the generator (70) drops. An air flow correction command value and a control start time based on the air flow rate correction command value are calculated, and the compressor inlet inner blade is based on an air flow rate command value (31) to which the air flow rate correction command value is added from the control start time. The opening degree of (11) is controlled. The control apparatus of the gas turbine power plant characterized by the above-mentioned.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013542760A JP5745640B2 (en) | 2011-11-09 | 2011-11-09 | Control device for gas turbine power plant |
PCT/JP2011/075873 WO2013069123A1 (en) | 2011-11-09 | 2011-11-09 | Control device for gas turbine power-generating plant |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2011/075873 WO2013069123A1 (en) | 2011-11-09 | 2011-11-09 | Control device for gas turbine power-generating plant |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013069123A1 true WO2013069123A1 (en) | 2013-05-16 |
Family
ID=48288719
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/075873 WO2013069123A1 (en) | 2011-11-09 | 2011-11-09 | Control device for gas turbine power-generating plant |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5745640B2 (en) |
WO (1) | WO2013069123A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2896806A1 (en) * | 2014-01-20 | 2015-07-22 | Siemens Aktiengesellschaft | Modification of the power yield of a gas turbine plant |
CN106536899A (en) * | 2014-08-26 | 2017-03-22 | 三菱日立电力系统株式会社 | Control device, system, and control method |
CN114183254A (en) * | 2021-12-18 | 2022-03-15 | 中国船舶重工集团公司第七0三研究所 | Fuel switching control method for dual-fuel gas turbine |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002138856A (en) * | 2000-10-31 | 2002-05-17 | Hitachi Ltd | Fuel control device for gas turbine |
WO2002084091A1 (en) * | 2001-04-09 | 2002-10-24 | Hitachi, Ltd. | Gas turbine power generator |
JP2004108266A (en) * | 2002-09-19 | 2004-04-08 | Mitsubishi Heavy Ind Ltd | Operation control device and operation control method for single-shaft combined plant with clutch |
JP2008051013A (en) * | 2006-08-25 | 2008-03-06 | Hitachi Ltd | High moisture gas turbine plant and its control method |
JP2008064014A (en) * | 2006-09-07 | 2008-03-21 | Hitachi Ltd | Gas turbine system |
JP2008267338A (en) * | 2007-04-24 | 2008-11-06 | Mitsubishi Heavy Ind Ltd | Control method for gas turbine and gas turbine power generation device |
JP2010168957A (en) * | 2009-01-21 | 2010-08-05 | Hitachi Ltd | Two-shaft gas turbine and method for starting premixed combustion in combustor for two-shaft gas turbine |
-
2011
- 2011-11-09 WO PCT/JP2011/075873 patent/WO2013069123A1/en active Application Filing
- 2011-11-09 JP JP2013542760A patent/JP5745640B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002138856A (en) * | 2000-10-31 | 2002-05-17 | Hitachi Ltd | Fuel control device for gas turbine |
WO2002084091A1 (en) * | 2001-04-09 | 2002-10-24 | Hitachi, Ltd. | Gas turbine power generator |
JP2004108266A (en) * | 2002-09-19 | 2004-04-08 | Mitsubishi Heavy Ind Ltd | Operation control device and operation control method for single-shaft combined plant with clutch |
JP2008051013A (en) * | 2006-08-25 | 2008-03-06 | Hitachi Ltd | High moisture gas turbine plant and its control method |
JP2008064014A (en) * | 2006-09-07 | 2008-03-21 | Hitachi Ltd | Gas turbine system |
JP2008267338A (en) * | 2007-04-24 | 2008-11-06 | Mitsubishi Heavy Ind Ltd | Control method for gas turbine and gas turbine power generation device |
JP2010168957A (en) * | 2009-01-21 | 2010-08-05 | Hitachi Ltd | Two-shaft gas turbine and method for starting premixed combustion in combustor for two-shaft gas turbine |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2896806A1 (en) * | 2014-01-20 | 2015-07-22 | Siemens Aktiengesellschaft | Modification of the power yield of a gas turbine plant |
CN106536899A (en) * | 2014-08-26 | 2017-03-22 | 三菱日立电力系统株式会社 | Control device, system, and control method |
CN106536899B (en) * | 2014-08-26 | 2018-04-13 | 三菱日立电力系统株式会社 | Control device, system and control method |
CN114183254A (en) * | 2021-12-18 | 2022-03-15 | 中国船舶重工集团公司第七0三研究所 | Fuel switching control method for dual-fuel gas turbine |
CN114183254B (en) * | 2021-12-18 | 2023-09-29 | 中国船舶重工集团公司第七0三研究所 | Fuel switching control method for dual-fuel gas turbine |
Also Published As
Publication number | Publication date |
---|---|
JPWO2013069123A1 (en) | 2015-04-02 |
JP5745640B2 (en) | 2015-07-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2672089B1 (en) | Control device for gas turbine power generation plant | |
US10287993B2 (en) | Method and device for combustion with pulsed fuel split | |
RU2550292C2 (en) | Gas-turbine plant controller and its control method | |
US20120017600A1 (en) | Combustor Control Method and Combustor Controller | |
JP5550592B2 (en) | Gas turbine control device | |
RU2013116449A (en) | METHOD FOR REGULATING THE OPERATION OF THE POWER INSTALLATION INCLUDING THE WORKING ENVIRONMENT | |
US20120102967A1 (en) | Method and system for preventing combustion instabilities during transient operations | |
JP2016513211A (en) | Operation method of gas turbine by multistage combustion method and / or sequential combustion method | |
US10669959B2 (en) | Control device, system, control method, power control device, gas turbine, and power control method | |
EP2902606B1 (en) | Method for operating a gas turbine at part load | |
JP2012141078A (en) | Combustion device, and combustion control method of the combustion device | |
JP2011099608A (en) | Boiler combustion control device | |
JP5745640B2 (en) | Control device for gas turbine power plant | |
JP5836069B2 (en) | Gas turbine and combustion control method for gas turbine | |
JP2006029162A (en) | Control device and control method of gas turbine | |
JP5031779B2 (en) | Control device for gas turbine engine | |
JP2011038478A (en) | Control device and control method of gas turbine engine | |
US9557236B2 (en) | Method for controlling a gas turbine | |
CN115539221A (en) | Gas turbine NOx closed-loop control method and system | |
JP2013249755A (en) | Advanced humid air turbine | |
KR20100063387A (en) | Automatic control device for nox concentration and method thereof | |
JP2014169701A (en) | Method of controlling gas turbine and method of setting fuel-air ratio of gas turbine | |
JP2005036766A (en) | Method of controlling flow rate of injected steam to gas turbine | |
CN117346178A (en) | Combustion control method for gas boiler | |
JP2012122422A (en) | Gas turbine system, and fuel control method for gas turbine combustor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11875537 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2013542760 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11875537 Country of ref document: EP Kind code of ref document: A1 |