WO2013067975A1 - 一种话单包的处理方法和系统 - Google Patents

一种话单包的处理方法和系统 Download PDF

Info

Publication number
WO2013067975A1
WO2013067975A1 PCT/CN2012/084485 CN2012084485W WO2013067975A1 WO 2013067975 A1 WO2013067975 A1 WO 2013067975A1 CN 2012084485 W CN2012084485 W CN 2012084485W WO 2013067975 A1 WO2013067975 A1 WO 2013067975A1
Authority
WO
WIPO (PCT)
Prior art keywords
packet
gsn
serial number
cgf
time
Prior art date
Application number
PCT/CN2012/084485
Other languages
English (en)
French (fr)
Inventor
陈启华
钟昌成
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to US14/356,857 priority Critical patent/US9332092B2/en
Priority to EP12847928.4A priority patent/EP2779713B1/en
Publication of WO2013067975A1 publication Critical patent/WO2013067975A1/zh
Priority to HK14110860A priority patent/HK1197342A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/22Parsing or analysis of headers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/02Details
    • H04L12/14Charging, metering or billing arrangements for data wireline or wireless communications
    • H04L12/1453Methods or systems for payment or settlement of the charges for data transmission involving significant interaction with the data transmission network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/74Address processing for routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/34Flow control; Congestion control ensuring sequence integrity, e.g. using sequence numbers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M15/00Arrangements for metering, time-control or time indication ; Metering, charging or billing arrangements for voice wireline or wireless communications, e.g. VoIP
    • H04M15/41Billing record details, i.e. parameters, identifiers, structure of call data record [CDR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M15/00Arrangements for metering, time-control or time indication ; Metering, charging or billing arrangements for voice wireline or wireless communications, e.g. VoIP
    • H04M15/70Administration or customization aspects; Counter-checking correct charges
    • H04M15/73Validating charges
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M15/00Arrangements for metering, time-control or time indication ; Metering, charging or billing arrangements for voice wireline or wireless communications, e.g. VoIP
    • H04M15/70Administration or customization aspects; Counter-checking correct charges
    • H04M15/74Backing up
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M15/00Arrangements for metering, time-control or time indication ; Metering, charging or billing arrangements for voice wireline or wireless communications, e.g. VoIP
    • H04M15/82Criteria or parameters used for performing billing operations
    • H04M15/8214Data or packet based

Definitions

  • the present invention relates to the field of communications, and in particular, to a method and system for processing a bill package. Background technique
  • FIG. 1 is a diagram showing a relationship between a Charging Trigger Function (CTF), a Charging Data Function (CPF), and a Charging Gateway Function (CGF) in a 3GPP network, where
  • the Ga interface is the communication interface for the CDF to transmit the CDRs (Charging Data Records) to the CGF.
  • the protocol that the Ga interface complies with is the GTP protocol.
  • FIG. 2 shows the GTP, the bearer of the protocol.
  • the GTP protocol can be carried by the User Datagram Protocol (UDP) or the Transmission Control Protocol (TCP).
  • UDP User Datagram Protocol
  • TCP Transmission Control Protocol
  • GTP message header
  • GTP GTP
  • the message header reuses the GTP (Message Tunneling Protocol) header (GTP Message Header).
  • GTP Message Tunneling Protocol
  • some flag bits (Version, PT, etc.) are defined in the GTP Message Header.
  • Type Message Type
  • Length Length
  • Sequence Number where Version is the version number and PT is the protocol type.
  • GTP message type
  • Echo Request (handshake request to the other node);
  • Node Alive Request (notify the other party that the node has been activated
  • CGF Data Record Transfer Response
  • Response is the message used when transmitting CDRs. It is GTP, the core content of the protocol.
  • the message structure of the Data Record Transfer Request is as shown in Table 1 below, and can include the following five information elements (IE, Information Element):
  • Private Extension (user or operator customized extension information).
  • IE Data Record Packet is mandatory.
  • the structure of the IE is as follows:
  • the CDR packet sent by the GSN to CGF1 does not receive a response in time.
  • the GPRS support node GSN
  • CGF2 alternative CGF
  • CGF2 is only temporarily cached locally, and CGF2 will not delete the cache until it receives the 'Cancel/Release Data Record Packet' command of the GSN corresponding packet.
  • the local suspicious duplicate bill (Cancel) or the suspicious duplicate bill package is released to the normal bill list.
  • IE Sequence Numbers of Cancelled Packets is mandatory.
  • the structure of the IE is as shown in Table 3 below:
  • the Data Record Transfer Response message is used by the CGF to respond to the Data Record Transfer Request message, and the Data Record Transfer Response message and structure are shown in Table 5 below:
  • the message must contain two IEs, Cause and Requests Responded, where Cause indicates the response (the reason for receiving or rejecting;); Requests Responded indicates the number of the received packet, which is structured as shown in Table 6 below.
  • the IE can include a serial number of multiple bills at the same time, that is, one Data Record Transfer Response message can reply to multiple Data Record Transfer Requests.
  • the method of single-packet transmission in the protocol includes:
  • Step 401 The GSN sends the bill packet to the CGF, and the corresponding message sent is a Data Record Transfer Request, where the Packet Transfer Command parameter is a Send Data Record Packet, and the serial number in the message header is N;
  • Step 402 The CGF receives and processes the message, and stores the bill in the packet to the local.
  • Step 403 The CGF sends a response message to the GSN, and the content of the message is a Data Record Transfer Response, where the Requests Responded parameter is included.
  • the serial number N the Cause parameter is set to Request Accepted;
  • Step 404 After receiving the message Data Record Transfer Response, the GSN deletes the single packet with the serial number ⁇ from the cache.
  • the GSN fails to receive a response, it will resend the request within the rated time and before the set number of times is reached.
  • the connection between the GSN and the CGF1 is interrupted before the single packet is correctly received.
  • the transmission process is as shown in Figure 5, which mainly includes the following steps:
  • Step 501 The GSN sends a Data Record Transfer Request message to the CGF1 (the primary CGF), where the Packet Transfer Command parameter is a Send Data Record Packet, and the message number of the message header is M.
  • Step 502 because the GSN and the CGF 1 lose contact, the CGF 1 does not receive the bill package. Step 503, the GSN cannot receive the response.
  • Step 504 The GSN detects the link with the CGF2 (Standby CGF) (using Echo Request). If it is normal, the GSN sends the same CDR packet to CGF1 to the CGF2, using the Data Record Transfer Request message, Packet Transfer Command.
  • the parameter is Send possible Duplicated Data Record Packet, the serial number in the header is N.
  • Step 505 The CGF2 receives and processes the bill package. Since the bill packet is identified as possible duplicated, the CGF2 only caches the bill package, and is not immediately sent to the billing system (BS, Billing System). .
  • BS Billing System
  • Step 506 the CGF2 sends the correct receiving confirmation information to the GSN, and uses the Data Record.
  • the Transfer Response message where the Requests Responded parameter contains the serial number N, and the Cause parameter is set to Request Accepted.
  • the GSN may delete the successfully transmitted CDR packet (but may repeat), but still retain the serial number (ie, M and N) that the CDR packet sends to CGF1 and CGF2.
  • Step 508 After the CGF1 is restored, the Node Alive Request message is sent to the GSN, and the GSN learns that the CGF1 can communicate with the CGF1.
  • Step 509 The GSN confirms by using a Node Alive Response message.
  • Step 510 For the Data Record Transfer Request message that is not confirmed in the previous step (in step 501), the GSN sends an empty test ticket packet to the CGF1, and the empty ticket packet is only the Data Record Packet parameter does not include the bill data, and everything else is the same. (The serial number in the message header is still M).
  • Step 511 CGF1 responds with a Data Record Transfer Response message, wherein the Requests Responded parameter includes a serial number M, and the Cause parameter is set to Request Acceptedo. Since CGF1 has lost contact with the GSN before, CGF1 has not received the single package. So, for the test bill package it is considered new and acceptable.
  • Step 512 After receiving the response message of the CGF1, the GSN learns that the CGF1 does not process the test bill package, and notifies the CGF2 that the bill packet can be sent to the BS.
  • the message used is Data Record Transfer Request, and the Packet Transfer Command parameter is Release Data.
  • the Record Packet contains the serial number N in the Sequence Numbers of the Released Packets parameter.
  • the CGF2 can transmit the bill package to the BS.
  • Step 514 The CGF2 sends a Data Record Transfer Response message to the GSN, where the Requests Responded parameter includes a serial number N, and the Cause parameter is set to Request Acccptcd.
  • Step 601 The GSN sends a Data Record Transfer Request message to the CGF1 (the primary CGF), and the Packet Transfer Command parameter is a Send Data Record Packet, and the serial number of the message header is M.
  • Step 602 After receiving the bill package, the CGF1 securely saves the bill in the package.
  • Step 603 the communication between the GSN and the CGF1 is interrupted, and the GSN cannot receive the response from the CGF1.
  • Step 604 the GSN detects the link with the backup CGF (CGF2) (using Echo Request). If it is normal, the GSN sends the same CDR to the CGF1 to the CGF2, using the Data Record Transfer Request message, Packet Transfer Command.
  • the parameter is Send possible duplicated Data Record Packet, and the serial number of the message header is N.
  • Step 605 The CGF2 receives and processes the CDR packet. Since the CDR packet is identified as possible duplicated, the CGF2 only caches the CDR packet, and is not immediately sent to the BS.
  • Step 606 The CGF2 sends the correct acknowledgement information to the GSN, and uses a Data Record Transfer Response message, where the Requests Responded parameter includes a serial number N, and the Cause parameter is set to Request Accepted.
  • the GSN may delete the successfully transmitted CDR packet (but may repeat), but still retain the serial number (ie, M and N) sent by the CDR packet to CGF1 and CGF2.
  • Step 608 After the CGF1 is restored, the Node Alive Request message is sent to the GSN, and the GSN learns that the CGF1 can communicate with the CGF1.
  • step 609 the GSN confirms by using a Node Alive Response message.
  • step 610 For the Data Record Transfer Request message that is not confirmed in the previous step (in step 601), the GSN sends an empty test packet to the CGF1, and the empty packet is only the Data Record Packet parameter does not include the bill data, and everything else is the same. (The serial number in the message header is still M).
  • Step 611 CGF1 responds with a Data Record Transfer Response message
  • the Requests Responded parameter contains the serial number M, and the Cause parameter is set to Request related to possibly duplicated packets already fulfilled 0. Since the CGF1 has saved the bill package before the CGF1 loses contact with the GSN, it is considered to be a duplicate for the test bill package. of.
  • Step 612 After receiving the response message of the CGF1, the GSN knows that the CGF1 has received and saved the bill package, and notifies the CGF2 to cancel the bill package.
  • the message used is Data Record Transfer Request, and the Packet Transfer Command parameter is a Cancel Data Record Packet.
  • the sequence number of the Released Packets parameter contains the serial number N.
  • Step 613 The CGF2 deletes the bill package from the cache.
  • Step 614 The CGF2 sends a Data Record Transfer Response message to the GSN, where the Requests Responded parameter includes a serial number N, and the Cause parameter is set to Request Acccptcd.
  • the current transmission method has the following problems:
  • CGF1 is interrupted for a period of time.
  • the GSN sends a suspicious heavy packet to CGF2, and sets the serial number AM ⁇ N of the suspected heavy packet. Due to CGFl interruption, the suspicious heavy packet will not be processed temporarily.
  • the general network speed is very high, assuming that the traffic volume reaches 10000. Strip/s, each packet only stores one bill, then the serial number will reach M again in less than 7 seconds (because the maximum number of serial numbers is 65535), then if you want to continue to send a single packet, you can only Skip M ⁇ N serial numbers, that is, after the new serial number reaches M-1, the serial number of the next single packet is not M, but N+1. Otherwise, the CGF cannot judge after the CGF returns the package of M ⁇ N.
  • the reply is the serial number of the suspected duplicate package or the normal package.
  • skipping the serial number of ⁇ can solve the above problem, it will result in a decrease in the available serial number, assuming Echo The request is 3 seconds once, and the Echo Response is not received for 3 consecutive times, and the link is interrupted. In 9 seconds, the GSN still does not know that the CGF1 link is interrupted, so that 65535 bills are continuously sent to CGF1, and CGF1 is all. Unable to respond, so the suspected heavy packet will exhaust all the serial number resources, which will cause the GSN and CGF2 to continue to communicate normally. It should be noted that even if the GSN and CGF1 are interrupted, the number of suspicious heavy packets sent by the GSN to CGF2 does not reach 65,535.
  • Step 701 The GSN continuously sends multiple packets to the CGF1, and the serial number is from X to Y;
  • Step 702 CGF1 has actually been interrupted
  • Step 703 CGF1 does not give any response to the GSN
  • Step 704 the GSN finds that the CGF1 link is interrupted and is redirected to CGF2.
  • Step 705 the GSN sends the suspicious heavy packet whose serial number is X ⁇ Y to the CGF2, and the serial number corresponding to the CGF2 is 1 ⁇
  • Step 706 the GSN continuously sends a new bill to the CGF2, causing the new billet serial number to return to the M-1;
  • Step 707 to send the next bill package, the serial number must skip ⁇ , that is, the serial number of the next bill package is N+1.
  • the above-mentioned suspicious heavy packet occupies a large amount of the stream number resource in the case of a small amount of traffic, which is difficult to occur, so if the number of bills sent by the unit time is limited, This problem can be solved, but it will also limit the transmission speed of data under normal conditions and waste a lot of bandwidth. If you only expand the scope of the serial number, such as extending it from WORD to DWROD, the first thing is the protocol compatibility problem. Secondly, it can't solve the duplicate number of the suspected heavy packet and the normal packet (because if 10000 each The speed of the second, after 120 hours of CGF1 interruption, the serial number of the DWORD will also repeat).
  • the main purpose of the embodiments of the present invention is to provide a method and system for processing a bill package, so as to solve the problem that the suspicious heavy packet occupies the serial number resource without limiting the network transmission speed.
  • the embodiment of the invention provides a method for processing a bill package, the method comprising:
  • the general packet radio service support node GSN sends a bill package to the billing gateway function CGF, and the bill package is a normal packet or a suspicious heavy packet, and the message header of the message for sending the bill package includes a serial number and a message body. Contains the package time;
  • the CGF sends a response message to the GSN to receive the bill package, and the packet transmission response command Packet Transfer Response Command information element is used to identify that the response message is for a normal packet or for a suspicious heavy packet. .
  • the method also includes:
  • the GSN determines the packet time corresponding to the serial number to be used before composing the bill package. Whether the number of the packet time in the list is greater than a preset threshold, if it is greater than, the group packet is stopped; otherwise, the group packet is continued, and the composed CDR packet is sent to the CGF, and the message of the CDR packet is sent.
  • the message header includes the serial number to be used, and the packet time in the message body that includes the bill package.
  • the method also includes:
  • the CGF After receiving the message that the GSN sends the bill package, the CGF sets the group packet time of the bill package to the group time list corresponding to the serial number of the bills that are locally maintained by the CGF. The packet time is compared. If there is the same group packet time in the group time list maintained by the CGF, the bill package is discarded; otherwise, the bill package is received.
  • the method further includes: equal to a preset threshold, if yes, deleting the earliest group packet time in the group packet time list, and appending the newly received group packet time to the In the group time list; if not, the newly received group time is directly added to the group time list.
  • the method also includes:
  • the CGF deletes or releases the cached suspicious heavy packet in the network management, and sends a Delete Possible Duplicate Packet Sequence Number Request message to the GSN, where the message body includes the serial number of the deleted suspicious heavy packet and the packet time;
  • the GSN After receiving the Delete Possible Packet Sequence Number Request message, the GSN searches for a local serial number and a packet time corresponding to the suspected heavy packet, and if yes, deletes the group under the serial number corresponding to the suspected heavy packet. Packet time, and delete the suspicious heavy packet number response to the CGF response to the Delete possibly Packet Sequence Number Response message.
  • the method further includes Includes:
  • the GSN notifies the other CGF to delete the packet time under the serial number corresponding to the suspected heavy packet;
  • the other CGF After the other CGF deletes the packet time corresponding to the serial number of the suspected re-packet, it responds to the GSN, and the Packet Transfer Response Command information element in the response message is used to identify the serial number of the suspected heavy packet.
  • the embodiment of the present invention further provides a processing system for a bill package, the system comprising: a universal packet radio service support node GSN and a charging gateway function CGF, where
  • the GSN is configured to send a bill package to the CGF, where the bill package is a normal packet or a suspicious heavy packet, and the message header for the message for sending the bill package includes a serial number, and the packet body includes the packet time. ;
  • the CGF is configured to receive a bill package sent by the GSN, and send a response message to the GSN to receive the bill package, and the packet transmission response command Packet Transfer Response Command information element in the response message is used to identify the The response message is for a normal package or for a suspected heavy package.
  • the GSN is further configured to maintain a group packet time list of the bill package corresponding to the serial number, and each group packet time in the group packet time list is sorted in chronological order;
  • the group packet Before the CDR package is formed, it is determined whether the number of grouping time in the group time list corresponding to the running water number is greater than a preset threshold. If it is greater than, the group packet is stopped; otherwise, the group packet is continued, and will be composed.
  • the single packet is sent to the CGF, and the message header of the message for sending the bill package includes the serial number to be used, and the packet time of the message packet including the bill package.
  • the CGF is further configured to: after receiving the message that the GSN sends the bill package, compare the group packet time in the bill group time list, if the CGF locally maintains the group packet time list exists and If the single packet includes the same packet time, the CDR packet is discarded; otherwise, Receive the bill package.
  • the CGF is further configured to: after receiving the bill package, determine whether the number of group packet times in the group maintenance time list that is locally maintained is greater than or equal to a preset threshold, and if yes, delete the group The earliest packet time in the packet time list, and appending the newly received group packet time to the group packet time list; if not, directly appending the newly received group packet time to the group packet time list.
  • the CGF is further configured to: delete or release a suspenseful re-packet of its own cache under the control of the network management, and send a Delete Possible Packet Sequence Number Request message to the GSN, where the message includes the serial number and group of the deleted suspicious heavy packet.
  • the GSN searches for a local serial number and a packet time corresponding to the suspected heavy packet, and if yes, deletes the serial number corresponding to the suspected heavy packet. The grouping time, and responding to the CGF to delete the suspected duplicate packet sequence number response message.
  • the GSN is further configured to notify the other CGF to delete the corresponding suspicious heavy packet after the suspected heavy packet is sent to other CGFs after deleting the grouping time under the serial number of the corresponding suspected heavy packet.
  • the grouping time under the serial number is further configured to notify the other CGF to delete the corresponding suspicious heavy packet after the suspected heavy packet is sent to other CGFs after deleting the grouping time under the serial number of the corresponding suspected heavy packet.
  • the GSN is responded to, and the Packet Transfer Response Command information element in the response message is used to identify the suspected heavy packet. serial number.
  • the embodiment of the present invention further provides a method for processing a bill package.
  • the method includes: the billing gateway function CGF deletes or releases a suspenseful re-packet of its own cache under the control of the network management, and the CGF sends a GWP to the general packet radio service support node GSN.
  • Sending and deleting a suspicious heavy packet serial number request message the message body includes a serial number of the deleted suspicious heavy packet;
  • the GSN After receiving the Delete Possible Packet Sequence Number Request message, the GSN searches for a serial number corresponding to the suspected heavy packet. If yes, deletes the serial number corresponding to the suspected heavy packet, and sends a response to the CGF to delete the suspected heavy packet. The serial number responds to the Delete possible Packet Sequence Number Response message.
  • the method further includes:
  • the GSN If the suspected re-packet is sent to another CGF, the GSN notifies the other CGF to delete the serial number corresponding to the suspected heavy packet;
  • the other CGF After the other CGF deletes the serial number corresponding to the suspicious heavy packet, it responds to the GSN.
  • the present invention also provides a processing system for a bill package, the system comprising: a general packet radio service support node GSN and a charging gateway function CGF, wherein
  • the CGF is configured to delete or release a suspenseful re-packet of its own cache under the control of the network management, and send a Delete Possible Repeated Packet Sequence Number Request message to the GSN, where the message body contains the deleted suspicious weight
  • the GSN is configured to: after receiving the Delete Possible Packet Sequence Number Request message, find whether there is a serial number corresponding to the suspected heavy packet in the local area, and if yes, delete the serial number corresponding to the suspected heavy packet. And responding to the CGF to delete the suspected duplicate packet sequence number response message.
  • the GSN is further configured to: after deleting the serial number corresponding to the suspected heavy packet, if the suspected heavy packet is sent to another CGF, the GSN notifies the other CGF to delete the serial number corresponding to the suspected heavy packet;
  • a method and system for processing a bill package according to an embodiment of the present invention, by using a Packet Transfer Response Command information element in a bill packet response message to distinguish whether the response message is for a normal packet or a suspicious heavy packet, so that normal operation can be realized.
  • the serial number of the package and the suspicious heavy packet are separately maintained, which can make the bill-to-bill transmission process clearer and, more importantly, due to normal packets and suspicious.
  • the serial number of the heavy packet is separately maintained, so the long-term occupation of the serial number of the suspected heavy packet does not affect the transmission of the normal single ticket.
  • the message of deleting the suspicious heavy packet serial number sent from the CGF to the GSN, and the message sent from the GSN to the CGF to delete the reclaimable serial number response are added for clearing
  • the packet time corresponding to the suspicious heavy packet flow number left on the GSN side this can not only effectively release the packet time resource corresponding to the suspected heavy packet flow number on the GSN side, but also prevent the GSN from sending a suspicious heavy packet to other CGFs.
  • the command causes other CGFs to release the same suspicious heavy package to the billing center.
  • FIG. 1 is a schematic diagram of a relationship between CTF, CDF, and CGF in an existing 3GPP network
  • FIG. 2 is a schematic diagram of an existing GTP, a bearer of a protocol
  • FIG. 3 is a schematic structural diagram of an existing GTP, a message header
  • FIG. 4 is a schematic diagram of a single-packet transmission process in a normal situation in the prior art
  • FIG. 5 is a schematic diagram of a transmission process in which the connection between the GSN and the CGF1 is interrupted before the single packet is correctly received in the prior art
  • FIG. 6 is a schematic diagram of a transmission process in which a connection between GSN and CGF1 is interrupted after a single packet has been correctly received in the prior art
  • FIG. 7 is a schematic diagram of a transmission process of skipping a suspicious heavy packet flow number by sending a serial number of a normal single ticket in the prior art
  • FIG. 8 is a flowchart of a method for processing a bill package according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of a single-packet transmission process with a packet time in a normal case according to an embodiment of the present invention
  • FIG. 10 is a schematic diagram of a transmission process of a connection interruption between GSN and CGF1 before a single packet is correctly received according to an embodiment of the present invention
  • FIG. 11 is a schematic diagram of a transmission process of a link interruption between GSN and CGF1 after a single packet has been correctly received according to an embodiment of the present invention
  • FIG. 12 is a schematic diagram of a process for manually deleting or releasing a suspicious heavy packet (excluding a packet time) according to an embodiment of the present invention
  • FIG. 13 is a schematic diagram of a process for manually deleting or releasing a suspicious heavy packet (including a packet time) according to an embodiment of the present invention. detailed description
  • a method for processing a bill package mainly includes: a GSN sending a bill package to a CGF, the bill packet being a normal packet or a suspicious heavy packet, and a message header for sending a message of the bill package
  • the packet includes a serial number, and the message body includes a packet time.
  • the CGF sends a response message to the GSN to receive the bill package, and the Packet Transfer Response Command information element in the response message is used to identify that the response message is for a normal packet or For suspicious heavy packs.
  • the Packet Transfer Response Command information element is used to distinguish whether the response message is for a normal packet or a suspicious heavy packet, so that the serial number of the normal packet and the suspected heavy packet can be separately maintained, and the flow of the single packet transmission can be made clearer, and more importantly, Because the serial number of the normal packet and the suspected heavy packet are separately maintained, the long-term occupation of the serial number of the suspected heavy packet does not affect the transmission of the normal single packet.
  • the IE-Packet Transfer Response Command is used to distinguish whether the response packet is a suspicious packet or a normal packet, so that the serial number of the normal packet and the suspicious packet can be separately maintained.
  • the processing flow of the bill package includes:
  • Step 801 The GSN sends a plurality of bill package messages to the CGF1 (the primary CGF), and the sent message is: Data Record Transfer Request.
  • Packet Transfer Command 5 indicates Send Data Record Packet With Time, and the serial number sent to CGF 1 is X ⁇ Y.
  • Step 802 CGF1 has actually been interrupted.
  • step 803 the GSN repeatedly attempts to resend the stream number X to Y to the CGF1, but the CGF1 does not respond to the GSN.
  • step 804 the GSN detects that the CGF1 link is interrupted, and the CDR packet transmission direction is redirected to CGF2 (Standby CGF).
  • Step 805 The GSN sends the suspicious heavy packet that has not received the CGF1 response to the CGF2, and the sent message is: Data Record Transfer Request.
  • t ⁇ : Packet Transfer Command 6 means Send possibly duplicated Data
  • Step 806 The CGF2 sends a response message that the suspicious heavy packet has been received, and the sent message is: Data Record Transfer Response.
  • the water number and the suspicious heavy package are independent
  • the packet so the serial number of the normal packet and the serial number of the suspected heavy packet can be used completely independently, so the serial number of the normal packet message can completely occupy M ⁇ N.
  • the embodiment of the present invention further expands the definition of the IE: Packet Transfer Command when the GSN sends a Data Record Transfer Request to the CGF.
  • the packet transmission time is included in the packet sent by the indication.
  • the structure of the expanded Data Record Transfer Request message is as shown in Table 9 below:
  • 3..6 DWORD TIME indicates the package UTC time from 1970 1 Starting on the 1st of the month
  • Number of Data Records represents a single number ( 1...N )
  • the packet time is DWORD TIME, which is accurate to the second. It is the time when multiple CDRs are combined into one CDR package. The same CDR package can only be grouped at most once, no matter how many times the packet is retransmitted, which CGF is sent to this. The packet time remains unchanged. In addition, in order to ensure the uniqueness of the data packet, the serial number of the data packet in the same second cannot be repeated, that is, up to 65,536 consecutive messages can be sent continuously before receiving the CGF response message within one second. Single package.
  • the CGF sends a CDR packet response message (Data Record Transfer Response) to the GSN.
  • the IE: Packet Transfer Response Command, ⁇ port is shown in Table 7 above; IE-Packet Transfer Response Command is used in addition to If the single packet is a suspicious packet or a normal packet, it can also indicate that the response packet contains the packet time.
  • the IE: Sequence Numbers of Packets With Time, ⁇ is shown in Table 11 below:
  • the CGF can more accurately determine whether the CDR package has been successfully received through the "sequence number + group packet time"; the GSN can also send up to 65536 CDRs to the CGF in the same second, which greatly utilizes High speed network performance.
  • the specific process steps are described below:
  • Table 12 shows the data structure of the CGF and GSN maintenance packet serial number.
  • each serial number corresponds to the received CDR packet time list.
  • the packet time in the list should be chronological. Sorting, in addition, the number of grouping time in the list should be limited (by a preset threshold;), for example, the number is limited to 5, which means that GSN and CGF maintain at least 5 for the same serial number.
  • the packet time of seconds is the data structure of the CGF and GSN maintenance packet serial number.
  • the GSN group package Before the GSN group package, first determine the group time list corresponding to the serial number to be used. Whether the number of packets in the middle group is less than 5, if it is less than 5, the packet can be grouped. Otherwise, the packet corresponding to the serial number does not receive the response from the CGF for at least 5 seconds. The network link must be abnormal, so it can no longer be Continue to pack.
  • the CGF compares the packet time of the packet with the packet time in the packet time list corresponding to the local serial number. If an equal situation occurs, It means that the package has been received before and needs to be discarded; otherwise, the package is a brand new package and needs to be received. After receiving, it is also required to determine whether the number of group packet time lists is greater than or equal to 5, and if greater than or equal to 5, the earliest group packet time needs to be deleted, and then the newly received group packet time is added to the group packet time list; Append the newly received group package time to the group package time list.
  • the GSN When the GSN receives the CGF's Data Record Transfer Response, it needs to release the locally maintained packet time according to the serial number and the packet time of the single packet in the response message, so that the subsequent new group can be made.
  • the package work inserts a new package time.
  • FIG. 9 shows the single-packet transmission process with the packet-packing time under normal conditions, including the following steps: Step 901: The GSN sends the bill package to the CGF, and the corresponding message sent is Data Record.
  • Step 902 The CGF receives and processes the message, and successfully stores the CDRs in the package to the local.
  • Step 903: The CGF deletes Timel and appends Time6 in the group time list of SeqNo N.
  • the GSN fails to receive a response, it will resend the request for the bill package within the rated time and before the set number of times.
  • FIG. 10 shows a transmission process in which the connection between the GSN and the CGF1 is interrupted before the single packet is correctly received, which not only realizes the high-speed transmission of the packet-to-packet time, but also realizes the normal single-packet and the suspicious heavy-package flow.
  • the numbers are independent of each other.
  • the process shown in Figure 10 mainly includes the following steps:
  • CGF1 the primary CGF
  • the serial number in the message header is M
  • the packet time is dwTime.
  • Step 1002 because GSN and CGF1 lose contact, CGF1 does not receive the bill package.
  • step 1003 the GSN cannot receive the response of CGF1.
  • step 1005 CGF2 receives and processes the bill package. Because the bill packet is identified as possible duplicated, CGF2 only caches the bill package and does not immediately send it to the BS.
  • Step 1006 CGF2 sends the correct receiving confirmation message to the GSN, using Data Record.
  • the GSN may delete the successfully transmitted CDR packet (but may repeat), but still retain the serial number (ie, M and N) and the packet time of the CDR packet sent to CGF 1 and CGF2. dwTime.
  • Step 1008 After the CGF1 is restored, the Node Alive Request message is sent to the GSN, and the GSN learns that the CGF1 can communicate with the CGF1.
  • step 1009 the GSN confirms by using a Node Alive Response message.
  • Step 1010 For a Data Record Transfer Request message that has not been confirmed before,
  • the GSN sends an empty test ticket to the CGF1.
  • the empty packet is only the Data Record Packet With Time parameter that does not contain the bill data.
  • the others are the same (the serial number in the header or M, the packet time or dwTime).
  • Step 1011 CGF 1 responds with a Data Record Transfer Response message, where Packet
  • the Sequence Numbers of Packets With Time parameter contains the serial number N and the packet time dwTime.
  • Step 1013 The CGF2 can transmit the bill package to the BS.
  • Figure 11 shows the transmission process of the link interruption between GSN and CGF1 after the single packet has been correctly received. It not only realizes the high-speed transmission of the packet-to-packet time, but also realizes the normal single-packet and suspicious heavy-package flow. The numbers are independent of each other. The process shown in Figure 11 mainly includes the following steps:
  • CGF1 the primary CGF
  • the serial number in the message header is M
  • the packet time is dwTime.
  • Step 1102 After receiving the bill package, the CGF1 securely saves the bill in the package.
  • Step 1103 the communication between the GSN and the CGF1 is interrupted, and the GSN cannot receive the response from the CGF1.
  • Step 1105 The CGF2 receives and processes the bill package. Because the bill packet is identified as possible duplicated, the CGF2 only caches the bill package and does not immediately send it to the BS.
  • Step 1107 the GSN may delete the successfully transmitted bill package (but may repeat), but The serial number (ie, M and N) and the packet time dwTime of the bill package sent to CGF1 and CGF2 are still retained.
  • Step 1108 After the CGF1 is restored, the Node Alive Request message is sent to the GSN, and the GSN learns that the CGF1 can communicate with the CGF1.
  • step 1109 the GSN confirms by using a Node Alive Response message.
  • the GSN sends an empty test CDR package to CGF1.
  • the empty CDR package only contains the CDR data in the Data Record Packet With Time parameter, and everything else is the same (the serial number in the message header is M, the packet time is still dwTime).
  • the Cause parameter is set to Request related to possibly duplicated packets already fulfilled. Because CGF1 has saved the bill package before CGF1 loses contact with the GSN, it is considered duplicated for the test bill package.
  • Step 1112 After receiving the response message of the CGF1, the GSN learns that the CGF1 has received and saved the bill package, and notifies the CGF2 to cancel the bill package.
  • the Sequence Numbers of Packets With Time parameter includes the serial number N and the packet time dwTime.
  • Step 1113 CGF2 deletes the bill package from the cache.
  • the dwTime and Cause parameters are set to Request Accepted.
  • Figure 12 shows the process of manually deleting or releasing a suspected heavy packet (without packet time), which mainly includes the following steps:
  • Step 1203 the CGF sends a Delete to duplicated Packet Sequence to the GSN.
  • the message serial number is ⁇
  • the message body Sequence Numbers of Packets contains the suspicious heavy packet number X.
  • the IE- Sequence Numbers of Packets are included in the Request message body.
  • the structure of the IE-Sequence Numbers of Packets is shown in Table 14 below: Class Octets Data Notes
  • Step 1204 After receiving the message, the GSN searches whether there is a corresponding suspicious heavy packet serial number X in the local area. If yes, deletes the suspected heavy packet serial number X; if it does not exist, it does not process.
  • Step 1205 The GSN sends a Delete Possible Duplicate Packet Sequence Number Response message to the CGF, where the serial number in the IE-Requests Responded is N.
  • the structure of the Delete Possible Duplicate Packet Sequence Number Response message is as shown in Table 15 below.
  • the structure of the IE-Requests Responded is as shown in Table 6 above:
  • Step 1207 The other CGF sends a Data Record Transfer Response message to the GSN. Step 1208, deleting the suspicious heavy packet content and the serial number resource corresponding thereto.
  • Step 1303 the CGF sends a Delete to duplicated Packet Sequence to the GSN.
  • Delete Possible duplicated Packet Sequence Number The structure of the Request message is shown in Table 13 above; Delete Possible duplicated Packet Sequence Number Request message body contains IE- Sequence Numbers of Packets With Time, where IE-Sequence Numbers of Packets With Time is as above Table 11 shows.
  • Step 1305 the GSN sends a Delete to duplicated Packet Sequence to the CGF.
  • the serial number in the IE-Requests Responded in the message is N.
  • the GTP' protocol needs to be extended as follows:
  • the IE-Packet Transfer Response Command In the Data Record Transfer Response message body, the IE-Packet Transfer Response Command must be selected (used to distinguish whether the serial number of the reply is for a normal packet or a suspected heavy packet), thereby realizing the serial number of the normal packet and the suspected heavy packet.
  • Table 8 For the structure of the new Data Record Transfer Response message, see Table 8 above.
  • Table 7 For the structure of the IE-Packet Transfer Response Command is shown in Table 7 above.
  • the message content includes IE-Sequence Numbers of Packets or IE-Sequence Numbers of Packets With Time.
  • the GSN is notified to delete the packet time corresponding to the suspicious heavy packet serial number sent to the CGF.
  • the structure of the Delete possible duplicated Packet Sequence Number Request message is shown in Table 13, Delete possibly duplicated Packet.
  • For the structure of the Sequence Number Response message refer to Table 15 above.
  • For the structure of IE-Sequence Numbers of Packets see Table 14 above.
  • For the structure of IE-Sequence Numbers of Packets With Time see Table 11 above.
  • For the structure of IE-Requests Responded see Table 6 above. ;
  • the IE-Sequence Numbers of Packets without the packet time is added to be compatible with the GTP protocol that does not support the packet time;
  • the structure of the Record Packet is the same, and DWORD TIME is added to the structure of the IE-Data Record Packet to indicate the packet time.
  • the structure of IE-Data Record Packet With Time is shown in Table 10 above.
  • the embodiment of the present invention further provides a processing system for the bill package, including: GSN and CGF.
  • the GSN is configured to send a CDR packet to the CGF, where the CDR packet is a normal packet or a suspected re-packet, and the message header of the message for sending the CDR packet includes a serial number, and the packet body includes a packet time.
  • the CGF is configured to receive the CDR packet sent by the GSN, and send a response message to the GSN to receive the CDR packet, and the Packet Transfer Response Command information element in the response message is used to identify that the response message is for a normal packet or For suspicious heavy packs.
  • the GSN is further configured to maintain a group packet time list of the CDR package corresponding to the serial number, and each group packet time in the group packet time list is sorted in chronological order;
  • the CGF is further configured to: after receiving the message that the GSN sends the bill package, compare the group packet time in the group packet time list of the words, if the CGF locally maintains the group packet time list. If there is the same packet time as the bill package, the bill package is discarded; otherwise, the bill package is received.
  • the CGF is further configured to: after receiving the bill package, determine whether the number of grouping times in the group maintenance time list that is locally maintained is greater than or equal to a preset threshold, and if yes, delete the Determining the earliest group packet time in the group packet time list, and appending the newly received group packet time to the group packet time list; if not, directly appending the newly received group packet time to the group packet time list in.
  • the CGF is further configured to: delete or release the buffered suspicious heavy packet in the network management, and send a Delete Possible Packet Sequence Number Request message to the GSN, where the message includes the serial number and the group of the deleted suspected heavy packet.
  • the GSN is further configured to: after deleting the grouping time under the serial number corresponding to the suspected heavy packet, if the suspected heavy packet is sent to another CGF, the GSN notifies the other CGF to delete the corresponding suspicious heavy packet.
  • the grouping time under the serial number if the suspected heavy packet is sent to another CGF, the GSN notifies the other CGF to delete the corresponding suspicious heavy packet.
  • the embodiment of the present invention further provides a processing system for the CDR package, including: GSN and CGF, where
  • the CGF is configured to delete or release the suspenseful re-packet of the cached packet under the control of the network management, and send a Delete Possible Duplicate Packet Sequence Number Request message to the GSN, where the message body includes the serial number of the deleted suspicious heavy packet;
  • the GSN is configured to: after receiving the Delete Possible Packet Sequence Number Request message, find whether there is a serial number corresponding to the suspected heavy packet locally, if yes, delete the serial number corresponding to the suspected heavy packet, and respond to the CGF by the Delete Possible Packet Sequence Number Response message; if it does not exist, it will not be processed.
  • the GSN is further configured to: after deleting the serial number corresponding to the suspected heavy packet, if the suspected heavy packet is sent to another CGF, the GSN notifies the other CGF to delete the serial number corresponding to the suspected heavy packet;

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种话单包的处理方法和系统,方法包括:通用分组无线服务支持节点(GSN)向计费网关功能(CGF)发送话单包,该话单包为正常包或可疑重包,且用于发送话单包的消息的消息头中包含流水号、消息体中包含组包时间;CGF向GSN发送收到该话单包的回应消息,且该回应消息中的包传输响应命令(Packet Transfer Response Command)信息元用于标识该回应消息是针对正常包或针对可疑重包。通过本发明,实现了在不限制网络传输速度的情况下,解决可疑重包占用流水号资源问题。

Description

一种话单包的处理方法和系统 技术领域
本发明涉及通信领域, 尤其涉及一种话单包的处理方法和系统。 背景技术
在第三代合作伙伴计划 ( 3GPP, The 3rd Generation Partnership Project ) 描述的电信网络中, GTP, ( GPRS protocol, used for CDR transport )协议 V2版本的主要功能如下所述:
图 1 示出了 3GPP 网络中计费触发功能 (CTF , Charging Trigger Function )、 计费数据功能( CDF , Charging Data Function )和计费网关功能 ( CGF , Charging Gateway Function )之间的关系, 其中, Ga接口是 CDF 向 CGF传输计费话单( CDRs, Charging Data Records )的通讯接口, Ga接 口遵从的协议是 GTP,协议。
图 2示出了 GTP,协议的承载情况, 从图中可以看出, GTP,协议可以用 用户数据报协议 ( UDP, User Datagram Protocol )或者传输控制协议 ( TCP, Transmission Control Protocol )承载。
GTP'协议定义的主要内容如下:
一、 GTP,消息头 ( GTP, Message Header )
GTP,消息头重用通用分组无线服务隧道协议 ( GTP, GPRS Tunnelling Protocol )消息头( GTP Message Header ),如图 3所示, GTP Message Header 中定义了一些标志位(Version, PT等等), 消息类型 ( Message Type )、 长 度(Length )和流水号 (Sequence Number )。 其中, Version为版本号, PT 为协议类型。
二、 GTP,消息类型 ( GTP, Message Type ) 下面是 GTP,协议使用的消息类型, 前三种重用了 GTP协议的消息类 型, 后六种是 GTP,协议新增的消息类型:
1、 Echo Request (向对方节点握手请求);
2、 Echo Response (向对方节点回应握手请求);
3、 Version Not Supported(回应本节点不支持对方节点发送消息的版本, 并告知本节点能够支持的最新版本号, 该消息无须回应;);
4、 Node Alive Request (通知对方本节点已经激活;);
5、 Node Alive Response (向对方节点回应 Node Alive Request );
6、 Redirection Request ( CGF通知 GSN, 指示 GSN将话单发送到其他 CGF );
7、 Redirection Response ( GSN向 CGF回应 Redirection Request );
8、 Data Record Transfer Request ( GSN向 CGF发送话单包;);
9、 Data Record Transfer Response( CGF向 GSN回应 Data Record Transfer Request )。
上述消息中的 Data Record Transfer Request和 Data Record Transfer
Response是传输 CDRs时使用的消息, 是 GTP,协议的核心内容。
其中, Data Record Transfer Request的消息结构如下表 1所示, 可以包 括以下 5种信息元 ( IE, Information Element ):
1、 Packet Transfer Command (包传输命令 );
2、 Data Record Packet (话单包);
3、 Sequence Numbers of Released Packets (释放包的流水号 );
4、 Sequence Numbers of Cancelled Packets (删除包的流水号);
5、 Private Extension (用户或运营商自定义的扩展信息)。
Information Element Presence requirement
Packet Transfer Command Mandatory (必选) Data Record Packet Conditional (受限)
Sequence Numbers of Released Packets Conditional
Sequence Numbers of Cancelled Packets Conditional
Private Extension Optional (可选 )
表 1
其中, Packet Transfer Command是必选参数, 目前有以下四种值: 1、 1 = 'Send Data Record Packet':
发送正常话单包, 此时 IE: Data Record Packet必选, 该 IE的结构如下 所示:
Figure imgf000005_0001
表 2
2、 2= 'Send possibly duplicated Data Record Packet': 发送可能重复话单包, 此时 IE: Data Record Packet必选, 该 IE结构如 前述表 2所示。
当现网存在多个 CGF时, 由于 CGF1出现网络故障, GSN向 CGF1发 送的话单包没有及时收到回应, 此时 GPRS 支持节点 (GSN )会将同样的 话单包以' Send possibly duplicated Data Record Packet'命令的方式发送给 CGF2 (备用 CGF ), CGF2收到这样的数据包后只是暂时緩存在本地, 直到 CGF2收到 GSN对应数据包的 'Cancel/Release Data Record Packet'命令后, 才会删除緩存在本地的可疑重复话单包( Cancel )或者将该可疑重复话单包 释放 ( Release )到正常的话单目录。
3、 3= 'Cancel Data Record Packet':
删除可疑重复话单包, 此时 IE: Sequence Numbers of Cancelled Packets 必选, 该 IE的结构如下表 3所示:
Figure imgf000006_0001
表 3
4、 4 = 'Release Data Record Packet':
释放可疑重复话单包, 此时 IE: Sequence Numbers of Released Packets 必选, 该 IE的结构如下表 4所示:
Class Octets Data 备注
IE-T 1 Type=249 表示 IE- Sequence No Release
IE-L 2..3 Length
4..5 Sequence Number 1
IE-V
n..n+l Sequence Number
N
表 4
Data Record Transfer Response 消息是 CGF 用来回应 Data Record Transfer Request消息、的 , Data Record Transfer Response的消息、结构 ^口下表 5 所示:
Figure imgf000007_0001
表 5
该消息必须包含 Cause (原因)和 Requests Responded (请求响应) 两 种 IE,其中 Cause表示响应结果(接收或者拒绝的原因;); Requests Responded 表示接收成功的话单包流水号, 其结构如下表 6所示, 该 IE可以同时包含 多个话单包的流水号, 即一个 Data Record Transfer Response消息可以回复 多个 Data Record Transfer Request。
Class Octets Data 备注
IE-T 1 Type=253 表示 IE-Sequence
Responded
IE-L 2..3 Length
4..5 Sequence Number 1
IE-V
n..n+l Sequence Number
Figure imgf000008_0001
GTP,协议中话单包传输的方法包括:
一、 正常情况下话单包传输, 其传输过程如图 4所示, 主要包括以下 步驟:
步驟 401 , GSN发送话单包到 CGF, 发送的相应的消息为 Data Record Transfer Request (数据包请求 ), 其中 Packet Transfer Command参数是 Send Data Record Packet , 消息头中的流水号为 N;
步驟 402, CGF收到并处理消息, 并存储包中的话单到本地; 步驟 403 , CGF发送响应消息到 GSN,消息内容为 Data Record Transfer Response (回应数据包请求), 其中 Requests Responded参数中包含了流水 号 N, Cause参数置为 Request Accepted (请求接受 );
步驟 404 , GSN接收消息 Data Record Transfer Response后, 从緩存内 删除流水号为 Ν的话单包。
如果 GSN接收响应时失败, 会在额定时间内和达到设定次数前重新发 送请求。
二、 话单包未正确接收前 GSN-CGF1之间的连接中断, 其传输过程如 图 5所示, 主要包括以下步驟:
步驟 501 , GSN向 CGF1 (主用 CGF )发 Data Record Transfer Request 消息, 其中 Packet Transfer Command参数是 Send Data Record Packet, 消息 头的流水号为 M。
步驟 502 , 由于 GSN与 CGF 1之间失去联系, CGF 1没有收到话单包。 步驟 503 , GSN无法收到响应。
步驟 504, GSN检测与 CGF2(备用 CGF )之间的链路(用 Echo Request ), 如果正常, 则 GSN将与送往 CGF1 相同的话单包送往 CGF2, 使用 Data Record Transfer Request消息 , Packet Transfer Command参数是 Send possible duplicated Data Record Packet, 消息头中的流水号为 N。
步驟 505 , CGF2收到并处理话单包, 由于该话单包被标识为 possible duplicated (可能重复), 因此 CGF2只緩存该话单包, 并不立刻送往计费系 统(BS, Billing System )。
步驟 506, CGF2发送正确接收确认信息给 GSN, 采用 Data Record
Transfer Response消息, 其中 Requests Responded参数中包含了流水号 N, Cause参数置为 Request Accepted。
步驟 507, GSN可以将成功发送的话单包(但可能重复)删除, 但是 仍然保留该话单包发向 CGF1和 CGF2的流水号 (即 M和 N )。
步驟 508 , CGF1恢复以后,向 GSN发送 Node Alive Request消息, GSN 获知可以与 CGFl进行通信。
步驟 509, GSN采用 Node Alive Response消息确认。
步驟 510, 对于前面(步驟 501中)未得到确认的 Data Record Transfer Request消息, GSN向 CGFl发送空的测试话单包, 空话单包仅仅是 Data Record Packet参数中不包含话单数据, 其它都一样(消息头中的流水号还 是 M )。
步驟 511 , CGF1 以 Data Record Transfer Response 消息响应, 其中 Requests Responded 参数中包含了流水号 M , Cause 参数置为 Request Acceptedo 由于在这之前 CGFl 已经与 GSN失去联系, CGF1并未收到过 该话单包, 所以对于测试话单包它认为是新的可以接受。
步驟 512 , GSN收到 CGF1的回应消息后,获知 CGF1并未处理测试话 单包, 通知 CGF2 可以将该话单包送给 BS, 采用的消息是 Data Record Transfer Request , Packet Transfer Command 参数是 Release Data Record Packet 其中 Sequence Numbers of the Released Packets参数中包含了流水号 N。 步驟 513 , CGF2可以将话单包传向 BS。
步驟 514, CGF2向 GSN发 Data Record Transfer Response消息, 其中 Requests Responded 参数中包含了流水号 N , Cause 参数置为 Request Acccptcd。
三、 话单包已经正确接收后 GSN-CGF1之间链路中断, 其传输过程如 图 6所示, 主要包括以下步驟:
步驟 601 , GSN向 CGF1 (主用 CGF )发 Data Record Transfer Request 消息 , Packet Transfer Command参数是 Send Data Record Packet , 消息头的 流水号为 M。
步驟 602 , CGF1收到话单包后将包中话单安全保存。
步驟 603 , GSN与 CGF1之间通信中断, GSN无法收到 CGF1的回应。 步驟 604, GSN检测与备用 CGF( CGF2 )之间的链路(用 Echo Request ), 如果正常,则 GSN将与送往 CGF 1相同的 CDR送往 CGF2 ,使用 Data Record Transfer Request 消息 , Packet Transfer Command 参数是 Send possible duplicated Data Record Packet, 消息头的流水号为 N。
步驟 605 , CGF2接收并处理该话单包,由于该话单包被标识为 possible duplicated, 因此 CGF2只緩存该话单包, 并不立刻送往 BS。
步驟 606, CGF2 发送正确接收确认信息给 GSN, 采用 Data Record Transfer Response消息, 其中 Requests Responded参数中包含了流水号 N, Cause参数置为 Request Accepted。
步驟 607, GSN可以将成功发送的话单包(但可能重复)删除, 但是 仍然保留该话单包发向 CGF1和 CGF2的流水号 (即 M和 N )。
步驟 608 , CGF1恢复以后, 向 GSN送 Node Alive Request消息, GSN 获知可以与 CGF1进行通信。
步驟 609, GSN采用 Node Alive Response消息确认。 步驟 610, 对于前面(步驟 601中)未得到确认的 Data Record Transfer Request消息, GSN向 CGFl发送空的测试话单包, 空话单包仅仅是 Data Record Packet参数中不包含话单数据, 其它都一样(消息头中的流水号还 是 M )。
步驟 611 , CGF1 以 Data Record Transfer Response 消息响应, 其中
Requests Responded参数中包含了流水号 M, Cause参数置为 Request related to possibly duplicated packets already fulfilled 0 由于在 CGFl与 GSN失去联 系之前, CGFl已经保存该话单包, 因此对于测试话单包其认为是重复的。
步驟 612 , GSN收到 CGF1的回应消息后,知道 CGF1已经接收并保存 该话单包, 通知 CGF2取消该话单包, 采用的消息是 Data Record Transfer Request, Packet Transfer Command参数是 Cancel Data Record Packet。其中, Sequence Numbers of the Released Packets参数中包含了流水号 N。
步驟 613 , CGF2从緩存中删除该话单包。
步驟 614, CGF2向 GSN发 Data Record Transfer Response消息, 其中, Requests Responded 参数中包含了流水号 N , Cause 参数置为 Request Acccptcd。
目前的传输方法存在以下问题:
CGF1中断一段时间, GSN向 CGF2发送可疑重包,设可疑重包的流水 号 A M~N, 因 CGFl中断, 可疑重包暂时不会处理, 目前一般网速都很高, 假设话务量达到 10000条 /s, 每个数据包只存放一条话单, 那么不到 7秒钟 流水号就会再次达到 M (因为最大的流水号个数是 65535 ), 这时若要继续 发话单包, 只能跳过 M ~ N个流水号, 即新的流水号到达 M-1后, 下一个 话单包的流水号不是 M, 而是 N+1 , 否则 CGF回复 M ~ N的包后, GSN 无法判断回复的是可疑重复包的还是正常包的流水号。 虽然跳过^^^ 的流 水号能够解决上述问题, 但是会造成可用流水号减少的情况, 假设 Echo Request是 3秒一次, 连续 3次收不到 Echo Response才认为链路中断, 那 么在 9秒内, GSN尚且不知和 CGF1链路中断, 这样会连续发送 65535个 话单包给 CGF1 , 而 CGF1全部无法回应, 这样可疑重包就将所有的流水号 资源耗尽, 从而导致 GSN和 CGF2无法继续正常通讯。 需要说明的是, 即 使 GSN和 CGF1 中断后导致 GSN向 CGF2发送的可疑重包个数没有达到 65535个, 后续若 GSN和 CGF3或其他 CGF中断后, 导致 GSN和 CGF2 的可疑重包累加, 最终还是会导致 GSN和 CGF2之间的流水号资源耗尽的 情况。 上述过程见图 7, 步驟说明如下:
步驟 701 , GSN向 CGF1连续发送多个包, 流水号从 X到 Y;
步驟 702, CGF1实际已经中断;
步驟 703 , CGF1没有给 GSN任何回应;
步驟 704, GSN发现和 CGF1链路中断, 重定向到 CGF2;
步驟 705, GSN将流水号是 X~Y的可疑重包发送给 CGF2,对应 CGF2 的流水号是1^~
步驟 706, GSN不断发送新话单到 CGF2, 导致新话单包流水号重新回 到 M-1 ;
步驟 707, 若要再发送下一个话单包, 流水号必须跳过^^^ , 也即下 一个话单包的流水号是 N+1。
另外现有技术中还存在一种情况,协议允许 CGF手工释放 /删除可疑重 包, 但是 CGF释放 /删除可疑重包后, GSN并不知道, GSN还必须维护这 些已经被 CGF手工释 删除的可疑重包、 包括流水号, 这会造成 GSN维 护的可疑重包越来越多, 当 GSN维护的可疑重包个数接近 65535后, 将会 导致通讯无法继续, 给程序的稳定性带来极大的隐患。
可以看出, 上述可疑重包大量占用流水号资源的情况在话务量较小的 情况下是很难出现的, 所以如果通过限制单位时间内发送话单包的数量也 可以解决这个问题, 但这样也会限制正常情况下数据的传输速度, 浪费大 量的带宽。 如果仅仅是扩大流水号的范围, 比如将其由 WORD 扩展到 DWROD, 首先带来的是协议兼容性问题, 其次也同样解决不了可疑重包和 正常包的流水号重复问题 (因为如果 10000条每秒的速度, CGF1中断 120 小时后, DWORD的流水号同样会重复)。
如今硬件发展速度飞快, 运营商对话单传输的速度要求也越来越高, 话单处理能力超过 1 万条每秒的要求已经变得很正常, 因此上述问题要解 决, 就必须找到一种既不限制网络传输速度, 又能解决可疑重包占用流水 号资源问题的方法, 然而现有技术还无法提供满足上述需求的解决方法。 发明内容
有鉴于此, 本发明实施例的主要目的在于提供一种话单包的处理方法 和系统, 以在不限制网络传输速度的情况下, 解决可疑重包占用流水号资 源的问题。
为达到上述目的, 本发明的技术方案是这样实现的:
本发明实施例提供了一种话单包的处理方法, 该方法包括:
通用分组无线服务支持节点 GSN向计费网关功能 CGF发送话单包, 所述话单包为正常包或可疑重包, 且用于发送话单包的消息的消息头中包 含流水号、 消息体中包含组包时间;
所述 CGF向 GSN发送收到所述话单包的回应消息, 且所述回应消息 中的包传输响应命令 Packet Transfer Response Command信息元用于标识所 述回应消息是针对正常包或针对可疑重包。
该方法还包括:
所述 GSN中维护流水号对应的话单包的组包时间列表, 所述组包时间 列表中的各组包时间按照时间先后顺序排序;
所述 GSN在组成话单包之前, 判断即将使用的流水号对应的组包时间 列表中组包时间的个数是否大于预设的阈值, 如果大于, 则停止组包; 否 则, 继续组包, 并将组成的话单包发送给所述 CGF, 且所述发送话单包的 消息的消息头中包含所述即将使用的流水号、 消息体中包含所述话单包的 组包时间。
该方法还包括:
所述 CGF在收到 GSN发送话单包的消息后, 将所述话单包的组包时 间与所述 CGF本地维护的与所述话单包相同的流水号所对应的组包时间列 表中的组包时间进行比较, 如果 CGF本地维护的所述组包时间列表中存在 与所述话单包相同的组包时间, 则丟弃所述话单包; 否则, 接收所述话单 包。
在接收所述话单包后, 该方法还包括: 等于预设的阈值, 如果是, 则删除所述组包时间列表中最早的组包时间, 并将新接收的组包时间追加到所述组包时间列表中; 如果否, 则直接将新 接收的组包时间追加到所述组包时间列表中。
该方法还包括:
所述 CGF 在网管控制下删除或释放自身緩存的可疑重包, 并向所述 GSN发送 Delete possibly duplicated Packet Sequence Number Request消息 , 消息体中包含删除的可疑重包的流水号和组包时间;
所述 GSN收到所述 Delete possibly duplicated Packet Sequence Number Request消息后, 查找本地是否存在对应可疑重包的流水号和组包时间, 如 果存在, 则删除对应可疑重包的流水号下的所述组包时间, 并向所述 CGF 回应删除可疑重包流水号响应 Delete possibly duplicated Packet Sequence Number Response消息。
在 GSN删除对应可疑重包的流水号下的所述组包时间后, 该方法还包 括:
如果所述可疑重包发向过其他 CGF, 所述 GSN通知所述其他 CGF删 除对应可疑重包的流水号下的所述组包时间;
所述其他 CGF删除对应可疑重包的流水号下的所述组包时间后, 回应 所述 GSN, 且回应消息中的 Packet Transfer Response Command信息元用于 标识回应的是可疑重包的流水号。
本发明实施例还提供了一种话单包的处理系统, 该系统包括: 通用分 组无线服务支持节点 GSN和计费网关功能 CGF, 其中,
所述 GSN, 设置为向 CGF发送话单包, 所述话单包为正常包或可疑重 包, 且用于发送话单包的消息的消息头中包含流水号、 消息体中包含组包 时间;
所述 CGF, 设置为接收 GSN发送的话单包, 并向 GSN发送收到所述 话单包的回应消息, 且所述回应消息中的包传输响应命令 Packet Transfer Response Command信息元用于标识所述回应消息是针对正常包或针对可疑 重包。
所述 GSN还设置为, 维护流水号对应的话单包的组包时间列表, 所述 组包时间列表中的各组包时间按照时间先后顺序排序;
在组成话单包之前, 判断即将使用的流水号对应的组包时间列表中组 包时间的个数是否大于预设的阈值, 如果大于, 则停止组包; 否则, 继续 组包, 并将组成的话单包发送给所述 CGF, 且所述发送话单包的消息的消 息头中包含所述即将使用的流水号、 消息体中包含所述话单包的组包时间。
所述 CGF还设置为, 在收到 GSN发送话单包的消息后, 将所述话单 组包时间列表中的组包时间进行比较, 如果 CGF本地维护的所述组包时间 列表中存在与所述话单包相同的组包时间, 则丟弃所述话单包; 否则, 接 收所述话单包。
所述 CGF还设置为, 在接收所述话单包后, 判断本地维护的所述组包 时间列表中组包时间的个数是否大于或等于预设的阈值, 如果是, 则删除 所述组包时间列表中最早的组包时间, 并将新接收的组包时间追加到所述 组包时间列表中; 如果否, 则直接将新接收的组包时间追加到所述组包时 间列表中。
所述 CGF还设置为, 在网管控制下删除或释放自身緩存的可疑重包, 并向所述 GSN发送 Delete possibly duplicated Packet Sequence Number Request消息, 消息中包含删除的可疑重包的流水号和组包时间;
相应的, 所述 GSN收到所述 Delete possibly duplicated Packet Sequence Number Request消息后, 查找本地是否存在对应可疑重包的流水号和组包 时间, 如果存在, 则删除对应可疑重包的流水号下的所述组包时间, 并向 所述 CGF回应删除可疑重包流水号响应 Delete possibly duplicated Packet Sequence Number Response消息。
所述 GSN还设置为, 在删除对应可疑重包的流水号下的所述组包时间 后, 如果所述可疑重包发向过其他 CGF, 所述 GSN通知所述其他 CGF删 除对应可疑重包的流水号下的所述组包时间;
相应的, 所述其他 CGF删除对应可疑重包的流水号下的所述组包时间 后, 回应所述 GSN , 且回应消息中的 Packet Transfer Response Command信 息元用于标识回应的是可疑重包的流水号。
本发明实施例还提供了一种话单包的处理方法, 该方法包括: 计费网关功能 CGF在网管控制下删除或释放自身緩存的可疑重包, 所 述 CGF向通用分组无线服务支持节点 GSN发送删除可疑重包流水号请求 Delete possibly duplicated Packet Sequence Number Request消息 ,消息体中包 含删除的可疑重包的流水号; GSN 收到所述 Delete possibly duplicated Packet Sequence Number Request消息后, 查找本地是否存在对应可疑重包的流水号, 如果存在, 则 删除对应可疑重包的流水号, 并向所述 CGF回应删除可疑重包流水号响应 Delete possibly duplicated Packet Sequence Number Response消息。
在 GSN删除对应可疑重包的流水号后, 该方法还包括:
如果所述可疑重包发向过其他 CGF, 所述 GSN通知所述其他 CGF删 除对应可疑重包的流水号;
所述其他 CGF删除对应可疑重包的流水号后, 回应所述 GSN。
本发明还提供了一种话单包的处理系统, 该系统包括: 通用分组无线 服务支持节点 GSN和计费网关功能 CGF, 其中,
所述 CGF, 设置为在网管控制下删除或释放自身緩存的可疑重包, 并 向所述 GSN发送删除可疑重包流水号请求 Delete possibly duplicated Packet Sequence Number Request消息, 消息体中包含删除的可疑重包的流水号; 所述 GSN, 设置为收到所述 Delete possibly duplicated Packet Sequence Number Request消息后, 查找本地是否存在对应可疑重包的流水号, 如果 存在, 则删除对应可疑重包的流水号, 并向所述 CGF回应删除可疑重包流 水号响应 Delete possibly duplicated Packet Sequence Number Response消息。
所述 GSN还设置为, 在删除对应可疑重包的流水号后, 如果所述可疑 重包发向过其他 CGF, 所述 GSN通知所述其他 CGF删除对应可疑重包的 流水号;
相应的,所述其他 CGF删除对应可疑重包的流水号后,回应所述 GSN。 本发明实施例所提供的一种话单包的处理方法和系统, 通过话单包回 应消息中的 Packet Transfer Response Command信息元来区分回应消息是针 对正常包还是可疑重包, 这样就能够实现正常包和可疑重包的流水号分别 维护, 可以使话单包传输流程更加清晰, 更重要的是, 由于正常包和可疑 重包的流水号分别维护, 因此可疑重包的流水号的长期占用不会影响正常 话单包的传输。
基于流水号 +组包时间的话单包传输, 能够更加精确的判断哪些话单包 被成功的传输, 最终实现在同一秒内 GSN可以向 CGF发送最多 65536个 话单包, 从而大大利用了网络传输性能。
当在 CGF侧执行删除 /释放可疑重包时,增加了从 CGF向 GSN发送的 删除可疑重包流水号的消息、 以及从 GSN向 CGF发送的删除可以重包流 水号响应的消息, 用于清除在 GSN侧遗留的可疑重包流水号对应的组包时 间; 这样不仅可以在 GSN侧有效的释放可疑重包流水号对应的组包时间资 源, 还可以防止该 GSN向其他 CGF发送释放可疑重包的命令, 导致其他 CGF将同样的可疑重包释放给计费中心。 附图说明
图 1为现有 3GPP网络中 CTF、 CDF和 CGF之间的关系示意图; 图 2为现有 GTP,协议的承载情况示意图;
图 3为现有 GTP,消息头的结构示意图;
图 4为现有技术中正常情况下话单包传输过程的示意图;
图 5为现有技术中话单包未正确接收前 GSN-CGF1之间的连接中断的 传输过程的示意图;
图 6为现有技术中话单包已经正确接收后 GSN-CGF1之间的连接中断 的传输过程的示意图;
图 7为现有技术中发送正常话单包的流水号跳过可疑重包流水号的传 输过程的示意图;
图 8为本发明实施例的一种话单包的处理方法的流程图;
图 9为本发明实施例中正常情况下带组包时间的话单包传输过程的示 意图; 图 10为本发明实施例中话单包未正确接收前 GSN-CGF1之间的连接中 断的传输过程的示意图;
图 11为本发明实施例中话单包已经正确接收后 GSN-CGF1之间链路中 断的传输过程的示意图;
图 12为本发明实施例中针对手工删除或者释放可疑重包(不含组包时 间) 的处理过程的示意图;
图 13为本发明实施例中针对手工删除或者释放可疑重包(含组包时间) 的处理过程的示意图。 具体实施方式
下面结合附图和具体实施例对本发明的技术方案进一步详细阐述。 本发明实施例所提供的一种话单包的处理方法主要包括: GSN向 CGF 发送话单包, 该话单包为正常包或可疑重包, 且用于发送话单包的消息的 消息头中包含流水号、 消息体中包含组包时间; CGF向 GSN发送收到该话 单包的回应消息, 且该回应消息中的 Packet Transfer Response Command信 息元用于标识该回应消息是针对正常包或针对可疑重包。
通过 Packet Transfer Response Command信息元来区分回应消息是针对 正常包还是可疑重包, 这样就能够实现正常包和可疑重包的流水号分别维 护, 可以使话单包传输流程更加清晰, 更重要的是, 由于正常包和可疑重 包的流水号分别维护, 因此可疑重包的流水号的长期占用不会影响正常话 单包的传输。
下面介绍实现正常话单包和可疑话单包的流水号分别独立维护的具体 实现。
在 CGF 向 GSN 发送的回应话单包的消息 (Data Record Transfer Response )中增力口了一个 IE: Packet Transfer Response Command (包传输响 应命令), 该 IE的结构如下表 7所示, Octets Data 备注
1 Type=125 表示是 IE-Packet Transfer Response Command
2 Value=1...2 Packet Transfer Response Command
表 7
上表中 , Packet Transfer Response Command=l表示 Response for Data Record Packet (正常话单包的响应 ), Packet Transfer Response Command=2 表示 Response for possibly duplicated Data Record Packet (可疑话单包的响 应)。 IE-Packet Transfer Response Command用来区分回应的话单包是可疑包 还是正常包, 这样就能够实现正常包和可疑包的流水号分别维护。
增力口 IE-Packet Transfer Response Command 后的新的 Data Record Transfer Response消息结构如下表 8所示:
Figure imgf000020_0001
表 8
如图 8所示, 话单包的处理流程包括:
步驟 801 , GSN向 CGF1 (主用 CGF )发送多个话单包消息, 发送的消 息是: Data Record Transfer Request。
t匕 ^口: Packet Transfer Command=5表示 Send Data Record Packet With Time , 发送给 CGF 1的流水号是 X~Y。
步驟 802 , CGF1实际已经中断。
步驟 803 , GSN多次尝试重发流水号是 X~Y的话单包给 CGF1 ,但 CGF1 没有给 GSN任何回应。 步驟 804, GSN检测到和 CGF1链路中断, 话单包发送方向重定向到 CGF2 (备用 CGF )。
步驟 805 , GSN将未收到 CGF1回应的可疑重包发送给 CGF2 , 发送的 消',皂、是: Data Record Transfer Request。 t匕 口: Packet Transfer Command=6表示 Send possibly duplicated Data
Record Packet With Time, 发送给 CGF2的流水号是 M~N (因为此时 Packet Transfer Command=6, 所以流水号 M~N 可以和正常话单包流水号相互独 立)。
步驟 806, CGF2发送已经接收到可疑重包的回应消息,发送的消息是: Data Record Transfer Response。 t匕 ^口: Packet Transfer Response Command=2 ,表示 Response for possibly duplicated Data Record Packet,这样 GSN就可以判断该回应消息是针对可疑 重包的, 从而实现和正常包的流水号完全独立。 因为, 针对正常包的回应 消息中 Packet Transfer Response Command=l , 针对可疑重包的回应消息中 Packet Transfer Response Command=2 , 通过 Packet Transfer Response Command即可以区分针对正常包和可疑重包的回应消息, 所以正常包的流 水号和可疑重包的流水号就可以完全独立的使用。
步驟 807, GSN连续发送新包给 CGF2 , 发送的消息是: Data Record Transfer Request, 如 Packet Transfer Command=5 , 水号和可疑重包^水号 独立; CGF2回应消息是: Data Record Transfer Response, 如 Packet Transfer Response Command=l , 回复流水号和可疑重包流水号独立。
步驟 808 , 由于 GSN发送给 CGF2的正常包的流水号和可疑重包的流 水号相互独立 (因为 GSN发送给 CGF2 的针对正常包的 Packet Transfer Command=5 , 针对可疑重包的 Packet Transfer Command=6 , 通过 Packet Transfer Command即可以区分 GSN发送给 CGF2的是正常包、 还是可疑重 包, 所以正常包的流水号和可疑重包的流水号就可以完全独立的使用), 所 以正常包消息的流水号完全可以占用 M~N。
在上述方法实施例的基础上, 为充分发挥网络传输性能, 本发明的实 施例还在 GSN向 CGF发送话单包消息( Data Record Transfer Request )时, 扩充了 IE: Packet Transfer Command的定义, 用于指示发送的数据包中含 有组包时间,扩充后的 Data Record Transfer Request消息结构如下表 9所示:
Figure imgf000022_0001
表 9
并且在该消息中增加了 IE: Data Record Packet With Time , 其结构如下 表 10所示:
Class Octets Data 备注
IE-T 1 Type=248 表示 IE-Data Record Packet
With Time
IE-L 2..3 Length Length==0时表示发送的是空 包
3..6 DWORD TIME 表示组包 UTC时间从 1970年 1 月 1 日开始
7 Number of Data Records 表示话单个数( 1...N )
8 Data Record Format 1 : BER,
2: PER(unaligned) ,
IE-V
3: PER(aligned)
9...10 Data Record Format
Version
11...12 Length of Data Record 1
13...n Data Record 1 x...x+l Length of Data Record N
x+2...y Data Record N
表 10
组包时间是 DWORD TIME, 精确到秒, 是将多个话单组成话单包的时 间,同一个话单包最多只能组包一次,不管该包重发多少次,发向哪个 CGF, 这个组包时间保持不变; 另外为了保证数据包的唯一性, 同一秒内数据包 的流水号不可以重复, 也就是说一秒钟内在收到 CGF的回应消息之前, 最 多可以连续发送 65536个话单包。
相应的, 在 CGF向 GSN发送话单包回应消息(Data Record Transfer Response ) 日于, 增力口了 IE: Packet Transfer Response Command, ^口前述表 7 所示; IE-Packet Transfer Response Command除了用来区分回应的话单包是 可疑包还是正常包, 还可以表示该回应消息中包含了组包时间。 另外还增 力口了 IE: Sequence Numbers of Packets With Time, ^口下表 11所示:
Class Octets Data 备注
IE-T 1 Type=247 表示 IE- Sequence
Numbers of Packets With Time
IE-L 2..3 Length
4..5 Sequence Number 1
6..9 DWORD TIME 1 表示组包 UTC时间从
IE-V 1970年 1月 1 日开始 n..n+l Sequence Number N
n+2.. n+5 DWORD TIME N
表 11
通过上述对消息的扩充, CGF可以通过 "流水号 +组包时间" 更加精 确的判断话单包是否已被成功接收; GSN也可以在同一秒内最多发送 65536 个话单包给 CGF, 大大利用了高速的网络性能。 具体的流程步驟下面分别 介绍:
表 12示出了 CGF和 GSN维护数据包流水号的数据结构,在该结构中, 每个流水号都对应着收到的话单包组包时间列表, 列表中的组包时间应该 按时间先后顺序排序, 另外, 列表中的组包时间个数应该有一定的限制(通 过预设阈值来限制;), 比如个数限制为 5, 这就说明 GSN和 CGF对同一个 流水号, 维护了至少 5秒的组包时间。
Figure imgf000024_0001
表 12
在 GSN组包之前, 先判断即将要使用到的流水号对应的组包时间列表 中组包时间的个数是否小于 5 , 如果小于 5则可以组包, 否则说明该流水号 对应的数据包至少超过 5秒没有收到 CGF的回应,网络链路必定存在异常, 所以不可以再继续组包。
当 CGF收到 GSN发送的数据包消息 Data Record Transfer Request后, 将数据包的组包时间和本地相同的流水号所对应的组包时间列表中的组包 时间进行比较, 如果出现相等的情况, 则说明该包在之前已经接收过, 需 要丟弃; 否则说明该包是全新的包, 需要接收。 接收后还需要判断组包时 间列表个数是否大于或等于 5 , 如果大于或等于 5 , 则需要删除最早的组包 时间, 然后将新接收的组包时间追加到组包时间列表中; 否则直接将新接 收的组包时间追加到组包时间列表中。
当 GSN收到 CGF的话单包回应消息 ( Data Record Transfer Response ) 时, 需要根据回应消息中话单包的流水号和组包时间, 将本地维护的组包 时间释放, 从而可以让后续新的组包工作插入新的组包时间。
图 9示出了正常情况下带组包时间的话单包传输过程, 包括以下步驟: 步驟 901 , GSN发送话单包到 CGF, 发送的相应消息为 Data Record
Transfer Request, 其中 Packet Transfer Command=5 , 表示 Send Data Record Packet With Time , 消息头中的流水号为 N , 组包时间为 Time6。
步驟 902 , CGF收到并处理消息, 并成功存储包中的话单到本地。 步驟 903 , CGF在 SeqNo=N的组包时间列表中删除 Timel 并且追加 Time6。
步驟 904, CGF发送响应消息到 GSN,消息内容为 Data Record Transfer Response , 其中 Packet Transfer Response Command = 1表示回应的是正常包 的流水号, Sequence Numbers of Packets With Time参数中包含了流水号 N 和组包时间 Time6 , Cause参数置为 Request Accepted
步驟 905 , GSN在 SeqNo=N的组包时间列表中删除 Time6 , 释放 Time List个数。 如果不释放, Time List个数超过 5后, 流水号 N将不允许再次 组包。
如果 GSN接收响应时失败, 会在额定时间内和达到设定次数前重新发 送话单包的请求。
图 10示出了话单包未正确接收前 GSN-CGF1之间的连接中断的传输过 程, 不仅实现了话单包带组包时间的高速传输, 而且实现了正常话单包和 可疑重包流水号相互独立。 图 10所示的流程主要包括以下步驟:
步驟 1001 , GSN向 CGF1 (主用 CGF )发 Data Record Transfer Request 消息, 其中 Packet Transfer Command=5表示 Send Data Record Packet With Time, 消息头中的流水号为 M, 组包时间是 dwTime。
步驟 1002 , 因为 GSN与 CGF1之间失去联系, CGF1没有收到话单包。 步驟 1003 , GSN无法收到 CGF1的响应。
步驟 1004 , GSN检测与 CGF2 (备用 CGF )之间的链路(用 Echo Request ),如果正常则 GSN将与送往 CGF1相同的话单包送往 CGF2 ,使用 Data Record Transfer Request消息, Packet Transfer Command=6表示 Send possible duplicated Data Record Packet With Time , 消息头中的流水号为 N , 组包时间是 dwTime。
步驟 1005 , CGF2收到并处理话单包, 因为该话单包被标识为 possible duplicated, 所以 CGF2只緩存该话单包, 并不立刻送往 BS。
步驟 1006, CGF2发送正确接收确认信息给 GSN, 采用 Data Record
Transfer Response消息, 其中 Packet Transfer Response Command=2表示回 应的是可疑重包的流水号, Sequence Numbers of Packets With Time参数中包 含了流水号 N和组包时间 dwTime , Cause参数置为 Request Accepted 0
步驟 1007, GSN可以将成功发送的话单包(但可能重复)删除, 但是 仍然保留该话单包发向 CGF 1和 CGF2的流水号 (即 M和 N )和组包时间 dwTime。
步驟 1008, CGFl恢复以后, 向 GSN送 Node Alive Request消息, GSN 获知可以与 CGFl进行通信。
步驟 1009, GSN采用 Node Alive Response消息确认。
步驟 1010, 对于前面未得到确认的 Data Record Transfer Request消息,
Packet Transfer Command=5表示 Send Data Record Packet With Time。 GSN 向 CGFl发送空的测试话单包, 空话单包仅仅是 Data Record Packet With Time参数中不包含话单数据, 其它都一样(消息头中的流水号还是 M, 组 包时间还是 dwTime )。
步驟 1011 , CGF 1以 Data Record Transfer Response消息响应,其中 Packet
Transfer Response Command=l表示回应的是正常话单包的流水号 , Sequence Numbers of Packets With Time参数中包含了流水号 M和组包时间 dwTime, Cause参数置为 Request Accepted。 因为在这之前 CGFl已经与 GSN失去联 系, CGFl并未收到过该话单包, 所以对于测试话单包它认为是新的可以接 步驟 1012 , GSN收到 CGF1的回应消息后, 获知 CGF1并未处理测试 话单包, 通知 CGF2可以将该话单包送给 BS, 采用的消息是 Data Record Transfer Request, Packet Transfer Command=8 表示 Release Data Record Packet With Time。 其中 Sequence Numbers of Packets With Time参数中包含 了流水号 N和组包时间 dwTime。
步驟 1013 , CGF2可以将话单包传向 BS。
步驟 1014, CGF2向 GSN发 Data Record Transfer Response消息, 其中 Packet Transfer Response Command=2表示回应的是可疑重包包的流水号, Sequence Numbers of Packets With Time参数中包含了流水号 N和组包时间 步驟 1015 , 针对 CGF1 , 在流水号 =M的组包时间列表中删除 dwTime, 释放时间列表个数, 同时针对 CGF2, 在流水号 =N的组包时间列表中删除 dwTime, 释放时间列表个数, 这表示这个数据包已经完全处理成功。 如果 不释放, 组包时间列表中个数超过 5后, CGF1的流水号 M以及 CGF2的 流水号 N将不允许再次组包。
图 11示出了话单包已经正确接收后 GSN-CGF1之间链路中断的传输过 程, 不仅实现了话单包带组包时间的高速传输, 而且实现了正常话单包和 可疑重包流水号相互独立。 图 11所示的流程主要包括以下步驟:
步驟 1101 , GSN向 CGF1 (主用 CGF )发 Data Record Transfer Request 消息, 其中 Packet Transfer Command=5表示 Send Data Record Packet With Time , 消息头中的流水号为 M , 组包时间是 dwTime。
步驟 1102, CGF1收到话单包后将包中话单安全保存。
步驟 1103 , GSN与 CGF1之间通信中断, GSN无法收到 CGF1的回应。 步驟 1104 , GSN检测与 CGF2 (备用 CGF )之间的链路(用 Echo Request ), 如果正常则 GSN将与送往 CGF1相同的 CDR送往 CGF2 , 使用 Data Record Transfer Request消息, 其中 Packet Transfer Command=6表示 Send possible duplicated Data Record Packet With Time, 消息头中的流水号为 N, 组包时间是 dwTime。
步驟 1105 , CGF2接收并处理该话单包,因为该话单包被标识为 possible duplicated, 所以 CGF2只緩存该话单包, 并不立刻送往 BS。
步驟 1106, CGF2发送正确接收确认信息给 GSN, 采用 Data Record Transfer Response消息, 其中 Packet Transfer Response Command=2表示回 应的是可疑重包的流水号, Sequence Numbers of Packets With Time参数中包 含了流水号 N和组包时间 dwTime , Cause参数置为 Request Accepted 0
步驟 1107, GSN可以将成功发送的话单包(但可能重复)删除, 但是 仍然保留该话单包发向 CGF1和 CGF2的流水号 (即 M和 N )和组包时间 dwTime。
步驟 1108, CGF1恢复以后, 向 GSN送 Node Alive Request消息, GSN 获知可以与 CGF1进行通信。
步驟 1109, GSN采用 Node Alive Response消息确认。
步驟 1110, 对于前面 (即步驟 1101 中) 未得到确认的 Data Record Transfer Request消',皂、 , Packet Transfer Command=5表示 Send Data Record Packet With Time。 GSN向 CGF1发送空的测试话单包,空话单包仅仅是 Data Record Packet With Time参数中不包含话单数据, 其它都一样(消息头中的 流水号还是 M, 组包时间还是 dwTime )。
步驟 1111 , CGF1以 Data Record Transfer Response消息响应,其中 Packet Transfer Response Command=l表示回应的是正常话单包的流水号 , Sequence Numbers of Packets With Time参数中包含了流水号 M和组包时间 dwTime, Cause参数置为 Request related to possibly duplicated packets already fulfilled。 因为在 CGF1与 GSN失去联系之前, CGF1 已经保存该话单包, 所以对于 测试话单包它认为是重复的。
步驟 1112, GSN收到 CGF1的回应消息后, 获知 CGF1已经接收并保 存该话单包,通知 CGF2取消该话单包,采用的消息是 Data Record Transfer Request, Packet Transfer Command=7表示 Cancel Data Record Packet With Time。 其中 Sequence Numbers of Packets With Time参数中包含了流水号 N 和组包时间 dwTime。
步驟 1113 , CGF2从緩存中删除该话单包。
步驟 1114, CGF2向 GSN发送 Data Record Transfer Response消息, 其 中 Packet Transfer Response Command=2表示回应的是可疑重包的流水号, Sequence Numbers of Packets With Time参数中包含了流水号 N和组包时间 dwTime , Cause参数置为 Request Accepted。
步驟 1115 , 针对 CGF 1 , 在流水号 =M的组包时间列表中删除 dwTime , 释放时间列表个数, 同时针对 CGF2, 在流水号 =N的组包时间列表中删除 dwTime, 释放时间列表个数, 这表示这个数据包已经完全处理成功。 如果 不释放, 组包时间列表中个数超过 5后, CGF1的流水号 M以及 CGF2的 流水号 N将不允许再次组包。
另外, 在 CGF侧手工删除或者释放可疑重包后, 需要同步删除 GSN 对应可疑重包的相关资源。
图 12示出了手工删除或者释放可疑重包(不含组包时间) 的过程, 主 要包括以下步驟:
步驟 1201 , 用户手工释放 /删除 CGF中的可疑重包, 流水号 =X。
步驟 1202 , CGF释放 /删除本地对应的可疑重包, 流水号 =X。
步驟 1203 , CGF向 GSN发送 Delete possibly duplicated Packet Sequence
Number Request消息 ,消息流水号为 Ν,消息体 Sequence Numbers of Packets 中含可疑重包流水号 X。
其中 , Delete possibly duplicated Packet Sequence Number Request消息的 结构如下表 13所示:
Figure imgf000030_0001
表 13
Delete possibly duplicated Packet Sequence Number Request消息体中包 含 IE- Sequence Numbers of Packets , IE- Sequence Numbers of Packets的结构 如下表 14所示: Class Octets Data 备注
表示 IE- Sequence
IE-T 1 Type = 246
Numbers of Packets
IE-L 2..3 Length
4..5 Sequence Number 1
IE-V
n..n+l Sequence Number N
表 14
步驟 1204, GSN收到消息后, 查找本地是否存在对应的可疑重包流水 号 X, 如果存在, 则删除该可疑重包流水号 X; 如果不存在, 则不作处理。
步驟 1205 , GSN向 CGF发送 Delete possibly duplicated Packet Sequence Number Response消息 , 消息中的 IE-Requests Responded中的流水号为 N。
其中 , Delete possibly duplicated Packet Sequence Number Response消息 的结构如下表 15所示, IE-Requests Responded的结构如上述表 6所示:
Figure imgf000031_0001
表 15
步驟 1206, 如果该可疑重包曾经发向其他 CGF, GSN还需要向其他 CGF 发送 Data Record Transfer Request 消息, 其中 Packet Transfer Command=3 (不含组包时间 )表示删除可疑重包; 因为和其他 CGF对应的 流水号也需要删除, 防止后续该可疑重包会在其他 CGF中释放或删除。
步驟 1207,其他 CGF向 GSN发送 Data Record Transfer Response消息。 步驟 1208, 删除该可疑重包内容以及和它对应的流水号资源。
图 13示出了手工删除或者释放可疑重包(含组包时间)的过程, 主要 包括以下步驟: 步驟 1301 , 用户手工释放 /删除 CGF中的可疑重包, 流水号 =X, 组包 时间 =TimeX。
步驟 1302 , CGF释放 /删除本地对应的可疑重包, 流水号 =X, 组包时 间=1 11^。
步驟 1303 , CGF向 GSN发送 Delete possibly duplicated Packet Sequence
Number Request消息 ,消息流水号为 Ν;消息体 Sequence Numbers of Packets With Time中含可疑重包流水号 X, 组包时间 =TimeX。
Delete possibly duplicated Packet Sequence Number Request消息的结构 ^口上表 13所示; Delete possibly duplicated Packet Sequence Number Request 消息体中包含 IE- Sequence Numbers of Packets With Time,其中 , IE-Sequence Numbers of Packets With Time的结构如上表 11所示。
步驟 1304, GSN收到消息后, 查找本地是否存在对应的可疑重包流水 号 X且组包时间 =TimeX, 如果存在, 则删除该流水号 X 下的组包时间 TimeX。
步驟 1305 , GSN向 CGF发送 Delete possibly duplicated Packet Sequence
Number Response消息 , 消息中的 IE-Requests Responded中的流水号为 N。
其中 , Delete possibly duplicated Packet Sequence Number Response消息 的结构如上表 15所示。
步驟 1306, 如果该可疑重包曾经发向其他 CGF, GSN还需要向其他 CGF 发送 Data Record Transfer Request 消息, 其中 Packet Transfer Command=7 (含组包时间 TimeX )表示删除可疑重包; 因为和其他 CGF对 应的流水号的组包时间也需要删除, 防止后续该可疑重包会在其他 CGF中 释放或删除。
步驟 1307,其他 CGF向 GSN发送 Data Record Transfer Response消息, 其中 Packet Transfer Response Command=2表示回应的是可疑重包的流水 步驟 1308, 删除该可疑重包发向其他 CGF流水号 = Μ下的组包时间 TimeX, 表示这个数据包已经完全处理成功。
综上所述, 实现本发明实施例的上述操作流程, 需要对 GTP' 协议做 如下扩展:
1、 在 Data Record Transfer Response 消息体中增力 必选 IE-Packet Transfer Response Command (用于区分回复的流水号是针对正常包,还是可 疑重包),从而实现正常包和可疑重包的流水号分别维护; 新的 Data Record Transfer Response消息结构参见上述表 8,其中, IE-Packet Transfer Response Command的结构参见上述表 7; IE- Sequence Numbers of Packets With Time 的结构参见上述表 11 ;
2、 增力口消息 Delete possibly duplicated Packet Sequence Number Request 和 Delete possibly duplicated Packet Sequence Number Response, 消息内容包 含 IE-Sequence Numbers of Packets或 IE-Sequence Numbers of Packets With Time。 用于 CGF手工删除 /释放可疑重包后, 通知 GSN删除发向这个 CGF 的可疑重包流水号对应的组包时间; Delete possibly duplicated Packet Sequence Number Request 消息的结构参见上述表 13 , Delete possibly duplicated Packet Sequence Number Response消息的结构参见上述表 15 , 其 中 IE-Sequence Numbers of Packets 的结构参见上述表 14 , IE-Sequence Numbers of Packets With Time的结构参见上述表 11 , IE-Requests Responded 的结构参见上述表 6;
需要说明的是, 增加不带组包时间的 IE-Sequence Numbers of Packets 是为了兼容不支持组包时间的 GTP, 协议;
3、 在 Data Record Transfer Request 消息体的 IE-Packet Transfer Command中增力口^口下四个命令: Send Data Record Packet With Time (如对应 Packet Transfer Command 取值为 5 );
Send possibly duplicated Data Record Packet With Time (如对应 Packet Transfer Command取值为 6 );
Cancel Data Record Packet With Time (如对应 Packet Transfer Command 取值为 7 );
Release Data Record Packet With Time (如对应 Packet Transfer Command 取值为 8 )。
新的 Data Record Transfer Request消息的结构参见上述表 9。
4、 增加 IE-Data Record Packet With Time, 其结构与现有的 IE-Data
Record Packet的结构相同,且在 IE-Data Record Packet的结构基础上增加了 DWORD TIME , 表示组包时间。 IE-Data Record Packet With Time的结构参 见上述表 10。
对应上述话单包的处理方法, 本发明的实施例还提供了一种话单包的 处理系统, 包括: GSN和 CGF。 其中, GSN用于向 CGF发送话单包, 所 述话单包为正常包或可疑重包, 且用于发送话单包的消息的消息头中包含 流水号、 消息体中包含组包时间; CGF用于接收 GSN发送的话单包, 并向 GSN发送收到所述话单包的回应消息,且所述回应消息中的 Packet Transfer Response Command信息元用于标识所述回应消息是针对正常包或针对可疑 重包。
较佳的, GSN还可用于, 维护流水号对应的话单包的组包时间列表, 所述组包时间列表中的各组包时间按照时间先后顺序排序;
在组成话单包之前, 判断即将使用的流水号对应的组包时间列表中组 包时间的个数是否大于预设的阈值, 如果大于, 则停止组包; 否则, 继续 组包, 并将组成的话单包发送给所述 CGF, 且所述发送话单包的消息的消 息头中包含所述即将使用的流水号、 消息体中包含所述话单包的组包时间。 较佳的, CGF还可用于, 在收到 GSN发送话单包的消息后, 将所述话 的组包时间列表中的组包时间进行比较, 如果 CGF本地维护的所述组包时 间列表中存在与所述话单包相同的组包时间, 则丟弃所述话单包; 否则, 接收所述话单包。
较佳的, CGF还可用于, 在接收所述话单包后, 判断本地维护的所述 组包时间列表中组包时间的个数是否大于或等于预设的阈值, 如果是, 则 删除所述组包时间列表中最早的组包时间, 并将新接收的组包时间追加到 所述组包时间列表中; 如果否, 则直接将新接收的组包时间追加到所述组 包时间列表中。
较佳的, CGF还可用于, 在网管控制下删除或释放自身緩存的可疑重 包, 并向 GSN发送 Delete possibly duplicated Packet Sequence Number Request消息, 消息中包含删除的可疑重包的流水号和组包时间;
目应 ό , GSN
Figure imgf000035_0001
Delete possibly duplicated Packet Sequence Number Request消息后, 查找本地是否存在对应可疑重包的流水号和组包时间, 如 果存在, 则删除对应可疑重包的流水号下的所述组包时间, 并向 CGF回应 Delete possibly duplicated Packet Sequence Number Response消息; 如果不存 在, 则不作处理。
较佳的, GSN还可用于, 在删除对应可疑重包的流水号下的所述组包 时间后,如果所述可疑重包发向过其他 CGF, GSN通知所述其他 CGF删除 对应可疑重包的流水号下的所述组包时间;
相应的, 所述其他 CGF删除对应可疑重包的流水号下的所述组包时间 后, 回应所述 GSN, 且回应消息中的 Packet Transfer Response Command信 息元用于标识回应的是可疑重包的流水号。 另外, 对应图 12所示话单包的处理方法, 本发明的实施例还提供了一 种话单包的处理系统, 包括: GSN和 CGF, 其中,
CGF, 用于在网管控制下删除或释放自身緩存的可疑重包, 并向 GSN 发送 Delete possibly duplicated Packet Sequence Number Request消息 , 消息 体中包含删除的可疑重包的流水号;
GSN , 用于收到 Delete possibly duplicated Packet Sequence Number Request消息后, 查找本地是否存在对应可疑重包的流水号, 如果存在, 则 删除对应可疑重包的流水号,并向 CGF回应 Delete possibly duplicated Packet Sequence Number Response消息; 如果不存在, 则不作处理。
较佳的, GSN还可用于, 在删除对应可疑重包的流水号后, 如果所述 可疑重包发向过其他 CGF, 所述 GSN通知所述其他 CGF删除对应可疑重 包的流水号;
相应的,所述其他 CGF删除对应可疑重包的流水号后,回应所述 GSN。 以上所述, 仅为本发明的较佳实施例而已, 并非用于限定本发明的保 护范围。

Claims

权利要求书
1、 一种话单包的处理方法, 该方法包括:
通用分组无线服务支持节点 GSN向计费网关功能 CGF发送话单包, 所述话单包为正常包或可疑重包, 且用于发送话单包的消息的消息头中 包含流水号、 消息体中包含组包时间;
所述 CGF向 GSN发送收到所述话单包的回应消息,且所述回应消息 中的包传输响应命令 Packet Transfer Response Command信息元用于标识 所述回应消息是针对正常包或针对可疑重包。
2、 根据权利要求 1所述话单包的处理方法, 其中, 该方法还包括: 所述 GSN中维护流水号对应的话单包的组包时间列表, 所述组包时 间列表中的各组包时间按照时间先后顺序排序;
所述 GSN在组成话单包之前, 判断即将使用的流水号对应的组包时 间列表中组包时间的个数是否大于预设的阈值, 如果大于, 则停止组包; 否则, 继续组包, 并将组成的话单包发送给所述 CGF, 且所述发送话单 包的消息的消息头中包含所述即将使用的流水号、 消息体中包含所述话 单包的组包时间。
3、 根据权利要求 2所述话单包的处理方法, 其中, 该方法还包括: 所述 CGF在收到 GSN发送话单包的消息后,将所述话单包的组包时 间与所述 CGF本地维护的与所述话单包相同的流水号所对应的组包时间 列表中的组包时间进行比较, 如果 CGF本地维护的所述组包时间列表中 存在与所述话单包相同的组包时间, 则丟弃所述话单包; 否则, 接收所 述话单包。
4、 根据权利要求 3所述话单包的处理方法, 其中, 在接收所述话单 包后, 该方法还包括: 或等于预设的阈值, 如果是, 则删除所述组包时间列表中最早的组包时 间, 并将新接收的组包时间追加到所述组包时间列表中; 如果否, 则直 接将新接收的组包时间追加到所述组包时间列表中。
5、 根据权利要求 1至 4任一项所述话单包的处理方法, 其中, 该方 法还包括:
所述 CGF在网管控制下删除或释放自身緩存的可疑重包, 并向所述 GSN发送 Delete possibly duplicated Packet Sequence Number Request消 息, 消息体中包含删除的可疑重包的流水号和组包时间;
所述 GSN 收到所述 Delete possibly duplicated Packet Sequence Number Request消息后, 查找本地是否存在对应可疑重包的流水号和组 包时间, 如果存在, 则删除对应可疑重包的流水号下的所述组包时间, 并向所述 CGF 回应删除可疑重包流水号响应 Delete possibly duplicated Packet Sequence Number Response消息。
6、 根据权利要求 5所述话单包的处理方法, 其中, 在 GSN删除对 应可疑重包的流水号下的所述组包时间后, 该方法还包括:
如果所述可疑重包发向过其他 CGF, 所述 GSN通知所述其他 CGF 删除对应可疑重包的流水号下的所述组包时间;
所述其他 CGF删除对应可疑重包的流水号下的所述组包时间后, 回 应所述 GSN, 且回应消息中的 Packet Transfer Response Command信息元 用于标识回应的是可疑重包的流水号。
7、 一种话单包的处理系统, 该系统包括: 通用分组无线服务支持节 点 GSN和计费网关功能 CGF, 其中,
所述 GSN, 设置为向 CGF发送话单包, 所述话单包为正常包或可疑 重包, 且用于发送话单包的消息的消息头中包含流水号、 消息体中包含 组包时间; 所述 CGF, 设置为接收 GSN发送的话单包, 并向 GSN发送收到所 述话单包的回应消息, 且所述回应消息中的包传输响应命令 Packet Transfer Response Command信息元用于标识所述回应消息是针对正常包 或针对可疑重包。
8、 根据权利要求 7所述话单包的处理系统, 其中, 所述 GSN还设 置为, 维护流水号对应的话单包的组包时间列表, 所述组包时间列表中 的各组包时间按照时间先后顺序排序;
在组成话单包之前, 判断即将使用的流水号对应的组包时间列表中 组包时间的个数是否大于预设的阈值, 如果大于, 则停止组包; 否则, 继续组包, 并将组成的话单包发送给所述 CGF, 且所述发送话单包的消 息的消息头中包含所述即将使用的流水号、 消息体中包含所述话单包的 组包时间。
9、根据权利要求 8所述话单包的处理系统, 其中, 所述 CGF还设置 为, 在收到 GSN发送话单包的消息后, 将所述话单包的组包时间与所述 CGF本地维护的与所述话单包相同的流水号所对应的组包时间列表中的 述话单包相同的组包时间, 则丟弃所述话单包; 否则, 接收所述话单包。
10、 根据权利要求 9所述话单包的处理系统, 其中, 所述 CGF还设 置为, 在接收所述话单包后, 判断本地维护的所述组包时间列表中组包 时间的个数是否大于或等于预设的阈值, 如果是, 则删除所述组包时间 列表中最早的组包时间, 并将新接收的组包时间追加到所述组包时间列 表中; 如果否, 则直接将新接收的组包时间追加到所述组包时间列表中。
11、 根据权利要求 7至 10任一项所述话单包的处理系统, 其中, 所 述 CGF还设置为, 在网管控制下删除或释放自身緩存的可疑重包, 并向 所述 GSN发送 Delete possibly duplicated Packet Sequence Number Request 消息, 消息中包含删除的可疑重包的流水号和组包时间;
目应 ό , 所述 GSN ll所述 Delete possibly duplicated Packet Sequence Number Request消息后, 查找本地是否存在对应可疑重包的流 水号和组包时间, 如果存在, 则删除对应可疑重包的流水号下的所述组 包时间, 并向所述 CGF 回应删除可疑重包流水号响应 Delete possibly duplicated Packet Sequence Number Response消息。
12、根据权利要求 11所述话单包的处理系统, 其中, 所述 GSN还设 置为, 在删除对应可疑重包的流水号下的所述组包时间后, 如果所述可 疑重包发向过其他 CGF, 所述 GSN通知所述其他 CGF删除对应可疑重 包的流水号下的所述组包时间;
相应的, 所述其他 CGF删除对应可疑重包的流水号下的所述组包时 间后,回应所述 GSN,且回应消息中的 Packet Transfer Response Command 信息元用于标识回应的是可疑重包的流水号。
13、 一种话单包的处理方法, 该方法包括:
计费网关功能 CGF在网管控制下删除或释放自身緩存的可疑重包, 所述 CGF向通用分组无线服务支持节点 GSN发送删除可疑重包流水号 请求 Delete possibly duplicated Packet Sequence Number Request消息 , 消 息体中包含删除的可疑重包的流水号;
GSN 收到所述 Delete possibly duplicated Packet Sequence Number Request消息后, 查找本地是否存在对应可疑重包的流水号, 如果存在, 则删除对应可疑重包的流水号, 并向所述 CGF回应删除可疑重包流水号 响应 Delete possibly duplicated Packet Sequence Number Response消息。
14、 根据权利要求 13所述话单包的处理方法, 其中, 在 GSN删除 对应可疑重包的流水号后, 该方法还包括:
如果所述可疑重包发向过其他 CGF, 所述 GSN通知所述其他 CGF 删除对应可疑重包的流水号;
所述其他 CGF删除对应可疑重包的流水号后, 回应所述 GSN。
15、 一种话单包的处理系统, 该系统包括: 通用分组无线服务支持 节点 GSN和计费网关功能 CGF, 其中,
所述 CGF, 设置为在网管控制下删除或释放自身緩存的可疑重包, 并向所述 GSN发送删除可疑重包流水号请求 Delete possibly duplicated Packet Sequence Number Request消息, 消息体中包含删除的可疑重包的 流水号;
所述 GSN,设置为收到所述 Delete possibly duplicated Packet Sequence Number Request消息后, 查找本地是否存在对应可疑重包的流水号, 如 果存在, 则删除对应可疑重包的流水号, 并向所述 CGF回应删除可疑重 包流水号响应 Delete possibly duplicated Packet Sequence Number Response 消息。
16、根据权利要求 15所述话单包的处理系统,其特征在于,所述 GSN 还设置为, 在删除对应可疑重包的流水号后, 如果所述可疑重包发向过 其他 CGF, 所述 GSN通知所述其他 CGF删除对应可疑重包的流水号; 相应的, 所述其他 CGF 删除对应可疑重包的流水号后, 回应所述 GSN。
PCT/CN2012/084485 2011-11-11 2012-11-12 一种话单包的处理方法和系统 WO2013067975A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/356,857 US9332092B2 (en) 2011-11-11 2012-11-12 Method and system for processing data record packet
EP12847928.4A EP2779713B1 (en) 2011-11-11 2012-11-12 Method and system for data record packet processing
HK14110860A HK1197342A1 (zh) 2011-11-11 2014-10-29 種話單包的處理方法和系統

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110357581.0A CN103108295B (zh) 2011-11-11 2011-11-11 一种话单包的处理方法和系统
CN201110357581.0 2011-11-11

Publications (1)

Publication Number Publication Date
WO2013067975A1 true WO2013067975A1 (zh) 2013-05-16

Family

ID=48288545

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/084485 WO2013067975A1 (zh) 2011-11-11 2012-11-12 一种话单包的处理方法和系统

Country Status (5)

Country Link
US (1) US9332092B2 (zh)
EP (1) EP2779713B1 (zh)
CN (1) CN103108295B (zh)
HK (1) HK1197342A1 (zh)
WO (1) WO2013067975A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9787852B2 (en) * 2014-06-04 2017-10-10 Alcatel-Lucent Usa Inc. Sequence number reuse for CDR transport using GTP'
US9560211B2 (en) * 2014-06-04 2017-01-31 Alcatel-Lucent Usa Inc. Error handling for CDR transport within an offline charging system
CN108289296A (zh) * 2017-06-30 2018-07-17 中兴通讯股份有限公司 话单输出方法、装置及存储介质
CN109219006A (zh) * 2017-06-30 2019-01-15 中兴通讯股份有限公司 话单传输方法、相关设备和计算机可读存储介质
CN110474853B (zh) * 2018-05-11 2022-10-18 华为技术有限公司 一种报文发送的方法、网络节点和系统
CN113728604B (zh) 2019-02-05 2023-09-08 卡萨系统公司 用于恢复网络关联信息的方法和装置
CN110430024A (zh) * 2019-07-23 2019-11-08 视联动力信息技术股份有限公司 一种数据传输方法、装置、电子设备及存储介质
US20210337411A1 (en) * 2020-04-24 2021-10-28 Qualcomm Incorporated Techniques for cli measurement based on enhanced srs in a wireless communication system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1341308A (zh) * 1999-01-19 2002-03-20 诺基亚网络有限公司 受控数据网络的差错恢复
CN101145893A (zh) * 2007-10-08 2008-03-19 华为技术有限公司 话单数据的数据帧接收方法、装置及计费网关
CN101778367A (zh) * 2009-12-29 2010-07-14 北京首信科技股份有限公司 一种计费网关重启恢复工作的方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE0004178D0 (sv) * 2000-11-14 2000-11-14 Ericsson Telefon Ab L M Network requested packet data protocol context activation
CN1885780B (zh) * 2005-06-24 2012-03-28 朗迅科技公司 集中式离线收费和在线收费的方法及系统
FI20061035A0 (fi) * 2006-11-23 2006-11-23 Nokia Corp Datatietueiden kaksinkertaisen laskutuksen sarjamuotoinen ehkäisy
US8270943B2 (en) * 2010-07-12 2012-09-18 Alcatel Lucent Method and apparatus for reliable transmission of charging detail records

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1341308A (zh) * 1999-01-19 2002-03-20 诺基亚网络有限公司 受控数据网络的差错恢复
CN101145893A (zh) * 2007-10-08 2008-03-19 华为技术有限公司 话单数据的数据帧接收方法、装置及计费网关
CN101778367A (zh) * 2009-12-29 2010-07-14 北京首信科技股份有限公司 一种计费网关重启恢复工作的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2779713A4 *

Also Published As

Publication number Publication date
CN103108295B (zh) 2017-10-27
HK1197342A1 (zh) 2015-01-09
EP2779713A1 (en) 2014-09-17
CN103108295A (zh) 2013-05-15
US20140293879A1 (en) 2014-10-02
EP2779713A4 (en) 2015-09-09
EP2779713B1 (en) 2018-02-14
US9332092B2 (en) 2016-05-03

Similar Documents

Publication Publication Date Title
WO2013067975A1 (zh) 一种话单包的处理方法和系统
US6954797B1 (en) Data Communication method, terminal equipment, interconnecting installation, data communication system and recording medium
US8565227B2 (en) Mobile IP data communication system comprising a mobile router that detects a change in connection status
JP4601229B2 (ja) プロトコル・データ・ユニットのカプセル化方法
US8238288B2 (en) Duplicate detection method for ad hoc network
US11751192B2 (en) Tethering policy for cellular networks
EP2735189B1 (en) System and method for flow termination of a tcp session
CN104023006B (zh) 一种基于应用层中继的多径传输系统及方法
EP2594060B1 (en) Methods for reliable transmission of charging detail records
EP2642815A1 (en) Method for establishing and using public path and m2m communication method and system
WO2012163173A1 (zh) 以太网环保护倒换方法、节点及系统
CN107104902B (zh) 一种rdma数据传输的方法、相关装置与系统
KR102304330B1 (ko) 복수의 UPF 인스턴스들을 포함하는 UPF 노드가 QoS(Quality of Service) 모니터링을 수행하는 방법 및 상기 방법을 수행하는 UPF 노드
WO2007082446A1 (fr) Procede et systeme de taxation hors ligne
CN113765626B (zh) 一种移动通信系统的数据传输方法和装置
CN103188716B (zh) Rudp链路故障定位方法及装置
WO2012075934A1 (zh) 消息循环的检测方法、路由代理设备及组网系统
US7616607B2 (en) Data preservation
WO2006097031A1 (fr) Procede de transmission de message dans le reseau du protocole internet mobile
CN102104552A (zh) 基于明确拥塞通知机制的报文控制方法及设备
CN104885523B (zh) 故障处理方法、分组数据网络、移动管理实体及网络系统
EP1626554A2 (en) Mobile communication system and service control device
CN112688876A (zh) 一种tcp拥塞快速恢复的方法
JP2009010575A (ja) マルチキャスト通信のための中継装置、並びに端末装置
KR100605117B1 (ko) Wcdma 패킷 과금 데이터 처리 방법 및 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12847928

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14356857

Country of ref document: US

Ref document number: 2012847928

Country of ref document: EP