WO2013067754A1 - 一种多功能直流融冰自动转换电路及其转换方法 - Google Patents

一种多功能直流融冰自动转换电路及其转换方法 Download PDF

Info

Publication number
WO2013067754A1
WO2013067754A1 PCT/CN2012/000702 CN2012000702W WO2013067754A1 WO 2013067754 A1 WO2013067754 A1 WO 2013067754A1 CN 2012000702 W CN2012000702 W CN 2012000702W WO 2013067754 A1 WO2013067754 A1 WO 2013067754A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
ice
sub
closed
circuit
Prior art date
Application number
PCT/CN2012/000702
Other languages
English (en)
French (fr)
Inventor
傅闯
饶宏
许树楷
黎小林
Original Assignee
南方电网科学研究院有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南方电网科学研究院有限责任公司 filed Critical 南方电网科学研究院有限责任公司
Priority to US14/357,169 priority Critical patent/US9972988B2/en
Publication of WO2013067754A1 publication Critical patent/WO2013067754A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G7/00Overhead installations of electric lines or cables
    • H02G7/16Devices for removing snow or ice from lines or cables
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/02Circuit arrangements for ac mains or ac distribution networks using a single network for simultaneous distribution of power at different frequencies; using a single network for simultaneous distribution of ac power and of dc power

Definitions

  • the invention relates to a multifunctional DC ice melting automatic conversion circuit and a conversion method thereof, in particular to an automatic conversion of a thyristor control reactor TCR, a thyristor switching reactor TSR, a DC melting ice and an equivalent test function thereof.
  • the circuit and its conversion method belong to the innovative technology of DC ice melting application for high voltage and UHV power transmission lines.
  • the basic principle of DC ice melting is to convert the AC electric energy obtained from the system into DC electric energy through the high-power rectification device, input the DC electric energy into the wire to be melted, and make the wire heat and ice under the action of DC current. Melt, thereby eliminating the risk of line breakage and tower collapse.
  • the DC ice-melting technology overcomes the limitation of AC ice melting.
  • the inductive component of the line impedance does not work when DC melting ice, which greatly reduces the capacity required for DC melting and improves the melting efficiency.
  • the DC voltage can be continuously continuous during DC melting.
  • the DC ice melting device installed in the hub substation can All the in and out lines of the station carry out the melting ice work.
  • the Russian DC Research Institute has successfully developed two voltage-grade thyristor rectifier ice melting devices: 14kV (powered by 11 kV AC bus) and 50kV (powered by 38.5 kV AC bus).
  • the 14kV unit is rated at 14MW and the 50kV unit is rated at 50MW.
  • the 50MW unit was put into operation at the substation in 1994 and was successfully applied to the deicing of a 315 km long llOkV transmission line.
  • the object of the present invention is to provide a method for greatly reducing the noise during operation of a DC ice melting device, so that various modes can be automatically converted to each other, and the throughflow of the DC ice melting device can be completed without accessing the transmission line.
  • Test a multi-function DC ice-melting automatic conversion circuit that effectively solves daily operation and maintenance problems.
  • the invention has reasonable design, convenience and practicality.
  • Another object of the present invention is to provide a conversion method of a multi-function DC ice-melting automatic conversion circuit which is simple in operation and convenient to use.
  • the multifunctional DC ice-melting automatic conversion circuit of the present invention comprises at least one sub-conversion circuit composed of the following components, the sub-conversion circuit comprising a six-pulse converter R without a saturable reactor Reactors Lla, Lib and Lie, reactors L2a, L2b and L2c, three-phase switches Sacl, Sac2 and Sac3, single-phase switch SV1, SV2, SV3, SV4 and SV5.
  • the six-pulse converter R without a saturable reactor in the sub-conversion circuit is connected to the reactors Lla, Lb, Lc, and connected to the reactors L2a, L12b, L2c; the reactors L2a, L2b, L2c pass through the three-phase knife gate Sacl is connected with reactors Lc, Lib, Lla respectively; the three-phase knife gate Sac3-end is connected to the R-terminal of the six-pulse converter without a saturated reactor, and the other end is short-circuited; the three-phase knife gate Sac2-end and Reactors L2a, L2b, L2c are connected, and the other end is short-circuited; the two-phase switch SV1 is respectively connected with the valve arm VI cathode and the wide arm V4 anode of the six-pulse converter R, and the two ends of the SV2 are respectively commutated with six pulses.
  • valve arm V3 cathode of the device R is connected to the anode of the valve arm V6, and the two ends of the single-phase knife switch SV3 are respectively connected with the valve arm V5 cathode of the six-pulse converter R and the anode of the valve arm V2, and the SV4 is connected between the reactors L2b and L2c. , SV5 is connected between the reactors L2a and L2c.
  • the six-pulse converter R in the above conversion circuit does not have a saturable reactor.
  • the inductance values of the reactors Lla, Lib and Lie in the above conversion circuit are determined according to the thyristor current change rate di/dt and the short-circuit current limit, and the inductances of the reactors Lla, Lib and Lie are 0- of the reactors L2a, L2b, L2c 0. 2 times, the rated current values of the reactors Lla, Lib and Lie are designed according to the requirements of the smoothing reactor in the ice melting mode.
  • the rated current values of the reactors L2a, L2b, L2c are controlled by the thyristor-controlled reactor TCR or the thyristor switching reactance.
  • the TSR mode requires design.
  • the above six-pulse DC ice-melting automatic conversion circuit includes a sub-conversion circuit, a DC-side switching knife switch Sdcl, Sdc2, Sdc3 and SVdc4, an isolating knife gate K, a circuit breaker QF, and a control protection system CP, a DC-side switching knife switch Sdcl After being connected in parallel with Sdc2, it is connected with the short-circuit terminal of the three-phase switch Sac3 in the sub-conversion circuit; the single-phase switch Sdc3 and Sdc4 are connected in parallel and connected to the short-circuit terminal of the three-phase switch Sac2 in the sub-conversion circuit; the sub-switch circuit passes the isolation switch K and circuit breaker QF are connected to the substation 35kV or 10kV bus, position signals and commutation of the gates Sacl, Sac2, Sac3, K, SV1, SV2, SV3, SV4, SV5, Sdcl, Sdc2, Sdc3, Sdc4 and
  • the above-mentioned series-type twelve-pulse DC ice-melting automatic conversion circuit comprises two sub-conversion circuits connected in series, namely a sub-conversion circuit TC1 and a sub-conversion circuit TC2, a Y/Y coupling transformer ⁇ 1, a ⁇ / ⁇ coupling transformer ⁇ 2, a direct current Side conversion knife gates Sdcl, Sdc2, Sdc3 and SVdc4, isolation knife gate K, circuit breaker QF, and control protection system CP, and two sub-switching circuits are connected to the midpoint grounding, and the sub-conversion circuit TC1 is connected to the Y/Y coupling transformer T1.
  • the sub-conversion circuit TC2 is connected to the ⁇ junction transformer T2; the six-pulse converter R without the saturable reactor in the sub-conversion circuits TC1 and TC2 is connected through the short-circuit terminal of the three-phase knife gate Sac3; the DC-side switching knife switches Sdcl and Sdc2 After parallel connection, it is connected with the short-circuit terminal of the three-phase switch Sac2 in the sub-conversion circuit TC1; the single-phase switch Sdc3 and Sdc4 are connected in parallel and connected to the short-circuit terminal of the three-phase switch Sac2 in the sub-conversion circuit TC2; Y/Y coupling transformer ⁇ 1
  • the ⁇ / ⁇ junction transformer ⁇ 2 is connected to the substation 35kV or 10kV or 220kV busbar via the isolating knife gate and the circuit breaker QF.
  • the above parallel 12-pulse DC ice-melting automatic conversion circuit comprises two parallel sub-conversion circuits, namely a sub-conversion circuit TC1 and a sub-conversion circuit TC2, a Y/Y coupling transformer ⁇ 1, a ⁇ / ⁇ coupling transformer ⁇ 2, a DC side
  • the switching cutters Sdcl, Sdc2, Sdc3 and SVdc4, the isolating knife K, the circuit breaker QF, and the control protection system CP, the sub-conversion circuit TCI are connected to the Y/Y coupling transformer T1, and the sub-conversion circuit TC2 is connected to the ⁇ coupling transformer T2;
  • the short-circuit terminal of the three-phase knife gate Sac2 in the sub-conversion circuit TC1 is connected to the short-circuit terminal of the three-phase knife gate Sac3 in the sub-conversion circuit TC2; the three-phase knife gate Sac3 short-circuit terminal and the three-phase circuit in the sub-conversion circuit TC2
  • the six-pulse DC ice-melting automatic conversion circuit When the six-pulse DC ice-melting automatic conversion circuit is operated in the ice-melting mode, the DC side is not grounded.
  • the above-mentioned series-type twelve-pulse DC ice-melting automatic conversion circuit operates in the ice-melting mode, and the connection point of the two-six-pulse converter R on the DC side is directly grounded;
  • the above-mentioned series-type twelve-pulse DC ice-melting automatic conversion circuit operates in the ice-melting mode and
  • the thyristor control reactor TCR mode is 12 pulsations; the inductance values of the reactors Lla, Lib and Lie in the above-mentioned series-type twelve-pulse DC ice-melting automatic conversion circuit can be 0, that is, the reactors Lla, Lib and Llc are not arranged.
  • the above-mentioned parallel type 12-pulse DC ice-melting automatic conversion circuit operates in the ice-melting mode when the DC side is not grounded and runs in the ice-melting mode, and the DC side is not grounded; the parallel 12-pulse DC-melting automatic conversion circuit operates in the ice-melting mode And the thyristor control reactor TCR mode is 12 pulsation; the parallel type 12-pulse DC ice-melting automatic conversion circuit in the reactor Lla, Lib and Lie inductance value can be 0, that is, no reactor Lla, Lib and Llc are not configured .
  • the conversion method of the multifunctional automatic conversion circuit of the invention comprises the following conversion modes:
  • One-to-one DC ice-melting mode that is, A-B phase wire series melting ice: three-phase knife gate Sacl is disconnected, Sac2 and Sac3 are closed; single-phase knife gates SV1, SV2 and SV3 are disconnected, SV4 and SV5 are closed , Sdcl and Sdc2 are closed, Sdc3 and Sdc4 are disconnected; AC side isolating knife K and open circuit QF are closed;
  • Two to one DC melting mode that is, the AB phase conductors are connected in parallel and then melted in series with the C phase conductors: the three-phase knife gates Sacl is disconnected, Sac2 and Sac3 are closed; the single-phase knife gates SV1, SV2 and SV3 are disconnected , SV4 and SV5 are closed, Sdcl, Sdc2 and Sdc4 are closed, Sdc3 is disconnected; AC side isolating knife K and open circuit QF are closed; 3) Open circuit test mode: three-phase knife gate Sacl is disconnected, Sac2 and Sac3 are closed; single-phase knife gates SV1, SV2 and SV3 are disconnected, SV4 and SV5 are closed, Sdcl, Sdc2, Sdc3 and Sdc4 are disconnected; AC side isolation knife Gate K and open circuit QF are closed;
  • Zero power test mode Three-phase knife gate Sacl is open, Sac2 and Sac3 are closed; single-phase knife gates SV1, SV2 and SV3 are open, SV4 and SV5 are closed, Sdcl and Sdc4 are disconnected, Sdc2 and Sdc3 are closed; The isolation knife gate K and the open circuit QF are closed;
  • Thyristor control reactor TCR mode Three-phase knife gate Sacl is closed, Sac2 and Sac3 are disconnected; single-phase knife gates SV1, SV2 and SV3 are closed, SV4 and SV5 are disconnected, Sdcl, Sdc2, Sdc3 and Sdc4 are disconnected; The side isolation knife gate K and the circuit breaker QF are closed;
  • Thyristor switching reactor TSR mode Three-phase knife gate Sacl is closed, Sac2 and Sac3 are disconnected; single-phase knife gates SV1, SV2 and SV3 are closed, SV4 and SV5 are disconnected, SdcK Sdc2, Sdc3 and Sdc4 are disconnected; The side isolating knife K and the circuit breaker QF are closed.
  • the above-mentioned multi-function DC ice melting automatic conversion circuit conversion method is characterized in that the above-mentioned one-to-one DC ice melting mode, two-to-one DC ice melting mode, open circuit test mode and zero power test mode, reactors Lla, Lib And Lie operates as a commutating reactor, and reactors L2a, L2b and L2c operate as smoothing reactors.
  • the above-mentioned multi-function DC ice-melting automatic conversion circuit conversion method is characterized in that the above-mentioned thyristor control reactor TCR mode, reactors Lla, Lib and Lie, reactors L2a, L2b and L2c operate as phase-controlled reactors; In the TSR mode of the reactor, the reactors Lla, Llb, and Lie, and the reactors L2a, L2b, and L2c operate as switching reactors.
  • the invention adopts the structure with the smoothing reactor in the converter, can complete the through-flow test of the DC ice-melting device without accessing the transmission line, and can convert the DC ice-melting device into the thyristor without melting the ice.
  • Control reactor TCR or thyristor control reactor (TSR) operation The converter in the DC ice melting device of the invention does not have a saturated reactor, which greatly reduces the noise during the operation of the DC ice melting device; by setting the isolation knife gate, the thyristor control reactor, the DC melting ice and its equivalent test function, etc. Multiple modes can realize mutual automatic conversion; the flow test of the DC ice melting device can be completed without accessing the transmission line, effectively solving the problems of daily operation and maintenance.
  • the invention can realize the circuit of automatically switching between the thyristor control reactor TCR, the thyristor control reactor (TSR), the direct current melting ice and the equivalent test function thereof, and is suitable for melting ice of the high voltage and ultra high voltage power transmission line, and the invention has many
  • the function DC ice melting automatic conversion circuit is reasonable in design, convenient and practical.
  • the conversion method of the multifunctional DC ice-melting automatic conversion circuit of the invention is simple in operation and convenient to use.
  • 1 is a sub-switching circuit in the multi-function DC ice melting automatic conversion circuit of the present invention.
  • FIG. 2 is a schematic wiring diagram of a six-pulse DC ice-melting automatic conversion circuit including a sub-switching circuit according to the present invention.
  • FIG. 3 is a schematic wiring diagram of a series-type twelve-pulse DC ice-melting automatic conversion circuit including two sub-switching circuits connected in series according to the present invention.
  • FIG. 4 is a schematic wiring diagram of a parallel type twelve-pulse DC ice-melting automatic conversion circuit including two sub-switching circuits connected in parallel according to the present invention.
  • Fig. 5 is a view showing an embodiment of a six-pulse DC ice-melting automatic conversion circuit including a sub-switching circuit connected to a 220 kV main transformer 10 kV side.
  • Fig. 6 is a view showing an embodiment of a six-pulse DC ice-melting automatic conversion circuit including a sub-switching circuit connected to a 35kV main transformer 35kV side.
  • Fig. 7 shows an embodiment of the present invention comprising a series-connected twelve-pulse DC ice-melting automatic conversion circuit with two sub-switching circuits connected in series on the 220kV main transformer 10kV side.
  • Fig. 8 shows an embodiment of the present invention comprising a series-connected twelve-pulse DC ice-melting automatic conversion circuit having two sub-switching circuits connected in series on the side of a 500kV main transformer 35kV.
  • Figure 9 is a series of twelve-pulse pulsations including two sub-switching circuits connected in series
  • the DC melting automatic conversion circuit is connected to the embodiment of the 500kV main transformer 220kV side.
  • Fig. 10 is a view showing an embodiment of a parallel type twelve-pulse DC ice-melting automatic conversion circuit including two sub-switching circuits connected in parallel on the side of a 500kV main transformer 35kV.
  • Uab, Ubc, and Uca are three-phase voltages of 10kV or 35kV or 220kV busbars.
  • Iva, Ivb, Ivc, Iyva, Iyvb, Iyvc, Idva, Idvb, I dvc are converter AC side currents, Iya, Iyb, Iyc, Ida, Idb, Idc are rectified network side currents, Idp, Idn and Idgn DC side currents, Udp, Udn are DC side voltages, K is AC side isolation knife gate, QF is AC side circuit breaker, K1 is The AC side isolating the knife gate, QF1 is the AC side circuit breaker, and F is the filter bank.
  • the structure of the present invention is as shown in FIG. 1 to FIG. 10.
  • the multi-function DC ice-melting automatic conversion circuit of the present invention comprises at least one sub-conversion circuit composed of the following components, and the sub-conversion circuit includes a non-saturation reactor.
  • the six-pulse converter R without a saturable reactor in the sub-conversion circuit is connected to the reactors Lla, Lb, Lc, and connected to the reactors L2a, L12b, L2c; the reactors L2a, L2b, L2c pass the three-phase switch Sacl and Reactors Lc, Lib, Lla are respectively connected; the three-phase knife gate Sac3-end is connected to the R-terminal of the six-pulse converter without a saturable reactor, and the other end is short-circuited; the three-phase knife gate Sac2-end and the reactor L2a, L2b, L2c are connected, and the other end is shorted; the single-phase knife gate SV1 is respectively connected with the valve arm VI cathode and the valve arm V4 anode of the six-pulse converter R, and the two ends of the SV2 are respectively connected with the six-pulse converter R
  • the middle valve arm V3 cathode is connected to the wide
  • the above six-pulse DC ice-melting automatic conversion circuit includes a sub-conversion circuit, DC-side switching knife switches Sdcl, Sdc2, Sdc3 and SVdc4, isolation knife gate K, circuit breaker QF, and control protection system CP, DC-side switching knife switch Sdcl After being connected in parallel with Sdc2, it is connected with the short-circuit terminal of the three-phase switch Sac3 in the sub-conversion circuit; the single-phase switch Sdc3 and Sdc4 are connected in parallel and connected to the short-circuit terminal of the three-phase switch Sac2 in the sub-conversion circuit; the sub-switch circuit passes the isolation switch K and circuit breaker QF are connected to substation 35kV or 10kV bus, position signals and commutation of knife gates Sacl, Sac2, Sac3, K, SV1, SV2, SV3, SV4, SV5, Sdcl, Sdc2, Sdc3, Sdc4 and circuit breaker QF
  • the above-mentioned series-type twelve-pulse DC ice-melting automatic conversion circuit comprises two sub-conversion circuits connected in series, namely a sub-conversion circuit TC1 and a sub-conversion circuit TC2, a Y/Y coupling transformer ⁇ 1, a ⁇ / ⁇ coupling transformer ⁇ 2, a direct current Side conversion knife gates Sdcl, Sdc2, Sdc3 and SVdc4, isolation knife gate K, circuit breaker QF, and control protection system CP, and two sub-switching circuits are connected to the midpoint grounding, and the sub-conversion circuit TC1 is connected to the Y/Y coupling transformer T1.
  • the sub-conversion circuit TC2 is connected to the ⁇ junction transformer T2; the six-pulse converter R without the saturable reactor in the sub-conversion circuits TC1 and TC2 is connected by the short-circuit terminal of the three-phase knife gate Sac3; the DC side switching knife switches Sdcl and Sdc2 After parallel connection, it is connected with the short-circuit terminal of the three-phase switch Sac2 in the sub-conversion circuit TC1; the single-phase switch Sdc3 and Sdc4 are connected in parallel and connected to the short-circuit terminal of the three-phase switch Sac2 in the sub-conversion circuit TC2; Y/Y coupling transformer ⁇ 1
  • the ⁇ / ⁇ junction transformer ⁇ 2 is connected to the substation 35kV or 10kV or 220kV busbar via the isolating knife gate and the circuit breaker QF.
  • the protection system CP is controlled; the control protection system CP issues a split command of the knife gate and the circuit breaker QF and a control and trigger command for issuing the six-pulse converter R.
  • the above-mentioned parallel type twelve-pulse DC ice-melting automatic conversion circuit is characterized in that it comprises two parallel sub-conversion circuits, which are respectively a sub-conversion circuit TC1 and a sub-conversion circuit TC2, a Y/Y coupling transformer ⁇ 1, a ⁇ / ⁇ coupling transformer.
  • the three-phase knife gate Sac2 is connected to the short terminal; the Y/Y coupling transformer ⁇ 1, the ⁇ / ⁇ coupling transformer ⁇ 2 is connected to the substation 35kV or 10kV or 220kV busbar through the isolating knife gate and the circuit breaker QF.
  • the side current signals Idp, Idn and the DC side voltage signals Udp, Udn and the monitoring signals of the six-pulse converter R are connected to the control protection system CP; the control protection system CP issues a split command of the knife gate and the circuit breaker QF and issues six pulses Control and trigger commands for inverter R.
  • the six-pulse DC ice-melting automatic conversion circuit includes a sub-conversion circuit, which is connected to the 220kV main transformer 10kV side through the AC-side isolation knife gate K and the circuit breaker QF, and the filter group F performs reactive power compensation harmony.
  • Wave suppression connected to the 10kV busbar through the isolation knife K1 and the circuit breaker QF1, as shown in Figure 5.
  • A-B phase conductors are connected in series: three-phase knife gates Sacl open, Sac2 and Sac3 are closed; single-phase knife gates SV1, SV2 and SV3 are open, SV4 and SV5 are closed , Sdcl and Sdc2 are closed, Sdc3 and Sdc4 are disconnected; AC side isolating knife K and open circuit QF are closed;
  • Two to one DC melting mode that is, the AB phase conductors are connected in parallel and then melted in series with the C phase conductors: the three-phase knife gates Sacl is disconnected, Sac2 and Sac3 are closed; the single-phase knife gates SV1, SV2 and SV3 are disconnected , SV4 and SV5 are closed, Sdcl, Sdc2 and Sdc4 are closed, Sdc3 is disconnected; AC side isolating knife K and open QF are closed;
  • Zero power test mode Three-phase knife gate Sacl is disconnected, Sac2 and Sac3 are closed; single-phase knife gate SVK SV2 and SV3 are disconnected, SV4 and SV5 are closed, Sdcl and Sdc4 are disconnected, Sdc2 and Sdc3 are closed; AC side isolation Knife gate K and open circuit QF are closed;
  • Thyristor control reactor TCR mode Three-phase knife gate Sacl is closed, Sac2 and Sac3 are disconnected; single-phase knife gates SV1, SV2 and SV3 are closed, SV4 and SV5 are disconnected, Sdcl, Sdc2, Sdc3 and Sdc4 are disconnected; The side isolation knife gate K and the circuit breaker QF are closed;
  • Thyristor switching reactor TSR mode Three-phase knife gate Sacl is closed, Sac2 and Sac3 are disconnected; single-phase knife gates SV1, SV2 and SV3 are closed, SV4 and SV5 are disconnected, Sdcl, Sdc2, Sdc3 and Sdc4 are disconnected; AC side isolation knife gate K and circuit breaker QF closure.
  • the six-pulse DC ice-melting automatic conversion circuit includes a sub-conversion circuit, which is connected to the 500kV main transformer 35kV side through the AC-side isolation Knife K and the circuit breaker QF, and the filter group F performs reactive power compensation harmony.
  • the wave suppression is connected to the 35kV bus through the isolation knife K1 and the circuit breaker QF1, as shown in Fig. 6.
  • the access control protection system CP such as the monitoring signal, the knife gate, the circuit breaker and the inverter control command are issued by the control protection system CP.
  • Its thyristor control reactor TCR, thyristor switching reactor TSR, DC ice melting and its equivalent test function are implemented in various modes -
  • One-to-one DC ice-melting mode that is, the AB-phase wire is melted in series: the three-phase knife gate is closed, Sac2 and Sac3 are closed; the single-phase knife gates SV1, SV2 and SV3 are disconnected, SV4 and SV5 are closed, Sdcl And Sdc2 is closed, Sdc3 and Sdc4 are disconnected; AC side isolating knife K and open circuit QF are closed;
  • Two to one DC melting mode that is, the AB phase conductors are connected in parallel and then melted in series with the C phase conductors: the three-phase knife gates Sacl is disconnected, Sac2 and Sac3 are closed; the single-phase knife gates SV1, SV2 and SV3 are disconnected , SV4 and SV5 are closed, Sdcl, Sdc2 and Sdc4 are closed, Sdc3 is disconnected; AC side isolating knife K and open QF are closed;
  • Zero power test mode Three-phase knife gate Sacl is open, Sac2 and Sac3 are closed; single-phase knife gates SV1, SV2 and SV3 are open, SV4 and SV5 are closed, Sdcl and Sdc4 are disconnected, Sdc2 and Sdc3 are closed; The isolation knife gate K and the open circuit QF are closed;
  • Thyristor control reactor TCR mode Three-phase knife gate Sacl is closed, Sac2 and Sac3 are disconnected; single-phase knife gates SV1, SV2 and SV3 are closed, SV4 and SV5 are disconnected, Sdcl, Sdc2, Sdc3 and Sdc4 are disconnected; The side isolation knife gate K and the circuit breaker QF are closed;
  • Thyristor switching reactor TSR mode Three-phase knife gate Sacl is closed, Sac2 and Sac3 are disconnected; single-phase knife gates SV1, SV2 and SV3 are closed, SV4 and SV5 are disconnected, Sdcl, Sdc2, Sdc3 and Sdc4 are disconnected; The AC side isolating knife K and the circuit breaker QF are closed.
  • the serial 12-pulse DC ice-melting automatic conversion circuit includes two sub-conversion circuits, namely a sub-conversion circuit TC1 and a sub-conversion circuit TC2, and a three-phase double-winding rectifier transformer T1 and T2, an isolation knife.
  • the gate and circuit breaker QF are connected to the 220kV main transformer 10kV side, and the filter bank F performs reactive power compensation and harmonic suppression.
  • the isolation knife K1 and the circuit breaker QF1 are connected to the 10kV bus, as shown in Fig. 7.
  • One-to-one DC ice-melting mode that is, the AB-phase wire is melted in series: the three-phase knife gate is closed, Sac2 and Sac3 are closed; the single-phase knife gates SV1, SV2 and SV3 are disconnected, SV4 and SV5 are closed, Sdcl And Sdc2 is closed, Sdc3 and Sdc4 are disconnected; AC side isolating knife K and open circuit QF are closed;
  • Two to one DC melting mode that is, the AB phase conductors are connected in parallel and then melted in series with the C phase conductors: the three-phase knife gates Sacl is disconnected, Sac2 and Sac3 are closed; the single-phase knife gates SV1, SV2 and SV3 are disconnected , SV4 and SV5 are closed, Sdcl, Sdc2 and Sdc4 are closed, Sdc3 is disconnected; AC side isolating knife K and open QF are closed;
  • Zero power test mode Three-phase knife gate Sacl is open, Sac2 and Sac3 are closed; single-phase knife gates SV1, SV2 and SV3 are open, SV4 and SV5 are closed, Sdcl and Sdc4 are disconnected, Sdc2 and Sdc3 are closed; The isolation knife gate K and the open circuit QF are closed;
  • Thyristor control reactor TCR mode Three-phase knife gate Sacl is closed, Sac2 and Sac3 are disconnected; single-phase knife gates SV SV2 and SV3 are closed, SV4 and SV5 are disconnected, Sdcl, Sdc2, Sdc3 and Sdc4 are disconnected; The isolation knife gate K and the circuit breaker QF are closed;
  • Thyristor switching reactor TSR mode Three-phase knife gate Sacl is closed, Sac2 and Sac3 are disconnected; single-phase knife gates SV1, SV2 and SV3 are closed, SV4 and SV5 are disconnected, SdcK Sdc2, Sdc3 and Sdc4 are disconnected; The side isolating knife K and the circuit breaker QF are closed.
  • the serial 12-pulse DC ice-melting automatic conversion circuit includes There are two sub-conversion circuits, which are sub-conversion circuit TCI and sub-conversion circuit TC2.
  • the three-phase two-winding rectifier transformers T1 and T2, the isolating knife gate and the circuit breaker QF are connected to the 500kV main transformer 35kV side, filter bank F. Reactive power compensation and harmonic suppression are performed, and the isolation knife K1 and the circuit breaker QF1 are connected to the 35kV bus, as shown in FIG.
  • Access control protection system CP, knife gate, circuit breaker and inverter control command by control protection system CP issue.
  • the implementation of various modes such as TCR, DC ice melting and its equivalent test function is:
  • One-to-one DC ice-melting mode that is, the AB-phase wire is melted in series: the three-phase knife gate is closed, Sac2 and Sac3 are closed; the single-phase knife gates SV1, SV2 and SV3 are disconnected, SV4 and SV5 are closed, Sdcl And Sdc2 is closed, Sdc3 and Sdc4 are disconnected; AC side isolating knife K and open circuit QF are closed;
  • Two to one DC melting mode that is, the AB phase conductors are connected in parallel and then melted in series with the C phase conductors: the three-phase knife gates Sacl is disconnected, Sac2 and Sac3 are closed; the single-phase knife gates SV1, SV2 and SV3 are disconnected , SV4 and SV5 are closed, Sdcl, Sdc2 and Sdc4 are closed, Sdc3 is disconnected; AC side isolating knife K and open QF are closed;
  • Zero power test mode Three-phase knife gate Sacl is open, Sac2 and Sac3 are closed; single-phase knife gates SV1, SV2 and SV3 are open, SV4 and SV5 are closed, Sdcl and Sdc4 are disconnected, Sdc2 and Sdc3 are closed; The isolation knife gate K and the open circuit QF are closed;
  • Thyristor control reactor TCR mode Three-phase knife gate Sacl is closed, Sac2 and Sac3 are disconnected; single-phase knife gates SV1, SV2 and SV3 are closed, SV4 and SV5 are disconnected, Sdcl, Sdc2, Sdc3 and Sdc4 are disconnected; The side isolation knife gate K and the circuit breaker QF are closed;
  • Thyristor switching reactor TSR mode Three-phase knife gate Sacl is closed, Sac2 and Sac3 are disconnected; single-phase knife gates SV1, SV2 and SV3 are closed, SV4 and SV5 are disconnected, SdcK Sdc2, Sdc3 and Sdc4 are disconnected; The side isolating knife K and the circuit breaker QF are closed.
  • the serial 12-pulse DC ice-melting automatic conversion circuit includes two sub-conversion circuits, which are respectively a sub-conversion circuit TC1 and a sub-conversion circuit TC2,
  • the three-phase three-winding rectifier transformers T1 and T2, the isolating knife gate and the circuit breaker QF are connected to the 220kV main transformer 220kV side, and the filter group F performs reactive power compensation and harmonic suppression, and is connected through the isolating knife gate K1 and the circuit breaker QF1.
  • the third winding of the rectifier transformer is shown in Figure 9.
  • Access control protection system CP, knife gate, circuit breaker and inverter control commands are issued by the control protection system CP .
  • the implementation of various modes such as TCR, DC ice melting and its equivalent test function is:
  • One-to-one DC ice-melting mode that is, the AB-phase wire is melted in series: the three-phase knife gate is closed, Sac2 and Sac3 are closed; the single-phase knife gates SV1, SV2 and SV3 are disconnected, SV4 and SV5 are closed, Sdcl And Sdc2 is closed, Sdc3 and Sdc4 are disconnected; AC side isolating knife K and open circuit QF are closed;
  • Two to one DC melting mode that is, the AB phase conductors are connected in parallel and then melted in series with the C phase conductors: the three-phase knife gates Sacl is disconnected, Sac2 and Sac3 are closed; the single-phase knife gates SV1, SV2 and SV3 are disconnected , SV4 and SV5 are closed, Sdcl, Sdc2 and Sdc4 are closed, Sdc3 is disconnected; AC side isolating knife K and open QF are closed;
  • Zero power test mode Three-phase knife gate Sacl is open, Sac2 and Sac3 are closed; single-phase knife gates SV1, SV2 and SV3 are open, SV4 and SV5 are closed, Sdcl and Sdc4 are disconnected, Sdc2 and Sdc3 are closed; The isolation knife gate K and the open circuit QF are closed;
  • Thyristor control reactor TCR mode Three-phase knife gate Sacl is closed, Sac2 and Sac3 are open; single-phase knife gates SV1, SV2 and SV3 are closed, SV4 and SV5 are disconnected, SdcK Sdc2, Sdc3 and Sdc4 are disconnected; The isolation knife gate K and the circuit breaker QF are closed;
  • Thyristor switching reactor TSR mode Three-phase knife gate Sacl is closed, Sac2 and Sac3 are disconnected; single-phase knife gates SV1, SV2 and SV3 are closed, SV4 and SV5 are disconnected, Sdc Sdc2, Sdc3 and Sdc4 are disconnected; The side isolating knife K and the circuit breaker QF are closed.
  • the parallel 12-pulse DC ice-melting automatic conversion circuit includes two sub-conversion circuits, namely a sub-conversion circuit TC1 and a sub-conversion circuit TC2, and a three-phase three-winding rectifier transformer T1 and T2, an isolation knife.
  • the gate and circuit breaker QF are connected to the 35kV side of the 500kV main transformer, and the filter bank F performs reactive power compensation and harmonic suppression through the isolating knife gate.
  • Kl and circuit breaker QF1 are connected to the third winding of the rectifier transformer, as shown in FIG.
  • Access control protection system CP, knife gate, circuit breaker and inverter control commands are issued by the control protection system CP. Its thyristor control reactor TCR, DC ice melting and its equivalent test function are implemented in various modes -
  • One-to-one DC ice-melting mode that is, the AB-phase wire is melted in series: the three-phase knife gate is closed, Sac2 and Sac3 are closed; the single-phase knife gates SV1, SV2 and SV3 are disconnected, SV4 and SV5 are closed, Sdcl And Sdc2 is closed, Sdc3 and Sdc4 are disconnected; AC side isolating knife K and open circuit QF are closed;
  • Two to one DC melting mode that is, the AB phase conductors are connected in parallel and then melted in series with the C phase conductors: the three-phase knife gates Sacl is disconnected, Sac2 and Sac3 are closed; the single-phase knife gates SV1, SV2 and SV3 are disconnected , SV4 and SV5 are closed, Sdcl, Sdc2 and Sdc4 are closed, Sdc3 is disconnected; AC side isolating knife K and open QF are closed;
  • Zero power test mode Three-phase knife gate Sacl is open, Sac2 and Sac3 are closed; single-phase knife gates SV1, SV2 and SV3 are open, SV4 and SV5 are closed, Sdcl and Sdc4 are disconnected, Sdc2 and Sdc3 are closed; The isolation knife gate K and the open circuit QF are closed;
  • Thyristor control reactor TCR mode Three-phase knife gate Sacl is closed, Sac2 and Sac3 are open; single-phase knife gates SV1, SV2 and SV3 are closed, SV4 and SV5 are disconnected, Sdcl, Sdc2, Sdc3 and Sdc4 are disconnected; The side isolation knife gate K and the circuit breaker QF are closed;
  • Thyristor switching reactor TSR mode Three-phase knife gate Sacl is closed, Sac2 and Sac3 are disconnected; single-phase knife gates SV1, SV2 and SV3 are closed, SV4 and SV5 are disconnected, Sdcl, Sdc2, Sdc3 and Sdc4 are disconnected; The AC side isolation knife gate K and the circuit breaker QF are closed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Driving Mechanisms And Operating Circuits Of Arc-Extinguishing High-Tension Switches (AREA)
  • Dc-Dc Converters (AREA)

Abstract

一种多功能直流融冰自动转换电路及其转换方法。自动转换电路包括至少一个分转换电路。分转换电路包括不带饱和电抗器的六脉动换流器(R),六个电抗器(L1a、L1b、L1c、L2a、L2b、L2c),三个三相刀闸(Sac1、Sac2、Sac3),五个单相刀闸(SV1、SV2、SV3、SV4、SV5)。串联或并联的分转换电路与四个直流侧转换刀闸(Sdc1、Sdc2、Sdc3、Sdc4),隔离刀闸(K),断路器(QF)以及控制保护系统(CP)可构成六脉动或十二脉动直流融冰自动转换电路。自动转换电路不带饱和电抗器,降低了运行时的噪声,实现了电抗器投切、直流融冰和试验模式相互自动转换,并且不需要接入输电线路即可完成自动转换电路的通流试验,解决日常运行维护的问题。

Description

一种多功能直流融冰自动转换电路及其转换方法 技术领域
本发明是一种多功能直流融冰自动转换电路及其转换方法,特别是一种涉 及能够实现晶闸管控制电抗器 TCR、 晶闸管投切电抗器 TSR、 直流融冰及其等 效试验功能相互自动转换的电路及其转换方法,属于高压及特高压电网输电线 路直流融冰应用的创新技术。
背景技术
低温雨雪冰冻天气引起的输电线路覆冰是众多国家电力系统所面临 的严重威胁之一, 严重的覆冰会引起电网断线、 倒塔, 导致大面积停电事 故, 也使得快速恢复送电变得非常困难。 长期以来, 冰灾的威胁一直是电 力系统工业界竭力应对的一大技术难题。
1998年北美风暴给美加电网带来了严重的影响,造成了范围广阔的电 力中断。 2005年, 低温雨雪冰冻天气曾给中国华中、 华北电网造成严重的 灾害。 2008年 1-2月, 低温雨雪冰冻天气再次袭击中国南方、 华中、 华东 地区, 导致贵州、 湖南、 广东、 云南、 广西和江西等省输电线路大面积、 长时间停运, 给国民经济和人民生活造成巨大损失。
为应对越来越频繁的冰灾对电力系统基础设施的严重威胁, 工业界与 学术界研究了多种除冰 /融冰技术。其中, 直流融冰的基本原理是通过大功 率整流装置将从系统获得的交流电能转化为直流电能, 将直流电能输入到 待融冰线路导线中, 在直流电流的作用下使得导线发热、 覆冰融化, 从而 消除线路断线、 倒塔的风险。 直流融冰技术克服了交流融冰的限制, 直流 融冰时线路阻抗的感性分量不起作用, 大大降低了直流融冰所需的容量, 提高了融冰效率; 直流融冰时直流电压连续可调,通过调整直流输出电压, 可以满足不同长度线路的融冰要求, 且不需要进行阻抗匹配, 大大降低了 融冰对电力系统运行方式的苛刻需求; 安装于枢纽变电站的直流融冰装置 可对全站所有的进出线开展融冰工作。
国际上, 前苏联自 1972年开始使用二极管整流装置融冰, 后来采用 可控硅整流装置。 俄罗斯直流研究院成功研制了 2个电压等级的可控硅整 流融冰装置: 14kV (由 11 kV交流母线供电) 和 50kV (由 38. 5 kV交流母 线供电)。14kV装置的额定功率为 14MW, 50kV装置的额定功率为 50MW。50MW 装置于 1994年在变电站投运, 并成功应用于一条 315 km长的 llOkV输电 线路的除冰。 1998年北美冰灾后, 魁北克水电局与 AREVA T&D公司投入 2500万欧元, 合作开发了直流融冰装置, 并在魁北克电网的 L vis变电站 安装了一套直流融冰装置, 容量 250 MW, 直流输出电压 ± 17. 4 kV, 设计 目的是对 .4条 735kV和 2条 315kV线路进行融冰。该装置 2008年完成现场 试验, 但至今未进行过实际融冰。
2008年冰灾后,中国电力科技工作者自主进行了直流融冰技术及装置 的研发, 成功研发出了具有完全自主知识产权的大功率直流融冰装置, 主 要包括带专用整流变压器、不带专用整流变压器和车载移动式等多种型式, 进而在全国进行了推广应用, 到目前为止, 共有约 20余套直流融冰装置投 入运行, 其中南方电网内布置有 19套。
2009年 1月, 贵州电网公司对 500千伏福施 II线、 220千伏福旧线、 110千伏福牛线 110千伏水树梅线进行了直流融冰, 云南电网公司对 220 千伏昭大 I线进行了直流融冰, 广东电网公司对 llOkV通梅线线进行直流 融冰。 2009年 11月, 云南电网公司对 110千伏大中 T线进行了直流融冰。 初期的实际应用表明直流融冰技术是电网除冰的有效手段。
2011年 1月, 大面积覆冰再次袭击南方电网, 南方电网内已经安装的 19套直流融冰装置均发挥了重大作用, 对 llOkV以上线路进行直流融冰共 计 217条次,其中 500kV交流线路 40余条次, 充分发挥了直流融冰装置的 威力。
鉴于直流融冰装置实际应用效果, 中国电网企业从 2011年开始又进 行了新一轮的大规模推广应用。
2009-2011年覆冰期中的实际应用中发现现有直流融冰装置存在需要 优化的地方: ①换流器中饱和电抗器噪声较大; ②对短线路融冰出现电流 断续; ③需要接入输电线路才能进行融冰装置通流试验, 既受电网运行方 式限制, 也给电网的正常运行造成影响。
发明内容
本发明的目的在于考虑上述问题而提供一种大大降低直流融冰装置 运行时的噪声, 使其多种模式能够实现相互自动转换, 不需要接入输电线 路即可完成直流融冰装置的通流试验, 有效地解决日常运行维护问题的多 功能直流融冰自动转换电路。 本发明设计合理, 方便实用。
本发明的另一目的在于提供一种操作简单, 使用方便的多功能直流融 冰自动转换电路的转换方法。
本发明的技术方案是: 本发明的多功能直流融冰自动转换电路, 包括 有至少一个由如下构件组成的分转换电路, 该分转换电路包括有不带饱和 电抗器的六脉动换流器 R, 电抗器 Lla、 Lib和 Lie, 电抗器 L2a、 L2b和 L2c, 三相刀闸 Sacl、 Sac2和 Sac3, 单相刀闸 SV1、 SV2、 SV3、 SV4和 SV5。 分转换电路中不带饱和电抗器的六脉动换流器 R与电抗器 Lla、 Lb、 Lc相 连, 与电抗器 L2a、 L12b、 L2c相连; 电抗器 L2a、 L2b、 L2c通过三相刀闸 Sacl与电抗器 Llc、 Lib, Lla分别对应相连; 三相刀闸 Sac3—端与不带 饱和电抗器的六脉动换流器 R—端相连, 另一端短接;三相刀闸 Sac2—端 与电抗器 L2a、 L2b、 L2c相连, 另一端短接; 单相刀闸 SV1两端分别与六 脉动换流器 R中阀臂 VI阴极和阔臂 V4阳极相连, SV2两端分别与六脉动 换流器 R中阀臂 V3阴极和阀臂 V6阳极相连, 单相刀闸 SV3两端分别与六 脉动换流器 R中阀臂 V5阴极和阀臂 V2阳极相连, SV4连接于电抗器 L2b 和 L2c相间, SV5连接于电抗器 L2a和 L2c相间。
上述转换电路中的六脉动换流器 R不带饱和电抗器。
上述转换电路中电抗器 Lla、 Lib和 Lie的电感值根据晶闸管电流变 化率 di/dt和短路电流限值确定, 电抗器 Lla、 Lib和 Lie的电感值为电抗 器 L2a、 L2b、 L2c的 0- 0. 2倍, 电抗器 Lla、 Lib和 Lie的额定电流值按融 冰模式中平波电抗器要求设计, 电抗器 L2a、 L2b、 L2c的额定电流值按晶 闸管控制电抗器 TCR或晶闸管投切电抗器 TSR模式要求设计。
上述六脉动直流融冰自动转换电路包括有一个分转换电路、 直流侧转 换刀闸 Sdcl、 Sdc2、 Sdc3和 SVdc4, 隔离刀闸 K, 断路器 QF, 以及控制保 护系统 CP, 直流侧转换刀闸 Sdcl和 Sdc2并联后与分转换电路中三相刀闸 Sac3短接端相连; 单相刀闸 Sdc3和 Sdc4并联后与分转换电路中三相刀闸 Sac2短接端相连; 分转换电路通过隔离刀闸 K和断路器 QF与变电站 35kV 或 10kV母线相连, 刀闸 Sacl、 Sac2、 Sac3、 K、 SV1、 SV2、 SV3、 SV4、 SV5、 Sdcl、 Sdc2、 Sdc3、 Sdc4和断路器 QF的位置信号及换流器交流侧电流信 号 Iva、 Ivb、 Ivc及直流侧电流信号 Idp、 Idn及直流侧电压信号 Udp、 Udn 及六脉动换流器 R的监测信号接入控制保护系统 CP; 控制保护系统 CP发 出刀闸和断路器 QF的分合命令及发出六脉动换流器 R的控制和触发命令。
上述串联型十二脉动直流融冰自动转换电路包括有两个串联连接的分转 换电路, 分别为分转换电路 TC1及分转换电路 TC2, Y/Y联结变压器 Τ1、 Υ/Δ 联结变压器 Τ2, 直流侧转换刀闸 Sdcl、 Sdc2、 Sdc3和 SVdc4, 隔离刀闸 K, 断 路器 QF, 以及控制保护系统 CP, 且两个分转换电路连接中点接地, 分转换电 路 TC1与 Y/Y联结变压器 T1相连,分转换电路 TC2与 ΥΔ联结变压器 T2相连; 分转换电路 TC1和 TC2中不带饱和电抗器的六脉动换流器 R通过三相刀闸 Sac3 短接端相连; 直流侧转换刀闸 Sdcl和 Sdc2并联后与分转换电路 TC1中三相刀 闸 Sac2短接端相连; 单相刀闸 Sdc3和 Sdc4并联后与分转换电路 TC2中三相 刀闸 Sac2短接端相连; Y/Y联结变压器 Τ1、 Υ/Δ联结变压器 Τ2通过隔离刀闸 Κ和断路器 QF与变电站 35kV或 10kV或 220kV母线相连。 刀闸 Sacl、 Sac2、 Sac3、 K、 SV1、 SV2、 SV3、 SV4、 SV5、 Sdcl、 Sdc2、 Sdc3、 Sdc4和断路器 QF 的位置信号及整流变阔侧电流信号 Iyva、 Iyvb、 Iyvc、 Idva、 Idvb、 Idvc及 网侧电流 Iya、 Iyb、 Iyc、 Ida、 Idb、 I dc及直流侧电流信号 I dp、 Idn、 Idgn 及直流侧电压信号 Udp、 Udn及六脉动换流器 R的监测信号接入控制保护系统 CP; 控制保护系统 CP发出刀闸和断路器 QF的分合命令及发出六脉动换流器 R 的控制和触发命令。
上述并联型十二脉动直流融冰自动转换电路包括有两个并联的分转换电 路, 分别为分转换电路 TC1及分转换电路 TC2, Y/Y联结变压器 Τ1、 Υ/Δ联结 变压器 Τ2, 直流侧转换刀闸 Sdcl、 Sdc2、 Sdc3和 SVdc4, 隔离刀闸 K, 断路器 QF, 以及控制保护系统 CP, 分转换电路 TCI与 Y/Y联结变压器 T1相连, 分转 换电路 TC2与 ΥΔ联结变压器 T2相连; 分转换电路 TC1中三相刀闸 Sac2短接 端和分转换电路 TC2中三相刀闸 Sac3短接端相连; 分转换电路 TC1中三相刀 闸 Sac3短接端和分转换电路 TC2中三相刀闸 Sac3短接端相连; 直流侧转换刀 闸 Sdcl和 Sdc2并联后与分转换电路 TC1中三相刀闸 Sac2短接端相连; 单相 刀闸 Sdc3和 Sdc4并联后与分转换电路 TC2中三相刀闸 Sac2短接端相连; Y/Y 联结变压器 Τ1、Υ/Δ联结变压器 Τ2通过隔离刀闸 Κ和断路器 QF与变电站 35kV 或 10kV或 220kV母线相连。刀闸 Sacl、 Sac2、 Sac3、 K、 SV1、 SV2、 SV3、 SV4、 SV5、 Sdcl、 Sdc2 Sdc3、 Sdc4和断路器 QF的位置信号及整流变阀侧电流信号 Iyv &、 Iyvb、 Iyvc、 Idva Idvb、 Idvc及网侧电流 Iya、 Iyb、 Iyc、 Ida、 Idb、 Idc及直流侧电流信号 Idp、 Idn及直流侧电压信号 Udp、 Udn及六脉动换流器 R的监测信号接入控制保护系统 CP;控制保护系统 CP发出刀闸和断路器 QF的 分合命令及发出六脉动换流器 R的控制和触发命令。
上述六脉动直流融冰自动转换电路运行于融冰模式时直流侧不接地。 上述串联型十二脉动直流融冰自动转换电路运行于融冰模式时直流侧两 六脉动换流器 R连接点直接接地; 上述串联型十二脉动直流融冰自动转换电路 运行于融冰模式和晶闸管控制电抗器 TCR模式时均为 12脉动; 上述串联型十 二脉动直流融冰自动转换电路中电抗器 Lla、 Lib和 Lie的电感值可为 0, 即不 配置电抗器 Lla、 Lib和 Llc。
上述并联型十二脉动直流融冰自动转换电路运行于融冰模式时直流侧不 接地运行于融冰模式时直流侧不接地; 上述并联型十二脉动直流融冰自动转换 电路运行于融冰模式和晶闸管控制电抗器 TCR模式时均为 12脉动; 上述并联 型十二脉动直流融冰自动转换电路中电抗器 Lla、 Lib和 Lie的电感值可为 0, 即不配置电抗器 Lla、 Lib和 Llc。
本发明多功能自动转换电路的转换方法, 包括如下转换模式:
1 )一去一回直流融冰模式,即 A- B相导线串联融冰:三相刀闸 Sacl断开, Sac2和 Sac3闭合; 单相刀闸 SV1、 SV2和 SV3断开, SV4和 SV5闭合, Sdcl 和 Sdc2闭合, Sdc3和 Sdc4断开; 交流侧隔离刀闸 K和断路 QF器闭合;
2) 二去一回直流融冰模式, 即 AB相导线并联后再与 C相导线串联融冰: 三相刀闸 Sacl断开, Sac2和 Sac3闭合; 单相刀闸 SV1、 SV2和 SV3断开, SV4 和 SV5闭合, Sdcl、 Sdc2和 Sdc4闭合, Sdc3断开; 交流侧隔离刀闸 K和断路 QF器闭合; 3)开路试验模式:三相刀闸 Sacl断开, Sac2和 Sac3闭合;单相刀闸 SV1、 SV2和 SV3断开, SV4和 SV5闭合, Sdcl、 Sdc2、 Sdc3和 Sdc4断开; 交流侧隔 离刀闸 K和断路 QF器闭合;
4)零功率试验模式: 三相刀闸 Sacl断开, Sac2和 Sac3闭合; 单相刀闸 SV1、 SV2和 SV3断开, SV4和 SV5闭合, Sdcl和 Sdc4断开, Sdc2和 Sdc3闭 合; 交流侧隔离刀闸 K和断路 QF器闭合;
5) 晶闸管控制电抗器 TCR模式: 三相刀闸 Sacl闭合, Sac2和 Sac3 断开;单相刀闸 SV1、 SV2和 SV3闭合, SV4和 SV5断开, Sdcl、 Sdc2、 Sdc3 和 Sdc4断开; 交流侧隔离刀闸 K和断路器 QF闭合;
6) 晶闸管投切电抗器 TSR模式: 三相刀闸 Sacl闭合, Sac2和 Sac3 断开;单相刀闸 SV1、 SV2和 SV3闭合, SV4和 SV5断开, SdcK Sdc2、 Sdc3 和 Sdc4断开; 交流侧隔离刀闸 K和断路器 QF闭合。
上述多功能直流融冰自动转换电路的转换方法, 其特征在于上述一去 一回直流融冰模式、 二去一回直流融冰模式、 开路试验模式和零功率试验 模式中, 电抗器 Lla、 Lib和 Lie作为换相电抗器运行, 电抗器 L2a、 L2b 和 L2c作为平波电抗器运行。
上述多功能直流融冰自动转换电路的转换方法, 其特征在于上述晶闸管控 制电抗器 TCR模式中, 电抗器 Lla、 Lib和 Lie, 电抗器 L2a、 L2b和 L2c作为 相控电抗器运行;上述晶闸管投切电抗器 TSR模式中,电抗器 Lla、Llb和 Lie, 电抗器 L2a、 L2b和 L2c作为投切电抗器运行。
本发明由于采用换流器中带有平波电抗器的结构,不需要接 入输电线路即可完成直流融冰装置的通流试验, 并使得直流融冰 装置在不融冰时可转换为晶闸管控制电抗器 TCR或晶闸管控制电 抗器 (TSR)运行。 本发明直流融冰装置中的换流器不带饱和电抗 器, 大大降低直流融冰装置运行时的噪声; 通过设置隔离刀闸, 使得晶闸管控制电抗器、 直流融冰及其等效试验功能等多种模式 能够实现相互自动转换; 不需要接入输电线路即可完成直流融冰 装置的通流试验, 有效地解决日常运行维护的问题。 本发明能够 实现晶闸管控制电抗器 TCR、 晶闸管控制电抗器 (TSR)、直流融冰 及其等效试验功能相互自动转换的电路, 适用于高压及特高压电 网输电线路的融冰, 本发明的多功能直流融冰自动转换电路设计 合理, 方便实用。 本发明的多功能直流融冰自动转换电路的转换 方法操作简单, 使用方便。
附图说明
下面结合附图和具体实施方式对本发明专利进一步详细说 明。
图 1为本发明多功能直流融冰自动转换电路中的一个分转换 电路。
图 2为本发明包括有一个分转换电路的六脉动直流融冰自动 转换电路的原理接线图。
图 3为本发明包括有两个分转换电路串联的串联型十二脉动 直流融冰自动转换电路的原理接线图。
图 4为本发明包括有两个分转换电路并联的并联型十二脉动 直流融冰自动转换电路的原理接线图。
图 5为本发明包括有一个分转换电路的六脉动直流融冰自动 转换电路接在 220kV主变 10kV侧的实施例。
图 6为本发明包括有一个分转换电路的六脉动直流融冰自动 转换电路接在 500kV主变 35kV侧的实施例。
图 7为本发明包括有两个分转换电路串联的串联型十二脉动 直流融冰自动转换电路接在 220kV主变 10kV侧的实施例。
图 8为本发明包括有两个分转换电路串联的串联型十二脉动 直流融冰自动转换电路接在 500kV主变 35kV侧的实施例。
图 9为本发明包括有两个分转换电路串联的串联型十二脉动 直流融冰自动转换电路接在 500kV主变 220kV侧的实施例。
图 10为本发明包括有两个分转换电路并联的并联型十二脉 动直流融冰自动转换电路接在 500kV主变 35kV侧的实施例。
图 1至图 10中 Uab、 Ubc、 Uca为 10kV或 35kV或 220kV母 线三相电压, Iva、 Ivb、 Ivc、 Iyva、 Iyvb、 Iyvc、 Idva、 Idvb、 I dvc为换流器交流侧电流, Iya、 Iyb、 Iyc、 Ida、 Idb、 Idc为整 流变网侧电流, Idp、 Idn和 Idgn直流侧电流, Udp、 Udn为直流 侧电压, K为交流侧隔离刀闸, QF为交流侧断路器, K1为交流侧 隔离刀闸, QF1为交流侧断路器, F为滤波器组。
具体实施方式
实施例:
本发明的结构示意图如图 1至图 10所示, 本发明的多功能 直流融冰自动转换电路, 包括有至少一个由如下构件组成的分转 换电路,该分转换电路包括有不带饱和电抗器的六脉动换流器 R, 电抗器 Lla、 Lib和 Lie,电抗器 L2a、 L2b和 L2c,三相刀闸 Sacl、 Sac2和 Sac3, 单相刀闸 SV1、 SV2、 SV3、 SV4和 SV5。 分转换电 路中不带饱和电抗器的六脉动换流器 R与电抗器 Lla、 Lb、 Lc相 连, 与电抗器 L2a、 L12b、 L2c相连; 电抗器 L2a、 L2b、 L2c通过 三相刀闸 Sacl与电抗器 Llc、 Lib, Lla分别对应相连; 三相刀闸 Sac3—端与不带饱和电抗器的六脉动换流器 R—端相连,另一端 短接; 三相刀闸 Sac2—端与电抗器 L2a、 L2b、 L2c相连, 另一端 短接;单相刀闸 SV1两端分别与六脉动换流器 R中阀臂 VI阴极和 阀臂 V4阳极相连, SV2两端分别与六脉动换流器 R中阀臂 V3阴 极和阔臂 V6阳极相连,单相刀闸 SV3两端分别与六脉动换流器 R 中阀臂 V5阴极和阀臂 V2阳极相连, SV4连接于电抗器 L2b和 L2c 相间, SV5连接于电抗器 L2a和 L2c相间。
上述六脉动直流融冰自动转换电路包括有一个分转换电路、 直流侧转换刀闸 Sdcl、 Sdc2、 Sdc3和 SVdc4, 隔离刀闸 K, 断路 器 QF, 以及控制保护系统 CP,直流侧转换刀闸 Sdcl和 Sdc2并联 后与分转换电路中三相刀闸 Sac3短接端相连; 单相刀闸 Sdc3和 Sdc4并联后与分转换电路中三相刀闸 Sac2短接端相连; 分转换 电路通过隔离刀闸 K和断路器 QF与变电站 35kV或 10kV母线相连, 刀闸 Sacl、 Sac2、 Sac3、 K、 SV1、 SV2、 SV3、 SV4、 SV5、 Sdcl、 Sdc2、 Sdc3、 Sdc4和断路器 QF的位置信号及换流器交流侧电流 信号 Iva、 Ivb、 Ivc及直流侧电流信号 Idp、 Idn及直流侧电压信 号 Udp、 Udn及六脉动换流器 R的监测信号接入控制保护系统 CP; 控制保护系统 CP发出刀闸和断路器 QF的分合命令及发出六脉动 换流器 R的控制和触发命令。
上述串联型十二脉动直流融冰自动转换电路包括有两个串 联连接的分转换电路,分别为分转换电路 TC1及分转换电路 TC2, Y/Y联结变压器 Τ1、 Υ/Δ联结变压器 Τ2, 直流侧转换刀闸 Sdcl、 Sdc2、 Sdc3和 SVdc4, 隔离刀闸 K, 断路器 QF, 以及控制保护系 统 CP, 且两个分转换电路连接中点接地, 分转换电路 TC1与 Y/Y 联结变压器 T1相连,分转换电路 TC2与 ΥΔ联结变压器 T2相连; 分转换电路 TC1和 TC2中不带饱和电抗器的六脉动换流器 R通过 三相刀闸 Sac3短接端相连;直流侧转换刀闸 Sdcl和 Sdc2并联后 与分转换电路 TC1中三相刀闸 Sac2短接端相连; 单相刀闸 Sdc3 和 Sdc4并联后与分转换电路 TC2中三相刀闸 Sac2短接端相连; Y/Y联结变压器 Τ1、 Υ/Δ联结变压器 Τ2通过隔离刀闸 Κ和断路器 QF与变电站 35kV或 10kV或 220kV母线相连。 刀闸 Sacl、 Sac2、 Sac3、 K、 SV1、 SV2、 SV3、 SV4、 SV5、 Sdcl、 Sdc2、 Sdc3、 Sdc4 和断路器 QF的位置信号及整流变阀侧电流信号 Iyva、IyVb、IyVC、 Idva、 Idvb、 Idvc及网侧电流 Iya、 Iyb、 Iyc、 Ida. Idb、 Idc 及直流侧电流信号 Idp、 Idn、 Idgn及直流侧电压信号 Udp、 Udn 及六脉动换流器 R的监测信号接入控制保护系统 CP;控制保护系 统 CP发出刀闸和断路器 QF的分合命令及发出六脉动换流器 R的 控制和触发命令。
上述并联型十二脉动直流融冰自动转换电路,其特征在于包 括有两个并联的分转换电路, 分别为分转换电路 TC1及分转换电 路 TC2, Y/Y联结变压器 Τ1、 Υ/Δ联结变压器 Τ2, 直流侧转换刀 闸 Sdcl、 Sdc2、 Sdc3和 SVdc4, 隔离刀闸 K, 断路器 QF, 以及控 制保护系统 CP, 分转换电路 TCI与 Y/Y联结变压器 T1相连, 分 转换电路 TC2与 ΥΔ联结变压器 T2相连;分转换电路 TC1中三相 刀闸 Sac2短接端和分转换电路 TC2中三相刀闸 Sac3短接端相连; 分转换电路 TC1中三相刀闸 Sac3短接端和分转换电路 TC2中三相 刀闸 Sac3短接端相连;直流侧转换刀闸 Sdcl和 Sdc2并联后与分 转换电路 TC1中三相刀闸 Sac2短接端相连;单相刀闸 Sdc3和 Sdc4 并联后与分转换电路 TC2中三相刀闸 Sac2短接端相连; Y/Y联结 变压器 Τ1、 Υ/Δ联结变压器 Τ2通过隔离刀闸 Κ和断路器 QF与变 电站 35kV或 10kV或 220kV母线相连。 刀闸 Sacl、 Sac2、 Sac3、 K、 SV1、 SV2、 SV3、 SV4、 SV5、 Sdcl、 Sdc2、 Sdc3、 Sdc4和断路 器 QF的位置信号及整流变阀侧电流信号 Iyva、 Iyvb、 Iyvc、 Idva、 Idvb、 Idvc及网侧电流 Iya、 Iyb、 Iyc、 Ida, Idb、 Idc及直流 侧电流信号 Idp、 Idn及直流侧电压信号 Udp、 Udn及六脉动换流 器 R的监测信号接入控制保护系统 CP; 控制保护系统 CP发出刀 闸和断路器 QF的分合命令及发出六脉动换流器 R的控制和触发命 令。
实施例 1:
本实施例中, 上述六脉动直流融冰自动转换电路包括有一个分 转换电路, 通过交流侧隔离刀闸 K及断路器 QF接于 220kV主变 10kV 侧, 滤波器组 F进行无功补偿和谐波抑制, 通过隔离刀闸 K1和断路 器 QF1接在 10kV母线上, 如图 5所示。
10kV母线三相电压 Uab、 Ubc、 Uca、换流器交流侧电流 Iva、 Ivb、 Ivc、直流侧电流 Idp、 Idn.直流侧电压 Udp、 Udn.换流器监测信号、 刀闸监测信号、 断路器监测信号等接入控制保护系统 CP, 刀闸、 断 路器和换流器控制命令由控制保护系统 CP发出。 其晶闸管控制电抗 器 TCR、 晶闸管投切电抗器 TSR、 直流融冰及其等效试验功能等各种 模式中的实现方案是-
1 )一去一回直流融冰模式, 即 A- B相导线串联融冰: 三相刀闸 Sacl断开, Sac2和 Sac3闭合; 单相刀闸 SV1、 SV2和 SV3断开, SV4 和 SV5闭合, Sdcl和 Sdc2闭合, Sdc3和 Sdc4断开; 交流侧隔离刀 闸 K和断路 QF器闭合;
2) 二去一回直流融冰模式, 即 AB相导线并联后再与 C相导线 串联融冰: 三相刀闸 Sacl断开, Sac2和 Sac3闭合; 单相刀闸 SV1、 SV2和 SV3断开, SV4和 SV5闭合, Sdcl、 Sdc2和 Sdc4闭合, Sdc3 断开; 交流侧隔离刀闸 K和断路 QF器闭合;
3)开路试验模式: 三相刀闸 Sacl断开, Sac2和 Sac3闭合; 单 相刀闸 SV1、 SV2和 SV3断开, SV4和 SV5闭合, Sdcl、 Sdc2、 Sdc3 和 Sdc4断开; 交流侧隔离刀闸 K和断路 QF器闭合;
4)零功率试验模式: 三相刀闸 Sacl断开, Sac2和 Sac3闭合; 单相刀闸 SVK SV2和 SV3断开, SV4和 SV5闭合, Sdcl和 Sdc4断开, Sdc2和 Sdc3闭合; 交流侧隔离刀闸 K和断路 QF器闭合;
5)晶闸管控制电抗器 TCR模式: 三相刀闸 Sacl闭合, Sac2 和 Sac3断开; 单相刀闸 SV1、 SV2和 SV3闭合, SV4和 SV5断开, Sdcl、 Sdc2、 Sdc3和 Sdc4断开; 交流侧隔离刀闸 K和断路器 QF 闭合;
6) 晶闸管投切电抗器 TSR模式: 三相刀闸 Sacl闭合, Sac2 和 Sac3断开; 单相刀闸 SV1、 SV2和 SV3闭合, SV4和 SV5断开, Sdcl、 Sdc2、 Sdc3和 Sdc4断开; 交流侧隔离刀闸 K和断路器 QF 闭合。
实施例 2:
本实施例中, 上述六脉动直流融冰自动转换电路包括有一个分 转换电路, 通过交流侧隔离刀闸 K及断路器 QF接于 500kV主变 35kV 侧, 滤波器组 F进行无功补偿和谐波抑制, 通过隔离刀闸 K1和断路 器 QF1接在 35kV母线上, 如图 6所示。
35kV母线三相电压 Uab、 Ubc、 Uca、换流器交流侧电流 Iva、 Ivb、 Ivc、直流侧电流 Idp、 Idn、直流侧电压 UdP、 Udn、换流器监测信号、 刀闸监测信号、 断路器监测信号等接入控制保护系统 CP, 刀闸、 断 路器和换流器控制命令由控制保护系统 CP发出。 其晶闸管控制电抗 器 TCR、 晶闸管投切电抗器 TSR、 直流融冰及其等效试验功能等各种 模式中的实现方案是-
1 )一去一回直流融冰模式, 即 A-B相导线串联融冰: 三相刀闸 Sacl断开, Sac2和 Sac3闭合; 单相刀闸 SV1、 SV2和 SV3断开, SV4 和 SV5闭合, Sdcl和 Sdc2闭合, Sdc3和 Sdc4断开; 交流侧隔离刀 闸 K和断路 QF器闭合;
2) 二去一回直流融冰模式, 即 AB相导线并联后再与 C相导线 串联融冰: 三相刀闸 Sacl断开, Sac2和 Sac3闭合; 单相刀闸 SV1、 SV2和 SV3断开, SV4和 SV5闭合, Sdcl、 Sdc2和 Sdc4闭合, Sdc3 断开; 交流侧隔离刀闸 K和断路 QF器闭合;
3)开路试验模式: 三相刀闸 Sacl断开, Sac2和 Sac3闭合; 单 相刀闸 SV1、 SV2和 SV3断开, SV4和 SV5闭合, Sdcl、 Sdc2、 Sdc3 和 Sdc4断开; 交流侧隔离刀闸 K和断路 QF器闭合;
4)零功率试验模式: 三相刀闸 Sacl断开, Sac2和 Sac3闭合; 单相刀闸 SV1、 SV2和 SV3断开, SV4和 SV5闭合, Sdcl和 Sdc4断开, Sdc2和 Sdc3闭合; 交流侧隔离刀闸 K和断路 QF器闭合;
5) 晶闸管控制电抗器 TCR模式: 三相刀闸 Sacl闭合, Sac2 和 Sac3断开; 单相刀闸 SV1、 SV2和 SV3闭合, SV4和 SV5断开, Sdcl、 Sdc2、 Sdc3和 Sdc4断开; 交流侧隔离刀闸 K和断路器 QF 闭合;
6) 晶闸管投切电抗器 TSR模式: 三相刀闸 Sacl闭合, Sac2 和 Sac3断开; 单相刀闸 SV1、 SV2和 SV3闭合, SV4和 SV5断开, Sdcl、 Sdc2、 Sdc3和 Sdc4断开; 交流侧隔离刀闸 K和断路器 QF 闭合。
实施例 3: 本实施例中,上述串联型十二脉动直流融冰自动转换电路包 括有两个分转换电路,分别为分转换电路 TC1及分转换电路 TC2, 通过三相双绕组整流变压器 T1和 T2、隔离刀闸 Κ及断路器 QF接 于 220kV主变 10kV侧,滤波器组 F进行无功补偿和谐波抑制,通 过隔离刀闸 K1和断路器 QF1接在 10kV母线上, 如图 7所示。
10kV母线三相电压 Uab、 Ubc、 Uca、 整流变阀侧电流 Iyva、 Iyvb、 Iyvc、 Idva、 Idvb、 Idvc、整流变网侧电流 Iya、 Iyb、 Iyc、 Ida, Idb、 Idc、 直流侧电流 Idp、 Idn、 Idgn、 直流侧电压 Udp、 Udn、换流器监测信号、刀闸监测信号、断路器监测信号等接入控 制保护系统 CP, 刀闸、 断路器和换流器控制命令由控制保护系统 CP发出。 其晶闸管控制电抗器 TCR、 直流融冰及其等效试验功能 等各种模式中的实现方案是:
1 )一去一回直流融冰模式, 即 A-B相导线串联融冰: 三相刀闸 Sacl断开, Sac2和 Sac3闭合; 单相刀闸 SV1、 SV2和 SV3断开, SV4 和 SV5闭合, Sdcl和 Sdc2闭合, Sdc3和 Sdc4断开; 交流侧隔离刀 闸 K和断路 QF器闭合;
2) 二去一回直流融冰模式, 即 AB相导线并联后再与 C相导线 串联融冰: 三相刀闸 Sacl断开, Sac2和 Sac3闭合; 单相刀闸 SV1、 SV2和 SV3断开, SV4和 SV5闭合, Sdcl、 Sdc2和 Sdc4闭合, Sdc3 断开; 交流侧隔离刀闸 K和断路 QF器闭合;
3)开路试验模式: 三相刀闸 Sacl断开, Sac2和 Sac3闭合; 单 相刀闸 SV1、 SV2和 SV3断开, SV4和 SV5闭合, Sdcl、 Sdc2、 Sdc3 和 Sdc4断开; 交流侧隔离刀闸 K和断路 QF器闭合;
4) 零功率试验模式: 三相刀闸 Sacl断开, Sac2和 Sac3闭合; 单相刀闸 SV1、 SV2和 SV3断开, SV4和 SV5闭合, Sdcl和 Sdc4断开, Sdc2和 Sdc3闭合; 交流侧隔离刀闸 K和断路 QF器闭合;
5) 晶闸管控制电抗器 TCR模式: 三相刀闸 Sacl闭合, Sac2 和 Sac3断开; 单相刀闸 SV SV2和 SV3闭合, SV4和 SV5断开, Sdcl、 Sdc2、 Sdc3和 Sdc4断开; 交流侧隔离刀闸 K和断路器 QF 闭合;
6) 晶闸管投切电抗器 TSR模式: 三相刀闸 Sacl闭合, Sac2 和 Sac3断开; 单相刀闸 SV1、 SV2和 SV3闭合, SV4和 SV5断开, SdcK Sdc2、 Sdc3和 Sdc4断开; 交流侧隔离刀闸 K和断路器 QF 闭合。
实施例 4 :
本实施例中, 上述串联型十二脉动直流融冰自动转换电路包括 有两个分转换电路, 分别为分转换电路 TCI及分转换电路 TC2, 通过 三相双绕组整流变压器 T1和 T2、隔离刀闸 Κ及断路器 QF接于 500kV 主变 35kV侧, 滤波器组 F进行无功补偿和谐波抑制, 通过隔离刀闸 K1和断路器 QF1接在 35kV母线上, 如图 8所示。
35kV母线三相电压 Uab、 Ubc、 Uca、整流变阀侧电流 Iyva、 Iyvb、 Iyvc、 Idva、 Idvb、 Idvc、 整流变网侧电流 Iya、 Iyb、 Iyc、 Ida、 Idb、 Idc、 直流侧电流 Idp、 Idn、 Idgn、 直流侧电压 Udp、 Udn、 换 流器监测信号、刀闸监测信号、断路器监测信号等接入控制保护系统 CP, 刀闸、 断路器和换流器控制命令由控制保护系统 CP发出。 其晶 闸管控制电抗器 TCR、 直流融冰及其等效试验功能等各种模式中的实 现方案是:
1 )一去一回直流融冰模式, 即 A-B相导线串联融冰: 三相刀闸 Sacl断开, Sac2和 Sac3闭合; 单相刀闸 SV1、 SV2和 SV3断开, SV4 和 SV5闭合, Sdcl和 Sdc2闭合, Sdc3和 Sdc4断开; 交流侧隔离刀 闸 K和断路 QF器闭合;
2) 二去一回直流融冰模式, 即 AB相导线并联后再与 C相导线 串联融冰: 三相刀闸 Sacl断开, Sac2和 Sac3闭合; 单相刀闸 SV1、 SV2和 SV3断开, SV4和 SV5闭合, Sdcl、 Sdc2和 Sdc4闭合, Sdc3 断开; 交流侧隔离刀闸 K和断路 QF器闭合;
3)开路试验模式: 三相刀闸 Sacl断开, Sac2和 Sac3闭合; 单 相刀闸 SV1、 SV2和 SV3断开, SV4和 SV5闭合, Sdcl、 Sdc2、 Sdc3 和 Sdc4断开; 交流侧隔离刀闸 K和断路 QF器闭合;
4) 零功率试验模式: 三相刀闸 Sacl断开, Sac2和 Sac3闭合; 单相刀闸 SV1、 SV2和 SV3断开, SV4和 SV5闭合, Sdcl和 Sdc4断开, Sdc2和 Sdc3闭合; 交流侧隔离刀闸 K和断路 QF器闭合;
5) 晶闸管控制电抗器 TCR模式: 三相刀闸 Sacl闭合, Sac2 和 Sac3断开; 单相刀闸 SV1、 SV2和 SV3闭合, SV4和 SV5断开, Sdcl、 Sdc2、 Sdc3和 Sdc4断开; 交流侧隔离刀闸 K和断路器 QF 闭合;
6) 晶闸管投切电抗器 TSR模式: 三相刀闸 Sacl闭合, Sac2 和 Sac3断开; 单相刀闸 SV1、 SV2和 SV3闭合, SV4和 SV5断开, SdcK Sdc2、 Sdc3和 Sdc4断开; 交流侧隔离刀闸 K和断路器 QF 闭合。
实施例 5:
本实施例中, 上述串联型十二脉动直流融冰自动转换电路包括 有两个分转换电路, 分别为分转换电路 TC1及分转换电路 TC2, 通过 三相三绕组整流变压器 T1和 T2、隔离刀闸 Κ及断路器 QF接于 500kV 主变 220kV侧,滤波器组 F进行无功补偿和谐波抑制,通过隔离刀闸 K1和断路器 QF1接在整流变压器第三绕组上, 如图 9所示。
220kV母线三相电压 Uab、Ubc、Uca、整流变阀侧电流 Iyva、 Iyvb、 Iyvc、 Idva、 Idvb Idvc、 整流变网侧电流 Iya、 Iyb、 Iyc、 Ida、 Idb、 Idc、 直流侧电流 Idp、 Idn、 Idgn、 直流侧电压 Udp、 Udn、 换 流器监测信号、刀闸监测信号、断路器监测信号等接入控制保护系统 CP, 刀闸、 断路器和换流器控制命令由控制保护系统 CP发出。 其晶 闸管控制电抗器 TCR、 直流融冰及其等效试验功能等各种模式中的实 现方案是:
1 )一去一回直流融冰模式, 即 A-B相导线串联融冰: 三相刀闸 Sacl断开, Sac2和 Sac3闭合; 单相刀闸 SV1、 SV2和 SV3断开, SV4 和 SV5闭合, Sdcl和 Sdc2闭合, Sdc3和 Sdc4断开; 交流侧隔离刀 闸 K和断路 QF器闭合;
2) 二去一回直流融冰模式, 即 AB相导线并联后再与 C相导线 串联融冰: 三相刀闸 Sacl断开, Sac2和 Sac3闭合; 单相刀闸 SV1、 SV2和 SV3断开, SV4和 SV5闭合, Sdcl、 Sdc2和 Sdc4闭合, Sdc3 断开; 交流侧隔离刀闸 K和断路 QF器闭合;
3)开路试验模式: 三相刀闸 Sacl断开, Sac2和 Sac3闭合; 单 相刀闸 SV1、 SV2和 SV3断开, SV4和 SV5闭合, Sdcl . Sdc2、 Sdc3 和 Sdc4断开; 交流侧隔离刀闸 K和断路 QF器闭合;
4)零功率试验模式: 三相刀闸 Sacl断开, Sac2和 Sac3闭合; 单相刀闸 SV1、 SV2和 SV3断开, SV4和 SV5闭合, Sdcl和 Sdc4断开, Sdc2和 Sdc3闭合; 交流侧隔离刀闸 K和断路 QF器闭合;
5) 晶闸管控制电抗器 TCR模式: 三相刀闸 Sacl闭合, Sac2 和 Sac3断开; 单相刀闸 SV1、 SV2和 SV3闭合, SV4和 SV5断开, SdcK Sdc2、 Sdc3和 Sdc4断开; 交流侧隔离刀闸 K和断路器 QF 闭合;
6) 晶闸管投切电抗器 TSR模式: 三相刀闸 Sacl闭合, Sac2和 Sac3断开; 单相刀闸 SV1、 SV2和 SV3闭合, SV4和 SV5断开, Sdc Sdc2、 Sdc3和 Sdc4断开; 交流侧隔离刀闸 K和断路器 QF闭合。
实施例 6:
本实施例中, 上述并联型十二脉动直流融冰自动转换电路包括 有两个分转换电路, 分别为分转换电路 TC1及分转换电路 TC2, 通过 三相三绕组整流变压器 T1和 T2、隔离刀闸 Κ及断路器 QF接于 500kV 主变 35kV侧, 滤波器组 F进行无功补偿和谐波抑制, 通过隔离刀闸 Kl和断路器 QF1接在整流变压器第三绕组上, 如图 10所示。
35kV母线三相电压 Uab、 Ubc、 Uca、整流变阀侧电流 Iyva、 Iyvb、 Iyvc、 Idva、 Idvb、 Idvc、 整流变网侧电流 Iya、 Iyb、 Iyc、 Ida、 Idb、 Idc、 直流侧电流 Idp、 Idn、 直流侧电压 Udp、 Udn、 换流器监 测信号、 刀闸监测信号、 断路器监测信号等接入控制保护系统 CP, 刀闸、 断路器和换流器控制命令由控制保护系统 CP发出。 其晶闸管 控制电抗器 TCR、 直流融冰及其等效试验功能等各种模式中的实现方 案是-
1 )一去一回直流融冰模式, 即 A-B相导线串联融冰: 三相刀闸 Sacl断开, Sac2和 Sac3闭合; 单相刀闸 SV1、 SV2和 SV3断开, SV4 和 SV5闭合, Sdcl和 Sdc2闭合, Sdc3和 Sdc4断开; 交流侧隔离刀 闸 K和断路 QF器闭合;
2) 二去一回直流融冰模式, 即 AB相导线并联后再与 C相导线 串联融冰: 三相刀闸 Sacl断开, Sac2和 Sac3闭合; 单相刀闸 SV1、 SV2和 SV3断开, SV4和 SV5闭合, Sdcl、 Sdc2和 Sdc4闭合, Sdc3 断开; 交流侧隔离刀闸 K和断路 QF器闭合;
3)开路试验模式: 三相刀闸 Sacl断开, Sac2和 Sac3闭合; 单 相刀闸 SV1、 SV2和 SV3断开, SV4和 SV5闭合, Sdcl、 Sdc2、 Sdc3 和 Sdc4断开; 交流侧隔离刀闸 K和断路 QF器闭合;
4) 零功率试验模式: 三相刀闸 Sacl断开, Sac2和 Sac3闭合; 单相刀闸 SV1、 SV2和 SV3断开, SV4和 SV5闭合, Sdcl和 Sdc4断开, Sdc2和 Sdc3闭合; 交流侧隔离刀闸 K和断路 QF器闭合;
5) 晶闸管控制电抗器 TCR模式: 三相刀闸 Sacl闭合, Sac2 和 Sac3断开; 单相刀闸 SV1、 SV2和 SV3闭合, SV4和 SV5断开, Sdcl, Sdc2、 Sdc3和 Sdc4断开; 交流侧隔离刀闸 K和断路器 QF 闭合;
6) 晶闸管投切电抗器 TSR模式: 三相刀闸 Sacl闭合, Sac2和 Sac3断开; 单相刀闸 SV1、 SV2和 SV3闭合, SV4和 SV5断开, Sdcl、 Sdc2、 Sdc3和 Sdc4断开; 交流侧隔离刀闸 K和断路器 QF闭合。

Claims

权利要求书
1、 一种多功能直流融冰自动转换电路, 其特征在于包括有 至少一个由如下构件组成的分转换电路, 该分转换电路包括有不 带饱和电抗器的六脉动换流器1¾, 电抗器 Lla、 Lib和 Lie, 电抗 器 L2a、 L2b和 L2c,三相刀闸 SacK Sac2和 Sac3,单相刀闸 SV1、 SV2、 SV3、 SV4和 SV5。分转换电路中不带饱和电抗器的六脉动换 流器 R与电抗器 Lla、 Lb、 Lc相连, 与电抗器 L2a、 L12b、 L2c 相连; 电抗器 L2a、 L2b、 L2c通过三相刀闸 Sacl与电抗器 Llc、 Lib, Lla分别对应相连; 三相刀闸 Sac3—端与不带饱和电抗器 的六脉动换流器 R—端相连,另一端短接;三相刀闸 Sac2—端与 电抗器 L2a、 L2b、 L2c相连, 另一端短接; 单相刀闸 SV1两端分 别与六脉动换流器 R中阔臂 VI阴极和阀臂 V4阳极相连, SV2两 端分别与六脉动换流器 R中阀臂 V3阴极和阀臂 V6阳极相连, 单 相刀闸 SV3两端分别与六脉动换流器 R中阀臂 V5阴极和阀臂 V2 阳极相连, SV4连接于电抗器 L2b和 L2c与六脉动换流器 R连接 侧相间, SV5连接于电抗器 L2a和 L2c与六脉动换流器 R连接侧 相间。
2、 根据权利要求 1所述的多功能直流融冰自动转换电路, 其特征在于上述六脉动换流器 R为不带饱和电抗器。
3、 根据权利要求 1所述的多功能直流融冰自动转换电路, 其特征在于上述转换电路中电抗器 Lla、Llb和 Lie的电感值根据 晶闸管电流变化率 di/dt和短路电流限值确定, 电抗器 Lla、 Lib 和 Lie的电感值为电执器1^&、1^21) 20的0 0. 2倍,电抗器 a、 Lib和 Lie的额定电流值按融冰模式中平波电抗器要求设计, 电 抗器 L2a、 L2b、 L2c的额定电流值按晶闸管控制电抗器 TCR或晶 闸管投切电抗器 TSR模式要求设计。
4、 根据权利要求 1至 3任一项所述的多功能直流融冰自动 转换电路, 其特征在于包括有一个分转换电路、 直流侧转换刀闸 SdcK Sdc2、 Sdc3和 SVdc4, 隔离刀闸 K, 断路器 QF, 以及控制 保护系统 CP,直流侧转换刀闸 Sdcl和 Sdc2并联后与分转换电路 中三相刀闸 Sac3短接端相连;单相刀闸 Sdc3和 Sdc4并联后与分 转换电路中三相刀闸 Sac2短接端相连;分转换电路通过隔离刀闸 K和断路器 QF与变电站 35kV或 10kV母线相连,刀闸 Sacl、Sac2、 Sac3、 K、 SV1、 SV2、 SV3、 SV4、 SV5、 SdcK Sdc2、 Sdc3、 Sdc4 和断路器 QF的位置信号及换流器交流侧电流信号 Iva、 Ivb、 Ivc 及直流侧电流信号 Idp、 Idn及直流侧电压信号 Udp、 Udn及六脉 动换流器 R的监测信号接入控制保护系统 CP; 控制保护系统 CP 发出刀闸和断路器 QF的分合命令及发出六脉动换流器 R的控制和 触发命令。
5、 根据权利要求 1至 3任一项所述的多功能直流融冰自动转换 电路,其特征在于包括有两个串联连接的分转换电路, 分别为分转换 电路 TC1及分转换电路 TC2, Y/Y联结变压器 Τ1、 Υ/Δ联结变压器 Τ2, 直流侧转换刀闸 Sdcl、 Sdc2、 Sdc3和 SVdc4, 隔离刀闸 K, 断路器 QF, 以及控制保护系统 CP, 且两个分转换电路连接中点接地, 分转 换电路 TC1与 Y/Y联结变压器 T1相连, 分转换电路 TC2与 ΥΔ联结 变压器 T2相连; 分转换电路 TC1和 TC2中不带饱和电抗器的六脉动 换流器 R通过三相刀闸 Sac3短接端相连; 直流侧转换刀闸 Sdcl和 Sdc2并联后与分转换电路 TC1中三相刀闸 Sac2短接端相连; 单相刀 闸 Sdc3和 Sdc4并联后与分转换电路 TC2中三相刀闸 Sac2短接端相 连; Y/Y联结变压器 Τ1、 Υ/Δ联结变压器 Τ2通过隔离刀闸 Κ和断路 器 QF与变电站 35kV或 10kV或 220kV母线相连。 刀闸 Sacl、 Sac2、 Sac3、 K、 SV1、 SV2、 SV3、 SV4、 SV5、 Sdcl、 Sdc2、 Sdc3、 Sdc4和 断路器 QF的位置信号及整流变阀侧电流信号 Iyva、Iyvb、Iyvc、Idva、 Idvb、 Idvc及网侧电流 Iya、 Iyb、 Iyc、 Ida、 Idb、 Idc及直流侧电 流信号 Idp、 Idn, Idgn及直流侧电压信号 Udp、 Udn及六脉动换流器 的监测信号接入控制保护系统 CP; 控制保护系统 CP发出刀闸和断 路器 QF的分合命令及发出六脉动换流器 R的控制和触发命令。
6、 根据权利要求 1至 3任一项所述的多功能直流融冰自动转换 电路,其特征在于包括有两个并联的分转换电路, 分别为分转换电路 TC1及分转换电路 TC2, Y/Y联结变压器 Τ1、 Υ/Δ联结变压器 Τ2, 直 流侧转换刀闸 Sdcl、 Sdc2、 Sdc3和 SVdc4, 隔离刀闸 K, 断路器 QF, 以及控制保护系统 CP, 分转换电路 TC1与 Y/Y联结变压器 T1相连, 分转换电路 TC2与 ΥΔ联结变压器 T2相连; 分转换电路 TC1中三相 刀闸 Sac2短接端和分转换电路 TC2中三相刀闸 Sac3短接端相连;分 转换电路 TC1中三相刀闸 Sac3短接端和分转换电路 TC2中三相刀闸 Sac3短接端相连; 直流侧转换刀闸 Sdcl和 Sdc2并联后与分转换电 路 TC1中三相刀闸 Sac2短接端相连; 单相刀闸 Sdc3和 Sdc4并联后 与分转换电路 TC2中三相刀闸 Sac2短接端相连; Y/Y联结变压器 Tl、 Υ/Δ联结变压器 Τ2通过隔离刀闸 Κ和断路器 QF与变电站 35kV或 10kV 或 220kV母线相连。 刀闸 Sacl、 Sac2、 Sac3、 K、 SV1、 SV2、 SV3、 SV4、 SV5、 Sdcl、 Sdc2、 Sdc3、 Sdc4和断路器 QF的位置信号及整流 变阀侧电流信号 Iyva、 Iyvb、 Iyvc、 Idva、 Idvb、 Idvc及网侧电流 Iya、 Iyb、 Iyc、 Ida. Idb、 Idc及直流侧电流信号 Idp、 Idn及直流 侧电压信号 Udp、 Udn及六脉动换流器 R的监测信号接入控制保护系 统 CP; 控制保护系统 CP发出刀闸和断路器 QF的分合命令及发出六 脉动换流器 R的控制和触发命令。
7、 根据权利要求 4所述的多功能直流融冰自动转换电路, 其特 征在于包括有一个分转换电路时的六脉动直流融冰自动转换电路运 行于融冰模式时直流侧不接地。
8、 根据权利要求 5所述的多功能直流融冰自动转换电路, 其特 征在于包括有两个分转换电路时的串联型十二脉动直流融冰自动转 换电路运行于融冰模式时直流侧两六脉动换流器 R连接点直接接地; 上述串联型十二脉动直流融冰自动转换电路运行于融冰模式和晶闸 管控制电抗器 TCR模式时均为 12脉动; 上述串联型十二脉动直流融 冰自动转换电路中电抗器 Ua、 Lib和 Lie的电感值可为 0, 即不配 置电抗器 Lla、 Lib和 Llc。
9、 根据权利要求 6所述的多功能直流融冰自动转换电路, 其特 征在于包括有两个分转换电路时的并联型十二脉动直流融冰自动转 换电路运行于融冰模式时直流侧不接地运行于融冰模式时直流侧不 接地;上述并联型十二脉动直流融冰自动转换电路运行于融冰模式和 晶闸管控制电抗器 TCR模式时均为 12脉动; 上述并联型十二脉动直 流融冰自动转换电路中电抗器 Lla、 Lib和 Lie的电感值可为 0, 即 不配置电抗器 Lla、 Lib和 Llc。
10、 一种多功能直流融冰自动转换电路的转换方法, 其特征在 于包括如下转换模式:
1 )一去一回直流融冰模式, 即 A-B相导线串联融冰: 三相刀闸 Sacl断开, Sac2和 Sac3闭合; 单相刀闸 SV1、 SV2和 SV3断开, SV4 和 SV5闭合, Sdcl和 Sdc2闭合, Sdc3和 Sdc4断开; 交流侧隔离刀 闸 K和断路 QF器闭合;
2) 二去一回直流融冰模式, 即 AB相导线并联后再与 C相导线 串联融冰: 三相刀闸 Sacl断开, Sac2和 Sac3闭合; 单相刀闸 SV1、 SV2和 SV3断开, SV4和 SV5闭合, Sdcl、 Sdc2和 Sdc4闭合, Sdc3 断开; 交流侧隔离刀闸 K和断路 QF器闭合;
3)开路试验模式: 三相刀闸 Sacl断开, Sac2和 Sac3闭合; 单 相刀闸 SV1、 SV2和 SV3断开, SV4和 SV5闭合, Sdcl、 Sdc2、 Sdc3 和 Sdc4断开; 交流侧隔离刀闸 K和断路 QF器闭合;
4) 零功率试验模式: 三相刀闸 Sacl断开, Sac2和 Sac3闭合; 单相刀闸 SV1、 SV2和 SV3断开, SV4和 SV5闭合, Sdcl和 Sdc4断开, Sdc2和 Sdc3闭合; 交流侧隔离刀闸 K和断路 QF器闭合;
5) 晶闸管控制电抗器 TCR模式: 三相刀闸 Sacl闭合, Sac2 和 Sac3断开; 单相刀闸 SV1、 SV2和 SV3闭合, SV4和 SV5断开, Sdcl、 Sdc2、 Sdc3和 Sdc4断开; 交流侧隔离刀闸 K和断路器 QF 闭合;
6) 晶闸管投切电抗器 TSR模式: 三相刀闸 Sacl闭合, Sac2 和 Sac3断开; 单相刀闸 SV1、 SV2和 SV3闭合, SV4和 SV5断开, Sdcl、 Sdc2、 Sdc3和 Sdc4断开; 交流侧隔离刀闸 K和断路器 QF 闭合。
11、 根据权利要求 10所述的多功能直流融冰自动转换电路 的转换方法, 其特征在于上述一去一回直流融冰模式、 二去一回 直流融冰模式、 开路试验模式和零功率试验模式中, 电抗器 Lla、 Lib和 Lie作为换相电抗器运行, 电抗器 L2a、 L2b和 L2c作为平 波电抗器运行。
12、 根据权利要求 11所述的多功能直流融冰自动转换电路的转 换方法,其特征在于上述晶闸管控制电抗器 TCR模式中,电抗器 Lla、 Lib和 Lie, 电抗器 L2a、 L2b和 L2c作为相控电抗器运行; 上述晶闸 管投切电抗器 TSR模式中, 电抗器 Lla、 Lib和 Lie, 电抗器 L2a、 L2b 和 L2c作为投切电抗器运行。
PCT/CN2012/000702 2011-11-09 2012-05-21 一种多功能直流融冰自动转换电路及其转换方法 WO2013067754A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/357,169 US9972988B2 (en) 2011-11-09 2012-05-21 Multi-functional direct current ice melting automatic switching circuit and switching method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110353317.XA CN102510039B (zh) 2011-11-09 2011-11-09 一种多功能直流融冰自动转换电路及其转换方法
CN201110353317.X 2011-11-09

Publications (1)

Publication Number Publication Date
WO2013067754A1 true WO2013067754A1 (zh) 2013-05-16

Family

ID=46222099

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/000702 WO2013067754A1 (zh) 2011-11-09 2012-05-21 一种多功能直流融冰自动转换电路及其转换方法

Country Status (3)

Country Link
US (1) US9972988B2 (zh)
CN (1) CN102510039B (zh)
WO (1) WO2013067754A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104849655A (zh) * 2015-04-10 2015-08-19 国家电网公司 特高压融冰隔离开关大电流试验装置和试验方法
CN112085274A (zh) * 2020-09-09 2020-12-15 重庆大学 一种计及融冰方式与系统调度运行的融冰协调优化方法
CN115800169A (zh) * 2022-12-27 2023-03-14 西南交通大学 适用于接触网和承力索覆冰的非分相区分段可调直流融冰系统

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103972887B (zh) * 2014-05-19 2017-07-18 南京南瑞继保电气有限公司 一种适用于双回线路的统一潮流控制器
CN104601013A (zh) * 2014-12-31 2015-05-06 国家电网公司 一种直流融冰装置
CN105140870A (zh) * 2015-09-30 2015-12-09 国家电网公司 特高压直流融冰装置的电流汇流与短路系统
CN109033691B (zh) * 2018-08-16 2022-12-30 四川大学 基于交流加热电源的自制热输电导线参数优化方法
CN111746324A (zh) * 2019-03-29 2020-10-09 天津平高智能电气有限公司 一种储能充电桩
CN109904030A (zh) * 2019-04-16 2019-06-18 中国电力工程顾问集团西南电力设计院有限公司 多功能组合式融冰隔离开关
CN110254243B (zh) * 2019-06-28 2021-09-17 中车株洲电力机车有限公司 一种列车供电系统、方法及列车
CN111431125B (zh) * 2020-05-11 2021-04-16 广东电网有限责任公司清远供电局 一种在线融冰装置
CN112332357B (zh) * 2020-11-28 2021-11-26 贵州电网有限责任公司 一种高压电缆旋转碎冰装置
CN112580237B (zh) * 2020-12-09 2022-10-28 国网湖南省电力有限公司 电网融冰决策方法、装置、计算机设备和介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101237134A (zh) * 2008-02-29 2008-08-06 梁一桥 具有静止式动态无功补偿功能的直流大电流融冰装置
CN101316033A (zh) * 2008-06-11 2008-12-03 国网武汉高压研究院 一种大容量直流融冰装置
EP1787383B1 (en) * 2004-09-10 2009-01-14 Areva T&D UK Limited Convertible high voltage direct current installation
CN101383494A (zh) * 2008-10-17 2009-03-11 南方电网技术研究中心 特高压直流输电系统线路融冰的直流控制保护方法
CN101673950A (zh) * 2009-10-15 2010-03-17 中电普瑞科技有限公司 一种静止无功补偿(svc)兼直流融冰装置及其实现方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202663067U (zh) * 2011-11-09 2013-01-09 南方电网科学研究院有限责任公司 一种多功能十二脉动直流融冰自动转换电路

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1787383B1 (en) * 2004-09-10 2009-01-14 Areva T&D UK Limited Convertible high voltage direct current installation
CN101237134A (zh) * 2008-02-29 2008-08-06 梁一桥 具有静止式动态无功补偿功能的直流大电流融冰装置
CN101316033A (zh) * 2008-06-11 2008-12-03 国网武汉高压研究院 一种大容量直流融冰装置
CN101383494A (zh) * 2008-10-17 2009-03-11 南方电网技术研究中心 特高压直流输电系统线路融冰的直流控制保护方法
CN101673950A (zh) * 2009-10-15 2010-03-17 中电普瑞科技有限公司 一种静止无功补偿(svc)兼直流融冰装置及其实现方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104849655A (zh) * 2015-04-10 2015-08-19 国家电网公司 特高压融冰隔离开关大电流试验装置和试验方法
CN112085274A (zh) * 2020-09-09 2020-12-15 重庆大学 一种计及融冰方式与系统调度运行的融冰协调优化方法
CN112085274B (zh) * 2020-09-09 2024-04-19 重庆大学 一种计及融冰方式与系统调度运行的融冰协调优化方法
CN115800169A (zh) * 2022-12-27 2023-03-14 西南交通大学 适用于接触网和承力索覆冰的非分相区分段可调直流融冰系统
CN115800169B (zh) * 2022-12-27 2023-06-09 西南交通大学 适用于接触网和承力索覆冰的非分相区分段可调直流融冰系统

Also Published As

Publication number Publication date
CN102510039A (zh) 2012-06-20
CN102510039B (zh) 2014-10-01
US20150042176A1 (en) 2015-02-12
US9972988B2 (en) 2018-05-15

Similar Documents

Publication Publication Date Title
WO2013067754A1 (zh) 一种多功能直流融冰自动转换电路及其转换方法
WO2015131517A1 (zh) 基于电压源型换流器的直流融冰装置及其控制方法
CN101673950B (zh) 一种静止无功补偿(svc)兼直流融冰装置及其实现方法
CN101877470B (zh) 一种带专用整流变压器的直流融冰装置及其保护方法
WO2015184955A1 (zh) 一种电压源型直流融冰兼静止同步补偿装置及其控制方法
CN203813384U (zh) 基于电压源型换流器的直流融冰装置
CN202749782U (zh) 全过程利用倒闸操作实施的输电线路融冰系统
CN103986176A (zh) 一种将换流站带电接入多端柔性直流输电系统的方法
WO2013026253A1 (zh) 全过程利用倒闸操作实施的输电线路融冰系统及其方法
CN101540508A (zh) 一种静止无功补偿(svc)兼直流融冰的可重构装置
CN106684795A (zh) 一种基于三相桥式全控结构的直流融冰装置
CN104037702A (zh) 一种不控和全控整流单元串连的直流融冰兼svg装置
CN113036800B (zh) 一种柔性互联变电站结构及控制方法
CN112234567A (zh) 新型不控型直流融冰装置及其融冰方法
Wang et al. Design on DC de-icing schemes for high voltage transmission line
CN201623436U (zh) 可复用为tsc的直流融冰装置
CN104037704A (zh) 一种可无级调压的直流融冰兼svg装置
CN202749783U (zh) 一种直流融冰兼静止无功补偿装置
CN104037703A (zh) 一种基于全控整流单元的直流融冰兼svg装置
CN104037701A (zh) 一种可减小变压器容量的直流融冰兼svg装置
CN204179673U (zh) 一种动态无功补偿及直流融冰复用装置
CN202978175U (zh) 一种多功能六脉动直流融冰自动转换电路
CN114709780A (zh) 一种基于功率调节的输配电线路在线融冰装置及控制方法
CN202663067U (zh) 一种多功能十二脉动直流融冰自动转换电路
Tao et al. Analysis on DC side protection strategy for grounded power battery energy storage system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12848638

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14357169

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 12848638

Country of ref document: EP

Kind code of ref document: A1